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Preface

Volume VII of the Transactions on Rough Sets (TRS) is a sequel to volume VI
of the TRS. Both volumes commemorate the life and work of Zdzis�law Pawlak
(1926-2006)1. It is evident from the wide spectrum of contributions to these
volumes that Zdzis�law Pawlak’s legacy is rich and varied. Prof. Pawlak’s research
contributions have had far-reaching implications inasmuch as his works have
served as cornerstones in establishing new frontiers for scientific research in a
number of fields.

From an early age, Zdzis�law Pawlak devoted his life to scientific research. His
pioneering work included research on modeling industrial processes, the design
of computers, information retrieval, modeling conflict analysis and negotiation,
genetic grammars and molecular computing. His research led to the introduction
of knowledge representation systems during the early 1970s and the discovery
of rough sets during the early 1980s. Added to that was Prof. Pawlak’s lifelong
interest in painting, photography and poetry. During his lifetime, he nurtured
worldwide interest in approximation, approximate reasoning and rough set the-
ory and its applications2. Evidence of the influence of Prof. Pawlak’s work can
be seen in the growth of rough-set literature that now includes over 4000 pub-
lications by more than 1600 authors in the rough set database3 as well as the
growth and maturity of the International Rough Set Society4. Moreover, numer-
ous biographies of Zdzis�law Pawlak have been published5.

This volume of the TRS presents papers that reflect the profound influence
of a number of research initiatives by Zdzis�law Pawlak. In particular, it intro-
duces a number of new advances in the foundations and applications of artificial
intelligence, engineering, logic, mathematics, and science. These advances have
significant implications in a number of research areas. In addition, it is evident
from the papers included in this volume that rough set theory and its application
form a very active research area worldwide. A total of 42 researchers from 13
countries are represented in this volume, namely, Australia, Canada, Germany,
India, Italy, Japan, Poland, P.R. China, Sweden, Thailand, Taiwan, UK (Wales)

1 Prof. Pawlak passed away on 7 April 2006.
2 See, e.g., Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences

177 (2007) 3–27; Pawlak, Z., Skowron, A.: Rough sets: Some extensions, Informa-
tion Sciences 177 (2007) 28–40; Pawlak, Z., Skowron, A.: Rough sets and Boolean
reasoning, Information Sciences 177 (2007) 41–73.

3 http://rsds.wsiz.rzeszow.pl/rsds.php
4 http://roughsets.home.pl/www/
5 See, e.g., Peters, J.F. and Skowron, A., Zdzis�law Pawlak: Life and Work. Transac-

tions on Rough Sets V, LNCS 4100 (2006) 1-24. See, also, R. S�lowiński, Obituary,
Prof. Zdzis�law Pawlak (1926-2006), Fuzzy Sets and Systems 157 (2006) 2419-2422.

and the USA. Evidence of the vigor, breadth and depth of research in the theory
and applications of rough sets can be found in the articles in this volume.
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VI Preface

Most of the contributions of this commemorative volume of the TRS are on
an invitational basis and every paper has been refereed in the usual way. This
special issue of the TRS contains 19 papers that explore a number of research
streams that are either directly or indirectly related to research initiatives by
Zdzis�law Pawlak. These research streams are represented by papers on intelli-
gent signal processing techniques (Andrzej Czyżewski), belief networks (Jerzy W.
Grzyma�la-Busse, Zdzis�law S. Hippe, Teresa Mroczek), relational attribute sys-
tems (Ivo Düntsch, Günther Gediga, Ewa Or�lowska), dominance-based rough set
approach (Salvatore Greco, Benedetto Matarazzo, Roman S�lowiński), rough sets
in bioinformatics (Torgeir R. Hvidsten, Jan Komorowski), selection of important
attributes for medical diagnosis systems (Grzegorz Ilczuk, Alicja Wakulicz-Deja),
rough clustering (Pawan Lingras), case-based reasoning classifiers (Yan Li, Si-
mon Chi-Keung Shiu, Sankar Kumar Pal, James Nga-Kwok Liu), Web infor-
mation gathering (Yuefeng Li, Ning Zhong), rough sets in pattern recognition
(Sushmita Mitra, Haider Banka), possibilistic information (Michinori Nakata,
Hiroshi Sakai), hybrid rough sets-population-based system (Puntip Pattarain-
takorn, Nick Cercone), intelligent system for survival analysis based on hybrid
rough sets (Puntip Pattaraintakorn, Nick Cercone, Kanlaya Naruedomkul), clas-
sifying remotely sensed images (B. Uma Shankar), rough feature selection (Qiang
Shen), granulation in information security (Da-Wei Wang, Churn-Jung Liau,
Tsan-sheng Hsu), definability and approximation (Yiyu Yao), audiovisual emo-
tion recognition (Yong Yang, Guoyin Wang, Peijung Chen, Jian Zhou, Kun He).

The editors of this volume extend their hearty thanks to the following review-
ers: Jan Bazan, Maciej Borkowski, Beata Konikowska, Bożena Kostek, Pawan
Lingras, Son Nguyen, Wladys�law Skarbek, Marcin Szczuka, Sheela Ramanna,
Dominik Ślȩzak, Jerzy Stefanowski, Piotr Synak, Dimiter Vakarelov, Hui Wang,
Piotr Wasilewski, Marcin Wojnarski, Jakub Wróblewski, and Yiyu Yao.

This issue of the TRS has been made possible thanks to the laudable efforts
of a great many generous persons and organizations. The editors and authors of
this volume also extend an expression of gratitude to Alfred Hofmann, Ursula
Barth, Christine Günther and the LNCS staff at Springer for their support in
making this volume of the TRS possible. In addition, the editors extend their
thanks to Marcin Szczuka for his consummate skill and care in the compilation
of this volume.

December 2006 Victor Marek
Ewa Or�lowska

James F. Peters
Roman S�lowiński
Andrzej Skowron
Wojciech Ziarko
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LNCS Transactions on Rough Sets

This journal subline has as its principal aim the fostering of professional ex-
changes between scientists and practitioners who are interested in the founda-
tions and applications of rough sets. Topics include foundations and applications
of rough sets as well as foundations and applications of hybrid methods combin-
ing rough sets with other approaches important for the development of intelligent
systems.

The journal includes high-quality research articles accepted for publication
on the basis of thorough peer reviews. Dissertations and monographs up to 250
pages that include new research results can also be considered as regular papers.
Extended and revised versions of selected papers from conferences can also be
included in regular or special issues of the journal.
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J. Stefanowski
J. Stepaniuk
Z. Suraj
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Speech Coding Employing Intelligent Signal

Processing Techniques

Andrzej Czyzewski

Multimedia Systems Department
Gdansk University of Technology

ul. Narutowicza 11/12, 80-952 Gdansk, Poland
ac@pg.gda.pl

Abstract. The concepts and experiments presented are focused on mod-
ifications of an existing parametric speech coding algorithm (CELP)
introduced in order to improve subjective speech quality in telephone
connections. The perceptual coding to bit rate limiting was added and
algorithms qualifying speech components to the categories of ”voiced”,
”unvoiced”, ”transients” using rough sets were studied. The speech sig-
nal quality achieved with the proposed hybrid codec was compared to
the quality offered by some standard speech codecs.

Keywords: CELP residual coding, hybrid codec architecture, percep-
tual speech coding, rough set decision algorithm.

1 Introduction

The majority of speech telecommunication systems in today’s use offer a narrow-
band transmission, limited to about 200– 4000 Hz. The principal effect of band
limiting is the degradation of intelligibility of speech occurring mostly due to
the influence of upper band limiting to the perception of plosives and fricatives.
Moreover, recognizing co-talkers is impeded because of the meaning of vocal tone
band located in the range of low frequencies.

Typical applications of computer technologies in digital signal processing only
rarely consider the opportunities of data processing with the use of methods
which stem from artificial intelligence or soft computing. In the meantime the
area of DSP (Digital Signal Processing) has an extensive demand for applica-
tions of intelligent signal processing because of unrepeatability and uncertainty
of real-life signals and the lack of adequate mathematical models of signal pro-
duction processes. That is why learning algorithms and data mining techniques
are important to this kind of applications.

In most of the applications related to transmission of speech signal, parametric
coding algorithms are used (CELP, ACELP, LD-CELP, etc.). These algorithms
reduce bit-rate of the signal significantly, sacrificing quality of the signal to some
degree. For many years, bit-rate and delay were the main criteria in speech codec
assessment, while subjective signal quality, expressed using the mean opinion
score (MOS) scale, was considered less important. Most of parametric speech

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 A. Czyzewski

codecs used in current applications provides signal quality from 3.2 to 4.0 in the
MOS scale (where 5.0 means the best possible quality) [26].

The meaning of wideband speech is now recognized in some newer ITU-T
standards. Two of them, called AMRWB and VMRWB, can be viewed as pure
speech coding algorithms based on the ACELP technology. They do not pro-
vide, however, at least satisfactory quality of non-speech signals representation
[19,24]. Therefore, an extended AMRWB+ codec was introduced to overcome
this limitation. Unfortunately, as the AMRWB+ codec takes an advantage of
hybrid ACELP/transform coding techniques, it introduces a coding delay up to
90 ms, thus in general it is not suitable for the real-time two-way communication.
Accordingly, one can notice that there is still a need for A wideband, highquality,
mid-delay speech codec with improved ability to encode non-speech signals.

Contrarily to coding techniques based on the speech production model, that is
insufficient for more complex signals, the codec proposed in this paper employs
the analysis technique for extracting sines, noise and transient parts of the signal.
The analysis is supported by a soft computing algorithm. In the next step, each
part of the entire signal is encoded using an adequate technique, including the
perceptual criteria. It has to be mentioned that sines+residual model is widely
used as a powerful tool for signal modification (e.g. pitch, time-scale) [20]. The
sines+residual signal representation was also employed for efficient narrowband
speech coding at about 8 kbps rate. Additionally, it was found that it is a ro-
bust method for coding both speech signals and mixed audio content [18,21,23].
Concerning this, it was also expected that extending the sines+residual model
with transient selection module will further improve the signal representation
accuracy. As the aim is to present the super-wideband signal to the listener,
the spectrum components exceeding 7 kHz are reconstructed artificially in the
proposed approach. It has to be mentioned that during some stages of encoding
process the perceptual criterion was applied, allowing a reduction of the bit-rate
requirements for the codec bit stream [5,22].

The main problem in the parametric approach to speech coding is how to
encode transients, voiced and unvoiced signal components, efficiently. Encod-
ing of transient states is especially important here, because an inappropriate
encoding of transients may result in significantly decreased signal quality, Vari-
ous parametric codecs use different approach to this problem, yet none of these
approaches provide sufficiently accurate transient encoding, which is reflected
in quality values (MOS). One of the concepts of the hybrid codec presented
in this paper is extraction of transient, voiced and unvoiced components from
the signal and using an appropriate approach for each of these groups. In the
synthesis of musical instruments, the introduction of transient analysis and syn-
thesis to the “sine and noise” model resulted in improved signal quality. Hence,
it may be expected that using a similar “voiced-transient-unvoiced” approach
to speech signal will provide an improvement of signal quality, as well. However,
no research on this topic has been done so far by the author and his team of
researchers.
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Speech Coding Employing Intelligent Signal Processing Techniques 3

The aim of the perceptual speech codec module is to improve further sig-
nal quality by incorporating the perceptual coding algorithm into the para-
metric codec. The calculation of the masking offset, playing a significant role
in the masking threshold calculation based on the uncertainty measure can be
also interpreted in terms of rough set theory [1]. That is because of a depen-
dency occurring between the rough measure and the unpredictability measure.
The noisy data processing is an evident example of making uncertain decisions,
because Unpredictability Measure represents the margin of uncertainty while
interpreting sound spectrum shape in terms of useful or useless components
representation [14].

The novel approach to speech coding using the hybrid architecture is pre-
sented in the consecutive paragraphs of this paper. Advantages of parametric
and perceptual coding methods are utilized together in order to create a speech
coding algorithm assuring a better signal quality than in the traditional CELP
parametric codec.

2 Voiced/Unvoiced Speech Selection Algorithms

Since the LP coding relies on a simple two-state model of speech production,
each frame of the input signal is classified either as voiced or unvoiced. Usu-
ally, the classification is based on the observation that frames of voiced parts
are strongly correlated with each other and have relatively higher energy than
unvoiced parts [6]. This approach is also utilized in the engineered algorithm.
However, an additional intelligent decision module is employed in order to ensure
that frames classified as unvoiced will not contain transients.

The detector relies on three parameters which are calculated for every block
of segmented signal s[n0,...,nN−1] according to the following formulas [6,7,16]:

xo =
1

2N

N−1∑

n=1

|sgn (s [n])− sgn (s [n− 1])| (1)

x1 =
1
N

N−1∑

n=0

|s [n]| (2)

x2 = max

⎛

⎝
N
2 −1∑

n=0

s [n] · s
[
n +

N

2

]⎞

⎠ (3)

where: s[n] – block of the signal, N – frame length.
The frame is classified as voiced if the following expression is true:

w0 +
M∑

k=1

wk · xk−1 > 0 (4)

where: wk – elements of weighting vector, M– number of parameters.
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4 A. Czyzewski

The wk elements of weighting vector were chosen in order to allow a proper
frame classification for different speech samples. Since the detector does not
take into account any information about the previous classification results, the
voiced/unvoiced decision may change instantly from one frame to another when
some special conditions occur. Thus, an appropriate hysteresis function was uti-
lized previously [16] in order to prevent undesirable state changes of the detector.
It has to be mentioned that not only pure-voiced frames but also frames con-
taining transients are classified into the voiced part of the speech signal. Instead
of the decision term (4) a soft computing decision algorithm was also employed
to define the current frame as voiced or unvoiced. This algorithm based on the
rough set approach uses an automatically reduced set of attribute values and
learned rough rules. The conditional attributes are represented by: x0={0,1};
x1={low, medium, high}; x2={low, medium, high}. The decision attribute is
binary d ={voiced, unvoiced}.

The rough set algorithm implemented earlier by R. Krolikowski was utilized
[17]. The elaborated rule induction algorithm is based on the rough set method-
ology. Since the basic rough operators (the partition of a universe into classes of
equivalence, C-lower approximation of X and calculation of a positive region)
can be performed more efficiently when objects are ordered, the algorithm often
executes sorting of all objects with respect to a set of attributes. Reducing of
values of attributes requires that all combinations of the conditional attributes
must be analyzed. In general case, the decision table should be sorted as many
times as is the number of all these combinations. Therefore, in every set of at-
tributes A (A ⊆ C ), a subset of the conditional attributes C should be exploited
as many times as possible. The algorithm splits the decision table T into two
tables: consisting of only certain rules (TCR) and of only uncertain rules ( TUR).
For them both, there is additional information associated with every object in
them. The information concerns the minimal set of indispensable attributes and
the rough measure μRS . The latter case is applied only for uncertain rules. The
elaborated algorithm consists of the following main group of modules:

a) Master procedure of all procedures related to the rough set-based induction
algorithm

– procedure RS algorithm

It is assumed that a decision table is fed to the procedure either at a call or
supplied during its execution. By analogy, the procedure returns a table with
generated rules.

b) Initial procedures

– procedure preprocessing

The procedure prepares 2 tables of certain TCR and uncertain rules TUR.
In addition, it computes the set of concepts V with respect to the set of
attributes D.
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Speech Coding Employing Intelligent Signal Processing Techniques 5

– procedure generate rules(C : set of attributes)

Input: C - the set of the conditional attributes
The procedure is a master procedure of all those procedures and functions

which task is to generate rules by removing superfluous values of attributes. At
the end, these values are replaced by ’do not care’ value. However, the procedure
affects the tables TCR and TUR in an implicit way.

– procedure postprocessing

The procedure prepares the output table of generated rules T in such a way
that a rule could be accessed in at most |C| · log2 N comparisons, where N is
the number of objects in T .

c) Procedures preserving the proper depth of the analysis of the conditional
attributes

– procedure P (C, A : set of attributes)

Input: C - the set of the conditional attributes,
A - an arbitrary set of attributes, where A ⊆ C

Output: potentially modified auxiliary data associated with
the tables TCR , TUR

The procedure provides the proper depth of the analysis of all combinations
of the conditional attribute set C and is executed recursively.

– procedure P (A : set of attributes; depth : integer)

Input: A - an arbitrary set of conditional attributes,
depth - depth of recursions,

Output: potentially modified auxiliary data associated with
the tables TCR , TUR

Similarly to the procedure P(), this procedure provides the proper order of
the analysis of all combinations of the conditional attribute set C. It contributes
to a further recurrent processing of the conditional attributes and is similar to
P().

– procedure left (A : set of attributes; depth : integer)

Input: A - an arbitrary set of conditional attributes,
depth - depth of recursions,

Output: potentially modified auxiliary data associated with
the tables TCR , TUR

The procedure is strictly related to the proper depth of the analysis of the
conditions and concerns recurrent processing. The execution of the procedure
enables the analysis of some subsets of the attributes without sorting the
table.
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6 A. Czyzewski

d) Procedures eliminating superfluous values of attributes in certain and
uncertain rules

– function process certain rules (A : set of attributes): set of sets of objects

Input: A - an arbitrary set of conditional attributes,
Output: Z - set of sets of objects belonging to the same equivalence class,

potentially modified auxiliary data associated with the table TCR

The function performs all necessary operations in order to reduce values of
attributes. In consequence, it may cause a removal of an attribute. The proce-
dure affects only certain rules. The output value Z = UCR/IND(A) is returned
so that the procedure process uncertain rules doesn’t need to compute the
partition UCR/IND(A) .

– procedure process uncertain rules
(Z : set of sets of objects;A : set of attributes)

Input: Z - set equivalence classes for the tableTCR (UCR/IND(A)) ,
A - an arbitrary set of conditional attributes

Output: potentially modified auxiliary data associated with the table TUR

The procedure calculates the rough measure for each object of the decision
table TUR (uncertain rules) and for each combination of attributes. The largest
values of the measure are stored.

e) Functions which are related to the basic rough set operators

– function U IND (T : table; A : set of attributes) :
set of sets of objects

Input: T - a decision table,
A - an arbitrary set of attributes,

Output: a set of objects belonging to the same equivalence class

The function parts the universe U (table T ) into classes of equivalence
U/IND(A) according to indiscernibility relation with respect to a set of
attributes A.

– function CX (T : table; C, X : set of attributes) :
set of objects

Input: T - a decision table,
C, X - arbitrary sets of attributes,

Output: a set of objects in T which belong to the C-lower approximation
of the set X

The function computes the C-lower approximation of X .

– function POS REG (T : table; A1, A2 : set of attributes) :
set of objects
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Input: T - a decision table,
A1, A2 - arbitrary sets of attributes,

Output: a set of objects in T which constitute the positive region
The function calculates the positive region of classification U/IND(A2) for

the set of attributes A1.

f) Auxiliary procedure and function

– procedure checkU IND (Y : set of sets of objects; A :
set of attributes)

Input: Y - a set of equivalence classes after the partitioning UCR/IND(A),
A - an arbitrary set of conditional attributes

Output: potentially modified auxiliary data associated with the table TCR

The procedure checks whether all objects belonging to the partition
UCR/IND(A)

have the same decision values. If so and if the number of current dispensable
attributes is less than the number of such attributes for these objects, stored so
far, it stores the information of the dispensable attributes.

– function intersection (X , Y : set of objects) :
set of objects

Input: X , Y - ascending sorted sets of objects
Output: Z - the intersection of X and Y

The function calculates the intersection of the input sets X and Y . The prod-
uct is returned by the output set Z = X ∩Y . The assumption is that the input
sets X and Y are ascending sorted sets and therefore in the worst case, there
are |X |+ |Y | comparisons necessary.

The rule discovery procedure was executed in order to acquire the knowledge
from the set of 100 speech utterances produced by 10 speakers. Each utterance
was edited from the speech signal using 10 ms rectangular window cut. The edited
utterances were labelled manually as voiced or unvoiced by a human operator bas-
ing on his knowledge of the utterance context. The values of attributes x1and x2

were normalized in order to keep them in the range {0,1}. A uniform quantization
of conditional attribute values x1and x2 was exploited in the experiments for the
sake of simplicity. Hence the values of x1and x2 were considered low when xk <
0.333. . . , medium in the range 0.333. . . < xk <0.666.. and high for xk >
0.666. . . . The rules learned automatically from the data set were pruned in such
a way that only those with the strength higher than 0.5 were retained. The prun-
ing operation resulted in reducing the rule base to 68 most certain rules (39 % of
all rules) applied subsequently to decision making with regard to different speech
utterances produced by the same speakers. The result of classification for a par-
ticular speech sample is presented in Fig. 1b revealing supremacy of the rough
set decision algorithm over the previously applied decision based on term (4), the
result for the second case being plotted in Fig. 1a.
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8 A. Czyzewski

(a)

(b)

Fig. 1. Results of voiced (V)/unvoiced (Unv) classification: (a) criterion (4) - based
decisions; (b) rough set algorithm based decisions

3 Detecting Transient States in Speech Signal

The proposed algorithm consists of two main stages [16]. In the first one, the
rough decision is made about the voiced/unvoiced character of speech segments,
and in the second one, both pure-voiced part and transients of the signal are
selected. The traditional approach to the transient detection is based on the
assumption that the energy of the signal increases rapidly when the transient
occurs [8]. Although the energy tracking of the signal is useful for detecting
the time-domain transients, it fails in the case of frequency-domain transients
occurrence. If the frequency-domain transient occurs, the energy distribution
changes over frequency, while total energy of the signal remains nearly constant.
In order to detect that group of transients, it is necessary to analyze the en-
ergy variations in some subbands instead of tracking the energy of the entire
signal [9]. The str[n] and spv[n] signals represent the transient and the pure-
voiced part of the input signal, respectively.

The transient selector operates as follows. In the first stage, the input signal
is divided into some short segments, and for each segment the Fourier spectrum
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is calculated (with the use of the FFT algorithm). The part of the spectrum
representing frequencies above 100 Hz is then divided into N uniform subbands,
and for each subband the energy en(b) is obtained. It has been found empirically
that the analysis of energy variations in eight subbands is sufficient for a transient
detection in speech signals. In the next step, the value of f(b) for each subband
is calculated. The f(b) function is formulated in the following way:

fn(b) = α · en(b) + (1− α) · fn−1(b) (5)

where: α – constant.
Further, the parameters related to transient measures are obtained according

to the formula:

G(b) =
en(b)
fn(b)

(6)

Next, the value of the G(b) parameter is compared with the selected empir-
ically T threshold for each subband and the total transient measure parameter
F is calculated:

F =
N−1∑

b=0

d(b) (7)

where: d(b) =
{

1 G(b) > T
0 G(b) ≤ T

In the last step, the value of F parameter is compared to the global threshold Tg:

F > Tg (8)

If the term (8) is fulfilled then a particular frame is classified as a one containing
transient.

It has to be mentioned that a similar algorithm is incorporated in the MPEG-4
AAC general audio encoder [10]. Since in this approach the band-limited speech
signal is analyzed, an additional parameterization is necessary in order to allow
a robust transients detection. An important observation is that the time-domain
transients of speech signals are associated with transitions between their un-
voiced and voiced parts. Thus, a one way to make the detection algorithm more
efficient is to measure the zero crossing rate of the speech in parallel [9]. Because
that operation can be viewed as a simple voicing detection, similar results may
be yield when only the voiced part of the speech signal is fed into the transient
detector [2]. Therefore, in practical experiments first the voiced/unvoiced de-
cision has to be made, and then the transients should be detected within the
voiced part of the speech signal. In order to allow rule-based decisions in the
process of qualifying speech fragments as transients/non-transients a similar ap-
proach to the one described in the previous paragraph was made. The values
of the function fn(b) for b={1,2,. . . ,8} were considered as a set of conditional
attribute values. The same as previously 100-element set of training examples
was utilized which was labelled manually for the transient presence in all 10 ms
speech utterance fragments. The rule pruning operation employing μRS > 0.5
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10 A. Czyzewski

criterion resulted in reducing the rule base to 26 most certain rules applied sub-
sequently to the decision making. The result of classification for a particular
speech sample is presented in Fig. 2 allowing a comparison of results obtained
using the decision term (8) and the rough rule-based classification.

It can be noticed from the Fig. 2 that the proposed algorithm is able to assign
signal segments containing both: time-domain and frequency-domain transients.
However, due to limited resolution of analysis, some fragments of the transients
may be placed in the neighborhood of the assigned frames. Therefore, similarly as
in the preceding paragraph, an additional hysteresis module has been employed
in order to prevent transient segmentation during the selection process.

4 Psychoacoustic Coding of Residual Signal

The psychoacoustic models included in standards such as MPEG 1, AAC are
based on the excitation pattern model in which the amount of masking depends
on the excitation. In the sines+residual model the psychoacoustic model can
also benefit from the tonal vs. non-tonal component determination. In the CELP
speech coders the residual signal is obtained in the process of coding as a result
of analyze-by-synthesis procedure. Contrarily to the CELP codec algorithmic
solutions [3], in the proposed approach only the voiced part of the residual signal
is perceptually encoded. The architecture of the proposed encoder is presented
in Fig. 3. The input signal s[n] is encoded first by the CELP encoder operating at
fixed bit-rate. The sCELP [n] signal represents the main bit stream, which is also
decoded locally in order to obtain the residual signal Δ[n]. In the next stage, the
voiced and unvoiced parts of the residual signal are detected. It has to be noted
that only the voiced part Δv[n] is further processed. As a sequel, the selected
voiced part of residual signal is perceptually encoded and sent to the decoder in
parallel to the CELP bit stream. The decoding process consists of two stages.
In the first one, CELP and residual bit streams are decoded using the CELP
and the perceptual decoder, respectively. Next, the resulting signals are added
together in order to compose the entire decoded speech signal.

The G728 LD-CELP codec operating at 12.8 kbps rate was utilized during the
experiments in a base layer of the codec. The residual signal was encoded em-
ploying the perceptual module [4,25] operating at 14 kbps average rate. Notwith-
standing the codec was designed for compression of music and general audio, and
is not optimized for perceptual speech coding, it seems to be useful in evaluating
of the proposed codec concept [11].

The experiments concerned the application of unpredictability measure and
modified unpredictability measure were carried out in order to verify the in-
fluence of these measures to accurate locations of tonal components. A voiced
frame (containing noticeable tonal components) of the speech signal was pro-
cessed during the experiments. Fig. 4 presents the values of unpredictability
measure (upper plot) and modified unpredictability measure (lower plot). The
issues related to the calculation of the masking offset, playing a significant role
in the masking threshold calculation, based on the uncertainty measure was also
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(a)

(b)

Fig. 2. Results of transient detection: (a) criterion (8) based selections; (b) rough set
algorithm based selections

Fig. 3. Encoder architecture

interpreted in terms of the rough set theory [14]. That is because of a depen-
dency occurring between the rough measure and the unpredictability measure.
The noisy data processing is an evident example of making uncertain decisions,
because Unpredictability Measure represents the margin of uncertainty while
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12 A. Czyzewski

Fig. 4. Values of unpredictability measure (upper) and modified unpredictability mea-
sure (lower)

Table 1. Values of unpredictability measure and modified unpredictability measure
for evaluated tonal components

Freq. of sinusoidal
components [Hz]

123.8 247.6 376.8 1372 1523 1636 3407

Unpredictability Measure 0.18 0.44 0.36 0.75 0.65 0.99 0.76

Modified Unpredictability
Measure

0.04 0.02 0.05 0.65 0.78 0.06 0.48

interpreting sound spectrum shape in terms of useful or useless components rep-
resentation [14]. It can be noticed in Fig. 4 that the values of unpredictability
measure indicate more noisy components (values above 0.5) than tonal compo-
nents in the analyzed frame, what does not correspond to the actual situation.
The values of the modified unpredictability measure indicate the right tonal
components (see Tab. 1).

5 Architecture of Speech Codec and Its Performance

The drawback of the residual signal encoding is that it requires first local de-
coding of the CELP bit stream, and then the additional delay is introduced into
the entire encoding process. Furthermore, conducted experiments have revealed
that perceptual encoding of the speech signal transients is inefficient when the
module operates in the low bit-rate mode. Therefore, the architecture of speech
codec employing unvoiced/voiced/transient segmentation was investigated. The
diagram illustrating the proposed encoder architecture is shown in Fig. 5. In the
first step, the input signal is split into the unvoiced sunv[n], the pure-voiced spv[n]
and the transient str[n] parts. Further, each part is encoded employing an appro-
priate method. As the purpose of the proposed experiment was to check if hybrid
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Fig. 5. Hybrid encoder architecture

Fig. 6. Quality comparison of various speech codec architectures

speech encoding would result in a quality improvement, the transients were not
encoded with a use of any lossy method. It was found that about 40% of input
signal frames were classified as unvoiced ones and about 7% as transient segments
[2]. Thus, the overall estimated bitrate for unvoiced bit stream is about 6.4 kbps
(0.4*16000) and 9 kbps (0.07*16*8000) in case of 16-bits PCM transients repre-
sentation. Consequently, the examined encoder operates at the average 29.6 kbps
bitrate. Obviously, an appropriate method for transients coding would increase
efficiency of the proposed codec architecture, and thus will be devised within a
future work. It is expected that the hybrid encoder would then operate at the 24
kbps rate or even lower. In the decoder, the unvoiced and pure-voiced bit streams
are decoded. Finally, these two parts are added together with the str[n] signal and
the entire speech signal was obtained in this way.

Fig. 6 presents the mean PESQ scores [15] for various speech codec archi-
tectures and also the results obtained for the two codecs proposed in this pa-
per. All of quality evaluation tests were performed with the use of the OPERA
application [13]. When comparing the PESQ scores for various codec architec-
tures shown in Fig. 6, it is visible that in order to achieve a similar quality
of speech coding the hybrid codec requires a lower average bitrate than the
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ADPCM codec. An additional efficiency improvement is expected after replacing
the general audio perceptual module with the one dedicated to speech coding.

6 Conclusions

The concepts and experiments presented in this paper were focused on the modi-
fication of existing parametric speech coding algorithms in order to improve their
subjective signal quality. Although the intelligibility of speech signal encoded by
CELP codecs is usually satisfactory, the highest quality possible to obtain in
this kind of a codec architecture is still limited. Instead of various techniques
utilized during analyze-by-synthesis procedure, one straightforward method of
improving the codec quality should rely on the additional encoding of the resid-
ual signal. This kind of a codec architecture has been previously proposed as an
efficient method for the lossless wideband speech coding. Hence, the focus of this
research was to investigate the lossy speech codec by providing the enhancement
layer for an existing standardized CELP codecs. In order to improve the overall
quality of the speech signal the residual signal was encoded with the use of the
perceptual module. While proposed architecture is similar to the one utilized in
MPEG-4 CELP scalable speech codec, the method of the residual signal coding
employed in the described experiments is different and also different methods
for discerning voiced speech components from unvoiced ones and for detecting
transients in the continuous speech signal were applied and studied. The rough
set algorithm implemented earlier at the Multimedia Systems Department TU
Gdansk proved to be applicable to above experiments revealing one more time
its robustness in making decisions on the basis of uncertain and noisy data.
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3 National Institute of Telecommunications, Warsaw, Poland

Abstract. We describe deduction mechanisms for various types of data bases
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have introduced earlier in [8].
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1 Introduction

Rough sets were introduced by [29]; they served well as a vehicle for expressing depen-
dencies in datatables, as well as for attribute reduction that depends on the equivalence
classes induced by the attribute mappings. The information systems of the rough set
model were single valued and could only express deterministic information. Already
[15,16] had considered information systems where an object under an attribute func-
tion was allowed to take a set of values, which could also be empty; a similar road was
taken by [26]. Common to both approaches is the replacement of an attribute function
between objects and a single value of an attribute domain by an attribute relation where
an object can be related to any set of attribute values. In [8] we have supplemented the
notion of an indeterministic information system to a model of data called relational at-
tribute system (RAS) in the spirit of non–invasive data analysis [7]. Its distinguishing
feature is the provision of a semantical framework for the data table: Given an attribute
a, an object x, and a set a(x) of values which are associated with x, there are various
ways in which a(x) can be interpreted; for instance, as exemplified in [8],

1. a(x) is interpreted conjunctively and exhaustively. If a is the attribute “speaking a
language”, then,

a(x) = {German, Polish, French}
can be interpreted as

x speaks German, Polish, and French and no other languages.

� The author gratefully acknowledges support by the Natural Science and Engineering Council
of Canada.
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2. a(x) can also be interpreted conjunctively and non-exhaustively as in

a speaks German, Polish, and French and possibly other languages.

3. a(x) is interpreted disjunctively and exclusively. For example, a witness states that

The car that went too fast was either a Mercedes or a Ford.

Here, exactly one of the statements
– The car that went too fast was a Mercedes.
– The car that went too fast was a Ford.

is true, but it is not known which one.

4. a(x) is interpreted disjunctively and non-exclusively. If a is “cooperates with”, then

a(Ivo) = {Günther, Ewa}
means that Ivo cooperates with Günther, or Ewa, or both.

The desired semantics can be given in the form of relational constraints, using machin-
ery from the theory of relation algebras [33]. We have indicated the usefulness of the
approach by two examples, one pertaining to interrater reliability, the other one to soft-
ware usability. In a subsequent paper we will use the RAS model and the inference
techniques described below to address in detail the practical aspects of our approach.

In this paper, our task is to develop a reasoning mechanism for the RAS model. We
follow the general methodology for developing inference tools for information struc-
tures based on the object-property assignments, as surveyed in [5]. The specific feature
of the methods presented in this paper is that, firstly, we define a class of algebras of
relations suitable for the information structure under consideration, and, secondly, we
develop deduction rules for this class of algebras. In applying this methodology we ob-
serve that in fact several other information structures besides our RAS model can be
dealt with in a similar way. Thus, we present deduction systems for various information
structures:

– Information systems with incomplete information and no semantics,
– Relational attribute systems,
– Fuzzy information systems,
– Temporal information systems.

Once an object–property assignment is given, with each object from the information
structure under consideration there is associated a finite set which, in particular, may
be empty or contain more than one value . Consequently, each information structure
determines a family of sets specific for the structure, resulting from the assignment of
the properties to the objects. The relationships among the objects can be articulated
by comparing their sets of properties. The comparison is usually expressed in terms of
binary set relations. This leads to the concept of information relations.

There are three fundamental ingredients of a definition of any information relation:

– A specification of a family of sets of properties of objects,
– A specification of set relations meaningful for this family,
– A specification of the information relation itself in terms of these set relations.
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For the information structures listed above, we present deduction mechanisms for ver-
ification of constraints holding for those information relations. The deduction systems
presented here belong to the family of Rasiowa–Sikorski (RS or dual tableau) style
relational proof systems [31]; systems of such type were developed for a number of
theories, for example, [11,17,9,25]. There are various implementations of RS systems:
Relational attribute systems have been implemented in [3]; an implementation of more
general relational proof systems can be found at [4]. The system presented there con-
tains rules for deduction with binary relations as well as with typed relations, and thus,
it is suitable for reasoning in relational databases [19]. The system is modular – a
general feature of the RS style –, and the user can include specific deduction rules
if needed. In particular, the deduction rules presented in the present paper can be incor-
porated. Some other implementations of relational deduction in nonclassical logics are
presented in [10].

2 Deduction System for Standard Algebras of Binary Relations

In this Section we recall basic principles of relational proof systems and the deduc-
tion rules for standard algebras of binary relations [23]. The operations of Tarski’s
algebra of binary relations [33] are Boolean set operations of union (∪), intersection
(∩) and complement (−), and relational operations of product ( ; ), converse (−1),
and the constants 1′ of the identity and 1 of universal relation. For binary relations
R and S on a set U, R ; S = {(x,y) ∈ U ×U : ∃z ∈ U(x,z) ∈ R ∧ (z,y) ∈ S}1 and
R−1 = {(x,y) ∈U×U : (y,x) ∈ R} A relational term is any expression built from rela-
tion variables and constants with these operations. If x,y are object variables and P is a
relational term, then any expression of the form xPy is a relational formula.

The semantics of relational formulas is determined in terms of the notion of model
and satisfiability of formulas. A model is a system M = (U,m), where U is a nonempty
set (of objects) and m is a meaning function that provides an interpretation of relational
terms, i.e. m(P)⊆U×U for any relation variable P, m(1′) is the identity relation on U ,
m(1) = U×U , and m extends homomorphically to all terms. By a valuation in a model
M we understand a function v that assigns objects from U to object variables, that
is, v(x) ∈U for any object variable x. The satisfiability relation is defined by M ,v |=
xPy iff (v(x),v(y)) ∈ m(P). A formula xPy is true in a model M whenever M ,v |=
xPy for every valuation v in M , nd it is valid whenever is true in all models. Hence,
validity of xPy amounts to saying that P = 1 holds in every algebra of binary relations. A
finite sequence of relational formulas is said to be valid whenever universally quantifird
disjunction of its members is valid in the classical first order logic.

The proof system consists of two groups of rules, namely, decomposition rules and
specific rules. Decomposition rules enable us to decompose formulas into a finite se-
quence of (usually syntactically simpler) formulas, or a pair of finite sequences of for-
mulas (and then we separate the sequences with — in a definition of the rule) while
the specific rules enable us to modify a sequence to which they are applied; they have

1 Using Tarski’s existential quantifier E (i.e., some) [34], the assertion ∃z ∈U(x,z) ∈ R can also
be written E

z
(z ∈U(x,z) ∈ R).
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Table 1. Decomposition rules

(∪)
K,x(P∪Q)y,H
K,xPy,xQy,H

(−∪)
K,x− (P∪Q)y,H

K,x(−Q)y,H | K,x(−Q)y,H

(∩)
K,x(P∩Q),H

K,xPy,H | K,xQy,H
(−∩)

K,x− (P∩Q)y
K,x(−P)y,x(−Q)y,H

(−1)
K,xP−1y,H
K,yPx,H

(−−1)
K,x(−P−1)y,H
K,y(−P)x,H

(−−)
K,x(−−P)y,H

K,xPy,H

( ; )
K,x(P;Q)y,H

K,xPz,H,x(P;Q)y | K,zQy,H,x(P;Q)y
z is an object variable

(− ; )
K,x− (P;Q)y,H

K,x(−P)z,z(−Q)y,H
z is restricted

Table 2. Specific rules

1′1
K,xPy,H

K,x1′z,H,xPy | K, zPy,H, xPy
z is an object variable

1′2
K,xPy,H

K,xPz,H,xPy | K, z1′y, H,xPy

sym 1′ K,x1′y,H
K,y1′x,H

the status of structural rules. The role of axioms is played by what is called axiomatic
sequences.

A proof system for Tarski’s algebras of binary relations consists of the decomposi-
tion rules given in Table 1, where K and H denote finite, possibly empty, sequences
of relational formulas; the specific rules are presented in Table 2. There, a variable is
said to be restricted in a rule whenever it does not appear in any formula of the upper
sequence in that rule. This system has been developed in [21].

The specific rules characterize the identity relation 1′. Namely, (1′1) corresponds to
the property that 1′;R⊆ R for any relation R. Similarly, (1′1) says that R;1′ ⊆ R. Observe
that the reverse inclusions also hold, since 1′ is reflexive; thus, no more rules are needed
for guaranteeing that 1′ is a unit element of relational composition. (sym 1′) expresses
the symmetry of 1′, and transitivity of 1′ is an instance of (1′1).

A sequence of relational formulas is said to be axiomatic if it contains formulas of
the following forms; here, P is a relational term, and x,y are object variables.

a1. xPy,x(−P)y.
a2. x1y.
a3. x1′x
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(a2) reflects the fact that 1 is the universal relation, and (a3) says that 1′ is reflexive. The
rules listed in Table 1 and Table 2 are correct i.e., they preserve and reflect validity of
the sequences of formulas: the upper sequence of the rule is valid if and only if all the
lower sequences of this rule are valid. Axiomatic sequences are valid.

Although these rules and axiomatic sequences enable us to prove only that 1′ is an
equivalence relation, the given deduction system is complete with respect to the class
of standard algebras of relations, where 1′ is the identity. The proof uses the usual
argument well known from first order logic. Namely, it can be shown that for every
model of the relational language with 1′ interpreted as an equivalence relation there is
a model where 1′ is an identity and both models verify the same formulas.

To check the validity of a relational formula, we successively apply decomposition
and/or specific rules to it, thus obtaining a tree whose nodes consist of finite sequences
of formulas. Such a tree is referred to as a decomposition tree. We stop applying the
rules to the formulas of a node whenever the node contains an axiomatic sequence
of formulas. A branch with such a node is declared closed. A decomposition tree is
said to be closed whenever all of its branches are closed. The following soundness and
completeness Theorem is well known (see e.g. [23,13]).

Theorem 1. A relational formula is valid iff it possesses a closed decomposition tree.

Hence, possession of a closed decomposition tree may be understood as provability.
The proof of this theorem is based on the three lemmas. First of all, we assume that
a decomposition tree of a formula is complete: if a rule is applicable to a node of the
tree, then it has been applied. Then we prove a closed branch theorem which says that
if a branch of the complete decomposition tree includes a node with the formula xRy
and a node with the formula x(−R)y, where R is a relational term, and x,y are object
variables, then this branch has also a node with and axiomatic sequence. This follows
from the fact that the rules appropriately transfer the formulas from the upper sequence
to the lower sequences. Next, for an open branch, say b, of a complete decomposition
tree we construct what is called a branch model, Mb. It is constructed from the syntac-
tic resources of the relational language. Its universe is the set of object variables. The
meaning of a relation variable or a relation constant, say R, is a binary relation defined
as (x,y) ∈ mb(R) iff formula xRy does not appear in any node of branch b. The sec-
ond important lemma, referred to as a branch model theorem, says that a branch model
constructed as above is a model of the relational language i.e., the relational constants
admitted in the language are appropriately interpreted: mb(1) is the universal relation
and mb(1′) is an equivalence relation. The third lemma, referred to as a satisfaction
in branch model theorem, says that if a formula is satisfied in a branch model Mb by
an identity valuation vb such that vb(x) = x for any object variable x, then it does not
appear in any node of branch b. With these lemmas the completeness (validity implies
provability) can be proved. The soundness (provability implies validity) follows from
the correctness of the rules and from validity of axiomatic sequences.

If we extend the set of relational formulas to the first order language with binary
predicates, then the appropriate deduction system can be obtained by adding the deduc-
tion rules of first order logic developed in [31].

The above relational logic with its system of rules is complete both for the class RRA
of representable relation algebras and the class RA of relation algebras. The system can
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also be applied to solve the three major logical tasks for a number of logics and classes
of algebras, namely checking validity, entailment, satisfiability, and truth in a model
(often referred to as model checking). The details can be found in [13]. Once a represen-
tation of formulas of a logic or the terms over a class of algebras is provided in the form
of relational terms over a class, say C, of appropriate algebras of relations [22,24], the
relational representation of these logical tasks is as follows: Checking validity amounts
to verifying whether R = 1 holds in every algebra of relations from C, for some relation
term R. Entailment is the problem of checking whether from a finite number of identi-
ties of the form R1 = 1, . . . ,Rn = 1 we can infer that R = 1. According to the Tarski rule,
this problem can be reduced to checking the identity 1 ; − (R1∩·· ·∩Rn) ; 1∪R) = 1.
The satisfaction problem of checking whether 〈a,b〉 ∈ R for some relation R and some
objects a,b amounts to verifying whether A ; B−1 ⊆ R, where A and B are the point
relations representing the objects a and b, respectively, and they satisfy the usual point
axioms P ; 1 = 1, P ; P−1 ⊆ 1′, and P �= /0 [32].

3 Relations Derived from Information Systems

In this Section we recall the notion of an information system [16,28], and relations
derived from such a system; an exhaustive list of those relations can be found in [5].

By an information system we understand a structure S = (OB, Ω ,{Va : a ∈Ω}) such
that U is a nonempty set of objects, Ω is a finite nonempty set of attributes, each Va

is a nonempty set of values of attribute a. An attribute is a function a : U �→P(Va)
that assigns subsets of values of attributes to the objects. If for every a ∈ Ω , a(x) is a
singleton set, then system S is said to be deterministic, otherwise S is nondeterministic.

Any set a(x) can be viewed as a set of properties of an object x determined by attribute
a. For example, if attribute a is ’color’ and a(x) = {green}, then x possesses property of
’being green’. If a is ’age’ and x is 25 years old, then a(x) = {25} and this means that
x possesses property of ’being 25 years old’. If a is ’languages spoken’ and if a person
x speaks, say, Polish (Pl), German (D), and French (F), then a(x) = {Pl, D, F}, and x
possesses properties of ’speaking Polish’, ’speaking German’, and ’speaking French’.
In this setting any set a(x) is referred to as the set of a-properties of object x and its
complement Va−a(x) is said to be the set of negative a-properties of x.

Let S = (U,Ω ,{Va : a ∈Ω}) and A⊆ Ω . The following families of set information
relations on set U are the subject of investigation in a number of papers:

Strong (weak) indiscernibility (x,y) ∈ indA iff a(x) = a(y) for all (some) a ∈ A,
Strong (weak) similarity (x,y) ∈ simA iff a(x)∩a(y) �= /0 for all (some) a ∈ A,
Strong (weak) forward inclusion (x,y) ∈ finA iff a(x)⊆ a(y) for all (some) a ∈ A,
Strong (weak) backward inclusion binA iff a(y)⊆ a(x) for all (some) a ∈ A,
Strong (weak) negative similarity (x,y) ∈ nimA iff −a(x)∩−a(y) �= /0 for all (some)

a ∈ A,
Strong (weak) incomplementarity (x,y)∈icomA iff a(x) �=−a(y) for all (some) a∈A,
Strong (weak) diversity (x,y) ∈ divA iff a(x) �= a(y) for all (some) a ∈ A,
Strong (weak) disjointness (x,y) ∈ disA iff a(x)⊆−a(y) for all (some) a ∈ A,
Strong (weak) exhaustiveness (x,y) ∈ exhA iff −a(x)⊆ a(y) for all (some) a ∈ A,
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Strong (weak) right negative similarity (x,y) ∈ rnimA iff a(x) ∩−a(y) �= /0 for all
(some) a ∈ A,

Strong (weak) left negative similarity (x,y)∈ lnimA iff−a(x)∩a(y) �= /0 for all (some)
a∈A,

Strong (weak) complementarity (x,y) ∈ comA iff a(x) =−a(y) for all (some) a ∈ A.

In all the above definitions, complement is taken with respect to set VALa. If A = {a} is
a singleton set, then we write Ra instead of R{a} for any information relation R. Observe
that if (x,y)∈ disa, then a(x)∩a(y) = /0, and if (x,y)∈ exha, then a(x)∪a(y)=Va which
explains the names of the relations. In the earlier literature (e.g., [5]) the relations were
referred to as right (resp. left) orthogonality.

The strong relations satisfy the following conditions for all P,Q⊆Ω :

S1. RP∪Q = RP∩RQ,
S2. R /0 = U×U .

The weak relations satisfy:

W1. RP∪Q = RP∪RQ,
W2. R /0 = /0.

A specific family of sets associated to an information system S = (U,Ω ,{Va : a ∈
Ω}) is the family {a(x) : a ∈ Ω ,x ∈U.}. It is easy to see that all the information rela-
tions defined above can be specified in terms of three families of set relations, namely,
⊆a, Σa, Na, where a ∈Ω and

x⊆a y⇐⇒ a(x)⊆ a(y),
xΣay⇐⇒ a(x)∩a(y) �= /0,

xNay⇐⇒ a(x)∪a(y) �= Va.

These relations can be extended in the usual way to the relations indexed with subsets of
set Ω . Now, an information relation derived from an information system is any relation
generated from⊆a,Σa,Na, for a ∈Ω , with the standard relational operations.

For example, the information relations relations determined by an attribute a are
defined as follows:

inda =⊆a ∩⊆−1
a ,sima = Σa,fina =⊆a,bina =⊆−1

a ,nima = Na, icoma = Σa∪Na,
diva =− ⊆a ∪− ⊆−1

a ,disa =−Σa,exha =−Na, rnima =− ⊆, lnima =− ⊆−1
a ,coma =

−Σa∪−Na.

In an abstract setting, by an IS-frame (information system frame) we mean a system
(U,{≤P: P⊆ A},{σP : P⊆ A},{νP : P⊆ A}), where U and A are nonempty sets, A is
finite, and the following conditions are satisfied for all x,y,z ∈U and for every p ∈ A.
For the sake of simplicity we write ≤,σ ,ν instead of ≤p,σp,νp:

IS1. ≤ is reflexive, transitive , and antisymmetric.
IS2. σ is symmetric, and 1′ ∩ (σ ; 1)⊆ σ (weakly reflexive, i.e., xσy implies xσx).
IS3. σ ; ≤ ⊆ σ , i.e., xσy and y≤ z imply xσz.
IS4. xσx or x≤ y.
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IS5. ν is symmetric and weakly reflexive.
IS6. ≤−1 ; ν ⊆ ν , i.e., x≤−1 y and yνz imply xνz.
IS7. xνx or x≤−1 y.
IS8. −σ ; −ν ⊆≤ i.e., x≤ y or xσz or yνz.
IS9. xσx or xνx.

IS10. −ν ; ≤⊆−ν

The above list of axioms is based on the axioms presented in [36]. Furthermore, we
have to declare whether the relations are strong or weak by postulating the axioms (S1)
and (S2) or (W1) and (W2).

By an IS-relation algebra we understand an algebra of relations generated by {≤p:
p ∈ A}∪ {σp : p ∈ A}∪ {νp : p ∈ A} for some IS-frame (U,{≤P: P ⊆ A},{σP : P ⊆
A},{νP : P⊆ A}). In the following Section we present a deduction system for reasoning
about properties of relations in IS-relation algebras.

4 Deduction in IS-Relation Algebras

The majority of deductive systems for reasoning about information relations derived from
an information system are the appropriate systems of modal logics (for a survey see [5]).
Modal approach enables us to study information operators, e.g., approximation operators
or knowledge operators determined by information relations (see e.g. [35], [36], [37]).
Here our aim is to develop a reasoning mechanism for verification of properties of plain
information relations. The strategy is to design deduction rules for IS-frames and to ad-
join them to the system of rules for the standard algebras of binary relations presented in
Section 2, thus obtaining a deduction system for IS-relation algebras.

The formulas processed by the deduction system for IS-relation algebras are of the
form xRy, where x,y are object variables and R is a term of an IS-relation algebra. For
each p ∈ A and for every ≤p,σp,νp we assume the following rules. As usual we omit
the index p in the names of the relations.

(ref ≤)
K,x≤ y,H

K,x1′y,H,x≤ y

(tran ≤)
K,x≤ y,H

K,x≤ z,H,x≤ y | K,z≤ y,H,x≤ y
z is any object variable

(antisym ≤)
K,x(− ≤)y,y(−≤ x),H

K,x(−1′)y,H

(sym σ )
K,xσy,H
K,yσx,H

(wref σ )
K,xσy,H

K,x1′y,H,xσy | K,xσz,H,xσy
z is any object variable
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(rIS3)
K,xσy,H

K,xσz,H,xσy | K,z≤ y,H,xσy
z is any object variable

(rIS4)
K,xσy,H

K,x1′y,H,xσy | K,x(− ≤)z,H,xσy
z is any object variable

(sym ν) and (wref ν) are analogous to (sym σ ) and (wref σ ), respectively.

(rIS6)
K,xνy,H

K,z≤ x,H,xνy | K,zνy,H,xνy
z is any object variable

(rIS7)
K,xνy,H

K,x1′y,H,xνy | K,x(− ≤)z,H,xνy
z is any object variable

(rIS8)
K,x≤ y,H

K,x(−σ)z,H,x≤ y | K,z(−ν)y,H,x≤ y
z is any object variable

(rIS9)
K,xσy,xνy,H

K,x1′y,H,xσy,xνy

(rIS10)
K,x(−ν)y,H

K,x(−ν)z,H,x(−ν)y | K,z≤ y,H,x(−ν)y
z is any object variable

For R ∈ {≤P: P ⊆ A}∪ {σP : P ⊆ A} ∪ {νP : P ⊆ A}, the characterization of strong
relations is provided by the rules (rS1), (r-S1), and the axiomatic sequence (aS2):

(rS1)
K,xRP∪Qy,H

K,xRPy,H | K,xRQy,H

(r-S1)
K,x(−RP∪Q)y,H

K,x(−RP)y,x(−RQ)y,H

(aS2) xR /0y

The characterization of weak relations is given by the rules (rW1), (r-W1), and the ax-
iomatic sequence (aW2):

(rW1)
K,xRP∪Qy,H

K,xRPy,xRQy,H

(r-W1)
K,x(−RP∪Q)y,H

K,x(−RP)y,H | K,x(−RQ)y,H

(aW2) x(−R /0)y
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It is easy to verify that the rules presented above are correct in view of the properties
of relational constants assumed in the models. The definition of a branch model is the
same as described in Section 2. A completeness theorem analogous to Theorem 1 can
be proved following the principles presented in Section 2, see also the general method
described in [18].

Example 1
We show that−σ ; ν ⊆≤. Since for any binary relations R,S we have R⊆ S iff−R∪S = 1,
we need to prove the formula (1) below:
(1) x(−(−σ ; −ν)∪ ≤)y.
Applying rule (∪) to (1) we get:
(2) x(−(−σ ; −ν))y, x≤ y.
Applying rule (− ; ) with a restricted variable z, and rule (–) to (2) we obtain:
(3) xσz, zνy, x≤ y.
Now we apply rule (rIS8) to x ≤ y choosing z as the new variable and we obtain two
sequences (3.1) and (3.2):
(3.1) x(−σ)z, xσz, zνy, x≤ y,
(3.2) z(−ν)y, xσz, zνy, x≤ y.
Both of them are axiomatic of the form (a1).

Example 2
We show that −ν ; −σ ; −ν ⊆−ν .
(1) x(−(−ν ; −σ ; −ν)∪−ν)y.
We apply rule (∪) and we get:
(2) x(−(−ν ; −σ ; −ν))y, x(−ν)y.
Now we apply twice the rule (− ; ) with restricted variables z and t, and then rule (–):
(3) xνz, zσ t, tνy, x(−ν)y.
Rule (rIS10) applied to x− νy with a new variable z yields two sequences (3.1) and
(3.2):
(3.1) x(−ν)z, xνz, zσ t, tνy, x(−ν)y,
(3.2) z≤ y, xνz, zσ t, tνy, x(−ν)y.
Sequence (3.1) is axiomatic of the type (a1). To the sequence (3.2) we apply rule (rIS8)
with a new variable t and we get the following two sequences:
(3.2.1) z(−σ)t, z≤ y, xνz, zσ t, tνy, x(−ν)y,
(3.2.2) t(−ν)y, z≤ y, xνz, zσ t, tνy, x(−ν)y.
Both of these sequences are axiomatic.

Example 3
Let {RP}P⊆A be a family of strong relations and let Rp and Rq be transitive, that is the
rules (tran Rp) and (tran Rq) analogous to the rule (tran≤) presented above are admitted
in a proof system. For the sake of simplicity we write Rp and Rq instead of R{p} and
R{q}, respectively. We show that R{p,q} is also transitive, i.e., R{p,q} ; R{p,q} ⊆ R{p,q}.
Hence, we have to prove the formula:
(1) x(−(R{p,q} ; R{p,q})∪R{p,q})y
Applying rule (∪) we have:
(2) x(−(R{p,q} ; R{p,q}))y, xR{p,q})y
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Now we apply rule (− ; ) with a restricted variable z:
(3)x(−(R{p,q})z, z(−(R{p,q})y, xR{p,q}y.
Applying rule (r-S1) twice we obtain:
(4) x(−Rp)z, x(−Rq)z, z(−Rp)y, z(−Rq)y, xR{p,q}y.
Now we apply rule (rS1) and we get two sequences:
(4.1) xRpy, x(−Rp)z, x(−Rq)z, z(−Rp)y, z(−Rq)y, xR{p,q}y,
(4.2) xRqy, x(−Rp)z, x(−Rq)z, z(−Rp)y, z(−Rq)y, xR{p,q}y.
We apply the rule (tran Rp) with a new variable z to the formula xRpy of (4.1) and
the rule (tran Rq) also with variable z to the formula xRqy of (4.2) which yield four
sequences each of which is axiomatic of the form (a1).

5 Relations Derived from Temporal Information Systems

A temporal information system is an information system (U , {time}, VALtime) whose
set of attributes consists of a single attribute ’time’, the set of values of this attribute
is a set with a strict dense linear ordering < without endpoints on it, and to every ob-
ject x there is associated a closed time interval time(x) = [t, t ′], where t < t ′. Temporal
information systems are useful, for example, in temporal scenario specification of mul-
timedia objects, where the execution of a multimedia object is usually considered to be
a temporal interval.

The family of sets specific for the temporal information systems is the underlying
family of time intervals:

{[t,t ′] : t,t ′ ∈Vtime, time(x) = [t, t ′] for some x ∈U and t < t ′}.

The typical relations defined on this family of sets are the following [1]:

1′ (equals): [t, t ′] 1′ [u,u′] iff t = t ′ and u = u′,
P (precedes): [t,t ′] P [u,u′] iff t ′ < u,
D (during): [t,t ′] D [u,u′] iff u < t and t ′ < u′,
O (overlaps): [t, t ′] O [u,u′] iff t < u and u < t ′,
M (meets): [t, t ′] M [u,u′] iff t ′ = u,
S (starts): [t,t ′] S [u,u′] iff t = u and t ′ < u′,
F (finishes): [t,t ′] F [u,u′] iff t ′ = u′ and u < t.

By a TIS-frame (temporal information system frame) we mean a system (U,<,1′,P,
D,O,M,S,F), where < is a strict dense linear ordering on U without endpoints, and
1′,P,D,O,M,S,F are the binary relations on the set {[t, t ′] : t, t ′ ∈U, t < t ′} as defined
above.

By a TIS-relation algebra we understand a relation algebra generated by 1′,P,D,O,
M,S, and F for some TIS-frame (U,<,1′,P,D,O,M,S,F). A TIS relation algebra has
13 atoms, namely the relations from the corresponding TIS-frame and their converses.
Observe that 1′−1 = 1′. Any TIS-relation algebra is isomorphic to the TIS-relation alge-
bra whose universe is the set of real numbers. Detailed discussions of relation algebras
for reasoning about time (and space) can be found in [20] and [6].
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6 Deduction in TIS-Relation Algebras

Deduction system for TIS-relation algebras processes formulas built either with rela-
tions 1′,P,D,O,M,S,F , acting on temporal intervals or with relation < acting on time
points. For the sake of uniformity, we can preprocess the interval formulas by replacing
1′ (acting on temporal intervals), P,D,O,M,S,F by their definitions in terms of 1′ (act-
ing on time points) and <. A deduction system for TIS-relation algebras consists of the
deduction rules and axiomatic sequences for point relations presented in Section 2, the
rules of the same form for interval relations, and the following specific rules:

(irref <)
K,x(−1′)y,H

K,x < y,H,x(−1′)y

(lin <)
K

K,x(−1′)y | K,x(−<)y | K,y(−<)x
, x,y are any variables

(tran <)
K,x < y,H

K,x < z,H,x < y | K,z < y,H,x < y
, z is any variable

The following rules reflect the property that < does not have endpoints and is
discrete:

(nomin <)
K

K,x(− <)z
, z is a restricted variable

(nomax <)
K

K,z(− <)x
, z is a restricted variable

(dense)
K

K,x < y | K,x(−<)z,z(− <)y
, z is a restricted variable

The rules that provide definitions of the relations 1′ acting on the intervals
P,D,O,M,S, and F in terms of < and 1′ acting on time points are:

(1′)
K, [t,t ′] 1′ [u,u′],H

K,t1′u,H | K,t ′1′u′,H
(−1′)

K, [t, t ′] (−1′) [u,u′],H
K, t(−1′)u, t ′(−1′)u′,H

(P)
K, [t,t ′] P [u,u′],H

K,t ′ < u,H
(−P)

K, [t,t ′] (−P) [u,u′],H
K,t ′(− <)u,H

(D)
K, [t, t ′] D [u,u′],H

K,u < t,H | K,t ′ < u′,H
(−D)

K, [t.t ′] (−D) [u,u′],H
K,u(−<)t, t ′(−<)u′,H

.

(O)
K, [t,t ′] O [u,u′],H

K,t < u,H | K,u < t ′,H
(−O)

K, [t,t ′] (−O) [u,u′],H
K, t(−<)u,u(−<)t ′,H

(M)
K, [t, t ′] M [u,u′],H

K,t ′1′u,H
(−M)

[t, t ′] (−M) [u,u′]
K, t ′(−1′)u,H
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(S)
K, [t, t ′] S [u,u′],H

K,t1′u,H | K,t ′ < u′,H
(−S)

K, [t, t ′] (−S) [u,u′],H
K, t(−1′)u, t ′(−<)u′,H

(F)
K, [t,t ′] F [u,u′],H

K,t ′1′u′,H | K,u < t,H
(−F)

K, [t,t ′] (−F) [u,u′],H
K,t ′(−1′)u′,u < t,H

The decomposition rules for the compound interval relations generated by the rela-
tions listed in Section 4 with the standard relational operations and the specific rules for
1′ on the set {[t,t ′] : t,t ′ ∈U,t < t ′} and for 1′ on U are analogous to the corresponding
rules in Section 2. Abusing the notation is harmless, because the arguments of the rela-
tion indicate on which set it is defined. A completeness Theorem analogous to Theorem
1 holds for the deduction system presented here. The details can be found in [2].

Example 4
We show that F ; P⊆ P.
(1) [t, t ′] (−(F ; P)∪P) [u,u′].
After application of rule (∪) we obtain:
(2) [t, t ′] (−(F ; P)) [u,u′], [t,t’] P [u,u’].
Now we apply rule (− ; ) with a restricted interval [z,z′]:
(3) [t.t ′] (−F) [z,z′], [z,z′] (−P) [u,u′], [t,t ′] P [u,u′].
To (3) we apply rules (P) and (-P) which yield:
(4) [t,t ′] (−F) [z,z′], z′(−<)u, t ′ < u.
After application of rule (-F) we have:
(5) t ′(−1′)z′, z < t, z′(−<)u, t ′ < u.
Applying rule (tran <) with a new variable z′ to z < t we get two sequences:
(5.1) t ′1′z′, t ′(−1′)z′, z < t, z′(−<)u, t ′ < u,
(5.2) z′ < u, t ′(−1′)z′, z < t, z′(−<)u, t ′ < u.
Both of them are axiomatic of the form (a1).

7 Information Relations Derived from Relational Attribute
Systems

Relational attribute systems [8] expand the notion of an information system in order to
make explicit various conditions that are implicitly assumed in connection with infor-
mation systems. By a relational attribute system (RAS) we mean a system (U,Ω ,{Va :
a ∈Ω},{Rela : a ∈Ω},Δ), where

– U is a nonempty set of objects,
– Ω is a finite nonempty set of attributes, and, for each a ∈ Ω , Va is a nonempty set

of values of attribute a,
– Each attribute is a function a : U �→P(Va).
– Each R ∈ Rela is a binary relation R⊆U×Va, and
– Δ is a set of constraints on relations from Rela’s.

An appropriate choice of the families Rela of relations and constraints Δ enables us to
explicitly specify various types of information structures.

For example, if an information system is assumed to be deterministic, then we pos-
tulate that for each attribute a ∈ Ω there is a relation Ia ⊆ U ×Va with the intuition
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that xIav iff v ∈ a(x) and whenever xIav and xIav′ hold, then v = v′. If we additionally
postulate that for every x ∈U there is exactly one v ∈ Va such that xIav, then such an
information system does not have missing values. To represent these constraints rela-
tionally, we additionally introduce relations 1′a of identity on Va and 1a = U ×Va for
each a ∈Ω . Then, our constraints can be represented as the following two properties:

(Δ1) I−1
a ; Ia ⊆ 1′a, Ia is functional,

(Δ2) Ia;1a = 1a, Ia is total.

The family of sets specific to deterministic relational attribute systems is {Ia(x) : a ∈
Ω ,x ∈U}.

If the system is nondeterministic, a set of attribute values assigned to an object may
have several intuitive meanings, as mentioned in the Introduction. For example, to dis-
tinguish between disjunctive and conjunctive interpretation of nondeterministic infor-
mation we consider relations Ia,Ba ⊆ U ×Va for each a ∈ Ω with the intuition that
xIav iff object x certainly possesses property v and xBav iff object x possibly possesses
property v (see also [8]). For every a ∈ Ω , these relations are assumed to satisfy the
constraint

(Δ3) Ia∩Ba = /0,

which says that Ia and Ba are incompatible. The family of sets specific to nondetermin-
istic relational attribute systems is {Ia(x) : a ∈Ω ,x ∈U}∪{Ba(x) : a ∈Ω ,x ∈U}.

Concerning information relations derived from the RAS’s defined above we note that
the building stones are the relations {1′,�,�,P,D}, each of which is defined on 2VAL

for VAL =
⋃{Va : a ∈ Ω}. The relations P (partial overlap) and D (disjointness) are

defined by

xPy⇐⇒ x∩ y �= /0, x �⊆ y, y �⊆ x, and xDy⇐⇒ x∩ y = /0.

An information relation derived from a RAS = (U,Ω ,{Va : a ∈Ω},{Rela : a ∈Ω},Δ)
is a binary relation on U having the form

R′;ρ ;S′−1,

where ρ ∈{1′,�,�,P,D}, and R′,S′ are extensions of R,S∈Rela, defined on U×2VALa

by

xR′aA⇐⇒ Ra(x) = A.

Hence, xR′;ρ ;S′−1y iff 〈R(x),S(y)〉 ∈ ρ .
By an (abstract) RAS-frame we understand a relational system

(U,V,{Rela : a ∈ A},1′,<,>,π ,δ ),

where

– U,V and A are nonempty sets,
– Rela ⊆ 2U×V ,
– <,>,π ,δ are binary relations on V ,
– 1′ is the identity on V ,

and the following constraints are satisfied:
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(Δ4) 1′∪< ∪> ∪π ∪δ = 1,
(Δ5) Any two of 1′,<,>,π ,δ are disjoint,
(Δ6) δ is irreflexive and symmetric,
(Δ7) < and > are irreflexive, transitive, and >=<−1.

Clearly, the relations 1′,⊂,⊃,P,D satisfy the constraints (Δ4), . . . ,(Δ7).
By a RAS–relation algebra we understand an algebra of relations generated by the

relations of the form
R;ρ ;S−1,

where R,S ∈ Rela, and ρ ∈ {1′,<,>,π ,δ}. Any particular class of RAS–relation alge-
bras is obtained by specifying axiomatically the family {Rela : a ∈ A}.

8 Deduction in RAS-Relation Algebras

The deduction system for RAS-relation algebras processes formulas built with rela-
tional terms involving both the relations from the families Rela,a ∈ A, and relations
1′,<,>,π ,δ . Depending on the corresponding relations, the variables in the formulas
may be either variables from U or variables from V .

The system consists of the rules for standard algebras of binary heterogenous rela-
tions and the rules reflecting the constraints from Δ . The rules for the operations of the
algebras of heterogenous relations are analogous to the rules for the standard algebras
of binary relations presented in Section 2 with an obvious restriction on domains of
the left and right arguments of the relations. Below we present the exemplary rules re-
flecting the constraints discussed above. The rules for the constraints (Δ1),(Δ2), (Δ3),
(Δ4), and (Δ5) are as follows. We assume that U-variables range over elements of set
U , and V -variables over elements of V .

(rΔ1)
K,v1′v′,H

K,xIav,H,v1′v′ |K,xIav′,H,v1′v′
x is any U-variable

(rΔ2)
K

K,x− Iav
x is any U-variable, v is a new V -variable

(rΔ3)
K

K,xBav, |K,xIav′
x is any U-variable, v,v′ are any V -variables

(rΔ4)
K

K,x−1′y | K,x(− <)y | K,x(−>)y | K,x−πy | K,x− δy
where x,y are any V -variables

(rΔ5)
K

K,xRy |K,xSy
where R,S ∈ {1′,<,>,π ,δ}, R �= S, and x,y are any V -variables

The rules corresponding to the constraints (Δ6) and (Δ7) are analogous to the re-
spective constraints for the relations of the preceding sections. Irreflexivity of δ , <, and
> is reflected by the rules obtained as the irreflexivity rule in Section 6. Symmetry of
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δ is as in Section 4. The transitivity of < and > is as in Section 4. It is easy to ex-
tend the proof of completeness of the basic system described in Section 2 to the system
expanded with the rules presented above. Namely, we check that the specific rules re-
flecting properties of the constants Rela,a ∈ A, and 1′,<,>,π ,δ are correct. Next, the
definition of branch model is extended to include the meaning of these constants and
the branch model theorem and the satisfaction in branch model theorem are proved in
a standard way. These lemmas enable us to prove soundness and completeness of the
RAS-theory whose family {Ra : a∈Ω} consists of relations Ia,Ba for a∈Ω , satisfying
the axioms Δ1, ...,Δ7. Any other RAS-theory can be obtained by choosing a family
{Ra : a ∈ Ω} of relations and by postulating some axioms on the relations from that
family.

Example 5
We show that in our exemplary RAS-theory if Ia ; 1′ ; I−1

a = 1, then Ia ; −δ ; I−1
a = 1.

We use the principle of proving entailment explained in Section 2. According to that
principle we have to prove the following formula:
(1) x(1 ; (−(Ia ; 1′ ; I−1

a )) ; 1∪ Ia ; − δ ; I−1
a )y.

We apply the rule (∪), then twice the rule ( ; ) with new variables x and y, and then
twice the rule (− ; ) with restricted variables z and t, and we get:
(2) x(−Ia)z, z(−1′)t, t(−Ia)y, x(Ia ; −δ ; I−1

a )y and two axiomatic sequences contain-
ing formulas x1x and y1y.
We apply rule ( ; ) with new variable z to the first composition and we obtain two se-
quences:
(2.1) containing xIaz and x(−Ia)z, so it is axiomatic, and
(2.2) containing z(−δ ; I−1

a )y.
Decomposing the composition in (2.2) with rule ( ; ) with new variable t we obtain two
sequences:
(2.2.1) containing z(−δ )t, z(−1′)t,
(2.2.2) containing tI−1

a y, yIat, y(−Ia)t which is axiomatic.
We apply rule (irref δ ) to (2.2.1) obtaining a sequence with zδ t and z(−δ )t which is
axiomatic.

9 Information Relations Derived from Fuzzy Information Systems

Fuzzy information systems differ from the ordinary information systems in that the sets
of properties assigned to the objects are fuzzy sets. To define fuzzy sets we need, first of
all, to establish a range of fuzziness, that is an algebra whose elements serve as degrees
of membership of the elements to fuzzy sets. In this paper we assume that the range of
fuzziness is modelled by a class of commutative doubly residuated lattices ([27], [5]).

A commutative doubly residuated lattice is a structure of the form

(W,∨,∧,⊗,→,⊕,←,1,0),

where

– (W,∨,∧,1,0) is a lattice with the top element 1 and the bottom element 0;
– (W,⊗,1) and (W,⊕,0) are monoids;
– ⊗ and ⊕ are commutative;
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– → is a residuum of ⊗, that is z≤ x→ y iff x⊗ z≤ y for all x,y,z ∈W ;
– ← is a dual residuum of⊕, that is x← y≤ z iff y≤ x⊕ z for all x,y,z ∈W .

The operations ⊗ and ⊕ are referred to as product and sum, respectively. They are
intended to be abstract counterparts to t-norms and t-conorms, respectively. Condition
(4) is referred to as a residuation condition and condition (5) is a dual residuation con-
dition. Clearly,→ and← are uniquely determined by the residuation condition and the
dual residuation condition, respectively. Furthermore, it follows from these conditions
that x→ y is the greatest element in the set {z : x⊗ z≤ y} and x← y is the least element
in the set {z : y≤ x⊕ z}.

Given a doubly residuated lattice L = (W,∨,∧,⊗,→,⊕,←,1,0) and a universe U
of objects, any mapping X : U �→ L is an L-fuzzy subset of U . The family of L-fuzzy
subsets of U is denoted by FLP(U). By a fuzzy set we understand an L-fuzzy set for
some doubly residuated lattice L. The operations on L-fuzzy sets are defined in the
following way. Let X ,Y ∈ FLP(U), then:

(X ∪L Y )(x) = X(x)⊕Y(x),

(X ∩L Y )(x) = X(x)⊗Y(x).

The empty fuzzy set is defined as /0L(x) = 0, and the full set is 1L(x) = 1.
L-inclusion and L-equality of L-fuzzy sets are defined as follows:
X ⊆L Y iff for every x ∈ U,X(x) ≤ Y (x), where ≤ is the natural ordering of

lattice L;

X =L Y iff X ⊆L Y and Y ⊆L X .

An L-fuzzy binary relation on U is a mapping R : U ×U �→ L. The family of all L-
fuzzy binary relations on U is denoted by FLRel(U). By a fuzzy relation we understand
an L-fuzzy relation for some doubly residuated lattice L. Clearly, every fuzzy relation
on a set U is a fuzzy subset of U ×U , so the operations on fuzzy sets apply to fuzzy
relations.

A fuzzy information system is a structure of the form

(U,L,Ω ,{Va : a ∈Ω}),
where U is a non-empty set of objects, L is a commutative doubly residuated lattice,
every attribute a ∈Ω is a mapping a : U �→ FLP(Va) which assigns an L-fuzzy subset
of Va to an object. Intuitively, a(x)(v) is a degree to which an object x assumes the value
v of the attribute a.

We define several L-fuzzy binary relations on a family FLP(U), for any set U . These
relations provide patterns for information relations derived from a fuzzy information
system. Let X ,Y ∈ FLP(U), then:

InL (L-inclusion): InL(X ,Y ) = inf{X(x)→ Y (x) : x ∈U},
NiL (L-non-inclusion): NiL(X ,Y ) = sup{Y (x)← X(x) : x ∈U},
SimL (L-similarity): SimL(X ,Y ) = sup{X(x)⊗Y(x) : x ∈U},
ExhL (L-exhaustiveness): ExhL(X ,Y ) = inf{X(x)⊕Y(x) : x ∈U},
For a discussion of fuzzy information relations see also [30].
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A specific family of fuzzy sets associated to a fuzzy information system
S = (U,L,Ω ,{Va : a ∈Ω}) is the family:

{a(x) : a ∈Ω and x ∈U}.

A most basic algebra of fuzzy relations is just an algebra (FLRel(U),∪L,∩L, /0L,1L).
FIS-relation algebra (relation algebra of fuzzy information systems) is an algebra of
fuzzy relations generated by the set relations InL,NiL,SimL, and ExhL defined above.

A construction of a Rasiowa–Sikorski style or a Gentzen style deduction system
for fuzzy relations, and in particular for FIS-relation algebras is an open problem. So
the only available means of reasoning about these relations is the equational reason-
ing within doubly residuated lattices. For the arithmetic of doubly residuated lattices
see [27].

In an abstract setting, fuzzy algebras and fuzzy relation algebras are presented and
investigated, among others, in [12,14,38,39].
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60-965 Poznań, and Institute for Systems Research,
Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract. Referring to some ideas of Leibniz, Frege, Boole and �Lukasie-
wicz, we represent fundamental concepts of rough set theory in terms of a
generalization that permits to deal with the graduality of fuzzy sets. Our
conjunction of rough sets and fuzzy sets is made using the Dominance-
based Rough Set Approach (DRSA). DRSA have been proposed to take
into account ordinal properties of data related to preferences. We show
that DRSA is also relevant in case where preferences are not considered
but a kind of monotonicity relating attribute values is meaningful for the
analysis of data at hand. In general, monotonicity concerns relationship
between different aspects of a phenomenon described by data, e.g.: “the
larger the house, the higher its price” or “the more a tomato is red, the
more it is ripe”. The qualifiers, like “large house”, “high price”, “red” and
“ripe”, may be expressed either in terms of some measurement units, or
in terms of degrees of membership to some fuzzy sets. In this perspective,
the DRSA gives a very general framework in which the classical rough
set approach based on indiscernibility relation can be considered as a
particular case.

1 Introduction

In this paper we want to present a generalization of rough sets to handle the
graduality of fuzzy sets. Since according to Pawlak [10] rough set theory refers to
some ideas of Gottlob Frege (vague concepts), Gottfried Leibniz (indiscernibil-
ity), George Boole (reasoning methods), Jan �Lukasiewicz (multi-valued logics),
and Thomas Bayes (inductive reasoning), we want to give an account of our gen-
eralization of rough sets, justifying it by reference to some of these main ideas
recalled by Pawlak.

The identity of indiscernibles is a principle of analytic ontology first explicitly
formulated by Gottfried Leibniz in his Discourse on Metaphysics, Section 9 [6].
Two objects x and y are defined indiscernible if x and y have the same properties.
The principle of identity of indiscernibles states that

if x and y are indiscernible, then x = y. (II1)

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 36–52, 2007.
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This can be expressed also as if x �= y, then x and y are discernible, i.e. there
is at least one property that x has and y does not, or vice versa. The converse
of the principle of identity of indiscernibles is called indiscernibility of identicals
and states that if x = y, then x and y are indiscernible, i.e. they have the same
properties. This is equivalent to say that if there is at least one property that x
has and y does not, or vice versa, then x �= y. The conjunction of both principles
is often referred to as “Leibniz’s law”.

Rough set theory is based on a weaker interpretation of Leibniz’s law, having
as objective the ability to classify objects falling under the same concept. This
reinterpretation of the Leibniz’s law is based on a reformulation of the principle
of identity of indiscernibles as follows:

if x and y are indiscernible, then x and y belong to the same class. (II2)

Let us observe that the principle of indiscernibility of identicals cannot be
reformulated in analogical terms. In fact, such an analogous reformulation would
amount to state that if x and y belong to the same class, then x and y are
indiscernible. This principle is too strict, however, because we can well have two
discernible objects x and y belonging to the same class. Thus, within rough set
theory, the principle of indiscernibility of identicals should continue to hold in
its original formulation (i.e. if x = y, then x and y are indiscernible).

For this reason, rough set theory needs a still weaker form of the principle
of identity of indiscernibles. Such a principle can be formulated using the idea
of vagueness due to Gottlob Frege. According to Frege “The concept must have
a sharp boundary. To the concept without a sharp boundary there would cor-
respond an area that had not a sharp boundary-line all around”. Therefore,
following this intuition, we can further reformulate the principle of identity of
indiscernibles as follows:

if x and y are indiscernible, then x and y should belong to the same class. (II3)

This reformulation of the principle of identity of indiscernibles implies that
there is an inconsistency in the statement that x and y are indiscernible and
x and y belong to different classes. We can say that the Leibniz’s principle of
identity of indiscernibles and the Frege’s intuition about vagueness are the basic
idea of the rough set concept proposed by Pawlak.

The above reconstruction of the basic idea of the Pawlak’s rough set should
be completed, however, by referring to another basic idea. This is the idea of
Georg Boole that concerns a property which is satisfied or not satisfied. It is
quite natural to weaken this principle admitting that a property can be satisfied
to some degree. This idea of graduality can be attributed to Jan �Lukasiewicz and
his proposal of many-valued logic where, in addition to well-known truth values
“true” and “false”, other truth values representing partial degrees of truth were
present. The �Lukasiewicz’s idea of graduality has been reconsidered, general-
ized and fully exploited by Zadeh [14] within fuzzy set theory, where graduality
concerns membership to a set.
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In this sense, any proposal of putting rough sets and fuzzy sets together can
be seen as a reconstruction of the rough set concept, where the Boole’s idea
of binary logic is abandoned in favor of the �Lukasiewicz’s idea of many-valued
logic, such that the Leibniz’s principle of identity of indiscernibles and the Frege’s
intuition about vagueness are combined with the idea that a property is satisfied
to some degree.

Putting aside, for the moment, the Frege’s intuition about vagueness, but
taking into account the concept of graduality, the principle of identity of indis-
cernibles can be reformulated as follows:

if the grade of each property for x is greater than or equal to the grade of y,
then x belongs to the considered class in a grade at least as high as y. (II4)

Considering the concept of graduality together with the Frege’s intuition
about vagueness, one can reformulate the principle of identity of indiscernibles
as follows:

if the grade of each property for x is greater than or equal to the grade of y,
then x should belong to the considered class

in a grade at least as high as y. (II5)

In this paper, we show that formulation (II5) of the principle of identity of in-
discernibles is perfectly concordant with the rough set concept defined within the
Dominance-based Rough Set Approach (DRSA) [4]. DRSA has been proposed
by the authors to deal with ordinal properties of data related to preferences in
decision problems [5,12]. The fundamental feature of DRSA is that it handles
monotonicity of comprehensive evaluation of objects with respect to preferences
relative to evaluation of these objects on particular attributes. For example, the
more preferred is a car with respect to such attributes as maximum speed, accel-
eration, fuel consumption, and price, the better is its comprehensive evaluation.
The type of monotonicity considered within DRSA is also meaningful for problems
where relationships between different aspects of a phenomenon described by data
are to be taken into account, even if preferences are not considered. Indeed, mono-
tonicity concerns, in general, mutual trends existing between different variables,
like distance and gravity in physics, or inflation rate and interest rate in economics.
Whenever we discover a relationship between different aspects of a phenomenon,
this relationship can be represented by a monotonicity with respect to some spe-
cific measures of the considered aspects. Formulation (II5) of the principle of iden-
tity of indiscernibles refers to this type of monotonic relationships. So, in general,
the monotonicity permits to translate into a formal language a primitive intuition
of relationship between different concepts of our knowledge corresponding to the
principle of identity of indiscernibles formulated as (II5).

Rough set approach has been proposed to approximate some relationships
existing between concepts. For example, in medical diagnosis the concept of
“disease Y” can be represented in terms of such concepts as “low blood pressure”
and “high temperature”, or “muscle pain” and “headache”. The classical rough
approximation is based on a very coarse representation, that is, for each aspect
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characterizing a concept (“low blood pressure”, “high temperature”, “muscle
pain”, etc.), only its presence or its absence is considered relevant. In this case,
the rough approximation involves a very primitive idea of monotonicity related
to a scale with only two values: “presence” and “absence”.

Monotonicity gains importance when a finer representation of the concepts
is considered. A representation is finer when for each aspect characterizing a
concept, not only its presence or its absence is taken into account, but also the
degree of its presence or absence is considered relevant. Graduality is typical
for fuzzy set philosophy [14] and, therefore, a joint consideration of rough sets
and fuzzy sets is worthwhile. In fact, rough sets and fuzzy sets capture the two
basic complementary aspects of monotonicity: rough sets deal with relationships
between different concepts and fuzzy sets deal with expression of different di-
mensions in which the concepts are considered. For this reason, many approaches
have been proposed to combine fuzzy sets with rough sets (see e.g. [1,7,11]). Our
combination of rough sets and fuzzy sets presents some important advantages
with respect to competitive approaches, which are discussed below.

The main preoccupation in almost all the studies combining rough sets with
fuzzy sets was related to a fuzzy extension of Pawlak’s definition of lower and
upper approximations using fuzzy connectives [2,3]. In fact, there is no rule
for the choice of the “right” connective, so this choice is always arbitrary to
some extent. Another drawback of fuzzy extensions of rough sets involving fuzzy
connectives is that they are based on cardinal properties of membership degrees.
In consequence, the result of these extensions is sensitive to order preserving
transformation of membership degrees. For example, consider the t-conorm of
�Lukasiewicz as fuzzy connective; it may be used in the definition of both fuzzy
lower approximation (to build fuzzy implication) and fuzzy upper approximation
(as a fuzzy counterpart of a union). The t-conorm of �Lukasiewicz is defined as

T ∗(α, β) = min(α + β, 1), α, β ∈ [0, 1].

T ∗(α, β) can be interpreted as follows. Given two fuzzy propositions p and q,
putting v(p) = α and v(q) = β, T ∗(α, β) can be interpreted as v(p∨q), the truth
value of the proposition p∨ q. Let us consider the following values of arguments:

α = 0.5, β = 0.3, γ = 0.2, δ = 0.1,

and their order preserving transformation:

α′ = 0.4, β′ = 0.3, γ′ = 0.2, δ′ = 0.05.

The values of the t-conorm are in the two cases as follows:

T ∗(α, δ) = 0.6, T ∗(β, γ) = 0.5, T ∗(α′, δ′) = 0.45, T ∗(β′, γ′) = 0.5.

One can see that the order of the results has changed after the order preserv-
ing transformation of the arguments. This means that the �Lukasiewicz t-conorm
takes into account not only the ordinal properties of the truth values, but also
their cardinal properties. A natural question arises: is it reasonable to expect
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from truth values a cardinal content instead of ordinal only? Or, in other words,
is it realistic to claim that a human is able to say in a meaningful way not only
that

(a) “proposition p is more credible than proposition q”
but even something like

(b) “proposition p is two times more credible than proposition q”?

We claim that it is much safer to consider information of type (a), because
information of type (b) is rather meaningless for a human.

Since our fuzzy generalization of rough set theory takes into account only
ordinal properties of fuzzy membership degrees, we claim in this paper that it
is the proper fuzzy generalization of rough set theory.

We will show, moreover, that the classical rough set approach [8,9] can be seen
as a specific case of our general model. This is important for several reasons. In
particular, this interpretation of DRSA gives an insight into fundamental prop-
erties of the classical rough set approach and permits its further generalization.

This article is organized as follows. Section 2 presents rough approximation of
a fuzzy set based on the property of monotonicity. In section 3, we compare mono-
tonic rough approximation of a fuzzy set with the classical rough set, and we prove
that the latter is a particular case of the former. Section 4 contains conclusions.

2 Rough Approximations of Fuzzy Sets Based on the
Property of Monotonicity

In this section, we show how the Dominance-based Rough Set Approach can be
used for rough approximation of fuzzy sets.

A fuzzy information base is the 3-tuple B =< U, F, ϕ >, where U is a fi-
nite set of objects (universe), F={f1,f2,...,fm} is a finite set of properties, and
ϕ : U × F → [0, 1] is a function such that ϕ(x, fh) ∈ [0, 1] expresses the degree
in which object x has property fh. Therefore, each object x from U is described
by a vector

DesF (x) = [ϕ(x, f1), . . . , ϕ(x, fm)]

called description of x in terms of the evaluations of the properties from F ; it
represents the available information about x. Obviously, x ∈ U can be described
in terms of any non-empty subset E ⊆ F and in this case we have

DesE(x) = [ϕ(x, fh), fh ∈ E].

Let us remark that the concept of fuzzy information base can be considered as a
generalization of the concept of property system [13]. Indeed, in a property system
an object may either possess a property or not, while in the fuzzy information base
an object may possess a property in a given degree between 0 and 1.

With respect to any E ⊆ F , we can define the dominance relation DE as
follows: for any x,y ∈ U , x dominates y with respect to E (denoted as xDEy) if
for any fh ∈ E
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ϕ(x, fh) ≥ ϕ(y, fh).

For any x ∈ U and for each non-empty E ⊆ F , let

D+
E (x) = {y ∈ U : yDEx}, D−

E (x) = {y ∈ U : xDEy}.

Given E ⊆ F , for each X ⊆ U , we can define its upward lower approximation
E(>)(X) and its upward upper approximation E

(>)
(X) as:

E(>)(X) =
{
x ∈ U : D+

E(x) ⊆ X
}

,

E
(>)

(X) =
{
x ∈ U : D−

E(x) ∩X �= ∅} .

Analogously, given E ⊆ F , for each X ⊆ U , we can define its downward lower
approximation E(<)(X) and its downward upper approximation E

(<)
(X) as:

E(<)(X) =
{
x ∈ U : D−

E(x) ⊆ X
}

,

E
(<)

(X) =
{
x ∈ U : D+

E(x) ∩X �= ∅} .

Let us observe that in the above definition of rough approximations E(>)(X),
E

(>)
(X), E(<)(X), E

(<)
(X), the elementary sets, which in the classical rough set

theory are equivalence classes of the indiscernibility relation, here are positive
and negative dominance cones D+

E(x) and D−
E(x). Below we prove that the

rough approximations E(>)(X), E
(>)

(X), E(<)(X), E
(<)

(X) can be expressed
as unions of elementary sets.

Theorem 1. For any X ⊆ U and E ⊆ F

1. E(>)(X) =
⋃

x∈U

{
D+

E(x) : D+
E(x) ⊆ X

}
,

2. E
(>)

(X) =
⋃

x∈U

{
D+

E(x) : D−
E(x) ∩X �= ∅} ,

3. E(<)(X) =
⋃

x∈U

{
D−

E(x) : D−
E(x) ⊆ X

}
,

4. E
(<)

(X) =
⋃

x∈U

{
D−

E(x) : D+
E(x) ∩X �= ∅} .

Proof

1. If D+
E(x) ⊆ X , then for each y ∈ D+

E(x), y ∈ X . But y ∈ D+
E(x) implies that

D+
E(y) ⊆ D+

E(x), such that D+
E(y) ⊆ X , and thus y ∈ E(>)(X). This means

that
⋃

x∈U

{
D+

E(x) : D+
E(x) ⊆ X

} ⊆ E(>)(X). (i)
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If x ∈ E(>)(X), then D+
E(x) ⊆ X . But x ∈ D+

E(x), and thus
⋃

x∈U

{
D+

E(x) : D+
E(x) ⊆ X

} ⊇ E(>)(X). (ii)

From (i) and (ii) we get

E(>)(X) =
⋃

x∈U

{
D+

E(x) : D+
E(x) ⊆ X

}
.

2. Let us suppose that D−
E(x) ∩X �= ∅. Observe that for each y ∈ D+

E(x) we

have D−
E(y) ⊇ D−

E(x) which implies D−
E(y)∩X �= ∅, and thus y ∈ E

(>)
(X).

This means that
⋃

x∈U

{
D+

E(x) : D−
E(x) ∩X �= ∅} ⊆ E

(>)
(X). (iii)

If x ∈ E
(>)

(X), then D−
E(x) ∩X �= ∅. But x ∈ D+

E(x), and thus
⋃

x∈U

{
D+

E(x) : D−
E(x) ∩X �= ∅} ⊇ E

(>)
(X). (iv)

From (iii) and (iv) we get

E
(>)

(X) =
⋃

x∈U

{
D+

E(x) : D−
E(x) ∩X �= Ø

}
.

3. and 4. can be proved analogously. ��

The rough approximations E(>)(X), E
(>)

(X), E(<)(X), E
(<)

(X) can be used
to analyze data relative to gradual membership of objects to some concepts
representing properties of objects and their assignment to decision classes. This
analysis takes into account the following monotonicity principle: “the greater the
degree to which an object has properties from E ⊆ F , the greater its degree of
membership to a considered class”. This principle can be formalized as follows.
Let us consider a fuzzy set X in U , characterized by the membership function
μX : U → [0, 1]. This fuzzy set represents a class of interest, such that function
μ specifies a graded membership of objects from U to considered class X . For
each cutting level α ∈ [0, 1] we can consider the following sets

– weak upward cut of fuzzy set X :

X≥α = {x ∈ U : μ(x) ≥ α} ,

– strict upward cut of fuzzy set X :

X>α = {x ∈ U : μ(x) > α} ,

– weak downward cut of fuzzy set X :

X≤α = {x ∈ U : μ(x) ≤ α} ,
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– strict downward cut of fuzzy set X :

X<α = {x ∈ U : μ(x) < α} .

Let us remark that, for any fuzzy set X and for any α ∈ [0, 1], we have that

U −X≥α = X<α, U −X≤α = X>α,

U −X>α = X≤α, U −X<α = X≥α.

Given a set of fuzzy sets X = {X1, X2, ...., Xp} on U , whose respective mem-
bership functions are μ1, μ2, ..., μp, let P>(X) be the set of all the sets obtained
as a union and intersection of weak and strict upward cuts of component fuzzy
sets. Analogously, let P<(X) be the set of all the sets obtained as a union and
intersection of weak and strict downward cuts of component fuzzy sets.

P>(X) and P<(X) are closed under set union and set intersection operations,
i.e. for all Y1, Y2 ∈ P>(X), Y1 ∪ Y2 and Y1 ∩ Y2 belong to P>(X), as well as
for all W1, W2 ∈ P<(X), W1 ∪W2 and W1 ∩W2 belong to P<(X). Observe,
moreover, that the universe U and the empty set ∅ belong both to P>(X) and
to P<(X) because, for any fuzzy set Xi ∈ X,

U = X≥0
i = X≤1

i

and
∅ = X>1

i = X<0
i .

Let us remark that due to the distributive property of ∪ with respect to ∩,
as well as that of ∩ with respect to ∪, we can always represent any Y ∈ P>(X)
in its disjunctive form

Y =
p⋃

i=1

⎛

⎝
mi⋂

ji=1

X
∗ji

αji

i

⎞

⎠

or in its conjunctive form

Y =
p⋂

i=1

⎛

⎝
mi⋃

ji=1

X
∗ji

αji

i

⎞

⎠

where, for any ji = 1, ..., mi and i = 1, ..., p, ∗ji ∈ {≥, >} and αji ∈ [0, 1]. Of
course, also the elements of P<(X) can be represented in a conjunctive or a
disjunctive form, as above, with the only exception that, for any ji = 1, ..., mi

and i = 1, ..., p, ∗ji ∈ {≤, <}.
Let us observe, moreover, that for any Y ∈P>(X) we have that U−Y ∈P<(X)

and, viceversa, for any Y ∈ P<(X) we have that U − Y ∈ P>(X). This can
be explained as follows. Let us consider a set Y ∈ P>(X) represented in its
disjunctive form

Y =
p⋃

i=1

⎛

⎝
mi⋂

ji=1

X
∗ji

αji

i

⎞

⎠ .
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For De Morgan property we have

U − Y = U −
p⋃

i=1

⎛

⎝
mi⋂

ji=1

X∗ji
αji

⎞

⎠ =

p⋂

i=1

⎛

⎝
mi⋃

ji=1

U −X
∗ji

αji

i

⎞

⎠ =
p⋂

i=1

⎛

⎝
mi⋃

ji=1

X
�ji

αji

i

⎞

⎠ ,

where for any ji = 1, ..., mi and i = 1, ..., n,

�ji = “ < ” if ∗ji = “ ≥ ”

and
�ji = “ ≤ ” if ∗ji = “ > ”.

Thus,
⋂p

i=1

(⋃mi

ji=1 X
�ji

αji

i

)
is clearlyaconjunctive formofanelementY ′∈P<(X).

Analogous reasoning can be done for any Y ∈ P<(X).
Let us remark that we can rewrite the rough approximations E(>)(Y ), E

(>)
(Y ),

E(<)(Y ) and E
(<)

(Y ) as follows:

E(>)(Y ) = {x ∈ U : ∀w ∈ U, wDEx⇒ w ∈ Y },

E
(>)

(Y ) = {x ∈ U : ∃w ∈ U such that xDEw and w ∈ Y },
E(<)(Y ) = {x ∈ U : ∀w ∈ U, xDEw ⇒ w ∈ Y },

E
(<)

(Y ) = {x ∈ U : ∃w ∈ U such that wDEx and w ∈ Y }.
The following theorem states some important properties of the dominance-

based rough approximations.

Theorem 2

1. For any Y ∈ P>(X) and for any W ∈ P<(X) and for any E ⊆ F ,

E(>)(Y ) ⊆ Y ⊆ E
(>)

(Y ), E(<)(W ) ⊆W ⊆ E
(<)

(W ).

2. For any E ⊆ F ,

E(>)(∅) = E
(>)

(∅) = ∅, E(<)(∅) = E
(<)

(∅) = ∅,

E(>)(U) = E
(>)

(U) = U, E(<)(U) = E
(<)

(U) = U.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



DRSA as a Proper Way of Handling Graduality in Rough Set Theory 45

3. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X),

E
(>)

(Y1 ∪ Y2) = E
(>)

(Y1) ∪ E
(>)

(Y2),

E
(<)

(W1 ∪W2) = E
(<)

(W1) ∪E
(<)

(W2).

4. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X),

E(>)(Y1 ∩ Y2) = E(>)(Y1) ∩ E(>)(Y2),

E(<)(W1 ∩W2) = E(<)(W1) ∩E(<)(W2).

5. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X),

Y1 ⊆ Y2 ⇒ E(>)(Y1) ⊆ E(>)(Y2),

W1 ⊆W2 ⇒ E(<)(W1) ⊆ E(<)(W2).

6. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X),

Y1 ⊆ Y2 ⇒ E
(>)

(Y1) ⊆ E
(>)

(Y2),

W1 ⊆W2 ⇒ E
(<)

(W1) ⊆ E
(<)

(W2).

7. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X),

E(>)(Y1 ∪ Y2) ⊇ E(>)(Y1) ∪ E(>)(Y2),

E(<)(W1 ∪W2) ⊇ E(<)(W1) ∪E(<)(W2).

8. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X),

E
(>)

(Y1 ∩ Y2) ⊆ E
(>)

(Y1) ∩ E
(>)

(Y2),

E
(<)

(W1 ∩W2) ⊆ E
(<)

(W1) ∩E
(<)

(W2).

9. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X),

E(<)(U − Y ) = U − E
(>)

(Y ),

E(>)(U −W ) = U − E
(<)

(W ).
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10. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X),

E
(<)

(U − Y ) = U − E(>)(Y ),

E
(>)

(U −W ) = U − E(<)(W ).

11. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X),

E(>)[E(>)(Y )] = E
(>)

[E(>)(Y )] = E(>)(Y ),

E(<)[E(<)(W )] = E
(<)

[E(<)(W )] = E(<)(W ).

12. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X),

E
(>)

[E
(>)

(Y )] = E(>)[E
(>)

(Y )] = E
(>)

(Y ),

E
(<)

[E
(<)

(W )] = E(<)[E
(<)

(W )] = E
(<)

(W ).

Proof

In the following we shall consider only upward rough approximations E(>)(Y )
and E

(>)
(Y ). Analogous proof holds for the downward rough approximations

E(<)(W ) and E
(<)

(W ).

1a. If x ∈ E(>)(Y ), then D+(x) ⊆ Y , but x ∈ D+(x), hence x ∈ Y , and
E(>)(Y ) ⊆ Y .

1b. If x ∈ Y , then D−(x)∩Y �= ∅ (because x ∈ D−(x)∩Y ), hence x ∈ E
(>)

(Y ),
and Y ⊆ E

(>)
(Y ).

2a. From 1, E(>)(∅) ⊆ ∅ and ∅ ⊆ E(>)(∅) (because the empty set is included
in every set), thus E(>)(∅) = ∅.

2b. Assume that E
(>)

(∅) �= ∅. Then, there exists x such that x ∈ E
(>)

(∅).
Hence, D−(x)∩∅ �= ∅, but D−(x)∩∅ = ∅, what contradicts the assumption,
thus E

(>)
(∅) = ∅.

2c. From 1, E(>)(U) ⊆ U . In order to show that U ⊆ E(>)(U), let us observe
that if x ∈ U , then D+(x) ⊆ U , hence x ∈ E(>)(U), thus E(>)(U) = U .

2d. From 1, E
(>)

(U) ⊇ U and, obviously, E
(>)

(U) ⊆ U , thus E
(>)

(U) = U .

3. x ∈ E
(>)

(Y1∪Y2) iff D−(x)∩(Y1 ∪Y2) �= ∅ iff D−(x)∩Y1 ∪D−(x)∩Y2 �= ∅
iff D−(x) ∩ Y1 �= ∅ ∨ D−(x) ∩ Y2 �= ∅ iff x ∈ E

(>)
(Y1) ∨ x ∈ E

(>)
(Y2) iff

x ∈ E
(>)

(Y1) ∪ E
(>)

(Y2). Thus, E
(>)

(Y1 ∪ Y2) = E
(>)

(Y1) ∪ E
(>)

(Y2).

4. x ∈ E(>)(Y1 ∩ Y2) iff D+(x) ⊆ Y1 ∩ Y2 iff D+(x) ⊆ Y1 ∧ D+(x) ⊆ Y2 iff
x ∈ E(>)(Y1) ∩ E(>)(Y2). Thus E(>)(Y1 ∩ Y2)=E(>)(Y1) ∩ E(>)(Y2).
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5. BecauseY1⊆Y2 iffY1∩Y2 =Y1,byvirtueof4wehaveE(>)(Y1∩Y2)=E(>)(Y1)
iff E(>)(Y1) ∩ E(>)(Y2)=E(>)(Y1), which gives E(>)(Y1) ⊆ E(>)(Y2).

6. BecauseY1⊆Y2 iffY1∪Y2 =Y2,byvirtueof3wehaveE
(>)

(Y1∪Y2)=E
(>)

(Y2)
iff E

(>)
(Y1) ∪ E

(>)
(Y2) = E

(>)
(Y2), which gives E

(>)
(Y1) ⊆ E

(>)
(Y2).

7. Since Y1 ⊆ Y1 ∪ Y2 and Y2 ⊆ Y1 ∪ Y2, by virtue of 6 we have E(>)(Y1) ⊆
E(>)(Y1∪Y2) and E(>)(Y2) ⊆ E(>)(Y1∪Y2) and thus E(>)(Y1)∪E(>)(Y2) ⊆
E(>)(Y1 ∪ Y2).

8. Since Y1 ∩ Y2 ⊆ Y1 and Y1 ∩ Y2 ⊆ Y2, by virtue of 5 we have E
(>)

(Y1 ∩
Y2) ⊆ E

(>)
(Y1) and E

(>)
(Y1 ∩ Y2) ⊆ E

(>)
(Y2) and thus E

(>)
(Y1 ∩ Y2) ⊆

E
(>)

(Y1) ∩E
(>)

(Y2).
9a. Let us suppose that Y ∈ P>(X). x ∈ E(<)(U − Y ) iff D−(x) ⊆ U − Y iff

D−(x) ∩ Y = ∅ iff x /∈ E
(>)

(Y ), hence E(<)(U − Y ) = U − E
(>)

(Y ).

9b. Analogously to 9a, if W ∈ P<(X), we get E(>)(U −W ) = U −E
(<)

(W ).

10a. Putting Y = U − W in 9 we get E(>)(Y ) = U − E
(<)

(U − Y ) and, in
consequence, U − E(>)(Y ) = E

(<)
(U − Y ), which is the thesis.

10b. Analogously to 10a, putting W = U − Y in 9 we get U − E(<)(W ) =
E

(>)
(U −W ) which is the thesis.

11a. From 1, E(>)[E(>)(Y )]⊆E(>)(Y ), thus we have to show that E(>)(Y )⊆
E(>)[E(>)(Y )]. If x ∈ E(>)(Y ), then D+

E(x) ⊆ Y , hence E(>)[D+
E(x)] ⊆

E(>)(Y ) but E(>)[D+
E(x)] = D+

E(x), thus D+
E(x) ⊆ E(>)(Y ) and

x∈E(>)[E(>)(Y )], that is E(>)(Y )⊆E(>)[E(>)(Y )].

11b. From 1, E(>)(Y ) ⊆ E
(>)

[E(>)(Y )], thus we have to show that E(>)(Y ) ⊇
E

(>)
[E(>)(Y )]. If x ∈ E

(>)
[E(>)(Y )], then D−

E(x) ∩ E(>)(Y ) �= ∅, i.e.
there exists y ∈ D−

E(x) such that y ∈ E(>)(Y ), hence D+
E(y) ⊆ Y but

D+
E(x) ⊆ D+

E(y), thus D+
E(x) ⊆ Y and x ∈ E(>)(Y ), that is E(>)(Y ) ⊇

E
(>)

[E(>)(Y )].

12a. From 1, E
(>)

(Y ) ⊆ E
(>)

[E
(>)

(Y )]. We have to show that E
(>)

(Y ) ⊇
E

(>)
[E

(>)
(Y )]. If x ∈ E

(>)
[E

(>)
(Y )], then D−

E(x) ∩ E
(>)

(Y ) �= ∅ and

for some y ∈ D−
E(x), y ∈ E

(>)
(Y ), hence D−

E(y) ∩ Y �= ∅, but D−
E(y) ⊆

D−
E(x), thus D−

E(y) ∩ Y �= ∅, i.e. x ∈ E
(>)

(Y ), which gives E
(>)

(Y ) ⊇
E

(>)
[E

(>)
(Y )].

12b. From 1, E(>)[E
(>)

(Y )] ⊆ E
(>)

(Y ). We have to show that E(>)[E
(>)

(Y )] ⊇
E

(>)
(Y ). If x ∈ E

(>)
(Y ), then D−

E(x) ∩ Y �= ∅. Hence, D+
E(x) ⊇ E

(>)
(Y )

(because if y ∈ D+
E(x), then D−

E (x) ⊆ D−
E(y) and D−

E(x) ∩ Y �= ∅ implies

D−
E(y) ∩ Y �= ∅, i.e. y ∈ E

(>)
(Y )) and x ∈ E(>)[E

(>)
(Y )], which gives

E(>)[E
(>)

(Y )] ⊇ E
(>)

(Y ). ��
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Let us remark that the results given in Theorem 2 correspond to well known
properties of classical rough sets (see the original properties numbered in the
same way in [9]), however, with the noticeable exception of properties 9 and
10 characterizing the specific nature of complementarity relations within the
Dominance-based Rough Set Approach.

3 Classical Rough Set as a Particular Case of the
Monotonic Rough Approximation of a Fuzzy Set

In this section, we show that the classical rough approximation is a particular
case of the rough approximation of a fuzzy set presented in the previous section.

Let us remember that in classical rough set approach [8,9], the original in-
formation is expressed by means of an information system, that is the 4-tuple
S = < U, Q, V, φ >, where U is a finite set of objects (universe), Q={q1,q2,...,qm}
is a finite set of attributes, Vq is the set of values of the attribute q, V =

⋃
q∈Q Vq

and φ : U × Q → V is a total function such that φ(x, q) ∈ Vq for each q ∈ Q,
x ∈ U , called information function.

Therefore, each object x from U is described by a vector
DesQ(x) = [φ(x, q1), φ(x, q2), ..., φ(x, qm)], called description of x in terms of
the evaluations of the attributes from Q; it represents the available information
about x. Obviously, x ∈ U can be described in terms of any non-empty subset
P ⊆ Q.

With every (non-empty) subset of attributes P there is associated an indis-
cernibility relation on U , denoted by IP :

IP = {(x, y) ∈ U × U : φ(x, q) = φ(y, q), ∀q ∈ P}.
If (x, y) ∈ IP , it is said that the objects x and y are P -indiscernible. Clearly,

the indiscernibility relation thus defined is an equivalence relation (reflexive,
symmetric and transitive). The family of all the equivalence classes of the relation
IP is denoted by U |IP , and the equivalence class containing an element x ∈ U
by IP (x), i.e.

IP (x) = {y ∈ U : φ(y, q) = φ(x, q), ∀q ∈ P}.
The equivalence classes of the relation IP are called P-elementary sets.
Let S be an information system, X a non-empty subset of U and ∅ �= P ⊆

Q. The P-lower approximation and the P-upper approximation of X in S are
defined, respectively, as:

P (X) = {x ∈ U : IP (x) ⊆ X},
P (X) = {x ∈ U : IP (x) ∩X �= ∅}.

The elements of P (X) are all and only those objects x ∈ U which belong to
the equivalence classes generated by the indiscernibility relation IP , contained
in X ; the elements of P (X) are all and only those objects x ∈ U which belong to
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the equivalence classes generated by the indiscernibility relation IP , containing
at least one object x belonging to X . In other words, P (X) is the largest union
of the P -elementary sets included in X , while P (X) is the smallest union of the
P -elementary sets containing X .

Now, we prove that any information system can be expressed in terms of
a specific type of an information base (see section 2). An information base
is called Boolean if ϕ : U × F → {0, 1}. A partition F={F1,. . . ,Fr} of the
set of properties F , with card(Fk) ≥ 2 for all k = 1, . . . , r, is called canoni-
cal if, for each x ∈ U and for each Fk ⊆ F , k = 1, . . . , r, there exists only
one fj ∈ Fk for which ϕ (x, fj) = 1 (and, therefore, for all fi ∈ Fk − {fj},
ϕ(x, fi)=0). The condition card(Fk) ≥2 for all k = 1, . . . , r, is necessary be-
cause, otherwise, we would have at least one element of the partition Fk={f ′}
such that ϕ(x,f ′)=1 for all x ∈ U , and this would mean that property f ′ gives
no information and can be removed. We can observe now that any information
system S=< U, Q, V, φ > can be transformed to a Boolean information base
B=< U, F, ϕ > assigning to each v ∈ Vq, q ∈ Q, one property fqv ∈ F such
that ϕ(x, fqv) = 1 if φ(x, q) = v, and ϕ(x, fqv) = 0, otherwise. Let us remark
that F={F1, . . . , Fr}, with Fq = {fqv, v ∈ Vq}, q ∈ Q, is a canonical partition of
F . The opposite transformation, from a Boolean information base to an infor-
mation system, is not always possible, i.e. there may exist Boolean information
bases which cannot be transformed into information systems because their sets
of properties do not admit any canonical partition, as shown by the following
example.

Example. Let us consider a Boolean information base, such that U ={x1, x2, x3},
F = {f1, f2} and function ϕ is defined by Table 1. One can see that F={{f1, f2}}
is not a canonical partition because ϕ(x3, f1) = ϕ(x3, f2) = 1, while definition
of canonical partition F does not allow that for an object x ∈ U , ϕ(x, f1) =
ϕ(x, f2) = 1. Therefore, this Boolean information base has no equivalent infor-
mation system. Let us remark that also the Boolean information base presented
in Table 2, where U = {x1, x2, x4} and F = {f1, f2}, cannot be transformed to
an information system because partition F={{f1, f2}} is not canonical. Indeed,
ϕ(x4, f1) =ϕ(x4, f2) = 0, while definition of canonical partition F does not allow
that for an object x ∈ U , ϕ(x, f1) =ϕ(x, f2) = 0.

The above says that consideration of rough approximation in the context
of a Boolean information base is more general than the same consideration in
the context of an information system. This means, of course, that the rough
approximation considered in the context of a fuzzy information base is yet more
general.

Table 1. Information base B

f1 f2

x1 0 1

x2 1 0

x3 1 1

Table 2. Information base B′

f1 f2

x1 0 1

x2 1 0

x4 0 0
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It is worth stressing that the Boolean information bases B and B′ are not
Boolean information systems. In fact, on one hand, a Boolean information base
provides information about absence (ϕ(x, f) = 0) or presence (ϕ(x, f) = 1) of
properties f ∈ F in objects x ∈ U . On the other hand, a Boolean information
system provides information about values assigned by attributes q ∈ Q, whose
sets of values are Vq = {0, 1}, to objects x ∈ U , such that φ(x, q) = 1 or
φ(x, q) = 0 for all x ∈ U and q ∈ Q. Observe, therefore, that to transform a
Boolean information system S into a Boolean information base B, each attribute
q of S corresponds to two properties fq0 and fq1 of B, such that for all x ∈ U

• ϕ(x, fq0) = 1 and ϕ(x, fq1) = 0 if φ(x, q) = 0,
• ϕ(x, fq0) = 0 and ϕ(x, fq1) = 1 if φ(x, q) = 1.

Thus, the Boolean information base B in Table 1 and the Boolean information
system S in Table 3 are different, despite they could seem identical. In fact, the
Boolean information system S in Table 3 can be transformed into the Boolean
information base B′′ in Table 4, which is clearly different from B. ♦

Table 3. Information system S

q1 q2

x1 0 1

x2 1 0

x3 1 1

Table 4. Information base B′′

fq10 fq11 fq20 fq21

x1 1 0 0 1
x2 0 1 1 0
x3 0 1 0 1

What are the relationships between the rough approximation considered in the
context of a fuzzy information base and the classical definition of rough approxi-
mation in the context of an information system? The following theorem is useful
for answering this question.

Theorem 3. Let us consider an information system and the corresponding
Boolean information base. For each P ⊆ Q, let EP be the set of all the properties
fqv corresponding to values v ∈ Vq of each particular attribute q ∈ P . For each
X ⊆ U we have

EP (>)(X) = EP (<)(X) = P(X),

EP
(>)

(X) = EP
(<)

(X) = P(X).

Proof
Since the information base is Boolean, then D+

EP (x) = IP (x) and D−
EP (x) =

IP (x). In fact,
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D+
EP (x) =

{y ∈ U : ϕ(y, fqv) ≥ ϕ(x, fqv) for all fqv, such that v ∈ Vq and q ∈ P} =
{y ∈ U : ϕ(y, fqv)=1 if ϕ(x, fqv)=1 for all fqv, such that v ∈ Vq and q ∈ P }=

{y ∈ U : f(y, q) = v if f(x, q) = v for all v ∈ Vq and q ∈ P }=
{y ∈ U : f(y, q) = f(x, q) for all q ∈ P} = IP (x),

D−
EP (x) =

{y ∈ U : ϕ(y, fqv) ≤ ϕ(x, fqv) for all fqv, such that v ∈ Vq and q ∈ P} =
{y ∈ U : ϕ(y, fqv)=0 if ϕ(x, fqv)=0 for all fqv, such that v ∈ Vq and q ∈ P }=

{y ∈ U : f(y, q) �= v if f(x, q) �= v for all v ∈ Vq and q ∈ P }=
{y ∈ U : f(y, q) = f(x, q) for all q ∈ P} = IP (x).

Thus, for all X ⊆ U , we have that

EP (>)(X) =
{
x ∈ U : D+

EP (x) ⊆ X
}

= {x ∈ U : IP (x) ⊆ X} = P (X),

EP
(>)

(X) =
{
x ∈ U : D−

EP (x) ∩X �= ∅} = {x ∈ U : IP (x) ∩X �= ∅} = P (X),

EP (<)(X) =
{
x ∈ U : D−

EP (x) ⊆ X
}

= {x ∈ U : IP (x) ⊆ X} = P (X),

EP
(<)

(X)=
{
x ∈ U : D+

EP (x) ∩X �=∅}={x∈U : IP (x)∩X �=∅} = P (X). ��

The above theorem proves that the rough approximation of a set considered
within a Boolean information base admitting a canonical partition is equivalent
to the classical rough approximation of the same set considered within the corre-
sponding information system. Therefore, the classical rough approximation of a
set is a particular case of the rough approximation of this set considered within
a fuzzy information system.

4 Conclusions

We presented a general model of rough approximations based on ordinal prop-
erties of membership functions of fuzzy sets. In this very general framework,
the classical rough set theory can be considered as a particular case. This result
gives us a certainty that the fuzzy generalization of rough approximations based
on Dominance-based Rough Set Approach is a real generalization of the original
rough set concept. We have shown, moreover, that this generalization is a nat-
ural continuation of some ideas given by Leibniz, Frege, Boole, �Lukasiewicz and
Pawlak. As it exploits only ordinal properties of membership degrees and mono-
tonic relationships between them, without using any (arbitrary) fuzzy connec-
tive, we claim that this is the most appropriate fuzzy generalization of the rough
set concept. Finally, this result opens a promising research direction in which we
envisage further developments, in particular, concerning algebraic properties of
the proposed rough approximations.
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Abstract. An in-house developed computer programBelief -SEEKER,
capable to generate belief networks and also to generate sets of belief rules,
has been presented in this paper. This system has a modular architecture,
and consists of the following modules: Knowledge Discovery Module
(KDM, an intelligent agent or pre-processor), Belief Network Develop-
ment Module (BDM, generates belief networks), Belief Network Training
Module (BTM, shows the distribution of conditional probabilities
using a two-dimensional graph, together with some hints extracted from
the investigated data), Belief Network Conversion Module (BCM, con-
verts generated belief networks into relevant sets of belief rules of the type
IF...THEN), and Probability Reasoning Module (PRM, checks the cor-
rectness of developed learning models as the ”prediction of future” in
classification of unseen examples).

Keywords: belief networks, belief rules, Belief SEEKER.

1 Introduction

Belief network and belief rule induction system Belief SEEKER has been de-
veloped at the University of Information Technology and Management (Rzeszow,
Poland), in cooperation with the University of Kansas. The first application of
Belief SEEKER was applied to the classification and prediction of melanocytic
skin lesions [11]. Other applications were reported in [1,2,4,5,6,14,18]. The cur-
rent version of Belief SEEKER, implemented in RAD-Delphi (Borland Soft-
ware Corporation), searches for knowledge hidden in data and then uses it for
classification of various objects, physical or abstract, such as ideas, concepts
and/or processes. Moreover, a version of the system described here contains a
new pre-processor that enables

– detecting and correcting typographical errors in the source decision table,
– creating truncated representation of the inputted data (in a sense of reduced

representation of all concepts, using the most representative cases), and
– applying specific discretization schemes to deal with numerical attributes.

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 53–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



54 J.W. Grzyma�la-Busse, Z.S. Hippe, and T. Mroczek

Additionally, special mechanisms were developed for handling missing at-
tribute values and for loading external numerical data, discretized using ad-
vanced algorithms elaborated at the University of Kansas [9].

The main aim of the paper is to describe internal features of Belief SEEKER
that have never been published so far. Therefore, a general description of the
system has been included.

2 Decision Table

Formally, a decision table is an ordered set DT = (U, C, D, V, f),
where

– U, C, D are nonempty sets of elements, U is a set of objects (or cases), C is
a set of descriptive attributes, D is a set of decision attributes,

– C, D ⊆ A, C ∪ D = A, C ∩ D = ∅, where A is finite set of attributes,
– V =

⋃
a∈A

Va (Va is a domain of attribute a ∈ A), and

– f: U × A→ V is an information function, such that ∀x∈U, a∈A[f(x, a) ∈ Va].

In addition, specific values of the decision attribute d, d ∈ D, correspond to
classes or concepts.

The Belief SEEKER system accepts input data in the form of text files,
or decision tables, specified by Pawlak [15], i.e., consisting of some descrip-
tive attributes, and only one decision attribute located in the rightmost col-
umn. Thus, decision tables processed by the system are of the type 2a [17], see
Table 1.

Table 1. An example decision table

U A
C D

Color Size Shape Taste Weight Fruit

x1 green small round sweet 0.1 Banana

x2 green medium round sweet 0.5 Apple

x3 green big round sweet 0.4 Apple

x4 green medium round sour 0.3 Apple

x5 green small round sweet 0.1 Grape

x6 yellow medium elongated sweet 0.3 Banana

x7 green medium elongated sweet 0.2 Banana

x8 green big elongated sweet 0.3 Banana

x9 maroon small round sweet 0.2 Grape

x10 green small round sour 0.1 Grape

x11 red medium round sweet 0.3 Apple

x12 red medium round sour 0.4 Apple

x13 maroon small round sweet 0.2 Grape
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Table 1 provides the description of selected fruits (decision), using five rele-
vant features (descriptive attributes). It contains 13 cases, and may be presented
as DT = (U, C, D, V, f), where
U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13},
C = {Color, Size, Shape, Taste, Weight},
D = {Fruit},
VA = VColor ∪VSize ∪VShape ∪VTaste ∪VWeight and VD= VFruit,

VColor = {green, maroon, red, yellow},
VSize= {small, medium, big},
VShape={elongated, round},
VTaste= {sour, sweet},
VWeight={0.1, 0.2, 0.3, 0.4, 0.5},
VFruit= {Apple, Banana, Grape},
f: U × A → V, e.g.: f(1, Color) = green, f(3, Shape) = round, etc.

3 Inconsistent (Contradictory) Data

When data in decision table are inconsistent, Belief SEEKER activates in-
ternal mechanisms based on the theory of rough sets. The main advantage of
this theory, introduced by Z. Pawlak in 1982 [16], is that it does not need any
preliminary or additional information about data (like grade of membership in
fuzzy set theory). In rough set theory approach inconsistencies are not removed
from consideration. Instead, lower and upper approximations of the concept are
computed. On the basis of these approximations, Belief SEEKER computes
two corresponding sets of belief networks (certain and possible), as well as two
sets of belief rules (certain and possible). Some basic notions and ideas of the
rough set theory are quoted from [3]. In a decision table any subset of the set of
all examples, defined by the same value of the decision is called a concept. Let
U denote the set of all examples of the decision table and let P be a subset of
the set A of all variables, i.e., attributes and decisions. Let P be a subset of A. An

Fig. 1. Lower and upper approximations for concepts: a) Fruit = Apple, b) Fruit =
Banana, c) Fruit = Grape
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Table 2. PX1 = PX1

U A
C D

Color Size Shape Taste Weight Fruit

x1 green small round sweet 0.1 ∼ Apple

x2 green medium round sweet 0.5 Apple

x3 green big round sweet 0.4 Apple

x4 green medium round sour 0.3 Apple

x5 green small round sweet 0.1 ∼ Apple

x6 yellow medium elongated sweet 0.3 ∼ Apple

x7 green medium elongated sweet 0.2 ∼ Apple

x8 green big elongated sweet 0.3 ∼ Apple

x9 maroon small round sweet 0.2 ∼ Apple

x10 green small round sour 0.1 ∼ Apple

x11 red medium round sweet 0.3 Apple

x12 red medium round sour 0.4 Apple

x13 maroon small round sweet 0.2 ∼ Apple

Table 3. PX2

U A
C D

Color Size Shape Taste Weight Fruit

x1 green small round sweet 0.1 ∼ Banana

x2 green medium round sweet 0.5 ∼ Banana

x3 green big round sweet 0.4 ∼ Banana

x4 green medium round sour 0.3 ∼ Banana

x5 green small round sweet 0.1 ∼ Banana

x6 yellow medium elongated sweet 0.3 Banana

x7 green medium elongated sweet 0.2 Banana

x8 green big elongated sweet 0.3 Banana

x9 maroon small round sweet 0.2 ∼ Banana

x10 green small round sour 0.1 ∼ Banana

x11 red medium round sweet 0.3 ∼ Banana

x12 red medium round sour 0.4 ∼ Banana

x13 maroon small round sweet 0.2 ∼ Banana

indiscernibility relation ρ on U is defined for all x, y ∈ U by x ρ y if and only
if for both x and y the values for all variables form P are identical. Equivalence
classes of ρ are called elementary sets of P. An equivalence class of ρ containing
x is denoted [x]ρ. Any finite union of elementary sets of P is called a definable set
in P. Let X be a concept, a subset of U . In general, X is not a definable set in P.
However, set X may be approximated by two definable sets in P, the first one is
called a lower approximation of X in P denoted by PX and defined as follows:

{x ∈ U | [x]ρ ⊆ X}.
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Table 4. PX2

U A
C D

Color Size Shape Taste Weight Fruit

x1 green small round sweet 0.1 Banana

x2 green medium round sweet 0.5 ∼ Banana

x3 green big round sweet 0.4 ∼ Banana

x4 green medium round sour 0.3 ∼ Banana

x5 green small round sweet 0.1 Banana

x6 yellow medium elongated sweet 0.3 Banana

x7 green medium elongated sweet 0.2 Banana

x8 green big elongated sweet 0.3 Banana

x9 maroon small round sweet 0.2 ∼ Banana

x10 green small round sour 0.1 ∼ Banana

x11 red medium round sweet 0.3 ∼ Banana

x12 red medium round sour 0.4 ∼ Banana

x13 maroon small round sweet 0.2 ∼ Banana

Table 5. PX3

U A
C D

Color Size Shape Taste Weight Fruit

x1 green small round sweet 0.1 ∼ Grape

x2 green medium round sweet 0.5 ∼ Grape

x3 green big round sweet 0.4 ∼ Grape

x4 green medium round sour 0.3 ∼ Grape

x5 green small round sweet 0.1 ∼ Grape

x6 yellow medium elongated sweet 0.3 ∼ Grape

x7 green medium elongated sweet 0.2 ∼ Grape

x8 green big elongated sweet 0.3 ∼ Grape

x9 maroon small round sweet 0.2 Grape

x10 green small round sour 0.1 Grape

x11 red medium round sweet 0.3 ∼ Grape

x12 red medium round sour 0.4 ∼ Grape

x13 maroon small round sweet 0.2 Grape

The second set is called an upper approximation of X in P, denoted by PX
an defined as follows:

{x ∈ U | [x]ρ ∩X 	= ∅}
The lower approximation of X in P is the greatest definable set in P, contained

in X. The upper approximation of X in P least definable set in P containing X.
A rough set of X is the family of all subsets of U having the same lower and
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the same upper approximations of X. In our example, classification based on the
set C of attributes is given by the following partition:

{{x1, x5}, {x2}, {x3}, {x4}, {x6}, {x7}, {x8}, {x9, x13}, {x10}, {x11}, {x12}}.
The set D of decisions contains only one element. As it follows from Table 1

cases x1 and x5 are contradictory. In addition, Table 1 contains three concepts
(X1 - Fruit = Apple, X2 - Fruit = Banana, X3 - Fruit = Grape), where

X1 = {x2, x3, x4, x11, x12},
X2 = {x1, x6, x7, x8},

X3 = {x5, x9, x10, x13}.
Therefore:

1. PX1 = {x2, x3, x4, x11, x12} , PX1 = {x2, x3, x4, x11, x12},
2. PX2 = {x6, x7, x8}, PX2 = {x1, x5, x6, x7, x8},
3. PX3= {x9, x10, x13}, PX3 = {x1, x5, x9, x10, x13}.

Graphical interpretation of these sets is shown on Fig. 1.
Lower and upper approximations of concepts are presented in Tables 2–6.
In the next step, Belief SEEKER derives a collection of nets, labeled as

certain belief networks (for PX ) or possible belief networks (for PX ), among
them an optimum network, featuring the smallest classification error.

Table 6. PX3

U A
C D

Color Size Shape Taste Weight Fruit

x1 green small round sweet 0.1 Grape

x2 green medium round sweet 0.5 ∼ Grape

x3 green big round sweet 0.4 ∼ Grape

x4 green medium round sour 0.3 ∼ Grape

x5 green small round sweet 0.1 Grape

x6 yellow medium elongated sweet 0.3 ∼ Grape

x7 green medium elongated sweet 0.2 ∼ Grape

x8 green big elongated sweet 0.3 ∼ Grape

x9 maroon small round sweet 0.2 Grape

x10 green small round sour 0.1 Grape

x11 red medium round sweet 0.3 ∼ Grape

x12 red medium round sour 0.4 ∼ Grape

x13 maroon small round sweet 0.2 Grape

4 Architecture of Belief SEEKER

Belief SEEKER,with a modular architecture based on five units: KDM, BDM,
BTM, BCM, and PRM, is depicted on Fig. 2.
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Fig. 2. Simplified architecture of Belief SEEKER

Knowledge Discovery Module (KDM)
plays a role of an intelligent agent or pre-
processor, aimed at preliminary processing
of data collected in a form of decision ta-
ble (in text format), fulfilling requirements
described in [13]. The KDM module checks
thoroughly the consistency of semantics used for

the description of data, allows to handle missing data (both numeric or sym-
bolic) and additionally has some internal mechanisms to create reliable image of
extremely large data sets, i.e., develops the truncated representation of source
data. The KDM module is also responsible for quantization of continuous data
and visualization of the developed belief networks. Thus, the main task of KDM
module is related with intense analysis of the source decision table. Some ideas
of this process were already discussed in the introductory part of the paper.
Within a decision table, KDM module seeks for consistent rows, rows that are
inconsistent, and for redundant rows (Fig. 3).

An interesting feature of the discussed module is the ability to develop the mean-
ing of symbols ”*” and ”?”. In the first case, valid for symbolic attributes only, new
cases are automatically generated. The number of cases added equals to the num-
ber of values of the attribute for which symbol ”*” did appear. Say, for a row

green * round sweet 0.1 Banana

three new cases are developed because the attribute Size (see Table 1) has three
different values big, medium, and small.

green small round sweet 0.1 Banana

green medium round sweet 0.1 Banana

green big round sweet 0.1 Banana
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Fig. 3. Decision table - a dialogue window of Belief SEEKER. Object (row) 1 is in-
consistent whit object 5; object 13 is exactly the same as the object 9, i.e., is redundant.
Additionally, any entry in the table can be easily modified (corrected) at hand.

In the second case (?), two different outcomes are possible, depending on the
attribute type. For symbolic attributes, question mark is replaced by the most fre-
quent value for a given column. For continuous attribute, ”?” is replaced by the
arithmetic mean of all values, taken from vectors (rows) that are most similar to
the considered row. However, the final decision which of the mechanisms will be
selected is up to the user. The last step of the pre-processing with KDM module is
devoted to a visualization of the developed belief networks (Fig. 4). Here, individ-
ual nodes of the network (green for numerical and yellow for symbolic attributes)
are located in a circle with the decision node (gray) located in the center.

On the left side of Fig. 4 graphical information is displayed, indicating the
frequency of occurrence of a given value for each attribute.

Belief Network Development Module
(BDM) Within this module the process of de-
velopment of belief networks is steadily con-
trolled by a specific parameter, known as
marginal likelihood (ML) [13], showing the max-
imum dependence between variables:

ML =
v∏

i=1

qi∏

j=1

Γ (αij)
Γ (αij + nij)

ci∏

k=1

Γ (αijk + nijk)
Γ (αijk)

, (1)

where i = 1, ..., v, where v is the number of nodes in the network, j = 1, ..., qi,
where qi is the number of possible combinations of parents of the node Xi (if a
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Fig. 4. Preliminary visualization of the developed belief network (see explanation in
the text)

given attribute does not contain nodes of the type ”parent”, qi = 1,k = 1, ..., ci,
where ci is the number of classes within the attribute Xi,nijk - is the number of
rows in the database, for which parents of the attribute Xi have value j, and this
attribute has the value of k, and αijk,αij - are parameters of the initial Dirichlet’s
distribution [10].

Note that the calculation of Dirichlet’s parameter (DP) has been favor-
ably optimized through reducing the number of iteration steps, owing to
the application of a special algorithm for elimination of variables. Currently,
Belief SEEKER allows to develop a single (optimal) belief network (for any
distinct value of DP), or can generate a set of belief networks for incrementally
increased value of DP. In a separate process of global optimization, only dissimi-
lar networks are kept for further processing, i.e., generation of belief rules and/or
classification of unseen cases. Belief networks can be developed using various ba-
sic algorithms like K2, K2 augmented for exhaustive searching of all possible
connections of nodes, Naive Bayesian Classifier, and Reversed Naive Bayesian
Classifier [13]. An outline of the improved version of K2 algorithm [12] is shown
on Fig. 5. Belief networks developed within the BDM module are displayed in
a very special way, facilitating their understanding.

Although application of Bayes theory itself allows for correct processing of
contradictory data, the current version of Belief SEEKER contains additional
mechanisms to deal with such data. The approach used is based on Pawlak’s
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Fig. 5. Flowchart of the improved version of K2 algorithm. Explanatory notes: n -
number of nodes in a network, V = {v1, ..., vn} - set of network’s nodes, P = P1, ..., Pn

- sets of parents of individual nodes; at the beginning this set is empty (i.e., a network
has no connections), G(V, P) - a graph of the network, described by the set of nodes
and the set of parents of individual nodes, parent limit - maximum allowed number of
parents of a node, ML - marginal likelihood, |Pi| - number of elements in the set of
parents of the i-th node.
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theory of rough sets, which has already been discussed previously. Thus for in-
consistent data, the system produces two types of belief networks, namely certain
networks and possible networks. Similarly, also two types of rules (certain rules
and possible rules) can be created (see description of BCM module).

Belief Network Training Module
(BTM) supports the development process of
belief networks. Within this module, Bayesian
belief network is split into two main compo-
nents, tentatively called qualitative component
and quantitative component. The first compo-
nent (qualitative) is formally represented by a

two-dimensional graph, showing mutual dependences between all variables. In
other words, this component reveals internal links within independent variables
and their global influence onto the dependent variable (i.e., decision). The second
component (quantitative) stores information about distribution of conditional
probabilities (in the network) for all entities of the type ”parent-child”. The
distribution of conditional probabilities can be estimated using the 2D-graph
(earlier referred to) and some hints extracted from the investigated data. Fi-
nally, for each node of the generated network, a special array is automatically
created, to store information about influence of a given variable on other de-
scriptive variables in the network.

One of the most important task of the discussed module is searching for the
best learning model, depicted in a form of belief network. The learning process
begins by the estimation of marginal likelihood (ML) for a network without
arcs, and terminates when ML reaches the maximum value. This means that in
consecutive steps of building the learning model, arcs connecting nodes can be
created only when their addition causes maximization of matching function. The
learning process can be conveniently displayed in statu nascendi, i.e., while the
network is developed. The final network for Fruit data is shown on Fig. 6.

Arrows on arcs connecting given nodes depict relations of the type ”parent”→
”child” represented by the conditional probability table (CPT) P(A|B1,..., Bn),
where B1,..., Bn are variables of the type ”parent” for the node A. In order to
estimate that distribution we need to know (i) distribution of a priori probability
(equation (2), ci - is here a number of unique values of a given attribute), and
(ii) distribution of probability for unconnected network (equation (3)), where π
is an a priori probability of attribute Xi,
α - is a constant (usually equal to 1),
xi - is a number of instantions of attribute Xi, and
n - is a number of cases in a data set, where

π =
1
ci

, (2)

and
P (Xi) =

π · α + xi

α + n
. (3)
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Fig. 6. Belief network generated for Fruit data. Bold arcs outgoing from nodes repre-
sent attributes with the highest influence on the decision. Attributes Color and Taste
are less significant for classification of Fruit data.

Distribution of a prior probability for Fruit data is presented on Fig. 7.
Therefore, distribution of probability for nodes Xi having parents Yi can be
expressed by function (4)

P (Xi|Yi) =
π · αi + ni

αi + n
, (4)

where π is an a priori probability of attribute Xi,
αi = α

qi
- (qi is the number of possible combinations of values, assigned to parents

of the regarded node),
ni - is a number of cases in the decision table for given combination of attribute
values, and
n - is a number of all expected values of the parent node.

The conditional probabilityP (Xi|Yi) describes a ”cause”→”result” relation
and allows to estimate the influence of ”parent node” onto a ”child node”, taking
into account all possible values of variables. Results of the computation are
kept in conditional probability tables. An example of such a table, showing
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Fig. 7. Distribution of a priori probability for Fruit data

Fig. 8. Conditional probability table for dependent variable Fruit

the influence of variable Size and Shape onto the dependent variable Fruit is
presented on Fig. 8.

The topology of Bayesian network defines distribution of probabilities in an
inclusive way, with probability specification for each event. It represents a com-
plete specification of the developed model. An inclusive probability distribution
for the network given on Fig. 6 is

P = P(Color) * P(Size) * P(Shape) * P(Taste) * (Weight|Size) *
P(Fruit|Size, Shape).

Apart from probabilities defined so far, the topology of Bayesian network allows
to define marginal distribution of all variables. The distribution of randomly
labeled variable X, computed from inclusive probability distribution is called a
marginal likelihood of X.
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Calculation of the marginal likelihood of variable Fruit for the variable Ap-
ple can be conducted using the following codes: C→Color, S→Size, Sh→Shape,
T→Taste, W→Weight, F→Fruit,

P (F = Apple) =
∑

C,S,Sh,T,W

P(C) ∗ P(S) ∗ P(Sh) ∗ P(T) ∗ P(W|S) ∗ P(F = Apple|S, Sh).

For calculation of P(F = Apple) usually the bucket brigade algorithm is ap-
plied. Its action relies on stepwise elimination of variables from the equation by
shifting them before the sign of the summation

P (F = Apple) =
∑
C

P(C)
∑
T

P(T)
∑
S

P(S)
∑
W

P(W|S)
∑
Sh

P (Sh)P (F = Apple|S, Sh).

The algorithm starts computation from the most nested sum, i.e., from the
right to left. When the last sum over the variable Color is processed, the required
value of conditional probability is read from the constructed earlier tables of con-
ditional probabilities. Values of marginal likelihood for all variables are displayed
in graphical form on the left side of the main screen (see Fig. 6).

Belief Network Conversion Module
(BCM). Current version of Belief SEEKER
provides special means for specific interpreta-
tion of the developed learning model. Namely,
the classic belief network can be converted into
relevant sets of belief rules (both certain and pos-
sible) of the type IF...THEN. All algorithms

responsible for the conversion are included in the BCM module. The conversion
process is controlled by a specific parameter called belief factor BF. This factor
reveals indirectly the influence of the most significant descriptive attributes on
the dependent variable (i.e., decision). Also, to facilitate the preliminary evalua-
tion of generated rules, an additional mechanism supports the calculation of their
specificity, strength, generality and accuracy. In the extended research based on
the application of Belief SEEKER in various domains of data (business, chem-
istry, medicine, etc.) it has been found that sets of rules, developed using qual-
itative component of the belief network, were more accurate in classification of
unseen cases than rules, generated with the use of qualitative component of the
network. Note, however, that development of rules begins—in both cases—using
the most significant variables, and is then stepwise augmented using variables
(and rules) of the next generation.

In our example (Fruit data), the dependent variable is preceded by one gen-
eration only, therefore, the final set of belief rules—for BF = 0.900—consists of
four rules (Fig. 9). However, selecting smaller BF, say 0.4, results in more rules,
while the error rate may decrease.
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Fig. 9. Belief network conversion module - a dialogue window

Fig. 10. Confusion matrix and auxiliary information - a dialogue window of Be-
lief SEEKER during classification. Clicking on the Statistics at bottom displays
information about most important parameters of corresponding rules, and case(s)
classificated by such rules.

Probability Reasoning Module (PRM)
This module checks the correctness of devel-
oped learning models in the ”prediction of fu-
ture”, i.e., in classification of unseen examples.
Note that PRM module checks correctness of
belief networks and belief rules as well. Results
gathered inside this module are applied to con-

struct the confusion matrix, containing auxiliary information about all false-
negative and false-positive cases. This feature of the module plays an extremely
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important role in analysis of medical data. Results of classification by PRM
module are presented in a very convenient and user-friendly form (see Fig. 10)

5 Conclusions

The system Belief SEEKER, briefly described here, has been used in various
domains of science and technology, namely in business, chemistry, environmen-
tal protection, medicine, topology, etc. Its use in classification of melanoma
skin lesions has been found to be very successful. First results, quite satis-
factory and interesting, have also been obtained in data mining experiments
on hop processing data, and in analysis of granular bed caking during hop
extraction [6,7,8].
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Abstract. Success of machine learning algorithms is usually dependent
on a quality of a dataset they operate on. For datasets containing noisy,
inadequate or irrelevant information these algorithms may produce less
accurate results. Therefore a common pre-processing step in data mining
domain is a selection of highly predictive attributes. In this case study we
select subsets of attributes from medical data using filter feature selection
algorithms. To validate the algorithms we induce decision rules from the
selected subsets of attributes and compare classification accuracy on both
training and test datasets. Additionally medical relevance of the selected
attributes is checked with help of domain experts.

1 Introduction

Feature selection is often an essential data processing step prior to applying a
learning algorithm. If processed information contains irrelevant, unreliable or
redundant data then a process of knowledge discovery is more difficult and
achieved results are complicate to analyze. One way to remove the unneeded
information is a selection of a subset of attributes from an original dataset for
further processing. Depending on purposes of data mining this selection can be
focused on:

– finding the minimally sized feature subset that is necessary and sufficient to
the target concept

– improving classification accuracy or decreasing a number of selected fea-
tures without significantly decreasing the prediction accuracy of a selected
classifier

– approximating an original class distribution with a smaller subset of features

In our research we are trying to join both last goals, so that a classification
accuracy after removal of some attributes does not significantly decrease and the
resulting class distribution is close to the original class distribution calculated for
all attributes. Main area of interest in our research is a complete vertical solution
which is able to extract knowledge in form of decision rules from raw, medical
data. This solution is built from a number of processing modules/subsystems:

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 70–84, 2007.
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1. Import subsystem-responsible for importing data from medical information
systems into our storage subsystem

2. Data recognition subsystem-this subsystem transforms raw data to a form
suited for further data processing. Additionally noise and redundant data
are removed based on a statistical analysis. Partial results were described
in [16]

3. Feature subset selection - responsible for selecting an optimal set of attributes
for a generation of decision rules.

4. Rule induction subsystem - uses based on Rough Sets [13,14] MLEM2 al-
gorithm [23] for generating decision rules. Early research on this area was
described in [15,19].

5. Visualization of the collected knowledge in a form easily understandable by
humans. Partial results which based on decision trees were published in [20]

An block diagram of the described modules is shown at figure 1.

Fig. 1. Modules of the data exploration

In this paper we extend our initial research on a feature selection process
and present results achieved with three different filter algorithms. Resulted
feature subsets were used for rule generation using rough set MLEM2 algorithm.
Validation of the subsets was done based on both prediction accuracy of decision
rules generated from these sets and medical relevance proved by domain experts.

2 Rough Sets - Basic Notions

Developed by Pawlak and presented in 1982 Rough Sets theory is a mathematical
approach to handle imprecision and uncertainty [11,24]. The main goal of rough
set analysis is to synthesize approximation of concepts from the acquired data.
Some basic definitions are presented below.

Information system is a pair A = (U, A) where U is a non-empty, finite set
called the universe and A is a non-empty, finite set of attributes, i.e. a : U → Va

for a ∈ A, where Va is called the value set of attribute a. Elements of U are
called objects.

The special case of information systems called decision system is defined as
A = (U, A ∪ {d}), where d �∈ A is a distinguished attribute called decision and
elements of A are called conditions.
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A decision rule is defined as r = (ai1 = v1) ∧ . . . ∧ (aim = vm) ⇒ (d = k)
where 1 ≤ i1 < . . . < im ≤ |A|, vi ∈ Vai. We say an object matches a rule if
its attributes satisfy all atomic formulas (aij = vj) of the rule. A rule is called
minimal consistent with A when any decision rule r′ created from r by removing
one of atomic formula of r is not consistent with A.

We assume that the set Vd of values of the decision d is equal to {1, ..., r(d)}.
The decision d determines the partition {C1, ..., Cr(d)} of the universe U , where
Ck = {x ∈ U : d(x) = k} for 1 ≤ k ≤ r(d). The set Ck is called k-th decision
class of A.

Let A = (U, A) be an information system. With any subset of attribute B ⊆ A,
an equivalence relation, denoted by IND(B) called the B-indiscernibility relation,
is associated and defined by:

IND(B) = {(x, y) ∈ U × U :
∨

a∈B(a(x) = a(y))}
Objects x, y satisfying relation IND(B) are indiscernible by attributes from

B. By [x]IND(B) we denote the equivalence class of IND(B) defined by x.
A minimal subset B of A such that IND(A) = IND(B) is called a
reduct of A.

If A = (U, A) is an information system, B ⊆ A is a set of attributes and
X ⊆ U is a set of objects then the sets

BX = {x ∈ U : [x]IND(B) ⊆ X}; and
BX = {x ∈ U : [x]IND(B) ∩X �= ∅}
are called B-lower and B-upper approximation of X in A, respectively.

In our Data Exploration system we use a modified version of LEM2 algorithm
- MLEM2 to generate decision rules. LEM2 (Learning from Examples Module,
version 2) algorithm was firstly presented in [21,22] and then implemented in [23].
Successful examples of medical appliance of LERS in medical diagnostic systems
were described among other in [25,17].

LEM2 induces a rule set by exploring the space of blocks of attribute-value
pairs to generate a local covering. Afterwards the found local covering is con-
verted into the rule set. To define local covering following definitions must be
quoted [18].

For a variable (attribute or decision) x and its value v, a block [(x, v)] of a
variable-value pair (x, v) is the set of all cases for which variable x has value v.

Let B be a nonempty lower or upper approximation of a concept represented
by a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
(a, v) if and only if

∅ �= [T ] =
⋂

(a,v)∈T

[(a, v)] ⊆ B. (1)

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T , of T exists such that B depends on T ,. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:
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– each member T of T is a minimal complex of B,
–

⋃
T∈T[T ] = B, and

– T is minimal, i.e., T has the smallest possible number of members.

Modified LEM2 (MLEM2) proposed by Grzymala-Busse in [18] in compare to
LEM2 induces decision rules from data containing numerical attributes without a
need of a separate discretization step. Our implementation of MLEM2 algorithm
generates decision rules from both lower approximation (certain rules) and upper
approximation (possible rules). This technique allows us reasoning from ”real”
data, which contains uncertain, noisy and redundant information.

3 Feature Selection

Feature Selection is a process that attempts to select a subset of features, sat-
isfying a combination of application and methodology-dependent criteria: mini-
mizing the cardinality of the feature subset; ensuring classification accuracy does
not significantly decrease; and approximating the original class distribution with
the class distribution given the selected features.

Attribute selection techniques can be categorized using different criteria. One
commonly used categorization describes a nature of a metric used to evaluate the
worth of attributes and divides it into two different approaches. One approach
called wrapper uses a statistical re-sampling technique (e.g. cross validation)
together with a target learning algorithm to estimate an accuracy of feature
subsets [8]. As it is discussed in literature wrapper approach should result in
a better prediction accuracy on new, unseen data. The main limitation of the
approach is an additional computational cost resulting from frequently repeated
cross-validation. This process which is used for a validation of each feature subset
makes this method inapplicable for processing of large datasets.

The second approach called filter uses a general characteristics of data to
filter out undesirable features independently of a learning algorithm and without
the knowledge of the classifying properties of the data[10]. Since filters are not
coped with classifier systems or other learner they use quality metric to evaluate
features. Four main types of such metric are commonly used:

1. Distance metrics. During feature selection a distance between samples is kept
maximal to improve separability.

2. Information measures. They measure information gain for each feature (or
subsets of features) and attempt to maximize it.

3. Dependence/Correlation metrics. These metrics identify redundant features
by calculating the correlation between them and other features. Afterwards
redundant features are removed.

4. Consistency metrics. This new class of metrics employs the training data to
assess their consistency, given the subset of features currently evaluated.

Filters have proven to be significantly faster then wrappers and this
advantage makes then suitable for analyzing huge datasets. Due to the fact,
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Fig. 2. Block diagram of a FS algorithm and two FS models: filter and wrapper

that in medical domain datasets containing information about several thousand
of patients described with hundreds of attributes are common we concentrate in
our research on appliance of filter methods for feature selection. In this study we
present results achieved with three different FS algorithms: QUICKREDUCT,
CFS (Correlation-based Feature Selection) and χ2 test.

QUICKREDUCT. QUICKREDUCT defines a rough set-based attribute re-
duction family of feature selection algorithms based on concepts developed by
Ziarko [26] and Modrzejewski [27]. For selection of relevant attributes a depen-
dency metric defined as follows is used.

Assuming P and Q are equivalence relations in U , the important concept
positive region POSP (Q) is defined as:

POSP (Q) =
⋃

X∈Q

PX. (2)

A positive region contains all patterns in U that can be classified in attribute
set Q using the information in attribute set P .

The degree of dependency γP (Q) of a set P of variables with respect to a set
Q of class labelings is defined as:

γP (Q) =
|POSP (Q)|
|U | . (3)

Where |S| denotes the cardinality of set S.
The degree of dependency provides a measure of how important P is in

mapping the dataset examples into Q. If γP (Q) = 0, then classification Q is
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independent of the attributes in P , hence the decision attributes are of no use to
this classification. If γP (Q) = 1, then Q is completely dependent on P , hence the
attributes are indispensable. Values 0 < γP (Q) < 1 denote partial dependency,
which shows that only some of the attributes in P may be useful.

Given a classification task mapping a set of variables C to a set of labelings
D, a reduct is defined as any subset R ⊆ C, such that γ(C, D) = γ(R, D).

Given a classification task mapping a set of variables C to a set of labelings D,
a reduct set is defined with respect to the power set P(C) as the set R ⊆ P(C)
such that R = {A ∈ P(C) : γ(A, D) = γ(C, D)}. That is, the reduct set is the
set of all possible reducts of the equivalence relation denoted by C and D.

Given a classification task mapping a set of variables C to a set of labelings
D, and R, the reduct set for this problem space, aminimal reduct is defined as
any reduct R such that |R| ≤ |A|, ∀A ∈ R. That is, the minimal reduct is the
reduct of least cardinality for the equivalence relation denoted by C and D.

Using the presented definitions a QUICKREDUCT algorithm using forward
searching hill climbing is provided as algorithm 1. The algorithm starts with an
empty set of variables. Following heuristic is used to add variables to the initial
set: the next variable chosen to be added to the candidate reduct is the variable
that adds the most to the candidate reducts dependency. The hill climb ends
when the dependency reaches one, or when no more variables are left. It must be
mentioned, that QUICKREDUCT algorithm does not always generate a reduct.
For some cases, the resulting attribute set will be a superreduct, i.e. it will be
possible to reduce it further.

Algorithm 1. QUICKREDUCT(C,D)
Input :
C-set of all feature attributes
D-set of class attributes
Output:
R- attribute reduct, R ⊆ C

R ← {};
repeat

T ← R;
foreach x ∈ (C− R) do

if γR∪{x}(D) > γT (D) then

T ← R ∪ {x};
R← T ;

until γR(D) = γC(D) ;
return R

QUICKREDUCT in its search does not compromise with reducts offering a
near-perfect consistency. It looks for a strict reduct which is not always desirable.
During processing of real data with noise it could be advantageous to relax the
concept of a reduct.
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Given a classification task mapping a set of variables C to a set of labelings D,
an approximate reduct is defined as any subset R ⊆ C, such that 0 ≤ γ(C, D)−
γ(R, D) ≤ ε ≤ 1, where ε is a suitably chosen neighborhood.

In this paper we present results for different values of ε. Results achieved
for QUICKREDUCT are compared with other two filter algorithms: CFS and
Chi-square test.

Feature selection can be based on selection of reducts or approximations of
reducts. It is worthwhile to mention that reducts selected randomly can be of low
quality, i.e., classifiers induced from such reducts can have the low classification
quality [34,35,36]. There have been developed methods for selection of relevant
reducts making it possible to induce classifiers with the high classification quality.
Among them are the method based on dynamic reducts (see, e.g., [32,37,38]);
the method for selection reducts using as a criterion for selection the number
of rules generated by reducts (see, e.g., [28]), and the selection method with
application of ensembles of reducts (see, e.g., [31]).

CFS: Correlation-based Feature Selection. Described by Hall Correlation-
based Feature Selection (CFS) uses a heuristic which measures the usefulness of
individual features for predicting the class label along with the level of intercor-
relation among them [7]. This defined by equation 4 heuristic should filter out:
irrelevant features because they are poor predictors of the class and redundant
features which should be ignored because of their high correlation with each
other[2].

Gs =
krci√

k + k(k − 1)rii′
(4)

k is the number of features in the subset, rci is the mean feature correlation
with the class, and rii′ is the average feature intercorrelation. For computing the
correlations necessary for equation 4 a number of information based measures of
association were proposed such as: the uncertainty coefficient, the gain ratio or
the minimum description length principle [6,7,4]. The best results however were
achieved with the gain ratio used for feature-class correlations and symmetri-
cal uncertainty coefficient used for feature intercorrelations. Following equations
define these terms:

H(Y ) =
∑

y

p(y)log2(p(y)) (5)

H(Y | X) =
∑

x

p(x)
∑

y

p(y | x)log2(p(y | x)) (6)

gain = H(Y )−H(Y | X) = H(X)−H(X | Y ) = H(Y )+H(X)−H(X, Y ) (7)

gain ratio =
gain

H(X)
(8)

symmetrical uncertainty = 2.0×
[

gain

H(Y ) + H(X)

]
(9)
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In our research we use CFS heuristic with Best First search strategy [1]. This
strategy starts with an empty set of attributes and generates all single feature
expansions which are possible. Then the subset of attributes with the highest
value of the evaluation function is chosen and the procedure repeats. A stop
criteria is defined as a number of subsets that results in no improvement.

Chi-square test. Chi-square (χ2) is a non-parametric test of statistical signif-
icance for bivariate tabular analysis (crossbreaks) [12]. The χ2 test is defined by
equation 10.

χ2 =
∑ (f0 − f)2

f
(10)

Where f0 is an observed frequency and f is an expected frequency. Essentially the
χ2 test is commonly used for testing independence and/or correlation between
two vectors. The test compares observed frequencies with the corresponding ex-
pected frequencies. Value 0 of χ2 means that the corresponding two vectors are
statistically independent with each other.At a certain threshold value (e.g., 3.84
at the 95% significance level [12]) an independence assumption between two vec-
tors can be rejected. It can be said, that the higher value χ2 takes the higher the
correlation between the corresponding vectors. In our work we test correlations
between each attribute and a class label and select for further processing only
attributes with the highest χ2 value.

4 Dataset Preparation and Experimental Environment

Data used in our research was obtained from the Cardiology Department of
Silesian Medical Academy in Katowice - the leading Electrocardiology Depart-
ment in Poland specializing in hospitalization of severe heart diseases. For our
experiments we took a data of 4318 patients hospitalized in this Department
between 2003 and 2005. The data were imported from a clinical information
system and transformed to binary attributes using our, based on regular ex-
pressions, hierarchical dictionary algorithm. Afterwards with a help of domain
experts these binary attributes were joined into 13 grouped attributes. Following
joined attributes were created:

ID:0 AVBL:Atrioventricular block, value range:[0,1,2,3,4,5,6,7]
ID:1 DIAB:Diabetes, value range:[0,1]
ID:2 PTACH:Paroxysmal tachycardia, value range:[0,1,2,3,4,5,6,7]
ID:3 HYPERCHOL:Hypercholesterolaemia, value range:[0,1]
ID:4 CARDIOMYO:Cardiomyopathy, value range:[0,1]
ID:5 ATHEROSC:Atherosclerosis, value range:[0,1]
ID:6 AFF:Atrial fibrillation and flutter, value range:[0,1,2,3]
ID:7 HYPERTEN:Hypertension (High Blood Pressure), value range:[0,1]
ID:8 CIHD:Chronic ischaemic heart disease, value range:[0,1,2,3]
ID:9 OBESITY:Obesity, value range:[0,1]
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ID:10 SSS:Sick Sinus Syndrome, value range:[0,1,2,3,4,5,6,7]
ID:11 TYROIDG:Disorders of thyroid gland, value range:[0,1,2,3]
ID:12 MIOLD:Myocardial infarction in past, value range:[0,1]

For our experiments we selected also three decision attributes representing
a decision about implementation of the specific type of pace-maker. If a speci-
fied pace-maker was not implanted then the decision attribute took a value 0.
Following decision attributes were selected:

DDD, value range:[0,1]
SSI, value range:[0,1]
VDD, value range:[0,1]

For each decision attribute we created a dataset containing all 13 joined at-
tributes and a decision attribute. Then this dataset was divided into two parts:
a train dataset containing 66% of objects from the entry dataset and a test
dataset containing the rest 33%. In the next step for each decision attribute
we created totally 1830 copies of each training dataset and applied on each
copy a different combination of noise reduction algorithms. Afterwards we used
QUICKREDUCT, CFS and χ2 on these datasets to select subsets of attributes.

We integrated all described in this study algorithms in our Data Exploration
system written in Java v.1.5. To compare the achieved results we chose two clas-
sifiers from a powerful open-source machine learning workbench Weka (Waikato
Environment for Knowledge Analysis) v.3.4.3. These were: Decision Table - an
implementation of Decision Table Majority (DTM) algorithm used successfully
in discrete spaces by Kohavi [9] and J48 Decision tree (C4.5 release 8) - a TDIDT
(top-down induction of decision trees) approach derived from Quinlan’s ID3
induction system [3].

5 Results

In this section we present results of attribute selection done with different FS
algorithms. To measure the quality of the selected subsets of attributes we com-
pare classification accuracy of decision rules generated with these sets and check
their medical relevance. Decision rules were tested on two datasets:a test dataset
containing 33% of the input data and at training dataset with rest 66%. Judging
the medical importance of selected attributes was done with a help of domain
experts from the Cardiology Department of Silesian Medical Academy in Katow-
ice/Poland. They prepared a list of important attributes taken into consideration
if a specified pace-maker type should be implanted. Afterwards they valuated
an importance of attributes for each decision attribute using three symbolic cat-
egories:(+) is an important attribute for classification,(+/-) a less important
attribute, which under circumstances can be used additionally for classification
(-) an unimportant attribute. Table 1 shows the described classification (num-
bers identify attributes as described in section 4). Summary results presented in
tables 2,3,4 use the following column description:
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Selected attrib-a selected set of attributes. Each number equals to an attribute
ID as described in section 4. A keyword ’unreduced’ means a dataset with 13
attributes
Method-a method used for selecting attributes or in case of DT and J48 a
method used for comparison
Sel. Attr-a number of selected attributes.
% corretly. classified-percentage of correctly classified objects to a number of
all objects in a dataset; a number in brackets shows results of classification for
a training set
Correctly classified-a sum of correct classifications for both classes; (in brack-
ets classification for a training dataset)
Rules-a number of generated decision rules from a training dataset, in case of
J48 it is a tree size
Attr (+), (+/-), (-)-a number of important (+), less important (+/-) and
unimportant (-) attributes

Table 2 presents results achieved for the DDD decision attribute. From this ta-
ble it can be seen that both feature selection methods (CFS and χ2) were able to
significantly reduce a set of attributes from initial 13 attributes to 3-5 attributes
in case of CFS and to 4-5 in case of χ2. These results were achieved without
a loose of prediction accuracy on the contrary the number of correctly classi-
fied objects is increased. In is also noticeable, that these results were achieved
with strongly reduced (in most cases more then ten times) number of decision
rules. This simplify a validation process by domain experts and therefore deter-
mines a medical appliance of the proposed methods. In case of QUICKREDUCK
achieved results strongly depends on the number of selected attributes. Speci-
fying low values of ε in a definition of approximate reduct allows to generate
subsets with lower number of attributes. In this case classification accuracy and
number of generated decision rules is similar to results achieved for CFS and χ2.
With an increasing number of selected attributes an overfitting effect is visible.
The generated rules show a high prediction accuracy on the same test dataset
as the training set but are less able to recognize new cases. Two, selected for
comparison, methods from Weka package show results, which are not signifi-
cantly different from our methods. The highest medical relevance of the selected
attribute shown χ2 algorithm. Four of five important attributes were recognized
and the number of (-) attributes was the lowest. CFS was able to recognize
at least 3 medically important attributes but the number of attributes marked
by domain experts as unimportant was higher. Number of relevant attributes

Table 1. Medical importance of attributes for selection of pace-maker type

Pace-maker type (+) (+/-) (-)

DDD 0, 2, 4, 6, 10 5, 8, 11, 12 1, 3, 7, 9
SSI 0, 2, 6, 10 5, 8, 11, 12 1, 3, 4, 7, 9
VDD 0, 2, 6, 10 4, 5, 8, 11, 12 1, 3, 7, 9
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Table 2. Summary results for DDD recognition

Selected Method Sel. % corretly. Correctly Rules Attr. Attr. Attr.
attrib. Attr. classified classified (+) (+/-) (-)

Train set 66%, Test set 33% - C:1 570 objects, C:0 899 objects
unreduced - - 71.14 (82.70) 1045 (2356) 252 - - -
unreduced J48 - 75.28 (76.93) 1106 (2192) 28 - - -
unreduced DT - 75.08 (76.76) 1103 (2187) 55 - - -
0,2,7,11 QRD 4 75.96 (76.29) 1109 (2162) 21 2 1 1
0,2,7,9,11 QRD 5 75.48 (76.53) 1102 (2169) 41 2 1 2
0,2,7,8,9,11 QRD 6 73.15 (77.31) 1068 (2191) 58 2 2 2
0,1,2,3,7,8,9,11 QRD 8 73.08 (78.83) 1067 (2234) 115 2 2 4
0,1,2,3,7,8,9,10,11,12 QRD 10 71.85 (80.52) 1049 (2282) 171 3 3 4
0,1,2,3,4,7,8,9,10,11,12 QRD 11 71.51 (81.26) 1044 (2303) 205 4 3 4
2,6,10 CFS 3 75.56 (76.59) 1110 (2182) 15 3 0 0
2,6,7,10 CFS 4 75.02 (76.76) 1102 (2187) 16 3 0 1
2,6,9,10 CFS 4 75.63 (76.66) 1111 (2184) 18 3 0 1
2,3,6,7,10 CFS 5 74.88 (76.83) 1100 (2189) 17 3 0 2
0,2,6,10 χ2 4 75.22 (76.69) 1105 (2185) 34 4 0 0
0,2,6,8,10 χ2 5 74.88 (77.22) 1100 (2200) 54 4 1 0
0,2,3,6,10 χ2 5 75.29 (76.87) 1106 (2190) 42 4 0 1

selected by QUICKREDUCT was about 2 for small sets (4-6 attributes) and
reached 4 for a set of 11 attributes. The number of (+/-) and (-) attributes was
also the highest what placed this algorithm at the last place.

Data presented in table 3 shows results achieved for the SSI decision attribute.
These results show at a first view a good recognition accuracy (about 80%) for
rules generated from datasets with reduced attributes. Especially the results
achieved with a small number of decision rules for new cases are promising.
The higher recognition accuracy for this type of pace-maker as for the DDD
type can be explainable with an unequal class distribution in the training set.
More then 66% of objects belong to class 0 and only 33 % were classified as
class 1. This inequality led to a low coverage rate for class 1, which oscillated
between 60-67% (50-53% for J48 and DT). To handle such unbalanced class
distributions either an additional pre-processing step is needed before the data
can be analyzed or a classification algorithm must be extended. Nevertheless the
small number of strong decision rules can be used for analysis the most typical
factors, which play a role in the decision about implantation of this kind of pace-
maker. The highest medical importance shown attribute subsets selected with
χ2 (3-4 important attributes) followed by subsets generated with CFS. For both
methods the number of medically unimportant attributes was oscillating between
0 and 2. QUICKREDUCT selected only 2 (+) attributes and completed the
generated subsets with 1-3 (+/-) attributes. In can be observed, that although
the dependency metrics used in implementation of QUICKREDUCT shows very
similar recognition accuracy as the other two methods it selects often attributes
with less medical importance.
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Table 3. Summary results for SSI recognition

Selected Method Sel. % corretly. Correctly Rules Attr. Attr. Attr.
attrib. Attr. classified classified (+) (+/-) (-)

Train set 66%, Test set 33% - C:1 444 objects, C:0 1025 objects
unreduced - - 76.45 (85.43) 1123 (2434) 253 - - -
unreduced J48 - 80.46 (79.92) 1182 (2277) 30 - - -
unreduced DT - 80.12 (80.09) 1177 (2282) 83 - - -
0,2,5,7 QRD 4 81.23 (79.22) 1186 (2245) 18 2 1 1
0,2,5,7,11 QRD 5 81.03 (79.36) 1183 (2249) 27 2 2 1
0,1,2,3,5,7,8,9,11 QRD 9 78.84 (82.36) 1151 (2334) 156 2 3 4
0,1,2,3,5,7,8,9,11,13 QRD 10 78.49 (83.06) 1146 (2354) 185 2 3 5
0,1,2,3,5,7,8,9,10,11,13 QRD 11 77.47 (83.80) 1131 (2375) 203 3 3 5
1,2,3,6 CFS 4 81.01 (79.36) 1190 (2261) 8 2 0 2
1,2,6,10 CFS 4 80.94 (79.40) 1189 (2262) 12 3 0 1
1,2,3,6,10 CFS 5 80.60 (79.50) 1184 (2265) 22 3 0 2
0,1,2,6,10 CFS 5 79.99 (79.85) 1175 (2275) 48 4 0 1
0,2,6,10 χ2 4 80.74 (79.57) 1186 (2267) 23 4 0 0
0,1,2,6,10 χ2 5 79.99 (79.85) 1175 (2275) 48 4 0 1
0,1,3,6,10 χ2 5 80.33 (79.75) 1180 (2272) 55 3 0 2

Table 4. Summary results for VDD recognition

Selected Method Sel. % corretly. Correctly Rules Attr. Attr. Attr.
attrib. Attr. classified classified (+) (+/-) (-)

Train set 66%, Test set 33% - C:1 96 objects, C:0 1373 objects
unreduced - - 92.24 (94.42) 1355 (2690) 253 - - -
unreduced J48 - 93.46 (93.57) 1373 (2666) 30 - - -
unreduced DT - 93.46 (93.57) 1373 (2666) 83 - - -
0,7,8,11 QRD 4 95.21 (92.38) 1390 (2618) 11 1 2 1
0,7,8,9,11 QRD 5 95.21 (92.41) 1390 (2619) 12 1 2 2
0,3,7,8,9,11 QRD 6 94.93 (92.55) 1386 (2623) 22 1 2 3
0,1,3,7,8,9,11 QRD 7 94.38 (92.77) 1378 (2629) 43 1 2 4
0,3,5,6,10 CFS 5 92.65 (93.58) 1361 (2666) 15 3 1 1
0,5,6,9,10 CFS 5 93.12 (93.72) 1368 (2670) 12 3 1 1
0,2,6,8,10,12 CFS 6 93.19 (93.58) 1369 (2666) 10 4 2 0
0,2,6,8,10 χ2 5 93.19 (93.58) 1369 (2666) 10 4 1 0
0,5,6,8,10 χ2 5 93.19 (93.58) 1369 (2666) 11 3 2 0
0,6,8,9,10 χ2 5 92.99 (93.72) 1366 (2670) 15 3 1 1
0,1,6,9,10 χ2 5 92.85 (93.65) 1364 (2668) 16 3 0 2
0,6,8,9,10 χ2 5 92.99 (93.72) 1366 (2670) 15 3 1 1

Results for a decision attribute VDD, shown in table 4, presents a similar
picture as results achieved for SSI. The overall correct classification rate is very
high (between 92-93%). Due to a very unbalanced class distribution (96% class
0, 4% class 1) a coverage for class 1 is very low (2-14 %), so that almost all
correctly classified objects belong to class 0. This effect was also observed with
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J48 and Decision Tables from Weka, which were unable to classify a single object
belonging to class 1. From the medical point of view again subsets selected by
χ2 and CFS contained the most important attributes. QUICKREDUCT man-
aged to select only one attribute from (+) category and 2 attributes from (+/-)
group. Unfortunately it selected also the highest number of attributes marked
by domain experts as unimportant.

6 Conclusions

In the case study presented in this paper we showed results of feature selection
for medical datasets. These sets contain a lot of noise and redundant informa-
tion, which should be filtered out before next machine learning algorithms are
used. Additional advantage of feature selection is a reduction of search space,
which, as presented in this paper and our entry research [16], reduce a number of
decision rules (sometimes by factor 10) without compromising prediction accu-
racy. This fact is very important in medical domain where achieved results must
be explainable and verifiable by experts. In this paper we showed results for
three feature selection algorithms: QUICKREDUCT, CFS and χ2 all belonging
to the filter category. There are two main advantages of Filter algorithms over
Wrappers based ones: they require significantly less computational effort and
the achieved results do not depend on a specific learning algorithm.

In our experiments we selected subsets of attributes both from original train-
ing sets and from training sets after applying different noise reduction algorithms
(over 1800 combinations pro decision attribute). The selected subsets were than
used to generate decision rules using MLEM2 algorithm. Afterwards both the
test set and the training set were used for classification. The accuracy of clas-
sification was compared with J48 and Decision Table from Weka package. In
all cases decision rules generated with MLEM2 were comparable with results
achieved by DT and J48. Current implementation of the classification system
showed some problems with classifying datasets with unbalanced class distribu-
tion (SSI and VDD). An additional work on this topic is needed to improve a
handling of such situations in the future.

In this paper we presented not only numerical results of classification but
also compared generated subsets for their medical relevance. This comparison
shown differences between selected algorithms in ability to find medically im-
portant attributes. In this competition χ2 and CFS were the winner. The degree
of dependency metric used by QUICKREDUCT showed a tendency to select
attributes with less medical relevance. Results presented in this paper and re-
search on our Data Exploration system led us to a conclusion, that it will be
advantageous to join strength of all presented algorithms. A possible solution
could be a measurement of an importance of attributes based on decision rules
generated from the reduced datasets, for example in form of a rule importance
as proposed by Li in [5].
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Abstract. Case generation is a process of extracting representative
cases to form a compact case base. In order to build competent and
efficient CBR classifiers, we develop a case generation approach which
integrates fuzzy sets, rough sets and learning vector quantization (LVQ).
If the feature values of the cases are numerical, fuzzy sets are firstly used
to discretize the feature spaces. Secondly, a fast rough set-based feature
selection method is applied to identify the significant features. Different
from the traditional discernibility function-based methods, the feature
reduction method is based on a new concept of approximate reduct.
The representative cases (prototypes) are then generated through LVQ
learning process on the case bases after feature selection. LVQ is the su-
pervised version of self-organizing map (SOM), which is more suitable to
classification problems. Finally, a few of prototypes are generated as the
representative cases of the original case base. These prototypes can be
also considered as the extracted knowledge which improves the under-
standing of the case base. Three real life data are used in the experiments
to demonstrate the effectiveness of this case generation approach. Several
evaluation indices, such as classification accuracy, the storage space, case
retrieval time and clustering performance in terms of intro-similarity and
inter-similarity, are used in these testing.

1 Introduction

Case-based Reasoning (CBR) is a reasoning methodology that is based on prior
experience and examples. When a CBR reasoner is presented with a problem, it
searches it memory of past cases (called the case base) and attempts to retrieve
a case or multiple cases that most closely match the case under analysis [1,2].
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Compared with rule-based systems, CBR systems usually require significantly
less knowledge acquisition, since it involves collecting a set of past experiences
without the added necessity of extracting a formal domain model from these
cases. The CBR systems have been widely used in classification problems [3,4,5]
(to determine if an object is a member of a class or not, or which of several
classes), which are called CBR classifiers.

The performance of CBR classifiers, in terms of classification accuracy and
case retrieval speed, closely depends on the competence and size of the case base.
The competence of a case base is the range of unseen cases which the case base
can correctly classify. In general, the more competent the case base, the higher
the classification accuracy of the CBR classifier. On the other hand, it is obvious
that the larger the size of a case base, the lower the case retrieval speed. It is
difficult to achieve the maximal classification accuracy and the least case retrieval
time simultaneously. If the size of a case base is reduced, the competence of the
case base may be hurt because of the removal of some important cases. In this
research, we attempt to make a trade-off by selecting the most representative
cases to reduce the case retrieval speed and preserve the competence of the
case bases. That is, to build both compact and competent case bases for CBR
classifiers. In this paper, we achieve this goal by developing a rough learning
vector quantization (LVQ)-based case generation approach. A few of prototypes
are generated to represent the entire case base without loss of the competence
of the original case base.

As a necessary preprocessing of LVQ-based case generation, a fast rough set-
based method is developed to select the relevant features and eliminate the
irrelevant ones. The feature selection process can modify the similarity among
cases and achieve better clustering performance. Rough sets [6] allow the most
informative features to be detected and then selected through the reduct compu-
tation. There is much research work in rough set-based feature selection [7,8], the
effectiveness of which have been demonstrated in many different domains. There
are two main groups of rough set-based feature selection methods: discernibility
function-based [9] and attribute dependency-based [10]. Such methods are com-
putational intensive, i.e., in the former, during the generation of the discernibility
matrix and in the latter, during the discovery of the positive regions.

To reduce the computational load inherent in such methods, a new concept
called approximate reduct is introduced. It is a generalization of the classical
concept of reduct, and can be computed by counting the distinct rows in some
decision sub-tables. The computational load is linear with the number of cases
and features. Other primary concepts in rough sets, such as dispensable (indis-
pensable) attribute and core, are also modified. Using these extended concepts,
we develop a fast rough set based approach to finding the approximate reduct.
Our feature selection approach can be considered as a generalization of the orig-
inal attribute dependency-based or discernibility function-based techniques. In
this feature selection process, fuzzy sets are used to discretize the numerical at-
tribute values to generate indiscernibility relation and equivalence classes of the
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given case base. Triangular membership functions are applied in the discretiza-
tion of feature spaces.

Learning vector quantization is then applied to extract the representative
cases (also called prototypes) to represent the entire case base. LVQ is a kind of
competitive algorithms. Some of them can be considered to be a supervised ver-
sion of the Self-Organizing Map (SOM) algorithm. The SOM algorithm [11,12]
constructs a stable topology preserving mapping from the high-dimensional space
onto map units in such a way that relative distances between data points are
preserved. Mangiameli et al. [13] demonstrated that SOM is a better clustering
algorithm than hierarchical clustering with regard to clustering data with over-
lapped dispersion, irrelevant variables, outliers or different sized populations.
Their study also proved that SOM is insensitive to learning rates which vary
in the self-organizing process, and the clusters resulted from SOM are robust.
Pal et al. used SOM to extract prototypical cases in [14] and reported a com-
pact representation of data. However, Kohonen pointed out in [11], “the SOM
has not been meant for statistical pattern recognition; it is a clustering, visual-
ization, and abstraction method. Anybody wishing to implement decision and
classification processes should use Learning Vector Quantization (LVQ) instead
of SOM”.

Since we focus on the classification problems in this paper, LVQ is used to gen-
erate prototypical cases. LVQ is introduced by Teuvo Kohonen in 1986, which
inherits almost all the features of SOM, except that it is a supervised learn-
ing algorithm. LVQ is able to summarise or reduce large datasets to a smaller
number of representative vectors suitable for classification or visualization. LVQ
has similar advantages of SOM, such as the robustness with noise and missing
information.

After applying the case selection approach, the original case base can be re-
duced to a few prototypes which can be directly used to predict the class label
of the unseen cases. These prototypes can be regarded as the specific domain
knowledge which is extracted from the case base. This will speed up the case
retrieval and make the case base be more easily understood. On the other hand,
since the most representative cases are generated, case base competence can be
also preserved. Therefore, using our developed rough LVQ-based case generation
approach, the retrieval speed, clustering performance, and the understanding of
the case base are all improved without decreasing the classification accuracy.

The remainder of this paper is organized as follows. In Section 2, fuzzy sets
are applied to discretize the continuous-valued attributes of the cases. Three
triangular membership functions - “low”, “medium”, and “high” - are used to
describe each attribute. This is followed by Section 3 in which we describe the
feature selection method based on the concept of approximate reduct computa-
tion. Some primary concepts in rough sets are also generalized in this section.
In Section 4, the supervised learning process of LVQ is presented to generate
prototypical cases for the given case base. To validate the developed rough LVQ
case generation approach, section 5 presents the experimental results on three
real life data. The classification accuracy, case retrieval speed, intra- similarity
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and inter- similarity are used as the indices to evaluate the performance of our
approach. Comparisons are made among the developed rough LVQ approach,
LVQ, SOM, and Random case generation methods.

2 Fuzzy Discretization of Feature Space

The rough set-based feature selection methods are all built on the basis of in-
discernibility relation. If the attribute values are continuous, the feature space
needs to be discretized for defining the indiscernibility relations and equivalence
classes on different subset of attribute sets. In this paper, fuzzy sets are used for
the discretization by partition each attribute into three levels: Low (L), Medium
(M), and High (H). Finer partitions may lead to better accuracy at the cost of
higher computational load. The use of fuzzy sets has several advantages over the
traditional “hard” discertizations, such as handling the overlapped clusters and
linguistic representation of data [14].

Triangular membership functions are used to define the fuzzy sets: L, M
and H. There are three parameters CL, CM , and CH for each attribute which
should be determined beforehand. They are considered as the centers of the three
fuzzy sets. Noted that, the determination of the parameter values is problem-
dependent, and there are different methods that can be used. In this paper, we
do not intend to compare these methods. Here, the center of fuzzy set M for a
given attribute a is the average value of all the values occurring in the domain
of a. Assume Va is the domain of attribute a, then CM =

∑
y∈Va

y/|Va|, where
| ∗ | is the cardinality of set *.

CL and CH are computed as
CL = (CM −Mina)/2 and CH = (Maxa − CM )/2,

where Mina = min{y|y ∈ Va} and Maxa = max{y|y ∈ Va}.

More formally, these membership functions are denoted by μL, μM , and μH ,
which are defined by the following equations.

μL(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, Mina ≤ x ≤ CL

CM−x
CM−CL

, CL ≤ x ≤ CM

0, x > CM

μM (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ CL

x−CL

CM−CL
, CL < x ≤ CM

CH−x
CH−CM

, CM < x ≤ CH

0, x > CH

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Using Approximate Reduct and LVQ in Case Generation for CBR Classifiers 89

μH(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x ≤ CM

x−CM

CH−CM
, CM < x ≤ CH

1, x > CH

where μ∗(x) is the membership value of case x to fuzzy set ∗.
For an attribute a, the membership functions of L, M, and H are illustrated

in Fig.1.

Fig. 1. Membership functions of L, M and H for attribute a

3 Feature Selection Based on Approximate Reduct

The purpose of rough set-based feature selection is to identify the most significant
attributes and eliminate the irrelevant ones to form a good feature subset for
classification tasks. It reduces the running time of classification processes and
increases the accuracy of classification models.

In this section, we develop a fast feature reduction method based on the
concept of approximate reduct. Before we present the proposed algorithm, the
rough set-based feature selection methods are briefly reviewed.

3.1 Traditional Rough Set-Based Feature Selection Methods

The discernibility function-based reduct computation algorithms belong to the
traditional rough set-based feature selection methods. They are built on the
concepts of indiscernibility relation, set approximations, dispensable and indis-
pensable attributes, reduct and core. Readers may refer to [6] for details.

The reduct computation is directly based on discernibility matrix [6]. Assume
IS is an information system which can be represented by a triplet IS = (U,
A, f ), where U is a finite nonempty set of n objects {x1, x2, ..., xn}; A is a
finite nonempty set of m attributes (features) {a1, a2, ..., am}; fa : U → Va for
any a ∈ A, where Va is called the domain of attribute a. The discernibility matrix
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is defined as a n × n matrix represented by (dmij), where dmij = {a ∈ A :
fa(xi) �= fa(xj)} for i, j = 1, 2, ..., n.

The discernibility matrix of an IS completely depicts the identification capa-
bility of the system and all reducts are therefore hidden in some discernibility
function induced by the discernibility matrix. Due to the computation of dis-
cernibility matrix, if there are n objects in the IS, m attributes in A ∪ {d}, the
computation complexity of these methods is O(n2 ×m).

3.2 Relative Dependency-Based Reduct Computation

To reduce the computational load of the discernibility function-based methods,
Han et al. [15] have developed a reduct computation approach based on the con-
cept of relative attribute dependency. Given a subset of condition attributes, B,
the relative attribute dependency is a ratio between the number of distinct rows
in the decision sub-table corresponding to B only and the number of distinct
rows in the decision sub-table corresponding to B together with the decision
attributes, i.e., B ∪{d}. The larger the relative attribute dependency value (i.e.,
close to 1), the more useful is the subset of condition attributes B in discriminat-
ing the decision attribute values. To evaluate the generated approximate reducts,
Bazan et al. [16] used a quality measure for reducts based on the number of rules
generated by the reducts. In this paper, we do not need to obtain the optimal
approximate reduct, which requires much more computational effort. In the fol-
lowing sections, a feature selection method will be built based on the work of
Han et al. Some pertinent concepts are defined as:

Definition 1. (Projection) [15]
Let P ⊆ A ∪D, where D = {d}. The projection of U on P, denoted by ΠP (U),
is a sub table of U and is constructed as follows:

1) remove attributes A ∪D − P ; and
2) merge all indiscernible rows.

Definition 2. (Consistent Decision Table)
A decision table DT or U is consistent when ∀x, y ∈ U , if fD(x) �= fD(y), then
∃a ∈ A such that fa(x) �= fa(y).

Table 1 provides an example of consistent decision table. Here U = {c1, c2,
..., c8}, A = {a, b, c, d} and D = {e}. In Table 1, for every two objects in U,
if they have the same attribute values for all the attributes, their decision at-
tribute must be equal. In contrast, Table 2 shows an example of inconsistent
table which derived from Table 1. It is obvious that c8 and c9 have the same
condition attribute values, 1, 1, 1, 2, but different decision attribute value, 1 for
c8 and 2 for c9.

Definition 3. (Relative Dependency Degree)
Let B ⊆ A, A be the set of conditional attributes. D is the set of decision at-
tributes. The relative dependency degree of B w.r.t. D is defined as
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Table 1. A consistent decision table

ID a b c d e

c1 1 1 2 1 2

c2 1 2 1 2 1

c3 2 2 2 1 2

c4 3 1 2 2 1

c5 3 2 2 1 1

c6 1 2 2 1 2

c7 3 2 1 2 1

c8 1 1 1 2 1

Table 2. An inconsistent decision table

ID a b c d e

c1 1 1 2 1 2

c2 1 2 1 2 1

c3 2 2 2 1 2

c4 3 1 2 2 1

c5 3 2 2 1 1

c6 1 2 2 1 2

c7 3 2 1 2 1

c8 1 1 1 2 1

c9 1 1 1 2 2

δD
B , δD

B = |ΠB(U)|/|ΠB∪D(U)|, where |ΠX(U)|is the number of equivalence
classes in U/IND(X).

The relative dependency degree δD
B implies how well subset B discerns the objects

in U relative to the original attribute set A. It can be computed by counting the
number of equivalence classes induced by B and B ∪D, i.e., the distinct rows in
the projections of U on B and B ∪D.

Take Table 3 for example to show the process of the computation of relative
dependency degree δD

B . Here B = {a, c, d}, D = {e}.
Since
U/IND(B) = {{c1, c6}, {c2, c8}, {c3}, {c4}, {c5}, {c7}}

= U/IND(B ∪D) = {{c1, c6}, {c2, c8}, {c3}, {c4}, {c5}, {c7}},

δD
B = |ΠB(U)|

|ΠB∪D(U)| = 6
6 = 1.

We can say that the attribute subset B has preserved the discernibility ability
of the original feature set A.

Let P = {a, c, d}, according to Definition 1, the projection of U on P, ΠP (U)
can be described by Table 3 which is a sub-table of Table 1.
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Table 3. An example of projection

ID a c d e

c1 1 2 1 2

c2 1 1 2 1

c3 2 2 1 2

c4 3 2 2 1

c5 3 2 1 1

c6 1 2 1 2

c7 3 1 2 1

c8 1 1 2 1

It can be easily induced that δD
A =1 when U is consistent. A attribute subset

B ⊆ A is found to be a reduct, if the decision sub-table is still consistent after
removing the attributes in A−B. This is given as Theorem 1.

Theorem 1. If U is consistent, B ⊆ A is a reduct of A w.r.t. D, if and only if
δD
B = δD

A = 1 and for ∀Q ⊂ B, δD
Q �= δD

A . (See [15] for the proof)

Theorem 1 gives the necessary and sufficient conditions for reduct computation
and implies that the reduct can be generated by only counting the distinct rows
in some projections. The computational load is linear to the number of cases, n,
and the number of attributes, m.

Here we use the example in Table 1 to illustrate Han’s method. As mentioned
previously, the consistent decision table consists of 8 cases, 5 attributes including
4 conditional attributes, A = {a, b, c, d}, and 1 decision attribute, D = {e}. We
have the following computations:

Since δA−{a} = |Π{b,c,d}(U)|
|Π{b,c,d,e}(U) | = 5/6, and δA−{b} = 6

6 = 1,

b is considered to be dispensable and therefore removed from A, i.e.,
A = {a, c, d}.

Next, because δA−{c} = |Π{a,d}(U)|
|Π{a,d,e}(U)| = 5

5 = 1, c is then removed from A,
A = {a, d}.

However, this method can not directly used on inconsistent decision table
such as that shown in Table 2. For every subset of condition attributes B ⊆ A,
we always have δD

B = |ΠB(U)|
|ΠB∪D(U)| < 1. Therefore, the reduct cannot be found. In

next section, we will introduce the concept of approximate reduct to overcome
this problem.

3.3 Feature Selection Based on Approximate Reduct

From Section 3.2, we notice that, although the relative dependency-based reduct
computation is fast, U is always assumed to be consistent in theorem 1. This
assumption is not necessarily true in real life applications. In this section, we
relax this condition by finding approximate reduct instead of exact reduct. The
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use of a relative dependency degree in reduct computation is extended to in-
consistent information systems. Some new concepts, such as the β-dispensable
attribute, β-indispensable attribute, β-reduct (i.e., approximate reduct), and
β-core are introduced to modify the traditional concepts in rough set theory.
The parameter is used as the consistency measurement to evaluate the goodness
of the subset of attributes currently under consideration. These are explained as
follows.

Definition 4. (β-dispensable attribute and β-indispensable attribute)
If a ∈ A is an attribute that satisfies δD

A−{a} ≥ β · δD
A , a is called a β-dispensable

attribute in A. Otherwise, a is called a β-indispensable attribute.
The parameter β, β ∈ [0, 1], is called the consistency measurement.

For example, in Table 1, we have δA−{a} = 5
6 < 1, δA−{d} = 3

4 < 1. If β is
set as 0.75, then the attributes a and d are both considered as β-indispensable
attribute. If β is set as 0.8, then only the attribute d is β-indispensable attribute.

Definition 5. ( β-reduct/approximate reduct and β-core)
B is called a β-reduct or approximate reduct of conditional attribute set A if B
is the minimal subset of A such that δD

B ≥ β · δD
A . The β-core of A is the set of

β-indispensable attributes.

The relationship between β-reduct and β-core is similar to the relationship
between the traditional reduct and core, which is described in theorem 2.

Theorem 2 (Relationship of β-reduct and β-core)
β-core can be computed as the interaction of all approximate reducts, i.e.,
β-core = ∩ireducti, where reducti is the i-th approximate reduct.

Proof: The proof is divided into two parts.

(1) For every attribute a ∈ β-core, a is a β-indispensable attribute, i.e.,
δA−{a} < β · δD

A . According to definition 5, an approximate reduct implies that
a ∈ ∩ireducti. This can be proved using the method of contradiction as follows:

If ∃i, a /∈ reducti, then reducti ⊆ A − {a} and δD
reducti

< δD
A−{a} < β · δD

A .
This result contradicts the assumption that reducti is an approximate reduct.
Therefore, a ∈ ∩ireducti, and then A ⊆ B holds.

(2) Let an attribute a ∈ ∩ireducti. If we assume a /∈ β-core, that is, a is a
dispensable attribute, then ∃i, such that a /∈ reducti. This is not possible since
a ∈ ∩ireducti. Therefore, a ∈ β-core.

This completes the proof. �
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The consistency measurement β reflects the relationship of the approximate
reduct and the exact reduct. The larger the value of β, the more similar is
the approximate reduct to the exact reduct computed using the traditional dis-
cernibility function-based methods. If β= 1 (i.e., attains its maximum), the two
reducts are equal (according to theorem 1). The reduct computation is imple-
mented by counting the distinct rows in the decision sub-tables of some attribute
subsets. β controls the end condition of the algorithm and therefore controls the
size of reduced feature set. It can be determined beforehand by experts or can
be learned during the feature selection process. Based on Definitions 4-5, the
rough set-based feature selection algorithm in our developed approach is given
as follows.

Feature Selection Algorithm

Input: U - the entire case base; A - the entire condition attribute set;
D - the decision attribute set.
Output: R - the approximate reduct of A.

Step 1. Initialize R=empty set;
Step 2. Compute the approximate reduct.

While A is not empty
1. For each attribute a ∈ A

Compute the significance of a;
2. Add the most significant one, q, to R: R = R ∪ {q};

A = A− q;
3. Compute the relative dependency degree δD

R for current R;
4. If δD

R > β , return R and stop.

Notice that the significance of an attribute a can be evaluated in many ways
using different evaluation criteria such as information gain (IG), frequency of
occurrence (often used in text documents),and dependency factors (in rough
set-based methods). In this paper, we use the dependency factors to compute
the significance of the attributes.

Since the computation of approximate reduce does not increase the compu-
tational load to the method of Han et al., the computation complexities of the
feature selection algorithms is also O(n×m), where m is the number of features
in A∪D, n is the number of objects in U. This can be explained as follows. In each
iteration of the feature selection algorithm, one attribute is added to R (Reduct)
and the corresponding δ value (i.e., δD

R > β) is computed. The computation of δ
is to count the rows in the projection, which needs |U |= n computations. Since
that it is required maximally m iterations, the overall time complexity of the FR
algorithm is O(m× n). It is linear to the number of attributes and cases.

4 LVQ-Based Case Generation

After the approximate reduct-based feature selection, the supervised learning
process of LVQ is used for generating prototypes which represent the entire
case base.
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4.1 Learning Vector Quantization

Vector quantization is one example of competitive learning. The goal is to dis-
cover structure in the data by finding how the data is clustered. The results
can be used for data encoding and compression. LVQ is a supervised version of
vector quantization. Classes are predefined and we have a set of labelled data.
A set of prototypes are then determined to best represent each class.

Another method of competitive learning is SOM, which is unsupervised and
can serve as a clustering tool of high-dimensional data. For classification prob-
lems, supervised learning LVQ should be superior to SOM since the information
of classification results is incorporated to guide the learning process. LVQ is
more robust to redundant features and cases, and more insensitive to the learn-
ing rate. As Kohonen pointed out in [11], LVQ instead of SOM should be used
in decision and classification processes. This is the reason that LVQ is applied
in case selection for building compact case base for CBR classifiers.

Basically, there are three different learning techniques of LVQ, i.e., LVQ1,
LVQ2, and LVQ3[12]. In this work, we use the kind of LVQ algorithms which
can be considered to be the supervised version of the SOMs. It defines a map-
ping from high dimensional input data space onto a regular two-dimensional
array of nodes called competitive layer. Every node i of the competitive layer is
associated with an m-dimensional vector vi = [vi1, vi2, , vim], where m denotes
the dimension of the cases called reference vectors. The basic assumption here is
that the nodes near to the same input vector should locate near to each other.

Given an input vector, the most similar node in the competitive layer can be
found as the winning node. Other nearby nodes for the input vector can be also
found through similarity computation. Based on the mentioned assumption, the
winning node and those nearby nodes should locate near to the input vector. The
class information is also incorporated in the learning process. At each learning
step, if the winning node and those nearby nodes are in the same class of input
vector, the distances among these nodes are reduced; otherwise, these nodes are
kept intact. This is different from the unsupervised learning process of SOM,
where the winning node and those in its neighbourhood will move towards each
other even they are not in the same class. The amount of decrease in distance is
determined by the given learning rate. As a result, after the learning with the
reference vectors, LVQ converges to a stable structure and the final weight vec-
tors are the cluster centres. These weight vectors are considered as the generated
prototypes which can represent the entire case base.

4.2 Rough LVQ Algorithm

Although LVQ has similar advantages of SOM, such as the robustness with noise
and missing information, it does not mean that the data preprocessing is not
required before the learning process. Since the basic assumption of LVQ is that
similar feature values should lead to similar classification results, the similarity
computation is critical in the learning process. Feature selection is one of the
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Fig. 3. Iris data on feature set {PL, PW}

most important preparations for LVQ which can achieve better clustering and
similarity computation results.

Different subset of features will result different data distribution and clusters.
Take the Iris data [17] for example. Fig. 2 and Fig. 3 show the two dimensional
Iris data on two different subsets of features: {SL, SW} and {PL, PW}.

Based on the two subsets of features, LVQ is applied to learn three prototypes
for the Iris data. The generated representative cases are shown in Tables 4-5. It
shows that different subset of attributes can affect the LVQ learning process and
different prototypes are generated. According to the classification accuracy, the
feature set of {PL, PW} is better than {SL, SW}.

In this paper, the feature selection is handled using the approximate reduct-
based method which given in the previous section. LVQ is then applied to gen-
erate representative cases for the entire case base. Here the learning rate α is
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Table 4. Prototypes extracted using PL and PW

Prototypes SL SW PL PW Class label

P1 0.619 0.777 0.224 0.099 1

P2 0.685 0.613 0.589 0.528 2

P3 0.766 0.587 0.737 0.779 3

Classification accuracy using P1 P2 and P3: 0.98

Table 5. Prototypes extracted using SL and SW

Prototypes SL SW PL PW Class label

P1 0.649 0.842 0.211 0.094 1

P2 0.712 0.550 0.572 0.212 2

P3 0.980 0.840 1.096 1.566 3

Classification accuracy using P1, P2 and P3: 0.80

given in advance, and only the distance between the winning node and the given
input vector is updated in each learning step. The number of weight vectors is
determined as the number of classes in the given case base. The learning process
is ended with a fixed number of iterations T, say, 5000 in this paper. Assume
the given case base has n cases which represented by m features, and there are c
classes. R is the approximate reduct computed by the feature selection process.
The LVQ algorithm is given as follows:

Step 1. Initialize c weight vectors [v1, v2, ..., vc] by randomly selecting one case
from each class.

Step 2. Generate prototypes through LVQ.

t← 1;
While (t ≤ T )

for k = 1 to n
x ∈ U , xk ← x, U ← U − xk;
1. Compute the distances D = {‖xk − vi,t−1‖R : 1 ≤ i ≤ c};
2. Select vwin,t−1 = arg{vi,t−1 : ‖xk − vi,t−1‖R = min{d ∈ D}};
3. If Class(vwin,t−1) = Class(xk)

Update vwin,t = vi,t−1 + α(xk − vwin,t−1);
Output V = [v1,T−1, v2,T−1, ..., vc,T−1].

The output vectors are not the data points in the given case base, but modified
during the learning process based on the provided information by the data.
They are considered to be the generated prototypes which represent the entire
case base. Each prototype can be used to describe the corresponding class and
regarded as the cluster center.
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5 Experimental Results

To illustrate the effectiveness of the developed rough LVQ case selection method,
we describe here some results on three real life data from UCI (University of Cal-
ifornia, Irvine)Machine Learning Repository [17]. These databases are: (1)Iris,
(2)Glass, and (3)Pima.

The characteristics are listed in Table 6. In all the experiments, 80% cases in
each database are randomly selected for training and the remaining 20% cases
are used for testing.

Table 6. The characteristics of three UCI databases

Data set Number of cases Number of features Category of features Number of classes

Iris 150 4 Numerical 3

Glass 214 10 Numerical 5

Pima 768 8 Numerical 2

In this paper, four indices are used to evaluate the rough LVQ case generation
method. The classification accuracy is one of the important factors to be consid-
ered for building classifiers. On the other hand, the efficiency of CBR classifiers
in terms of case retrieval time should not be neglected. The storage space and
clustering performance (in terms of intra-similarity and inter-similarity) are also
tested in this section.

Based on these evaluation indices, comparisons are made between our devel-
oped method and others such as basic SOM, basic LVQ, Random case selection
methods, and SVM for only binary data. Here, by “Random case selection”, we
mean randomly selecting some cases in the training data. In order to make it com-
parable, the number of randomly selected cases is equal to the number of generated
prototypes by the rough LVQ method. These selected cases are then used for pre-
dicting the testing data. Notice that SVM is more preferred to be used on binary
data than on multiple-class data, we therefore perform it on the Pima data.

As mentioned in Sections 3 and 4, the rough set-based feature selection is
firstly used to find the approximate reduct of the given case bases. In the exper-
iments of this section, the parameter β is determined during the testing through
populating the points in the interval [0.5, 1]. Initially, β is set to be 0.5. In each
step, the β value increase at a constant rate 0.01 and this value is used in the
feature selection process and being tested. The steps stop when attains 1. The
value which can achieve the highest classification accuracy is selected as the
suitable β. The learning rates for the three data sets are: α= 0.8 (Iris data),
α= 0.8 (Glass data) and α= 0.5 (Pima data).

5.1 Classification Accuracy

In this section, the results of classification accuracy for the three databases and
four case selection methods are demonstrated and analyzed. The used accuracies
here are defined as:
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AccuracyTest = |{x, x can be correctly classified, x∈Testdata}|
|Testdata| ,

AccuracyAll = |{x, x can be correctly classified, x∈Entiredata}|
|Entiredata| ,

where | ∗ | is the cardinality of set ∗; Testdata is the set of cases for testing;
Entiredata is the set of cases in the whole data set. To be more specifically, “x
can be correctly classified” means that “x can be correctly classified” by the
extracted prototypes.

If the training cases are used for classify the testing cases, the classification
accuracies on the three databases are: 0.980 (Iris), 0.977 (Glass), 0.662 (Pima).
These accuracy values are called the original classification accuracies. The exper-
imental results of using the generated prototypes are demonstrated in Table 7.
Here we test the accuracy using both the testing cases and all cases, denoted by
AccuTest and AccuAll, respectively. It is observed that after the case generation,
the original accuracies are preserved and even improved. The rough LVQ method
can achieve the highest classification accuracy in most of the testing. The basic
LVQ method performs better than the other methods: Random and SOM. SVM
has been used on Pima data, which obtains AccuTest=0.334, and AccuAll=0.337.

Table 7. Classification accuracy using different case generation methods

Methods
Iris data Glass data Pima data

AccuTest AccuAll AccuTest AccuAll AccuTest AccuAll

Random 0.760 0.746 0.860 0.864 0.597 0.660
SOM 0.920 0.953 0.930 0.925 0.688 0.730
LVQ 0.980 0.953 0.930 0.935 0.708 0.743

Rough LVQ 1.000 0.960 0.930 0.935 0.714 0.740

5.2 Reduced Storage Space of Rough LVQ-Based Method

Due to both the feature selection and case selection processes, the storage space
with respect to the features and cases is reduced substantially. Subsequently, the
average case retrieval time will decrease. These results are shown in Table 8, where

Reduced features=(1− |Selected features|
|Original features| )× 100%,

Reduced cases=(1− |Prototypes|
|Entiredata| )× 100%,

Saved time of case retrieval= (ttrain − tp),

where ttrain is the case retrieval time using the training cases; tp is the case
retrieval time using the extracted prototypes. The unit of time is second.

From Table 8, the storage requirements of features and cases are reduced
dramatically. For example, the percentage of reduced features is 60% for Glass
data, and the percentage of reduced cases is 99.6% for Pima data. The case
retrieval time also decreases because that there are much fewer features and
cases after applying the rough LVQ-based case selection method.
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Table 8. Reduced storage and saved case retrieval time

Data set Reduced features Reduced cases Saved time of case retrieval

Iris 50% 97.0% 0.600 sec

Glass 60% 98.8% 0.989 sec

Pima 50% 99.6% 0.924 sec

It should be noted that SVM can also be considered as a case generation
method which can reduce the storage through the discovery of support vectors.
In the experiments of using SVM on Pima data, about 395 support vectors has
been generated, which is 64.5% of the original cases, i.e., 35.5% case storage has
been reduced.

5.3 Intra-similarity and Inter-similarity

Intra-similarity and inter-similarity are two important indices to reflect the clus-
tering performance. They are used in this section to prove that the developed
rough LVQ-based approach can achieve better clustering than using random se-
lected prototypes. Since the similarity between two cases is inverse proportional
to the distance between them, we use inter-distance and intra-distance to de-
scribe the inter-similarity and intra-similarity. Assume there are K classes for a
given case base, C1, C2, ..., CK . The intra-distance and inter-distance of the case
base are defined as:

Intra-Distance=
∑

x,y∈Ci
d(x, y),

Inter-Distance=
∑

x∈Ci,y∈Cj
d(x, y), i, j = 1, 2, ..., K, i �= j

Ratio=Inter-Distance/Intra-Distance.

The lower the intra-distance and the higher the inter-distance, the better is the
clustering performance. Therefore, it is obvious that the higher the ration between
the inter-distance and the intra-distance, the better is the clustering performance.

The results are shown in Table 9. Rough LVQ method demonstrates higher
Ratio values and therefore achieves better clustering result.

Table 9. Inter-distance and inter-distance: Comparisons between the Random and
Rough LVQ methods

Data set Methods Inter-Distance Intra-Distance Ratio

Iris
Random 1284.52 102.13 12.577

Rough LVQ 1155.39 51.99 22.223

Glass
Random 8640.20 4567.84 1.892

Rough LVQ 7847.37 3238.99 2.423

Pima
Random 56462.83 54529.05 1.035

Rough LVQ 28011.95 25163.45 1.113
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6 Conclusions

In this paper, a rough LVQ approach is developed to address the case generation
for building compact and competent CBR classifiers. Firstly, the rough set-based
feature selection method is used to select features for LVQ learning. This method
is built on the concept of approximate reduct instead of exact reuduct. It is a
generalization of traditional discernibility matrix-based feature reduction. LVQ
is then used to extract the prototypes to represent the entire case base. These
prototypes are not the data points in the original case base, but are modified
during the LVQ learning process. They are considered as the most representative
cases for the given case base, and used to classify the unseen cases. Through the
experimental results, using much fewer features (e.g., 40% of the original features
for Glass data), the classification accuracies for the three real life data are higher
using our method than those using methods of Random, basic SOM and LVQ.
The case retrieval time for predicting class labels of unseen cases is also reduced.
Furthermore, higher intra-similarity and lower inter-similarity are achieved using
the rough LVQ approach than that using the random method.
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Abstract. It is a big challenge to guarantee the quality of association rules in
some application areas (e.g., in Web information gathering) since duplications
and ambiguities of data values (e.g., terms). Rough set based decision tables could
be efficient tools for solving this challenge. This paper first illustrates the relation-
ship between decision tables and association mining. It proves that a decision rule
is a kind of closed pattern. It also presents an alternative concept of rough asso-
ciation rules to improve the quality of discovered knowledge in this area. The
premise of a rough association rule consists of a set of terms (items) and a weight
distribution of terms (items). The distinct advantage of rough association rules is
that they contain more specific information than normal association rules. This
paper also conducts some experiments to compare the proposed method with as-
sociation rule mining and decision tables; and the experimental results verify that
the proposed approach is promising.

Keywords: Association mining, Web information gathering, Rough sets.

1 Introduction

One of the important issues for Web information gathering is to apply data mining tech-
niques within Web documents to discover some interesting patterns for user information
needs. The motivation arises while we determine the interesting and useful Web pages
or text documents to a specified topic. It is easier for users to answer which of Web
pages or documents are relevant to the specified topic rather than describe what the
specified topic they want. The challenging issue is how to discover satisfactory knowl-
edge in order to response what users want effectively.

Data mining has been used in Web text mining, which refers to the process of search-
ing through unstructured data on the Web and deriving meaning from it [7] [9] [14]. One
of main purposes of text mining is association discovery [3], where the association be-
tween a set of terms and a category (e.g., a term or a set of terms) can be described as
association rules. The current association discovery approaches include maximal pat-
terns [8] [12], sequential patterns [27] and closed patterns [28] [13].

It is indubitable that the existing data mining techniques can return numerous dis-
covered patterns (knowledge) from electronic data and information. However, it is a

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 103–119, 2007.
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big challenge to use the discovered knowledge efficiently for making decisions due
to the noise in the discovered knowledge. The concept of closed patterns is forward
one more step for dealing with the noise, but there are still many meaningless patterns
retained [28].

Another approach to improve the quality of association rules is to apply constraints
to generate only those association rules that are interesting to users based on some con-
straints instead of all the association rules [13] [30]. Rough set based decision tables [23]
[24] provide a promising structure for the representation of constraint-based association
rules. Different to the association rule mining, decision tables do not attempt to represent
all of interesting patterns, instead of; they only keep some sorts of larger patterns.

In terms of association mining, however, the puzzle for decision tables is that we do
not understand what kinds of patterns used in the decision tables. In this research, we
first present the concept of decision patterns to interpret this puzzle.

The association discovery and decision table based approaches only discuss relation-
ship between terms in a broad-spectrum level. They pay no attention to the duplications
of terms in a transaction (e.g., a document) and how to use labeled information in the
training set. The consequential result is that the effectiveness of the systems is un-
satisfactory. The cause of this problem is that the specified topic is an approximation
concept. However, theses approaches clearly classify the document space into a set of
equivalent classes (or granules); and only parts of some classes are what users want.

To improve the effectiveness of association discovery, in this paper we also present
an alternative concept, rough association rules, to describe the approximation concept.
The premise (precondition) of a rough association rule consists of not only a set of terms
and a weight distribution of terms as well. In this way, the document space is classified
based on two measures: term sets and term weight distributions. We also present a
mining algorithm for discovery of the rough association rules in this paper. In addition,
some experiments are also conducted to test the proposed approach.

The remainder of the paper is structured as follows. We begin by introducing the
concept of association mining from text documents to summarize the main characteris-
tic of normal association discovery methods in Section 2. In section 3, we present the
concept of decision patterns to interpret decision tables in terms of association mining.
In Section 4, we first discuss decision rules and text mining. We also describe Pawlak’s
method for discovery of decision rules as an algorithm. In Section 5, we present the
concept of rough association rules. In Section 6, we propose an algorithm for discovery
of rough association rules. We also compare this algorithm with Pawlak’s method in this
section. Section 7 evaluates the proposed approach for information gathering. Section
8 discusses related work and the last section is the conclusions.

2 Mining Association from Information Table

Formally the association discovery from text documents can be described as an infor-
mation table (D, V D), where D is a set of documents in which each document is a set
of terms (the duplicate terms are removed here); and V D = {t1, t2, · · · , tn} is a set of
selected terms for all documents in D. Usually D consists of a set of positive documents
D+, and a set of negative documents D−.
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Table 1. An information table

Documents Terms Positive

d1 t1 t2 yes

d2 t3 t4 t6 yes

d3 t3 t4 t5 t6 yes

d4 t3 t4 t5 t6 yes

d5 t1 t2 t6 t7 yes

d6 t1 t2 t6 t7 yes

d7 t1 t2 no

d8 t3 t4 no

...

Fig. 1. Interesting patterns and their covering sets

Definition 1. A set of terms X is referred to as a termset if X ⊆ V D. Let X be a
termset, we use [X ] to denote the covering set of X , which includes all positive docu-
ments d such that X ⊆ d, i.e., [X ] = {d|d ∈ D+, X ⊆ d}.

Given a termset X , its support is |[X ]|/|D+|. A termset X is called frequent pattern if
its support ≥ min sup, a minimum support. The confidence of a frequent pattern is
the fraction of the documents including the pattern that are positive. Given a frequent
pattern X , its confidence is defined as |[X ]|/N , where N = {d|d ∈ D, X ⊆ d}.
The confidence shows the percentage of the pattern’s occurrence frequency in the posi-
tive documents. A frequent pattern is called an interesting pattern if its confidence ≥
min conf , a minimum confidence.

Table 1 lists a part of an information table, where V D = {t1, t2, · · · , t7}, D =
{d1, · · · , d6, d7, d8}, D+ = {d1, d2, · · · , d6} and D− = {d7, d8}. Let min sup =
50% and min conf = 75%, we can get 10 interesting patterns. Figure 1 shows these
interesting patterns and their covering sets.

There are some noise patterns in Figure 1. For example, pattern {t3, t4} always
occurs with term t6 in D+. Therefore, we expect to keep only the larger patterns
{t3, t4, t6} and prune the noise one, the shorter one {t3, t4}.
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Fig. 2. Connection between Terms and Documents

Fig. 3. Pruning Non-closed Patterns

Definition 2. Given a termset X , we know its covering set [X ] which is a subset of
positive documents. Similarly, given a set of positive documents Y , we can define its
termset, which satisfies

termset(Y ) = {t|t ∈ V D, ∀d ∈ Y => t ∈ d}.

Figure 2 shows the connection between terms and positive documents for these inter-
esting patterns. Given an interesting pattern X , its closure C(X) = termset([X ]).
Different to the traditional definition about covering sets, here [X ] is defined on D+, a
subset of the information table. From the above definitions, we can prove the following
theorem about the closure operation.

Theorem 1. Let X and Y be patterns. We have

(1) C(X) ⊇ X for all patterns X ;
(2) X ⊆ Y => C(X) ⊆ C(Y ).

Definition 3. An interesting pattern X is closed if and only if X = C(X).

Figure 3 illustrates the process of pruning the non-closed patterns, where only three
patterns are closed patterns. They are {t3, t4, t6}, {t1, t2} and {t6}.
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Each closed pattern can be actually viewed as an association rule, e.g., closed pattern
{t1, t2} means

(t1 ∧ t2)→ (Positive = yes);

because that satisfies the definition about traditional association rules in data mining.

3 Mining Decision Patterns

Professor Z. Pawlak believed that the patterns hidden in databases can be characterized
by decision tables, in which the premises of association rules (or called decision rules in
[23] [24]) are interpreted as condition granules, and the post-conditions are interpreted
as decision granules. The measure of uncertainties for decision rules is based on well-
established statistical models. Decision tables are very efficient for dealing with very
large sets of documents.

Table 2 illustrates a binary decision table about a training set of documents, where Ng

is the number of documents that are in the same granule; t1, t2, · · · , t7 are the condition
attributes and Positive is the decision attribute.

Table 2. A Binary Decision Table

Granule t1 t2 t3 t4 t5 t6 t7 Positive Ng

g1 1 1 0 0 0 0 0 yes 80

g2 0 0 1 1 0 1 0 yes 140

g3 0 0 1 1 1 1 0 yes 490

g4 1 1 0 0 0 1 1 yes 220

g5 1 1 0 0 0 0 0 no 20

g6 0 0 1 1 0 0 0 no 50

Decision tables provide a straightforward way to represent discovered knowledge.
For example, the first granule in Table 2 can be described as a decision rule

((t1 = 1) ∧ (t2 = 1) ∧ (t3 = 0) ∧ · · · ∧ (t7 = 0))→ (Positive = yes)

Different to association rule mining, decision tables cannot represent all of interesting
patterns, instead of; they only keep some sorts of larger interesting patterns. In terms of
association mining, however, the puzzle for decision tables is that we do not understand
what kinds of interesting patterns used in the decision tables. In this section, we present
the concept of decision patterns to interpret this puzzle. Let X be an interesting pattern.
We call it a decision pattern if ∃d ∈ D+ such that X = d.

Different to an information table, zeros in a decision table make sense. Given a de-
cision pattern X (or later on granule), its covering set now is the set of documents d
that satisfy X = d. This definition is the generalization of the concept of covering sets
in information tables if we consider all zeros in a decision table (see Table 2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



108 Y. Li and N. Zhong

Theorem 2. Decision patterns are closed patterns.

Proof: Let X be a decision pattern. From the definition of the decision patterns, we
know there is a positive document d such that X = d, that is d ∈ [X ].

Given a term t ∈ termset([X ]), according to Definition 2 we have t ∈ di for all
di ∈ [X ], that is, t ∈ d = X . Therefore, C(X) = termset([X ]) ⊆ X . We also have
X ⊆ C(X) from theorem 1, and hence we have X = C(X). �

Theorem 2 tells us that a decision rule X → (Positive = yes) is actually a kind of
closed pattern in terms of association mining.

4 Multiple Dimensional Databases and Decision Tables

One important factor is missed in both closed patterns and decision patterns: the du-
plications of terms in a document. This factor is very important in terms of infor-
mation retrieval. To consider this factor, we start to initialize this problem by using
decision tables as multiple dimensional databases. Table 3 demonstrates the corre-
sponding decision table (D, AC , AD) if we consider the duplications of terms, where
the numbers are frequencies of terms in their corresponding documents, the set of
granules (objects) D = {d1, d2, d3, d4, d5, d6, d7, d8}; the set of condition attributes
AC = {t1, t2, t3, t4, t5, t6, t7}, and the set of decision attributes AD = {Positive}.

Table 3. A multiple dimensional databases

Granule t1 t2 t3 t4 t5 t6 t7 Positive Nd

d1 2 1 0 0 0 0 0 yes 80

d2 0 0 2 1 0 1 0 yes 140

d3 0 0 3 1 1 1 0 yes 40

d4 0 0 1 1 1 1 0 yes 450

d5 1 1 0 0 0 1 1 yes 20

d6 2 1 0 0 0 1 1 yes 200

d7 2 2 0 0 0 0 0 no 20

d8 0 0 1 1 0 0 0 no 50

Every object in a decision table can be mapped into a decision rule [23]: either a
positive decision rule or a negative decision rule. Therefore, we can obtain eight de-
cision rules, e.g., d1 in Table 3 can be read as the following rule: (GERMAN, 2) ∧
(V W, 1) → yes where (term, frequency) denotes a term frequency pair in the
corresponding object.

Let termset(d) = {t1, · · · , tk}, formally every document d determines a sequence:
(t1, f(t1, d)), · · · , (tk, f(tk, d)), Positive(d).
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Algorithm 1. Pawlak’s Method

input : D, AC , AD and V D.
output: Decision rules.
UN ←− 0; // UN would be the number of all objects
for (all d ∈ D) do

UN ←− UN + Nd;
end
for (all d ∈ D) do

strength(d)←− Nd/UN ;
CN ←− Nd/UN ; //CN , the number of objects that have the same condition
for (all d′ ∈ D, d′ �= d) do

if (d(AC) = d′(AC)) then
CN ←− CN + Nd′ ;

end
end
certainty factor(d)←− Nd/CN ;

end

The sequence can determine a decision rule:

(t1, f(t1, d)) ∧ · · · ∧ (tk, f(tk, d))→ Positive(d)

or in short d(AC)→ d(AD).
Algorithm 1 describes Pawlak’s idea for the discovery of decision rules (see [23] or

[18]). If we assume the basic operation is the comparison between two objects (i.e.,
d(AC) = d′(AC) ), then the time complexity is (n − 1) × n = O(n2), where n is the
number of granules in the decision table. It also needs a similar algorithm to determine
interesting rules for Pawlak’s method. We can obtain many decision rules as showed in
the above example. However, there exists ambiguities whist we use the decision rules
for determining other relevance information for a specified topic because there may be
many rules’ premises that have the same termset. For example, give an instance of a
piece of information that it contains only four terms t3, t4, t5 and t6; but we can found
two rules’ premises (d3 and d4) that match this instance and have the same conclusion.

To remove such ambiguities, in next section we present the concept of rough associ-
ation rules in order to compose some decision rules into a single granule if they have the
same termset. We also use a weight distribution for the granule to specify the possible
semantic meaning in it.

5 Rough Association Rules

For every attribute a ∈ AC , its domain is denoted as Va; especially in the above exam-
ple, Va is the set of all natural numbers. Also AC determines a binary relation I(AC)
on D such that (di, dj) ∈ I(AC) if and only if a(di) > 0 and a(dj) > 0 for every
a ∈ AC , where a(di) denotes the value of attribute a for object di ∈ D.

It is easy to prove that I(AC) is an equivalence relation, and the family of all equiv-
alence classes of I(AC), that is a partition determined by AC , is denoted by D/I(AC)
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or simply by D/AC . The classes in D/AC are referred to AC−granules (or called the
set of condition granules). The class which contains di is called AC −granule induced
by di, and is denoted by AC(di). We also can obtain an AD − granules(D/AD) (or
called the set of decision granules) in parallel.

For example, using Table 3, we can get the set of condition granules, D/AC =
{{d1, d7}, {d2}, {d3, d4}, {d5, d6}, {d8}}, and the set of decision granules, D/AD =
{Positive = yes, Positive = no}={{d1, d2, d3, d4, d5, d6}, {d7, d8}}, respectively.
In the following we let D/AC ={cd1, cd2, cd3, cd4, cd5} and D/AD ={dc1, dc2}.

We also need to consider the weight distribution of terms for the condition granules
in order to consider the factor of the frequencies of terms in documents. Let cdi be
{di1, di2, · · · , dim}, we can obtain a weigh distribution for terms aj in these documents
using the following equation:

weight(aj) =
aj(cdi)∑

a∈Ac
a(cdi)

(1)

where we use the composition operation (see [18]) to assign a value to condition gran-
ules’ attributes, which satisfies:

a(cdi) = a(di1) + a(di2) + ... + a(dim) (2)

for all a ∈ AC .
Table 4 illustrates granules and their covering sets we obtain from Table 3 according

to previous definitions, where d̂i denotes all of documents that have the same represen-
tation (e.g., |d̂1| = Nd1 = 80); and each condition granule consists of both a termset
and a weight distribution. For example, cd1 =< {t1, t2}, (4/7, 3/7, 0, 0, 0, 0, 0) > or
in short cd1 = {(t1, 4/7), (t2, 3/7)}.

Table 4. Granules and their covering sets

Condition granule t1 t2 t3 t4 t5 t6 t7 Covering set

cd1 4/7 3/7 0 0 0 0 0 {d̂1, d̂7}
cd2 0 0 1/2 1/4 0 1/4 0 {d̂2}
cd3 0 0 2/5 1/5 1/5 1/5 0 {d̂3, d̂4}
cd4 1/3 2/9 0 0 0 2/9 2/9 {d̂5, d̂6}
cd5 0 0 1/2 1/2 0 0 0 {d̂8}

(a) Condition granules

Decision granule Positive Covering set

dc1 yes {d̂1, d̂2, d̂3, d̂4, d̂5, d̂6}
dc2 no {d̂7, d̂8}

(b) Decision granules
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Using the associations between condition granules and decision granules, we can
rewrite the six decision rules in Table 2 as follows:

cd1 → {(dc1, 80/100), (dc2, 20/100)}
cd2 → {(dc1, 140/140)}
cd3 → {(dc1, 490/490)}
cd4 → {(dc1, 220/220)}
cd5 → {(dc2, 50/50)}

Formally the association can be represented as the following mapping:

Γ : (D/AC)→ 2(D/AD)×[0,1]

where Γ (cdi) is the set of conclusions for premise cdi (i = 1, · · · , |D/AC |), which
satisfies:

fj =
|[cdi ∧ dcj ]|
|[cdi]|

for all (dcj , fj) ∈ Γ (cdi) and
∑

(dc,f)∈Γ (cdi)

f = 1

Now we consider the support degree for each condition granule. The obvious way is
to use frequencies in the decision table, that is,

NC(cdi) = |[cdi]| =
∑

d∈cdi

Nd

for every condition granule cdi. By normalizing, we can get a support function sup on
(D/AC) such that

sup(cdi) =
NC(cdi)∑

cd∈(D/AC) NC(cd)

for all cdi ∈ (D/AC). It is obvious that sup is a probability function on D/AC . There-
fore, the pair (Γ, sup) is an association set defined in [19].

Definition 4. Let Γ (cdi) = {(dci,1, fi,1), · · · (dci,|Γ (cdi)|, fi,|Γ (cdi)|)} for all cdi

(D/AC). We call “cdi → dci,j” a rough association rule, its strength is sup(cdi)× fi,j

and its certainty factor is fi,j , where 1 ≤ j ≤ |Γ (cdi)|.

Theorem 3. Let “cdi → dci,j” be a rough association rule and (dci,j , fi,j) ∈ Γ (cdi).
There exists a granule gk (see Table 2) such that

strength(cdi → dci,j) = Ngk
/UN.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



112 Y. Li and N. Zhong

Proof: Since each granule in a decision table is mapped into a rough association rule
and vice versa, let gk be the corresponding granule of “cdi → dci,j” in the decision
table, that is |[(cdi ∧ dci,j)]| = Ngk

.
According to the above definitions, we have

strength(cdi → dci,j) =
NC(cdi)∑

cd∈(D/AC) NC(cd)
· |[cdi ∧ dci,j ]|

|[cdi]|

=
|[cdi]|∑

cd∈(D/AC) |[cd]| ·
|[cdi ∧ dci,j ]|
|[cdi]|

=
|[[cdi ∧ dci,j ]]|∑
cd∈(D/AC) |[cd]| =

Ngk

UN
. �

From Theorem 3, we can understand that the concepts of strengths and certainty factors
defined in Definition 4 are the generalization of Pawlak’s decision rules.

Figure 4 illustrates the data structure for the representation of rough associations
between condition granules and decision granules.

Fig. 4. The data structure for associations between condition granules and decision granules

6 Mining Algorithm

In this section, we first present an algorithm (see Algorithm 2) to find the set of rough
association rules. We also analyze the proposed algorithm and compare it with Pawlak’s
Method.

There are total 4 outer for loops in Algorithm 2. The first three for loops are used
to create the data structure (see Fig. 4) for representing condition granules, decision
granules and the associations between them. The last for loop generates all rough as-
sociation rules.

The time complexity of Algorithm 2 is determined by the first outer for loop since
other for loops all traverse pairs in Γ (cdi) (i = 1, · · · , |D/AC |) and the number of
pairs in all Γ (cdi) (i = 1, · · · , |D/AC |) is just n, where n is the number of granules in
the decision table.

Checking if “(∃cd ∈ (D/AC) such that termset(d) = termset(cd))” in the first for
loop that takes O(|D/AC |), so the time complexity of the algorithm is O(n×|D/AC |),
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where the basic operation is still the comparison between objects. Algorithm 2 is better
than Algorithm 1 in time complexity since |D/AC | ≤ n.

Definition 5. A rough association rule “cdi → dci,j” is an interesting rule if
P (dci,j |cdi)− P (dci,j) is greater than a suitable constant.

Given a rough association rule cdi → dci,j , it is obvious that P (dci,j |cdi) = fi,j if
(dci,j , fi,j) ∈ Γ (cdi). To decide the probability on the set of decision granules, we
present the following theorem.

Theorem 4. Let P : (D/AD)→ [0, 1] such that

P (dc) =
∑

cdi∈(D/AC),(dc,f)∈Γ (cdi)

sup(cdi)× f.

We have P is a probability function on (D/AD).

Proof. It is obvious that the values of P for all decision granules are not negative. We
also have

∑

dc∈(D/AD)

P (dc) =
∑

dc∈(D/AD)

∑

cdi∈(D/AC),(dc,f)∈Γ (cdi)

sup(cdi)× f

=
∑

cd∈(D/AC)

∑

(dc,f)∈Γ (cd)

sup(cd)× f

=
∑

cd∈(D/AC)

sup(cd)×
∑

(dc,f)∈Γ (cd)

f

=
∑

cd∈(D/AC)

sup(cd)× 1 = 1. �

7 Evaluations

We use Reuters Corpus Volume 1, also known as RCV1, to evaluate the proposed
method. We also use the first 20 topics that TREC (Text REtrieval Conference, see
http : trec.nist.gov) developed for filtering track in 2002. For each topic, a collection
is divided into two sets: a training set of documents and a testing set of documents. We
also use both precision and recall to measure the performance of systems, where the
precision is the fraction of retrieved documents that are relevant to the topic, and the
recall is the fraction of relevant documents that have been retrieved.

We compare rough association mining model with two baseline models: closed pat-
tern based association mining model (see Section 2 for details), and binary decision rule
model (see Section 3). A common basic text processing is used for all models, which
includes case folding, stemming, stop words removal and 150 term selection that uses
tf ∗ idf (term frequency times inverse document frequency) technique.
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Algorithm 2. Rough Association Mining Approach

input : D, AC , AD and V D.
output: Rough association rules.
(D/AC)←− ∅;
Let UN be the number of all objects;
//create the data structure as shown in Figure 1.
for (all d ∈ D) do

if (∃cd ∈ (D/AC) such that termset(d) = termset(cd)) then
compose d(AC) to cd using Eq. (2);
insert d(AD) to Γ (cd);
else

(D/AC)←− (D/AC) ∪ {d(AC)};
Γ (d(AC)) = d(AD);

end
end

end
for (i = 1 to |D/AC |) do

sup(cdi) = (1/UN) × (
∑

(dc,f)∈Γ (cdi)
f);

calculate weights for cdi using Eq.(1);
end
for (i = 1 to |D/AC |) do

temp←− 0;
for (all (dci,j , fi,j) ∈ Γ (cdi)) do

temp←− temp + fi,j ;
end
for (all (dci,j , fi,j) ∈ Γ (cdi)) do

fi,j ←− fi,j ÷ temp;
end

end
//generate all rough association rules.
for (i = 1 to |D/AC |) do

for (all (dci,j , fi,j) ∈ Γ (cdi)) do
strength(cdi → dci,j)←− sup(cdi)× fi,j ;
certainty factor(cdi → dci,j)←− fi,j ;

end
end

The main theme of Web information gathering is to seek a suitable representation
for a specified topic. To use rough association mining, we are interested in relevant
information; therefore, we assume the training set only includes positive documents.
Let V D include the 150 selected keywords and D = D+, Algorithm 2 is used to find
rough association rules. We also use the following equation to evaluate a weight for
each term according to the discovered rough association rules:

weight(term) =
∑

cd∈(D/AC),(term,w)∈cd

sup(cd)× w (3)
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where sup(cd) equals to the strength of rough association rule “cd → (Positive =
yes)” if D = D+.

In addition, given a testing document d, we use the following equation to determine
its relevance in rough association mining model:

rel(d) =
∑

term∈V d,term∈d

weight(term). (4)

In the training phase, the closed pattern based model finds all closed patterns (where
min sup is the double of the average frequency of terms, the size of largest patterns
is 5, and min conf is half) and calculates their support and confidence values. In the
testing phase, the relevance of document d is the sum of the multiplications of support
and confidence of all closed patterns that occur in d.

The binary decision rule model, first obtains a set of granules, G, in the training
phase. It also uses the following equation to evaluate a weight for each term:

weight(term) =
∑

g∈G,term∈g

strenth(g)
|termset(g)| .

Given a testing document, d, we also use Equation (3) to determine its relevance in
binary decision rule model.

Table 5. Experimental results

Rough association Binary decision Closed association

rules rules rules

Avg. of top25 precision 53.60% 50.60% 49.20%

Avg. of breakeven points 0.4943 0.4840 0.4922

Table 5 is the experimental results. We use two measures in the table: top 25 precision
and breakeven points, where a breakeven point is a point in the precision and recall
curve with the same x coordinate and y coordinate.

Figure 5 shows the differences between rough association mining and binary de-
cision rule mining; and between rough association mining and closed pattern based
association rule mining in top 25 precision for the 20 topics; and Figure 6 shows their
differences in breakeven points for the 20 topics. The positive values (the bars above
the horizontal axis) mean the rough association mining performed better than others.
The negative values (the bars below the horizontal axis) mean others performed better
than rough association mining.

It is no less impressed by the performance of the rough association rule mining since
both top 25 precision and breakeven points gain a significant increase. As a result of the
experiment we believe that the proposed method is significant since they can improve
the effectiveness of the association discovery for Web text mining.
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Fig. 5. The difference in top25 precision between models

Fig. 6. The difference in breakeven points between models

8 Related Work

Web information gathering (WIG) systems tend to find useful information from the
huge size of Web related data sources to meet their user information needs. The key
issue regarding the effectiveness of WIG is automatic acquiring of knowledge from text
documents for describing user profiles in order to response what users want efficiently
and effectively [16] [19]. It is also a fundamental issue in Web personalization [4].

Traditional information retrieval (IR) techniques can be used to provide straight-
forward solutions for this problem. We can classify the methods into two categories:
single-vector models and multi-vector models. The former models produce one term-
weight vector to represent the relevant information for the topic [2] [11] [5] [26]. The
later models produce more than one vector [22] [15]. IR based techniques can be used to
obtain efficient systems. This is the distinct merit of IR-based techniques. However, the
main drawback of IR-based models is that it is hard to interpret the meaning of vectors,
and hence the correlation between vectors cannot be explained using user acceptable
concepts.
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Text mining tries to derive meaning from documents. Association mining has been
used in Web text mining for such purpose for association discovery, trends discovery,
event discovery, and text classification [7] [10] [14].

The association between terms and categories (e.g., a term or a set of terms) can be
described as association rules. The trends discovery means the discovery of phrases, a
sort of sequence patterns. The event discovery is the identification of stories in continu-
ous news streams [3]. Usually clustering based mining techniques can be used for such
a purpose. It was also necessary to combine association rule mining with the existing
taxonomies in order to determine useful patterns [18] [6].

To compare with IR-based models, data mining-based Web text mining models do
not use term independent assumption [1] [20]. Also, Web mining models try to discover
some unexpected useful data [3] [21]. The disadvantage of association rule mining is
that there are too many discovered patterns that make the application of the discovered
knowledge inefficient. Also there are many noise patterns that make the discovered
knowledge contains much uncertainties. Although pruning non-closed patterns that can
improve the quality of association mining in text mining in some extents [28], the per-
formance of text mining systems are still ineffectively.

Decision rule mining [23] [18][24] can be an alternative solution to specify association
rules. However, there exists ambiguities whist we use the decision rules for determining
other relevance information for specified topics. We have demonstrated in the previous
sections that rough association rule mining can be used to overcome these disadvantages.

9 Conclusions

In this paper, we discuss the convention of using rough set theory for text mining.
We introduce the concept of decision patterns in order to interpret decision rules in
terms of association mining. We have proved that the decision patterns are kinds of
closed patterns. We also present a new concept of rough association rules to improve
of the quality of association discovery for text mining. To compare with the traditional
association mining, the rough association rules include more specific information and
can be updated dynamically to produce more effective results. We have verified that the
new algorithm is faster than Pawlak’s decision rules mining algorithm. We also show
that the proposed approach gains a better performance on both precision and recall.
This research is significant since it takes one more step further to the development of
association rule mining.
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Abstract. Rough set theory provides an alternative way of represent-
ing sets whose exact boundary cannot be described due to incomplete
information. Rough sets have been widely used for classification and
can be equally beneficial in clustering. The clusters in practical data
mining do not necessarily have crisp boundaries. An object may belong
to more than one cluster. This paper describes modifications of clus-
tering based on Genetic Algorithms, K-means algorithm, and Kohonen
Self-Organizing Maps (SOM). These modifications make it possible to
represent clusters as rough sets. Rough clusters are shown to be useful
for representing groups of highway sections, Web users, and supermarket
customers. The rough clusters are also compared with conventional and
fuzzy clusters.

1 Introduction

Pawlak [15] proposed the concept of rough sets to describe the fact that ex-
act membership of certain objects in a set may not be precisely defined. The
usefulness of the original proposal was demonstrated for learning rules from a
database [16]. Rough set theory has since made substantial progress as a classi-
fication tool in data mining [17]. The basic concept of representing a set as lower
and upper bounds can be used in broader context. Clustering in relation to rough
set theory is attracting increasing interest among researchers [3,18,22]. Lingras
[7] described how a rough set theoretic classification scheme can be represented
using a rough set genome. In subesquent publications [10,12], modifications of
K-means and Kohonen Self-Organizing Maps (SOM) were proposed to create
intervals of clusters based on rough set theory. Recently, Wojna [24] showed how
K nearest neighbour classification can be augmented with rule induction.

This paper describes the evolutionary, neural, and statistical approaches for
creating rough clusters. Rough clustering of highway sections, Web users, and
supermarket customers is used to demonstrate the range of applications. A com-
parison of rough clusters with conventional and fuzzy clusters is used to show
that rough clustering may provide a happy medium between conventional and
fuzzy clusters.

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 120–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Adaptation of Rough Set Theory for Clustering

Due to space limitations familiarity with rough set theory is assumed [17]. Rough
sets were originally proposed using equivalence relations. However, it is possible
to define a pair of upper and lower bounds

(
A(X), A(X)

)
or a rough set for every

set X ⊆ U as long as the properties specified by Pawlak [15,17] are satisfied.
Yao et al. [26,25] described various generalizations of rough sets by relaxing
the assumptions of an underlying equivalence relation. Such a trend towards
generalization is also evident in rough mereology proposed by Polkowski and
Skowron [19] and the use of information granules in a distributed environment
by Skowron and Stepaniuk [21]. The present study uses such a generalized view
of rough sets. If one adopts a more restrictive view of rough set theory, the rough
sets developed in this paper may have to be looked upon as interval sets.

Let us consider a hypothetical classification scheme

U/P = {X1, X2, . . . , Xk} (1)

that partitions the set U based on an equivalence relation P . Let us assume
that due to insufficient knowledge it is not possible to precisely describe the
sets Xi, 1 ≤ i ≤ k, in the partition. However, it is possible to define each set
Xi ∈ U/P using its lower A(Xi) and upper A(Xi) bounds based on the avail-
able information. We will use vector representations, u,v for objects and xi for
cluster Xi.

We are considering the upper and lower bounds of only a few subsets of U .
Therefore, it is not possible to verify all the properties of the rough sets [15,17].
However, the family of upper and lower bounds of xi ∈ U/P are required to
follow some of the basic rough set properties such as:

(C1) An object v can be part of at most one lower bound
(C2) v ∈ A(xi) =⇒ v ∈ A(xi)
(C3) An object v is not part of any lower bound

�
v belongs to two or more upper bounds.

Property (C1) emphasizes the fact that a lower bound is included in a set. If two
sets are mutually exclusive, their lower bounds should not overlap. Property (C2)
confirms the fact that the lower bound is contained in the upper bound. Property
(C3) is applicable to the objects in the boundary regions, which are defined as the
differences between upper and lower bounds. The exact membership of objects
in the boundary region is ambiguous. Therefore, property (C3) states that an
object cannot belong to only a single boundary region. Note that (C1)-(C3) are
not necessarily independent or complete. However, enumerating them will be
helpful in understanding the rough set adaptation of evolutionary, neural, and
statistical clustering methods.
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3 Rough Set Genome and Its Evaluation

The origin of Genetic Algorithms (GAs) is attributed to Holland’s [4] work
on cellular automata. There has been significant interest in GAs over the last
two decades. The range of applications of GAs includes such diverse areas as
job shop scheduling, training neural nets, image feature extraction, and image
feature identification [1]. This section contains some of the basic concepts of
genetic algorithms as described in [1].

A genetic algorithm is a search process that follows the principles of evolution
through natural selection. The domain knowledge is represented using a can-
didate solution called an organism. Typically, an organism is a single genome
represented as a vector of length n:

c = (ci | 1 ≤ i ≤ n) , (2)

where ci is called a gene.
An abstract view of a generational GA is given in Fig. 1. A group of or-

ganisms is called a population. Successive populations are called generations. A
generational GA starts from initial generation G(0), and for each generation G(t)
generates a new generation G(t + 1) using genetic operators such as mutation
and crossover. The mutation operator creates new genomes by changing values
of one or more genes at random. The crossover operator joins segments of two
or more genomes to generate a new genome.

A rough set genome consists of n genes, one gene per object in U . A gene for
an object is a string of bits that describes which lower and upper approximations
the object belongs to. Properties (C1)-(C3) provide certain restrictions on the
memberships. An object u ∈ U can belong to the lower approximation of at
most one class xi. If an object belongs to the lower approximation of xi then it
also belongs to the upper approximation of xi. If an object does not belong to
the lower approximation of any xi, then it belongs to the upper approximation
of at least two (possibly more) xi.

Based on these observations the string for a gene can be partitioned into two
parts, lower and upper. Both the lower and upper parts of the string consist of
k bits each. The ith bit in lower/upper string tells whether the object is in the
lower/upper approximation of xi.

If u ∈ A(xi), then based on the property (C2), u ∈ A(xi). Therefore, the ith

bit in both the lower and upper strings will be turned on. Based on the property
(C1) all the other bits must be turned off.

Genetic Algorithm:
generate initial population, G(0);
evaluate G(0);
for(t = 1; solution is not found, t++)

generate G(t) using G(t − 1);
evaluate G(t);

Fig. 1. Abstract view of a generational genetic algorithm
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Valid genes

Lower Upper

A(x3) A(x2) A(x1) A(x3) A(x2) A(x1)

gene1 0 0 0 0 1 1

gene2 0 0 0 1 0 1

gene3 0 0 0 1 1 0

gene4 0 0 0 1 1 1

gene5 0 0 1 0 0 1

gene6 0 1 0 0 1 0

gene7 1 0 0 1 0 0

Some examples of invalid genes

Lower Upper

A(x3) A(x2) A(x1) A(x3) A(x2) A(x1)

invalidGene1 0 0 1 0 0 0

invalidGene2 0 1 0 1 1 0

invalidGene3 1 0 1 0 0 0

invalidGene4 0 0 0 0 0 1

Fig. 2. Genes in a rough set genome

If u is not in any of the lower approximations, then according to property
(C3), it must be in two or more upper approximations of xi, 1 ≤ i ≤ k, and
corresponding ith bits in the upper string will be turned on.

Fig. 2 shows examples of all the valid and some of the invalid genes for k = 3.
Genes gene1 to gene7 are all the acceptable values of genes for k = 3. An object
represented by gene1 belongs to A(x1) and A(x2). An object represented by
gene6 belongs to A(x2), and by property (C2) to A(x2).

Any other value not given by gene1 to gene7 is not valid. Fig. 2 also shows
four of the 57 invalid values. The invalidGene1 is invalid because an object
cannot be in A(x1) and not be in A(x1). The invalidGene2 is invalid because
an object cannot be in A(x2) and in A(x3) at the same time. The invalidGene3
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is invalid because an object cannot be in A(x1) and in A(x3) at the same time.
Since the object represented by invalidGene4 only belongs to A(x1), according
to property (C3) it is invalid.

A genetic algorithm package such as the one used in the study [23] makes it
possible to describe a set of valid gene values or alleles. All the standard genetic
operations will then only create genomes that have these values. Therefore, the
conventional genetic operations can be used with rough set genomes in such a
package.

The quality of a conventional classification scheme is determined by using the
within-group-error [20] � given by:

� =
k∑

i = 1

∑

u,v∈xi

d(u,v), (3)

where u and v are objects from the same class xi.
The function d provides the distance between two objects. The distance d(u,v)

is given by:

d(u,v) =

√∑m
j=1(uj − vj)2

m
(4)

For a rough set classification scheme, the exact values of classes xi ∈ U/P are
not known. Given two objects u,v ∈ U we have three distinct possibilities:

1. Both u and v are in the same lower approximation A(xi).
2. Object u is in a lower approximation A(xi) and v is in the corresponding

upper approximation A(xi), and case 1 is not applicable.
3. Both u and v are in the same upper approximation A(xi), and cases 1 and

2 are not applicable.

For these possibilities, one can define three corresponding types of within-
group-errors, �1,�2, and �3 as:

�1 =
k∑

i = 1

∑

u,v∈A(xi)

d(u,v),

�2 =
k∑

i = 1

∑

u∈A(xi),v∈A(xi);v/∈A(xi)

d(u,v),

�3 =
k∑

i = 1

∑

u,v∈A(xi);u,v/∈A(xi)

d(u,v).

The total error of rough set classification will then be a weighted sum of these
errors:

�total = w1 ×�1 + w2 ×�2 + w3 ×�3. (5)
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Since �1 corresponds to situations where both objects definitely belong to
the same class, the weight w1 should have the highest value. On the other hand,
�3 corresponds to a situation where both objects may or may not belong to
the same class. Hence, w3 should have the lowest value. In other words, w1 >
w2 > w3. There are many possible ways of developing an error measure for
rough set classifications. The measure �total is perhaps one of the simplest.
More sophisticated alternatives may be used, depending upon the application.

If we used genetic algorithms to minimize�total, the genetic algorithms would
try to classify all the objects in upper approximations by taking advantage of the
fact that w3 < w1. This may not necessarily be the best classification scheme. We
want the rough set classification to be as precise as possible. Therefore, a precision
measure needs to be used in conjunction with�total for evaluating the quality of
a rough set genome. A possible precision measure can be defined [15] as:

precision =
Number of objects classified in lower approximations

Total number of objects
(6)

The objective of the genetic algorithms will then be to maximize the quantity:

objective = p× precision +
e

�total
, (7)

where p and e are additional parameters. The parameter p describes the impor-
tance of the precision measure in determining the quality of a rough set genome.
Higher values of p will result in smaller boundary region. Similarly, e indicates
the importance of within-group-errors relative to the size of the boundary region.

4 Rough Clustering Highway Sections Using GAs

Seasonal and permanent traffic counters scattered across a highway network are
the major sources of traffic data. These traffic counters measure the traffic vol-
ume – the number of vehicles that have passed through a particular section of
a lane or highway in a given time period. Traffic volumes can be expressed in
terms of hourly or daily traffic. More sophisticated traffic counters record addi-
tional information such as the speed, length and weight of the vehicle. Highway
agencies generally have records from traffic counters collected over a number of
years. In addition to obtaining data from traffic counters, traffic engineers also
conduct occasional surveys of road users to get more information.

The permanent traffic counter (PTC) sites are grouped to form various road
classes. These classes are used to develop guidelines for the construction, mainte-
nance and upgrading of highway sections. In one commonly used system, roads
are classified on the basis of trip purpose and trip length characteristics [20].
Examples of resulting classes are commuter, business, long distance, and recre-
ational highways. Tthe trip purpose provides information about the road users,
an important criterion in a variety of traffic engineering analyses. Trip purpose
information can be obtained directly from the road users, but since all users can-
not be surveyed, traffic engineers study various traffic patterns obtained from
seasonal and permanent traffic counters and sample surveys of a few road users.
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The present study is based on a sample of 264 monthly traffic patterns - vari-
ation of monthly average daily traffic volume in a given year - recorded between
1987 and 1991 on Alberta highways. The distribution of PTCs in various regions
are determined based on the traffic flow through the the provincial highway net-
works. The patterns obtained from these PTCs represent traffic from all major
regions in the province.

The rough set genomes used in the experiment consisted of 264 genes, one gene
per pattern. The hypothetical classification scheme consisted of three classes:

1. Commuter/business,
2. Long distance, and
3. Recreational.

The rough set classification scheme was expected to specify lower and upper
bounds of these classes.

Each gene was allowed to take the valid values shown in Fig. 2. Each rough set
genome corresponded to a rough set classification scheme. Genetic algorithms
attempted to evolve a genome such that the value of an objective function was
maximal. The objective function given by eq. 7 was used during the evolution
process. Since the precision was in the range [0, 1] and the total error �total

could be as high as 15000, it was decided to modify the parameters e as:

e = e′ ×�max. (8)

Various values of e′ and p as well other genetic parameters such as number of gen-
erations, probabilities of crossover and mutation, and population sizes were used.

The resulting rough set classification schemes were subjectively compared
with the conventional classification scheme. The upper and lower approxima-
tions of the commuter/business, long distance, and recreational classes were also
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Fig. 3. Monthly patterns for the lower approximations
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Fig. 5. Monthly pattern that may be commuter/business or long distance

checked against the geography of Alberta highway networks. More details of the
experiment can be found in [7].

Fig. 3 shows the monthly patterns for the lower approximations of the three
groups: commuter/business, long distance, and recreational. The average pattern
for the lower approximation of commuter/business class has the least variation
over the year. The recreational class, conversely, has the most variation. The
variation for long distance class is less than the recreational but more than the
commuter/business class. Fig. 4 shows one of the highway sections near counter
number C013201 that may have been Commuter/Business or Long Distance
in 1985. It is clear that the monthly pattern for the highway section falls in
between the two classes. The counter C013201 is located on highway 13, 20 Km.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



128 P. Lingras

west of Alberta-Saskatchewan border. It is an alternate route for travel from the
city of Saskatoon and surrounding townships to townships surrounding the city
of Edmonton. A similar observation can be made in Fig. 5 for highway section
C009141 that may have been Long Distance or Recreational in 1991. The counter
C009141 is located on highway 9, 141 Km. west of Alberta-Saskatchewan border.
The traffic on that particular road seems to have higher seasonal variation than
a long distance road. Rough set representation of clusters enables us to identify
such intermediate patterns.

5 Adaptation of K-Means to Rough Set Theory

K-means clustering is one of the most popular statistical clustering techniques
[2,14]. The name K-means originates from the means of the k clusters that
are created from n objects. Let us assume that the objects are represented by
m-dimensional vectors. The objective is to assign these n objects to k clus-
ters. Each of the clusters is also represented by an m-dimensional vector, which
is the centroid or mean vector for that cluster. The process begins by ran-
domly choosing k objects as the centroids of the k clusters. The objects are
assigned to one of the k clusters based on the minimum value of the distance
d(v,x) between the object vector v = (v1, ..., vj , ..., vm) and the cluster vector
x = (x1, ..., xj , ..., xm). The distance d(v,x) is given by:

After the assignment of all the objects to various clusters, the new centroid
vectors of the clusters are calculated as:

xj =
∑

v∈x vj

Size of cluster x
, where 1 ≤ j ≤ m. (9)

The process stops when the centroids of clusters stabilize, i.e. the centroidvectors
from the previous iteration are identical to those generated in the current iteration.

Incorporating rough sets into K-means clustering requires the addition of the
concept of lower and upper bounds. Calculation of the centroids of clusters from
conventional K-Means needs to be modified to include the effects of lower as well as
upper bounds. The modified centroid calculations for rough sets are then given by:

if A(x) �= ∅ and A(x)−A(x) = ∅

xj =
∑

v∈A(x) vj

|A(x)|

else if A(x) = ∅ and A(x)−A(x) �= ∅

xj =
∑

v∈(A(x)−A(x)) vj

|A(x)−A(x)|

else

xj = wlower ×
∑

v∈A(x) vj

|A(x)| + wupper ×
∑

v∈(A(x)−A(x)) vj

|A(x)−A(x)|

(10)
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where 1 ≤ j ≤ m. The parameters wlower and wupper correspond to the relative
importance of lower and upper bounds, and wlower + wupper = 1. If the upper
bound of each cluster were equal to its lower bound, the clusters would be con-
ventional clusters. Therefore, the boundary region A(x) − A(x) will be empty,
and the second term in the equation will be ignored. Thus, eq. 10 will reduce to
conventional centroid calculations.

The next step in the modification of the K-means algorithms for rough sets is to
design criteria to determine whether an object belongs to the upper or lower bound
of a cluster given as follows For each object vector, v, let d(v,xj) be the distance
between itself and the centroid of cluster xj . Let d(v,xi) = min1≤j≤k d(v,xj).
The ratio d(v,xi)/d(v,xj), 1 ≤ i, j ≤ k, are used to determine the membership
of v. Let T = {j : d(v,xi)/d(v,xj) ≤ threshold and i �= j}.
1. If T �= ∅, v ∈ A(xi) and v ∈ A(xj), ∀j ∈ T . Furthermore, v is not part of any

lower bound. The above criterion gurantees that property (C3) is satisfied.
2. Otherwise, if T = ∅, v ∈ A(xi). In addition, by property (C2), v ∈ A(xi).

It should be emphasized that the approximation space A is not defined based on
any predefined relation on the set of objects. The upper and lower bounds are
constructed based on the criteria described above.

6 Rough Clustering Web Users Using K-Means

The study data was obtained from the Web access logs of the first three courses
in computing science at Saint Mary’s University over a sixteen-week period.
Students’ attitudes towards the course vary a great deal. It was hoped that the
profile of visits would reflect some of the distinctions between the students. For
the initial analysis, it was assumed that the visitors could fall into one of the
following three categories:

1. Studious: These visitors download the current set of notes. Since they down-
load a limited/current set of notes, they probably study classnotes on a
regular basis.

2. Crammers: These visitors download a large set of notes. This indicates that
they have stayed away from the classnotes for a long period of time. They
are planning for pre-test cramming.

3. Workers: These visitors are mostly working on class or lab assignments or
accessing the discussion board.

The rough set classification scheme was expected to specify lower and upper
bounds for these classes.

It was hoped that the variety of user behaviours mentioned above would be
identifiable based on the number of Web accesses, types of documents down-
loaded, and time of day. Certain areas of the Web site were protected and the
users could only access them using their IDs and passwords. The activities in
the restricted parts of the Web site consisted of submitting a user profile, chang-
ing a password, submission of assignments, viewing the submissions, accessing
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the discussion board, and viewing current class marks. The rest of the Web site
was public. The public portion consisted of viewing course information, the lab
manual, classnotes, class assignments, and lab assignments.

If the users only accessed the public Web site, their IDs would be unknown.
Therefore, the Web users were identified based on their IP address. This also
assured that the user privacy was protected. A visit from an IP address started
when the first request was made from the IP address. The visit continued as long
as the consecutive requests from the IP address had sufficiently small delay.

The Web logs were preprocessed to create an appropriate representation of
each user corresponding to a visit. The abstract representation of a Web user
is a critical step that requires a good knowledge of the application domain.
Previous personal experience with the students in the course suggested that some
of the students print preliminary notes just before a class and an updated copy
after the class. Some students view the notes on-line on a regular basis. Some
students print all the notes around important days such as midterm and final
examinations. In addition, there are many accesses on Tuesdays and Thursdays,
when the in-laboratory assignments are due. On and off campus points of access
can also provide some indication of a user’s objectives for the visit. Based on
some of these observations, it was decided to use the following attributes for
representing each visitor:

1. On campus/Off campus access.
2. Day time/Night time access: 8 a.m. to 8 p.m. was considered to be the day

time.
3. Access during lab/class days or non-lab/class days: All the labs and classes

were held on Tuesday and Thursday. The visitors on these days are more
likely to be workers.

4. Number of hits.
5. Number of classnotes downloaded.

The first three attributes had binary values of 0 or 1. The last two values
were normalized. Since the classnotes were the focus of the clustering, the last
variable was assigned higher importance.

The modified K-means algorithm was run for various values of threshold and
initial centroid vectors. Similarly, various pairs of (wlower , wupper) ranging from
(0.95, 0.05) to (0.55, 0.45) were tried. It was found that when the value of wlower

was set at 0.75 and wupper was equal to 0.25, the resulting intervals provided
good representations of clusters of Web visitors. The resulting rough set clas-
sification schemes were subjectively analyzed. The results were compared with
conventional and fuzzy C-means clustering. In fuzzy C-means clustering objects
are assinged membership values for each of the three clusters. The details of the
fuzzy C-means can be found in [5]. More details about the experiments can be
found in [13].

Table 1 shows the cardinalities of conventional clusters, the modified K-means
based on rough set theory, and the sets with fuzzy memberships greater than
0.6. The actual numbers in each cluster vary based on the characteristics of each
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Table 1. Cardinalities of the clusters for three techniques

Course Cluster FCM >0.6 Lower Conventional
bound Clusters

First Studious 1382 1412 1814
Crammers 414 288 406
Workers 4354 5350 5399

Second Studious 1750 1197 1699
Crammers 397 443 634
Workers 1322 1677 3697

Third Studious 265 223 318
Crammers 84 69 89
Workers 717 906 867

Table 2. The conventional K-means cluster center vectors

Course Cluster Campus Day Lab Hits Doc
Access Night Day Req

First Studious 0.67 0.76 0.44 2.97 2.78
Crammers 0.62 0.72 0.32 4.06 8.57
Workers 0.67 0.74 0.49 0.98 0.85

Second Studious 0.00 0.68 0.28 0.67 0.55
Crammers 0.66 0.72 0.36 2.43 2.92
Workers 1.00 0.82 0.46 0.66 0.51

Third Studious 0.69 0.75 0.50 3.87 3.15
Crammers 0.60 0.71 0.44 5.30 10.20
Workers 0.62 0.74 0.50 1.41 1.10

course. For example, in the fuzzy C-means clustering results, the first term course
had significantly more workers than studious visitors, while the second term
course had more studious visitors than workers. The increase in the percentage
of studious visitors in the second term seems to be a natural progression. It
should be noted that the progression from workers to studious visitors was more
obvious with fuzzy clusters than the conventional clusters and the rough K-means
clusters. Interestingly, the second year course had significantly large number of
workers than studious visitors. This seems to be counter-intuitive. However, it
can be explained based on the structure of the Websites. Unlike the two first
year courses, the second year course did not post the classnotes on the Web.
The notes downloaded by these students were usually sample programs that
were essential during their laboratory work.

Table 2 shows cluster center vectors from the conventional K-means. It was pos-
sible to classify the three clusters as studious, workers, and crammers, from the
results obtained using the conventional K-means algorithm. The crammers had
the highest number of hits and classnotes in every data set. The average number
of notes downloaded by crammers varied from one set to another. The studious
visitors downloaded the second highest number of notes. The distinction between
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Table 3. The modified K-means cluster center vectors

Course Cluster Campus Day Lab Hits Doc
Access Night Day Req

First Studious 0.67 0.75 0.43 3.16 3.17
Crammers 0.61 0.72 0.33 4.28 9.45
Workers 0.67 0.75 0.49 1.00 0.86

Second Studious 0.14 0.69 0.03 0.64 0.55
Crammers 0.64 0.72 0.34 2.58 3.29
Workers 0.97 0.88 0.88 0.66 0.49

Third Studious 0.70 0.74 0.48 4.09 3.91
Crammers 0.55 0.72 0.43 5.48 10.99
Workers 0.62 0.75 0.51 1.53 1.13

Table 4. Fuzzy C-Means cluster center vectors

Course Cluster Campus Day Lab Hits Doc
Access Night Day Req

First Studious 0.68 0.76 0.44 2.30 2.21
Crammers 0.64 0.72 0.34 3.76 7.24
Workers 0.69 0.77 0.51 0.91 0.75

Second Studious 0.60 0.75 0.13 0.63 0.52
Crammers 0.64 0.73 0.33 2.09 2.54
Workers 0.83 0.87 0.75 0.62 0.47

Third Studious 0.69 0.75 0.50 3.36 2.42
Crammers 0.59 0.72 0.43 5.14 9.36
Workers 0.62 0.77 0.52 1.28 1.06

Table 5. Average vectors for fuzzy C-means with membership>0.6

Course Cluster Campus Day Lab Hits Doc
Access Night Day Req

First Studious 0.70 0.78 0.45 2.37 2.41
Crammers 0.65 0.72 0.33 3.74 7.92
Workers 0.67 0.75 0.50 0.82 0.67

Second Studious 0.52 0.89 0.00 0.49 0.40
Crammers 0.65 0.75 0.34 2.18 0.96
Workers 1.00 1.00 1.00 0.52 0.36

Third Studious 0.69 0.75 0.51 3.69 2.28
Crammers 0.58 0.70 0.43 5.38 10.39
Workers 0.60 0.75 0.52 1.19 1.00

workers and studious visitors for the second course was also based on other at-
tributes. For example, in the second data set, the workers were more prone to come
on lab days, access Websites from on-campus locations during the daytime.

It is also interesting to note that the crammers had higher ratios of docu-
ment requests to hits. The workers, on the other hand, had the lowest ratios of
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document requests to hits. Table 3 shows the modified K-means center vectors.
The fuzzy center vectors are shown in Table 4. These center vectors are compa-
rable to the conventional centroid vectors. In order to compare fuzzy and con-
ventional clustering, visits with fuzzy membership greater than 0.6 were grouped
together. Similar characteristics can be found in these tables. For the second data
set, the modified K-means is more sensitive to the differences between studious
and crammers in the first three attributes than the other two techniques.

7 Modifications of Kohonen Algorithm

Fig. 6 illustrates the conventional Kohonen network architecture for the one-
dimensional case. The unsupervised learning with the Kohonen rule [6] uses
competitive learning approach. In competitive learning, the output neurons com-
pete with each other. The winner output neuron has the output of 1, the rest of
the output neurons have outputs of 0. The competitive learning is suitable for
classifying a given pattern into exactly one of the mutually exclusive clusters.
The network is used to group patterns represented by m-dimensional vectors into
k groups. The network consists of two layers. The first layer is called the input
layer and the second layer is called the Kohonen layer. The network receives the
input vector for a given pattern. If the pattern belongs to the ith group, then
ith neuron in the Kohonen layer has an output value of one and other Kohonen
layer neurons have output values of zero. Each connection is assigned a weight
xi. Weights of all the connections to a Kohonen layer neuron make up an m-
dimensional weight vector x. The weight vector x for a Kohonen layer neuron
is the vector representation of the group corresponding to that neuron. For any
input vector v, the network compares the input with the weight vector for a
group using the measure such as Eq. 4.

The pattern v belongs to the group with minimum value for d(x,v). The
Kohonen neural network generates the clusters through a learning process as fol-
lows: Initially, the network connections are assigned somewhat arbitrary weights.
The training set of input vectors is presented to the network several times. For

0
1

Output Layer 

0 

j 

Input Layer  

Fig. 6. Kohonen Neural Network
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Fig. 7. Modified Kohonen Neural Network

each iteration, the weight vector x for a group that is closest to the pattern v is
modified using the equation:

xnew = xold + α(t) × (v − xold), (11)

where α(t) is a learning factor which starts with a high value at the beginning
of the training process and is gradually reduced as a function of time.

The rough set based Kohonen algorithm uses the concept of lower and upper
bounds in the equations for updating the weights of winners. The Kohonen rough
set architecture is similar to the conventional Kohonen architecture. It consists
of two layers, an input layer and the Kohonen rough set layer (rough set output
layer). These two layers are fully connected. Each input layer neuron has a feed
forward connection to each output layer neuron. Fig. 7 illustrates the Kohonen
rough set neural network architecture for a one-dimensional case. A neuron in
the Kohonen layer consists of two parts, a lower neuron and an upper neuron.
The lower neuron has an output of 1 if an object belongs to the lower bound
of the cluster. Similarly, a membership in the upper bound of the cluster will
result in an output of 1 from the upper neuron. Since an object belonging to
the lower bound of a cluster also belongs to its upper bound, when the lower
neuron has an output of 1, the upper neuron also has an output of 1. However,
a membership in the upper bound of a cluster does not necessarily imply the
membership in its lower bound. Therefore, the upper neuron contains the lower
neuron. Fig. 7 provides some cases to explain outputs from the Kohonen rough
set neural network works based on properties (C1), (C2), and (C3). Fig. 7(a-c)
shows some of the possible outputs, while Fig. 7(d-f) shows some of the invalid
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outputs from the network. Fig. 7(a) shows a case where an object belongs to
lower bound of cluster x2. Based on the property (C2), it also belongs to the
upper bound of x2. Fig. 7(b) shows a situation where an object belongs to the
upper bounds of clusters x1 and x2. The object in Fig. 7(c) belongs to the upper
bounds of clusters x1, x2 and x3. Fig. 7(d) shows an invalid situation where an
object belongs only to the upper bound of the cluster x3. This is a violation
of the property (C3). Fig. 7(e) shows a violation of property (C1), where an
object belongs to lower bound of x3 as well as the upper bound of x2. Similarly,
a violation of property (C2) can be seen in an invalid case shown in Fig. 7(f).
Here the object only belongs to the lower bound of cluster x3 and not its upper
bound. The modification of the Kohonen algorithm must make sure that the
properties (C1)-(C3) are obeyed by avoiding cases such as the ones shown in
Fig. 7(d-f). The interval clustering provides good results, if initial weights are
obtained by running the conventional Kohonen learning. The next step in the
modification of the Kohonen algorithm for obtaining rough sets is to design
criteria to determine whether an object belongs to the upper or lower bounds of
a cluster. The assignment criteria for the modified Kohonen algorithm is the same
as the modified K-means algorithm discussed in the previous section. For each
object vector, v, let d(v,xj) be the distance between itself and the weight vector
xj of cluster Xi. Let d(v,xi) = min1≤j≤k d(v,xj) The ratios d(v,xi)

d(v,xj)
, were used

to determine the membership of v as follows. Let T = {j : d(v,xi)/d(v,xj) ≤
threshold and i �= j}.
1. If T �= ∅, v ∈ A(xi) and v ∈ A(xj), ∀j ∈ T . Furthermore, v is not part

of any lower bound. The above criterion guarantees that property (C3) is
satisfied. The weight vectors xi and xj are modified as:
xi

new = xi
old + αupper(t)× (v − xi

old), and
xj

new = xj
old + αupper(t)× (v − xj

old).
2. Otherwise, if T = ∅, v ∈ A(xi). In addition, by property (C2), v ∈ A(xi).

The weight vectors xi is modified as:
xi

new = xi
old + αlower(t)× (v − xi

old).

Usually, αlower > αupper . It can be easily verified that the above algorithm
preserves properties (C1)-(C3). It should be emphasized that the approximation
space A is not defined based on any predefined relation on the set of objects. The
upper and lower bounds are constructed based on the criteria described above.
Lingras et al. [12] conducted experiments with Web logs on three Web sites,
which suggests that the modification of the Kohonen neural networks provide
reasonable interval set representations of clusters. The following section describes
another experiment reported in [11] for clustering supermarket customers.

8 Rough Clustering Supermarket Customers Using
Kohonen SOM

The data used in the study was supplied by a supermarket chain. The data con-
sisted of transactional records from three regions. The first region, S1,
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Fig. 8. Patterns for visits and spending over 26 weeks

consisted of one store in a rural setting. The second rural region (S2) was served
by five stores, while the third region was an urban area with six stores. The
data was collected over a twenty-six week period: October 22, 2000 - April 21,
2001. Lingras and Adams [9] used data on the spending and visits of supermar-
ket customers for clustering those customers. The use of average values of these
variables may hide some of the important information present in the temporal
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Fig. 9. Comparison of two interval clusters

patterns. Therefore, Lingras and Adams [9] used the weekly time series values.
It is possible that customers with similar profiles may spend different amounts
in a given week. However, if the values were sorted, the differences between these
customers may vanish. For example, three weeks spending of customer A may
be $10, $30, and $20. Customer B may spend $20, $10, and $30 in those three
weeks. If the two time-series were compared with each other, the two customers
may seem to have completely different profiles. However, if the time-series val-
ues were sorted, the two customers would have identical patterns. Therefore,
the values of these variables for 26 weeks were sorted, resulting in a total of 52
variables. A variety of values for K (number of clusters) were used in the initial
experiments. After experimenting with a range of values, the threshold was set
at 0.7, αlower was chosen to be 0.01, 0.005 was used as the value of αupper , and
1000 iterations were used for the training phase of each data set.

Fig. 8 shows the average spending and visit patterns for the lower bounds of
the five clusters. The patterns enable us to distinguish between the five types of
customers as: loyal big spenders (G1), loyal moderate spenders (G2), semi-loyal
potentially big spenders (G3), potentially moderate to big spenders with limited
loyalty (G4), and infrequent customers (G5).

The patterns of these classes for the three regions were mostly similar. How-
ever, there was an interesting difference in S1 region. Even though for most weeks
loyal moderate spenders (G2) had higher spending than semi-loyal potentially big
spenders (G3), the highest spending of G3 was higher than G2. The region has
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only one store and hence it is likely that semi-loyal potentially big spenders do
not find it convenient to shop at the supermarket on a regular basis.

While the lower bounds tend to provide distinguishing characteristics of vari-
ous clusters, the boundary regions of the clusters tend to fall between the lower
bounds of two regions. This fact is illustrated in Fig. 9(a).

There is a large difference between the lower bounds of groups loyal big spenders
(G1) and potentially moderate to big spenders with limited loyalty (G4). However,
their boundary regions seem to be less distinct. The boundary regions of G1 and
G4 fall between the lower bounds of those groups. The figure also shows the pat-
terns for the overlap of the two groups. Fig. 9(b) shows a similar comparison for
loyal big spenders (G1) and semi-loyal potentially big spenders (G3).

9 Conclusions

Rough sets may provide represenation of clusters, where it is possible for an
object to belong to more than one cluster. This paper describes modifications of
Genetic Algorithms based clustering, K-means algorithm, and the Kohonen Self-
Organizing Maps based on the concept of lower and upper bounds. Application
of these approaches for grouping highway sections, Web users, and supermarket
customers is used to demonstrate the versatility of rough clustering. The results
are also compared with conventional and fuzzy clustering.
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Abstract. We investigate the operators associated with approximations
in the rough set theory introduced by Pawlak in his [14,11] and exten-
sively studied by the Rough Set community [16]. We use universal algebra
techniques to establish a natural characterization of operators associated
with rough sets.

1 Introduction

The concept of rough set determined by an equivalence relation R has been intro-
duced by Pawlak [14,11] in his studies of data mining. It is a natural extension of
a model of database introduced in [10] that treats records as objects which may
be indiscernible in the language (i.e. the tables are bags, not sets, of records).
Rough sets and a set of associated numerical measures allow for capturing various
degrees of similarity of objects such as records, documents, or other data units.
The point of departure of Pawlak was the realization that the descriptive lan-
guages are often inadequate to correctly describe concepts (i.e. – in set-theoretic
terms – subsets of the domain). The express goal of rough sets was to operate
in the following situation: we have a collection of objects X and some descrip-
tion language L. We have some collection of objects Y ⊆ X . We would like to
describe Y in the language L. That is we would like to find a formula ϕ of L
so that

Y = {x ∈ X : ϕ[x]}.
We call such sets Y definable. While usually the number of available definitions
is infinite, even in the situation when X is finite, not every subset has to be
definable. Yet another point, made in [12], is that a set Y may be definable in the
language L but all the definitions are prohibitively large. In such circumstances
we may want to find a smaller language L′ where Y is not definable L′, but the
approximations are definable in L′ by short formulas. This is certainly the case
in various medical applications.

In his analysis, Pawlak observed that in the case of finite set X , there is a
largest subset of Y that is definable, and a least superset of Y that is definable.

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 140–150, 2007.
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There is a way to compute these largest and least definable subsets of X that
are associated with Y . Specifically, this is done with the indiscernibility relation
associated with the language L. In finite case, there is always a formula defining
a least definable set containing a given object x. Let us call these sets monads
(for the lack of better name, and for the fact that they resemble Leibniz mon-
ads). Then, it turns out that the largest definable set included in Y is the union
of monads that are entirely included in Y , while the least definable set con-
taining Y consists of those monads that have a nonempty intersection with Y .
Abstracting from the existence of a specific language and its logical operations,
Pawlak introduced the notion of indiscernibility relation in the set X . This is
the equivalence relation R so that the monads are its cosets.

We believe that the guiding examples motivating Pawlak were standard med-
ical terminologies such as SNOMED ([19]) or ICD-9 ([5]) and their inadequa-
cies for description of classes of medical cases. It is worth mentioning that for
many years Pawlak collaborated with physicians interested in Medical Informat-
ics (needless to say, this started long before the term Medical Informatics were
even coined). Pawlak was concerned with the fact that medical reasoning ap-
proximates the available data, often disregarding values of some attributes. As
a result, it is often difficult, for a variety of reasons, to classify medical cases. If
one treats a medical condition as an ideal set of cases and attempts to describe
it within a concrete language of some terminology then all a physician can do
is to produce a differential diagnosis. This leads, naturally, to lower and upper
approximations of the classes of medical cases. While Pawlak’s intuitions were
motivated by his collaborations with practicing physicians, it turned out that
the methodology of approximations and indiscernibility relations are a common
phenomenon. We refer the reader to monographs and journals devoted to rough
set theory ([16]) for further motivations.

Let us assume that the underlying set X is finite. Denoting by R(Y ) and R(Y ),
respectively, the largest definable subset of Y and the least definable superset of
Y , we get the desired approximation relationships

R(Y ) ⊆ Y ⊆ R(Y ).

The sets R(Y ) and R(Y ) provide collectively measure of adequacy of the un-
derlying language to the task of describing Y . Moreover, by various statistical
operations on those sets, and on other sets derived by set-theoretic means, we
can analyze the properties of the set Y itself. For that reason we would like to
know more about the sets R(Y ) and R(Y ). We would like to know what are
possible operators of the form R(·) and R(·), and how those behave when R
vary (i.e. when the language changes). These issues, to some extent were ad-
dressed in recent [9], but the review of the literature indicates that the Rough
Sets community investigated a number of possible explanations for the rough set
formalism by immersing it into various well-known mathematical areas. Those
areas are all related to a variety of ways in which one can describe databases.
We will list several different areas which were explored, although more could
be mentioned. The references are, by necessity, incomplete. The first one is the
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idea of topological interpretation of approximations (already explored in [11]).
This was for instance studied in [20]. Another approach was to look at modal
logic interpretations of rough sets (see for instance [21] and a series of papers
by Or�lowska and collaborators [3], and more generally [13]). One could think
about approximations using Kleene [8] three-valued logic as it was done in [12].
It is also possible to look at abstractions of rough sets via techniques of univer-
sal algebra. This last area explores Boolean algebra with operators [7,6]. The
rough set community investigated these connections, with a varying degree of
generality, in [3,13,18]. Our contribution belong to this direction of research. We
attempt to apply the techniques of universal algebra and in particular of [7,18]
to find an esthetically appealing characterization of Pawlak’s operators. In this
quest our results find, indeed, a clean and interesting characterization of these
operators. By necessity, some of the results discussed in this paper are known.
After all operators over Boolean algebras have been introduced by Tarski and
his collaborators over 50 years ago. For instance at least points (1)-(4) of Propo-
sition 5 are known. The terms in which we characterize the Pawlak’s operators
are mostly known in the literature. The ones that we introduce and which (in
conjunction with other properties) appear to be new are the following:

Y1 ∩ f(Y2) �= ∅ if and only if Y2 ∩ f(Y1) �= ∅. Exchange

and

Y1 ∪ f(Y2) �= X if and only if Y2 ∪ f(Y1) �= X Dual exchange

As we will see, in addition to the well known properties of operators, these
properties characterize the lower and upper Pawlak approximations, respectively.

Thus, in this paper, we prove four results that pertain to the explanation of
Pawlak’s approximation operators. First, we show a simple and elegant charac-
terization of upper approximation. Much later we state but not prove the dual
characterization (an indirect proof of this other property follow from duality
considerations, and the point (5) of Proposition 5). We also prove the duality of
exchange and dual exchange properties, and we show how one can introduce a
structure of a complete lattice in upper approximation operators.

We believe that Pawlak, who believed in elegance of mathematical formulation
of tools that are useful in practice, would enjoy the simplicity of our description
of his operators.

2 Preliminaries

Given a set X and an equivalence (indiscernibility) relation R in X , we write [x]R
for the R-coset of the element x in X , that is {y : xRy}. Given an equivalence
relation R, the cosets of elements of X form a partition of X into nonempty
blocks. We may drop the subscript R when R is determined by the context.

Let R be an equivalence relation in the set X . The relation R determines,
for every set Y ⊆ X , two sets: the lower and upper R-bounds (also known as
approximations) of Y . Specifically, following Pawlak [14,11,15] we define
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R(Y ) = {x ∈ X : [x] ∩X �= ∅}

and
R(Y ) = {x ∈ X : [x] ⊆ X}.

It is a simple consequence of the properties of equivalence relations and of De
Morgan laws that for every subset Y of X , the complement of Y , −Y , has the
following properties:

−R(−Y ) = R(Y )

and
−R(−Y ) = R(Y )

We now introduce the notion of an operator in a set X and introduce various
classes of operators. Let X be a set. The set P(X) is the powerset of X , the
collection of all subsets of X . Given a set X , by an operator in X we mean
any function f : P(X) → P(X). An operator f in the set X is additive if for
all Y1, Y2 ⊆ X , f(Y1 ∪ Y2) = f(Y1) ∪ f(Y2). An operator f in the set X is
multiplicative if for all Y1, Y2 ⊆ X , f(Y1 ∩ Y2) = f(Y1) ∩ f(Y2). An operator f
in X is progressive if for all Y ⊆ X , Y ⊆ f(Y ). An operator f in X is regressive
if for all Y ⊆ X , f(Y ) ⊆ Y . An operator f in X is idempotent if for all Y ⊆ X ,
f(f(Y )) = f(Y ). An operator f in X preserves empty set if f(∅) = ∅ (Operators
preserving empty set are called normal in [7].) Finally, we say that an operator
f in X preserves unit if f(X) = X .

All the properties of operators introduced above are pretty standard. Here
are two properties (characteristic for our intended application) which are non-
standard. Let X be a set and let f be an operator in X . We say that f has an
exchange property if for all Y1, Y2 ⊆ X ,

Y1 ∩ f(Y2) �= ∅ if and only if Y2 ∩ f(Y1) �= ∅.

This property of the operator will turn out to be crucial in our characterization
of the upper approximation in Pawlak’s rough sets.

Likewise, we say that that f has a dual exchange property if for all Y1, Y2 ⊆ X

Y1 ∪ f(Y2) �= X if and only if Y2 ∪ f(Y1) �= X.

The dual exchange property will be used to characterize lower approximations
of rough sets.

3 Characterizing R

We now show the principal result of this note, the characterization of operations
R for equivalence relations R (The characterization of lower approximations
will follow from this result and the general facts regarding duality properties of
operators.) We have the following result.
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Proposition 1. Let X be a finite set and let f be an operator in X. Then
there exists an equivalence relation R such that f = R if and only if: f preserves
empty set; f is additive; f is progressive; f is idempotent; and f has the exchange
property.

Proof: First, we need to show that whenever R is an equivalence relation in X
then the operator R has the five properties listed above. The first four of these
are pretty obvious; R preserves emptyset because when there is no element, then
there is no coset. The additivity follows from the distributivity of existential
quantifier with respect to disjunction, progressiveness follows from the fact that
for all x ∈ X , x ∈ [x]R, and the idempotence follows from the transitivity of
the relation R. We will now show that the operator R possesses the exchange
property. We observe that the exchange property is symmetric with respect to
Y1 and Y2. Therefore all we need to prove is that whenever Y1 ∩R(Y2) �= ∅ then
also Y2 ∩ R(Y1) �= ∅. Let us reformulate slightly the statement Y1 ∩ R(Y2) �= ∅.
This statement is equivalent to the fact that there is an x ∈ Y1, and an y ∈ Y2 so
that xRy. We now proceed as follows. Since Y1 ∩R(Y2) �= ∅, there is an element
x that belongs to Y1 and an element y ∈ Y2 such that xRy. But then [x]R = [y]R,
and so y is an element of Y2 for which there is an element x′ ∈ Y1 so that yRx′.
Namely x is that element x′. Therefore Y2 ∩R(Y1) is nonempty.

Now, let us assume that f is an operator in X , and that f has the five
properties mentioned above, that is f preserves empty set, f is additive, f is
progressive, f is idempotent, and that f has the exchange property. Then we
need to construct an equivalence relation Rf so that f coincides with R. Here is
how we define relation Rf :

xRfy if x ∈ f({y}).
Our first task is to prove that, indeed, Rf is an equivalence relation in X . To
see reflexiveness, let us observe that since f is progressive, for every x,

{x} ⊆ f({x})
that is, x ∈ f({x}). But this means that xRfx, for every x ∈ X .

For the symmetry of Rf , let us assume xRfy, that is x ∈ f({y}). This means
that

{x} ∩ f({y}) �= ∅.
By the exchange property of f ,

{y} ∩ f({x}) �= ∅.
That is y ∈ f({x}). In other words, yRfx.

Finally, let us assume that x, y, z have the property that xRfy and yRfz.
That is:

x ∈ f({y}) and y ∈ f({z}).
That is

{x} ⊆ f({y}) and {y} ⊆ f({z}).
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From the second equality we have

{y} ∪ f({z}) = f({z}).
By the additivity of f we have

f({y}) ∪ f(f({z})) = f(f({z})).
By idempotence of f we have, then

f({y}) ∪ f({z}) = f({z}).
This means that

f({y}) ⊆ f({z}).
But x ∈ f({y}) and so x ∈ f({z}), that is xRf z, as desired.

To complete the proof of our assertion we need to prove that for all Y ⊆ X ,
f(Y ) = Rf (Y ). Our proof will use the fact that we deal with a finite set. We
will comment on the dependence on this assumption later.

First, let us assume that Y ⊆ X , and that x ∈ f(Y ). Since X is finite, so is
Y . Then

Y =
⋃

x∈Y

{x}.

Now, let us observe that since the operator f is additive, it is finitely additive
that is it distributes with respect to finite unions. Thus:

f(Y ) =
⋃

x∈Y

f({x}).

This means that, since our assumption was that x belongs to f(Y ), for some
y ∈ Y , x ∈ f({y}). But then xRfy for some y ∈ Y , that is x ∈ Rf (Y ). In other
words, for an arbitrary Y ⊆ X , f(Y ) ⊆ Rf (Y ).

Conversely, let us assume that x ∈ Rf (Y ). Then, since we proved that Rf

is an equivalence relation, for some y ∈ Y , xRfy. That is, according to the
definition of the relation Rf , x ∈ f({y}). Next, we observe that f is monotone,
that is Y1 ⊆ Y2 implies that f(Y1) ⊆ f(Y2). Indeed, if Y1 ⊆ Y2 then Y1 ∪ Y2 =
Y2, thus f(Y1 ∪ Y2) = f(Y2) and by additivity f(Y1) ∪ f(Y2) = f(Y2), that is
f(Y1) ⊆ f(Y2). Returning to the argument, since y ∈ Y , {y} ⊆ Y , and by our
remark on monotonicity:

f({y}) ⊆ f(Y ).

This implies that x ∈ f(Y ) and since x was an arbitrary element of Rf (Y ),
Rf (Y ) ⊆ f(Y ). Thus we proved the other inclusion and since Y was the arbitrary
subset of X , we proved that f and Rf coincide. �

In the proof of our Proposition 1 we computed, out of the operator f , a relation
Rf so that f = Rf . But this relation is unintuitive (at least for non-specialists).
We will now provide a more intuitive description of the same relation. Given an
operator f , we define a relation Sf as follows:

xSfy if ∀Y ⊆X(x ∈ f(Y )⇔ y ∈ f(Y )).

We now have the following result.
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Proposition 2. If the operator f satisfies the conditions of Proposition 1, then
Rf = Sf .

Proof: We need to prove two implications:

(a) ∀x,y(xRfy ⇒ xSfy), and
(b) ∀x,y(xSfy ⇒ xRfy)

To show (a) let x, y be arbitrary elements of X , and let us assume xRfy. Then,
since Rf is symmetric, yRfx, that is y ∈ f({x}). It is sufficient to prove that
for all subsets Y of X , if x ∈ f(Y ) then y ∈ f(Y ) (the proof of the converse
is very similar, except that we use the fact that x ∈ f({y})). So, let x ∈ f(Y ).
Then {x} ⊆ f(Y ), so, by monotonicity, f({x}) ⊆ f(f(Y )) = f(Y ) (last equality
uses idempotence of f). Thus, f({x}) ⊆ f(Y ), and since y ∈ f({x}), y ∈ f(Y ).
Thus, taking into account the other implication, proved as discussed above, we
proved that xRfy implies xSfy.

Next, let us assume that xSfy. That is,

∀Y ⊆X(x ∈ f(Y )⇔ y ∈ f(Y )).

We need to prove that x ∈ f({y}). But y ∈ f({y}), since for Y = {y}, y ∈ Y ,
and for every Y , Y ⊆ f(Y ) (f is progressive). But now specializing the above
equivalence to Y = {y}, we find that x ∈ f({y}), as desired. �

In the proof of Proposition 1 we used the assumption that X was a finite space.
In fact, we could relax this assumption, but at a price. Recall that we assumed
that the operator f was additive (i.e. f(Y1 ∪ Y2) = f(Y1)∪ f(Y2), for all subsets
Y1, Y2 of X). In the case when X is finite we have for any family X of subsets
of X

f(
⋃
X ) =

⋃

Y ∈X
f(Y ).

This is easily proved by induction on the size of X . Let us call an operator f
completely additive if the equality

f(
⋃
X ) =

⋃

Y ∈X
f(Y ).

holds for every family X of subsets of X . Under the assumption of complete
additivity the assumption of finiteness can be eliminated.

4 Structure of the Family of Upper Closure Operators

We will now look at the situation when the set X has several different equivalence
relations, that is several corresponding notions of rough sets. This is, actually,
quite common situation; for instance we may have different medical nomencla-
ture systems that are used to describe medical cases. In fact it is a well-known
fact that the medical nomenclatures of various nations are not translatable.

We now face the question of the relationship between the different upper
closure operators. Specifically, we may want to check the relationship between
R1 and R2 given relations R1 and R2.
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Proposition 3. Let R1, R2 be two equivalence relations. Then

R1 ⊆ R2 if and only if ∀Y ⊆X(R1(Y ) ⊆ R2(Y )).

Proof: First, let us assume that R1 ⊆ R2, and let Y be an arbitrary subset of
X . We need to prove R1(Y ) ⊆ R2(Y ). To this end, let x ∈ R1(Y ). Then there
is an element y ∈ Y such that xR1y. But then xR2y and so x ∈ R2(Y ).

Conversely, let us assume that for every Y , R1(Y ) ⊆ R2(Y ). We want to prove
that R1 ⊆ R2. Let us assume that xR1y. Then x ∈ R1({y}), thus x ∈ R2({y}).
In other words, there is some y′ ∈ {y} such that xR2y

′. But {y} has unique
element, y. Thus xR2y, as desired. �

The structure of the family of all equivalence relations in a set X is well-known.
Let 〈EqRX ,⊆〉 be the relational structure with EqRX equal to the set of all
equivalence relations in X , ordered by inclusion. Then 〈EqRX ,⊆〉 is a complete
lattice (regardless whether X is finite or not) but 〈EqRX ,⊆〉 is not a distributive
lattice, in general ([4, p. 227]).

Proposition 3 allows us to transfer the properties of equivalence relations to
operators. Let us define an upper rough set operator in the set X as any operator
that preserves empty set, is completely additive (thus we no longer assume X to
be finite), progressive, idempotent, and has the exchange property. We denote
by RX the set of all upper rough set operators in X , and �X the dominance
relation in RX defined by

f � g if ∀Y ⊆X(f(Y ) ⊆ g(Y )).

Then applying our discussion of the lattice of equivalence relations in X to
Proposition 3 we get the following fact.

Proposition 4. The structure 〈RX ,�〉 is a poset. In fact 〈RX ,�〉 is a complete
lattice, but in general not a distributive one.

5 Duality

Let f be an operator in a set X . The dual of the operator f , fd, is an operator
defined by the following equality:

fd(Y ) = −f(−Y ).

Here Y ranges over arbitrary subsets of X , −Y = X \ Y is the complement
operation. The dual operators are used in various places in mathematics and
computer science. One example is the operator dual to van Emden-Kowalski
operator TP ([2, p. 83]).

While we defined the notion of dual operator in the Boolean lattice, 〈P(X),⊆〉,
as long as the lattice has a complement operation−, the notion of a dual operator
can be defined. Moreover, if for all x, −−x = x, then (fd)d = f . This is certainly
the case in our application.

Now, let us assume that we are dealing with operators in a set X . We have
the following fact.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



148 V.W. Marek

Proposition 5. Let X be a set and f an operator in X. Then:

1. The operator f preserves the empty set (unit) if and only if the operator fd

preserves the unit (empty set)
2. The operator f is progressive (regressive) if and only if the operator fd is

regressive (progressive)
3. The operator f is additive (multiplicative) if and only if the operator fd is

multiplicative (additive)
4. The operator f is idempotent if and only if the operator fd is idempotent
5. The operator f possesses the exchange property (dual exchange property) if

and only if the operator fd possesses the dual exchange property (exchange
property).

Proof: The points (1)-(3) are entirely routine. To see the point (4), let us assume
that the operator f is idempotent. Then for an arbitrary Y ,

fd(fd(Y ))=−f(−fd(Y ))=−f(− − f(−Y )) = −f(f(−Y )) = −f(−Y ) = fd(Y ).

The penultimate equality uses the idempotence of f . The other direction of (4)
follows from the fact that (fd)d = f , and the argument above.

To see (5), we first assume that f has the exchange property. We prove that fd

has the dual exchange property. To this end we need to prove that for arbitrary
Y1, Y2 ⊆ X ,

Y1 ∪ fd(Y2) �= X if and only if Y2 ∪ fd(Y1) �= X.

Since this formula is symmetric with respect to Y1 and Y2, it is enough to prove
the implication:

Y1 ∪ fd(Y2) �= X ⇒ Y2 ∪ fd(Y1) �= X.

So let us assume that Y1 ∪ fd(Y2) �= X . Then, substituting − − Y1 for Y1, and
expanding the definition of fd, we get:

(− − Y1) ∪ −f(−Y2) �= X

that is:
−(−Y1 ∩ f(−Y2)) �= X.

This is, of course, equivalent to:

−Y1 ∩ f(−Y2) �= ∅.
Since f has the exchange property,

−Y2 ∩ f(−Y1) �= ∅.
Thus we get:

−(−Y2 ∩ f(−Y1)) �= X,

which reduces to
Y2 ∪ −f(−Y1) �= X.
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that is
Y2 ∪ fd(Y1) �= X,

as desired. The proof of the other part of (5) namely that whenever f has the
dual exchange property then fd has the exchange property, is similar. �

Now, let us look at the familiar equality R(Y ) = −R(−Y ). This, in the language
of operators, says that for every equivalence relation R, the operator R is simply
Rd. So now we compare the characterization of the upper approximation by five
conditions (Proposition 1) and the duality result above (Proposition 5). We get
the following result.

Proposition 6. Let X be a finite set and let f be an operator in X. Then there
exists an equivalence relation R such that f = R if and only if: f preserves unit;
f is multiplicative; f is regressive; f is idempotent; and f has the dual exchange
property.

Again, we can also study the family of all operators that have the five properties
of operators characterizing lower approximation and introduce a complete, but
non-distributive lattice structure in that set. That is, we can prove the result
analogous to the Proposition 4.

6 Conclusions

Algebraic methods, whenever applicable, provide a clean foundations for an un-
derlying subject. They abstract from unnecessary details, showing the properties
that really matter. This is certainly the case in the area of rough sets. Our results
confirm that, as observed by numerous authors [13,18] the theory of rough sets
relates to the operators in lattices, a theory well-developed ([1, p. 86, ff.]) and
with many deep results. Rough sets approximate elements of one lattice (Boolean
lattice of all sets) with elements of a sublattice (of definable sets). Abstract ap-
proach to this idea of approximation and characterization of approximations in
algebraic terms will only improve our understanding of the concept of rough set.
We find it amazing that the ideas of Tarski (who certainly shied from applica-
tions) found its expression in Pawlak’s, very applied, research.
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Abstract. This article provides an overview of recent literature on some
tasks of pattern recognition using rough sets and its hybridization with
other soft computing paradigms. Rough set theory is an established tool
for dealing with imprecision, noise, and uncertainty in data. In this article
we will focus on two recent applications using rough sets; viz., feature
selection in high dimensional gene expression data, and collaborative
clustering. The experimental results demonstrate that the incorporation
of rough set improves the performance of the system.

1 Introduction

Rough set theory [1] provides an important and mathematically established tool,
for dimensionality reduction in large data. Rough set theory (RST) was devel-
oped by Pawlak as a tool to deal with inexact and incomplete data. Over the
years, RST has become a topic of great interest to researchers and has been
applied to many domains, in particular to knowledge databases. This success is
due in part to the following aspects of the theory, viz., only the facts hidden in
data are analyzed, no additional information about the data is required, and a
minimal knowledge representation is generated.

One of the important problems in extracting and analyzing information from
large databases is the associated high complexity. Feature selection is helpful as
a preprocessing step for reducing dimensionality, removing irrelevant data, im-
proving learning accuracy and enhancing output comprehensibility. Microarray
data is a typical example presenting an overwhelmingly large number of features
(genes), the majority of which are not relevant to the description of the problem
and could potentially degrade the classification performance by masking the con-
tribution of the relevant features. The key informative features represent a base
of reduced cardinality, for subsequent analysis aimed at determining their pos-
sible role in the analyzed phenotype. This highlights the importance of feature
selection, with particular emphasis on microarray data.

In microarray data, many of the attributes may be redundant, and we may
find minimal subsets of attributes which give the same classification as the whole
set A. These subsets are called reducts in RST, and correspond to the minimal

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 151–169, 2007.
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Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



152 S. Mitra and H. Banka

feature sets that are necessary and sufficient to represent a correct decision about
classification. Thus RST provides a methodology for addressing the problem of
relevant feature selection.

The task of finding reducts is reported to be NP-hard [2]. The high complex-
ity of this problem has motivated investigators to apply various approximation
techniques to find near-optimal solutions. There are some studies reported in
literature, e.g. [3,4], where genetic algorithms have been applied to find reducts.
Genetic algorithms (GAs) provide an efficient search technique in a large solution
space, based on the theory of evolution. When there are two or more conflict-
ing characteristics to be optimized, often the single-objective GA requires an
appropriate formulation of the single fitness function in terms of an additive
combination of the different criteria involved. In such cases multi-objective GAs
(MOGAs) [5] provide an alternative, more efficient, approach to search for op-
timal solutions. In this article, we present various attempts of using GA’s (both
single and multi-objective) in order to obtain reducts, and hence provide some
solution to the challenging task of feature selection.

The use of soft computing in clustering has been reported in literature [6,7].
Fuzzy sets and rough sets have been incorporated in the c-means framework
to develop the fuzzy c-means (FCM) [8] and rough c-means (RCM) [9] algo-
rithms. While membership in FCM enables efficient handling of overlapping
partitions, the rough sets [1] deal with uncertainty, vagueness and incomplete-
ness in data. Collaborative clustering was first investigated by Pedrycz [10],
using standard FCM algorithm. This helps reveal a structure that is common
or similar to a number of subsets of the data. One may proceed by clustering
each sub-population locally as a module, considering small random samples,
thereby enabling faster convergence of clustering. Subsequently there is col-
laboration between these modules by intercommunicating the individual clus-
ter centroids. These representatives from the other sub-populations serve to
globally influence and refine the clustering result of each module. Eventually,
since the sub-populations are derived from the same large population, we con-
verge to a stable global clustering after effective collaboration between
the modules.

The concept of collaborative clustering can be further extended to the rough
domain using collaborative rough or collaborative rough-fuzzy clustering. The
use of rough sets helps in automatically controlling the effect of uncertainty
among patterns lying between the upper and lower approximations, during col-
laboration between the modules. Thereby patterns within the lower approxima-
tion play a more pivotal role during clustering. Incorporation of membership, in
the RCM framework, is seen to enhance the robustness of clustering as well as
collaboration.

The rest of the sections is organized as follows. Section 2 introduces the rel-
evant preliminaries on rough set theory and multi-objective genetic algorithms.
Sections 3 and 4 describe feature selection and clustering in the rough set frame-
work. Section 5 concludes the article.
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2 Preliminaries

In this section we briefly discuss the basic concepts of RST and Multi-Objective
Genetic Algorithms (MOGA), while assuming that readers are familiar with the
preliminaries of GAs.

2.1 Rough Sets

Rough sets [1] constitute a major mathematical tool for managing uncertainty
that arises from granularity in the domain of discourse – due to incomplete
information about the objects of the domain. The granularity is represented
formally in terms of an indiscernibility relation that partitions the domain. The
intention is to approximate a rough (imprecise) concept in the domain, by a
pair of exact concepts. These exact concepts are called the lower and upper
approximations, and are determined by the indiscernibility relation. The lower
approximation is the set of objects definitely belonging to the rough concept,
whereas the upper approximation is the set of objects possibly belonging to the
same. Fig. 1 provides an illustration of a rough set with its approximations. The
formal definitions of the above notions and others required for the present work
are given below.

Definition 1. An Information System A = (U, A) consists of a non-empty,
finite set U of objects (cases, observations, etc.) and a non-empty, finite set A
of attributes a (features, variables), such that a : U → Va, where Va is a value
set. We shall deal with information systems called decision tables, in which the
attribute set has two parts (A = C ∪D) consisting of the condition and decision
attributes (in the subsets C, D of A respectively). In particular, the decision
tables we take will have a single decision attribute d, and will be consistent, i.e.,
whenever objects x, y are such that for each condition attribute a, a(x) = a(y),
then d(x) = d(y).

Granulations

Upper
Approximation

Lower
Approximation

Actual Set

F

F

1

2

Fig. 1. Lower and upper approximations in a rough set
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Definition 2. Let B ⊂ A. Then a B-indiscernibility relation IND(B) is
defined as

IND(B) = {(x, y) ∈ U : a(x) = a(y), ∀a ∈ B}. (1)

It is clear that IND(B) partitions the universe U into equivalence classes

[xi]B = {xj ∈ U : (xi, xj) ∈ IND(B)}, xi ∈ U. (2)

Definition 3. The B-lower and B-upper approximations of a given set
X(⊆ U) are defined, respectively, as follows:

BX = {x ∈ U : [x]B ⊆ X},
BX = {x ∈ U : [x]B ∩X 	= φ}.
The B-boundary region is given by BNB(X) = BX \BX.

Reducts. In a decision table A = (U, C ∪D), one is interested in eliminating
redundant condition attributes, and actually relative (D)-reducts are computed.

Let B ⊆ C, and consider the B-positive region of D, viz., POSB(D) =⋃
[x]D

B[x]D. An attribute b ∈ B(⊆ C) is D-dispensable in B if POSB(D) =
POSB\{b}(D), otherwise b is D-indispensable in B. Here B is said to be D-

independent in A, if every attribute from B is D-indispensable in B.

Definition 4. B(⊆ C) is called a D-reduct in A, if B is D-independent in A
and POSC(D) = POSB(D).

Notice that, as decision tables with a single decision attribute d are taken to be
consistent, U = POSC(d) = POSB(D), for any d-reduct B.

The core is the set of essential attributes of any information system. Mathe-
matically, core(A) =

⋂
reduct(A), i.e., the set consists of those attributes, which

are members of all reducts.

Discernibility Matrix. D-reducts can be computed with the help of D-
discernibility matrices [2]. Let U = {x1, · · · , xm}. A D-discernibility matrix
MD(A) is defined as an m × m matrix of the information system A with the
(i, j)th entry cij given by

cij = {a ∈ C : a(xi) 	= a(xj), and (xi, xj) 	∈ IND(D)}, i, j ∈ {1, · · · , m}. (3)

A variant of the discernibility matrix, viz., distinction table [3] is used in our
work to enable faster computation.

Definition 5. A distinction table is a binary matrix with dimensions (m2−m)
2 ×

N , where N is the number of attributes in A. An entry b((k, j), i) of the matrix
corresponds to the attribute ai and pair of objects (xk, xj), and is given by

b((k, j), i) =
{

1 if ai(xk) 	= ai(xj),
0 if ai(xk) = ai(xj). (4)

The presence of a ‘1’ signifies the ability of the attribute ai to discern (or dis-
tinguish) between the pair of objects (xk, xj).
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2.2 Multi-Objective Genetic Algorithms (MOGA)

Most real-world search and optimization problems typically involve multiple ob-
jectives. A solution that is better with respect to one objective requires a com-
promise in other objectives. Unlike single-objective optimization problems, the
multiple-objective GA tries to optimize two or more conflicting characteristics
represented by fitness functions. Modeling this situation with a single-objective
GA would amount to a heuristic determination of a number of parameters in-
volved in expressing such a scalar-combination-type fitness function. MOGA, on
the other hand, generates a set of Pareto-optimal solutions [5] which simultane-
ously optimize the conflicting requirements of the multiple fitness functions.

Among the different multi-objective algorithms, it is observed that Non-
dominated Sorting Genetic Algorithm (NSGA-II) [11] possesses all the features
required for a good MOGA. It has been shown that this can converge to the
global Pareto front, while simultaneously maintaining the diversity of the pop-
ulation. We describe here the characteristics of NSGA-II, like non-domination,
crowding distance and the crowding selection operator.

Non-domination. The concept of optimality, behind the multi-objective op-
timization, deals with a set of solutions. The conditions for a solution to be
dominated with respect to the other solutions are given below.

Definition 6. If there are M objective functions, a solution x(1) is said to dom-
inate another solution x(2), if both conditions (a) and (b) are true:

(a) The solution x(1) is no worse than x(2) in all the M objective functions.
(b) The solution x(1) is strictly better than x(2) in at least one of the M objective

functions.

Otherwise the two solutions are non-dominating to each other. When a solution
i dominates solution j, then rank ri < rj .

The major steps for finding the non-dominated set in a population P of size
|P | are outlined below.

1. Set solution counter i = 1 and create an empty non-dominated set P ′.
2. For a solution j ∈ P (j 	= i), check if solution j dominates solution i.

If yes then go to Step 4.
3. If more solutions are left in P , increment j by one and go to Step 2

Else set P ′ = P ′ ∪ {i}.
4. Increment i by one.

If i ≤ |P | then go to Step 2 else declare P ′ as the non-dominated set.

After all the solutions of P are checked, the members of P ′ constitute the non-
dominated set at the first level (front with rank = 1). In order to generate
solutions for the next higher level (dominated by the first level), the above pro-
cedure is repeated on the reduced population P = P − P ′. This is iteratively
continued until P = ∅.
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Crowding distance. In order to maintain diversity in the population, a mea-
sure called crowding distance is used. This assigns the highest value to the
boundary solutions and the average distance of two solutions [(i + 1)th and
(i− 1)th] on either side of solution i along each of the objectives. The following
algorithm computes the crowding distance di of each point in the front F .

1. Let the number of solutions in F be l = |F| and assign di = 0 for i =
1, 2, . . . , l.

2. For each objective function fk, k = 1, 2, . . . , M , sort the set in its worse
order.

3. Set d1 = dl =∞.
4. For j = 2 to (l − 1) increment dj by fkj+1 − fkj−1 .

Crowding selection operator. Crowded tournament selection operator
is defined as follows. A solution i wins tournament with another solution j if any
one of the following is true:

– Solution i has better rank, i.e., ri < rj .
– Both the solutions are in the same front, i.e., ri = rj , but solution i is less

densely located in the search space, i.e., di > dj .

The NSGA-II. The NSGA-II algorithm in its modified form for handling high
dimensional data is presented in Section 3.4.

3 Application to Feature Selection

We describe here the reduct generation i.e., feature selection procedure, incor-
porating initial redundancy reduction, in single and multi-objective framework
using rough sets. We focus our analysis to two-class problems.

3.1 Feature Selection Using Rough Sets

It is a process that selects a minimum subset of M features from an original set
of N features (M ≤ N), so that the feature space is optimally reduced according
to an evaluation criterion. Finding the best feature subset is often intractable or
NP-hard. Feature selection typically involves the following steps:

– Subset generation: For N features, the total number of candidate subsets
is 2N . This makes an exhaustive search through the feature space infeasi-
ble, even with moderate value of N . Often heuristic and non-deterministic
strategies are found to be more practical.

– Subset evaluation: Each generated subset needs to be evaluated by a crite-
rion, and compared with the previous best subset.

– Stopping criterion: The algorithm may stop when either of the following holds.
• A predefined number of features are selected,
• a predefined number of iterations are completed,
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• when addition or deletion of any feature does not produce a better
subset, or
• an optimal subset is obtained according to the evaluation criterion.

– Validation: The selected best feature subset needs to be validated with
different tests.

Search is a key issue in feature selection, involving search starting point, search
direction, and search strategy. One also needs to measure the goodness of the
generated feature subset. Feature selection can be supervised as well as unsu-
pervised, depending on class information availability in data. The algorithms
are typically categorized under filter and wrapper models [12], with different
emphasis on dimensionality reduction or accuracy enhancement.

The essential properties of reduct are

– to classify among all elements of the universe with the same accuracy as the
starting attribute (feature) set, and

– to be of small cardinality.

A close observation reveals that these two characteristics are of a conflicting
nature. Hence the determination of reducts is better represented as a bi-objective
problem and [13] investigates the multi-objective feature selection criteria for
classification of cancer microarray data.

3.2 Single Objective Feature Selection Approach

Here we will discuss algorithms proposed by Wroblewski [3]. Wroblewski has
proposed three heuristic based approaches for finding minimal reducts based on
classical GAs, and permutation-based greedy approaches.

Method 1. This method uses greedy algorithms to generate the reducts. Here
the aim is to find the proper order of attributes as:

Step 1 : Generate an initial set of random permutations of attributes
τ(a1, . . . , aN), each of them representing an ordered list of attributes, i.e.,
(b1,. . .,bN ) = τ(a1,. . .,aN ).

Step 2 : For each ordered list, start with empty reduct R = φ and set i← 0.
Step 3 : Check whether R is reduct. If R is reduct, Stop.
Step 4 : Else, add one more element from the ordered list of attributes, i.e.

define R := R ∪ bi+1.
Step 5 : Go to step 3.

The result of this algorithm will be either a reduct or a set of attributes
containing a reduct as a subset. GAs help to find the reducts of different order.

Method 2. This method again uses greedy algorithms to generate the reducts.
We can describe this method as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



158 S. Mitra and H. Banka

Step 1 : Generate an initial set of random permutations of attributes
τ(a1, . . . , aN), each of them representing an ordered list of attributes, i.e.,
(b1,. . .,bN ) = τ(a1,. . .,aN ).

Step 2 : For each ordered list, define reduct R as whole set of attributes.
Step 3 : Set i← 1 and let R := R− bi.
Step 4 : Check whether R is reduct. If it is not, then undo step 3 and i← i+1.

Go back to step 3.

All genetic operators are chosen as in method 2. The result of this algorithm will
always be a reduct, the proof of which is discussed in [3]. However, a disadvantage
of this method is its high complexity.

Method 3. Solutions are represented by binary strings of length N , where N
is number of attributes (features). In the bit representation ‘1’ means that the
attribute is present and ‘0’ means that it is not. The following fitness function
is considered for each individual:

F1(ν) =
N − Lν

N
+

Cν

(m2 −m)/2
, (5)

where ν is reduct candidate, N is number of available attributes, Lν is number
of 1’s in ν, Cν is number of object combinations that ν can discern and m is
number of objects.

First part of the fitness function gives the candidate credit for containing less
attributes (few 1’s) and the second part of function determines the extent to
which the candidate can discern among objects.

3.3 Using MOGA

The algorithms reported in literature, e.g. in [3,4], vary more or less in defining
the fitness function, and typically use combined single objective functions. In
order to optimize the pair of conflicting requirements, the fitness function of [3]
was split in a two-objective GA setting. We use these two objective functions in
the present work in a modified form.

Accordingly, two fitness functions f1 and f2 are considered for each
individual. We have

f1(ν) =
N − Lν

N
(6)

and
f2(ν) =

Cν

(m2 −m)/2
, (7)

where ν is the reduct candidate, Lν represents the number of 1’s in ν, m is the
number of objects, and Cν indicates the number of object combinations ν can
discern between. The fitness function f1 gives the candidate credit for containing
less attributes (fewer 1’s), while the function f2 determines the extent to which
the candidate can discern among objects.
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Thus, by generating a reduct we are focusing on that minimal set of attributes
which can essentially distinguish between all patterns in the given set. In this
manner, a reduct is mathematically more meaningful as the most appropriate
set of non-redundant features selected from a high-dimensional data.

3.4 The Algorithm

NSGA-II is modified in Ref. [13] to effectively handle large datasets. Since we are
interested in inter-class distinction, the fitness function of eqn. (7) is modified as

f2(ν) =
Cν

m1 ∗m2
, (8)

where m1 and m2 are the number of objects in the two classes. The basic steps
of the proposed algorithm are summarized as follows.

1. Preprocessing for redundancy reduction is made for the high-dimensional
microarray data [13], to get the reduced attribute value table Ar.

2. d-distinction table is generated from Ar for the two classes being discerned.
3. A random population of size n is generated.
4. The two fitness values f1, f2, for each individual, are calculated using eqns.

(6), (8).
5. Non-Domination Sorting is done as discussed in Section 2.2, to identify dif-

ferent fronts.
6. Crowding sort based on crowding distance is performed to get a wide spread

of solutions.
7. Offspring solution of size n is created using fitness tournament selection,

crossover and mutation operators. This is a modification of crowded tourna-
ment selection of Section 2.2, with f1 being accorded a higher priority over
f2 during solution selection from the same front. Specifically, for ri = rj we
favour solution i if f1i > f1j (instead of di > dj).

8. Select the best populations of size n
2 each from both the parent and off-

spring solutions, based on non-dominated sorting, to generate a combined
population of size n. This modification enables effective handling of larger
population sizes in case of large datasets, along with computational gain.

9. Steps 4 to 7 are repeated for a pre-specified number of generations.

3.5 Experimental Results

Results for feature selection provided algorithm on benchmark microarray data,
like Colon1, Lymphoma2, and Leukemia3 cancer samples. Availability of litera-
ture about performance of other related algorithms on these datasets, summa-
rized in Table 1, prompted us to select them for our study.

1 http://microarray.princeton.edu/oncology
2 http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt
3 http://www.genome.wi.mit.edu/MPR

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



160 S. Mitra and H. Banka

Table 1. Usage details of the two-class microarray data

Data used # attributes Classes # samples No. of attributes by
preprocessing GA MOGA

Colon 2000 Colon cancer 40
Normal 22 1102 15 9

Lymphoma 4026 Other type 54
B-cell lymphoma 42 1867 18 2

Leukemia 7129 ALL 47
AML 25 3783 19 2

Reduct generation with a single-objective (classical) GA [3] was investigated
for different population sizes. The fitness function

Ft = α1f1(ν) + α2f2(ν) (9)

was used, in terms of eqns. (6) and (8), with the parameters α1 = α2 = 1.
Additionally, we investigated with 0 < α1, α2 < 1 for α1 = 1 − α2. Sample
results are provided in Table 1 for population size of 100, with optimal values
being generated for α1 = 0.9. It is observed that, for different choices of α1

and α2, the size of the minimal reduct was 15, 18, 19 for Colon, Lymphoma,
Leukemia data respectively.

The MOGA of Section 3.4 is run on the d-distinction table by using the fitness
functions of eqns. (6)-(8), with different population sizes, to generate reducts
upon convergence. Here the two fitness functions f1(ν) and f2(ν) offset each
other, such that the priority accorded to f1(ν) in Step 7 of the proposed algo-
rithm of Section 3.4 allows weaker reducts (with less than 100% discrimination
on object pairs from the d-distinction table) to appear in the best front. Some
results are also provided in Table 1 on the three sets of two-class microarray gene
expression data, after 15,000 generations. The corresponding recognition scores
(%) (on test set) by the powerful k-nearest neighbors (k-NN) classifier [14], for
different values of k, are presented in Fig. 2.

4 Application to Clustering

In this section we describe the different partitive algorithms used for cluster-
ing, like c-means, fuzzy c-means, rough c-means, and rough-fuzzy c-means. Our
objective is to contrast these algorithms while underlining the commonalities
existing between them. Let us consider N samples, c clusters, with cardinality
|ci| for ith cluster Ui. Here vi is the ith prototype, m the fuzzifier, xk the kth
sample or pattern at a distance dik from vi with membership uik in Ui. BUi,
BUi indicate lower and upper approximations of Ui, with wlow , wup being the
importance or weight of lower and upper approximations. S(Ui) is the within-
cluster distance of Ui, and d(Ui, Uj) is the between-cluster separation among Ui

and Uj .
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(a)

(b)

(c)

Fig. 2. Comparative performance of MOGA and GA using k−NN classifier on (a)
Colon, (b) Lymphoma, and (c) Leukemia datasets
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4.1 C-Means Clustering

The algorithm proceeds by partitioning N objects into c nonempty subsets. Dur-
ing each iteration of clustering algorithm, the centroids or means of the clusters
are computed. The main steps of the c-means algorithm [14] are as follows:

1. Assign initial means vi (also called centroids).
2. Assign each data object (pattern) xk to the cluster Ui for the closest mean.
3. Compute new mean for each cluster using

vi =

∑
xk∈Ui

xk

|ci| , (10)

where |ci| is the number of objects in cluster Ui.
4. Iterate Steps 2–3 until criterion function converges, i.e., there are no more

new assignments of objects.

4.2 Fuzzy C-Means (FCM)

This is a fuzzification of the c-means algorithm, proposed by Bezdek [8]. It
partitions a set of N patterns {xk} into c clusters by minimizing the objective
function J =

∑N
k=1

∑c
i=1(uik)m||xk − vi||2, where 1 ≤ m < ∞ is the fuzzifier,

vi is the ith cluster center, uik ∈ [0, 1] is the membership of the kth pattern to
it, and ||.|| is the distance, such that

vi =
∑N

k=1(uik)mxk∑N
k=1(uik)m

(11)

and
uik =

1
∑c

j=1

(
dik

djk

) 2
m−1

, (12)

∀i, with dik = ||xk − vi||2, subject to
∑c

i=1 uik = 1, ∀k, and 0 <
∑N

k=1 uik <
N , ∀i. The algorithm proceeds as in c-means, along with the incorporation of
membership.

4.3 Rough C-Means (RCM)

In the rough c-means algorithm, the concept of c-means is extended by viewing
each cluster as an interval or rough set [9]. A rough set X is characterized by its
lower and upper approximations BX and BX respectively, with the following
properties. (i) An object xk can be part of at most one lower approximation. (ii)
If xk ∈ BX of cluster X , then simultaneously xk ∈ BX . (iii) If xk is not a part of
any lower approximation, then it belongs to two or more upper approximations.
This permits overlaps between clusters.
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Computation of the cluster prototypes is modified in the rough framework,
by incorporating the concepts of upper and lower approximations. The right
hand side of eqn. (10) is split into two parts. The centroid vi of cluster Ui is
evaluated as vi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wlow

∑
xk∈BUi

xk

|BUi|
+wup

∑
xk∈(BUi−BUi)

xk

|BUi−BUi| if BUi 	= ∅ ∧BUi −BUi 	= ∅,
∑

xk∈(BUi−BUi)
xk

|BUi−BUi| if BUi = ∅ ∧BUi −BUi 	= ∅,
∑

xk∈BUi
xk

|BUi| otherwise,

(13)

where the parameters wlow and wup correspond to the relative importance of the
lower and upper approximations respectively. Here |BUi − BUi| is the number
of patterns in the rough boundary lying between the two approximations. RCM
is found to generate three types of clusters, such as those having objects (i) in
both the lower and upper approximations, (ii) only in lower approximation, and
(iii) only in upper approximation. Thereby the three cases of eqn. (13) need to
be considered while computing the cluster prototypes.

We now explain the condition under which an object may belong to the lower
or upper bound of a cluster. Let xk be an object at distance dik from centroid
vi of cluster Ui. The actual algorithm is outlined as follows.

1. Assign initial means vi for the c clusters.
2. Assign each data object (pattern) xk to the lower approximation BUi or

upper approximation BUi, BUj of cluster pairs Ui, Uj by computing the
difference in its distance dik − djk from cluster centroid pairs vi and vj .

3. Let dik be minimum and djk be the next to minimum.
If djk − dik is less than some threshold

then xk ∈ BUi and xk ∈ BUj and xk cannot be a member of any lower
approximation [Property (iii)],

else xk ∈ BUi such that distance dik is minimum over the c clusters
[Property (ii)].

4. Compute new mean for each cluster Ui using eqn. (13).
5. Repeat Steps 2-4 until convergence, i.e., there are no more new assignments

of objects.

The expression in eqn. (13) boils down to eqn. (10) when the lower approxima-
tion is equal to the upper approximation, implying an empty boundary region.
It is observed that the performance of the algorithm is dependent on the choice
of wlow, wup and threshold. We allowed wup = 1 − wlow, 0.5 < wlow < 1 and
0 < threshold < 0.5.

4.4 Rough-Fuzzy C-Means (RFCM)

A new rough-fuzzy c-means algorithm has been designed [15]. This allows one to
incorporate fuzzy membership value uik of a sample xk to a cluster mean vi, rel-
ative to all other means vj ∀ j 	= i, instead of the absolute individual distance dik
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from the centroid. This sort of relativistic measure, in terms of eqns. (11)-(12),
enhances the robustness of the clustering with respect to different choices of pa-
rameters. The major steps of the algorithm are provided below.

1. Assign initial means vi for the c clusters.
2. Compute uik by eqn. (12) for c clusters and N data objects.
3. Assign each data object (pattern) xk to the lower approximation BUi or

upper approximation BUi, BUj of cluster pairs Ui, Uj by computing the
difference in its membership uik − ujk to cluster centroid pairs vi and vj .

4. Let uik be maximum and ujk be the next to maximum.
If uik − ujk is less than some threshold

then xk ∈ BUi and xk ∈ BUj and xk cannot be a member of any lower
approximation,

else xk ∈ BUi such that membership uik is maximum over the c clusters.
5. Compute new mean for each cluster Ui, incorporating eqns. (11)-(12) into

eqn. (13), as vi =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wlow

∑
xk∈BUi

um
ikxk∑

xk∈BUi
um

ik
+ wup

∑
xk∈(BUi−BUi)

um
ikxk∑

xk∈(BUi−BUi)
um

ik

if BUi 	= ∅ ∧BUi −BUi 	= ∅,
∑

xk∈(BUi−BUi)
um

ikxk∑
xk∈(BUi−BUi)

um
ik

if BUi = ∅ ∧BUi −BUi 	= ∅,
∑

xk∈BUi
um

ikxk∑
xk∈BUi

um
ik

otherwise.

(14)

6. Repeat Steps 2-5 until convergence, i.e., there are no more new assignments.

As indicated earlier, we use wup = 1 − wlow, 0.5 < wlow < 1, m = 2, and
0 < threshold < 0.5.

An optimal selection of these parameters is an issue of reasonable interest.
Typically experimental investigation is done for different combinations. GAs
have been used for tuning the parameters threshold and wlow , while minimizing
a fitness function based on clustering validity index, for generating an optimal
number of clusters [16].

4.5 Collaborative RCM and RFCM Clustering

In this section we introduce a collaborative rough and rough-fuzzy c-means
clustering by incorporating collaboration between different partitions or sub-
populations.

Let a dataset be divided into P sub-populations or modules. Each sub-
population is independently clustered to reveal its structure. Collaboration is
incorporated by exchanging information between the modules regarding the local
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partitions, in terms of the collection of prototypes computed within the individ-
ual modules. This sort of divide-and-conquer strategy enables efficient mining of
large databases. The required communication links are hence at a higher level
of abstraction, thereby representing information granules (rough or rough-fuzzy
clusters) in terms of their prototypes.

The higher the value of the threshold, the larger is the number of samples in
the boundary regions of the rough-fuzzy clusters. This leads to a stronger collab-
oration between the prototypes of different modules, resulting in the movement
of the prototypes of corresponding clusters (from different modules) towards each
other. Often this is eventually followed by a merger of the corresponding proto-
types, and hence clusters. This implies that the cluster prototypes from different
modules influence and approach each other, due to the collaboration existing
mainly in the overlapping (or boundary) regions of the corresponding clusters.
The impact of the collaboration on the ensemble of modules is expressed in
terms of the changes occurring in the prototypes of the individual clusters. Since
the modules correspond to partitions from the same large dataset, this sort of
collaborative clustering stabilizes the ensemble towards efficient determination
of a globally existent structure.
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Fig. 3. Collaborative clustering on synthetic data for (a) Module A and (b) Module
B, with RFCM
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Fig. 4. Collaborative clustering on synthetic data for (a) Module A and (b) Module
B, with RCM

There exist two phases in the algorithm.

– Generation of RCM or RFCM clusters within the modules, without collabo-
ration. Here we employ 0.5 < wlow < 1, thereby providing more importance
to samples lying within the lower approximation of clusters while computing
their prototypes locally.

– Collaborative RCM or RFCM between the clusters, computed locally for
each module of the large dataset. Now we use 0 < wlow < 0.5 (we chose
wlow = 1−wlow), with a lower value providing higher precedence to samples
lying in the boundary region of overlapping clusters.
• In collaborative RCM, a cluster Ui may be merged with an overlapping

cluster Uj

if |BUi| ≤ |BUi −BUi| (15)

and vi is closest to vj in the feature space with (|BUi − BUi| − |BUi|)
being the maximum among all overlapping clusters.
• In case of collaborative RFCM, Ui can be considered for merging with Uj

if
∑

xk∈BUi

uik ≤
∑

xk∈(BUi−BUi)

uik (16)
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Fig. 5. Collaborative clustering on synthetic data for (a) Module A and (b) Module
B, with FCM

and vi is closest to vj in the feature space with (
∑

xk∈(BUi−BUi)
uik −∑

xk∈BUi
uik) being the maximum among all overlapping clusters.

Collaboration is done by exchanging cluster prototypes between modules,
leading to a global determination of the overall structure within the data.

Let there be c1 and c2 clusters, generated by RCM or RFCM, in a pair of modules
(P = 2) under consideration. During collaboration, we begin with c1 + c2 cluster
prototypes and merge using eqns. (15) or (16) respectively.

4.6 Experimental Results

Results are provided on a small synthetic dataset [15], [10], with the distance being
represented in terms of the traditional Euclidean metric for numeric features.

The two-dimensional synthetic dataset [10], [15], before and after collabora-
tion, are shown in Figs. 3–5. There are two modules (A and B) correspond-
ing to ten samples each, partitioned into three clusters. Sample results using
threshold = 0.2, wlow = 0.9 for RFCM and RCM, and wlow = 1− 0.9 = 0.1 for
collaborative RFCM and RCM, are provided.
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Fig. 3 indicates the clustering before (solid line) and after (dotted line) col-
laboration, using modules A and B respectively with RFCM. Analogous results
are depicted for RCM and FCM, in Figs. 4 and 5 respectively. Note that there
exists no membership in case of RCM, such that uik ∈ {0, 1}.

5 Conclusion

We have described some recent applications of rough sets to certain pattern
recognition tasks like feature selection and clustering. The evolutionary-rough
feature selection [13], using redundancy reduction for effective handling of high-
dimensional microarray gene expression data, serves as an interesting study
in Bioinformatics. The NSGA-II has been modified to more effectively handle
large data.

Microarray Bioinformatics has aided in a massive parallelization of experimen-
tal biology [17], and the associated explosion of research has led to
astonishing progress in our understanding of molecular biology. Future hybrid
approaches, combining powerful algorithms and interactive visualization tools
with the strengths of fast processors, hold further promise for enhanced perfor-
mance.

Collaborative clustering [10,15] is a promising approach towards modeling
agent-based systems. A multi-agent system is one in which a number of agents
cooperate and interact with each other in a complex and distributed environ-
ment, thereby achieving a global objective based on distributed data and control
[18]. While handling large data in this framework, each intelligent agent may
concentrate on information discovery (or clustering) within a module. Subse-
quently these agents can communicate with each other at the cluster interface,
using appropriate protocol, their cluster profiles represented in terms of the cen-
troids. Thereby, an agent can refine the partitioning within its own module by
collaborating with the other agents.
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Abstract. An extended method of rough sets, called a method of
weighted equivalence classes, is applied to a data table containing im-
precise values expressed in a possibility distribution. An indiscerniblity
degree between objects is calculated. A family of weighted equivalence
classes is obtained via indiscernible classes from a binary relation for in-
discernibility between objects. Each equivalence class in the family is ac-
companied by a possibilistic degree to which it is an actual one. By using
the family of weighted equivalence classes we derive a lower approxima-
tion and an upper approximation. These approximations coincide with
those obtained from methods of possible worlds. Therefore, the method
of weighted equivalence classes is justified.

Keywords: Rough sets, Imprecise value, Correctness criterion, Weighted
equivalence class, Lower and upper approximations.

1 Introduction

Rough sets proposed by Pawlak [27,29,30,31] play a significant role in the field
of knowledge discovery and data mining. The framework of rough sets has
the premise that data tables consisting of perfect information are obtained.
However, there ubiquitously exists imperfect information containing impreci-
sion and uncertainty in the real world [26]. Under these circumstances, it has
been investigated to apply rough sets to data tables containing imprecise val-
ues represented by a missing value, an or-set, a possibility distribution, etc
[5,6,7,8,9,10,11,14,15,16,17,18,19,20,21,22,23,24,33,34,35,36,37,38,39,40].

The methods are broadly separated into three ways. The first method is one
based on possible worlds, which is called a method of possible worlds [25,33,34],
[35,36]. In the method, a data table is divided into possible tables that consist
of crisp values. Each possible table is dealt with by the conventional method of

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 170–189, 2007.
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rough sets and then the results from possible tables are aggregated. The second
method is to use assumptions on indiscernibility of missing values [5,6,9,11,14,15],
[16,17,18,19,38,40]. Under the assumptions, we can obtain a binary relation for
indiscernibility between objects. To the binary relation the methods of rough
sets are applied using indiscernible classes. The third method directly deals
with imprecise values under extending the conventional method of rough sets
[20,21,22,23,24,38,39,40]. In the method, imprecise values are handled probabilis-
tically1 or possibilistically and the conventional method is extended probabilis-
tically or possibilistically [20,21,22,23,24,38,39,40]. A degree for indiscernibility
between any objects is calculated.

For the first method, the conventional method that is already established is
applied to each possible table. Therefore, there is no doubt for correctness of
the treatment. However, the method has difficulties for knowledge discovery at
the level of a set of possible values, although it is suitable for finding knowledge
at the level of possible values. This is because the number of possible tables
exponentially increases as the number of imprecise attribute values increases.

For the second method, assumptions are used for indiscernibility of missing
values. One assumption is that a missing value and an exact value are indis-
cernible with each other [14,15,16,17]. Another assumption is that indiscerni-
bility is directional [5,6,38,40]. Each missing value is discernible with any exact
values, whereas each exact value is indiscernible with any missing value, under
indiscernibility or discernibility between missing values. In the method, it is not
clarified why the assumptions are compromise to real data tables.

We focus on the third method. We adopt results from the method of possible
worlds as a correctness criterion, when extended methods of rough sets are ap-
plied to a data table containing imprecise values [20,21,22]. This kind of criterion
is commonly applied to query expressions in the field of databases handling im-
precise information [1,2,3,4,12,13,41]. The correctness criterion under applying
extended methods of rough sets to a data table is as follows:

Correctness criterion
Results obtained from applying an extended method to a data table containing
imprecise values are the same as ones obtained from applying the conventional
method to every possible table derived from that data table and aggregating the
results created in the possible tables.

This is formulated as follows:

Suppose that operator rep creates extended set rep(t) of possible tables derived
from data table t containing imprecise values. Let q′ be the conventional method
applied to rep(t), where q′ corresponds to extended method q directly applied to
data table t. The two results is the same; namely,

q(t) = q′(rep(t)).
1 Ras and Joshi propose a query answering system that handles imprecise values prob-

abilistically [32].
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This condition is schematized in Figure 1.

t
rep

rep(t)

q′q

q(t) = q′(rep(t))

�

�

�
�

�
�

�
�

���

Fig. 1. Correctness criterion of extended method q

When this condition is valid, extended method q gives correct results at the level
of possible values. This correctness criterion is checked as follows:

– Derive the extended set of possible tables from a data table containing im-
precise values.

– Apply the conventional method to each possible table.
– Aggregate the results obtained from possible tables.
– Apply the extended method to the original data table.
– Compare the aggregated results with ones obtained from the extended method.

The third method should be checked from the viewpoint of the correctness
criterion. The first approach of the third method was attempted by Stefanowski
and Tsoukiàs [38,39,40]. They calculate an inclusion degree between indiscernible
classes for objects by using implication operators under handling missing values
probabilistically. Their results do not satisfy the correctness criterion [21]. Re-
cently, Nakata and Sakai has proposed the method that satisfies the correctness
criterion when missing values are interpreted probabilistically [21,22]. However,
the method has difficulties for definability, because approximations are defined by
constructing sets from singletons. To overcome the difficulties, Nakata and Sakai
have proposed a method of applying weighted equivalence classes to a data table
containing probabilistic information or missing values interpreted probabilisti-
cally [23,24]. In this paper, we show that the method of weighted equivalence
classes satisfies the correctness criterion, when a data table contains imprecise
values expressed in a possibility distribution.

In section 2, we briefly address the conventional method of applying rough
sets to a data table consisting of precise values. In section 3, methods of possible
worlds are mentioned. This is the preparation for checking whether the method
of weighted equivalence classes satisfies the correctness criterion. In section 4,
the method of weighted equivalence classes is applied to a data table containing
imprecise values expressed in a possibility distribution. The last section presents
conclusions.
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2 Applying Rough Sets to Precise Information

Data table t having set A(= {A1, . . . , An}) of attributes consists of set U of
objects. Binary relation IND(ΨX) for indiscernibility of objects in subset Ψ ⊆ U
on subset X ⊆ A of attributes is:

IND(ΨX) = {(o, o′) ∈ Ψ × Ψ | ∀Ai ∈ X o[Ai] = o′[Ai]}, (1)

where o[Ai] and o′[Ai] denote values of attribute Ai for objects o and o′, respec-
tively. This relation is called an indiscernibility relation. Obviously, IND(ΨX)
is an equivalence relation. Family E(ΨX) (={E(ΨX)o | o ∈ Ψ}) of equivalence
classes is obtained from the binary relation, where E(ΨX)o is the equivalence
class containing object o and is expressed in E(ΨX)o = {o′ | (o, o′) ∈ IND(ΨX)}.
All equivalence classes obtained from the indiscernibility relation do not cover
with each other. This means that the objects are uniquely partitioned.

Example 1
We suppose that the following table is obtained:

O A B
1 x a
2 y b
3 x b
4 x a
5 z b
6 y b

The mark O denotes the object identity and U = {o1, o2, o3, o4, o5, o6}. For
set Ψ(= {o2, o3, o4, o5, o6} of objects, we obtain binary relation IND(ΨA) for
indiscernibility on attribute A:

IND(ΨA) = {(o2, o2), (o2, o6), (o3, o3), (o3, o4), (o4, o4), (o5, o5), (o6, o6)}.
From IND(ΨA) we have family E(ΨA) of equivalence classes:

E(ΨA) = {{o3, o4}, {o2, o6}, {o5}}.
Similarly, for Φ = {o1, o2, o3, o4, o6},

E(ΦB) = {{o1, o4}, {o2, o3, o6}}.

Using equivalence classes, lower approximation Apr(ΦY , ΨX) and upper ap-
proximation Apr(ΦY , ΨX) of E(ΦY ) by E(ΨX) are:

Apr(ΦY , ΨX) = {E(ΨX) | ∃E(ΦY ) E(ΨX) ⊆ E(ΦY )}, (2)

Apr(ΦY , ΨX) = {E(ΨX) | ∃E(ΦY ) E(ΨX) ∩ E(ΦY ) �= ∅}, (3)
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where E(ΨX) ∈ E(ΨX) and E(ΦY ) ∈ E(ΦY ) are equivalence classes on sets X
and Y of attributes, respectively. These formulas are expressed in terms of a
family of equivalence classes. When we express the approximations in terms of
a set of objects, the following expressions are used:

apr(ΦY , ΨX) = {o | o ∈ E(ΨX) ∧ ∃E(ΦY ) E(ΨX) ⊆ E(ΦY )}, (4)

apr(ΦY , ΨX) = {o | o ∈ E(ΨX) ∧ ∃E(ΦY ) E(ΨX) ∩ E(ΦY ) �= ∅}. (5)

Example 2
We check equivalence classes comprising families E(ΨA) and E(ΦB) in Exam-
ple 1. For inclusion and intersection between equivalence classes, {o2, o6} ⊂
{o2, o3, o6}, {o3, o4} �⊆ {o1, o4}, {o3, o4} �⊆ {o2, o3, o6}, {o3, o4} ∩ {o1, o4} �= ∅,
{o5}∩{o1, o4} = ∅, and {o5}∩{o2, o3, o6} = ∅. Thus, for the lower approximation
and the upper approximation,

Apr(ΦB , ΨA) = {{o2, o6}},
Apr(ΦB , ΨA) = {{o2, o6}, {o3, o4}}.

For the expressions in terms of a set of objects,

apr(ΦB , ΨA) = {o2, o6},
apr(ΦB , ΨA) = {o2, o3, o4, o6}.

3 Methods of Possible Worlds

In methods of possible worlds, data table t is divided into extended set rep(t) of
possible tables, and then the conventional method q′ addressed in the previous
section is applied to each possible table, and finally the results from possible
tables are aggregated. When m imprecise values expressed in a normal possibility
distribution are contained in data table t, extended set rep(t) of possible tables
that is derived from t is:

rep(t) = {(t1, μ(t1)), . . . , (tn, μ(tn))}, (6)

where μ(ti) denotes the possibilistic degree to which possible table ti is the
actual one, n is equal to Πj=1,mlj , and each imprecise value is expressed in a
possibility distribution having lj(j = 1, m)) elements. We suppose that values
from imprecise attribute values in (ti, μ(ti)) are expressed in terms of vi1, vi2,
. . ., vim. Possibilistic degree π(vik) of element vik comes from the possibility
distribution of the imprecise attribute value whose support has vik as an element.
Then,

μ(ti) = min
k=1,m

π(vik). (7)
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Example 3
We suppose that data table t is obtained:

t
O A B
1 x a
2 y {(a, 0.2), (b, 1)}p
3 {(x, 1), (y, 0.7)}p b
4 {(x, 1), (y, 0.4)}p a

U = {o1, o2, o3, o4} and subscript p of {(x, 1), (y, 1)}p denotes a possibility dis-
tribution. Extended set rep(t) of possible tables is:

rep(t) = {(t1, μ(t1)), · · · , (t8, μ(t8))},
where ti and μ(ti) are:

t1
O A B
1 x a
2 y a
3 x b
4 x a

t2
O A B
1 x a
2 y b
3 x b
4 x a

t3
O A B
1 x a
2 y a
3 x b
4 y a

t4
O A B
1 x a
2 y b
3 x b
4 y a

t5
O A B
1 x a
2 y a
3 y b
4 x a

t6
O A B
1 x a
2 y b
3 y b
4 x a

t7
O A B
1 x a
2 y a
3 y b
4 y a

t8
O A B
1 x a
2 y b
3 y b
4 y a

μ(t1) = min(1, 1, 0.2) = 0.2,
μ(t2) = min(1, 1, 1) = 1,
μ(t3) = min(1, 0.4, 0.2) = 0.2,
μ(t4) = min(1, 0.4, 1) = 0.4,
μ(t5) = min(0.7, 1, 0.2) = 0.2,
μ(t6) = min(0.7, 1, 1) = 0.7,
μ(t7) = min(0.7, 0.4, 0.2) = 0.2,
μ(t8) = min(0.7, 0.4, 1) = 0.4.

The conventional method is applied to each possible table, which consists of
crisp values. The family of equivalence classes on set X of attributes is obtained
from possible table ti. These equivalence classes are a possible equivalence class
on set X of attributes and have possibilistic degree μ(ti) to which they are an
actual equivalence class. Thus, the family of possible equivalence classes accom-
panied by a possibilistic degree is obtained for each possible table.

Example 4
Binary relations IND(A)t1 and IND(B)t1

2 for indiscernibility on attributes A
and B in possible table t1 of Example 3 are:

IND(A)t1 = {(o1, o3), (o1, o4), (o3, o4), (o1, o1), (o2, o2), (o3, o3), (o4, o4)},
IND(B)t1 = {(o1, o2), (o1, o4), (o2, o4), (o1, o1), (o2, o2), (o3, o3), (o4, o4)}.

2 Attributes A and B are used in place of UA and UB for U .
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Families of equivalence classes for attributes A and B are:

E(A)t1 = {{o1, o3, o4}, {o2}},
E(B)t1 = {{o1, o2, o4}, {o3}}.

These equivalence classes have possibilistic degree 0.2(= μ(t1)) to which they
are actual ones. Thus, families of possible equivalence classes accompanied by a
possibilistic degree for attributes A and B are:

{({o1, o3, o4}, 0.2), ({o2}, 0.2)},
{({o1, o2, o4}, 0.2), ({o3}, 0.2)}.

The conventional method addressed in the previous section is applied to each
possible table. Let Apr(Y, X)

ti
and Apr(Y, X)ti

denote the lower approximation
and the upper approximation of E(Y )ti by E(X)ti in possible table ti having
possibilistic degree μ(ti). Possibilistic degree κ(E(X) ∈ Apr(Y, X))ti to which
equivalence class E(X) is contained in Apr(Y, X) for possible table ti is obtained:

κ(E(X) ∈ Apr(Y, X))ti =
{

μ(ti) if E(X) ∈ Apr(Y, X)
ti
,

0 otherwise.
(8)

This shows that the possibilistic degree to which equivalence class E(X) is con-
tained in Apr(Y, X) is equal to μ(ti) for possible table ti, if the equivalence class is
an element in Apr(Y, X)

ti
. Similarly, possibilistic degree κ(E(X) ∈ Apr(Y, X))ti

to which equivalence class E(X) is contained in Apr(Y, X) for possible table ti
is obtained:

κ(E(X) ∈ Apr(Y, X))ti =
{

μ(ti) if E(X) ∈ Apr(Y, X)ti
,

0 otherwise.
(9)

The results from possible tables are aggregated. This is done by the union
of the approximations obtained from possible tables. Note that the maximum
possibilistic degree is adopted in the union if there exists the same equivalence
class accompanied by a different possibilistic degree. Therefore, possibilistic de-
grees κ(E(X) ∈ Apr(Y, X)) and κ(E(X) ∈ Apr(Y, X)) to which equivalence
class E(X) is contained in Apr(Y, X) and Apr(Y, X) are:

κ(E(X) ∈ Apr(Y, X)) = max
i=1,n

κ(E(X) ∈ Apr(Y, X))ti , (10)

κ(E(X) ∈ Apr(Y, X)) = max
i=1,n

κ(E(X) ∈ Apr(Y, X))ti . (11)

Finally,

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}, (12)

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}. (13)

These approximations are q′(rep(t)) in the correctness criterion.
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Proposition 1
We suppose that (E(X), κ(E(X) ∈ Apr(Y, X))) is an element of Apr(Y, X) and
(E(X), κ(E(X) ∈ Apr(Y, X))) is an element of Apr(Y, X) in table t. There exist
possible tables ti and tj where Apr(Y, X)

ti
contains E(X) and μ(ti) is equal to

κ(E(X) ∈ Apr(Y, X)) and where Apr(Y, X)tj
contains E(X) and μ(tj) is equal

to κ(E(X) ∈ Apr(Y, X)).

Proof
We focus on the lower approximation. From formula (10), if E(X) ∈ Apr(Y, X),
there are possible tables ti where κ(E(X) ∈ Apr(Y, X))ti > 0. This means
Apr(Y, X)

ti
contains E(X). Then, κ(E(X) ∈ Apr(Y, X))ti is equal to μ(ti)

from formula (8). The maximum of these μ(ti) is κ(E(X) ∈ Apr(Y, X)). Thus,
there exists possible table ti where Apr(Y, X)

ti
contains E(X) and μ(ti) is equal

to κ(E(X) ∈ Apr(Y, X)). The proof for the upper approximation is similar to
that of the lower approximation.

When the lower approximation and the upper approximation are expressed in
terms of a set of objects,

apr(Y, X) = {(o, κ(o ∈ apr(Y, X))) | κ(o ∈ apr(Y, X)) > 0}, (14)
κ(o ∈ apr(Y, X)) = max

E(X)�o
κ(E(X) ∈ Apr(Y, X)), (15)

apr(Y, X) = {(o, κ(o ∈ apr(Y, X))) | κ(o ∈ apr(Y, X)) > 0}, (16)
κ(o ∈ apr(Y, X)) = max

E(X)�o
κ(E(X) ∈ Apr(Y, X)). (17)

The most crucial factor in the computational complexity of the method of
possible worlds is the number of possible tables. When a data table has m im-
precise values expressed in a possibility distribution whose support consists of l
elements averagely, the number of possible tables is O(lm).

Example 5
For inclusion and intersection of possible equivalence classes on attributes A and
B of possible table t1 in Example 4.

{o1, o3, o4} �⊆ {o1, o2, o4},
{o1, o3, o4} �⊆ {o3},
{o2} ⊆ {o1, o2, o4},

{o1, o3, o4} ∩ {o1, o2, o4} �= ∅,
{o2} ∩ {o1, o2, o4} �= ∅.

Thus,

Apr(B, A)
t1

= {o2},
Apr(B, A)t1

= {{o2}, {o1, o3, o4}},
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and κ({o2} ∈ Apr(B, A))t1 , κ({o1, o3, o4} ∈ Apr(Y, X))t1 , and κ({o2} ∈
Apr(B, A))t1 are equal to possibilistic degree 0.2 that t1 has. Similarly for the
other possible tables,

Apr(B, A)
t2

= {o2},
Apr(B, A)t2

= {{o2}, {o1, o3, o4}},

and κ({o2} ∈ Apr(B, A))t2 , κ({o1, o3, o4} ∈ Apr(B, A))t2 , and κ({o2} ∈
Apr(B, A))t2 are equal to 1;

Apr(B, A)
t3

= {o2, o4},
Apr(B, A)t3

= {{o1, o3}, {o2, o4}},

and κ({o2, o4} ∈ Apr(B, A))t3 , κ({o1, o3} ∈ Apr(B, A))t3 , and κ({o2, o4} ∈
Apr(B, A))t3 are equal to 0.2;

Apr(B, A)
t4

= ∅,
Apr(B, A)t4

= {{o1, o3}, {o2, o4}},

and κ({o1, o3} ∈ Apr(B, A))t4 and κ({o2, o4} ∈ Apr(B, A))t4 are equal to 0.4;

Apr(B, A)
t5

= {o1, o4},
Apr(B, A)t5

= {{o1, o4}, {o2, o3}},

and κ({o1, o4} ∈ Apr(B, A))t5 , κ({o1, o4} ∈ Apr(B, A))t5 , and κ({o2, o3} ∈
Apr(B, A))t5 are equal to 0.2;

Apr(B, A)
t6

= {{o1, o4}, {o2, o3}},
Apr(B, A)t6

= {{o1, o4}, {o2, o3}},

and κ({o1, o4} ∈ Apr(B, A))t6 , κ({o2, o3} ∈ Apr(B, A))t6 , κ({o1, o4} ∈
Apr(B, A))t6 , and κ({o2, o3}∈Apr(B, A))t6 are equal to 0.7;

Apr(B, A)
t7

= {o1},
Apr(B, A)t7

= {{o1}, {o2, o3, o4}},

and κ({o1} ∈ Apr(B, A))t7 , κ({o1} ∈ Apr(B, A))t7 , and κ({o2, o3, o4} ∈
Apr(B, A))t7 are equal to 0.2;

Apr(B, A)
t8

= {o1},
Apr(B, A)t8

= {{o1}, {o2, o3, o4}},
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and κ({o1} ∈ Apr(B, A))t8 , κ({o1} ∈ Apr(B, A))t8 , and κ({o2, o3, o4} ∈
Apr(B, A))t8 are equal to 0.4.

We aggregate the results obtained from possible tables. The union of the
results from possible tables is made. Thus, the possible equivalence classes that
satisfy κ(E(A) ∈ Apr(B, A)) > 0 are {o1}, {o2}, {o1, o4}, {o2, o3}, and {o2, o4}.
The possible equivalence classes that satisfy κ(E(A) ∈ Apr(B, A)) > 0 are
{o1}, {o2}, {o1, o3}, {o1, o4}, {o2, o3}, {o2, o4}, {o1, o3, o4}, {o2, o3, o4}. For lower
approximation Apr(B, A),

κ({o1} ∈ Apr(B, A)) = max(0, 0, 0, 0, 0, 0, 0.2, 0.4) = 0.4,

κ({o2} ∈ Apr(B, A)) = max(0.2, 1, 0, 0, 0, 0, 0, 0) = 1,

κ({o1, o4} ∈ Apr(B, A)) = max(0, 0, 0, 0, 0.2, 0.7, 0, 0) = 0.7,

κ({o2, o3} ∈ Apr(B, A)) = max(0, 0, 0, 0, 0, 0.7, 0, 0) = 0.7,

κ({o2, o4} ∈ Apr(B, A)) = max(0, 0, 0.2, 0, 0, 0, 0, 0) = 0.2.

Finally,

Apr(B, A) = {({o1}, 0.4), ({o2}, 1), ({o1, o4}, 0.7), ({o2, o3}, 0.7), ({o2, o4}, 0.2)}.

Similarly, for upper approximation Apr(B, A),

Apr(B, A) = {({o1}, 0.4), ({o2}, 1), ({o1, o3}, 0.4), ({o1, o4}, 0.7), ({o2, o3}, 0.7),
({o2, o4}, 0.4), ({o1, o3, o4}, 1), ({o2, o3, o4}, 0.4)}.

These approximations are q′(rep(t)) in the correctness criterion.

When the lower approximation is expressed in terms of a set of objects,

κ(o1 ∈ apr(B, A)) = max(0.4, 0.7) = 0.7,

κ(o2 ∈ apr(B, A)) = max(1, 0.7, 0.2) = 1,

κ(o3 ∈ apr(B, A)) = 0.7,

κ(o4 ∈ apr(B, A)) = max(0.7, 0.2) = 0.7.

Similarly for the upper approximation,

κ(o1 ∈ apr(B, A)) = 1,

κ(o2 ∈ apr(B, A)) = 1,

κ(o3 ∈ apr(B, A)) = 1,

κ(o4 ∈ apr(B, A)) = 1.

Thus,

apr(B, A) = {(o1, 0.7), (o2, 1), (o3, 0.7), (o4, 0.7)},
apr(B, A) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1)}.
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4 Applying Methods of Weighted Equivalence Classes to
Possibilistic Information

When a data table contains imprecise values for attributes, we calculate the
degree to which two objects are equal in the attribute values. The degree is the
indiscernibility degree of the two objects on the attributes. In this case, a binary
relation for indiscernibility is,

IND(X) = {((o, o′), κ(o[X ] = o′[X ])) | (κ(o[X ] = o′[X ]) �= 0) ∧ (o �= o′)}
∪{((o, o), 1)}, (18)

where κ(o[X ] = o′[X ]) denotes the indiscernibility degree of objects o and o′ on
set X of attributes and is equal to κ((o, o′) ∈ IND(X)),

κ(o[X ] = o′[X ]) =
⊗

Ai∈X

κ(o[Ai] = o′[Ai]), (19)

where operator
⊗

depends on properties of imprecise attribute values. When
the imprecise attribute values are expressed in a possibility distribution, the
operator is min.

κ(o[Ai] = o′[Ai]) = max
u∈dom(Ai)

min(πo[Ai](u), πo′[Ai](u)), (20)

where dom(Ai) denotes the domain of attribute Ai and πo[Ai](u) and πo′[Ai](u)
denote possibility distributions expressing attribute values o[Ai] and o′[Ai],
respectively.

Example 6
In table t of Example 3, binary relation IND(A) for indiscernibility on attribute
A is obtained:

IND(A) = {((o1, o3), 1), ((o1, o4), 1), ((o2, o3), 0.7), ((o2, o4), 0.4),
((o3, o4), 1), ((o1, o1), 1), ((o2, o2), 1), ((o3, o3), 1), ((o4, o4), 1)}.

From binary relation IND(X) for indiscernibility, family E(X) of weighted
equivalence classes is obtained via indiscernible classes. Indiscernible class
S(X)o consisting of objects that are paired with object o among the elements of
IND(X) is:

S(X)o = {o′ | κ((o, o′) ∈ IND(X)) > 0}. (21)

S(X)o is the greatest possible equivalence class among the possible equivalence
classes containing objects o. Let PS(X)o denote the power set of S(X)o. From
PS(X)o, family PossE(X)o of possible equivalence classes containing object o
is obtained:

PossE(X)o = {E(X) | E(X) ∈ PS(X)o ∧ o ∈ E(X)}. (22)
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Whole family PossE(X) of possible equivalence classes is:

PossE(X) = ∪oPossE(X)o. (23)

Possibilistic degree κ(E(X) ∈ E(X)) to which possible equivalence class E(X) ∈
PossE(X) is an actual one is:

κ(E(X) ∈ E(X)) = κ(∧o∈E(X) and o′∈E(X)(o[X ] = o′[X ])
∧o∈E(X) and o′ �∈E(X)(o[X ] �= o′[X ])), (24)

where o �= o′, κ(f) is the possibilistic degree to which formula f is satisfied,
and κ(f) = 1 when there exists no f . Now, imprecise values are expressed in a
normal possibility distribution. Suppose that a data table and E(X) consist of
k objects and l objects, respectively. The above possibilistic degree is calculated
as follows:

κ(E(X) ∈ E(X)) = max
u,v1,···,vk−l

min( min
o∈E(X)

πo[X](u), min
i=1,k−l

πo′
i[X](vi)), (25)

where o′i �∈ E(X), X = {A1, · · · , Am}, u ∈ dom(X)(= dom(A1)×· · ·×dom(Am)),
vi ∈ dom(X) and vi �= u for all i. Finally,

E(X) = {(E(X), κ(E(X) ∈ E(X))) | κ(E(X) ∈ E(X)) > 0}. (26)

Proposition 2
When (E(X), κ(E(X) ∈ E(X))) is an element of E(X) in data table t, there
exists possible table ti where E(X)ti contains E(X) and μ(ti) is equal to
κ(E(X) ∈ E(X)).

Proof
Suppose thatu and vi are expressed in (u1, · · · , um) and (vi1, · · · , vim), respectively.
min(mino∈E(X) πo[X](u), mini=1,k−l πo′

i[X](vi)) for u, v1, · · · , vk−l in formula (25)
is equal to the possibilistic degree to which each object o ∈ E(X) takes the same
possible value uj and each object o′i �∈ E(X) takes possible value vij as the value
of attribute Aj for j = 1, m. The possibilistic degree is equal to that of the possible
table where each object o ∈ E(X) takes the same possible value uj and each object
o′i �∈ E(X) takes possible value vij as the value of attribute Aj for j = 1, m and all
objects take a possible value with the maximum degree 1 for the attributes except
X . Thus, there exists possible table ti where E(X)ti contains E(X) and μ(ti) is
equal to κ(E(X) ∈ E(X)).

Proposition 3
E(X) in a data table is equal to the union of the families of possible equiva-
lence classes accompanied by a possibilistic degree, where each family of possi-
ble equivalence classes is obtained from a possible table created from the data
table.
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Proof
From Proposition 2, if there exists (E(X), κ(E(X) ∈ E(X))), there exist pos-
sible tables having the family of possible equivalence classes containing E(X).
From formula (25), κ(E(X) ∈ E(X)) is equal to the maximum degree that
E(X) has among the possible tables. The maximum degree is taken as the pos-
sibilistic degree when the same equivalence class accompanied by a different
possibilistic degree is obtained in the union. So, (E(X), κ(E(X) ∈ E(X))) is
equal to one obtained from the union of the families of possible equivalence
classes.

Proposition 4
For any object o,

max
E(X)�o

κ(E(X) ∈ E(X)) = 1. (27)

Proof
Every imprecise value is expressed in a normal possibility distribution. So, there
is a possible table where all imprecise values are replaced by an element hav-
ing the maximum possibilistic degree 1 for any data table. Each object belongs
to either of the equivalence classes obtained from the possible table. Thus, the
above formula holds.

Example 7
We use the binary relation for indiscernibility in Example 6. Each indiscernible
class for object oi, the greatest possible equivalence class containing object oi,
is, respectively:

S(A)o1 = {o1, o3, o4},
S(A)o2 = {o2, o3, o4},
S(A)o3 = {o1, o2, o3, o4},
S(A)o4 = {o1, o3, o3, o4}.

Each power set of these sets is, respectively:

PS(A)o1 = {∅, {o1}, {o3}, {o4}, {o1, o3}, {o1, o4}, {o3, o4}, {o1, o3, o4}},
PS(A)o2 = {∅, {o2}, {o3}, {o4}, {o2, o3}, {o2, o4}, {o3, o4}, {o2, o3, o4}},
PS(A)o3 = PS(A)o4

= {∅, {o1}, {o2}, {o3}, {o4}, {o1, o2}, {o1, o3}, {o1, o4}, {o2, o3},
{o2, o4}, {o3, o4}, {o1, o2, o3}, {o1, o2, o4}, {o1, o3, o4}, {o2, o3, o4},
{o1, o2, o3, o4}}.

Each family of possible equivalence classes containing object oi is respectively:

PossE(A)o1 = {{o1}, {o1, o3}, {o1, o4}, {o1, o3, o4}},
PossE(A)o2 = {{o2}, {o2, o3}, {o2, o4}, {o2, o3, o4}},
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PossE(A)o3 = {{o3}, {o1, o3}, {o2, o3}, {o3, o4}, {o1, o2, o3}, {o1, o3, o4},
{o2, o3, o4}, {o1, o2, o3, o4}},

PossE(A)o4 = {{o4}, {o1, o4}, {o2, o4}, {o3, o4}, {o1, o2, o4}, {o1, o3, o4},
{o2, o3, o4}, {o1, o2, o3, o4}}.

The whole family of possible equivalence classes is:

PossE(A) = {{o1}, {o2}, {o3}, {o4}, {o1, o2}, {o1, o3}, {o1, o4}, {o2, o3}, {o2, o4},
{o3, o4}, {o1, o2, o3}, {o1, o2, o4}, {o1, o3, o4}, {o2, o3, o4},
{o1, o2, o3, o4}}.

The possibilistic degree κ({o1} ∈ E(A)) to which possible equivalence class {o1}
is an actual one is:

κ({o1} ∈ E(A)) = κ((o1[A] �= o2[A]) ∧ (o1[A] �= o3[A]) ∧ (o1[A] �= o4[A]))
= min(1, 0.7, 0.4)
= 0.4.

Similarly,

κ({o2} ∈ E(A)) = 1,

κ({o3} ∈ E(A)) = 0,

κ({o4} ∈ E(A)) = 0,

κ({o1, o2} ∈ E(A)) = 0,

κ({o1, o3} ∈ E(A)) = 0.4,

κ({o1, o4} ∈ E(A)) = 0.7,

κ({o2, o3} ∈ E(A)) = 0.7,

κ({o2, o4} ∈ E(A)) = 0.4,

κ({o3, o4} ∈ E(A)) = 0,

κ({o1, o2, o3} ∈ E(A)) = 0,

κ({o1, o2, o4} ∈ E(A)) = 0,

κ({o1, o3, o4} ∈ E(A)) = 1,

κ({o2, o3, o4} ∈ E(A)) = 0.4,

κ({o1, o2, o3, o4} ∈ E(A)) = 0.

Thus, the family of weighted equivalence classes on attribute A is:

E(A) = {({o1}, 0.4), ({o2}, 1), ({o1, o3}, 0.4), ({o1, o4}, 0.7), ({o2, o3}, 0.7),
({o2, o4}, 0.4), ({o1, o3, o4}, 1), ({o2, o3, o4}, 0.4)}.

Similarly, the family of weighted equivalence classes on attribute B is:

E(B) = {({o3}, 0.2), ({o1, o4}, 1), ({o2, o3}, 1), ({o1, o2, o4}, 0.2)}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



184 M. Nakata and H. Sakai

Using families of weighted equivalence classes, we can obtain lower approx-
imation Apr(Y, X) and upper approximation Apr(Y, X) of E(Y ) by E(X). For
the lower approximation,

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}, (28)
κ(E(X) ∈ Apr(Y, X)) = max

E(Y )
min(κ(E(X) ⊆ E(Y )),

κ(E(X) ∈ E(X)), κ(E(Y ) ∈ E(Y ))), (29)

where

κ(E(X) ⊆ E(Y )) =
{

1 if E(X) ⊆ E(Y ),
0 otherwise. (30)

For the upper approximation,

Apr(Y, X) = {(E(X), κ(o ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0}, (31)
κ(E(X) ∈ Apr(Y, X)) = max

E(Y )
min(κ(E(X) ∩ E(Y ) �= ∅),

κ(E(X) ∈ E(X)), κ(E(Y ) ∈ E(Y ))), (32)

where

κ(E(X) ∩ E(Y ) �= ∅) =
{

1 if E(X) ∩E(Y ) �= ∅,
0 otherwise. (33)

Proposition 5
We suppose that (E(X), κ(E(X) ∈ Apr(Y, X))) is an element of Apr(Y, X) and
(E(X), κ(E(X) ∈ Apr(Y, X))) is an element of Apr(Y, X) in data table t. There
exist possible tables ti and tj where Apr(Y, X)

ti
contains E(X) and μ(ti) is

equal to κ(E(X) ∈ Apr(Y, X)) and where Apr(Y, X)tj
contains E(X) and μ(tj)

is equal to κ(E(X) ∈ Apr(Y, X)).

Proof
We focus on the lower approximation. We suppose to obtain E(X) ⊆ E(Y ),
κ(E(X) ∈ E(X)) > 0, and κ(E(Y ) ∈ E(Y )) > 0 for E(Y ) that gives κ(E(X) ∈
Apr(Y, X)) > 0 in formula (29). From Proposition 2, there is possible tables
tj and tk accompanied by μ(tj) and μ(tk) equal to κ(E(X) ∈ E(X)) and
κ(E(Y ) ∈ E(Y )), respectively. In possible table tj we suppose that every object
o ∈ E(X) takes the same value xj and every object o′ �∈ E(X) takes different
value x′

j from xj for X , and similarly in possible table tk every object o ∈ E(Y )
takes the same value yk and every object o′ �∈ E(Y ) takes different value y′

k

from yk for Y . Clearly, there is possible table ti where every object o ∈ E(X)
takes the same value xj and every object o′ �∈ E(X) takes different value x′

j

from xj for X and every object o ∈ E(Y ) takes the same value yk and every
object o′ �∈ E(Y ) takes different value y′

k from yk for Y . And in possible table ti
Apr(Y, X)

ti
contains E(X) and possible table ti is accompanied by possibilistic
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degree μ(ti) equal to min(μ(tj), μ(tk))(= κ(E(X) ∈ Apr(Y, X)). The proof for
the upper approximation is similar to that of the lower approximation.

Proposition 6
The lower approximation and the upper approximation that are obtained by
the method of weighted equivalence classes coincide with ones obtained by the
method of possible worlds.

Proof
This is obvious because the lower approximation and the upper approximation
that are obtained by the method of weighted equivalence classes are equal to the
union of the ones obtained from possible tables, which is easily proved similarly
to that of Proposition 3.

This proposition means that the method of weighted equivalence classes satisfies
the correctness criterion.

For expressions in terms of a set of objects, the same expressions as in
section 3 are used.

The most crucial factor in the computational complexity of the method of
weighted equivalence classes is the number of weighted equivalence classes that
are accompanied by a non-zero possibilistic degree. When m is the maximum
number of imprecise values whose support has non-empty intersection on an at-
tribute, the number of weighted equivalence classes is O(2m) for the attribute. m
is usually much smaller than the total number of imprecise values in a data ta-
ble. Furthermore, m decreases as possibility distributions are restricted by data
cleansing, etc.

Example 8
Using the families of weighted equivalence classes in Example 7, we derive the
lower approximation and the upper approximation of E(B) by E(A). For the
lower approximation, the possibilistic degree to which equivalence class {o1} is
contained in Apr(B, A) is:

κ({o1} ∈ Apr(B, A)) = max(min(1, 0.4, 1), min(1, 0.4, 0.2)) = 0.4.

Similarly,

κ({o2} ∈ Apr(B, A)) = 1,

κ({o1, o3} ∈ Apr(B, A)) = 0,

κ({o1, o4} ∈ Apr(B, A)) = 0.7,

κ({o2, o3} ∈ Apr(B, A)) = 0.7,

κ({o2, o4} ∈ Apr(B, A)) = 0.2,

κ({o1, o3, o4} ∈ Apr(B, A)) = 0,

κ({o2, o3, o4} ∈ Apr(B, A)) = 0.
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Thus,

Apr(B, A) = {({o1}, 0.4), ({o2}, 1), ({o1, o4}, 0.7), ({o2, o3}, 0.7), ({o2, o4}, 0.2)}.

From this expression, possibilistic degrees to which each object is contained in
the lower approximation are:

κ(o1 ∈ apr(B, A)) = max(0.4, 0.7) = 0.7,

κ(o2 ∈ apr(B, A)) = max(1, 0.7, 0.2) = 1,

κ(o3 ∈ apr(B, A)) = 0.7,

κ(o4 ∈ apr(B, A)) = max(0.7, 0.2) = 0.7.

Thus,

apr(B, A) = {(o1, 0.7), (o2, 1), (o3, 0.7), (o4, 0.7)}.

Similarly, for the upper approximation,

Apr(B, A) = {({o1}, 0.4), ({o2}, 1), ({o1, o3}, 0.4), ({o1, o4}, 0.7), ({o2, o3}, 0.7),
({o2, o4}, 0.4), ({o1, o3, o4}, 1), ({o2, o3, o4}, 0.4)},

apr(B, A) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1)}.

Indeed, the lower approximation and the upper approximation coincide with
ones obtained from the method of possible worlds in Example 5.

Using families of weighted equivalence classes, we can obtain the lower approx-
imation and the upper approximation for two sets Φ and Ψ . We suppose that
families E(Ψ) and E(Φ) of weighted equivalence classes are obtained for sets Ψ
and Φ, respectively. Let (E(Ψ), κ(E(Ψ) ∈ E(Ψ))) denote an element of E(Ψ)
and (E(Φ), κ(E(Φ) ∈ E(Φ))) denote an element of E(Φ). Lower approximation
Apr(Φ, Ψ) and upper approximation Apr(Φ, Ψ) of E(Φ) by E(Ψ) are:

Apr(Φ, Ψ) = {(E(Ψ), κ(E(Ψ) ∈ Apr(Φ, Ψ))) | κ(E(Ψ) ∈ Apr(Φ, Ψ)) > 0}, (34)
κ(E(Ψ) ∈ Apr(Φ, Ψ)) = max

E(Φ)
min(κ(E(Ψ) ⊆ E(Φ)), κ(E(Ψ) ∈ E(Ψ)),

κ(E(Φ) ∈ E(Φ))), (35)

where

κ(E(Ψ) ⊆ E(Φ)) =
{

1 if E(Ψ) ⊆ E(Φ),
0 otherwise. (36)

Apr(Φ, Ψ) = {(E(Ψ), κ(E(Ψ) ∈ Apr(Φ, Ψ))) | κ(E(Ψ) ∈ Apr(Φ, Ψ)) > 0}, (37)
κ(E(Ψ) ∈ Apr(Φ, Ψ)) = max

E(Φ)
min(κ(E(Ψ) ∩ E(Φ) �= ∅), κ(E(Ψ) ∈ E(Ψ)),

κ(E(Φ) ∈ E(Φ))), (38)
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where

κ(E(Ψ) ∩ E(Φ) �= ∅) =
{

1 if E(Ψ) ∩ E(Φ) �= ∅,
0 otherwise. (39)

For expressions in terms of a set of objects,

apr(Φ, Ψ) = {(o, κ(o ∈ apr(Φ, Ψ))) | κ(o ∈ apr(Φ, Ψ)) > 0}, (40)
κ(o ∈ apr(Φ, Ψ)) = max

E(Ψ)�o
κ(E(Ψ) ∈ Apr(Φ, Ψ)). (41)

apr(Φ, Ψ) = {(o, κ(o ∈ apr(Φ, Ψ))) | κ(o ∈ apr(Φ, Ψ)) > 0}, (42)
κ(o ∈ apr(Φ, Ψ)) = max

E(Ψ)�o
κ(E(Ψ) ∈ Apr(Φ, Ψ)). (43)

5 Conclusions

We have described the extended method where weighted equivalence classes are
used in order to deal with imprecise values expressed in a possibility distribu-
tion. The lower approximation and the upper approximation by the method of
weighted equivalence classes coincide with ones by the method of possible worlds.
In other words, this method satisfies the correctness criterion that is used in the
field of incomplete databases. This is justification of the method of weighted
equivalence classes.
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Abstract. The integration of mathematical and statistical data analysis
research can engender a novel and better approach, especially for sur-
vival analysis. This paper is devoted to Professor Pawlak and his ideas
about rough sets and its applications. We propose MULTIHYRIS, an
alternative hybrid intelligent system with a rough sets and population
based approach for survival analysis. MULTIHYRIS is designed to in-
crease the versatility and efficiency of survival analysis techniques. The
MULTIHYRIS architecture incorporates mathematics - rough sets (with
discernibility relations and individual patient consideration) - with statis-
tics - Kaplan-Meier and Cox methods (with population estimates). The
central idea behind MULTIHYRIS is to perform univariate analysis by
using rough sets, database management and the Kaplan-Meier method
with soft computing.

All results from the univariate analysis are subsequently used in fur-
ther mulitvariate analysis. In this stage, we provide two optional ap-
proaches to serve different requirements; rough sets integrated with
database management and the Cox method. The former approach is
able to produce decision rules while the latter generates a Cox model.
Furthermore, set operations are used to unite these two outcomes and
generate new reducts - hybrid reducts based on our rough sets-population
based system. The informativeness of the rules and models can be ver-
ified within this analysis by validation processes and statistical tests.
To demonstrate MULTIHYRIS, we have implemented it on a real-world
geriatric data set, collected from the Dalhousie Medical School.

1 Introduction

“... rough set theory it is not an alternative
to classical set theory but it is embedded in it.”

Zdzislaw Pawlak (2005), A Treatise on Rough Sets

Survival analysis describes time-to-event analysis. Statistics yield useful survival
analysis data and theoretical tests to provide solutions. Typically, researchers
accomplish this analysis by computing the probability that the event will occur
within a specific time and include a comparison of several risk factors. Frequently,
however, the prediction of whether the event will eventually occur or not is of

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 190–205, 2007.
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primary importance. It often happens that the study does not span enough time
in order to observe the event for all patients.

Two extra factors we consider for survival analysis include: (i) survival time,
commonly misleading, we mean the time patients are admitted to the study
until the time to death as well as the time to particular events (e.g., recurrence
of disease or time until metastatis to another organ); (ii) if any patient leaves the
study for any reason, use of a censor variable is required, indicating the period of
observation was cut off before the event of interest occurred. To properly address
censoring, modeling techniques must take into account that for these patients
the event does not occur during the follow-up period. For this reason, statistics
which can be considered as a population based approach is inevitable.

In the early 1980’s, Pawlak originally introduced rough sets theory [1,2]. Dur-
ing the years 1980–2006, he has continued his remarkable study. Rough set the-
ory and its research has a long and rich history. Recently, Pawlak introduced the
relations between rough sets and flow graphs [3,4]. He illustrated its applicabil-
ity on conflict analysis and voting problems [5]. Pawlak and Skowron discussed
some issues on rough sets and philosophical observations of rough set theory
in [6,7,8,9,10]. Within the past two decades research into theoretical aspects
of rough sets explored the complementary nature of its properties with other
mathematical theories. At the same time, rough sets applications became larger,
more complex and systematic. Rough sets, a modern mathematics which was
originally devised by Pawlak, makes for balanced approaches between theory
and practice possible.

1.1 Related Works

Applications of rough sets are widening and emerging and are continuously
marked with advancements, for example, survival analysis. Some studies have
been conducted using rough sets [11,12]. These studies utilized inconsistent data
that occurred in 246 records out of 557 records in throat cancer patients. The
authors set the threshold different for attribute values among such inconsistent
records. They used the Kaplan-Meier survival function [13] to cluster groups
of patients into approximately similar Kaplan-Meier characteristics. The notion
of using Kaplan-Meier with rough set theory is used successfully. However, the
Kaplan-Meier curve is used under the condition that the resulting clusters are
representative of the data by visualization. Indeed, the visual determination
of such curves requires special treatment. Statistical hypothesis testing tech-
niques are required to prove a significant difference between the curves. Our work
provides an analysis schema to accomplish this elsewhere.

In [14,15] the geriatric data set has been analyzed and rules for the notification
status (the target function) were generated. To be able to analyze survival data
and fit a model that can describe the notification status of each patient based
on condition attributes (or explanatory variables) is useful for medical diagnosis.
Nonetheless, the analysis process for fitting the models to describe the survival
time (the target function) when considering notification status as censoring is of
greater importance and inevitable.
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Rough sets and decision trees have been used to study kidney dialysis patients’
survival [16]. Their rough sets algorithm and decision tree can produce correct
predictions on survival time 56% and 67% for the test data sets, respectively.
The most significant result is to demonstrate that rough sets, decision tree and
data mining approaches are useful for survival prediction of dialysis patients.

A number of rough sets applications to medical survival data have been pro-
posed. Primarily, these studies simply apply rough sets methods to data that
happens to have a medical origin, without much regard for the underlying med-
ical problem at hand. These studies contrast our approach that contains do-
main knowledge consideration with probe attributes and probe reducts [15].
Furthermore, our previous study [17] analyzed a number of survival data sets and
captured the necessary semantic information embedded in the data.

In this paper, we extended on previous analysis of multivariate data analy-
sis by offering the optional multivariate analysis. We introduce a framework to
obtain such models for predicting survival time from our proposed hybrid intelli-
gent system. We aim at the important aspects of data analysis, to offer a system
that is the most versatile and efficient for survival analysis.

This article is organized as follows. We discuss in Sect. 2 the role of soft com-
puting to devise new systems for survival analysis. We introduce preliminaries
of the components we amalgamated in our system architecture, rough set theory
and some statistical approaches. New reducts are provided in the end of this
section. In Sect. 3 we propose a multivariate hybrid rough sets intelligent system
for survival analysis architecture (MULTIHYRIS). We demonstrate the applica-
bility of MULTIHYRIS on the geriatric data set described in Sect. 4. Section 5
contains experimental results. In Sect. 6 we provide a summary and some general
remarks of what next steps will be taken.

2 The Role of Soft Computing and System Components

The rough set approach seems to be of fundamental importance to AI and
cognitive sciences, especially in the areas of machine learning, knowledge
acquisition, decision analysis, knowledge discovery from databases, expert

systems, inductive reasoning and pattern recognition.
Zdzislaw Pawlak (2004), Some Issues on Rough Sets.

It is difficult to gain insight into which method is best suited for survival data.
One technique may generate very accurate results for one data set and poor
results for another data set. Moreover, each technique has underlying advan-
tages and disadvantages. The disadvantages represent difficult data analysis
problems to solve. A stand-alone technique inevitably reveals characteristics of
the problem. This reasoning leads us to consider hybridization of methods which
complement each other to overcome disadvantages.

Thus, much current work tends to hybridize diverse methods. Studies indi-
cate advantages of hybridization over conventional techniques [18]. The amount
of survival data requires that data analysis approaches have tractable time
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Fig. 1. The system components in soft computing for hybrid intelligent system
(adapted from [18])

complexity, and simultaneously provide satisfactory outcome. Research in ‘soft
computing’ has demonstrated data analysis successes. Soft computing methodol-
ogy works synergistically with other methods to provide flexible analytical tools
in real situations. Medsker [18] stated that soft computing differs from tradi-
tional computing in that it is tolerant of imprecision, uncertainty and partial
truth. We extend his idea to include a broader view of hybrid intelligent systems
(Fig. 1).

In this paper, we specialize our system to include four components (layer 2):
rough sets, database management, the Kaplan-Meier method and the Cox method.
We provide the preliminaries of such components below.

2.1 Rough Set Theory and Database Management

Rough set theory is the first and most important technique to turn our proposed
system into a hybrid system. In order to accommodate errorful, imprecise, and
uncertain data, use of rough sets is expedient.

According to Pawlak [2], the power of rough sets “... is that it does not need
any preliminary or additional information about the data, such as probability
distributions in statistics, basic probability assignment in the Dempster-Shafer
theory, or grade of membership or the value of possibility in fuzzy set theory”.
Most of the time, rigid use of thresholds may seem unrealistic; in contrast
rough sets provides more flexible use of lower and upper approximations with
discernibility relation.

The results of using rough sets systems are comparable with those obtained
by using other systems under wide domain varieties [19]. Research and system-
atic developments for integrating rough sets to other intelligent systems are at
an initial stage. Especially, hybrid intelligent systems based on rough sets for
survival analysis are scarce.

The purely statistical measurement gives reasonable evidence to support the
hypothesis and can be considered as population-based method. When consider-
ing real-world data, however, purely statistical measures can be less meaningful.
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The initial study applying rough sets to survival analysis is [11]. They used rough
sets for a medical expert system. The rough sets principle can perform attribute
selection of decision concepts that remains the same over all information. The
primary purpose of our study is to explore the survival data by using a hybrid
rough sets-population based system.

Since computer performance has greatly increased, database management is
another choice to obtain information from data. However, database manage-
ment approaches tend to use traditional filtering and query approaches. This
indicates that major alternative developments are indispensable for perform-
ing meaningful data analysis. Rough sets can incorporate database management
to increase its utility. Traditional rough sets approaches in real applications are
time-consuming, thus rendering rough sets less efficient. One reason for this phe-
nomenon is data resides in flat files for most of the time. Furthermore, selecting
attributes and rules require computing all equivalence classes according to val-
ues of the condition attributes and decision attribute. This computation greatly
increases complexity with real data. Therefore, studies to reduce complexity
remain necessary.

In [17,20], rough sets are redefined using database operations and systems
linked to the database directly. The computational time is improved remarkably.
Hence, benefits of database set operations Count (Card) and Projection (

∏
)

permit the computation to scale up in our study.
Let us assume that a decision table is denoted by T (U, C, D), where C is the

set of condition attributes and D is a singleton set of target function (decision).
For simplicity, we write C and D instead of {C} and {D}. The terms core
attribute, dispensable attribute and reduct are provided as the following.

Definition 1. An attribute Ci is a core attribute if

Card(
∏

(C − Ci + D)) �= Card(
∏

(C − Ci)).

Definition 2. An attribute Ci ∈ C is a dispensable attribute with respect to
D if

Card(
∏

(C − Ci + D)) = Card(
∏

(C − Ci)).

Definition 3. The subset of attributes RED ⊆ C is a reduct of C with respect
to D if

K(RED, D) = K(C, D) and

K(RED, D) �= K(RED′, D) for all RED′ ⊂ RED.

The modeling results from rough sets are the decision rules that can be read,
interpreted and further used without requiring any medical professional knowl-
edge. The decision rules can be described as the following.

“If C is c1 then D is d1”

where c1, c2 and d1 are values corresponding to attributes C and D, respectively.
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2.2 Kaplan-Meier Survival Analysis

In survival analysis, the standard univariate analysis is the Kaplan-Meier survival
analysis method [13]. This method creates the Kaplan-Meier survival curves.
These curves provide insight into the survival function for each group. The pro-
portion of the population of patients who would survive a given length of time
under the same circumstances is given by the Kaplan-Meier method as shown
in (1). S is based on the probability that each patient survives at the end of a
time interval, on the condition that the patient was present at the start of the
time interval.

Ŝ(t) =
∏

ti≤t

(
1− di

ni

)
(1)

where ti is the period of study at point i, di is number of events up to point i
and ni is number of patients at risk just prior to ti.

The method produces a table and a graph, referred to as the life time table
and survival curve. There are initial assumptions required to make use of the
Kaplan-Meier method, they appear in [13].

2.3 Cox Model

Cox (1972) proposed a semi-parametric model for the hazard function that al-
lows the addition of explanatory variables but keeps the baseline hazard as an
arbitrary, unspecified, nonnegative function of time. While the Kaplan-Meier
method focused on a single risk factor or attribute, the Cox proportional hazard
model is used for multiple attributes. This model assumes a relationship between
the dependent and explanatory variables and uses fine-tuned tests (cf. [21]). We
analyze multiple attributes with system hybridization using rough set theory
(Sect. 2.1).

Using the method of maximum partial likelihood, we estimate the parameters
in Cox’s model. Partial likelihood is remarkable in that you can estimate the
coefficients without having to specify the baseline hazard function h0. The Cox
hazard function for fixed-time covariates, X , is

h(t) = h0(t)eb1X1+b2X2+...+bkXk (2)

where h(t) refers to the hazard function at time t, h0(t) refers to the baseline
hazard or hazard for an individual when the value of all the independent variables
equal zero. The X1, X2, ..., Xk refer to explanatory variables, b1, b2, ..., bk refer
to Cox regression coefficients determined by partial likelihood estimation while
k refers to the number of explanatory variables.

2.4 Hybrid Reducts

The outcomes from rough sets and Cox methods, reducts and significant condi-
tion attributes, will be integrated to yield the new set. This new set contain the
informative attributes from rough sets and significant attributes from statistics
and is defined as follows:
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Definition 4. (Hybrid Reducts) Let REDU = {redu1, redu2, ...redum} �= ∅
be a reducts set, where m is a number of attributes contained in the REDU set.
Let SIG = {sig1, sig2, ...sign} �= ∅ be a significant condition attribute set, where
n is a number of attributes contained in the SIG set. We define hybrid reducts
as follows:

hybrid reducts= REDU ∪ SIG

where ∪ denotes set union operation.

3 Hybrid Intelligent System

“... data analysis can be perceived as a part of inductive reasoning, and
therefore it can be understood as a kind of reasoning about data methods ...”
Zdzislaw Pawlak (1998), Reasoning about Data - A Rough Set Perspective.

Survival data can be analyzed using several methods and the results are affected
by both the analysis algorithm and the problem studied. From our architecture
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Fig. 2. MULTIHYRIS system architecture
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and previous studies [15,17], we will expand the hybrid rough sets intelligent sys-
tem architecture for survival analysis (HYRIS). We develop and add components
to HYRIS to perform comprehensive survival analysis.

The objective is to expand the utility of HYRIS to MULTIvariate HYbrid
Rough sets Intelligent System architecture for survival analysis (MULTIHYRIS).
The system architecture of MULTIHYRIS is depicted in Fig. 2.

MULTIHYRIS can analyze survival data and generate decision rules prior
to the implementation of HYRIS (see more [17]). The additional process is the
multivariate analysis with the Cox method to generate Cox models. Further-
more, hybrid reducts that integrated the outcome from both rough sets and Cox
method will be generated. The details of this process will be described in the
Sect. 5.

4 Description of the Geriatric Data Set

Rough set theory provides a variety of set functions that can be studied relative
to various measure spaces.

Z. Pawlak, J. Peters, A. Skowron, Z. Suraj, S. Ramanna, and M. Borkowski
(2001), Rough Measures and Integrals: A Brief Introduction.

Table 1. The geriatric data description

Attribute Description Attribute Description

edulevel Education level hbp High blood pressure
eyesight Eyesight heart Heart
hearing Hearing stroke Stroke
eat Eat arthriti Arthritis or rheumatism
dress Dress and undress yourself parkinso Parkinson’s disease
takecare Take care of your appearance eyetroub Eye trouble
walk Walk eartroub Ear trouble
getbed Get in and out of bed dental Dental
shower Take a bath or shower chest Chest
bathroom Go to the bathroom stomach Stomach or digestive
phoneuse Use the telephone kidney Kidney
walkout Get places out of walking distance bladder Bladder
shopping Go shopping for groceries etc. bowels Bowels
meal Prepare your own meals diabetes Diabetes
housewk Do your housework feet Feet
takemed Take your own medicine nerves Nerves
money Handle your own money skin Skin
health Health fracture Fractures
trouble Trouble age Age group
livealon Live alone studyage Age at investigation
cough Cough sex Gender
tired Tired livedead Notification status
sneeze Sneeze livmonth Time lived (in month)

after interview
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In a medical data table, each patient record represents an example or object.
Each field is treated as an attribute or feature. Each column contains patients’
information (e.g., patients’ symptoms, clinical information) which can be treated
as the attribute values provided in an attribute set. Such a data set is treated
as the training set. Predicting the known outcome (target function or decision)
is a goal of analysis. The task can be to predict a patient’s survival time.

Our case study is conducted on the geriatric data set from Dalhousie Medical
School. It is discretized and preprocessed as in [17]. The preprocessed geriatric
data set contains 8546 patient records with 44 clinical information, notification
statuses and survival times. This data set is analyzed to determine the notifi-
cation status and survival time (the target functions) of a patient given all the
clinical information. Our previous study for the target function - notification
status can be found in [15]. In this study, the survival time of patients is treated
as the target function, and the 44 clinical information of each patient are used
as condition attributes, which include for example, diabetes, Parkinson’s disease,
the age of the patient at investigation as described in Table 1.

5 Experiments

“... knowledge is deep-seated in the classificatory abilities of human being and
other species.”

Zdzislaw Pawlak (1991), Rough Sets. In Theoretical Aspects of Reasoning about
Data.

To illustrate that the system designs provided in Sect. 3 are indeed feasible and
applicable in real situations, we implement system prototypes in this section. Let
us start from the results of univariate analysis (Fig. 2). In our previous study
the attribute mining process from [17] produced core and dispensable attributes
with rough sets and statistical calculations as shown in Tables 2. The terms
probe, core and dispensable attribute, reducts and probe reducts we use in this
paper are introduced in [15].

Table 2. Core and dispensable attributes experimental results

Data sets Core attributes Dispensable
attributes

geriatric edulevel eyesi hear shower
phoneuse shopping meal
housew money health trouble
livealo cough tired sneeze
hbp heart stroke arthriti eye-
troub dental chest stomac
kidney bladder bowels di-
abetes feet nerves skin
fracture age sex

eartroub walk
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Hypotheses are chosen in order to answer the risk factor significant questions
e.g. diabetes risk factor,

“Is diabetes a significant risk factor for survival time in geriatric patients?”.

We explore whether or not to include each attribute (risk factor) in the pre-
diction survival model constructions. For example, the hypotheses for diabetes
risk factor in geriatric data set are:

H0: There will be no significant difference in survival times
between diabetes groups.

H1: There will be significant differences in survival times
between diabetes groups.

The statistical analysis process described in [17] generated life time table
(Table 3).

Table 3. Life time table (or the calculation of the Kaplan-Meier estimate) of the
survival function of the geriatric data set

Time Status Cumulative Standard Cumulative Number at risk
(months) survival error event

1 1 1 8,545
1 1 0.9998 .0002 2 8,544

.

.

.
1 0 2 8,526
2 1 3 8,525
2 1 4 8,524
2 1 5 8,523
2 1 0.9993 .0003 6 8,522

.

.

.
71 1 6,685 2
71 1 0.0010 .0010 6,686 1
73 0 6,686 0

Subsequently, we generated the Kaplan-Meier survival functions and survival
functions with risk factors as depicted in Fig(s). 3-4.

We consider the log-rank, Brewslow and Tarone-Ware tests which explore
whether or not to include the attribute in the prediction survival model con-
structions. All of these are interpreted and the significance is tested with three
statistical tests; log-rank, Breslow and Tarone-Ware with df=1 and p − value
(less than 0.2) to answer the hypotheses.
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Fig. 3. Survival function of geriatric data

Fig. 4. Survival functions of geriatric data with diabetes factor

The example of risk factor diabetes test values:

Statistic Significance
Log Rank 12.77 .0004
Breslow 5.78 .0162
Tarone-Ware 8.46 .0036

By considering characteristics and shapes of survival curves we can choose
the probe attribute reasonably. The conclusion is therefore that diabetes has the
most impact on survival time and H1 is accepted.

The next step is multivariate analysis (Fig. 2). Let us begin with multivariate
analysis by using rough set theory. The probe attribute selection process of [17]
generated reducts or probe reducts as illustrated in Table 4.

The models generated from this module are in the form of decision rules
(Sect. 2.1). We can describe particular tendencies of survival time with the deci-
sion rules generated from ELEM2 (version 3) [22]. ELEM2 uses a new heuristic
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Table 4. Reducts from HYRIS

Data sets Reducts

geriatric edulevel eyesi hear
shower phoneuse shop-
ping meal housew money
health trouble livealo
cough tired sneeze hbp
heart stroke arthriti
eyetroub dental chest
stomac kidney bladder
bowels diabetes feet
nerves skin fracture age
sex

for evaluating the relevance of an attribute value pair to a target function dur-
ing induction. A new measure based on information entropy and consideration
of rule distribution provides excellent results. ELEM2 provides more accurate
rules than C4.5 and CN2 for both artificial and real data sets [22]. Rule induction
with ELEM2 generated decision rules for survival tendencies prediction from the
above results, e.g., two exemplary prognostic rules:

Decision Rule 1: If (edlevel = 2) and (eyesi ≤ 0.25) and (hear > 0) and
(meal = 0) and (housew = 0) and (0 < health ≤ 0.25) and (trouble = 0) and
(livealo = 0) and (hbp>0) and (heart=0) and (stomac = 0) and (bladder =
0) and (diabetes = 0) and (skin = 0) and (age ≤ 3) and (sex = 2)
then (survival time = 19-22 months)

and

Decision Rule 2: If (sex = 0) and (edlevel = 2) and (eyesi > 0) and (0 <
health ≤ 1) and (0 < hear ≤ 0.25) and (diabetes = 1) and (tired = 0) and (feet
= 0)
then (survival time = 56-73 months).

The second medical diagnosis rule can be interpreted below:

– if female patients have a low education level and
– eyesight problem from low to serious type and
– health problem from low to serious type and
– can hear quite well and
– do not have diabetes experience and
– are easily tired and
– have foot problems
– then patients are likely to have survival time between 56-73 months.

The 3-fold cross validation is used to guarantee the correctness of the decision
rules. The results are the desired classification accuracy from 91% to 100%.
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Table 5. Case processing summary

Cases available in analysis Number Percent

Event(LIVMONTH) 6686 78.2%

Censored 1860 21.8%

Cases dropped 0 0.0%

Total 8546 100.0%

Table 6. Test of the coefficients; -2 Log likelihood of the null model (−2LL0)

−2LL0

110591.558

Table 7. Test of the coefficients; -2 Log likelihood of the model with diabetes (−2LL1)

−2LL1 Change from the previous step

Chi-square df Sig.

110579.417 12.141 1 .000

Table 8. Explanatory variable diabetes in the equation with df = 1

Var. b SE Wald Sig.Exp(b) 95% CI L/U

DIABETES-.148 .04311.654 .001.862 .792/.939

The optional mulitvariate analysis of MULTIHYRIS is Cox mothod. We took
the significant variables from Sect. 2.2 and treated them as the explanatory
variables when constructing the Cox proportional hazard model. Our analysis
results in the following.

As Table 5 shows, the geriatric data set we used contains 8,546 records, with
1,860 censoring with no missing values, no cases with negative time and no cases
before the earliest event in the stratum.

In Table 6, the −2LL0 value of the model without any explanatory variable
included is 110591.558.

The enter method is used and results in Table 7. Diabetes risk factor is en-
tered as the first variable. The likelihood of the model with diabetes (−2LL1)
is 110579.417. The −2LL decreases by 12.141. This decline 12.141 is significant
when considering the last column, p− value = 0.0004932.

The interpretation of this risk factor in the Cox model is the hazard of a
patient death is decreased 0.862 times if a patient has experienced diabetes
diagnosis (Table 8). We concluded that diabetes is a significant risk factor.

The stepwise enter method is used until the last step when all explanatory
variables are included as demonstrated in Tables 9-11.

In the last step, the −2LL of the last step differ from the one in Fig. 6, 547.298
which is significant. In Table 9, the overall −2LL is 110032.119.

The results in Table 11 demonstrate the utility and versatility of MULTI-
HYRIS for analyzing survival data efficiently. MULTIHYRIS is also versatile
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Table 9. Test of the coefficients; -2 Log likelihood of the model with all explanatory
variables

−2LL Overall (score)

Chi-square df Sig.

110032.119 513.312 32 3.85e-088

Table 10. Explanatory variables heart, sex and shower in the equation with df = 1

Var. b SE Wald Sig.Exp(b) 95% CI L/U

HEART -.072 .0305.765 .016.931 .878/.987

SEX .165 .02737.551 .0001.179 1.119/1.243

SHOWER .017 .094.033 .8561.017 .846/1.224

Table 11. Significant condition attributes produced from Cox model in the last step

Data sets Significant attributes

geriatric diabetes heart trouble
getbed walk age sex

with the comprehensive univariate and multivariate analysis processes. Nonethe-
less, the results from Tables 4 and 11 illustrate two different outcomes from two
different aspects; discernibility relation from mathematics and population esti-
mates from statistics. They are clearly not the disjoint sets or subset of each
other, but they both are of inexpedient from both point of views.

One most important concept of this research is to integrate mathematics and
statistics to generate the better outcomes that best suit for multidiscipline study.
Thus, our new reducts (Definition 4) is constructed from the set operation as
the following.

hybrid reducts = {edulevel eyesi hear shower phoneuse shopping meal housew
money health trouble livealo cough tired sneeze hbp heart stroke arthriti eyetroub
dental chest stomac kidney bladder bowels diabetes feet nerves skin fracture age
sex getbed walk}

These hybrid reducts is constituted both mathematics and statistics impor-
tance. It should be considered to be the most informative and significant
attributes for the survival data and for further analysis.

6 Concluding Remarks and Future Works

The most significant result obtained from this research was to demonstrate that
mathematics - rough sets and statistics - Kaplan-Meier and Cox appraoches are
useful for survival analysis. Our system, MULTIHYRIS, can be used as the prac-
tical tool in survival analysis, as it fulfils the typical needs of survival analysis.
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Our preliminary experiment illustrated that MULTIHYRIS can perform versa-
tile and efficient survival analysis. The generated survival prediction rules and
Cox models can be used by anyone concerned about the progression of patients.

Several issues presented in this paper require further research. These features
include: (i) From theoretical viewpoint, we should pay more attention to many
advances in rough sets e.g., rough mereology, rough inclusion or decision logic.
It is interesting to explore the feasibility of augmenting advanced rough sets to
our hybrid intelligent system to increase its utility. (ii) The study should also
continue the development of background knowledge learning to reach a dynamic
rough sets based framework. Interesting and practical applications of this should
be addressed with further research. (iii) The consecutive use of hybrid reducts
for further analysis should be conducted.

Acknowledgment

Thank you Zdzislaw Pawlak who developed rough set theory, the inspiration
for our research. This research was supported by King Mongkut’s Institute of
Technology Ladkrabang grant (KMITL), Thailand and Natural Sciences and
Engineering Research Council of Canada (NSERC), Canada. Thanks are also
due to Arnold Mitnitski and to Gregory Zaverucha.

References

1. Z. Pawlak: Rough Sets. Int. J. Inform. Comput. Sc., 11(5), 1982, 341–356.
2. Z. Pawlak: Rough Sets. In Theoretical Aspects of Reasoning about Data, Kluwer

Academic Publishers, Dordrecht, 1991.
3. Z. Pawlak: Decision Networks. Rough Sets and Current Trends in Computing,

2004, 1–7.
4. Z. Pawlak: Rough Sets and Flow Graphs. in Lect. Notes. Artif. Int., vol. 3642, D.

Slezak et al. Eds. Springer-Verlag, Berlin, Heidelberg, 2005, 1–11.
5. Z. Pawlak: Some Remarks on Conflict Analysis. European Journal of Operational

Research 166, 2005, 649–654.
6. Z. Pawlak: Some Issues on Rough Sets. T. Rough Sets, 2004, 1–58.
7. Z. Pawlak: A Treatise on Rough Sets. T. Rough Sets, 2005, 1–17.
8. Z. Pawlak, A. Skowron: Rudiments of Rough Sets, Inform. Sciences 177(1), 2007,

3–27.
9. Z. Pawlak, A. Skowron: Rough Sets: Some Extensions, Inform. Sciences 177(1),

2007, 28–40.
10. Z. Pawlak, A. Skowron: Rough Sets and Boolean Reasoning , Inform. Sciences

177(1), 2007, 41–73.
11. J. Bazan, A. Osmolski, A. Skowron, D. Slezak, M. S. Szczuka, J. Wroblewski:

Rough Set Approach to the Survival Analysis, in Lect. Notes. Artif. Int., vol. 2475,
Springer-Verlag, Berlin Heidelberg, 2002, 522–529.

12. J. Bazan, A. Skowron, D. Slezak, J. Wroblewski: Searching for the Complex De-
cision Reducts: The Case Study of the Survival Analysis, in Proc. of the IS-
MIS, Maebashi, Japan, Lect. Notes. Artif. Int., vol. 2871, Springer-Verlag Berlin,
Heidelberg, 2003, 160–168.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Hybrid Rough Sets-Population Based System 205

13. E. L. Kaplan, P. Meier: Nonparametric Estimation from Incomplete Observations,
J. of the Amer. Stat. Asso., vol. 53, 457–481, 1958.

14. J. Li, N. Cercone: Discovering and Ranking Important Rules, in Proc. of the IEEE
GrC, Beijing, China, 2005.

15. P. Pattaraintakorn, N. Cercone, K. Naruedomkul: Hybrid Intelligent Systems: Se-
lecting Attributes for Soft-Computing Analysis, in Proc. of COMPSAC, 2005,
319–325.

16. A. Kusiak, B. Dixon, S. Shah: Predicting Survival Time for kidney Dialysis Pa-
tients: A Data Mining Approach, Computers in Biology and Medicine 35, 2005,
311–327.

17. P. Pattaraintakorn, N. Cercone, K. Naruedomkul: Selecting Attributes for Soft-
Computing Analysis in Hybrid Intelligent Systems, in Lect. Notes. Artif. Int., vol.
3642, D. Slezak et al. Eds. Springer-Verlag, Berlin, Heidelberg, 2005, 698–708.

18. M. R. Larry: Hybrid Intelligent System, Kluwer Academic Publishers, Boston,
1995.

19. J. Komorowski, L. Polkowski, A. Skowron: Rough Sets: A Tutorial, in Rough Fuzzy
Hybridization: A New Trend in Decision-Making, S. K. Pal, A. Showorn, Eds.
Springer, Berlin, 1999, 3–98.

20. X. Hu, J. Han, T. Y. Lin: A New Rough Sets Models Based on Database Systems.
Fund. Inform. 59(2-3), 2004, 1–18.

21. D. R. Cox: The Analysis of Exponentially Distributed Life-times with Two Types
of Failure, J. of the Royal Statistical Society, vol. 21, 1959, 411–422.

22. A. An, N. Cercone: ELEM2: A Learning System for More Accurate Classifications,
in Lect. Notes Comput. Sc., vol. 1418, 1998, 426–441.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Hybrid Rough Sets Intelligent System

Architecture for Survival Analysis

Puntip Pattaraintakorn1, Nick Cercone2, and Kanlaya Naruedomkul3

1 Department of Mathematics and Computer Science, Faculty of Science, King
Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand

kppuntip@kmitl.ac.th
2 Faculty of Science and Engineering, York University, Toronto, Ontario, Canada

ncercone@yorku.ca
3 Department of Mathematics, Faculty of Science, Mahidol University, Thailand

scknr@mahidol.ac.th

Abstract. Survival analysis challenges researchers because of two is-
sues. First, in practice, the studies do not span wide enough to collect
all survival times of each individual patient. All of these patients require
censor variables and cannot be analyzed without special treatment. Sec-
ond, analyzing risk factors to indicate the significance of the effect on
survival time is necessary. Hence, we propose “Enhanced Hybrid Rough
Sets Intelligent System Architecture for Survival Analysis” (Enhanced
HYRIS) that can circumvent these two extra issues.

Given the survival data set, Enhanced HYRIS can analyze and con-
struct a life time table and Kaplan-Meier survival curves that account
for censor variables. We employ three statistical hypothesis tests and
use the p−value to identify the significance of a particular risk factor.
Subsequently, rough set theory generates the probe reducts and reducts.
Probe reducts and reducts include only a risk factor subset that is large
enough to include all of the essential information and small enough for
our survival prediction model to be created. Furthermore, in the rule
induction stage we offer survival prediction models in the form of deci-
sion rules and association rules. In the validation stage, we provide cross
validation with ELEM2 as well as decision tree. To demonstrate the util-
ity of our methods, we apply Enhanced HYRIS to various data sets:
geriatric, melanoma and primary biliary cirrhosis (PBC) data sets. Our
experiments cover analyzing risk factors, performing hypothesis tests and
we induce survival prediction models that can predict survival time effi-
ciently and accurately.

Keywords: Rough sets, Survival analysis, Kaplan-Meier method,
Hybrid intelligent systems, Reducts, Soft computing.

1 Introduction

Among prognostic modeling techniques that induce models from medical data,
survival analysis warrants special treatment in the type of data required and its

J.F. Peters et al. (Eds.): Transactions on Rough Sets VII, LNCS 4400, pp. 206–224, 2007.
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modeling. The data required for medical analysis include demographic, symp-
toms, laboratory tests, treatment information etc. The special features for sur-
vival data are the events of interest, censoring, follow-up time and survival time
specific for each type of disease that we will discuss. For modeling, there exist
techniques for processing synthetic survival data. Nonetheless, innovative ap-
proaches that consider survival data challenge researchers. We propose a novel
approach to address these complexities.

Recent hybrid system research tends to hybridize diverse methods which com-
plement each other to overcome underlying individual hindrances. Soft comput-
ing methodology can work synergistically with other data analysis methods to
provide flexible information processing in real situations. Medsker [1] stated that
soft computing differs from traditional computing in that it is tolerant of impre-
cision, uncertainty and partial truth. Studies have shown that soft computing
in medical applications is sometimes more appropriate than conventional tech-
niques. We are encouraged by our experiences with CDispro [2] and HYRIS [3]
to utilize the soft computing methods for survival analysis.

We introduce in Sect. 2, challenges and preliminary notation of some statis-
tics and rough set theory for survival analysis. In Sect. 3, we propose the En-
hanced Hybrid Rough Sets Intelligent System for Survival Analysis Architecture
(Enhanced HYRIS). We demonstrate the applicability of Enhanced HYRIS on
several data sets and their experimental results in Sect. 4. In Sect. 5, survival
prediction models are constructed with the informative attributes from Sect. 4
and their validation results. In Sect. 6, we add some general remarks of what
steps will be taken next.

2 Preliminaries and Notation

2.1 Survival Analysis

Survival analysis describes time-to-event analysis. Survival analysis is called re-
liability analysis in engineering, and duration analysis in economics. Survival
analysis is the study of the time between entry to a study and a subsequent
event (e.g., death, recurrence of cancer).

We accomplish this analysis by computing the probability that the event will
occur within a specific time and include a comparison of several risk factors.
Frequently however, the prediction of whether the event will eventually occur
or not is of primary importance. It often happens that the study does not span
enough time in order to observe the event for all patients.

Two extra factors we consider for survival analysis include: (i) survival time
(which is commonly misleading), the time patients are admitted to the study
until the time to death as well as the time to particular events (e.g., recurrence
of disease or time until metastatis to another organ); (ii) if any patient leaves the
study for any reason, use of a censor variable is required, indicating the period of
observation was cut off before the event of interest occurred. To properly address
censoring, modeling techniques must take into account that for these patients
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the event does not occur during the follow-up period. The following are some
example questions of our study that will be answered:

“Is diabetes a significant risk factor for geriatric patients?”
“What are the rules for survival time predictions of geriatric patients?”
“What is the survival tendency of a geriatric patient?”

2.2 Kaplan-Meier Survival Analysis

In survival analysis it is highly recommended to use the Kaplan-Meier survival
analysis method [4]. Kaplan-Meier survival analysis offers Kaplan-Meier survival
curves, which provide insight into the survival function for each group. The
proportion of the population of such patients who would survive a given length
of time under the same circumstances is given by the Kaplan-Meier method or
the product limit (PL) as shown in equation (1). S is based on the probability
that each patient survives at the end of a time interval, on the condition that
the patient was present at the start of the time interval.

Ŝ(t) =
∏

ti≤t

(
1− di

ni

)
(1)

where ti is the period of study at point i, di is number of events up to point i
and ni is number of patients at risk prior to ti.

The method produces a table and a graph, referred to as the life time table
and survival curve. There are initial assumptions to make use of Kaplan-Meier
method that appear in [4]. While the Kaplan-Meier method focused on a single
risk factor or attribute, the Cox proportional hazard model is used for multiple
attributes. This model assumes a relationship between the dependent and ex-
planatory variables and uses fine-tuned tests (cf. [5]). In this paper, we propose
multiple attributes analysis with system hybridization using rough set theory
that does not require any initial assumption (Sect. 2.4).

2.3 Log-Rank Test

An important part of survival analysis is to analyze the risk factor on a plot of
the survival curves (Sect. 2.2) for each group of interest. The comparison of the
survival curves for two groups cannot based on visual impressions. Statistics yield
useful survival analysis data and theoretical tests to provide solutions. Thus, we
consider the log-rank [6], Brewslow [7] and Tarone-Ware tests [8] which explore
whether or not to include the attribute (or risk factor) in the prediction survival
model constructions. These tests calculate their p-values that test the null hy-
pothesis (H0–the survival curves has no significant difference in survival times in
two groups of interest) against the alternative hypothesis (H1–the survival curves
has significant difference in survival times in two groups of interest).

For example, we can consider diabetes risk factor in geriatric data set. These
three hypothesis testing approaches can answer the question: “Is diabetes a sig-
nificant risk factor for geriatric patients?”, under the example hypotheses:
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H0: No significant difference in survival times between diabetes groups.
H1: Significant difference in survival times between diabetes groups.

The three statistical tests differ in how they weight the examples. The log-rank
test weights all examples equally, the Breslow test weights earlier periods more
heavily and the Tarone-Ware test weights earlier examples less heavily than the
Breslow test.

The early studies applying rough set theory to survival analysis are [9,10].
They used rough sets to discover relevant patterns for complex decisions suc-
cessfully. A case study considered is the postsurgery survival analysis for the
head and neck cancer cases. Nonetheless, hypothesis testing for each risk factor
was not included the analysis and is still an open problem.

2.4 Rough Sets

In the early 1980’s, Pawlak [11] introduced rough sets theory. Rough set theory is
the last and most important technique to turn our proposed system into a hybrid
system. The purely statistical measurement gives reasonable evidence to support
the hypothesis. When considering noisy real-world data, however, purely statisti-
cal measures can be less meaningful. Furthermore, the Cox proportional hazard
model (for multiple attributes analysis) requires a relationship between the de-
pendent and explanatory variables and uses fine-tuned tests (cf. [5]). Rough sets
can perform this task efficiently [2,3]. For these reasons, we propose the hybrid
rough sets approach with the integration of rough sets and statistics.

The primary purpose of our study is to explore individual attributes by statis-
tics (univariate) while simultaneously exploring the effects of several attributes
(multivariate) on survival by using a hybrid rough sets approach. The rough
sets principle can perform attribute selection of decision concepts that remains
the same over all information. Finding a heuristic method for attribute selection
that is feasible for large data sets is an open problem. Skowron et al. [12] showed
that the lower and upper approximations, positive regions, short reducts, etc.
can be computed in a straightforward manner from the discernibility matrix
with O(kn2) time complexity where n is the number of examples and k is the
number of attributes of the data set, which is not feasible for large data sets.

Nguyen et al. [13,14] proposed several algorithms that do not require storing
the discernibility matrix in the calculation step. Their algorithm for generating
short reducts by using Johnson strategy has O(k2nlogn) time complexity. This
algorithm is an efficient way to compute reducts without using a discernibility
matrix.

Wroblewski [15] proposed a hybrid algorithm for generating reducts. His pro-
posed approach is more efficient compared to a classical GA. Bazan et al. [16]
reported a method to search for reducts that generates a minimal number of
rules. The authors also introduced several measures for reduct quality. Fewer
rules were generated from these reducts, occupied less memory and classified
new examples faster.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



210 P. Pattaraintakorn, N. Cercone, and K. Naruedomkul

In several studies, the effects of a certain attribute are the main goal of analy-
sis. This attribute is not necessarily included in the reduct sets of the subtables.
For example, the risk factor that will impact the progression of disease is the im-
portant candidate component in the reducts. Such risk factors should be further
analyzed for some problems in the medical domain.

In [13,14,17], rough sets were redefined using database operations. The com-
puting times were improved remarkably by using database operations and the
database system directly. The straightforward approach using databases in the
implementation is a promising approach for rough sets. Hence, benefits of
database set operations Count (Card) and Projection (

∏
) permit the com-

putation to scale up in our study. The terms probe attribute and probe reducts
were introduced in [2] as the following.

Let us assume that a decision table is denoted by T (U, C, D), where C is
the set of condition attributes and D is a singleton set of target function. For
simplicity, we write C and D instead of {C} and {D}.
Definition 1. An attribute Ci is a core attribute if

Card(
∏

(C − Ci + D)) �= Card(
∏

(C − Ci)).

Definition 2. An attribute Ci ∈ C is a dispensable attribute with respect to
D if

Card(
∏

(C − Ci + D)) = Card(
∏

(C − Ci)).

Definition 3. The degree of dependency, K(R, D), between the attribute subset
R ⊆ C and attribute D in decision table T (U, C, D) is

K(R, D) =
Card(

∏
(R + D))

Card(
∏

(C + D))
.

Definition 4. The subset of attributes RED ⊆ C is a reduct of C with respect
to D if

K(RED, D) = K(C, D) and

K(RED, D) �= K(RED′, D) for all RED′ ⊂ RED.

Definition 5. A probe attribute P ∈ C corresponding to T (U, C, D) is defined
as an attribute of concern in T (U, C, D) for each domain by an expert.

Definition 6. A probe reduct corresponding to decision table T (U, C, D) is de-
fined as a reduct consisting of a selected before attribute of concern.

Example 1. The notion of probe attribute and probe reducts can be described
with the following example; in survival analysis, survival time is the decision at-
tribute while patient’s symptoms, surgery type and so on describe the condition
attributes. If we want to know about the survival time for each patient, the risk
of radical surgery or mild surgery becomes the significant part of this determi-
nation. Hence, we consider the surgery type attribute as a probe attribute. The
probe reducts are the reducts constructed from the probe attribute.
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2.5 Rule Quality - Measure of Discrimination

In order to gauge the quality of the generated decision rules, measure of dis-
crimination [18] will be used in our study. Let QMD denote the measure of
discrimination, R denotes rule or a query term in an information retrieval, D
denotes the target function or class of relevant documents and D′ denotes the
class of non-relevant documents. QMD can be expressed as follows:

QMD = log
P (R|D)(1− P (R|D′))
P (R|D′)(1 − P (R|D))

, (2)

where P denotes probability.

3 Methodology

Survival data can be analyzed using several methods and the results are affected
by both the analysis algorithm and the problem studied. From our architecture
and previous studies [2,3], we will expand hybrid rough sets intelligent system
architecture for survival analysis (HYRIS). We develop and add components to
HYRIS to perform comprehensive survival analysis. The system architecture of
Enhanced HYRIS is depicted in Fig. 1.
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Fig. 1. Enhanced HYRIS system overview

The Enhanced HYRIS implementation is an extension of HYRIS [3] in order
to offer an optional rule generator and validation process. Enhanced HYRIS is a
seven step system, providing comprehensive survival analysis approach
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according to the statistics and rough set theory. Given our survival data sets,
Enhanced HYRIS can analyze survival data as follows:

Step 1
Preprocess survival data sets into a usable format for entry to the Statistical
Analyzer module e.g., discretization, inconsistency removal.

Step 2
In the Statistical Analyzer module, the Kaplan-Meier method analyzes the entire
survival data and generates statistical summaries, e.g., life time table (Table 1)
and survival curve of overall data (Figs. 2(a)-2(b)) Subsequently, a particular risk
factor is included in the Kaplan-Meier method (Sect. 2.2) to determine the sur-
vival curves (Figs. 3-4) with respect to the survival time attribute. Significance
levels are tested by three statistical techniques (Sect. 2.3). Overall outcomes are
then considered and the probe attribute is identified for all survival data set and
sent to next step.

Step 3
Rough set theory extracts core attributes, dispensable attributes and reducts.
Due to uncertainty, survival data can have no core attributes or use all attributes
as core. Attribute Reduction will always complete despite this issue. The probe at-
tribute from the Statistical Analyzer is used to guide generation of probe reducts.

Step 4
If Attribute Reduction returns the most distinguished selected attributes to pre-
dict survival time, Probe Attribute Selection sets reducts as the final attribute
subset results. Otherwise, the probe attribute is employed to produce probe
reducts that simultaneously extract the most informative information.

Step 5
We perform survival prediction model construction in the form of decision rules
by ELEM2 [18] in Model Construction and compare performance outcomes from
both the entire data and the reducts/probe reducts data.

Step 6
We induce association rules in Association Rule Generator. Association rules are
generated to explore the relative information for each risk factor. This compo-
nent allows the degree of flexibility and generality that was designed, whereas
most existing systems tend to be highly specialized toward a particular kind of
rule generation technique.

Step 7
We employ ID3 [21] to run 10-fold cross validation process in the last component,
ID3 Validation. The validation process for real-world data is simulated and will
be illustrated later on.
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4 Experimental Results

Enhanced HYRIS was applied to several data sets - both benchmark and actual
data sets; geriatric, melanoma and PBC. The description of data sets and data
preparation can be found in [3].

We will explain in detail the geriatric data from Dalhousie Medical School. As
a real-world case study, the geriatric data set contains 8546 patient records with
status (dead or alive) as the censor attribute and survival time as the target
function. All data is discretized based on percentile groups, with each group
containing approximately the same number of patients (equal density).

Table 1. Life time table (or the calculation of the Kaplan-Meier estimate) of the
survival function of the geriatric data set from Enhanced HYRIS

Time Status Cumulative Standard Cumulative Number at risk
(months) survival error event

1 1 1 8,545
1 1 0.9998 .0002 2 8,544

.

.

.
2 1 5 8,523
2 1 0.9993 .0003 6 8,522

.

.

.
71 1 6,685 2
71 1 0.0010 .0010 6,686 1
73 0 6,686 0

For the geriatric data, we assigned a specification of 4 groups for survival time.
Group 1 describes 1,908 patients with survival time 7-17 months, 2,411 patients
with 18-22 months, 2,051 patients with 23-48 months and 2,176 patients with
49-73 months, respectively.

To determine the Kaplan-Meier estimate of the survival function, we took
geriatric data and formed a series of time intervals. Each of these intervals is
constructed in such a way that one observed death is contained in the interval.
Status = 0 indicates that the example has been censored and status = 1 indicates
death. Table 1 presents the life time table or the calculation of Kaplan-Meier
estimate of the geriatric survival function.

We generate the Kaplan-Meier curves by calculating the Kaplan-Meier esti-
mate of the survival function. A plot of this curve is a step function, in which the
estimated survival probabilities are constant between adjacent death times and
only decrease at each death. In Fig. 2(a), no risk factor is included, it displays one
Kaplan-Meier survival curve in which all geriatric data are considered to belong
to one group. The important aspect of the survival function is to understand how
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(a) Geriatric survival function: no risk factor is included,
the geriatric data are considered to belong to one group.
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(b) Melanoma survival function: no risk factor is included,
melanoma data are considered to belong to one group.

Fig. 2. Survival functions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Hybrid Rough Sets Intelligent System Architecture for Survival Analysis 215

SURVIVAL FUNCTIONS

SURVIVAL TIME (MONTHS)

806040200

C
U

M
 S

U
R

V
IV

A
L

1.0

.8

.6

.4

.2

0.0

DIABETES

1

1-censored

0

0-censored

(a) Survival function of the diabetes factor from geriatric:
two types of diabetes diagnosis {0,1} are compared.

SURVIVAL FUNCTIONS

SURVIVAL TIME (MONTHS)

806040200

C
U

M
 S

U
R

V
IV

A
L

1.0

.8

.6

.4

.2

0.0

PARKINSON

1

1-censored

0

0-censored

(b) Survival function of the Parkinson’s factor from
geriatric: two types of Parkinson’s are compared.

Fig. 3. Survival functions
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it influences survival time. Fig. 2(b) depicts the Kaplan-Meier survival curve in
which all melanoma data belong to one group.

After considering all data belonging to one group, we examine the effect of all
suspect attributes on survival time. All condition attributes are considered to
be risk factors and are included in the Kaplan-Meier method, which is used to
separate the data into several subgroups. Figs. 3(a) and (b) depict the analysis
of diabetes and Parkinson’s factors of geriatric data, respectively.

In Fig. 3(a) we consider two possible types of diabetes diagnosis {0,1} and
the same for Fig. 3(b). One can see that the two curves from these groups of
patients reveal different survival characteristics. We notice a slight difference
between the two groups of diabetes patients and wider differences between two
groups of Parkinson’s. The patients who diagnosed diabetes and not Parkinson’s
seem to provide better results. However, the type without Parkinson’s seem to
have few censor cases left as time goes by. Initially at time zero, cumulative
survival is 1. In both figures, the first 15 months after admission to our study
reveals very little chance of dying and two groups are visually close together.
During the 15-25 month period (the most steep part of the survival functions in
Fig. 3(a)), the hazard of death has clearly increased. The patients start to have
less risk of dying in the following 3 years.

Figures 4(a) and 4(b) display the analysis of risk factor walk (whether patient
can walk?) of the geriatric data and risk factor alkal (alkaline phosphatase in
unit/liter) of the PBC data respectively. Fig. 4(a) illustrates the walk risk factor
is ambiguous between patients who cannot walk (group 1) and can walk but
need help (group 0.5). We illustrated the walk risk factor to be a dispensable
attribute in Table 2. Alkal of PBC in the last figure is described by six possible
groups and show the strong significant difference between each group.

The interpretation of Kaplan-Meier curves is only one significant part and it
is not sufficient to design the most dangerous risk factor. In [9], Kaplan-Meier
method and Prognostic Index (PI) are applied to head and neck cancer patients.
Afterward, rough sets generate the decision rules. However, the hypothesis tests
and p-value are not considered, thus the complete univariate analysis is required.

Since the comparison of the survival curves for two groups should be based on
formal statistical tests, not visual impressions, we use the formal hypothesis tests
(Sect. 2.3) to see if there is any statistical evidence for two or more survival curves
being different and to complete univariate analysis. In practice, the log-rank tests
are used because they do not assume any particular distribution of the survival
function and are not bias to earlier period events. We then provide three statistical
tests for the equality of the survival function (degree of freedom = 1). The example
for risk factor diabetes of geriatric data:

Statistic Significance
Log Rank 12.77 .0004
Breslow 5.78 .0162
Tarone-Ware 8.46 .0036

The effects of all risk factors on the survival curves are compared. This allows
us to confirm which risk factor impacts survival time of patients significantly
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(a) Survival function of the walk factor from geriatric:
3 levels of whether patients can walk are compared.
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and should be considered as a probe attribute. An example series of tests can be
found in [3]. We first consider all attributes to be potential candidates for the
probe attribute if they have a p-value of less than 0.2.

Bazan et al. [9,10] proposed an efficient approach for measuring distance be-
tween Kaplan-Meier curves. By considering statistical test results and charac-
teristics of survival curves, we can choose the probe attributes reasonably. The
conclusion for the geriatric data set is that diabetes has the most impact on
survival time. In other words, H1 is accepted and diabetes is a significant risk
for geriatric patients (see hypotheses in Sect. 2.3). The probe attributes we gen-
erated are: {diabetes} for geriatric, {ini2} for melanoma and {alkal} for PBC.

Next, we found core attributes and dispensable attributes by using CDispro.
The CDispro algorithm presented in [2] provides preservation of classification
when comparing its extracted attributes and original data while achieving high
dimensionality reduction as shown in Table 2.

Table 2. Core attributes and dispensable attributes from CDispro

Data sets # of original
attributes

CDispro core attributes Dispensable

geriatric 44 edulevel eyesi hear shower phoneuse shop-
ping meal housew money health trouble livealo
cough tired sneeze hbp heart stroke arthriti
eyetroub dental chest stomac kidney bladder
bowels diabetes feet nerves skin fracture age6
sex

eartroub,
walk

melanoma 7 age, sex, trt none
PBC 17 none none

Table 2 shows the high number of condition attributes are reduced: 44 original
condition attributes are reduced to 33 attributes for the geriatric data set and
7 original condition attributes to 3 for the melanoma data set. The CDispro
algorithm produces dispensable attributes as depicted in the last column. The
absence of these attributes loses no dependency relationship information nor do
we lose any predictive ability from the original data set. Normally, in the medical
domain, the exclusion of dispensable attributes can minimize an expensive series
of laboratory tests, drop high risk treatments and animal/human clinical trial.

We perform association rule generation to explore the strong relationship in
the geriatric data set. The following are the strong relationship association rule
examples we obtained from the geriatric data set.

Association rule 1: If (getbed=0) and (takemed=0) then (eat=0).

Association rule 2: If (dress=0) and (takecare=0) and (getbed=0) and (par-
kinso=0) then (eat=0).

Both association rules have support numbers 7921 and 7941, respectively.
Both association rules have confidence equal to 1. The interpretation of these
association rules are as the following.
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Table 3. Reducts and probe reducts from Enhanced HYRIS

Data sets Reducts Probe reducts

geriatric edulevel eyesi hear shower phoneuse shopping meal
housew money health trouble livealo cough tired
sneeze hbp heart stroke arthriti eyetroub dental
chest stomac kidney bladder bowels diabetes feet
nerves skin fracture age6 sex

N/A

melanoma age, sex, trt age, sex, trt, ini2, ini3a
PBC none alkali, drug

First rule: if patients can get in and out of bed and take medicine by themselves
very well then these patients can eat very well.

Second rule: if patients can dress and undress, take care of their appearances
and can get in and out of bed by themselves very well, (even patients that
experience Parkinson’s) then they are likely to eat very well.

The Probe Attribute Selection module is applied to distil traditional reducts
or probe reducts (Table 3). Enhanced HYRIS produces probe reducts using probe
attributes if it returns reducts that do not clarify pattern groups of survival. For
example, the PBC data set use {alkal} as probe attribute and {alkal, drug} as
probe reducts for handling situation with no reducts. For the method used to
generate probe reducts (in Table 3) from the probe attribute, please refer to [2].

5 Model Construction and Validation

ELEM2 [18] is used for survival prediction model construction. We can describe
particular tendencies in the survival outcome of patients, e.g., three exemplary
survival prediction rules from geriatric data:

Decision Rule 1: If (health>0.25) and (hear=0) and (nerves=0) and (feet=0)
and (heart=0) and (dental=0) and (stomac=0) and (hbp=0) and (diabet=0) and
(age≤2) then (survival time = 7-18 months)

Decision Rule 2: If (sex=0) and (edlevel=2) and (eyesi>0) and (0<health≤
1) and (0<hear≤0.25) and (diabet=1) and (tired=0) and (feet=0) then (survi-
val time = 56-73 months)

Decision Rule 3: If (sex=0) and (age>2) and (phoneuse=0) and (bladder=1)
and (trouble=1) and (health≤0.25) and (livealo=0) and (tired=0) and (hbp=0)
and (diabet=0) and (kidney=0) and (nerves=0) and (skin≤0) then (survival
time =56-73 months).

The first survival prediction rule for severe patients can be interpreted as the
following.
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– If patients are unhealthy and
– have severe hearing damage and
– nerve problem and
– foot problem and
– heart disease and
– dental disease and
– stomach disease and
– high blood pressure and
– especially those who experience diabetes
– then patients have a tendency of survival time around 7-18 months after

being admitted to our study.

The rule quality (Sect. 2.5)of this rule is 1.8598. The second rule interpretation:

– if female patients have a low education level and
– eyesight problem from low to serious type and
– health problem from low to serious type and
– can hear quite well and
– do not have diabetes experience and
– are easily tired and
– have foot problems
– then patients are likely to have survival time between 56-73 months.

The rule quality is 1.5761. The interpretation of last example rule for geriatric:

– if female elderly patients and
– can use the telephone and
– have the ability to control their bladder and
– don’t have trouble in their liver and
– are unhealthy and
– live alone now and
– are easily to feel tired and
– have high blood pressure and
– kidney problem and
– experience diabetes and
– have skin problem
– then they are likely to have survival time between 56-73 months.

Final rule quality is 1.8613. For more details on all generated rules and further
work for rule analysis please refer to [19,20].

The sample survival prediction rules from PBC data with the rule quality
2.0810 is:

Decision Rule: If (age>2) and (biliru≤3) and (albumi>3) and (alkal>2) and
(sgot>1) and (proth>3) then (survival time = 1,361-1,781 days).
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Fig. 5. Improved performance of the generated rules from the geriatric, melanoma and
PBC data sets
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Fig. 6. Improved performance from 10-fold cross validation by ID3

The interpretation of this rule is: if patients are middle aged or elderly and
serum bilirubin is low and albumin, alkaline phosphatase (in unit/liter), SGOT
(in unit/ml) are high and prothrombin time (in seconds) are long then the sur-
vival time is approximately 4 years.

The results illustrate a compact and easy interpretation of survival prediction
rules with no medical expertise required. The improvements of all rule perfor-
mance compared to rule constructions from entire data and from reducts/probe
reducts are depicted in Fig. 5.

Almost all rule performance outcomes are improved (except the average num-
ber of geriatric survival prediction rules). The geriatric data is improved on
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average 24.47% for all outcomes. The melanoma and PBC data are improved
average 28.45% and 73.77% for all outcomes respectively. Further, the average
number, length and running time of the rules is improved an average of 52.45%,
21.03% and 51.20% for all data sets respectively.

After generating the survival prediction model with the previous paradigm,
we will illustrate the quality of the rules by using the optional validation process.
We run 10-fold cross validation with ID3 to illustrate the utility of derived rules.
We use rule quality measurements: recall, precision, F-score and accuracy to
gauge the quality of rules.

We then compare the improvement of rules generated from the entire data
to those generated from reducts/probe reducts. Our validation process demon-
strates the improvement for all measurements in Fig. 6. The validation results
illustrate an average improvement of 2.82% while the running time improved on
average 23.01%.

6 Concluding Remarks and Future Work

Bless Professor Zdzislaw Pawlak who developed rough set theory, the ingenious
mathematics that inspired us to conduct our research with this theory. Rough set
theory, modern mathematics and several pertinent techniques are combined to
provide a promising approach for survival analysis, Enhanced HYRIS. Enhanced
HYRIS presents a comprehensive intelligent system for survival data analysis.
Enhanced HYRIS is an ad-hoc tool to highlight specifically on survival analysis
domain knowledge. It also circumvented the two main challenges for survival
analysis. Our system performs survival data analysis with the consideration of
censor variable, hypothesis testing and reducts/probe reducts that are origi-
nal to this study. Enhanced HYRIS allows the desired degree of flexibility and
generality, whereas most existing systems tend to be highly specialized toward
particular rule generation and validation processes.

Our approach improved the performances of the survival analysis procedure
significantly, both for benchmark and actual data. The highest improvement is
73.77% for the PBC data set while average number and length of the rules are
improved over 50%. The validation results also demonstrate better results for all
rule quality measures while reducing the running time by 23.01%. We plan to
improve this initial step and perform further tests using Enhanced HYRIS. We
will continue the development of the remaining module in our proposed hybrid
intelligent system [2]. Additional research is required to explore postprocessing
of achieved rules. Future work will also extend the present analysis with the
resulting survival prediction models and also complete multivariate analysis.
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Abstract. Rough set-based rule induction allows easily interpretable
descriptions of complex biological systems. Here, we review a number of
applications of rough sets to problems in bioinformatics, including can-
cer classification, gene and protein function prediction, gene regulation,
protein-drug interaction and drug resistance.

1 Introduction

Molecular biology represents a fascinating and important application area for
machine learning techniques in general and rough set-based methods in particu-
lar. Although biology traditionally has been a reductionistic discipline focusing
on breaking living systems into increasingly smaller parts, and on studying these
parts separately, the discovery of the remarkable order and structure of these
systems at the molecular level has suggested the possibility of studying their
holistic molecular operation. However, it is only in the last 10 years that tech-
nological breakthroughs have made it possible to obtain large scale data that
can facilitate such research. The first complete genome was sequenced in 1995
(the bacteria Haemophilus influenzae Rd [1]) and has been followed by many
others (including the human genome, see http://www.genomesonline.org, [2]).
Although important, sequence information only gives us the static code inherited
from individual to individual. Other insights such as identifying the functional
elements (i.e. genes) of the genomic sequence, understanding how and under
which conditions genes are transcribed and translated into protein(s) (i.e. gene
regulation) and determining the tasks/interactions carried out by each protein
(i.e. protein function) require data on the dynamic operation of biological sys-
tems under different conditions. One example of a technology that provides this
type of data is DNA microarrays that can measure the transcription levels of
thousands of genes in parallel [3,4]. Moreover, developing technology will soon
be able to directly perform similar large-scale measurements of proteins (i.e.
proteomics, [5]).

High-throughput experimental technologies have created the need for com-
puter programs and techniques to analyze the resulting data. The field of bioin-
formatics has thus developed from being a discipline mainly associated with
sequence databases and sequence analysis to a computational science that uses
different types of data to describe biology [6]. The ultimate goal of this research is
to allow computational simulations of complex living systems. This will presum-
able require that we determine the function of all sequenced proteins (functional
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genomics) and that we understand the general principles orchestrating protein
regulation and interaction (systems biology).

Over the years, biologists have accumulated a large amount of knowledge
about the specific functions of individual proteins. This has been accomplished
through carefully chosen experimental strategies that often start out with a
hypothetical function that is then confirmed or rejected in the laboratory. As
the sequence databases grew larger, experimental biology was revolutionized by
computational sequence similarity search methods such as BLAST [7]. These
programs can align functionally uncharacterized protein sequences with protein
sequences of known function, and identify statistically significant sequence simi-
larities. Such similarities indicate that the two proteins have a common evolution-
ary ancestor and that, although their amino acid sequences have diverged over
time, their functions have remained similar. The relationship between growth
proteins and cancer was discovered in this way (by Doolittle in the early 1980s).
This first success story of bioinformatics further suggested a general strategy for
using machine learning in molecular biology, that is, to take advantage of the
assumed relationship between high-throughput data such as sequence data and
available knowledge of, for example, protein function to induce general models
that represent this relationship. These models may then be used to predict func-
tion for uncharacterized proteins and thus provide experimentalists with novel
hypotheses that can be tested in the laboratory. Furthermore, these models may
give us valuable biological insight such as, in the case of function prediction, the
location of the functional site of a protein.

One problem with the machine learning strategy to functional genomics is that
most knowledge of protein function only exists as plain text in scientific publica-
tions. For this reason, text mining has been and will continue to be an important
part of bioinformatics [8,9]. Furthermore, large efforts have been put into devel-
oping controlled vocabularies and data structures for representing knowledge in
a computer readable form [10]. A prominent example is Gene Ontology (GO)
[11]. GO consists of three sub-ontologies that describe three different aspects
of protein function. Molecular functions are tasks performed by single proteins,
biological processes are ordered assemblies of molecular functions that together
carry out broad biological goals in the cell and cellular components are subcellu-
lar locations where proteins are active. Each ontology is a directed acyclic graph
(DAG) where nodes describe, for example, molecular functions at different levels
of specificity (called GO terms) and edges represent the relationships between
different GO terms. For example, GO tells us that the cell cycle is a part-of cell
proliferation and that the mitotic cell cycle is-a cell cycle. The advantage of GO
is that the current knowledge about the function of a gene or a protein may
be represented by associating it with one or more terms in GO, and that the
structure of GO makes it easy to write computer programs that can compare
and organize these annotations for many or all genes in a genome.

Given a set of training examples, e.g. sequences with GO annotations, the
application of supervised machine learning is far from trivial. High-throughput
experimental data is inevitably obscured by a relatively large amount of noise. In
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addition, the training examples are reflections of the currently available knowl-
edge about the function of a protein and may thus be incomplete or, in the worst
case, wrong. This problem is made worse by the fact that the biological knowl-
edge used to build the training examples is often automatically retrieved from
text or even computationally inferred from e.g. high sequence similarity. Finally,
functional genomics presents us with particularly difficult challenges related to
learning, including an often large number of functional classes to discriminate,
examples belonging to several different functional classes and classes with few
examples. These challenges make it especially important to choose good methods
for validating the statistical and biological significance of the induced models.
Furthermore, it demands a lot from the applied machine learning method.

Rough set theory [12,13,14] is founded on the concept of discernibility, i.e.
that data may be described only in terms of what differentiates relevant classes
of observations. From the concept of discernibility, decision rules are constructed
by extracting minimal information needed to uphold the discernibility structure
in the data set [15,16]. The fact that the framework does not attempt do discern
objects that are equal or objects that are from the same class (e.g. have the
same function), makes it possible to describe incomplete and conflicting data in
terms of easily interpretable decision rules. In this article, we will review some
of the successful studies in which rough set-based rule induction has been used
to describe biological systems at the molecular level. These studies include

– cancer classification using gene expression data,
– prediction of the participation of genes in biological processes based on tem-

poral gene expression profiles,
– modeling of the combinatorial regulation of gene expression,
– prediction of molecular function from protein structure,
– prediction of protein-ligand interactions in drug discovery, and
– modeling of drug resistance in HIV-1

and are modeled using rules such as

– IF Gene A is up-regulated AND Gene D is down-regulated
THEN Tissue is healthy

– IF Transcription factor F binds AND Transcription factor V binds
THEN Gene is co-regulated with Gene H

– IF Protein contains motif J
THEN Function is magnesium ion binding OR copper ion binding

– IF Protein contain motif D AND Ligand water-octanol coeff. > c1

THEN Binding affinity is high
– IF Change in frequency of alpha-helix at position X > c3

THEN Resistant to drug W

In particular, we will focus on how these application areas have been coded in
a discrete manner to facilitate rule induction, how biological knowledge can be
incorporated into this representation process and what can be read out of the
rule model in terms of biological insight. Technical details will not be discussed
here and may be found in the respective publications.
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2 Gene Expression Analysis

The complementary nature of the DNA double helix is of great importance to
replication and transcription in living organisms, and may also be utilized for
the large-scale measurement of mRNA levels in cells. Two complementary nu-
cleic acid molecules (i.e. strands) will combine under the right conditions to form
double stranded helices. In a reaction vessel this is referred to as hybridization.
Hence, it is possible to use identified DNA strands (probes) to query complex
populations of unidentified, complementary strands (targets) by checking for
hybridization. Microarrays are glass slides or wafers populated with large num-
bers of strands derived from identified genes. By applying a target sample of
unidentified mRNA to the array, the expression level of each gene probe may be
quantified from the extent of hybridization between the probes and the targets.
Since one slide may contain probes from thousands of genes, one microarray
experiment may determine the genome-wide expression state of a cell sample.
Furthermore, systematic series of microarray experiments may reveal the spe-
cific changes in cellular gene expression associated with different physiological or
pathophysiological responses. A microarray study comprises a number of steps
including experimental design [17], filtering and normalization of the data [18]
and high-level computational data analysis. The last step was in the early phase
of microarray analysis mostly restricted to clustering analysis, and in particular,
hierarchical clustering [19]. However, the limitations of clustering both in terms
of interpretation and evaluation soon saw a shift in focus from unsupervised
learning (i.e. clustering) to supervised learning [20,21].

2.1 Cancer Classification

Standard medical classification systems for cancer tumors are based on clinical
observations and the microscopical appearance of the tumor. These systems fail
to recognize the molecular characteristics of the cancer that often corresponds to
subtypes that need different treatment. Studying the expression levels of genes
in tumor tissue may reveal such subtypes and may also diagnose the disease
before it manifests itself on a clinical level. Thus, the goal of data analysis of
cancer microarray data is to develop models for earlier detection and better
understanding and treatment of cancer.

Gastric Carcinoma. Midelfart et al. [22,23] used rough set-based classifiers to
identify molecular markers that allow classification of gastric carcinoma. Gas-
tric carcinoma is often not detected until at an advanced stage, which is one
of the reasons why this is the second most frequent cause of cancer death
world-wide. The study developed classifiers for six different clinical parame-
ters; intestinal or diffuse types (also known as the Lauren classification), site
of primary tumor (cardia, corpus or antrum), penetration of the stomach wall
or not, lymph node metastasis or not, remote metastasis or not, and high or
normal serum gastrin. The expression levels of 2504 genes were measured in
tumor samples taken from only 17 patients. Rule models were induced in a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Rough Sets in Bioinformatics 229

leave-one-out cross-validation procedure for each of the six clinical parameters.
In each iteration, the 10 to 40 most differentially expressed genes were iden-
tified using a bootstrap t-test [24]. By differentially expressed genes, we here
mean genes that showed a consistently higher expression in e.g. intestinal sam-
ples compared to the diffuse samples as measured by the bootstrap t-test. The
expression of these genes was discretized into e. g. low, medium and high ex-
pression and rules where induced. Classification accuracy and area under the
receiver operating characteristics curve (AUC) [25] were reported for all six
clinical parameters ranging from 0.79 to 1.00 (average 91.5) and 0.66 to 1.00
(average 0.89), respectively.

A particularly difficult challenge in cancer classification from microarray data
is the large number of measured genes compared to the number of cancer pa-
tients. This is a problem because one is faced with a huge search space (i.e.
subsets of 2504 genes) and only a few data points to restrict the search. A pos-
sible consequence could be overfitting, that is, decision rules that explain the
training set, but fail to generalize to the test set. In this study, reduct compu-
tation was limited to a low number of differentially expressed genes. However,
the number of genes compared to the number of patients still makes it difficult
to exclude the possibility that some of these genes are discriminatory by chance.
Thus, to further add robustness to the identification of gastric carcinoma mark-
ers, the study reported as a measure of strength the number of cross validations
in which a particular gene was part of at least one decision rule in the rule model.
This resulted in the identification of several genes known to be highly expressed
in gastric carcinomas as well as several interesting new genes.

The rule induction process offer a number of algorithms for discretization and
reduct computation. Combined with a low number of training examples, these
options constitute a real risk that even cross validation estimates may be op-
timistic in the sense that they do not reflect a true ability to correctly classify
unseen samples. The authors of the study realized this, and consecutively re-
peated the cross validation procedure for each of the six clinical parameters on
2000 dataset where the clinical parameter values were randomly shuffled. By
recording the fraction of randomized data sets that resulted in a higher AUC
value than the real data set, they obtained a p-value for each clinical parame-
ter reflecting the probability that the reported AUC value could be obtained by
chance [26]. Even though the initial cross validation estimates looked impressive,
this careful analysis showed that the AUC value of three of the six clinical param-
eters were not statistically significant at p-value 0.05. However, location of tumor
(p < 0.031), lymph node metastasis (p < 0.007) and the Lauren classification
(p < 0.007) were shown to be adequately described by the rule model.

Adenocarcinoma. Dennis et al. [27] used rough sets to build a classification
system for identifying the primary site of cancer based on expression levels in
a sample taken from a secondary tumor. While it is the primary tumor that
causes symptoms in most patients, about 10-15% of cancers are discovered as
metastases in solid organs, body cavities or lymph nodes. Most of these secondary
tumors are adenocarcinomas, for which the seven commonest primary sites are
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Fig. 1. Decision tree used to predict the site of origin of metastatic cancer from 10
molecular markers [27]

breast, colon, lung, ovary, pancreas, prostate and stomach. Because prognosis
and therapy are linked to the site of origin, and because histologically such
tumors appear similar, finding molecular markers for these sites could greatly
improve treatment.

The study assessed the expression patterns of 27 markers in 452 adenocarci-
noma patients. 12 markers were scored as either present or absent (+ or -), while
the remaining markers were scored as absent, weak, intermediate or strong (0,
1, 2 or 3). Decision rules were induced from 352 adenocarcinomas and used to
build a decision tree of 10 markers (see Figure 1). This tree was then used to
predict the site of origin of 100 unseen adenocarcinomas with a success rate of
88%. This is a very high accuracy considering there were seven different sites to
predict, and indicate a huge potential for molecular markers in identifying the
primary site of these cancers.

2.2 Predicting Participation of Gene Products in Biological
Processes

Hvidsten et al. [28,29,30] developed a method for modeling the participation of
gene products in GO biological process from temporal expression profiles. Several
publications had earlier used hierarchical clustering to illustrate the correspon-
dence between expression similarity and gene function [31,32,19]. However, none
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of these studies actually quantified the relationship. Furthermore, it is known that
functionally related genes often are anti-coregulated and that genes usually are as-
sociated with more than one function. These aspects are not well modeled by a set
of broad, non-overlapping expression clusters. Brown et al. [21] was the first to ap-
proach the problem in a supervised manner by using support vector machines to
predict a limited set of six functional categories from expression data.

In the 2001 paper [28], a template language was proposed to describe the
discrete changes in expression over subsets of time points in an expression time
profile. The idea behind this language was that the relative change in mRNA
levels over limited periods of time is more important to distinguish one biological
process from another than the absolute mRNA levels given by each time point.
Furthermore, rough set-based rule induction was used to associate combinations
of discrete changes in expression with one or a small number of GO biological
processes. For example, the rule

IF 0 - 4(constant) AND 0 - 10(increasing)
THEN GO(protein metabolism and modification) OR

GO(mesoderm development) OR GO(protein biosynthesis)
and the rule

IF 0h-4h (increasing) AND 6h-10h (decreasing)
AND 14h-18h (constant)

THEN GO (cell proliferation) OR GO (cell-cell signaling) OR
GO (intracellular signaling cascade) OR GO (oncogenesis)

describe the limited set of biological processes (THEN-part) associated with
particular expression profile constraints (IF-part, e.g. 0h-4h (increasing) means
increasing expression level from 0 to 4 hours). The first rule has a support of five
genes, four of which are annotated to protein metabolism and modification. The
second rule has support of four, three of which were annotated to cell prolifera-
tion. Thus the main reason for indeterministic rules is that genes are annotated
to several different GO terms.

The predictive performance of the approach was tested using cross validation
on all annotated genes in two expression time profile data sets with human
genes [19,33]. Thus the correspondence between expression similarity and GO
biological process was properly evaluated and quantified for 23 and 27 biological
process, respectively. Each biological process was subjected to a permutation test
that showed that most of the classes indeed could be predicted with a statistically
significant AUC value not obtainable by chance.

The cross validation results may in general be considered estimates of the
prediction quality one can expect when predicting functionally uncharacterized
genes using a model induced from all training examples. However, predictions
to uncharacterized genes were also evaluated directly by searching for homol-
ogy information that could be used to make assumptions about the biological
processes of these genes [30]. Of the 24 genes where such assumptions could be
made, 11 genes had one or more classifications that matched this assumption.
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In addition to predicting the biological process of uncharacterized genes, a
model induced from all examples was also used to re-classify characterized genes
[30]. The resulting false positives were then used to guide a second literature
search for possible missing annotations (i.e. information on biological process
annotations existing in the literature, but overlooked during the initial liter-
ature search). Of the 14 genes with a false positive re-classification to DNA
metabolism, four were found to actually participate in this process. Furthermore,
it was revealed that 12 of the 24 false positive re-classifications to oncogenesis
also represented missing annotations. Thus, it was shown that computational
models could be used directly both to guide new literature searches for partially
characterized genes and to propose new functional hypotheses for unseen genes.

The studies described here all used a set of predefined biological processes as
basis for learning. Midelfart et al. [71-73] later introduced rough set-based rule
classifiers that actively learn in the Gene Ontology graph, dynamically selecting
biological processes with the best predictive performance.

2.3 Gene Regulation

One of the major challenges faced by molecular biology is to dissect the regu-
latory circuitry of living cells. The ability of transcription factors to selectively
bind specific DNA motifs (i.e. transcription factor binding sites) in the regula-
tory regions of genes is essential for the complex regulation systems observed in
living organisms. The assumption that genes regulated by the same transcrip-
tion factors (i.e. co-regulated) should contain common binding sites and exhibit
similar expression (i.e. co-expressed) enables the study of gene regulation at a
genome-wide scale using sequence and expression data.

Pilpel et al. [34] found that genes sharing pairs of binding sites are signifi-
cantly more likely to be co-expressed than genes with only single binding sites in
common. This result is in agreement with the hypothesis that a limited number
of transcription factors combine in various ways in order to respond to a large
number of various stress conditions.

Hvidsten et al. [35] used rough set-based rule induction to perform a com-
prehensive analysis of the combinatorial nature of gene regulation in yeast. The
method extracted IF-THEN rules of minimal binding site combinations or mod-
ules (IF-part) shared by genes with a common expression profile (THEN-part).
The rules hence described general, underlying relationships in an easily under-
standable format, providing hypotheses on combinatorial co-regulation that may
later be experimentally validated.

The approach was tested on a database of known and putative regulatory se-
quence motifs in yeast [36] using six expression data sets including one cell cycle
study and five studies including different stress conditions [34]. The rule learning
framework was subsequently applied to each gene to obtain rules that associate
the expression profile of that gene with a minimal binding site combination
shared by similarly expressed genes. Rules were then discarded if they did not
provide a clear and general pattern in terms of modules associated with several

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Rough Sets in Bioinformatics 233

genes where a majority had similar expression. Only in these cases the evidence
for actual co-regulation was considered sufficiently strong.

The discovered binding site modules were evaluated using transcription fac-
tor binding interactions provided by a genome-wide location analysis [37] and
Gene Ontology annotations. The evaluation clearly showed that the retrieved
binding site modules reflected actual co-regulation and furthermore showed that
genes associated with these modules very often share biological roles in terms of
biological process, molecular function and cellular component. The results were
statistically significant compared to genes either associated with a randomly
chosen set of binding sites, similar expression or neither of these constraints.

Two rules were discussed as a case study and had support in the literature.
As an example, the rule

IF RAP1 AND MCM1 AND SWI5 THEN Similar expression

describes eight genes and suggests that the transcription factor RAP1 (that
regulates genes that encode ribosomal proteins in growing yeast cells, but also
other non-ribosomal genes) requires the cell cycle regulating transcription factors
MCM1 and SWI5 to be present when specifically targeting ribosomal genes in
growing yeast. That is, the ribosomal genes targeted by RAP1 are only regulated
when the cell is in the cell cycle (i.e. growing) which is when MCM1 and SWI5
are present. RAP1 presumable combines with other transcription factors when
regulating other non-ribosomal genes.

By applying the method to expression data obtained under several different
conditions the authors were able to discover a number of binding site modules
common to several of these responses in addition to modules that seem to be
exclusive to a particular stress response. The overlap between modules clearly
shows the large extent to which relatively few transcription factors combine to
facilitate a much large number of expression outcomes.

A later follow-up study [38] used expression similarity restricted to subintervals
of cell cycle time profiles (similar to the template language discussed in section 2.2),
and showed that this improvement greatly increased the biological significance of
the retrieved modules as well as making it possible to retrieve modules that were
not detectable using expression similarity over the whole time profile. A second
follow-up study [39] refrained from using expression similarity altogether. Instead,
this study used prior knowledge of the cell cycle period time to detect different
classes of periodically expressed genes in three different synchronization studies,
and then used rough set-based rule learning to describe the regulatory mechanisms
behind these classes. These mechanisms were then shown to be much more specific
towards the cell cycle machinery than mechanisms discovered from expression clus-
ters, and thus showed the advantage of incorporating biological knowledge into the
data analysis process whenever it is possible.

3 Protein Analysis - Function and Interaction

It is believed that sequence similarity search methods can identify function-
ally characterized homologues for less than 50% of the proteins predicted from
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genome sequencing projects. However, even though global sequence similarity
between distantly related proteins may be virtually undetectable, similarities
may still be present in terms of conserved amino acids in the functional sites
(functional sites are known to be more conserved than the overall sequence), con-
served global structure (structure is known to be more conserved than sequence)
or conserved local structure related to the functional site (again, functional sites
are more conserved also in terms of structure). Thus more advanced sequence
similarity methods and methods using structural similarities may represent a so-
lution for proteins where functional hypotheses cannot be obtained from global
sequence similarity [40]. Unfortunately, the Protein Data Bank (PDB) [2] only
contains around 30 thousands protein structures while there are about 30 mil-
lion protein sequences in UniProt (Universal Protein Resource) [41]. To remedy
this situation, structural genomics projects systematically aim at solving protein
structures for new protein families [42], using these structures as templates for
in silico structure prediction methods (i.e. homology modeling) [43], and then
applying the solved and predicted structures to infer function [44]. However,
to be successful this strategy requires new and improved methods that utilize
structure to predict function and interactions.

Here we will review research using rough set-based rule induction to model pro-
tein function and interaction. Two of these studies describe protein structure in
terms of local descriptors of protein structure. A local descriptor is defined by A.
Kryshtafovych and K. Fidelis as a set of short backbone fragments centered in
three dimensional space around a particular amino acid [45]. By generating local
descriptors for all amino acids and all proteins in PDB, and by clustering these
descriptors into groups of structurally similar descriptors, it is possible to build a
library of a few thousand local building blocks from which virtually all proteins
in PDB may be assembled (see Figure 2). This library of recurring local substruc-
tures may then be used for representing and comparing protein structure.

3.1 Function Prediction from Structure

Although global structural similarity is often a sign of function similarities [46],
many folds such as the TIM barrel and the Rossmann fold are found in proteins
with many different functions. Thus local similarity methods are more powerful
in these cases [47]. Recently, researchers have started building tools that use
a large number of different features including both local and global structure
[48,49]. These so-called meta-servers obtain functional predictions by allowing
a large number of different evidence to vote, and then selecting the most likely
function. However, such approaches do not construct explicit models that are
often very useful in further analysis.

Hvidsten et al. [50] proposed a change in this paradigm by inducing IF-THEN
rules that associate combinations of local substructures with specific protein
functions (Figure 3). This approach differs from other studies in that the applied
library of local substructures encompasses all recurring motifs and all annotated
proteins using no prior knowledge of functional sites or any sequence informa-
tion, and in that the structure-function relationship is explicitly represented in
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Descriptor Segment 1 Segment 2 Segment 3 Segment 4 Segment 5
1qgoa_#8 4-10 ALLVVSF 39-43 FRAFT 63-67 LQALQ 77-83 VAIQSLH 91-95 EKIVR
1qo2a_#78 74-80 EHIQIGG 47-51 IHVVD 67-71 EKLSE 97-101 --RRQIV 89-93 EKLRK
1rpxa_#73 69-75 LPLDVHL 40-44 IHVDV 58-62 LVVDS 93-97 --DIVSV 85-89 PDFIK
1nsj__#82 78-84 NAVQLHG 58-62 GVFVN 66-70 EKILD 98-104 ILVIKAV 89-93 ELCRK
1mla_1#7 3-9 QFAFVFP 87-91 MMAGH 262-266 EYMAA 270-276 EHLYEVG 283-287 GLTKR
1qfja2#108 104-110 PMILIAG 134-138 TIYWG 183-187 TAVLQ 195-201 HDIYIAG 207-211 KIARD
1efvb1#8 4-10 LRVLVAV 119-123 LVLLG 47-51 EEAVR 59-65 KEVIAVS 76-80 RTALA
1iow_1#8 4-10 KIAVLLG 38-42 YPVDP 48-52 TQLKS 56-62 QKVFIAL 70-74 GTLQG
1yaca_#57 53-59 PTILTTS 80-84 PYIAR 97-101 VKAVK 14-20 AVLLVDH 120-124 AFPAL
1ig0a2#188 184-190 ISLLALG 40-44 TLLIL 128-132 TKCVN 216-222 FKLCYMT 200-204 VHSIT

b)

a)

c)

Fig. 2. An example of a local descriptor of protein structure (b), its structural neigh-
bors (c) and the resulting sequence alignment (a)

a descriptive model. Moreover, the structure-function relationship in proteins
was quantified by assessing the predictive performance of the model using cross
validation and AUC analysis. The main conclusions that could be drawn from
this study were as follows:

– A majority of the 113 molecular functions could be predicted with a statis-
tically significant accuracy as assessed by a permutation study.

– GO molecular functions were better predicted than GO biological processes
or GO cellular components.

– Combinations of local similarities allowed discerning proteins with different
functions, but similar global structure (i.e. fold), e.g. the TIM barrel and the
Rossmann fold.

– Catalytic activities were better predicted than most functions involving bind-
ing.

– Structure-based predictions complemented sequence-based predictions and
also provided correct predictions when no significant sequence similarities to
characterized proteins existed.

It has previously been observed that GO biological processes are better ex-
plained by expression data than are GO molecular functions [21,35]. This is
intuitive, since genes participating in the same biological process need to be
transcribed at the same point in time. However, it is interesting to observe in
this study that molecular functions are better explained by specific structural
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1qama_#37 1xvaa_#68
GO:0008757: S-adenosyl-
methionine-dependent
methyltransferase activity 

IF AND THEN              OR 

GO:0000287: magnesium
ion binding

Fig. 3. The rule combines two substructure (i.e. 1qama #37 and 1xvaa #68) to de-
scribe 12 proteins annotated with GO:0008757. Two of these proteins are additionally
annotated with GO:0000287.

shapes than are biological processes. Again, this is intuitive since a molecular
function will require a protein to interact with a specific type of molecules, while
proteins participating in the same biological process may interact with a wide
variety of different molecules. Thus, this shows that different data is needed to
predict different aspects of the molecular activity of proteins.

3.2 Protein – Ligand Interactions

An important goal of modern drug discovery is to develop computational models
that can predict the interactions between drug targets (i.e. proteins) and ligands
(i.e. drugs). A common approach in this research is QSAR (Quantitative Struc-
ture Activity Relationship), where the interaction between one protein and a
series of ligands is modeled, and docking, where the three-dimensional structure
of the protein is used to model the protein-ligand complex [51]. Proteochemo-
metrics (PCM) [52] takes a different approach to molecular recognition in which
the protein-ligand interaction space is modeled using series of both proteins
and ligands. This approach greatly reduces the number of known interactions
needed for modeling and may predict cross-interactions between drugs and other
proteins in the proteome.

PCM uses machine learning methods to model the degree to which pro-
teins and ligands interact (i.e. experimentally measured binding affinity) using
chemical and structural descriptors to represent the proteins and the ligands.
Strömbergsson et al. [53] used rough set-based rule learning to model interac-
tions between G-Protein-coupled receptors (GPCR) and ligands. GPCRs are
membrane-bound proteins that share a conserved structural topology of seven
transmembrane helices. GPCRs are of particular interest, since about 50% of all
recently launched drugs are targeted towards these receptors. The main novel
result of this study was that rules allowed direct interpretation of the model,
something that is not possible with the commonly used linear regression ap-
proach. For example, the rule model suggested that helix 2 was determinative
for high and low binding affinity in three different data sets.

Previous approaches to PCM modeling have used protein descriptors that
are calculated from a multiple alignment of the studied proteins. This limits
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modeling to closely related proteins in terms of sequence or structure. In
Strömbergsson et al. [54], the authors showed that using local descriptors of
protein structure one can model vastly different proteins both in terms of se-
quence and structure. It was shown that the induced rule model combined local
substructures and ligand descriptors to generalize beyond the enzyme-ligand in-
teractions present in the training set. An interesting interpretation from the
rules was that strongly bound enzyme-ligand complexes were described in terms
of the presence of specific local substructures, while weakly bound complexes
were described by the absence of certain local substructures. This is intuitive,
since there may be only one or a few ligands that geometrically fit the active
site of a specific enzyme and form a strongly bound complex, while there may
be many ligands that only form weakly bound complexes with the same enzyme.
The preferred description of the latter is to point to the absence of the local
substructure that, if present, would have resulted in a strongly bound complex.

3.3 HIV-1 Modeling

The HIV virus has a high rate of replication leading to mutations and the devel-
opment of drug resistance. The HIV-1 protease plays an essential role in replica-
tion by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural
and functional elements. For this reason the HIV-1 protease has been an attrac-
tive targets for the design of drugs that inhibit the protease and thus stop the
replication of the HIV virus.

The HIV-1 protease cleaves the viral polyprotein by recognizing a sequence
represented by four amino acids on each side of the actual position of cleav-
age. Kontijevskis et al. [55] collected all the experimental data on cleavable and
non-cleavable sites from 16 years of HIV research (374 cleavable and 1251 non-
cleavable substrates). Decision rules were induced based on the physico-chemical
properties of the amino acids in these substrates, and cross validation demon-
strated high predictive performance (accuracy and AUC well above 0.90). While
previous studies based on less comprehensive data sets have revealed some pat-
terns of limited predictive ability, analysis of this model showed that the rules
encompassed properties from at least three substrate positions indicating a more
complex relation than previously assumed. Nonetheless, as the cross validation
evaluation showed, the rough set-based approach did recover general patterns
determining HIV-1 protease cleavage specificity and several novel patterns were
reported in the paper.

The HIV-1 reverse transcriptase (RT) transforms the viral RNA into DNA
that can be incorporated into the genetic material of the host cell. Kierczak
et al. [56] used rough set-based rule induction to predict drug resistance to six
different drugs for a large number of mutated RTs. Existing biochemical knowl-
edge related to the sequence and structure of RT was used to build descriptors
from 19 known resistance-related positions. Cross validation accuracy and AUC
values were in the ranges of 0.82-0.94 and 0.70-0.97, respectively, for the dif-
ferent drugs. As for the study of Kontijevskis et al., the rules were pruned and
inspection revealed general and novel patterns important for drug resistance.
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4 Discussion

In this paper, we have reviewed a number of publications where rough set-based
rule learning has been used to predict and describe molecular properties of bio-
logical systems. And we have seen how discrete representations and legible rules
allow interpretations that gain new insight into molecular biology. The ability
to describe data in terms of legible rules is particularly important in biology
where biologists are interested in understanding the mechanisms underlying the
data just as much as they are interested in the predictions themselves. Moreover,
discrete representations add to this readability and allow the models to combine
different heterogenous data sources containing both continuous and categorical
data. Furthermore, the elegant representation of indeterministic data in terms
of disjunctions of decisions in rules makes otherwise difficult problems, such as
proteins annotated to several GO terms, easy to handle. Finally, developments
in rough set-based rule induction such as dynamic reducts [57] and approximate
reducts [16,58] allow the description of noisy data. We believe that it is due to
these properties that rough sets now have gained a wide acceptance as a powerful
tool for data analysis in life sciences. Pawlak’s ideas were simple, yet powerful
and rich enough to be of outstanding practical use in biology, and also continue
to stimulate theoretical research in computer science.

Several challenges are particularly interesting in the context of rough sets and
molecular biology. The first challenge is that of developing methods for illus-
trating and pruning rules [59,60] in order to allow interpretation. Some methods
were reviewed in this article. In Dennis et al. [27], rules were represented as a
decision tree, something which is very familier to physicians. In Hvidsten et al.
[35], predicted regulatory mechanisms with inconclusive evidence or low support
were not considered. This is a simple yet powerful approach to rule filtering,
but is also dangerous since potentially important discoveries may be lost [61,62].
Finally, the HIV-1 studies [55,56] used a group generalization method for rule
pruning, where groups of rules with overlapping IF-parts and identical decisions
are merged into generalized rules if the accuracy do not fall below a predefined
threshold [60]. The second challenge is that of feature selection in order to avoid
overfitting. In this review we saw a statistical method for selecting differentially
expressed genes in a cancer classification study [22,23]. However, this procedure
will exclude genes that individually are not significant, but that posses a signif-
icant discriminatory power in combination with other genes. Sampling methods
such as random forests [63] might offer a solution to this problem in feature
selection since they investigate the classification power of more than one gene at
a time using subsets of all features. The third challenge is that of representing
biological systems in a way that allows effective machine learning (i.e. feature
synthesis). Examples discussed here were a template language for represent-
ing expression time profiles and local descriptors to represent protein structure.
More than the development of computational methods themselves, we believe
that the development of new ways to represent biological systems is the most im-
portant in order to successfully solve the puzzles of molecular biology. This also
includes a final challenge, namely that of combining various sources of data in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Rough Sets in Bioinformatics 239

representation process such as, for example, using both molecular markers and
clinical data in cancer classification. The significance of the second and third
challenges was already recognized my A. Skowron in 1995 [64].

PubMed (http://www.ncbi.nlm.nih.gov/PubMed) is the main database pro-
viding access to all published biomedical literature. Searching for ”rough set(s)”
in titles and abstracts of articles in this database gives 69 hits since 1988 and
reveal a large number of application areas beyond those described here. The true
number of articles using rough sets in life sciences, however, is probably much
higher since this search was limited to title and abstract and since only four of
the papers reviewed in this article were retrieved by the search. Google Scholar
(http://scholar.google.com), which searches through the whole text of all avail-
able scientific publications online, returned 290 articles with ”rough set(s)” and
”bioinformatics”, and 11900 articles with ”rough set(s)”.

The published studies reviewed here all used the ROSETTA system, which is a
user friendly, freely available software package for rough set-based rule induction
and model evaluations [65] (http://rosetta.lcb.uu.se/).

Acknowledgements

We would like to thank co-authors of the reviewed articles for a stimulating
collaboration. In particular Astrid Lægreid for her continuous help with all issues
related to biology. The ROSETTA system has been an essential aid in this
research. It was mainly developed by Alexander Øhrn under the supervision
of Jan Komorowski, Trondheim, and in collaboration with Andrzej Skowron’s
group in Warsaw.

This research was supported by grants from the Knut and Alice Wallenberg
Foundation (in part through the Wallenberg Consortium North), the Swedish
Research Council, and the Swedish Foundation for Strategic Research.

References

1. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F.,
Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M.: Whole-
genome random sequencing and assembly of Haemophilus influenzae Rd. Science
269 (1995) 496–512

2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.: The protein data bank. Nucleic Acids Research 28
(2000) 235–242

3. Schena, M., Shalon, D., Davis, R., Brown, P.O.: Quantitative monitoring of gene
expression patterns with a complementary dna microarray. Science 270 (1995)
467–470

4. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P., Trent, J.M.: Expression profiling
using cDNA microarrays. Nat Genet 21 (1999) 10–14

5. Patterson, S.D., Aebersold, R.H.: Proteomics: the first decade and beyond. Nat
Genet 33 Suppl (2003) 311–323

6. Kanehisa, M., Bork, P.: Bioinformatics in the post-sequence era. Nat Genet 33
Suppl (2003) 305–310

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



240 T.R. Hvidsten and J. Komorowski

7. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Research 25 (1997) 3389–3402

8. Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: an
overview. J Comput Biol 10 (2003) 821–855

9. Jenssen, T.K., Lægreid, A., Komorowski, J., Hovig, E.: A literature network of
human genes for high-throughput analysis of gene expression. Nat Genet 28 (2001)
21–28

10. Brazma, A., Krestyaninova, M., Sarkans, U.: Standards for systems biology. Nat
Rev Genet 7 (2006) 593–605

11. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology.
Nature Genetics 25 (2000) 25–29

12. Pawlak, Z.: Rough sets. International Journal of Information and Computer Sci-
ence 11 (1982) 341–356

13. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Volume 9
of Series D: System Theory, Knowledge Engineering and Problem Solving. Kluwer
Academic Publishers, Dordrecht, The Netherlands (1991)

14. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial.
In Pal, S.K., Skowron, A., eds.: Rough Fuzzy Hybridization: A New Trend in
Decision-Making. Springer, Singapore (1999) 3–98

15. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
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Abstract. The last two decades have seen many powerful classification systems
being built for large-scale real-world applications. However, for all their accuracy,
one of the persistent obstacles facing these systems is that of data dimensionality.
To enable such systems to be effective, a redundancy-removing step is usually
required to pre-process the given data. Rough set theory offers a useful, and for-
mal, methodology that can be employed to reduce the dimensionality of datasets.
It helps select the most information rich features in a dataset, without transform-
ing the data, all the while attempting to minimise information loss during the
selection process. Based on this observation, this paper discusses an approach for
semantics-preserving dimensionality reduction, or feature selection, that simpli-
fies domains to aid in developing fuzzy or neural classifiers. Computationally, the
approach is highly efficient, relying on simple set operations only. The success
of this work is illustrated by applying it to addressing two real-world problems:
industrial plant monitoring and medical image analysis.

1 Introduction

Knowledge-based classification systems have been successful in many application ar-
eas. However, complex application problems, such as reliable monitoring and diagnosis
of industrial plants and trustworthy analysis and comparison of medical images, have
emphasised the issue of large numbers of features present in the problem domain, not
all of which will be essential for the task at hand. The applicability of most classifica-
tion systems is often limited by the curse of dimensionality that imposes a ceiling on
the complexity of the application domain. A method to allow generation of intelligent
classifiers for such application domains is clearly desirable.

Dimensionality reduction is also required to improve the runtime performance of a
classifier. For example, in industrial plant monitoring, by requiring less observations per
variable, the dimensionality reduced system becomes more compact and its response
time decreases. The cost of obtaining data drops accordingly, as fewer connections to
instrumentation need be maintained. In the meantime, the overall robustness of the sys-
tem can increase, since, with fewer instruments, the chances of instrumentation mal-
functions leading to spurious readings may be reduced dramatically.

Inspired by such observations, numerous different dimensionality reduction method-
ologies have been proposed in the literature. Unfortunately, many of them remove re-
dundancy by irretrievably destroying the original meaning of the data given for learning.
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This significantly reduces, if not completely loses, the potential expressive power of the
classification systems for computing with clear semantics. This, in turn, leads to a lack
of trust in such systems, while such trust is usually critical for the systems to be taken
up by end users.

The work on rough set theory [7] offers an alternative, and formal, methodology
(amongst many other possible applications, e.g. [6,8]) that can be employed to reduce
the dimensionality of datasets, as a preprocessing step to assist the development of any
type of classifiers via learning from data. It helps select the most information rich fea-
tures in a dataset, without transforming the data, all the while attempting to minimise
information loss during the selection process [14]. Computationally, the approach is
highly efficient, relying on simple set operations, which makes it suitable as a preproces-
sor for techniques that are much more complex. Unlike statistical correlation-reducing
approaches [1], it requires no human input or intervention and retains the semantics of
the original data.

Combined with an intelligent classification system built by, say, a fuzzy system or a
neural network, the feature selection approach based on rough set theory can not only
retain the descriptive power of the overall classifier, but also allow simplified system
structure. This helps enhance the interoperability and understandability of the resul-
tant systems and their reasoning. Drawing on the initial results previously presented
in [12,13,14], this paper demonstrates the applicability of this approach in supporting
transparent fuzzy or neural classifiers, with respect to two distinct application domains.

The remainder of this paper is structured as follows. The rough set-assisted feature
selection mechanism is summarised in section 2 for self-containedness. This is followed
by an illustration of the two example applications, demonstrating how different classi-
fication tasks can benefit from rough set-assisted semantics-preserving dimensionality
reduction. The paper is concluded in section 5, with interesting further work pointed out.

2 Feature Selection

This section shows the basic ideas of rough sets [7] that are relevant to the present
work and describes an efficient computational algorithm, named Rough Set Attribute
Reduction (RSAR), for feature selection.

2.1 Rough Sets

A rough set is an approximation of a vague concept by a pair of precise concepts,
called lower and upper approximations. The lower approximation is a description of
the domain objects which are known with absolute certainty to belong to the subset of
interest, whereas the upper approximation is a description of the objects which possibly
belong to the subset.

Rough sets have been employed to remove redundant conditional attributes from
discrete-valued datasets, while retaining their information content. Central to this work
is the concept of indiscernibility. Without losing generality, let I = (U, A) be an infor-
mation system, where U is a non-empty set of finite objects (the universe of discourse),
and A is a non-empty finite set of variables such that a : U → Va ∀a ∈ A, Va being the
value set of variable a. In building a classification system, for example, A = {C ∪D}
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where C is the set of input features and D is the set of class indices. Here, a class index
d ∈ D is itself a variable d : U → {0, 1} such that for a ∈ U, d(a) = 1 if a has class d
and d(a) = 0 otherwise.

With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U × U | ∀ a ∈ P, a(x) = a(y)} (1)

Note that this corresponds to the equivalence relation for which two objects are equiva-
lent if and only if they have the same vectors of attribute values for the attributes in P .
The partition of U , determined by IND(P) is denoted U /P, which is simply the set of
equivalence classes generated by IND(P ).

If (x, y) ∈ IND(P ), then x and y are indiscernible by features in P . The equivalence
classes of the P -indiscernibility relation are denoted [x]P . Let X ⊆ U , the P-lower and
P-upper approximations of a classical crisp set are respectively defined as:

PX = {x | [x]P ⊆ X} (2)

PX = {x | [x]P ∩X �= Ø} (3)

Let P and Q be subsets of A, then the important concept of positive region is defined as:

POSP (Q) =
⋃

X∈U/Q

PX (4)

For tasks like classification with feature patterns, the positive region contains all
objects of U that can be classified into classes of U /Q using the knowledge conveyed
by the features of P.

2.2 Feature Dependency and Significance

The important issue here is to discover dependencies of object classes upon given fea-
tures. Intuitively, a set of classes Q depends totally on a set of features P, denoted P
⇒ Q, if all class indices from Q are uniquely determined by values of features from P.
Dependency can be measured in the following way [14]:

For P,Q ⊆ A, Q depends on P in a degree k (0 ≤ k ≤ 1), denoted P⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U | (5)

where |S| stands for the cardinality of set S.
If k = 1, Q depends totally on P; if 0 < k < 1, Q depends partially (in a degree k) on

P; and if k = 0, Q does not depend on P.
By calculating the change in dependency when a feature is removed from the set

of considered possible features, an estimate of the significance of that feature can be
obtained. The higher the change in dependency, the more significant the feature is. If
the significance is 0, then the feature is dispensable. More formally, given P,Q and a
feature x ∈ P, the significance of feature x upon Q is defined by

σP (Q, x) = γP (Q)− γP−{x}(Q) (6)
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2.3 Feature Selection Algorithm

The selection of features is achieved by reducing the dimensionality of a given feature
set, without destroying the meaning conveyed by the individual features selected. This
is, in turn, achieved by comparing equivalence relations generated by sets of features
with regard to the underlying object classes, in the context of classification.

Features are removed so that the reduced set will provide the same quality of clas-
sification as the original. For easy reference, the concept of retainer is introduced as a
subset R of the initial feature set C such that γR(D) = γC(D). A minimal retainer is
termed a reduct in the literature [9]. That is, a further removal of any feature from a
reduct will make it violate the constraint γR(D) = γC(D).

Thus, a given dataset may have many feature retainers, and the collection of all re-
tainers is denoted by

R = {X |X ⊆ C, γX(D) = γC(D)} (7)

The intersection of all the sets in R is called the core, the elements of which are
those features that cannot be eliminated without introducing more contradictions to the
representation of the dataset. Clearly, for feature selection, an attempt is to be made to
locate a minimal retainer, or a single reduct, Rmin ⊆ R :

Rmin = {X |X ∈ R, ∀Y ∈ R, |X | ≤ |Y |} (8)

A basic way of achieving this is to calculate the dependencies of all possible subsets
of C. Any subset X with γX(D) = 1 is a retainer; the smallest subset with this property
is a reduct. However, for large datasets with a large feature set this method is impractical
and an alternative strategy is required.

The RSAR feature selection algorithm given in Figure 1 attempts to calculate a
reduct without exhaustively generating all possible subsets. It starts off with an empty
set and adds in turn, one at a time, those features that result in the greatest increase in
γP (Q), until the maximum possible value of γP (Q), usually 1, results for the given
dataset. Note that this method does not always generate a minimal retainer (or reduct),
as γP (Q) is not a perfect heuristic. However, it does result in a close-to-minimal re-
tainer, which is still useful in greatly reducing feature set dimensionality. It is also

1. R← {}
2. do
3. T ← R
4. ∀x ∈ (C −R)
5. if γR∪{x}(D) > γT (D)
6. T ← R ∪ {x}
7. R← T
8. until γR(D) = γC(D)
9. return R

Fig. 1. The RSAR feature selection algorithm
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worth noting that one way to guarantee the generation of a reduct is to apply RSAR
in conjunction with a selection strategy that works in reverse order (i.e., starting with a
full set of features and then deleting one at a time). Nevertheless, such an approach has
a significant practical limit when the original feature set is of a high dimensionality.

RSAR works in a greedy manner, not compromising with a set of features that con-
tains a large part of the information of the initial set. It attempts to reduce the feature set
without loss of information significant to solving the problem at hand. The way it works
is clearly dependent upon features being represented in nominal values. However, this
does not necessarily give rise to problems in the use of the overall classification system
which includes such a feature selection preprocessor. This is because the real feature
values are only required to be temporarily discretised for feature selection itself. The
classifier will use the original real-valued features directly. In this regard, it is indepen-
dent of the classification methods adopted. When used in conjunction with an explicit
descriptive classifier, the resulting system will be defined in terms of only the signif-
icant features of the data, retaining the desirable transparency. The training process is
accelerated, while the runtime operation of the system is sped up since fewer attributes
are required.

3 Application I: Industrial Plant Monitoring

This application concerns the task of monitoring a water treatment plant [14]. To illus-
trate the generality of the presented approach and its independence from any specific
classification system, this first application involves the use of a fuzzy system based clas-
sifier. This domain was chosen because of its realism. A large plant is likely to involve
a number of similar features, not all of which will be essential in determining the op-
erational status. Interrelations between features are unavoidable as the plant is a single
system with interconnections, leading to a fair degree of redundancy.

3.1 Problem Case

The Water Treatment dataset comprises a set of historical data obtained over a period
of 521 days, with one series of measurements per day. Thirty eight different feature
values are measured per day, with one set of such measurements forming one datum. All
measurements are real-valued. The goal is to implement a fuzzy classification system
that, given this dataset of past measurements and without the benefit of an expert in
the field at hand, will classify the plant’s status and produce human comprehensible
explanations of the monitoring results.

The thirty eight features account for the following five aspects of the water treatment
plant’s operation (see Figure 2 for an illustration of this): input to plant; input to primary
settler; input to secondary settler; output from plant; and overall plant performance. The
operational state of the plant is represented by a boolean categorisation representing the
detection of a fault. The point is to draw the operator’s attention to an impending fault.

3.2 Fuzzy Classifier

In this experimental study, to obtain a system that will entail classification of the plant’s
operating status, the fuzzy induction algorithm first reported in [3] is used. This is
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Primary Settler Secondary Settler

Secondary Settler Gauges (7)

Overall Performance Gauges (9)

Output Gauges (7)Primary Settler Gauges (6)Input Gauges (9)

Fig. 2. Schematic diagram of the water treatment plant, indicating the number of measurements
sampled at various points

adopted simply due to the availability of its software implementation; any other fuzzy
rule induction method may be utilised as an alternative for classifier building. The re-
sulting classification system is represented in a set of fuzzy production rules. For the
sake of completeness, an outline of the induction algorithm employed is given below.

The algorithm generates a hyperplane of candidate fuzzy rules by fuzzifying the
entire training dataset using all permutations of the input features. Thus, a system with
M inputs, each of which has a domain fuzzified by fj fuzzy sets (1 ≤ j ≤ M ), the
hyperplane is fuzzified into

∏M
j=1 fj M -dimensional clusters, each representing one

vector of rule preconditions. Each cluster p = 〈D1, D2, . . . , DM 〉 may lead to a fuzzy
rule, provided that the given dataset supports it.

To obtain a measure of what classification applies to a cluster, fuzzy min-max com-
position is used. The input feature pattern of each example object is fuzzified accord-
ing to the fuzzy sets {μD1 , μD2 , . . . , μDM } that make up cluster p. For each object
x = 〈x1, x2, . . . , xM 〉, the following t-norm of it, with respect to cluster p and classifi-
cation c, is calculated:

T
p
c x = min

(
μD1(x1), μD2(x2), . . . , μDM (xM )

)
(9)

Furthermore, the maximum of all t-norms with respect to p and c is then calculated and
this is dubbed an s-norm:

S
p
c = max

{
T

p
c x | x ∈ Cc

}
(10)

where Cc is the set of all examples that can be classified as c. This is iterated over all
possible classifications to provide a full indication of how well each cluster applies to
each classification.

A cluster generates at most one classification rule. The rule’s preconditions are the
cluster’s M corresponding fuzzy sets connected conjunctively. The conclusion is the
classification attached to the cluster. Since there may be s-norms for more than one
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classification, it is necessary to decide on one classification for each of the clusters. Such
contradictions are resolved by using the uncertainty margin, ε (0 ≤ ε < 1). An s-norm
assigns its classification on its cluster if and only if it is greater by at least ε than all other
s-norms for that cluster. If this is not the case, the cluster is considered undecidable and
no rule is generated. The uncertainty margin introduces a trade-off in the rule generation
process between the size and the accuracy of the resulting classification. In general, the
higher ε is, the less rules are generated, but classification error may increase. A fuller
treatment of this algorithm in use for descriptive learning can be found in [3].

3.3 Results

Running the RSAR algorithm on the Water Treatment dataset provided a significant
reduction, with merely two features selected from the total of 38. Testing on previ-
ously unseen data resulted in a classification accuracy of 97.1%, using the fuzzy model
generated by the above-mentioned rule induction method.

A comparison against a widely recognised benchmark method should help in estab-
lishing the success of the system. C4.5 [10] is a widely accepted and powerful algorithm
that provides a good benchmark [5] for learning from data. The decision trees it gener-
ates allow for rapid and efficient interpretation. Yet, C4.5’s decision tree for the present
problem involves a total of three attributes from the dataset, as opposed to two chosen by
the RSAR algorithm. In terms of classification performance, C4.5 obtains a compatible
accuracy of around 96.8%.

Note that training a fuzzy system on all 38 features would be computationally pro-
hibitive with the adopted learning algorithm. As stated previously, the benefits do not
limit themselves to the learning phase; they extend to the runtime use of the learned
classifier. By reducing the dimensionality of the data, the dimensionality of the rule-
set is also reduced. This results in fewer measured features, which is very important for
dynamic systems where observables are often restricted. This in turn leads to fewer con-
nections to instrumentation and faster system responses in emergencies. Both of which
are important to the problem domain.

The most important benefit of using RSAR is, however, derived from its conjunc-
tive use with the linguistically expressive fuzzy system. With the learned rules, it can
provide explanations of its reasoning to the operator. This leads to increased trust in the
system, as its alarms can be understood meaningfully. A classification system consisting
of rules involving 38 features, even though they are all directly measurable and hence
individually interpretable, is very difficult to understand, whilst one involving only two
features is very easy to interpret.

4 Application II: Medical Image Analysis

Comparing normal and abnormal blood vessel structures, via the analysis of cell im-
ages, plays an important role in pathology and medicine [12]. This forms the focus of
this application, analysing medical images by the use of a neural network based image
classifier that is supported by RSAR.
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4.1 Problem Case

Central to this analysis is the capture of the underlying features of the cell images.
Many feature extraction methods are available to yield various kinds of characteristic
descriptions of a given image. However, little knowledge is available as to what features
may be most helpful to provide the discrimination power between normal and abnormal
cells and between their types, while it is computationally impractical to generate many
features and then to perform classification based on these features for rapid diagnosis.
Generating a good number of features and selecting from them the most informative
ones off-line, and then using those selected on-line is the usual way to avoid this diffi-
culty. Importantly, the features produced ought to have an embedded meaning and such
meaning should not be altered during the selection process. Therefore, this problem
presents a challenging case to test the potential of RSAR.

The samples of subcutaneous blood vessels used in this work were taken from pa-
tients suffering critical limb ischaemia immediately after leg amputation. The level of
amputation was always selected to be in a non-ischaemic area. The vessel segments ob-
tained from this area represented internal proximal (normal) arteries, whilst the distal
portion of the limb represented ischaemic (abnormal) ones. Images were collected us-
ing an inverted microscope, producing an image database of 318 cell images, each sized
512×512 pixels with grey levels ranging from 0 to 255. Examples of the three types of
cell image taken from non-ischaemic, and those from ischaemic, resistance arteries are
shown in Figure 3. Note that many of these images seem rather similar to the eye. It is
therefore a difficult task for visual inspection and classification.

4.2 Neural Network Classifier

In this work, each image classifier is implemented using a traditional multi-layer feed-
forward artificial neural network (MFNN). To capture and represent many possible and
essential characteristics of a given image, fractal models [4] are used. Note that, al-
though these particular techniques are herein adopted to perform their respective task,
the work described does not rely on them, but is generally applicable when other clas-
sification and feature extraction methods are employed.

An MFNN-based classifier accomplishes classification by mapping input feature pat-
terns onto their underlying image classes. The design of each MFNN classifier used for
the present work is specified as follows. The number of nodes in its input layer is set to
that of the dimensionality of the given feature set (before or after feature reduction), and
the number of nodes within its output layer is set to the number of underlying classes of
interest. The internal structure of the network is designed to be flexible and may contain
one or two hidden layers.

The training of the classifier is essential to its runtime performance, and is here car-
ried out using the back-propagation algorithm [11]. For this, feature patterns that rep-
resent different images, coupled with their respective underlying image class indices,
are selected as the training data, with the input features being normalised into the range
of 0 to 1. Here, each feature pattern consists of 9 fractal features (including 5 isotropic
fractals measured on the top five finest resolutions and 4 directional fractals [12]) and
the mean and standard deviation (STD), with their reference numbers listed in Table 1.
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(1) adventitial (2) SMC (3) endothelial

(a) from proximal, non-ischaemic blood vessels

(1) adventitial (2) SMC (3) endothelial

(b) from distal, ischaemic blood vessels

Fig. 3. Section cell images, where the first, second and third columns respectively show adventi-
tial, smooth muscle and endothelial cells in proximal non-ischaemic and distal ischaemic subcu-
taneous blood vessels, taken from a human lower limb

Note that when applying the trained classifier, only those features selected during the
learning phase are required to be extracted and that no discretisation is needed but real-
valued features are directly fed to the classifier.

4.3 Results

Eighty-five images selected from the image database are used for training and the re-
maining 233 images are employed for testing. For simplicity, only MFNNs with one
hidden layer are considered.

Table 2 lists the results of using RSAR and the original full set of features. The error
rate of using the five selected features is lower than that of using the full feature set. This
improvement of performance is obtained by a structurally much simpler network of 10
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Table 1. Features and their reference number

Feature No. Feature Meaning Feature No. Feature Meaning

1 0◦ direction 7 3rd finest resolution
2 45◦ direction 8 4th finest resolution
3 90◦ direction 9 5th finest resolution
4 135◦ direction 10 Mean
5 Finest resolution 11 STD
6 2nd finest resolution

Table 2. Results of using rough-selected and the original full set of features

Method Dimensionality Features Structure Error

Rough 5 1,4,9,10,11 5×10 + 10×6 7.55%
Original 11 1,2,3,4,5,6,7,8,9,10,11 11×24 + 24×6 9.44%

Table 3. Results of using rough and PCA-selected features

Method Dimensionality Features Structure Error

Rough 5 1,4,9,10,11 5×10 + 10×6 7.7%
PCA 1 1 1×12 + 12×6 57.1%

2 1,2 2×12 + 12×6 32.2%
3 1,2,3 3×12 + 12×6 31.3%
4 1,2,3,4 4×24 + 24×6 28.8%
5 1,2,3,4,5 5×20 + 20×6 18.9%
6 1,2,3,4,5,6 6×18 + 18×6 15.4%
7 1,2,3,4,5,6,7 7×24 + 24×6 11.6%
8 1,2,3,4,5,6,7,8 8×24 + 24×6 13.7%
9 1,2,3,4,5,6,7,8,9 9×12 + 12×6 9.9%

10 1,2,3,4,5,6,7,8,9,10 10×20 + 20×6 7.3%
11 1,2,3,4,5,6,7,8,9,10,11 11×8 + 8×6 7.3%

hidden nodes, as opposed to the classifier that requires 24 hidden nodes to achieve the
optimal learning. This is indicative of the power of RSAR in helping reduce not only
redundant feature measures but also the noise associated with such measurement. Also,
the classifier using those five RSAR-selected features considerably outperforms those
using five randomly selected features, with the average error of the latter reaching 19.1%.

Again, a comparison against a widely recognised benchmark method should help
reflect the success of the system. For this, the results of rough feature selection are
systematically compared to those obtained via the use of Principal Component Analy-
sis (PCA) [1], as summarised in Table 3. Note that PCA is perhaps the most adopted
dimensionality reduction technique. Although efficient, it irreversibly destroys the un-
derlying semantics of the feature set. Therefore, in this table, for the results of using
PCA, feature number i, i ∈ {1, 2, ..., 11}, stands for the ith principal component, i.e.
the transformed feature that is corresponding to the ith largest variance.
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The advantages of using RSAR are clear. Of the same dimensionality (i.e., 5), the
classifier using the features selected by the rough set approach has a substantially higher
classification accuracy, and this is achieved via a considerably simpler neural network.
When increasing the dimensionality of principal features, the error rate generally gets
reduced, but the classifier generally underperforms until almost the full set of principal
features is used. The overall structural complexity of all these classifiers are more com-
plex than that of the classifier using the five RSAR-selected features. In addition, the
use of those classifiers that use PCA-selected features would require many more feature
measurements to achieve comparable classification results.

5 Conclusion

It is well-known that the applicability of most intelligent classification approaches is
limited by the curse of dimensionality, which imposes a ceiling on the complexity of the
application domain. This paper has demonstrated an effective approach to semantics-
preserving dimensionality reduction by exploiting the basic ideas of rough set theory.
Such a feature selection tool makes learned classifiers much more transparent and com-
prehensible to humans, who have inherent trouble understanding high-dimensionality
domains, in addition to being able to lessen the obstacles of the dimensionality ceiling.

In summary, Rough Set Attribute Reduction (RSAR) selects the most information
rich attributes in a dataset, without transforming the data, all the while attempting to
minimise information loss as regards the classification task at hand. When employed
by an intelligent classification system (be it a fuzzy system or neural network), by sim-
plifying the problem domain, RSAR helps enhance the transparency and maintain the
accuracy of the classifier. With relatively simple system structures, the examination of
the quality of the results inferred by the use of such classifiers is made easy. This has
been demonstrated in applications to two rather different problem domains, with very
promising results.

Although RSAR has been used as a dataset pre-processor with much success, it is
reliant upon a crisp dataset. Important information (for choosing the optimal features)
may be lost as a result of required boolean discretisation of the underlying numerical
features. Further advances have recently been made in proposing a feature selection
technique that employs a hybrid variant of rough sets, the fuzzy-rough sets [2], to avoid
this information loss [15]. Whilst this is out of the scope of this paper, it is interesting
to point out that initial experimental results, of applying this improved version to the
problem of industrial plant monitoring, have shown that fuzzy-rough feature selection
is more powerful than many conventional approaches, including entropy-based, PCA-
based and random-based methods.
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Abstract. How to achieve a balance between data publication and pri-
vacy protection has been an important issue in information security for
several years. When microdata is released to users, attributes that clearly
identify individuals are usually removed. Nevertheless, it is still possible
to link released data with some public or easy-to-access databases to
obtain confidential information. To safeguard privacy, numerous tech-
niques, such as generalization, suppression, and microaggregation, have
been proposed to modify the to-be-released data. In this paper, we pro-
pose attribute-oriented granulation as a data protection mechanism that
can integrate both generalization and microaggregation into a uniform
framework. We address the computational issue of searching for the
most specific granulation that satisfies confidentiality requirements. A
breadth-first search algorithm with basic pruning strategies is presented
and its properties are investigated. The properties can be used to improve
the efficiency of our algorithm. We also define some quantitative mea-
sures of data quality and security, and apply evolutionary computation
techniques to find the optimal granulation for privacy protection.

1 Introduction

Privacy protection is one of the main concerns in the field of data security. In
recent years, statistical disclosure control [2] has become increasingly important
due to the requirements of data security. One of the major issues in disclosure
control is the database linking problem. Generally speaking, the problem is how
to prevent users1 obtaining confidential information about an individual2 by
linking to some public or easy-to-access database with data they can obtain
legally from a data center.

Though the protection of privacy is very important, over-restriction of access
to a database may render the data useless. Therefore, the main challenge is
how to achieve a balance between privacy protection and data availability. One
� A preliminary version of this paper was published in [1]. This work was partially

supported by the Taiwan Information Security Center (TWISC) and NSC (Taiwan).
NSC Grants: 95-2221-E-001-019 (D.W. Wang), 95-2221-E-001-029-MY3 (C.J. Liau),
and 95-2221-E-001-004 (T-s. Hsu).

1 In this paper, a user refers to anyone receiving data and having the potential to
breach the privacy of individuals.

2 An individual refers to a person whose privacy should be protected.
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possibility is to modify the data before it is released by generalizing the values
of some data cells to a coarser level of precision. To do this, we can partition the
domain of attributes according to a certain level of precision, and generalize the
data from the finest to the coarsest level until the privacy requirement is met.
This kind of operation is called attribute-oriented granulation (AOG). In this
paper, we investigate the application of AOG to privacy protection. It is shown
that AOG can integrate generalization[3,4,5,6,7] and microaggregation[8] into a
uniform framework. To address the computational issue of searching for the most
specific granulation that satisfies confidentiality requirements, a breadth-first
search algorithm with basic pruning strategies is presented and its properties
are investigated. The properties can be used to improve the efficiency of the
basic algorithm. We also define the quantitative measures of data quality and
security and apply evolutionary computation (EC) techniques to find the optimal
granulation for privacy protection.

The remainder of the paper is organized as follows: In Section 2, we use an
example to illustrate the concept of AOG, and formally introduce the AOG op-
eration. The logical security of AOG and its computational aspects are explored
in Section 3. We also present several properties of AOG that are used to improve
the search algorithm. In Section 4, we discuss the security and quality of AOG
and apply an EC approach to the search for an optimal AOG. We then present
our conclusions in Section 6.

2 Attribute-Oriented Granulation

2.1 A Running Example

In this paper, we investigate the privacy protection problem that may arise
when a data table [9] is released. The data in many application domains, such
as medical records, financial transaction records, employee information, and so
on, can be organized as data tables. A data table consists of a set of records,
each of which corresponds to an individual and has some attributes.

The attributes of a data table can be divided into three sets [10,11]. The first
consists of identifiers that can be used to identify to whom a data record belongs.
Therefore, these attributes are always masked off in response to a query. Let us
equate a set of identifiers with a set of individuals. Throughout this paper, a set
of individuals (or identifiers) is denoted by U . Second, we have a set of quasi-
identifiers, the values of which are known to the public. For example, in [12],
it is pointed out that some attributes like birth-date, gender, ethnicity, etc. are
included in some public databases, such as those that contain census data or
voter registration lists. These attributes, if not appropriately processed, may be
used to re-identify an individual’s record in a data table, thus causing a privacy
violation. The last kind of attribute is the confidential attribute, the values of
which we have to protect. It is often the case that an asymmetry exists between
the values of a confidential attribute. For example, if the attribute is a HIV test
result, then the revelation of a ‘+’ value may cause a serious invasion of privacy,
whereas it does not matter to know that an individual has a ‘−’ status. In this
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ID D.O.B. ZIP Height Income Health

u1 24/09/56 24126 161 400K 1

u2 06/09/56 24129 167 300K 1

u3 30/09/56 24133 163 300K 1

u4 23/03/56 10427 160 300K 0

u5 18/03/56 10431 165 100K 2

u6 05/03/56 10466 168 100K 2

u7 20/04/55 26015 175 400K 2

u8 18/04/55 26032 170 300K 1

u9 09/04/55 26617 173 100K 0

u10 01/04/55 26628 171 400K 0

u11 23/04/55 26328 176 400K 0

Fig. 1. A data table

1 09/56 24*** [160,170) 400K 1

2 09/56 24*** [160,170) 300K 1

3 09/56 24*** [160,170) 300K 1

4 03/56 10*** [160,170) 300K 0

5 03/56 10*** [160,170) 100K 2

6 03/56 10*** [160,170) 100K 2

7 04/55 26*** [170,180) 400K 2

8 04/55 26*** [170,180) 300K 1

9 04/55 26*** [170,180) 100K 0

10 04/55 26*** [170,180) 400K 0

11 04/55 26*** [170,180) 400K 0

Fig. 2. A generalized data table

paper, let T denote a data table for a set of individuals U , and tij denote the
value of an attribute j of an individual ui.

We use the data table in Figure 1 as our running example[7]. In the table,
U = {u1, · · · , u11} is a set of individuals (or identifiers); the quasi-identifiers are
date of birth, zip code, and height; and the confidential attributes are income
and health status. The values of “Health” are denoted by “normal”(0), “slightly
ill”(1), and “seriously ill”(2) respectively.

In [11,5,12], the notion of bin size is proposed to resolve the database linkage
problem. A bin is defined as an equivalence class based on the quasi-identifiers,
and the bin’s size is its cardinality. To be deemed secure, a table must satisfy
the condition that the size of any bin is sufficiently large. The security criterion
is called k-anonymity if each bin is required to contain at least k individuals.
Though, in general, the chance of a user obtaining confidential information is
smaller if the bin size is larger, it is well-known that controlling the bin size alone
is not sufficient to stop inference attacks [13]. To fully protect privacy, we must
consider some alternative criteria to complement the bin size.

One technique of protecting privacy is to release the data in a coarser granu-
larity. For example, the date of birth may be given as only the year and month,
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or only the first two digits of the ZIP code may be given. In addition, “Height”
can be expressed as a range, instead of a precise value. A concrete generalization
of the data table in Figure 1 is given in Figure 2. The first column denotes the
serial numbers of the released data records.

From the generalized data table, we observe that the bin containing u1, u2,
and u3 is size 3. However, since the health status attribute of the rows in this
bin has the value 1, the recipient of the table can infer that u1, u2, and u3 are
all slightly ill, though he does not know which of them has an income of 400K.

2.2 AOG Operations

In this section, we formally define the modification operation that can be applied
to a data table to enhance privacy protection. As the operation is based on parti-
tioning the domain of attributes according to different granular scales, it is called
attribute-oriented granulation (AOG). We first recall the basic definition of a par-
tition. Let V be a domain of values for some attribute; then, a partition π of V
is a set {s1, s2, . . . , sk} of mutually disjoint subsets of V such that ∪k

i=1si = V .
Each si is called an equivalence class of the partition, and we use π(v) to denote
the equivalence class containing v. Let π1 and π2 be two partitions of V . Then,
π1 is a refinement of π2, written as π1 � π2 if, for s ∈ π1 and t ∈ π2, either s ⊆ t
or s ∩ t = ∅. Let π1 ≺ π2 denote π1 � π2 and π1 	= π2. For a given set V , we use
⊥ and � (possibly with indices) to denote the finest partition {{v} | v ∈ V } and
the coarsest partition {V } respectively.

Let us assume that the set of quasi-identifiers is {1, 2, . . . , m} and denote the
domain of attribute i by Vi for 1 ≤ i ≤ m. Then, an AOG operation is specified
by a tuple (π1, π2, . . . , πm), where for 1 ≤ i ≤ m, πi is a partition of Vi. Let
τ1 = (π1, π2, . . . , πm) and τ2 = (π′

1, π
′
2, . . . , π

′
m) be two AOG operations. Then,

τ1 is at least as specific as τ2, denoted by τ1 � τ2, if for 1 ≤ i ≤ m, πi � π′
i; and

τ1 is more specific than τ2, denoted by τ1 ≺ τ2, if τ1 � τ2 and τ1 	= τ2.
Since the number of possible partitions of a domain may be prohibitively

large, we sometimes focus on a subset of admissible partitions . Let us define Πi

as the set of admissible partitions of Vi such that ⊥i and �i ∈ Πi for 1 ≤ i ≤ m;
then, the set of admissible AOGs is Π = Π1 × Π2 × · · · × Πm. τ2 is called a
direct successor of τ1 in Π if τ1 ≺ τ2 and there does not exist any τ ∈ Π such
that τ1 ≺ τ ≺ τ2.

2.3 The Running Example

Figure 3 shows a set of admissible partitions for our running example, where the
partitions for the dates of birth and zip codes are obvious, and the partitions for
height are defined as

I1 = {· · · , {160}, {161}, · · · , {174}, {175}, · · ·},
I5 = {· · · , [160, 165), [165, 170), [170, 175), · · ·},

I10 = {· · · , [160, 170), [170, 180), · · ·},
I20 = {· · · , [160, 180), [180, 200), · · ·}.
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Fig. 3. Admissible partitions for the quasi-identifiers in our running example

3 Logical Security

3.1 Security of AOG

To decide whether an AOG is secure, we use Pawlak’s decision logic (DL, [9]) to de-
scribe confidential information. The set of atomic sentences for DL is P = {(j, v) |
j ∈ J, v ∈ Vj}, where J is the set of confidential attributes. The intuitive meaning
of the atomic sentence (j, v) is that an individual’s attribute j has value v. The set
of sentences is the smallest set containing P that is closed on the Boolean connec-
tives ¬,∧, and ∨. If α ⊆ Vj , we abbreviate ∨v∈α(j, v) as (j, α). We assume that
the information an individual u wants to keep confidential is represented by a set
of DL sentences, CON(u). As usual, the sentences are evaluated inductively with
respect to the data table T and each individual in U as follows:

1. ui |= (j, v) iff tij = v.
2. u |= ¬ϕ iff u 	|= ϕ.
3. u |= ϕ ∧ ψ iff u |= ϕ and u |= ψ.
4. u |= ϕ ∨ ψ iff u |= ϕ or u |= ψ.

The meaning set of a sentence ϕ, [|ϕ|]T = {u ∈ U | u |= ϕ}, is the set of
individuals that satisfies ϕ in the data table T . The subscript T is usually omitted
when it is clear from the context.

Let π be a partition of the domain of an attribute k; then, the π-indiscernibility
relation with respect to the data table T , denoted by indT (π), is an equivalence
relation on U defined by (ui, uj) ∈ indT (π) ⇔ π(tik) = π(tjk). Again, the
subscript T is usually omitted for convenience. Let τ = (π1, π2, . . . , πm) be an
AOG operation; then, the τ-indiscernibility relation with respect to the data
table T is defined as

ind(τ) = ∩1≤k≤mind(πk).
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An AOG operation, τ = (π1, π2, . . . , πm), determines how the data is modified
before it is released. The requirement is that, for any ui, uj ∈ U and attribute k,
πk(tik) = πk(tjk) iff tik and tjk are replaced by the same value in the modified
data table. For example, the generalization method in [4,11] replaces a table
entry tik with πk(tik), whereas the microaggregation method in [8] replaces it
with some statistics, such as the mean, median, or mode of the multiset3 {tjk |
(ui, uj) ∈ ind(πk)}. Thus, the AOG method subsumes both generalization and
microaggregation. In this paper, we do not specify any particular modification
method for the AOG operation. We simply use τ(T ) to denote the table derived
by modifying the data table T with τ .

Given the τ -indiscernibility relation, the standard definition of the lower ap-
proximation in rough set theory is used to define the logical security of an AOG.
The lower approximation for any set X ⊆ U is defined as

ind(τ)X = {u | ∀(u, u′) ∈ ind(τ), u′ ∈ X}.
The AOG operation τ is logically secure (or simply secure) for u if u 	∈ ind(τ)[|ϕ|]
for any ϕ ∈ CON(u), and secure for U if it is secure for all u ∈ U . Once the data
table to be released has been modified by an AOG τ , the user can not distin-
guish the records of two individuals who are indiscernible in the relation ind(τ).
Therefore, even though the user knows the values of all the quasi-identifiers of
an individual, as well as how the values are modified, he can not deduce that
the individual satisfies a confidential property ϕ, provided that τ is secure.

3.2 The Running Example

Let us consider an AOG τ = (π1, π2, π3) = (mm/yy, d1, d2 ∗ ∗∗, I10). Then

ind(τ) = ind(π1) = ind(π2) = {{u1, u2, u3}, {u4, u5, u6}, {u7, u8, u9, u10, u11}},
ind(π3) = {{u1, u2, u3, u4, u5, u6}, {u7, u8, u9, u10, u11}}.

By using the generalization method to modify the data table in Figure 1, we
obtain the generalized table in Figure 2. On the other hand, if the microaggre-
gation method is used to modify the data table, and the arithmetical mean and
median are taken as the statistical operators of the continuous and ordinal at-
tributes respectively, then we can obtain the modified data table in Figure 4. To
understand how the table is derived, let us consider the individual u1. First, for
the continuous attribute height, [u1]ind(π3) = {u1, u2, u3, u4, u5, u6}; thus, t13 is
replaced by the arithmetical mean of the multiset {161, 167, 163, 160, 165, 168},
which is equal to 164. Second, for the ordinal attributes, date of birth and zip
code, [u1]ind(π1) = [u1]ind(π2) = {u1, u2, u3}; thus, t11 and t12 are replaced by
the median of {24/09/56, 06/09/56, 30/09/56} and {24126, 24129, 24133}, which
are 24/09/56 and 24129, respectively.

Note that the tables produced by generalization and microaggregation are
structurally isomorphic[14]. It is shown in [15] that isomorphic tables have the
3 A multiset is a set that allows the multiple occurrence of its elements.
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1 24/09/56 24129 164 400K 1

2 24/09/56 24129 164 300K 1

3 24/09/56 24129 164 300K 1

4 18/03/56 10431 164 300K 0

5 18/03/56 10431 164 100K 2

6 18/03/56 10431 164 100K 2

7 18/04/55 26617 173 400K 2

8 18/04/55 26617 173 300K 1

9 18/04/55 26617 173 100K 0

10 18/04/55 26617 173 400K 0

11 18/04/55 26617 173 400K 0

Fig. 4. Our running example modified by the microaggregation technique

same granular data model, defined as (U, Q), such that Q is a set of equivalence
relations induced by the attributes.

Now, if ϕ = (Health, 2) is a confidential sentence, then ind(τ)[|ϕ|] = ∅, since
[|ϕ|] = {u5, u6, u7}. Thus, τ is secure for U if CON(u) = {(Health, 2)}. On the
other hand, if ϕ′ = (Health, 1) ∈ CON(u1), then τ is insecure for u1, since
ind(τ)[|ϕ′|] = {u1, u2, u3}. The result is matched by our intuition.

3.3 The Basic Search Algorithm

Since the goal of privacy protection is to find a secure and maximally informative
AOG operation, we can achieve it by a bottom-up search of all possible AOGs. The
algorithm proposed in this section is based on a breadth-first search through the
set of admissible AOGs using basic pruning strategies. For simplicity, we present
the basic algorithm in this section, and discuss improvements that make it more
efficient in the next section. Our previous experiments show that the performance
of the basic algorithm is acceptable in non-realtime environments [6].

Although it is sufficient to find a secure and maximally informative AOG for
a data table, for the sake of flexibility, our search algorithm is designed to find all
secure and maximally informative AOGs for a given data table. We start from the
most specific AOG (⊥1, · · · ,⊥m) and test its security according to our definition.
If this operation is secure, we stop searching. Otherwise, we have to climb the
search tree according to the partial order � between AOG operations. Each
new AOG must be tested to evaluate its security. If it is secure, then all AOG
operations above it can be pruned, since our purpose is to find the maximally
informative (i.e., �-minimal) AOGs. Thus, the pruning operation substantially
reduces the number of AOGs that must be visited. In the search algorithm
presented in Figure 5, the function Get-from-queue returns the first element
of a queue, whereas the procedure Put-into-queue adds an AOG to the end of
a queue. These operations are standard and can be found in algorithm textbooks.
Also, we record the status of each τ in a Boolean array F , where F (τ) = 1 means
that it is not necessary to check τ any further.
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Procedure Search(Π,T, CON)

1. Initialize a Boolean array F [τ ] := 0 for all τ ∈ Π ;
2. Initialize a queue of AOG operations Q← {(⊥1,⊥2, · · · ,⊥m)};
3. while Q �= ∅ do

begin
repeat τ ←Get-from-queue(Q) until F [τ ] = 0 ∨Q = ∅;
if F [τ ] = 1 ∧Q = ∅ then exit;
F [τ ]← 1;
if Security(τ, T, CON)

then begin
Output(τ );
F [τ ′]← 1 for all τ ′ such that τ 	 τ ′

end
else for each direct successor τ ′ of τ do
if F [τ ′] = 0 then Put-into-queue(Q, τ ′)

end

Fig. 5. The search algorithm for AOG

Function Security(τ, T, CON)

1. Find ind(τ ) by sorting τ (T );
2. Initialize Boolean SF ← 1;
3. for each u ∈ U do

begin
(a) US[u]← 0;
(b) for each ϕ ∈ CON [u] do

begin
KN(u, ϕ)← 1;
for each u′ ∈ [u]ind(τ) do KN(u, ϕ)← KN(u, ϕ) ∧ (u′ |= ϕ);
US(u)← US(u) ∨KN(u, ϕ)
end;

(c) SF ← SF ∧ ¬US[u]
end

Fig. 6. The security test function for AOG

The Security function takes an AOG τ , a data table T , and the confidential
data function CON as its arguments and returns 1 if τ is secure with respect to T
according to the confidential requirement specified by CON ; otherwise, it returns
0. The Security function is presented in Figure 6. By sorting τ(T ) according
to its quasi-identifiers, we can partition U into ind(τ)-equivalence classes. Then,
we use a Boolean variable, SF , and two Boolean arrays, US and KN , indexed
by U and U × L0 respectively, to compute the output, where L0 denotes the
set of confidential sentences. Here SF , which is initialized to 1, denotes the
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security of τ , whereas US[u] = 1 means that τ is not secure for u; hence, the
final security level is computed by repeat conjunction of SF with ¬US[u] for
all u ∈ U . The array KN denotes the user’s knowledge about individuals, so
KN(u, ϕ) = 1 means the user knows that u satisfies ϕ, i.e., u ∈ ind(τ)[|ϕ|].
KN(u, ϕ) is computed by repeat conjunction of its initial value 1 with u′ |= ϕ
for all u′ ∈ [u]ind(τ), where u′ |= ϕ means that ϕ is satisfied by u′. Furthermore,
τ is not secure for u if for some ϕ ∈ CON [u], KN(u, ϕ) = 1; consequently,
US(u) is computed by repeat disjunction of its initial value 0 with KN(u, ϕ) for
all ϕ ∈ CON [u].

The complexity of the Security function can be analyzed as follows. First,
Step 1, the sorting step, needs O(n log n) time using standard algorithms, where
n is the cardinality of U . Let us assume the evaluation u′ |= ϕ can be performed
in constant-bounded time; then, the total execution time of Step 3 is

∑

u∈U

|CON [u]| · |[u]ind(τ)|.

Assuming the size of each CON [u] is bounded above by a constant C, the total
execution time of Step 3 is at most

C ·
∑

u∈U

|[u]ind(τ)|,

which is in O(n2) time, since |[u]ind(τ)| ≤ n for all u ∈ U . The O(n2) bound is
quite loose, because |[u]ind(τ)| may be much smaller than n. Furthermore, in the
special case where all individuals have the same set of confidential data (or at
least in the case where, for all u1, u2 ∈ U , (u1, u2) ∈ ind(τ) implies CON [u1] =
CON [u2]), Step 3(b) is only executed once for each individual corresponding to
a different ind(τ)-equivalence class, which reduces its computation time to O(n).
Therefore, the total time complexity of the security test procedure is O(n2) in
general, and O(n log n) in special cases.

3.4 Computational Improvement

As noted earlier, our algorithm for finding maximally informative AOGs is based
on a breadth-first search with basic pruning strategies. Recently, a more efficient
algorithm for full-domain k-anonymity, called Incognito, has been proposed [16].
It employs more advanced pruning strategies based on the generalization, rollup,
and subset properties.

The generalization and subset properties still hold if k-anonymity is replaced
by our security criterion, whereas the rollup property can be easily extended to
our framework if the frequency set used in [16] is replaced by the characteristic
functions of confidential sentences. Therefore, Incognito can be easily adapted to
find all maximally informative AOGs for a data table. In the following, we show
that the generalization, rollup, and subset properties hold in our framework.

First, the generalization property is an obvious fact that is used in our basic
search algorithm.
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Property 1 (Generalization property). If τ1 � τ2 and τ1 is secure, then τ2

is also secure.

Second, to demonstrate the subset property, we have to define an AOG for an
arbitrary subset of quasi-identifiers. So far, we have only defined an AOG for
the set of all quasi-identifiers. Let J be a subset of {1, 2, · · · , m}, then an AOG
for J is specified by an m-tuple (π1, π2, . . . , πm) such that πi = �i iff i 	∈ J . If
J1 ⊆ J2, and τ1 = (π1, π2, . . . , πm) and τ2 = (π′

1, π
′
2, . . . , π

′
m) are the respective

AOGs for J1 and J2, we say that τ1 is a restriction of τ2, denoted by τ1 = τ2|J1,
if πi = π′

i for i ∈ J1. It is obvious that τ2 � τ1 if τ1 is a restriction of τ2. The
subset property is therefore a corollary of the generalization property.

Property 2 (Subset property). Any restriction of a secure AOG is also
secure.

Third, the rollup property must be adapted to our framework. We note that it is
necessary to count the records with each unique combination of values of quasi-
identifiers in order to check k-anonymity. The rollup property is used to execute
the count efficiently. To check our security criterion, we do not have to count the
number of records. Instead, we only need to check whether a confidential sentence
is falsified for individuals with a combination of quasi-identifiers values. Thus,
we define a characteristic function as a mapping from each equivalence class of τ
to the subset of confidential sentences falsified by some individuals in the class.
Then, the rollup property can be reformulated as follows.

Property 3 (Rollup property). If τ1 � τ2, then we can generate each set of
falsified sentences for the characteristic function of τ2 by a set union from the
characteristic function of τ1.

4 Security and Data Quality

4.1 Security Measure

The security criterion defined in the preceding section is purely qualitative. Thus,
even though the security condition is satisfied, there is still a sufficiently high
probability that the user could infer an individual’s confidential information.
To assess the security of a protection mechanism more precisely, a number of
quantitative criteria have been proposed [6,17]. One criterion that measures how
much confidential information is leaked is called the average benefit criterion,
because it was originally used to assess the benefit a user derives when he receives
released data. It is especially appropriate for AOG operations and can also be
used to measure risk, since the lower the average benefit, the less an individual’s
privacy can be breached.

To define such a risk measure, we examine the difference between a user’s a
priori and a posteriori knowledge. Consider a data table containing an ind(τ)-
equivalence class, where 99 percent of the individuals in that class have the
same confidential value for one specific attribute. It is tempting to conclude that
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personal privacy could be violated easily. However, if this distribution is close to
the prior distribution of the attribute value of the entire population, release of
the above-mentioned data would not be a threat to personal privacy, since a user
could not learn much about the distribution by database linking. It is therefore
important to consider the original distribution of attribute values in a database.

We now propose an information-theoretic approach that measures informa-
tion gain after receiving τ(T ). The user’s a priori knowledge about ϕ can be
modeled by the prior probability Pr(ϕ), which is the statistical probability of ϕ
for the whole population. If the set U is sufficiently representative of the whole
population, then

Pr(ϕ) =
|{x | x |= ϕ}|

|U | .

On the other hand, the user’s a posteriori knowledge about whether u satisfies
ϕ is the percentage of individuals satisfying ϕ in the ind(τ)-equivalence class
[u]ind(τ), written as

Prτ (ϕ|u) =
|{x | x ∈ [u]ind(τ) ∧ x |= ϕ}|

|[u]ind(τ)| .

Note that Prτ (ϕ|u) is the rough membership [18] of u in [|ϕ|]. Let dm(u, ϕ) be a
positive real number denoting the potential damage to an individual u if his/her
confidential information ϕ is breached. We assume the damage values of the
individuals are normalized so that

∑
ϕ∈CON(u) dm(u, ϕ) = 1 for each u ∈ U .

Thus, the risk to u due to the release of τ(T ), denoted by ri(τ, u), is

∑

ϕ∈CON(u)

dm(ϕ) ·max(
log Pr(ϕ) − log Prτ (ϕ|u)

log Pr(ϕ)
, 0),

and the security measure of τ is defined as

sf(τ) = 1−
∑

u∈U ri(τ, u)
|U | .

4.2 Quality Measure

Privacy protection mechanisms inevitably reduce the quality of released data.
We should therefore assess how data quality is affected by AOG operations. Since
such operations are based on the partition of quasi-identifier domains, we can
use Shannon’s entropy to measure data quality. First, the entropy of a partition
π of a domain V is defined as

h(π) =
∑

s∈π

− |s||V | · log
|s|
|V | .

Second, we consider the significance of the quasi-identifiers. Let wi ∈ [0, 1] denote
the importance of the quasi-identifiers in data utilization. We also assume that
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∑
1≤i≤m wi = 1. In Section 3, we only considered the case where all quasi-

identifiers are equally important, i.e., wi = 1/m for 1 ≤ i ≤ m. Thus, the
quality measure defined in this section is more flexible. Finally, the quality of an
AOG, τ = (π1, π2, · · · , πm), is defined as

ql(τ) =
∑

1≤i≤m

wi · h(πi)
log(|Vi|) ,

where Vi is the domain of the quasi-identifier i.

4.3 The Search for Optimal AOGs

Once we can quantitatively measure the security and quality of released data,
the search for the optimal AOG for privacy protection becomes an optimization
problem. In other words, we have to find τ in the set of admissible AOGs that
maximizes the objective function sf(τ) · ql(τ). There are numerous techniques
for solving such problems. Here, we use the EC approach to find the optimal
AOG.

The EC approach is a class of nature-inspired methodologies that can solve
hard problems. By this approach, a population of possible solutions is initially
given. Then, three basic mechanisms of evolution, i.e., reproduction, mutation,
and selection, are applied to the population of solutions to produce the next
generation of the population. The process is repeated until satisfactory solutions
are found, or a pre-determined number of iterations is reached. A basic scheme
of the EC algorithm is presented in Figure 7. The algorithm is adapted from the
approach introduced in [19].

The initial population of the algorithm is a randomly selected subset of admis-
sible AOGs. At every step t, also called a generation, each AOG in the population
P (t) is evaluated according to some predefined fitness function. Then, a subset
of AOGs is selected from P (t) according to the result of the evaluation. The
selected subset, known as the mating pool , is denoted by P ′(t). Next, repro-
duction and mutation operations are applied to AOGs in P ′(t) to produce a

Procedure EC

1. Initialize a population P (0) ⊆ Π
2. while not done do

begin
Evaluate P (t);
P ′(t)← Select[P (t)];
P ′′(t)← Genetic-Op[P ′(t)];
P (t + 1)← Intro[P ′′(t), P (t)];
t← t + 1
end

Fig. 7. An EC algorithm for AOG

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



268 D.-W. Wang, C.-J. Liau, and T.-s. Hsu

01001|11001 010|0111|001
10001|00111 100|0100|111

↓ ↓
10001|11001 100|0100|001
01001|00111 010|0111|111

1-point crossover 2-points crossover

Fig. 8. Typical reproduction operations in GA

new population P ′′(t). The AOGs in P ′′(t) are offspring of those in P ′(t). Fi-
nally, P ′′(t), together with P (t), is introduced into the next-generation of the
population P (t + 1); usually P (t) is simply replaced by P ′′(t) to form P (t + 1).

A concrete implementation of the skeleton in Figure 7 can be achieved by
the standard genetic algorithm (GA). In the GA implementation, we assume
that each admissible set of partitions, Πi, is identified by a set of integers
{0, 1, · · · , |Πi| − 1}; therefore, each partition in Πi can be encoded as a binary
string of length �log |Πi|�, and each AOG can be encoded as a binary string
of length

∑
1≤i≤m�log |Πi|�. The fitness function of GA is simply the objective

function sf(·)ql(·). There are a number of ways to perform the selection. The
most popular is the roulette wheel method, where each AOG is selected with
a probability proportional to its fitness. The typical reproduction operation for
GA is crossover , which is performed with a fixed probability, called the crossover
rate, between two selected AOGs. Figure 8 shows two kinds of crossover opera-
tion. The mutation operation is performed by flipping bits at random with some
small probability, i.e., the mutation rate. Note that the crossover and mutation
operations may produce illegal codes that do not correspond to any AOG, so
post-processing is necessary to adjust the codes to legal AOGs.

As an example, we use the admissible partitions in Figure 3. We need an
8-bit string to encode an AOG (2 bits for the date of birth, 3 bits for the zip
code, and 3 bits for the height). Thus, for example, (01011010) denotes the AOG
({mm/yy}, d1d2 ∗ ∗∗, I10). If a crossover operation

010|11010
001|00101
↓

010|00101
001|11010

is carried out, the resultant codes correspond to (1,0,5) and (0,7,2). However,
these are not legal encodings of any AOG, since 5 is not a legal code for height
and 7 does not correspond to any partition of zip codes. To transform them into
legal encodings, we can change 5 to 5mod5=0 and 7 to 7mod6=1; therefore, the
offspring of the crossover operation should be 01000000 and 00001010.
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5 Related Works

As mentioned in Section 3.1, the granulation approach subsumes two important
data protection techniques, generalization[7,11,5,12] and microaggregation[8].
Moreover, rough set theory has been applied to privacy protection previously
[20,6,21]. In this section, we further discuss several works related to our
approach.

The main concept of logical security models a user’s knowledge based on
indiscernibility. Traditionally, epistemic logic has been used to represent such
knowledge. The relationship between epistemic operators and rough set approxi-
mation has been studied extensively[22,23]. Epistemic logic has also been applied
to the analysis of security [24,25,26]. The security logic (SL) developed in [24]
is a permission-based approach that specifies the knowledge a user is allowed to
have, which contrasts with our prohibition-based approach based on the set of
confidential sentences. The logic of security (LS) proposed in [25,26] is applied
to the analysis of dynamic systems with multiple subjects, where each subject
is permitted to know different levels of confidential information according to his
role. SL and LS can be applied to the analysis of general security problems;
however, our framework is specifically tailored for the database linking problem.

While we are concerned with the issue of attribute disclosure, many previous
works have addressed the issue of identity disclosure. Attribute disclosure oc-
curs when some characteristic of an individual can be inferred more accurately
because of the released data, whereas identity disclosure means that an individ-
ual can be uniquely identified. The issue of identity disclosure in the database
linking context has been addressed in [27,17,11,5,12]. In those works, the main
goal of privacy protection is to maintain the anonymity of data records, i.e., to
prevent the user from knowing which data record belongs to a specific individ-
ual. The k-anonymity criterion mentioned earlier is designed to prevent identity
disclosure. However, it has been observed that k-anonymity is not sufficient for
attribute disclosure control, so a logical criterion has been formulated to remedy
the problem[4]. A similar problem, called homogeneity attack , is also observed
in [28]. In this case, the l-diversity criterion is proposed to prevent such attacks.

The protection of confidential information has been widely studied in the con-
texts of disclosure control [29], inference control [30,13,31], access control [32],
and data mining [33,34,35,36]. The works most closely related to our approach
are those on disclosure control, which modifies data to prevent users from recog-
nizing individual identities in the data or discovering private information about
the individuals. Various techniques have been applied in disclosure control. In
addition to the granulation approach, whereby released data is made less pre-
cise than the original data, other techniques, such as data perturbation [37] or
lying [38,39], distort the data to be released. Data perturbation adds noise to
the released data, while ensuring that some statistical properties of the whole
data set are preserved; whereas lying distorts the truth, i.e., the negation of the
correct answer to the user’s query to prevent the user from inferring confidential
information.
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Another important aspect of disclosure control is the assessment of disclosure
risk and data quality. A variety of measures for assessing disclosure risk and
information loss have been proposed in [40,41,42,17,43,44,28]. Some information
measures associated with data tables may also be useful in such assessments.
Measures of interest include: Shannon’s entropy [45], Kolmogorov’s complex-
ity [46], and uncertainty-based information measures [47]. Based on the assess-
ment of disclosure risk and data quality, we can achieve a balance between data
availability and privacy protection.

In contrast to our framework for the database linking context, some models
have been proposed for dealing with the confidentiality problem in more general
contexts [48,49,50,24,51]. Also, complementary to the approach proposed in this
paper, some probabilistic or decision-theoretic approaches to data security have
been proposed in [20,42,52,53,6,44].

6 Conclusion

Granular computing (GrC) is an emerging computing paradigm developed from
Pawlak’s rough set theory. In recent years, it has had a strong impact on many
application domains. In this paper, we apply GrC techniques to privacy protec-
tion in the context of data release. Granulation of the domains of quasi-identifiers
makes it possible to release microdata without invading individuals’ privacy. An
attribute-oriented technique is employed to modify the to-be-released data. To
achieve a balance between the quality of the released data and privacy protec-
tion, we present a basic search algorithm to find the maximally specific AOGs
that satisfy the security requirements. We also discuss the properties that can be
utilized to improve the efficiency of the algorithm. Then, we define quantitative
measures to assess the security and quality of an AOG, and show that EC tech-
niques can be employed to find the optimal granulation for privacy protection.

To demonstrate the performance of the proposed approach, further theoretical
analysis and experimental verification of the proposed optimization algorithm are
needed. Moreover, to improve the optimization algorithm, more criteria of data
quality and security measures could be considered. In the longer term, we will ex-
plore the possibility of applying other GrC techniques, such as reduct computation
and dependency analysis, to resolve practical data security problems.
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Abstract. Definability and approximations are two important notions
of the theory of rough sets. In many studies, one is used to define the
other. There is a lack of an explicit interpretation of the physical meaning
of definability. In this paper, the definability is used as a more primitive
notion, interpreted in terms of formulas of a logic language. A set is
definable if there is a formula that defines the set, i.e., the set consists
of all those elements satisfying the formula. As a derived notion, the
lower and upper approximations of a set are two definable sets that
approximate the set from below and above, respectively. This formulation
may be more natural, bringing new insights into our understanding of
rough set approximations.

1 Introduction

There exist at least two types of approaches for the development of rough
sets, namely, the constructive and algebraic (axiomatic) methods [20,23]. Con-
structive methods concern various ways to build constructively a pair of lower
and upper approximations from more familiar notions, such as information ta-
bles [10,11,12,13], equivalence relations (or equivalently partitions) [10,12], bi-
nary relations [24], generalized approximation spaces [13], and coverings [26].
Algebraic methods treat the lower and upper approximations as a pair of unary
set-theoretic operators that are defined by certain axioms [8,25,26]. Many au-
thors studied various algebras from rough sets [1]. Both types of approaches are
useful for rough set theory.

A commonly used constructive method is to define first an equivalence re-
lation from an information table, and then to define a pair of approximations
using the equivalence classes induced by the equivalence relation. With this for-
mulation, the notion of definability has been introduced in two ways through
equivalence classes and approximations, respectively. The equivalence classes of
the equivalence relation are called elementary or basic sets defined by a set of
attributes. A set is said to be definable if it is the union of some equivalence
classes [3,5,10,11,19]. Alternatively, some authors considered the definability of
a set based on its approximations. A set is said to be definable if its lower and
upper approximations are the same, and undefinable otherwise [2,9]. The two
definitions of definability are equivalent in the sense that the family of defin-
able sets consists exactly of the empty set, the equivalence classes and unions
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of equivalence classes [2,10]. They are also equivalent to the ones defined using
either the lower or the upper approximations [15].

A difficulty with the existing definitions is that the physical meaning of de-
finability is not entirely clear. On the other hand, the notion of a definable set
has been well studied in mathematical logics [6,7], where logic formulas are used
to characterize definability. It seems useful to investigate connections of defin-
ability in rough set theory and definability in logic. One may also adopt a more
intuitive notion of definability from logics into rough set theory. Along this line,
initial studies have been made by some authors. Pawlak et al. [11] explained the
definability of the union of some equivalence classes in terms of a logic condi-
tion corresponding to a conjunctive normal form. Buszkowski [2] showed that
the definability of rough set theory can be interpreted in terms of propositional
definability of a set.

Based on the above mentioned studies, we further examine the notions of
definability and approximations. We use definable sets as a primitive notion.
The definability of sets is explicitly defined in terms of logic formulas. Once
it is established that some sets are not definable, namely, undefinable, their
approximations through definable sets come naturally. Instead of defining two
types of definability and showing their equivalence as done by Buszkowski [2], we
treat approximations as a derived notion constructed from the family of definable
sets.

Although the results of the paper are not new, a re-examination and clari-
fication would lead to a better and deeper understanding of rough set approx-
imations. By reinterpreting the existing results, we arrive at a more natural
formulation of the theory. The new interpretation not only provides a different
point of view, but also allows us to relate rough set theory to other theories. For
example, it has been observed that rough set analysis and formal concept analy-
sis are complementary to each other based on two different families of definable
sets [22].

2 Definability in Information Tables

In the classical view, every concept is understood as a unit of thought that con-
sists of two parts, the intension and the extension of the concept [16,17,18]. The
intension (comprehension) of a concept consists of all intrinsic properties or at-
tributes that are valid for all those objects to which the concept applies. The
extension of a concept is the set of objects or entities which are instances of the
concept. All objects in the extension have the same properties that characterize
the concept. In other words, the intension of a concept is an abstract descrip-
tion of common features or properties shared by elements in the extension, and
the extension consists of concrete examples of the concept. A concept is thus
described jointly by its intension and extension. Such a view of concepts is very
useful for rule induction based on rough set theory [9,14].

In order to make the notions of intensions and extensions more concrete, we
consider a simple knowledge presentation scheme called information tables. By
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introducing a logic language in an information table, we can formally define the
intension of a concept by a logic formula. We say that a concept is definable
if its extension can be precisely defined by a logic formula. In this case, the
extension of the concept is called a definable set. It should be pointed out that
such a simple view of concepts, though concrete and intuitive appealing, is very
restrictive and may not be completely accurate. Nevertheless, it is sufficient for
the present investigation on definability and approximations.

2.1 Information Tables

Consider a simple knowledge representation scheme in which a finite set of ob-
jects is described by using a finite set of attributes. Formally, it can be defined
by an information table M expressed as the tuple:

M = (U, At, {Va|a ∈ At}, {Ia|a ∈ At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, Va is a nonempty set of values for an attribute a ∈ At, and Ia : U −→
Va is an information function. Furthermore, it is assumed that the mapping Ia

is single-valued. In this case, the value of an object x ∈ U on an attribute a ∈ At
is denoted by Ia(x). In general, for a subset of attributes A ⊆ At, we use IA(x)
to denote the vector of values of x on A.

A fundamental concept of rough set theory is equivalence relations defined by
subsets of attributes.

Definition 1. For a subset of attributes A ⊆ At, we can define an equivalence
relation E(A) as follows:

xE(A)y ⇐⇒ ∀a ∈ A(Ia(x) = Ia(y))
⇐⇒ IA(x) = IA(y). (2)

That is, E(A) is reflexive, symmetric, and transitive.

The relation E(A) is commonly known as the indiscernibility relation. If xE(A)y,
we cannot differentiate x and y based only on attributes in A. The equivalence
relation E(A) induces a partition of the universe and is denoted by U/E(A).
From U/E(A), we can construct an σ-algebra, σ(U/E(A)), which contains the
empty set ∅, equivalence classes of E(A), and is closed under set intersection,
union and complement. The partition U/E(A) is a base of σ(U/E(A)).

2.2 A Logic Language

In order to formally define intensions of concepts, we adopt the decision logic
language L used by Orlowska [9] and Pawlak [10] for analyzing an information
table. Formulas of L are constructed recursively based on a set of atomic formulas
corresponding to some basic concepts. An atomic formula is given by a descriptor
(a = v), where a ∈ At and v ∈ Va. For each atomic formula (a = v), an
object x satisfies it if Ia(x) = v, written x |= (a = v). Otherwise, it does not
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satisfy (a = v) and is written ¬x |= (a = v). From atomic formulas, we can
construct other formulas by applying the logic connectives ¬, ∧, ∨, →, and ↔.
The satisfiability of any formula is defined recursively as follows:

(1). x |= ¬φ iff not x |= φ,

(2). x |= φ ∧ ψ iff x |= φ and x |= ψ,

(3). x |= φ ∨ ψ iff x |= φ or x |= ψ,

(4). x |= φ→ ψ iff x |= ¬φ ∨ ψ,

(5). x |= φ↔ ψ iff x |= φ→ ψ and x |= ψ → φ.

The language L can be used to reason about intensions. Each formula repre-
sents an intension of a concept. For two formulas φ and ψ, we say that φ is more
specific than ψ, and ψ is more general than φ, if and only if |= φ→ ψ, namely,
ψ logically follows from φ. In other words, the formula φ→ ψ is satisfied by all
objects with respect to any universe U and any information function Ia. If φ is
more specific than ψ, we write φ � ψ, and call φ a sub-concept of ψ, and ψ a
super-concept of φ.

If φ is a formula, the set m(φ) defined by:

m(φ) = {x ∈ U | x |= φ}, (3)

is called the meaning of the formula φ in an information table M . The meaning
of a formula φ is indeed the set of all objects having the properties expressed
by the formula φ. In other words, φ can be viewed as the description of the
set of objects m(φ). Thus, a connection between formulas and subsets of U is
established. The following properties hold [10]:

(a). m(¬φ) = −m(φ),
(b). m(φ ∧ ψ) = m(φ) ∩m(ψ),
(c). m(φ ∨ ψ) = m(φ) ∪m(ψ),
(d). m(φ→ ψ) = −m(φ) ∪m(ψ),
(e). m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪ (−m(φ) ∩ −m(ψ)).

With the introduction of language L, we have a formal description of concepts.
A concept in an information table M is a pair (φ, m(φ)), where φ ∈ L. More
specifically, φ is a description of m(φ) in M , the intension of concept (φ, m(φ)),
and m(φ) is the set of objects satisfying φ, the extension of concept (φ, m(φ)).

In many applications of rough set theory, one considers only a subset of at-
tributes A ⊆ At. In other words, only attributes from A are used in forming
formulas of the logic language. We will use L(A) to denote the language defined
using only attributes from A. All the discussions so far still hold if we replace L
by L(A).

2.3 Definability of Sets and Concepts

Given a formula as the intension of a concept, we can easily find its extension
through the meaning function m. On the other hand, given an arbitrary subset
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X ⊆ U as extension of a concept, the task of finding the corresponding intension
is not so easy. Several issues have to be considered. The attributes At may not
be sufficient for us to define a formula so that its meaning is X . Even if such
a formula exists, it may not be unique. The first problem leads to the study
of definability and the second problem requires a consideration of a restricted
language in which only certain logic connectives can be used [21].

Consider a subset of attributes A ⊆ At and the corresponding language L(A).
The definability of a subset of objects can be defined formally.

Definition 2. A subset X ⊆ U is definable by a set of attributes A ⊆ At in
an information table M = (U, At, {Va|a ∈ At}, {Ia|a ∈ At}) if and only if there
exists a formula φ in the language L(A) so that,

X = m(φ). (4)

Otherwise, it is undefinable.

This definition is consistent with the notion of definable set in mathematical
logic [6,7]. That is, a set is definable if one can find a logic formula that defines
the elements of the set. Since a logic formula in L(A) has a concrete physical
interpretation, we therefore associate its meaning set with a concrete interpre-
tation. This point has in fact been made implicitly by many authors [10,11].

According to the definition, the family of all definable sets is given by:

Def(U,L(A)) = {m(φ) | φ ∈ L(A)}. (5)

Similarly, the family of concepts that can be defined by the language L(A) is
given by:

DefCon(U,L(A)) = {(φ, m(φ)) | φ ∈ L(A)}. (6)

It should be noted that definability depends on the set of attributes A.
With the introduction of language L(A), we can arrive at an equivalent defi-

nition of the equivalence relation.

Lemma 1. Suppose A ⊆ At is a subset of attribute. Let E(A) be the equivalence
relation defined by A. The following condition holds: for x, y ∈ U ,

xE(A)y if and only if x |= φ⇐⇒ y |= φ for all φ in the language L(A). (7)

The result of the lemma can be easily shown by the equivalence of the condition
in equation (2) of Definition 1 and the condition in equation (7). That is, two
objects x and y satisfy exactly the same set of formulas in L(A) if and only if
they have the same values on all attributes in A.

The new definition of the equivalence of objects has been considered by
Hobbs [4]. According to Hobbs, two objects are considered to be equivalent,
if we cannot distinguish them by all available predicates in a first-order logic
theory. One can easily re-express the logic language in the form of a first-order
logic theory. The definition of Hobbs is more general in the sense that the set
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of predicates does not have to be defined with respect to an information table.
This offers a new avenue for generalizing rough set theory.

In terms of language L(A), two objects are considered to be equivalent if they
satisfy exactly the same set of formulas in L(A). With this interpretation, the
following lemma follows immediately.

Lemma 2. Suppose X ⊆ U is a definable set with reference to a language L(A).
For two elements x, y ∈ U with xE(A)y, x ∈ X if and only if y ∈ X.

According to the lemma, for any equivalence class [x]E(A) of E(A), a definable
set either contains [x]E(A) or is disjoint with [x]E(A). That is, a definable set is
the union of some equivalence classes. This immediately leads to the main result
of the paper.

Theorem 1. The family of definable sets with reference to a language L(A) is
exactly the σ-algebra σ(U/E(A)). That is,

Def(U,L(A)) = σ(U/E(A)). (8)

Although the discussion produces the same result of earlier studies that the union
of some equivalence classes is a definable set, there is a subtle difference. In many
studies, the union of some equivalence classes is simply called a definable set
without giving an explicit interpretation. The logic based explicit interpretation
examined in this paper not only justifies the earlier result but also provides
insights into definability.

3 Rough Set Approximations

The dual notion of definable sets is undefinable sets. For an undefinable set, it
is impossible to construct a formula with the set as its meaning set. In order to
characterize an undefinable set, one may approximate it from below and above
by two definable sets. The family of definable sets is a subsystem of the power
set. We can use the subsystem-based definition of rough set approximations.

Definition 3. For a subset of objects X ⊆ U , we define a pair of lower and
upper approximations as:

apr(X) =
⋃
{Y | Y ∈ Def(U,L(A)), Y ⊆ X},

apr(X) =
⋂
{Y | Y ∈ Def(U,L(A)), X ⊆ Y }. (9)

This is, apr(X) is the largest definable set contained in X, and apr(X) smallest
definable set containing X.

The definition is well defined, for the family of definable sets is closed under set
intersection, union and complement. By definition, a definable set has the same
lower and upper approximation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



280 Y. Yao

Theorem 2. A set of objects X ⊆ U is a definable set if and only if the following
condition holds:

apr(X) = apr(X). (10)

The theorem easily follows from the fact that in general apr(X) ⊆ X ⊆ apr(X)
and both apr(X) and apr(X) are definable sets.

According to our reformulation, approximations are a derived notion from defin-
ability. Approximations are due to the fact that certain sets are not definable. Since
definable sets have clear interpretations in terms of their intensions (i.e., logic for-
mulas), the lower and upper approximations have clear interpretations. The mod-
eling of undefinability through definability seems to capture the central ideas of
rough set theory [11]. In other words, one can only approximately say something
about an undefinable set and the corresponding concept, based on definable sets.

4 Concluding Remarks

In addition to providing many useful methodologies and tools, rough set theory
offers a new philosophical view for dealing with uncertainty characterized by
indiscernibility. In order to appreciate this view, it is necessary to examine the
fundamental notions, of which definability and approximations are examples.

In this paper, we examine these two basic notions. By treating definability as a
primitive notion, we define a definable set by a logic formula of a logic language
in an information table. It is shown that the family of definable sets indeed
coincides with the σ-algebra constructed from the partition of an equivalence
relation. Rough set approximations are formulated as a derived notion from
definable sets. Specifically, the lower and upper approximations are two definable
sets that approach a set from below and above.

The paper makes three contributions. First, it reformulates the existing results
in an attempt to have a more coherent framework. Second, it reinterprets the
existing results in order to gain a better understanding of the theory. Third,
it formally makes ideas that have been developed explicit. Through such an
investigation, we hope to gain more insights into the theory of rough sets.

Acknowledgment

This study is partially supported by NSERC Canada. The author thanks
Dr. Mohua Banerjee for her valuable discussion, and Drs. Andrzej Skowron and
James Peters for their kind support when he is preparing the manuscript.

References

1. Banerjee, M. and Chakraborty, M.K. Algebras from rough sets, in: Pal, S.K.,
Polkowski, L. and Skowron, A. (Eds.), Rough-Neural Computing, Springer, Berlin,
157-184, 2004.

2. Buszkowski, W. Approximation spaces and definability for incomplete information
systems, Rough Sets and Current Trends in Computing (RSCTC’98), LNAI 1424,
115-122, 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Note on Definability and Approximations 281

3. Grzymala-Busse, J.W. Incomplete data and generalization of indiscernibility rela-
tion, definability, and approximations, Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing(RSFDGrC’05), LNAI 3641, 244-253, 2005.

4. Hobbs, J.R. Granularity, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, 432-435, 1985.

5. Järvinen, J. and Kortelainen, J. A note on definability in rough set theory, in: De
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Abstract. Affective computing is becoming an important research area
in intelligent computing technology. Furthermore, emotion recognition is
one of the hot topics in affective computing. It is usually studied based
on facial and audio information with technologies such as ANN, fuzzy
set, SVM, HMM, etc. Many different facial and acoustic features are
considered in emotion recognition by researchers. The question which
features are important for emotion recognition is discussed in this pa-
per. Rough set based reduction algorithms are taken as a method for
feature selection in a proposed emotion recognition system. Our simula-
tion experiment results show that rough set theory is effective in emotion
recognition. Some useful features for audiovisual emotion recognition are
discovered.

Keywords: Affective computing, Emotion recognition, Pattern recogni-
tion, Rough set, Feature selection.

1 Introduction

It is always a dream that computers can simulate and communicate with a hu-
man, or have emotions that human have. A lot of research works have been done
in this field in recent years. Affective computing is one of them. Affective comput-
ing is computing that relates to, arises from, or deliberately influences emotion,
which is firstly proposed by Picard at MIT in 1997 [1]. Affective computing
consists of recognition, expressing, modeling, communicating and responding to
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emotion [2]. Emotion recognition is one of the most fundamental and important
modules in affective computing. It is always based on facial and audio informa-
tion, which is in accordance with people’s recognition to emotion. Its applications
have reached almost every aspect of our daily life, for example, health care, chil-
dren education, game software design, and human-computer interaction [1][3].

Nowadays, emotion recognition is usually studied using ANN, Fuzzy set, SVM,
HMM and the recognition rate is 64% to 98% [1][4]. In these research works,
many different features are used for recognition, the question which one is im-
portant for emotion recognition among the features is not answered, yet. On the
other hand, Rough Set is a valid theory for data mining. The most advantage
of Rough Set is its great ability of attribute reduction. It has been successfully
used in many domains such as machine learning, pattern recognition, intelligent
data analyzing and control algorithm acquiring, etc. In some research studies
[5][6][7][8], rough set has been used in emotion recognition through audio and
visual information, and high recognition rate are achieved. In this paper, based
on the previous work by the authors in [5][6][7][8], some important features for
emotion recognition are identified based on rough set attribute reduction algo-
rithms. Based on the selected subset of features, a higher recognition rate is
resulted.

The rest of this paper is organized as follows. In Section 2, some related works
are reviewed. In Section 3, basic concepts and methods of Rough Set theory are
introduced. In Section 4, the framework of an emotion recognition system based
on rough set theory (ERSBRS) is proposed. Simulation experiments are done
by means of ERSBRS in Section 5. Finally, conclusion and future works are
discussed in Section 6.

2 Review of Related Works

2.1 Recognition of Emotion from Both Speech and Video Images

Combining audio and visual cues has been studied in recent years for emotion
recognition. For emotional expression recognition, the coupling is not so tight.
Few research works have been done to utilize both modalities for recognizing
emotions.

De Silva proposed a rule-based method for singular classification of audiovi-
sual input data into one of the six emotion categories: happiness, sadness, fear,
anger, surprise, and dislike. The audio and visual material were processed sep-
arately. They used optical flow for detecting the displacement and velocity of
some key facial features (e.g., corners of the mouth, inner corners of the eye
brows). From the audio signal, pitch and pitch contours were estimated. A near-
est neighbor method was used to classify the extracted facial features and the
HMM technique was used to classify the estimated acoustic features into one of
the emotion categories. Per subject, the results of the classification were plotted
in two graphs and based upon these graphs the rules for emotion classification
of the audiovisual input material were defined. A correct recognition rate of 72%
was achieved [9].
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Chen and Huang proposed a set of methods for singular classification of in-
put audiovisual data into one of the basic emotion categories: happiness, sadness,
disgust, fear, anger, and surprise. They collected data from five subjects which
displayed 6 basic emotions 6 times by producing the appropriate facial expres-
sion. Each of these single-emotion sequences started and ended with a neutral
expression. Considering the fact that in the recorded data a pure facial expres-
sion occurred right before or after the sentence spoken with the appropriate vocal
emotion, the authors applied a single-modal classification method in a sequential
manner. An average recognition rate of 79% was achieved in their experiment [10].

Cheng-Yao Chen et al. took speech and video images as the input of an emotion
recognition system. 27 facial features and 8 acoustic features were selected. Based
on the method of SVM, an average recognition ratio of 84% was achieved [11].

From the related works above, we can find that different researchers took
different features as input for emotion recognition. Based on these features, few
of them took feature selection as a module of their emotion recognition systems.
They did not pay much attention to finding and selecting important facial and
acoustic features in developing emotion recognition systems.

2.2 Emotion Recognition Based on Rough Set from Speech and
Video Images

Yong Yang et al. tried to use rough set as an approach for emotion recognition.
Firstly, Rough set was applied for emotion recognition from facial images, 8
features were selected and a correct recognition ratio of 81 % was achieved [5].
Then, the method was also used for both audio and facial images. As a result,
10 features were selected and a correct recognition rate of 77.8% was achieved
[8]. Yong Yang et al. also tried to use the method of rough set + SVM for
emotion recognition from speech and video images separately. That is, rough set
was taken as a module of feature selection and SVM was used as a classifier in
emotion recognition. 13 audio features were selected and a correct recognition
rate of 74.75% was achieved [6], 10 facial features were selected and a correct
recognition rate of 81.96% was achieved [7]. In the previous work, we found that
experiment results were not stable when rough set was taken as feature selection
and classifier. Usually, a higher recognition rate could be achieved when rough
set was taken as feature selection and SVM as a classifier.

2.3 Feature Selection

Data preprocessing is an indispensable step in effective data analysis. It pre-
pares data for data mining and machine learning, which aims to turn data into
knowledge. Feature selection is a preprocessing technique commonly used on
high dimensional data. Feature selection studies how to select a subset or list
of attributes or variables that are used to construct models describing data. Its
purposes include reducing dimensionality, removing irrelevant and redundant
features, reducing the amount of data needed for learning, improving algorithms’
predictive accuracy, and increasing the constructed models’ comprehensibility.
Feature selection is different from feature extraction. It just selects a subset
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of raw features while feature extraction may generate some new features from
the raw features and data. Feature selection methods are particularly useful in
interdisciplinary collaborations because the selected features retain the original
meanings domain experts are familiar with. The rapid developments in computer
science and engineering allow for data collection at an unprecedented speed and
present new challenges to feature selection. Feature selection methods attempt to
explore data’s intrinsic properties by employing statistics or information theory.

Following supervised-learning terminology, feature selection methods are al-
ways categorized as filter or wrapper approaches. Filter methods take advantage
of some intrinsic property of the data to select features without applying the clus-
tering algorithm. The basic components are the feature search method and the
feature selection criterion, such as FOCUS[12], RELIEF[13] and PRESET[14].
On the other hand, wrapper methods apply the unsupervised-learning algorithm
to each candidate feature subset and then evaluate the feature subset by criterion
functions that use the clustering result. Wrapper methods directly incorporate
the clustering algorithm’s bias in search and selection. The basic components are
the feature search method, the clustering algorithm, and the feature selection
criterion.

3 Rough Set Theory

Rough Set (RS) is a valid mathematical theory to deal with imprecise, uncertain,
and vague information. It has been applied successfully in such fields as machine
learning, data mining, pattern recognition, intelligent data analyzing and control
algorithm acquiring, etc, since it was proposed by Z. Pawlak in 1980s [15][16].
Rough set was also used in pattern recognition successfully [17][18][19].

The most advantage of RS is its great ability to compute the reductions of
information systems. There are a lot of research works on attribute reduction,
such as [20][21][22][23][24].

3.1 Basic Concepts

For illustration, Some basic concepts of rough set are introduced here.
Def.1 A decision table information system is a formal representation of a data
set to be analyzed. It is defined as a pair s = (U, R, V, f), where U is a finite set
of objects and R = C∪D is a finite set of attributes, C is the condition attribute
set and D = {d} is the decision attribute set. With every attribute a ∈ R, set of
its values Va is associated. Each attribute a determines function fa : U → Va.

Def.2 For a subset of attributes B ⊆ A, the indiscernibility relation is defined
by Ind(B) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B.

Def.3 The lower approximation B−(X) and the upper B−(X) approximation
of a set of objects X ⊆ U with reference to a set of attributes B ⊆ A may be
defined in terms of the classes in the equivalence relation, as follows:

B−(X) =
⋃{E ∈ U/Ind(B)|E ⊆ X}, B−(X) =

⋃{E ∈ U/Ind(B)|E ∩X �= Φ}
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is called as the B−lower and upper B−approximation, respectively. The B−lower
and B−upper approximation can also be defined as follows:

B−(X) = {x ∈ U |[x]B ⊆ X , B−(X) = {x ∈ U |[x]B ∩X �= Φ}
where [x]B ∈ U/Ind(B) is the equivalence class of object induced by the set of
attributes B ⊆ A.

Def.4 POSP (Q) =
⋃

x∈U/Ind(B) P−(X) is the P positive region of Q, where P
and Q are both attribute sets of an information system.

Def.5 A reduction of P in an information system is a set of attributes S ⊆ P
such that all attributes a ∈ P − S are dispensable, all attributes a ∈ S are
indispensable and POSS(Q) = POSP (Q). We use the term REDQ(P ) to denote
the family of reductions of p. COREQ(P ) =

⋂
REDQ(P )is called as the Q-core

of attribute set P .

Def.6 Correlation degree of condition attributes set C and decision attributes
set D is defined as Kβ(C, D) = card(POSC(D)∪NEGC(D))

card(U) .

3.2 Attribute Reduction Algorithm for Feature Selection

X. H. Hu and N. Cercone proposed an attribute reduction algorithm for feature
selection in [24]. They intended to keep the attribute reduction algorithm bias as
small as possible and find a subset attributes which can generate good results by
applying a suite of data mining algorithms. An algorithm which can find a relevant
feature subset and eliminate unnecessary attributes effectively was proposed.

The authors believe traditional techniques make use of feature merits based
on the information theories, statistics correlation between each feature and the
class, or the significant values based on rough set theory. All these measures
only consider the single feature’s effect on the class distinguishability. However,
in general, one feature does not distinguish classes by itself; it does so in com-
bination with other features. Therefore, it is desirable to obtain the feature’s
correlation to the class in the context of other features. Based on the early
works, a feature merit measure to rank the feature in the context of other fea-
tures is proposed. The idea is to assign the contextual merit value based on
the component distance of feature weighted by the degree of difference between
instances in different classes. The feature merit measure consists of two parts:
Weighted Feature Difference (WFD) based on the precise unequality of the val-
ues of the predictor fields (attributes) and the Value Difference (VD) by taking
into account the difference of values to evaluate the distinguishability of the two
instances. Based on WFD and VD, the contextual merit CMk of a feature Ck is
defined. Based on the above concepts, X. H. Hu and N. Cercone developed the
following rough set based filter feature selection algorithm.

Alg 1: rough set based filter feature selection algorithm.
Input: conditional attribute set C and decision attribute set D
Output: A selected condition attribute set REDU
For(C,D) do
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Compute Kβ(C, D) for conditional attribute set C and decision attribute
set D
REDU = C

End
While Kβ(C, D) = Kβ(REDU, D) Do

Compute the contextual merits CM for all attributes of REDU ;
Sort the set of attributes REDU based on contextual merits;
Choose an attribute with the least merit value and
REDU = REDU − {aj}

End
Return REDU .
A selected condition attribute set, which strongly rely on the decision attribute

set, can result from this algorithm.

4 Emotion Recognition System

An audiovisual emotion recognition system composed of such modules as input,
pre-processing, feature extraction, feature selection, classification model and out-
put shown in Fig. 1 is developed for the purpose of this paper.

Fig. 1. Audiovisual Emotion Recognition System

4.1 Input

Emotion recognition is always performed through video, facial image and voice.
Although a tactile computer-sensing modality is more natural and it has been
proven that affective arousal has a range of somatic and physiological correlations
in psychophysiology, only few works aimed at automatic analysis of affective
physiological signals have been done in the last years, such as the work introduced
by Picard [3]. The lack of interest in this research topic might be due to the
lack of interest by research sponsors and there are complicated theoretical and
practical open complicated problems in this field, such as the application of
haptic technology might have a profound impact on the users’ fatigue if it is
done improperly; currently available wearable sensors of physiological reactions
imply wiring subjects, which are usually experienced as uncomfortable; skin
sensors are very fragile and their measuring accuracy is easily affected.

In our emotion recognition system, facial images and audio information of
human are taken into consideration.
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4.2 Pre-processing

Features for emotion recognition always can’t be extracted immediately from raw
input data, since there may be interference on input data, such as illumination,
accessories, side face, etc. There are different methods for different interference,
for examples, filter can be used for filtrate noise around, Gamma Intensity Cor-
rection (GIC) [25] can be used to normalize the overall image intensity at the
given illumination level.

Fig. 2. 52 feature points

4.3 Feature Extraction

4.3.1 Facial Feature Extraction
Human facial expression is expressed by the shape and position of facial com-
ponents such as eyebrows, eyes, mouth, nose, etc. The geometric facial features
present the shape and locations of facial components. The facial feature points
are extracted to form feature vector that represents the face geometry. Accord-
ingly, we locate feature points firstly, and then calculate the geometric feature.
There are many methods for feature points locating, such as Active Contour
Model (Snake) [26], Active Shape Models (ASM) [27], Active Appearance Mod-
els (AAM) [28], etc. AAM have been successfully used for deformable objects
locating. In this paper, AAM is adopted to locate feature points. On the other
hand, the MPEG-4 standard is a popular standard for feature point selection.
It extends Facial Action Coding System (FACS) to derive Facial Definition Pa-
rameters (FDP) and Facial Animation Parameters (FAP). FAP has been used
widely in facial animation for its good performance on compression in recent
years. Besides, the FDP and low level FAP constitute a concise representation
of a face. They are adequate for basic emotion recognition because of the va-
rieties of expressive parameter. In FAP, 66 low level parameters are defined to
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Table 1. definition of distance feature

feature description feature description feature description

d0 dis(11,19) d11 dis(39,44) d22 dis(44,48)/2
d1 dis(18,31) d12 dis(39,48) d23 dis(45,51)
d2 dis(21,25) d13 dis(44,48) d24 dis(47,49)
d3 dis(20,26) d14 dis(46,50) d25 dis(14,23)
d4 dis(22,24) d15 dis(39,3) d26 dis(15,27)
d5 dis(29,33) d16 dis(21,A) d27 dis(19,23)/2
d6 dis(28,34) d17 dis(A,25) d28 dis(27,31)/2
d7 dis(30,32) d18 hei(A,44) d29 (wid(19,23)+wid(27,31))/2
d8 dis(39,46) d19 dis(29,B) d30 (hei(11,39)+hei(18,39))/2
d9 dis(23,44) d20 dis(B,33) d31 (hei(14,39)+hei(15,39))/2
d10 dis(27,48) d21 hei(B,48) d32 (hei(44,39)+hei(48,39))/2

describe the motion of a human face. Among these 66 parameters, 52 parameters
are chosen to represent emotion in our emotion recognition system. The other
14 parameters aren’t selected because they have not much impact on emotion
research, such as the parameter of pull−l−ear, which is the horizontal displace-
ment of left ear. Thus, a feature point set including 52 feature points is defined
in the image sequence. Based on the feature points, feature distance can be cal-
culated as the features for emotion recognition. Based on the feature distance
defined in [29][30][31][32], 33 facial features are defined in the paper.

In Table 1, A is the midpoint of point 19 and 23, and B is the midpoint of
point 27 and 31. The d, which stands for the distance between point 23 and 27,
is changeless for all kinds of expression. dis(i, j) denotes the normalized Euclid
distance between point i and j, see Equation (1); hei(i, j) denotes the normalized
horizontal distance between point i and j, see Equation (2); wid(i, j) denotes the
normalized vertical distance between i and j, see Equation (3).

dis(i, j) =
√

(xi − xj)2 + (yi − yj)2/d, (1)

hei(i, j) = |yi − yj|/d, (2)
wid(i, j) = |xi − xj |/d. (3)

Where xi and xj denote the x-axis of points i, j; yi and yj denote the y-axis of
points i, j.

4.3.2 Audio Feature Extraction
Based on the previous work by the authors of [6], 37 secondary (statistical)
speech features are taken as audio features used in speech emotion recognition.
All features referenced are listed in Table 2.

4.4 Feature Selection

Feature selection module is the key part of our audiovisual emotion recognition
system. The purpose of this module is to select valuable features for emotion
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Table 2. Speech features

NO. Feature Description NO. Feature Description

1 Maximum value of energy 20 Mean duration of rising slopes (pitch)
2 Mean value of energy 21 Maximum value of falling slopes (pitch)
3 Median value of energy 22 Mean value of falling slopes (pitch)
4 Variance of energy 23 Maximum duration of falling slopes(pitch)
5 Maximum value of 24 Mean duration of falling slopes (pitch)

rising slopes (energy))
6 Mean value of rising 25 Maximum value of the first formant

slopes(energy)
7 Maximum duration of 26 Mean value of the first formant

rising slopes(energy)
8 Mean duration of 27 Median value of the first formant

rising slopes(energy)
9 Maximum value of 28 Variance of the first formant

falling slopes(energy)
10 Mean value of 29 Maximum value of the second formant

falling slopes(energy)
11 Maximum duration of 30 Mean value of the second formant

falling slopes(energy)
12 Mean duration of 31 Median value of the second formant

falling slopes(energy)
13 Maximum value of pitch contour 32 Variance of the second formant
14 Mean value of pitch contour 33 Maximum value of the third formant
15 Median value of pitch contour 34 Mean value of the third formant
16 Variance of pitch contour 35 Median value of the third formant
17 Maximum value of 36 Variance of the third formant

rising slopes (pitch)
18 Mean value of rising 37 Speech rate

slopes(pitch)
19 Maximum duration of

rising slopes(pitch)

recognition from all features. In this module, the number of features for emotion
recognition is decreased. Thus, the complexity and cost for the following classifi-
cation procedure are reduced. It could improve the efficiency of the whole system.

In our emotion recognition system, feature selection module is based on the
rough set theory. The attribute reduction algorithm adopted to select features is
introduced in section 3, Alg. 1, and results of experiment show that the algorithm
is effective.

4.5 Classification Module

The classification techniques used in existing emotion recognition systems
include: template-based classification, rule-based classification, ANN-based clas-
sification, HMM-based classification, Bayesian classification, SVM based classi-
fication, etc [2][3][4].

In our emotion recognition system, SVM are taken as the classifier.
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5 Experiment and Result

We set up a database of 500 video samples including joy, anger, sadness, disgust,
surprise and fear. In each video sequence, a frame with the maximum intense of
emotion is picked. Among the 500 samples, 226 samples are taken as train set
and other 226 samples are taken as test set. Total 70 feature including 33 facial
features listed in Table 1 and 37 audio features listed in Table 2 are extracted.
Then, a decision information system is generated. With the reduction algorithm
of Alg.1, 10 features are selected, which are Mean value of energy, Median value
of energy, Mean value of rising slopes(pitch), Mean value of falling slopes (pitch),
Maximum value of the second formant, Median value of the third formant, Speech
rate, d13, d14 and d21. These 10 features are taken as the input of the classifier
of SVM.

A comparative experiment using total 70 features and 10 features listed above
as the input of SVM is performed. The experiment results are shown in Table 3.

Table 3. Experiment results

Rough Set+SVM SVM
Joy Anger Sad Disgust Suprise Fear Joy Anger Sad Disgust Suprise Fear

Joy 68 1 0 1 8 1 76 1 0 0 3 3
Anger 5 83 0 0 1 3 2 85 0 0 1 0
Sad 0 0 69 5 0 4 0 0 70 1 0 1

Disgust 2 0 2 59 4 2 1 0 1 62 0 1
Suprise 6 2 0 1 54 3 2 0 0 3 62 2

Fear 1 0 3 6 1 57 1 0 3 6 2 63

average 86.283186% 92.477876%

In these 10 features selected by rough set based attribute reduction algorithm,
there are 7 acoustic features and 3 facial features.

Among seven acoustic features, Mean value of energy and Median value of
energy are energy features, Mean value of rising slope and Mean value of falling
slopes are pitch features, Maximum value of the second formant and Median
value of the third formant are formant features. The last one is speed rate feature.

The 3 facial features, d13, d14 and d21, are the width of mouth, height of
mouth and the distance between pupil and lip corner. Although both d13 and
d22 are features of width of mouth, both d14 and d24 are features of height of
mouth, but only d13 and d14 are reserved as the output of rough set attribute
reduction algorithm, which means that d22 and d24 are redundant to emotion
recognition.

6 Conclusion and Future Works

In this paper, based on rough set theory, an audiovisual emotion recognition
system is proposed. Based on rough set reduction, some important features for
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audiovisual emotion recognition are discovered according to our simulation ex-
periment results. Depending on these features, an average recognition rate of
86.24% is achieved using SVM. In the future, relationship between facial and
audio information for emotion recognition will be further studied. Effective re-
duction algorithm for audiovisual feature selection for emotion recognition will
be also studied.
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Abstract. The article deals with some new results of investigation, both
theoretical and experimental, in the area of image classification and seg-
mentation of remotely sensed images. The article has mainly four parts.
Supervised classification is considered in the first part. The remaining
three parts address the problem of unsupervised classification (segmen-
tation). The effectiveness of an active support vector classifier that re-
quires reduced number of additional labeled data for improved learning
is demonstrated in the first part. Usefulness of various fuzzy thresholding
techniques for segmentation of remote sensing images is demonstrated in
the second part. A quantitative index of measuring the quality of classi-
fication/ segmentation in terms of homogeneity of regions is introduced
in this regard. Rough entropy (in granular computing framework) of im-
ages is defined and used for segmentation in the third part. In the fourth
part a homogeneous region in an image is defined as a union of homo-
geneous line segments for image segmentation. Here Hough transform is
used to generate these line segments. Comparative study is also made
with related techniques.

Keywords: Active learning, Support vector machine, Fuzzy sets, Fuzzy
entropy, Fuzzy correlation, Rough sets, Rough entropy, Granular com-
puting, Soft-computing, Hough transform, Remotely sensed images.

1 Introduction

There are several types of images, namely, light intensity (visual) image, range
image (depth image), nuclear magnetic resonance image (commonly known as
magnetic resonance image (MRI)), thermal image and so on. Light intensity (LI)
images, the most common type of image we encounter in our daily experience,
represent the variation of light intensity on the scene. Range image (RI), on the
other hand, is a map of depth information at different points on the scene. In
digital light intensity image the intensity is quantized, while in the case of range
image the depth value is digitized. Magnetic resonance images represent the
intensity variation of radio waves generated by biological systems when exposed
to radio frequency pulses. Biological bodies (human/animals) are built up of
atoms and molecules. Some of the nuclei behave like tiny magnets [1], commonly
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known as spins. Therefore, if a patient (or any living being) is placed in a strong
magnetic field, the magnetic nuclei tend to align with the applied magnetic
field. For MRI the patient is subject to a radio frequency pulse. As a result of
this the magnetic nuclei pass into a high energy state, and then immediately
relieve themselves of this stress by emitting radio waves through a process called
relaxation. This radio wave is recorded to form the MRI. In digital MRI, the
intensity of the radio wave is digitized with respect to both intensity and spatial
coordinates. Thus in general, any image can be described by a two-dimension
function f ′(x, y), where (x, y) denotes the spatial coordinate and f ′(x, y) the
feature value at (x, y). Depending on the type of image, the feature value could
be light intensity, depth, intensity of radio wave or temperature. A digital image,
on the other hand, is a two-dimensional discrete function f(x, y) which has
been digitized both in spatial coordinates and magnitude of feature value. We
shall view a digital image as a two-dimensional matrix whose row and column
indices identify a point, called a pixel, in the image and the corresponding matrix
element value identifies the feature intensity level. Throughout our discussion a
digital image will be represented as

FP×Q = [f(x, y)]P×Q (1)

where P × Q is the size of the image and f(x, y) ∈ GL = {0, 1, . . . , L − 1},
the set of discrete levels of the feature value. Since the techniques we are going
to discuss in this article are developed for ordinary intensity images, in our
subsequent discussion, we shall usually refer to f(x, y) as gray value (although
it could be depth or temperature or intensity of radio wave).

Segmentation is first essential and important step of low level vision[2,3,4,5].
Its application area varies from the detection of cancerous cells to the identifica-
tion of an airport from remote sensing data, etc. In all these areas, the quality
of the final output depends largely on the quality of the segmented output. Seg-
mentation is a process of partitioning image into some non-intersecting regions
such that each regions is homogeneous and union of no two adjacent regions is
homogeneous. Formally, it can be defined [6] as follows: if F is the set of all
pixels and P ( ) is a uniformity (homogeneity) predicate defined on groups of
connected pixels, then segmentation is a partitioning of the set F into a set of
connected subsets or regions (S1, S2, . . . , Sn) such that

n⋃

i=1

Si = F with Si

⋂
Sj = ∅, i �= j. (2)

The uniformity predicate P (Si)=true for all regions (Si) and P (Si∪Sj)=false,
when Si is adjacent to Sj . Note that this definition is applicable to all types of
images we have described. For light intensity images the uniformity predicate
measures the uniformity of light intensity, while for range images it could be the
uniformity of surfaces. Algorithm developed for one class of image (say ordinary
intensity image) may not always be applied to other classes of images (MRI/RI).
This is particulary true when the algorithm uses a specific image formation model.
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For example, some visual image segmentation algorithms are based on the as-
sumption that the gray level function f(x, y) can be modeled as a product of an
illumination component and a reflectance component [7]. On the other hand, in
Pal and Pal [8] the gray level distributions have been modeled as Poisson distri-
butions, based on the theory of formation of visual images. Such methods [7,8]
should not be applied to MRI/RIs. However, most of the segmentation methods
developed for one class of images can be easily applied/extended to another class
of images. For example, the variable order surface fitting method [9], although de-
veloped for range images can be applied for other images that can be modeled as
a noisy version of piece-wise smooth surface.

The present article deals with some new methods of images segmentation for
light intensity (LI) images. These methods have been extensively demonstrated
on remote sensing image data. Here modern tools like active support vector
machine, and rough and granular computing are used besides Hough transform
based region segmentation, and fuzzy set theoretic thresholding techniques. Be-
fore we describe the scope of the article (in Section 1.6), we provide a brief review
on image segmentation in Section 1.1, and characteristics of remote sensing im-
ages Section 1.4 and various methods used for their segmentation in Section 1.5.

1.1 Image Segmentation Techniques

Segmentation subdivides an image into its constituent regions or objects. The
level to which the subdivision is carried depends on the problem being solved.
That is segmentation should stop when the objects of interest in an application
have been isolated. For example, in the automated inspection of electronic as-
semblies, interest lies in analyzing images of the products with the objective of
determining the presence or absence of specific anomalies, such as missing com-
ponents or broken connection paths. There is no point in carrying segmentation
after the level of detail required to identify those elements is achieved.

Segmentation of nontrivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure of
computerized analysis procedures. For this reason, considerable care should be
taken to improve the probability of rugged segmentation. In some situations,
such as industrial inspection applications, at least some measure of control over
the environment is possible at times. The experienced image processing system
designer invariably pays considerable attention to such opportunities. In other
applications, such as autonomous target acquisition, the system designer has no
control of the environment. Then the usual approach is to focus on selecting the
types of sensors most likely to enhance the objects of interest while diminishing
the contribution of irrelevant image details. A good example is the use of infrared
imaging by the military to detect objects with strong heat signatures, such as
equipment and troops in motion [2].

Image (light intensity) segmentation algorithms generally are based on one
of two basic properties of intensity values: discontinuity and similarity. In the
first category, the approach is to partition an image based on abrupt changes
in intensity, such as edges in an image. The principal approaches in the second
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category are based on partitioning an image into region that are similar according
to set of predefined criteria. Thresholding, pixel classification, region growing,
and region splitting and merging are examples of methods in this category [2].
These are described in the following sections.

Gray Level Thresholding. Thresholding is one of the old, simple and popu-
lar techniques for image segmentation. Thresholding can be done based on global
information (e.g., gray level histogram of the entire image) or it can be done us-
ing local information (e.g., co-occurrence matrix) of the image. Taxt et al. [10]
refer to the local and global information based techniques as contextual and non-
contextual methods, respectively. Under each of these schemes (contextual/non-
contextual) if only one threshold is used for the entire image then it is called global
thresholding. On the other hand, when the image is partitioned into several sub-
regions and a threshold is determined for each of the subregions, it is referred to as
local thresholding [10]. Some authors [11,12,13] call these local thresholding meth-
ods adaptive thresholding schemes. Thresholding techniques can also be classified
as bi-level thresholding and multi-level thresholding. In bi-level thresholding the
image is partitioned into two regions – object (black) and background (white).
When the image is composed of several objects with different surface characteris-
tics (for a light intensity image, objects with different coefficient of reflection, for a
range image there can be objects with different depths and so on) one needs several
thresholds for segmentation. This is known as multi-level thresholding. In such a
situation we try to get a set of thresholds (T1, T2, ..., Tk) such that all pixels with
f(x, y) ∈ [Ti, Ti+1), i = 0, 1, . . . , k, constitute the ith region type (T0 and Tk+1

are taken as 0 and L−1, respectively). Note that thresholding can also be viewed as
a classification problem. For example, bi-level segmentation is equivalent to classi-
fying the pixels into two classes: object and background. Mardia and Hainsworth
[14] have shown that the main idea behind the iterative thresholding schemes of
Ridler and Calvard [15] and Lloyd [16] can be defined as special cases of the clas-
sical Bayes’ discrimination rule.

If the image is composed of regions with different gray level ranges, i.e., the
regions are distinct, the histogram of the image usually shows different peaks,
each corresponding to one region and adjacent peaks are likely to be separated
by a valley. For example, if the image has a distinct object on a background,
the gray level histogram is likely to be bimodal with a deep valley. In this case,
the bottom of the valley (T) is taken as the threshold for object background
separation. Therefore, when the histogram has a (or a set of) deep valley(s),
selection of threshold(s) becomes easy because it becomes a problem of detecting
valleys. However, normally the situation is not like this and threshold selection
is not a trivial job. There are various methods available for this. For example,
Otsu [17] maximized a measure of class separability. He maximized the ratio of
the between class variance to the local variance to obtain thresholds. Nakagawa
and Rosenfeld [12] assumed that the object and background populations are
distributed normally with distinct means and standard deviations. Under this
assumption they selected the threshold by minimizing the total misclassification
error. This method is computationally involved. Kittler and Illingworth [18],
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under the same assumption of normal mixture, suggested a computationally
less involved method. Their method optimizes a criterion function related to
average pixel classification error rate that finds out an approximate minimum
error threshold. Pal and Bhandari [19] optimized the same criterion function but
assumed Poisson distributions to model the gray level histogram.

Pun [20] assumed that an image is the outcome of an L symbol source. He
maximized an upper bound of the total a posteriors entropy of the partitioned
image for the purpose of selecting the threshold. Kapur et al. [21] on the other
hand, assumed two probability distributions, one for the object area and the
other for the background area. They then, maximized the total entropy of the
partitioned image in order to arrive at the threshold level. Wong and Sahoo [22]
maximized the a posterior entropy of a partitioned image subject to a constraint
on the uniformity measure of Levine and Nazif [23] and a shape measure. They
maximized the a posterior entropy over min (S1, S2) and max (S1, S2) to get the
threshold for segmentation; where S1 and S2 are the threshold levels at which
the uniformity and the shape measure attain the maximum values, respectively.
Pal and Pal [8] modeled the image as a mixture of two Poisson distributions and
developed several parametric methods for segmentation. The assumption of the
Poisson distribution has been justified based on the theory of image formation.
These algorithms maximize either entropy or minimize the χ2 statistic. Though
these methods use only the histogram, they produce good results due to the
incorporation of the image formation model.

All these methods have a common drawback, they take into account only
the histogram information (ignoring the spatial details). As a result, such an
algorithm may fail to detect thresholds if these are not properly reflected as
valleys in the histogram, which is normally the case. There are many thresh-
olding schemes that use spatial information, instead of histogram information.
For example, the busyness measure of Weszka and Rosenfeld [24] is dependent
on the co-occurrence of adjacent pixels in an image. They minimized the busy-
ness measure in order to arrive at the threshold for segmentation. Deravi and
Pal [25] minimized the conditional probability of transition across the bound-
ary between two regions. This method also uses the local information contained
in the co-occurrence matrix of the image. However, finally all these methods
threshold the histogram, but since they make use of the spatial details, they
result in a more meaningful segmentation than the methods which use only the
histogram information. Based on the co-occurrence matrix, Chanda et al. [26]
have given an average contrast measure for segmentation. Pal and Pal [27] pro-
posed measures of contrast between regions and homogeneity of regions using
the brightness perception aspect of the human psycho-visual system, and ap-
plied them to segmentation. They also defined [28] the higher order entropy and
conditional entropy of an image giving measures of homogeneity and contrast,
respectively. These measures are finally applied to develop object extraction al-
gorithms. A concept similar to the second order local entropy of Pal and Pal [28]
has been used by Abutaleb [29] for segmentation. The gray value of a pixel and
the average of its neighboring pixels have been used there for the computation
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of the co-occurrence matrix. As a result the boundary of the segmented object
usually becomes blurred.

The philosophy behind gray level thresholding, “pixels with gray level < T fall
into one region and the remaining pixels belong to another region”, may not be
true on many occasions, particularly, when the image is noisy or the background
is uneven and illumination is poor. In such cases the objects will still be lighter
or darker than the background, but any fixed threshold level for the entire image
will usually fail to separate the objects from the background. This leads one to
the methods of adaptive thresholding. In adaptive thresholding [11,12,13] nor-
mally the image is partitioned into several non-overlapping blocks of equal area
and a threshold for each block is computed independently. Chow and Kaneko
[11] used the (sub) histogram of each block to determine local threshold values
for the corresponding cell centers. These local thresholds are then interpolated
over the entire image to yield a threshold surface. They [11] used only gray
level information. Yanowitz and Bruckstein [13] extended this idea to use com-
bined edge and gray level information. They computed the gray level gradient
magnitude from a smooth version of the image. The gradient values have then
been thresholded and thinned using a local maxima directed thinning process.
Locations of these local gradient maxima are taken as boundary pixels between
object and background. The corresponding gray levels in the image are taken as
local thresholds. The sampled gray levels are then interpolated over the entire
image to obtain an adaptive threshold surface.

Iterative Pixel Classification

Relaxation. Relaxation [5,30,31] is an iterative approach to segmentation in
which the classification decision about each pixel can be taken in parallel. Deci-
sions made at neighboring points in the current iteration are then combined to
make a decision in the next iteration. There are two types of relaxation: prob-
abilistic and fuzzy. We discuss here the probabilistic relaxation. Suppose a set
of pixels {fl, f2, ..., fn} is to be classified into m classes {Cl, C2, ..., Cm}. For the
probabilistic relaxation we assume that for each pair of class assignments fi ∈ Cj

and fh ∈ Ck, there exists a quantitative measure of compatibility C(i, j; h, k) of
this pair, i.e., the class assignment of pixels is interdependent. It is reasonable to
assume that a positive value of C(i, j; h, k) indicates the compatibility of fi ∈ Cj

and fh ∈ Ck, while a negative value represents incompatibility and a zero don’t
care situation. The function C need not be symmetric.

Let pij represent the probability that fi ∈ Cj , 1 ≤ i ≤ n and 1 ≤ j ≤ m,
with 0 ≤ pij ≤ 1,

∑
j pij = 1. Intuitively, if phk is high and C(i, j; h, k) is

positive, we increase pij since it is compatible with the high probability event
fh ∈ Ck. Similarly, if phk is high and C(i, j; h, k) is negative, we reduce pij as
it is incompatible with fh ∈ Ck. On the other hand, if phk is low or C(i, j; h, k)
is nearly zero, pij is not changed as either fh ∈ Ck has a low probability or
is irrelevant to fi ∈ Cj . The fuzzy relaxation based on fuzzy set theory (to be
defined in Section 1.1) is similar in concept [5,31].
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MRF Based Approaches. There are many image segmentation methods
[32,33,34] which use the spatial interaction models like Markov Random Field
(MRF) or Gibbs Random Field (GRF) to model digital images. Geman and
Geman [34] have proposed a hierarchical stochastic model for the original im-
age and developed a restoration algorithm, based on stochastic relaxation (SR)
and annealing, for computing the maximum a posterior estimate of the original
scene given a degraded realization. Due to the use of annealing, the restora-
tion algorithm does not stop at a local maxima but finds the global maximum
of the a posterior probability. We mention here that the probabilistic relaxation
[31] (also known as relaxation labeling (RL)) and stochastic relaxation, although
they share some common features like parallelism and locality, are quite distinct.
RL is essentially a non-stochastic (deterministic) process which allows jumps to
states (configurations) of lower energy. On the other hand, SR transition to a
configuration which increases the energy (decreases the probability) is also al-
lowed. In fact, if the new configuration decreases the energy, the system transits
to that state, while if the new configuration increases the energy the system
accepts that state with a probability. This helps the system to avoid the local
minima. RL usually gets stuck in a local minima. Moreover, in RL there is noth-
ing corresponding to an equilibrium state or even a joint probability law over the
configurations. Derin et al. [33] extended the one-dimensional Bayes smoothing
algorithm of Asker and Derin [32] to two dimensions to get the optimum Bayes
estimate for the scene value at every pixel. In order to reduce the computational
complexity of the algorithm, the scene is modeled as a special class of MRF
models, called Markov mesh random fields which are characterized by causal
transition distributions. The processing is done over relatively narrow strips and
estimates are obtained at the middle section of the strips. These pieces together
with overlapping strips yield a suboptimal estimate of the scene. Without par-
allel implementation these algorithms become computationally prohibitive.

Neural Network Based Approaches. For any artificial vision application,
one desires to achieve robustness of the system with respect to random noise
and failure of processors. Moreover, a system can (probably) be made artificially
intelligent if it is able to emulate some aspects of the human information process-
ing system. Another important requirement is to have the output in real time.
Neural network based approaches are attempts to achieve these goals. Neural
networks are massively connected networks of elementary processors [35,36]. Ar-
chitecture and dynamics of some networks are claimed to resemble information
processing in biological neurons [35]. The massive connectionist architecture usu-
ally makes the system robust while the parallel processing enables the system
to produce output in real time. Several authors [37,38,39,40,41,42,43,44] have
attempted to segment an image using neural networks. Blanz and Gish [38] used
a three-layer feed forward network for image segmentation, where the number of
neurons in the input layer depends on the number of input features for each pixel
and the number of neurons in the output layer is equal to the number of classes.
Babaguchi et al. [37] used a multilayer network trained with backpropagation,
for thresholding an image. The input to the network is the histogram while the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



302 B.U. Shankar

output is the desirable threshold. In this method at the time of learning a large
set of sample images with known thresholds which produce visually suitable out-
puts are required. But for practical applications it is very difficult to get many
sample images.

Ghosh et al. [40,41] used a massively connected network for extraction of ob-
jects in a noisy environment. The maximum a posterior probability estimate of a
scene modeled as a GRF and corrupted by additive Gaussian noise has been done
using a neural network [40]. The hardware realization of neurons to be used for
such a network has also been suggested. This NN (neural networks) based method
takes into account the contextual information, because the GRF model considers
the spatial interactions among neighboring pixels. Another robust algorithm for
the extraction of objects from highly noise corrupted scenes using a Hopfleld type
neural network has been developed in reference [42]. The energy function of the
network has been constructed in such a manner that in a stable state of the net
it extracts compact regions from a noisy scene. A multilayer neural network [44]
where each neuron in layer i(i > 1) is connected to the corresponding neuron in
layer (i− 1) and some of its neighboring neurons (in layer i− 1), has been used to
segment noisy images. The output status of the neurons in the output layer has
been viewed as a fuzzy set (to be defined in Section 1.1). The weight updating rules
have been derived to minimize the fuzziness in the system. For this algorithm the
architecture of the network enforces the system to consider the contextual infor-
mation. Moreover, this algorithm integrates the advantages of both fuzzy sets (de-
cision from imprecise/incomplete knowledge) and neural networks (robustness).
In reference [39] the image segmentation problem has been formulated as a con-
straint satisfaction problem (CSP) and a class of constraint satisfaction neural
network (CSNN) is proposed. A CSNN consists of a set of objects, a set of la-
bels, a collection of constraint relations and a topological constraint describing
the neighborhood relationships among various objects. The CSNN is viewed as a
collection of interconnected neurons. The architecture is chosen in such a way that
it represents constraints in the CSP. The method is found to be successful on CT
(computed tomography) images and MRIs. However, robustness of the algorithm
with noisy data has not been investigated. Moreover, a large number of neurons
are required even for an image of moderate size.

Kuntimad and Ranganath [43] have describes a method for segmenting digital
images using pulse coupled neural networks (PCNN). The pulse coupled neuron
(PCN) model used in PCNN is a modification of the cortical neuron model of
Eckhorn et al. [45]. A single layered laterally connected PCNN is capable of
perfectly segmenting digital images even when there is a considerable overlap in
the intensity ranges of adjacent regions.

Ghosh and Ghosh [46] used fuzzy logic reasoning into the Neuro-GA (Hop-
field type neural network) hybrid framework where GA (Genetic Algorithm)
has been used to evolve Hopfield type optimum neural network architecture
for object background classification. Each chromosome of the GA represents an
architecture. The output status of the neurons at the converged state of the
network is viewed as a fuzzy set and measure of fuzziness of this set is taken
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as a measure of fitness of the chromosome. The best chromosome of the final
generation represents the optimum network configuration.

Pal et al. [47] described a method using Genetic Algorithms (GAs) to evolve
Hopfield type optimum neural network architectures for object extraction prob-
lem. Different optimizing functions involving minimization of energy value of
the network, maximization of percentage of correct classification of pixels (pcc),
minimization of number of connections of the network (noc), and a combina-
tion of pcc and noc are considered. The number of connections of the evolved
(sub)optimal architectures is seen to be reduced to two-third compared to a
fully connected version. They found that the performance of Genetic algorithm
is better than that of Simulated Annealing for this problem.

Jiang and Zhou [48] described an image segmentation method based on en-
semble of SOM (self-organized map) neural networks. This clusters the pixels
in an image according to color and spatial features using each SOM, and then
combines the clustering results to give the final segmentation.

Edge Detection. Segmentation can also be obtained through detection of edges
of various regions, which normally tries to locate points of abrupt changes in
gray level intensity values. Since edges are local features, they are determined
based on local information. A large variety of methods are available in the litera-
ture [3,5,49] for edge finding. Davis [50] classified edge detection techniques into
two categories: sequential and parallel. In the sequential technique the decision
whether a pixel is an edge pixel or not is dependent on the result of the detector
at some previously examined pixels. On the other hand, in the parallel method
the decision whether a point is an edge or not is made based on the point under
consideration and some of its neighboring points. As a result of this the operator
can be applied to every point in the image simultaneously. The performance of
a sequential edge detection method is dependent on the choice of an appropriate
starting point and how the results of previous points influence the selection and
result of the next point.

There are different types of parallel differential operators such as Roberts gra-
dient, Sobel gradient, Prewitt gradient and the Laplacian operator [3,5,49]. These
difference operators respond to changes in gray level or average gray level. The gra-
dient operators, not only respond to edges but also to isolated points. For Prewitt’s
operator the response to the diagonal edge is weak, while for Sobel’s operator it is
not that weak as it gives greater weights to points lying close to the point (x, y) un-
der consideration. However, both Prewitt’s and Sobel’s operators possess greater
noise immunity. The preceding operators are called the first difference operator.
Laplacian, on the other hand, is a second difference operator.

The digital Laplacian being a second order difference operator, has a zero
response to linear ramps. It responds strongly to corners, lines, and isolated
points. Thus for a noisy picture, unless it has a low contrast, the noise will
produce higher Laplacian values than the edges. Moreover, the digital Laplacian
is not orientation invariant. A good edge detector, should be a filter with the
following two features. First, it should be a differential operator, taking either
a first or second spatial derivative of the image. Second, it should be capable of
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being tuned to act at any desired scale, so that large filters can be used to detect
blurry shadow edges, and small ones to detect sharply focused fine details. The
second requirement is very useful as intensity changes occur at different scales
in an image.

All the edges produced by these operators are, normally, not significant (rele-
vant) edges when viewed by human beings. Therefore, one needs to find out promi-
nent (valid) edges from the output of the edge operators. Kundu and Pal [51] have
suggested a method of thresholding to extract the prominent edges based psycho-
visual phenomena. Haddon [52] developed a technique to derive a threshold for
any edge operator, based on the noise statistics of the image.

Methods Based on Fuzzy Set Theory. Application of fuzzy sets [53] to
image processing was based on the realization that many of the basic concepts
in image analysis, e.g., the concept of an edge or a corner or a boundary or a
relation between regions, do not lend themselves well to precise definition. A gray
tone image possesses ambiguity within pixels due to the possible multi-valued
levels of brightness in the image. This indeterminacy is due to inherent vagueness
rather than randomness. Incertitude in an image pattern may be explained in
terms of grayness ambiguity or spatial (geometrical) ambiguity or both. Grayness
ambiguity means “indefiniteness” in deciding whether a pixel is white or black.
Spatial ambiguity refers to “indefiniteness” in the shape and geometry of a region
within the image.

We shall mention here a few methods of fuzzy segmentation (based on both
gray level thresholding and pixel classification) using global and/or local infor-
mation of an image space. Note that it is Prewitt [54] who first suggested that
the result of segmentation should be fuzzy subsets rather than ordinary subsets.

Fuzzy Thresholding. Different histogram thresholding techniques in provid-
ing both fuzzy and non-fuzzy segmented versions by minimizing the grayness
ambiguity (global entropy, index of fuzziness, index of crispness) and geometri-
cal ambiguity (fuzzy compactness) of an image have been described in [55,56].
These algorithms use different S-type membership functions [53] to define fuzzy
“object regions” and then select the one which is associated with the minimum
(optimum) value of the aforesaid ambiguity measures. The optimum membership
function thus obtained enhances the object from background and denotes the
membership values of the pixels for the fuzzy object region. Note that the cross-
over point (the point with membership value of 0.5) of the optimum membership
function may be considered as a threshold for crisp segmentation. Its extension
to multi-level thresholding has also been made. The mathematical framework of
the algorithm including the selection of S functions, its bandwidth and bounds
has been established by Murthy and Pal [57].

The problem of determining the appropriate membership function in image
processing drew the attention of many researchers. Reconsider the problem of
gray level thresholding using S functions. If there is a difference in opinion in
defining an S function (i.e., instead of a single membership function, we have a
set of monotonically non-decreasing functions), the concept of spectral fuzzy sets
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[58] can be used to provide soft decisions (a set of thresholds along with their
certainty values) by giving due respect to all opinions. In making such a decision,
the algorithm minimizes differences in opinions in addition to the ambiguity
measures mentioned earlier; thereby managing the uncertainty. The bounds for
S-type functions have been defined based on the properties of fuzzy correlation
[57] so that any function lying in the bounds would give satisfactory segmentation
results. It, therefore, demonstrates the flexibility of fuzzy algorithms. Xie and
Bedrosian [59] have also made attempts in determining membership functions
for gray level images.

Recently Tobias and Seara [60] used a procedure for histogram thresholding
which is not based on the minimization of a criterion function. Instead, the his-
togram threshold is determined according to the similarity between gray levels.
Such a similarity is assessed through a fuzzy measure. The fuzzy framework is
used to obtain a mathematical model of such a concept. Because of the used
assumption, in which objects and background must occupy non-overlapping re-
gions of the histogram, the applicability of the proposed method is limited to
images that satisfy such a requirement.

Fuzzy Clustering. The fuzzy c-means (FCM) clustering algorithm [61] has also
been used in image segmentation [62,63,64]. The fuzzy c-means algorithm uses
an iterative optimization of an objective function based on a weighted similarity
measure between the pixels in the image and each of the c-cluster centers. A
local extremum of this objective function indicates an optimal clustering of the
input data.

Trivedi and Bezdek [64] proposed a fuzzy set theoretic image segmentation
algorithm for aerial images. The method is based upon region growing princi-
ples using a pyramid data structure. The algorithm is hierarchical in nature.
Segmentation of the image at a particular processing level is done by the FCM
algorithm. In a multilevel segmentation experiment, level i regions are consid-
ered homogeneous when image elements have largest cluster membership values
of greater than a prescribed threshold. If the homogeneity test fails, regions are
split to form the next level regions which are again subjected to the FCM al-
gorithm. This algorithm is a region splitting algorithm, where the acceptance
of a region is determined by fuzzy membership values to different regions. Hall
et al. [62] segmented magnetic resonance brain images using the unsupervised
fuzzy c-means and also by a supervised computational network–a dynamic multi-
layered perceptron trained with the cascade correlation learning algorithm. The
different aspects of both approaches and their utility for the diagnostic process
have been discussed. However, computational complexity of fuzzy c-mean is too
high to apply it for real time application of MRI segmentation. One of the ad-
vantages in using fuzzy clustering algorithms is that one can dynamically select
the appropriate number of clusters depending on the strength of memberships
across clusters [65]. Keller and Carpenter [66] used a modified version of FCM
for image segmentation. The cluster centers are updated using the FCM for-
mula but new membership values for each point are calculated using an S-type
function based on the feature value of each point and the fuzzy means.
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Methods Using Other Tools

Mathematical Morphology. The mathematical morphology is used as a tool
for extracting image components that are useful in the representation and de-
scription of region shape, such as boundaries, skeletons and the convex hull.
Morphological techniques are also used for pre or post processing of images, such
as morphological filtering, thinning, and pruning. Morphological segmentation
methods include boundary extraction via morphological gradients operation, re-
gion partitioning based on texture content, and size distribution of particles in
an image using granulomentry [2]. Image segmentation using morphological wa-
tersheds now became an important research area. Segmentation by watersheds
embodies many of the concepts of three approaches used in image processing
(i.e., detection of discontinuities, thresholding and region processing) and often
produces more stable segmentation results, including continuous segmentation
boundaries. This approach also provides a simple framework for incorporating
knowledge-based constraints in the segmentation process [2]. The paper by Cou-
prie et al. [67] describes an algorithm to compute topological watersheds. Addi-
tional research in this line is reported in [68,69].

Genetic Algorithm. Genetic algorithm, being an adaptive search techniques,
has been used for image segmentation. For example, Bhanu and Fonder [70] de-
scribed an approach for automatic image segmentation, in which user selected
sets of examples and counter-examples supply information about the specific
segmentation problem. In their approach, image segmentation is guided by a
genetic algorithm which learns the appropriate subset and spatial combination
of a collection of discriminating functions, associated with image features. The
genetic algorithm encodes discriminating functions into a functional template
representation, which can be applied to the input image to produce a candi-
date segmentation. The performance of each candidate segmentation is evaluated
within the genetic algorithm, by a comparison to two physics-based techniques
for region growing and edge detection. Through the process of segmentation,
evaluation, and recombination, the genetic algorithm optimizes functional tem-
plate design efficiently. Results are presented on real synthetic aperture radar
(SAR) imagery of varying complexity. The first closed-loop image segmentation
system is presented in [71] that incorporates genetic and other algorithms to
adapt the segmentation process to changes in image characteristics caused by
variable environmental conditions, such as time of day, time of year, and weather.

Wavelet Based Segmentation. Wavelets are commonly used as a tool for
coding and compression. Wavelets and multi-resolution analysis together form a
field which is explored for image segmentation [2]. Acharyya et al. [72] explained
a scheme for segmentation of multitexture images. The methodology involves
extraction of texture features using an wavelet decomposition scheme called dis-
crete M-band wavelet packet frame (DMbWPF). This is followed by the process
of selection of important features using a neuro-fuzzy algorithm under unsu-
pervised learning. Using selected feature segmentation is performed on the IRS
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(Indian Remote Sensing) and SPOT1 (Satellite Pour l’Observation de la Terre)
images using k-means clustering. Some other attempts on segmenting remotely
sensed images are explained in Section 1.5.

Level Set Methods and Image Segmentation. Image segmentation using
level set is another area that has received importance these days. Level set meth-
ods are used for implementing curve evolution or diffusion under various forces.
These can also be used for surface evolution for volume segmentation in 3-D im-
ages. Heiler and Schnörr [73] integrated a model for filter response statistics of
natural images into a variational framework for image segmentation. This model
drives level sets toward meaningful segmentations of complex textures and nat-
ural scenes. Despite its enhanced descriptive power, the approach preserves the
efficiency of level set based segmentation since each region comprises two model
parameters only. Other methods using level sets are available in [74,75,76].

Methods in Soft Computing Framework. A large number of researchers,
all over the word, have been engaged in developing soft computing method-
ologies for designing intelligent information systems for image processing and
analysis [77]. The objective of the soft computing is to exploit the tolerance
for imprecision, uncertainty, approximate reasoning and partial truth in order
to achieve tractability, robustness, low solution cost and close resemblance with
human like decision making. Usually, it attempts to find an acceptable solution
at low cost by seeking for an approximate solution to a precisely or imprecisely
formulated problem [78]. The principal components of soft computing are fuzzy
logic, rough sets, neural computing, probabilistic reasoning, genetic algorithm,
chaotic systems, belief networks and some parts of learning theory like support
vector machine (SVM). Fuzzy logic and rough sets are mainly concerned with
providing algorithm for dealing with imprecision and approximate reasoning,
and for computing with words. Neural computing provides the machinery for
adaptive learning and curve fitting. Probabilistic reasoning is for propagation of
belief, and genetic algorithms are for efficient search and optimization. All these
partners of soft computing are complementary rather than competitive. Because
of this reason it is found frequently to be advantageous to use these components
in combination rather than in isolation; thereby developing more intelligent sys-
tems in hybrid domain. Segmentation methods using soft computing tools like
fuzzy sets, neural networks and genetic algorithms are explained before. Similar
methods using these tools in the integrated framework are reported in [46,47,79].

1.2 Segmentation of Color Images

Color is a very important perceptual phenomenon related to human response to
different wavelengths in the visible electromagnetic spectrum [80,81]. The image
is usually described by the distribution of three color components R (red), G
(green), B (blue). Color image is often also represented by three psychological
qualities hue, saturation and intensity.
1 SPOT Image - Home ( http://www.spotimage.fr/html).
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According to Cheng et al. [82], which is more recent study on color images
segmentation, there are two critical issues for color image segmentation: (1) what
segmentation method should be utilized; and (2) what color space should be
adopted. At present, color image segmentation methods are generally extended
from monochrome segmentation approaches. Several approaches applied to color
image are discussed in their article [82], which includes histogram thresholding,
region based approaches, edge detection and fuzzy techniques. A combination of
these approaches is often utilized for color image segmentation.

Naik and Murthy [83] recently worked on the problem of edge detection in color
images. They used this edge detection method for object recognition [84], having
the knowledge of the appearance of the objects from different view points. Ap-
pearance of each view of the object is encoded using the descriptions of the regions
involving multiple segments on the image surface. Description of all such distinct
regions are combined to represent each view of the object. Two different methods
to locate and find the different colors in such regions involving multiple segments
on the surface of the object have been proposed and tested on some standard data
sets (like COIL-100, SOIL-47A, SOIL-47B and ALOI color image data sets).

1.3 Objective Evaluation of Segmentation Results

We have discussed above several methods of image segmentation. It is known
that no method is equally good for all images and all methods are not good for a
particular type of images. Here an important problem remains to be discussed,
how to make a quantitative evaluation of segmentation results. Such a quan-
titative measure would be quite useful for vision applications where automatic
decisions are required. Also this will help to justify an algorithm. Unfortunately,
a human being is the best judge to evaluate the output of any segmentation
algorithm. However, some attempts have already been made for the quantita-
tive evaluation. Levine and Nazif [85] used a two dimensional distance measure
that quantifies the difference between two segmented images, one proposed by
a human being the other by an algorithm. Later on they [23] defined another
set of performance parameters such as region uniformity, region contrast, line
contrast, etc. These measures have also been used for quantitative evaluation of
segmentation algorithms. Lim and Lee [86] attempted to do this by computing
the probability of error between the manually segmented image and the seg-
mentation result. Pal and Bhandari [87] used the higher order local entropy as
an index to measure the quality of the output. They also suggested the use of
symmetric divergence between two probability distributions, one for the output
generated by an algorithm and the other for the manually segmented image.
The correlation measure [88] between the original image and the segmented one
has also been used for the purpose of quantitative evaluation [87]. It is already
mentioned that a human being is the ultimate judge to make an evaluation of
the result. In [89] it is suggested that one can use a vector of such measures for
objective evaluation. For example, if for some segmented image, the correlation,
uniformity, and entropy are all high and divergence is low then one can consider
the output to be good.
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In the survey of Sezgin and Sankur [90], instead of one criteria, they used
five different criteria to get better understanding of the performance features of
thresholding methods. The five performance criteria are as follows: misclassifica-
tion error (ME), edge mismatch (EMM), relative foreground area error (RAE),
modified Hausdorff distance (MHD), and region nonuniformity (NU). A com-
bination of these performance measures is used in two different ways. The first
method is based on the arithmetic average of the normalized scores obtained
from the five measures, while the second method is based on the average of the
ranks of the images.

There are several reviews available in the literature for image segmentation
and evaluation. One may refer to [89,90,91,92,93,94,95,96,97].

1.4 Remote Sensing Images: Characteristics

Remotely sensed image data of the earth’s surface acquired from either air-
craft or spacecraft platforms is readily available in digital format; spatially the
data is composed of discrete picture elements or pixels and radiometrically it is
quantized into discrete brightness levels. Even the data that is not recorded in
digital form initially can be converted into discrete data by the use of digitizing
equipments.

The great advantage of having data available digitally is that it can be pro-
cessed by computer either for machine assisted information extraction or for
enhancement before an image product is formed. The latter is used to assist the
role of photo-interpretation.

A major characteristic of an image in remote sensing is the wavelength band it
represents. Some images are measurements of the spatial distribution of reflected
solar radiation in the ultraviolet, visible and near-to-middle infrared range of
wavelengths. Others are measurements of the spatial distribution of energy emit-
ted by the earth itself (dominant in the so-called thermal infrared wavelength
range); yet others, particularly in the microwave band of wavelengths, measure
the relative return from the earth’s surface of energy actually transmitted from
the vehicle itself. Systems of this last type are referred to as active since the en-
ergy source is provided by the remote sensing platform; by comparison systems
involving remote sensing measurements that depend upon an external energy
source, such as the sun, are called passive [98,99,100]. From a data handling and
analysis point of view the properties of image data of significance are the number
and location of the spectral measurements (or spectral bands or channels) pro-
vided by a particular sensor, the spatial resolution as described by the pixel size
in equivalent ground metres, and the radiometric resolution. The last describes
the range and discernable number of discrete brightness values and is sometimes
referred to alternatively as dynamic range. Frequently the radiometric resolution
is expressed in terms of the number of binary digits, or bits, necessary to repre-
sent the range of available brightness values. Thus data with 8 bit radiometric
resolution has 256 levels of brightness. Together with the frame size of an image,
in equivalent ground kilometres (which is determined usually by the size of the
recorded image swath), the number of spectral bands’, radiometric resolution
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and spatial resolution determine the data volume provided by a particular sen-
sor and thus establish the amount of data to be processed, at least in principle.
As an illustration consider the IRS-1A/1B multi-spectral scanner image taken
from LISS-II (Linear Imaging Self Scanner) camera. It has spatial resolution of
36.25m in 4 wavelength bands with 7 bits radiometric resolution. A typical image
frame consists of 25.2 million pixels (25.2Mbytes) [101]. Remote sensing system
could measure energy emanating from the earth’s surface in any sensible range
of wavelengths. However technological consideration and selective opacity of the
earth’s atmosphere, scattering from atmospheric particulate and significance of
the data provided, excludes certain wavelengths. The major ranges utilized for
earth resources sensing are between about 0.4μm to 12 μm (visible and infra-red
range) and between about 30mm to 300mm (microwave range normally men-
tioned in terms of 1GHz to 10GHz). In the atmospheric remote sensing about
20GHz to 60GHz range is used. Significance of these different ranges lies in the
interaction mechanism between the electromagnetic radiation and the materials
being examined. Each range of wavelength has its own strength in terms of the
information it can contribute to the remote sensing process. The purpose of ac-
quiring remote sensing image data is to be able to identify and assess by some
means, either surface materials or their spatial properties. The remote sensing in
different ranges and different bands provides information, which helps in identi-
fying objects with their signature in different bands. Therefore, we find systems
available that are optimized for and operate in particular spectral ranges, and
provide data that complements the information received from other sensors and
systems, the details can be found in [99].

In the present investigation, we have used data sets which are acquired in the
visible and near infra-red bands either in single or multi-spectral form for segmen-
tation and classification of regions. The Remote Sensing images are normally ac-
quired and distributed by private and government organizations through various
agencies. In India images are available for users through National Remote Sens-
ing Agency (NRSA)2. An image received from distribution agency goes through
various types of processing before final interpretation and understanding of the
image, normally know as “image analysis”. In the process of image analysis one
has to segment and/or classify the image into its constituent components. Some
of the methods used in the past are discussed in the next section.

1.5 Remote Sensing Images: Different Approaches and
Methodologies for Classification and Segmentation

Remotely sensed images are normally poorly illuminated, highly dependent on
the environmental conditions, and have very low spatial resolution. Most of the
times a scene contains too many objects (or regions), and these regions are ill-
defined because of both grayness and spatial ambiguities. Moreover, the gray
value assigned to a pixel is the average reflectance of different types of ground
covers present in the corresponding pixel area. Assigning unique class labels
with certainty is thus a problem for remotely sensed images. Fuzzy set theory
2 The official web-site of NRSA is http://www.nrsa.gov.in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Novel Classification and Segmentation Techniques 311

and rough set theory can provide a better way of handling this problem by
associating certainty factors with class labels.

There are mainly two approaches to pixel classification in remote sensing.
One of them attempts to relate pixel groups with actual earth-surface cover
types, e.g., vegetation, soil, urban area, water. These groups of pixels are called
information classes. The other approach determines the characteristics of non-
overlapping groups of pixels in terms of their spectral band values. The groups of
pixels in this case are known as spectral classes [102]. Remote sensing is success-
ful because in many instances these spectral classes coincide with information
classes. The former approach, where samples from information classes (training
data) are used for learning and then classifying unknown pixels (patterns), is
called supervised. On the other hand, the latter approach where at first the spec-
tral classes are found without a priori knowledge on the information classes and
then their relationship with the information classes is established using a map
and/or ground truth is called unsupervised. In other words, segmentation (and
associating the segments with information classes), and classification of remote
sensing image data are referred to as unsupervised and supervised classification,
respectively.

Below we provide in brief, some of the methods used for segmentation and
classification of remote sensing images using both classical approaches and mod-
ern tools like fuzzy sets and artificial neural networks.

Classical Methods. Maximum likelihood classifier (in the Bayesian paradigm)
is commonly used as statistical methods for supervised classification [99,100,102].
This has been mostly used in quantitative analysis of the remotely sensed images
for estimation of vegetation, crop, water and soil [102,103,104]. Some of its other
applications can be found in [105,106].

One can find several references in pattern recognition, where the results of the
newly adopted supervised classifiers are compared with that of the maximum like-
lihood classifier [107,108,109,110]. The effectiveness of maximum likelihood clas-
sification depends upon estimation of the mean vector and the covariance matrix
for each spectral class. This in turn is dependent upon having a sufficient num-
ber of training pixels for each of those classes. When this is not so, inaccurate
estimates of the covariance matrix, leads to poor classification. Therefore, where
the number of training samples per class is limited it can be more effective to re-
sort to a classifier that does not make use of covariance information, instead de-
pends only upon the sample points from classes and their means, e.g., minimum
distance classifier, decision tree, neural network, fuzzy set theoretic classifier and
support vector machine. The minimum distance classifier has been used for classi-
fication of remote sensing images by Murthy et al. [111] using two bands (green and
near infra-red band) of Indian Remote Sensing (IRS) multispectral image. From
the bivariate frequency table, seed points are chosen for six classes and minimum
distance classifier is applied to segment the image. Minimum distance classifica-
tion can be performed using distance measures other than Euclidean [112]. Meth-
ods of table-look up classification, parallelepiped classification, linear discriminant
function can also be found in the literature [99,100].
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Classification methods that take into account the labels of neighbors when
seeking to determine the most appropriate class for a pixel are said to be con-
text classifiers. A method is developed by Khazenie and Crawford [113] for con-
textual classification which considers both spatial and temporal correlation for
processes which satisfy second-order stationary conditions. According to Li and
Peng [114], by incorporating the local statistics of an image, a semi-causal non-
stationary autoregressive random field can be applied to a non-stationary image
for segmentation. Since this non-stationary random field can provide a better
description of the image texture than the stationary one, an image can be better
segmented. The proposed technique is applied to extract urban areas from a
Landsat image. A Bayesian contextual classification scheme is described in con-
nection with modified M-estimates and a discrete Markov random field model
by Jhung and Swain [115]. The spatial dependence of adjacent class labels is
characterized based on local transition probabilities in order to use contextual
information. Due to the computational load required to estimate class labels in
the final stage of optimization and the need to acquire robust spectral attributes
derived from the training samples, modified M-estimates are implemented to
characterize the joint class-conditional distribution. The experimental results
show that the suggested scheme outperforms conventional noncontextual classi-
fiers as well as contextual classifiers which are based on least squares estimates
or other spatial interaction models.

Demonstration of probabilistic relaxation for pixel classification can be found
in Gong and Howarth [116], Richards et al. [117]. Recently Sun et al. [106] de-
scribed an information fusion method for the extraction of land-use information.
It integrates spectral, spatial and structural information existing in the image.
A thematic map was first produced with a maximum-likelihood classification
(MLC) applied to the multispectral imagery. “Probabilistic relaxation” (PR)
was then performed on the thematic map to refine the classification with neigh-
borhood information. Furthermore, they incorporated edges extracted from the
higher resolution panchromatic imagery in the classification. An edge map was
generated using operations such as edge detection, edge thresholding and edge
thinning. Finally, a modified region-growing approach was used to improve im-
age classification. The result of the method is an improved land-use map, which
is characterized with sharp interregional boundaries, reduced number of mixed
pixels and more homogeneous regions.

A general model for multi-source classification of remotely sensed data based
on Markov random fields (MRF) is described in [118]. A model for fusion of
optical images, synthetic aperture radar (SAR) images, and GIS (geographic
information systems) ground cover data is presented in detail and tested. The
MRF model exploits spatial class dependencies (spatial context) between neigh-
boring pixels in an image, and temporal class dependencies between different
images of the same scene. By including the temporal aspect of the data, it is
suitable for detection of class changes between the acquisition dates of different
images. The performance of the model is investigated by fusing Landsat TM
images, multitemporal ERS-1 (Earth Resources Satellite) SAR images, and GIS
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ground-cover maps for land-use classification and applied on agricultural crop
classification.

The use of decision tree (DT) for classification in remote sensing problems
is described by Swain and Hauska [119]. The use of classification trees (CT)
for land cover mapping is becoming increasingly common. Classification trees,
sometimes called decision trees, or CART (Classification and Regression Trees)
offer several advantages over classification algorithms traditionally used for land
cover mapping. One advantage is the ability to effectively use both categorical
and continuous predictor data sets with different measurement scales. Other
advantages include the ability to handle nonparametric training and predictor
data, good computational efficiency, and an intuitive hierarchical representation
of discrimination rules. Classification trees use multiple explanatory variables to
predict a single response variable. Pal and Mather [120] in a recent study, using
separate test and training data sets from two different geographical areas and
two different sensors multispectral Landsat ETM+ (Enhanced Thematic Mapper
Plus) and hyperspectral DAIS (The Digital Airborne Imaging Spectrometer),
evaluated the performance of univariate and multivariate DTs for land cover
classification. Factors considered are: the effects of variations in training data
set size and of the dimensionality of the feature space, together with the impact
of boosting, attribute selection measures, and pruning.

In the case of unsupervised classification k-means clustering is a most com-
monly used technique. However, methods like iso-data clustering, agglomerative
hierarchical clustering and clustering by histogram peak selection are also found
to be useful [99]. Parui et al. [121] used the four bands of IRS images and k-
means algorithm for estimating the centroid of the classes and finally segmenting
the image into seven classes. Acharyya et al. [72] explained a scheme for seg-
mentation of multitexture images using selected wavelet features and k-means
clustering and applied on IRS and SPOT images. The use of k-means algo-
rithm can also be found in [122] in the application of evolutionary algorithm for
segmentation.

A method of evaluating the suitability of valleys as threshold has been de-
scribed by Sahasrabudhe and Dasgupta [123], and applied to satellite image
segmentation. Laprade [124] described a split-and-merge technique using F-test
and a mean predicate to test the uniformity of regions and applied it to aerial
photographs. This method approximates the image intensity surface by planar
facets. He applied a least square (fitting) plane to the intensity surface and
this procedure is incorporated into a split-and-merge algorithm. Baraldi and
Parmiggiani [125] presented a class of single linkage region growing (SLRG) al-
gorithms, in which pairs of neighboring pixels are compared for merging. This
is one of the conceptually simplest approaches to image segmentation. Their
method has two main properties: (i) it combines single linkage, centroid linkage
and hybrid linkage criteria; and (ii) its goal is to detect areas characterized by low
contrast in an image. They developed two new SLRG algorithms, and applied
to multiband images by exploiting the VDM (vector degree of match) criterion
for grouping of two adjacent pixels. This method requirs only one user-defined
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parameter, namely, the VDM Threshold (VDMT), which is a normalized value
featuring the local adaptivity.

A general method of statistical clustering by means of expectation maximiza-
tion (EM) algorithm, along with rough sets, is used by Pal and Mitra [126].
EM provides the statistical model of the data, and handles the associated mea-
surement and representation uncertainties. Rough set theory helps in faster
convergence and in avoiding the local minima problem, thereby enhancing the
performance of EM. For rough-set-theoretic rule generation, each band is dis-
cretized using fuzzy-correlation-based gray-level thresholding. This method is
applied on IRS-1A four-band images.

Shah et al. [127] described a method which uses an Independent Component
Analysis (ICA) based approach for unsupervised classification of hyper-spectral
imagery. ICA is employed for a mixture model, it estimates the data density in
each class and models class distributions with non-Gaussian structure, formu-
lating the ICA mixture model (ICAMM). Four feature extraction techniques,
namely, Principal Component Analysis, Segmented Principal Component Anal-
ysis, Orthogonal Subspace Projection and Projection Pursuit have been con-
sidered as preprocessing steps for reducing the data dimensionality. The results
demonstrate that the ICAMM significantly outperforms the k-means algorithm
for land cover classification of hyper-spectral imagery implemented on reduced
data sets. Moreover, data sets extracted using Segmented Principal Component
Analysis produce the highest classification accuracy.

Band ratios and vegetation indices [100,128] are normally used with multi-
spectral imagery for segmentation of vegetated areas (e.g., forest and agricul-
tural regions). The simple vegetation index (SVI) and the normalized difference
vegetation index (NDVI) are two frequently used indices, and their mathemat-
ical form is the basis for the development of other modified vegetation indices,
such as transformed vegetation index (TVI) and soil adjusted vegetation index
(SAVI). In a study by Vaiopoloulos et al. [129] recently, a different approach
based on probability theory is developed in order to evaluate the efficiency of
SVI and NDVI, and to suggest two modified vegetation indices, namely, modified
simple vegetation index (MSVI) and modified normalized difference vegetation
index (MNDVI). These methods are applied on a Landsat-7 Enhanced Thematic
Mapper (ETM) image of an island in western Greece. By choosing the proper
value for a characteristic parameter in the expression of MSVI and MNDVI,
these methods are seen to perform better than SVI and NDVI.

Like NDVI, McFeeters [130] described a normalized difference water index
(NDWI) to delineate open water features and enhance their presence in remotely
sensed imagery. The NDWI makes use of the reflected near-infrared radiation
and visible green light to enhance the presence of such features, while eliminating
the presence of soil and terrestrial vegetation features.

Fuzzy Set Theoretic Methods. In conventional remote sensing supervised
classification, the concept of a pixel originating from more than a class (i.e., mix-
ture pixel) is not taken into consideration in training a classifier and in determin-
ing pixels’ memberships. This expressive limitation has reduced the classification
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accuracy and led to the poor extraction of class information. Wang [131] describes
a fuzzy supervised classification method in which geographical information is rep-
resented as fuzzy sets. The algorithm consists of two major steps: estimation of
fuzzy parameters from fuzzy training data, and fuzzy partition of the spectral
space. The concept of partial membership of pixels allows component cover classes
of mixed pixels to be identified and more accurate statistical parameters to be gen-
erated, resulting in a higher classification accuracy. They applied the method for
classifying a Landsat MSS (Multispectral Scanner) image.

Melgani et al. [132] describes an explicit fuzzy supervised classification method
which consists of three steps. The explicit fuzzyfication is the first step where
the pixel is transformed into a matrix of membership degrees representing the
fuzzy inputs of the process. Then, in the second step, a MIN fuzzy reasoning
rule followed by a rescaling operation is applied to deduce the fuzzy outputs,
or in other words, the fuzzy classification of the pixel. Finally, a defuzzyfication
step is carried out to produce a hard classification. The classification results on
Landsat TM data demonstrate the promising performances of the method with
low classification time.

In Mandal et al. [133] a multivalued recognition system has been used, which
is capable of handling various imprecise inputs and in providing multiple choices
of classes corresponding to any input pattern. The work describes a method of
analyzing Indian Remote Sensing (IRS) satellite imagery for detecting various
man-made objects, namely, roads, bridges, airports, seaports, city area and town-
ship/industrial areas. The recognition system initially classifies the image pixels
into six land cover types by providing multiple choices of classes. In order to iden-
tify the targets, some spatial knowledge about them and their inter-relationships
have been incorporated on the classified image using some heuristic rules. It is
found that use of multiple class choices makes the detection procedures effective.

Pal et al. [134] demonstrated an application of the principle of shape esti-
mation with the concept of fuzzy notion to the problem of extracting different
regions from satellite imagery. The recognition system, capable of providing out-
put in multiple states, reduces the uncertainty in decisions.

Fuzzy unsupervised methods mainly deals with fuzzy c-means (FCM) clus-
tering and its other variations [61]. A two-stage fuzzy c-means algorithm was
applied by Cannon et al. [135] on a Landsat-4 image with six-bands to demon-
strate the feasibility of the methodology for segmentation. Trivedi and Bezdek
[64] used fuzzy c-means clustering for low-level image segmentation. A modifica-
tion of FCM to make it fast is described by Shankar and Pal [136] in this regard.
Use of fuzzy c-means can be found along with genetic algorithm in [137] and
along with wavelet features in [138] for segmentation.

An investigation of urban areas detection in satellite images was carried out by
Lorette et al. [139] using fuzzy c-means and Markovian model of segmentation.
At first they analyze the texture through the modelling of the luminance field
with eight different chain-based models. Then derived a texture parameter from
these models. The effect of the lattice anisotropy is corrected by a renormal-
ization group technique, which comes from statistical physics. This parameter,
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which takes into account local conditional variances of the image, is compared to
classical methods of texture analysis. A modified fuzzy c-means algorithm that
includes an entropy term is developed and used here. The advantage of such
an algorithm is that the number of classes does not need to be known a priori.
Besides, this algorithm provides with further information such as the probability
that a given pixel belongs to a given cluster. Finally this information is intro-
duced in a Markovian model of segmentation. The method is applied on SPOT-5
simulated images, SPOT-3 images and ERS-1 radar images.

Neural Network Based Methods. Neural network based supervised ap-
proaches are also developed for various land cover type classification
[140,141,142,143,144]. These have also been used successfully for the classifi-
cation of synthetic aperture data (SAR) for terrain images by Decatur [143]
using a three-layer back-propagation networks. Lee et al. [144] used a four-layer
back-propagation networks for cloud classification of Landsat MSS data. They
compared the neural network classifier with various statistical classifiers.

In the work of Benediktsson et al. [141] neural learning procedures and statisti-
cal classification methods are applied and compared empirically in classification of
multisource remote sensing and geographic data. In [142] Benediktsson et al. used
a Conjugate - Gradient Neural Networks for classification of multisource high di-
mension aircraft scanner Remote sensing data.

Bischof et al. [108] used the three-layered back propagation neural networks
for classification of Landsat TM (Thematic Mapper) data on a pixel-by-pixel
basis and the results are compared with that of Gaussian maximum likeli-
hood classification. They showed that neural networks performed better and the
textural information can be integrated into the network without explicit def-
inition of the texture measure. Similar investigations for land use activities
are reported by using MLP (multilayer perceptron) and learning vector quan-
tization (LVQ) in [109], and by using a neural classifier evolved with genetic
algorithm in [145].

Baraldi and Parmiggiani [140] described an artificial neural network (ANN)
which performs unsupervised detection of categories from arbitrary sequences of
multivalued input patterns and applied for satellite image clustering. Recently,
Villmann et al. [146,147] studied the application of self-organizing maps (SOMs)
for the analysis of very high-dimensional remote sensing spectral images. They
concentrated on the issue of faithful topological mapping in order to avoid false
interpretations of cluster maps created by a SOM. They described several new
extensions of the standard SOM: the growing SOM, magnification control, and
generalized relevance learning vector quantization, and demonstrate their effect
on both low-dimensional traditional multi-spectral imagery and 200-dimensional
hyperspectral imagery.

For the speckle contained in SAR image, SAR image can not be segmented
efficiently with traditional methods. In the work of Xue et al. [148], an automatic
clustering method based on competitive Hopfield NN is used to segment SAR
images.
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Some Other Methods. Here we describe some of the methods developed for
segmentation of remote sensing images using knowledge based system, evolu-
tionary computation, support vector machine, wavelets and level set.

The use of knowledge based system for segmentation and classification, can
be found in [149,150,151]. Mandal et al. [149] used a multi valued recognition
system to segment the image into various land cover types by providing multiple
choices of classes. Using the spatial knowledge and their inter-relation along
with some heuristic rules, they detected man-made objects like roads, bridges,
airports seaports, city area and township and industrial areas from the IRS
images. Ton et al. [150,151] used a knowledge-based approach for Landsat image
segmentation. The image segmentation problem is solved by extracting kernel
information from the input image to provide an initial interpretation of the
image and by using a knowledge-based hierarchical classifier to discriminate
between major land-cover types in the study area. The method is designed in
such a way that a Landsat image can be segmented and interpreted without any
prior image-dependent information. The general spectral land-cover knowledge
is constructed from the training land-cover data, and the road information of an
image is obtained through a road-detection program.

Ho and Lee [122] designed an efficient evolutionary image segmentation al-
gorithm (EISA). EISA uses a k-means algorithm to split an image into many
homogeneous regions, and then uses an intelligent genetic algorithm (IGA) as-
sociated with an effective chromosome encoding method to merge the regions
automatically such that the objective of the desired segmentation can be ef-
fectively achieved, where IGA is superior to conventional genetic algorithms in
solving large parameter optimization problems. High performance of EISA is
illustrated in terms of both evaluation performance and computation time.

In the article of Pal et al. [152], the effectiveness of some genetic algorithm
based pattern supervised classifiers has been investigated in the domain of satel-
lite imagery which usually have complex and overlapping class boundaries.
Landsat data, SPOT image and IRS image are considered as input. The su-
periority of these classifiers over k-NN (nearest neighbor) rule, Bayes maximum
likelihood classifier and multilayer perceptron for partitioning different landcover
types is established. Incorporation of the concept of variable length chromosomes
and chromosome discrimination led to superior performance in terms of auto-
matic evolution of the number of hyperplanes for modeling the class boundaries,
and the convergence time. This non parametric classifier requires very little a
priori information, unlike k-NN rule and MLP (where the performance depends
heavily on the value of k and the architecture, respectively), and Bayes max-
imum likelihood classifier (where assumptions regarding the class distribution
functions needs to be made). Bandyopadhyay and Pal [107], used the concept
of chromosome differentiation, commonly witnessed in nature as male and fe-
male sexes, in genetic algorithms with variable length strings for designing a
nonparametric classification methodology. Its significance in partitioning differ-
ent landcover regions from satellite images, having complex/overlapping class
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boundaries, is demonstrated. The classifier is able to evolve automatically the
appropriate number of hyperplanes efficiently for modeling any kind of class
boundaries optimally. Merits of the system over the related ones are established
through the use of several quantitative measures.

The article by Liu et al. [145] describes the effectiveness of the genetic al-
gorithm evolved neural network classifier and its application to the land cover
classification of remotely sensed multispectral imagery. The methodology adopts
a real coded GA strategy and hybrids with a back propagation (BP) algorithm.
The genetic operators are carefully designed to optimize the neural network,
avoiding premature convergence and permutation problems. A SPOT-4 XS im-
agery is employed to evaluate its accuracy. A more complicate experiment on
CBERS (China-Brazil Earth Resources Satellite) data also demonstrates that
carefully designed genetic algorithm-based neural networks can outperform gra-
dient descent-based neural networks [142].

Under unsupervised framework, GA has been used for clustering data de-
scribed as in [137,153]. The problem of classifying an image into different ho-
mogeneous regions is viewed as the task of clustering the pixels in the intensity
space. In [137] a real-coded variable string length genetic fuzzy clustering with
automatic evolution of clusters is used. The cluster centers are encoded in chro-
mosomes, and the Xie-Beni index [154] is used as a measure of the validity of
the corresponding partition.

Classification using support vector machine can be found in the Brown et al. [155]
and Huang et al. [156]. Huang et al. [156] used support vector machines for land
cover classification and assessment. This paper gives an experimental evaluation of
its accuracy, stability and training speed in deriving land cover classifications from
satellite images. The SVM was compared with three other popular classifiers (e.g.,
maximum likelihood classifier (MLC), neural network classifier(NNC) and decision
tree classifier (DTC)). The impact of kernel configuration on the performance of the
SVM, and the effect of the training data and input variables on the four classifiers
were also evaluated.

Mixture modeling, which is an increasingly important tool in the remote sens-
ing research community, tries to resolve area information in to subpixel level. The
process of mixed-pixel classification is to model the class mixing proportions
(percentage ground cover area) rather than estimating the class probability that
a signature corresponds to a particular class. Brown et al. [155] described a sup-
port vector machine (SVM) using linearly separating hyperplane to solve the
problem of pixel unmixing (considering non-linear mixture regions), and over-
lapping of the spectral classes. This method seems to perform better than a
traditional method, known as constrained least square linear spectral mixture
models (CLS LSMM), that assumes linear mixture regions. The potential of
SVM is demonstrated using a labeled area of Landsat TM data set.

Pal and Mather [110] have used multi-class Support vector machines (SVMs)
for classification of DAIS hyperspectral remotely sensed data. Their results
show that the SVM performs better than maximum likelihood, univariate de-
cision tree and back propagation neural network classifiers, even with small
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training data sets, and is almost unaffected by the Hughes phenomenon (curse of
dimensionality) [157].

There have been several attempts in applying wavelets for segmentation of
remotely sensed images. Texture properties of a remotely sensed image pro-
vide valuable information for analysis, where different object regions are treated
as different texture classes. This feature is utilized by various researchers in
their methods. Kundu and Acharyya [158] described an application of M-band
wavelets for texture segmentation. Different quasi-homogenous regions in the
remotely sensed image are treated to have different texture properties. Based
on this assumption a multi-class texture segmentation scheme is developed for
segmentation of remote sensing images. A feature extraction method based on M-
band wavelet packet frames is described in [72] in this regard. Mecocci et al. [138]
described an octave-band wavelet decomposition scheme for texture segmenta-
tion combined with fuzzy c-means classifier, whereas Lindsay et al. [159] used
the one-dimensional discrete wavelet transform (DWT) based on Daubechies
wavelet filter. The aim of the work of Neidermeier et al. [160] is to show how
coastline can be derived from Synthetic Aperture Radar (SAR) images by using
wavelet and active contour methods.

Application of level set in image segmentation has recently drawn the attrac-
tion of researchers. For example, Kervrann and Trubuil [75] described a method
for finding the boundaries of level sets of the image segments and applied to
aerial images.

Curvilinear Structure Detection. The methodologies described so far in
Section 1.4, are mostly useful for segmenting or partitioning different regions
from remotely sensed images. One may note that there are many important
curvilinear features (like roads, canals, rivers) that can be found in remotely
sensed images. The segmentation and detection of these structures cover a major
area of analysis of remote sensing images. Some of the attempts made so far are
explained below. To enhance and detect linear structures in a gray level image,
local operations with an additive score are normally used. Parui et al. [161] used
a multiplicative score instead of additive score, which gives better results than
the additive one. The threshold values are automatically selected in the enhanced
image for segmenting out the linear structures.

Hu et al. [162] used a graph-based approach for detection of roads. Zlotnick
and Carnine [163] described a method that track roads by searching for anti-
parallel edges as starting points for roads tracking and linking. Barzohar and
Cooper [164] described an automatic method of extracting main roads in aerial
images. The aerial image is partitioned into windows, road extraction starts
from the window of high confidence estimates, while road tracing is to perform
a dynamic programming to find an optimal global estimate.

Mandal et al. [133] used the concept of multiple choices for the recognition of
roadlike structures from IRS images. Geman and Jedynak [165] described a semi-
automatic method where, given a start point and start direction, a road is ex-
tracted from a panchromatic SPOT satellite image. Gruen and Li [166] described a
linear feature extraction method using Active Contour models called snakes. They
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combined characteristics of snakes and adaptive least squares correlation method.
This method might need large computation time on high-resolution images. Some
other research efforts can be found in Park and Kim [167] which presents a road
extraction algorithm using template matching. But its limitations is that it re-
quires initial seed points on the road central lines and each road segment requires
separate seed points. In a recent article, Stoica et al. [168] described a method for
the extraction of roads from remotely sensed images. Under the assumption that
roads form a thin network in the image, they approximated such a network by
connected line segments. This probabilistic model uses Gibbs point process frame-
work. The estimation for the network is found by minimizing an energy function.
A simulated annealing algorithm, based on a Monte Carlo dynamics (RJMCMC:
Reverse-Jump Markov Chain Monte Carlo) for finite point processes is used. Re-
cently a survey on state of the art on automatic road extraction for GIS update
from aerial and satellite imagery is provided in [169].

Before we describe the scope of the article in the next section, we reiterate that
the methods of segmentation of remote sensing images are based on either pixel
classification or gray level thresholding. These images, usually being mutlispec-
tral, make the classification based approach a natural choice. On the other hand,
thresholding based techniques are seen to be computationally less expensive, but
the thresholded outputs on different bands need to be integrated to arrive at a
decision. One may note that in certain remote sensing applications the image is
available only in one band, for example, Panchromatic images, for which segmen-
tation based on thresholding seems to be convenient and appropriate.

1.6 Scope of the Article

The objective of this article is to present some new results of investigation, both
theoretical and experimental, in the area of image classification and segmentation
with application to remote sensing images. Both classical and soft computing
techniques are used.

The problem of scarcity of labeled pixels, required for segmentation of re-
motely sensed satellite images in supervised pixel classification framework, is
addressed in Section 2 of the article. A support vector machine (SVM) is con-
sidered for classifying the pixels into different landcover types. It is initially de-
signed using a small set of labeled points, and subsequently refined by actively
querying for the labels of pixels from a pool of unlabeled data. The label of the
most interesting/ambiguous unlabeled point is queried at each step. Here, the
principle of active learning is exploited to minimize the number of labeled data
used by the SVM classifier by several orders. These features are demonstrated
on an IRS-1A four band multispectral image. Comparison with related methods
is made in terms of the number of data points used, computational time and a
classification/segmentation quality measure [170,171]. A new quantitative index
for image classification/segmentation using the concept of homogeneity within
regions is introduced in this regard [172].

Effectiveness of various fuzzy set theoretic thresholding techniques (based on
entropy of fuzzy sets, fuzzy geometrical properties, and fuzzy correlation) on
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remotely sensed images is demonstrated in Section 3. Results are compared with
those of probabilistic thresholding, and fuzzy c-means and hard c-means clus-
tering algorithms, both in terms of index value (quantitatively) and structural
details (qualitatively). Fuzzy set theoretic algorithms are seen to be superior to
their respective non-fuzzy counter parts. Among all the techniques fuzzy corre-
lation, followed by fuzzy entropy, performed better for extracting the structures.
Fuzzy geometry based thresholding algorithms produced a single stable thresh-
old for a wide range of membership variation. Both IRS and SPOT imagery are
considered for this investigation [172,173].

The problem of image object extraction using rough sets and granular com-
puting is addressed in Section 4. An image in the framework of rough set theory
is defined with respect to a partition on it. For a given partition, the object and
background regions are described in terms of upper and lower approximation of
rough sets. This represents the associated uncertainty arising from the granu-
larity (in terms of windows) in the image space. This uncertainty is quantified
using the concept of object roughness and background roughness, and then min-
imized over various partitions on the image space using a measure called “rough
entropy”. Rough entropy of an image is defined based on the concept of image
granules. Its maximization results in minimization of the roughness in both ob-
ject and background regions; thereby determining the threshold of partitioning.
Methods of selecting the appropriate granule size and efficient computation of
rough entropy are also described [174].

While Sections 3 and 4 concern with the problem of segmenting an image
using gray level thresholding into homogeneous regions, Section 5 deals with
the said problem in terms of homogeneous line segments. Here we present a
technique for extracting homogeneous regions of arbitrary shape and size in a
gray level image based on Hough transform. The regions are defined in terms
of unions of homogeneous line segments. A line segment in an image is viewed
as a collection of pixels having the property of straight line in Euclidean plane
and possessing the same homogeneity property. The detection of homogeneous
line segments is made directly from gray level images. A definition of “region”
in terms of these line segments, with constraints on its length and variance (i.e.,
gray level variation within the line segment), is provided. The proposed method
is able to extract regions irrespective of their shape and size from a gray level
image. Its effectiveness is demonstrated on IRS images [175].

Conclusions of the article and future research is described in the Section 6.

2 Active Learning, Support Vector Machine and Pixel
Classification

The primary problem in supervised pixel classification is the pure availability
of labeled data, which can be obtained only from ground truths and by costly
manual labeling. Recently, active learning has become a popular paradigm for
reducing the data requirement of large scale learning tasks [176,177,178]. Here,
instead of learning from ‘random samples’, the learner has the ability to select
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its own training data. This is done iteratively, and the output of a step is used
to select the examples for the next step. Several active learning strategies exist
in practice, e.g., error driven techniques, uncertainty sampling, version space
reduction and adaptive resampling.

Support vector machines (SVM) are particularly suited for active learning
since a SVM classifier is characterized by a small set of support vectors (SVs)
which can be easily updated over successive learning steps. One of the most
efficient active SVM learning strategy is to iteratively requests the label of the
data point closest to the current separating hyperplane or which violates the
margin constraint maximally [178,179,180]. This accelerates the learning drasti-
cally compared to random data selection. The above technique is often referred
to as active/query SVM. Besides active SVM, another active learning strategy
based on version space splitting is presented in [181]. The points which split
the current version space into two halves having equal volumes are selected at
each step, as they are likely to be the actual support vectors. Three heuristics
for approximating the above criterion are described, the simplest among them
selects the point closest to the current hyperplane as in [179]. A greedy optimal
strategy for active SV learning is also described in [182]. Here, logistic regression
is used to compute the class probabilities, which is further used to estimate the
expected error after adding an example. The example that minimizes this error
is selected as a candidate SV.

The present section describes a pixel classification algorithm [170,171] based
on the query SVM algorithm. A conventional SVM is initially designed using
a small set of points labeled manually. The SVM is subsequently refined by
actively querying for the labels of pixels from a pool of unlabeled data. The most
interesting/ambiguous unlabeled point is queried at each step and is labeled by
an human expert. It is seen that the above active learning strategy reduces the
number of labeled data used by the SVM classifier by several orders compared
to conventional SVM, while providing comparable segmentation quality. These
features are demonstrated on an IRS-1A four band image. Comparison with
related methods is made in terms of the number of data points used, computation
time and a classification/segmentation index.

After explaining in brief, the fundamentals of support vector machines in
Section 2.1, the active SVM learning algorithm for pixel classification is described
in Section 2.2. Classification/segmentation index-β is defined in Section 2.3.
Experimental results are provided in Section 2.4.

2.1 Support Vector Machines

Support vector machines are a general class of learning architecture inspired
from statistical learning theory that performs structural risk minimization on
a nested set structure of separating hyperplanes [183]. Given a training data,
the SVM training algorithm obtains the optimal separating hyperplane in terms
of generalization error. We describe below the SVM design algorithm for a two
class problem. Multiclass extensions can be done by designing a number of one-
against-all or one-against-one two class SVMs.
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Algorithm 1
Suppose we are given a set of examples (x1, y1), . . . , (xl, yl),x∈RN , yi∈{−1, +1}.
We consider functions of the form sgn((w · x) + b), in addition we impose the
condition

inf
i=1,...,l

|(w · xi) + b| = 1. (3)

We would like to find a decision function fw,b with the properties fw,b(xi) =
yi; i = 1, . . . , l. If this function exists, condition (3) implies

yi((w · xi) + b) ≥ 1, i = 1, . . . , l. (4)

In many practical situations, a separating hyperplane does not exist. To al-
low for possibilities of violating Equation (4), slack variables are introduced
like

ξi ≥ 0, i = 1, . . . , l (5)

to get
yi((w · xi) + b) ≥ 1− ξi, i = 1, . . . , l. (6)

The support vector approach for minimizing the generalization error consists
of the following:

Minimize : Φ(w, ξ) = (w ·w) + C
l∑

i=1

ξi (7)

subject to the constraints (5) and (6).
It can be shown that minimizing the first term in Equation (7), amounts to

minimizing the VC-dimension, and minimizing the second term corresponds to
minimizing the misclassification [184]. The above minimization problem can be
posed as a constrained quadratic programming (QP) problem.

The solution gives rise to a decision function of the form:

f(x) = sgn

[
l∑

i=1

yiαi(x · xi) + b

]
. (8)

Only a small fraction of the αi coefficients are non-zero. The corresponding set
of xi entries are known as support vectors and they fully define the decision
function. The support vectors are geometrically the points lying near the class
boundaries.

The linear SVM was described above. However, nonlinear kernels like poly-
nomial, sigmoidal and radial basis functions (RBF) may also be used. Here, the
decision function is of the form:

f(x) = sgn

[
l∑

i=1

yiαiκ(x,xi) + b

]
. (9)
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Where κ(x,xi) is the corresponding nonlinear kernel function. In remote sensing
images, classes are usually spherical shaped and the use of spherical RBF kernel
is most appropriate. RBF kernels are of the form κ(x1,x2) = e−γ|x1−x2|2 , (where
γ > 0). Again, the aforesaid two class SVM can easily be extended for multiclass
classification by designing a number of one-against-all, a two class SVMs, e.g.,
a k-class problem is handled with k two class SVMs.

2.2 Active Support Vector Learning for Pixel Classification

A limitation of the SVM design algorithm, described above, is the need to solve
a quadratic programming (QP) problem involving a dense l × l matrix, where l
is the number of points in the data set. Since most QP routines have quadratic
complexity, SVM design requires huge memory and computational time for large
data applications. Several approaches exist for circumventing the above short-
comings as well as to minimise the number of labeled points required to design
the classifier. Many of them exploit the fact that the solution of the SVM prob-
lem remains the same if one removes the points that correspond to zero Lagrange
multipliers of the QP problem (the non-SV points). The large QP problem can
thus be broken down into a series of smaller QP problems, whose ultimate goal
is to identify all of the non-zero Lagrange multipliers (SVs) while discarding the
zero Lagrange multipliers (non-SVs). At every step, one solves a QP problem
that consists of the non-zero Lagrange multiplier points from the previous step,
and a number of other points queried. At the final step, the entire set of non-zero
Lagrange multipliers has been identified; thereby solving the large QP problem.
The active SVM design algorithm used here for pixel classification is based on
the aforesaid principle. At each step the most informative point not belonging
to the current SV set is queried along with its label; the goal is to minimise the
total number of labeled points used by the learning algorithm. The method is
described below and illustrated in Fig. 1. The steps need to be repeated k times
for a k class problem with data from respective classes.

Algorithm 2
Let x = [x1, x2, . . . , xd] represent a pixel of a d-band multispectral image. Here,
xi is the grey value of the ith band for pixel x. Let A = {x1,x2, . . . ,xl1} denote
the set of pixels for which class labels are known, and B = {x1,x2, . . . ,xl2}
the set of pixels for which class labels are unknown. Usually, l2 >> l1. SV (C)
denotes the set of support vectors of the set C obtained using the methodology
described in Section 2.1. St = {s1, s2, . . . , sm} is the support vector set obtained
after tth iteration, and < wt, bt > is the corresponding separating hypersurface.
Qt is the point actively queried for at step t. The learning steps involved are
given below:

Initial Step: Set t = 0 and S0 = SV (A). Let the parameters of the correspond-
ing RBF be < w0, b0 >.
While Stopping Criterion is not satisfied:

Qt = {x|minx∈B κ(wt,x)} + b.
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Request label of Qt.
St = SV (St ∪Qt).
B = B −Qt.
t = t + 1.

End While

The set ST , where T is the iteration at which the algorithm terminates, contains
the final SV set representing the classifier.

Stopping Criterion: minx∈B κ(wt · x) + b > 1. In other words, training is
stopped when none of the unlabeled points lie within the margin of the separating
hypersurface.

Labeled Set A

w >

U

<

Seperating
Hyperplane

t

SVM Design

Algorithm

SV( )

Stopping Criteria?

NO

YES

SV Set

Final

SV Set = 

Actively Selected

Set 

Sample

Label of 
HUMAN EXPERT

B
Unlabeled

Qt

S T

Qt

,bt

S t

Fig. 1. Block Diagram of the active SVM learning algorithm for pixel classification

2.3 Quantitative Measure (Index-β))

Several methods have been used with different parameters in this investigation.
Each of these gives rise to a classification (segmentation) of the image space. We
intend to evaluate this classification/segmentation results quantitatively using
an index (say β) [172,173].

Let ni be the number of pixels in the ith (i = 1, 2, ..., k) region obtained by
a segmentation method. Let Xij be the gray value of jth pixel (j = 1, ...., ni)
in region i, and X̄i the mean of ni gray values of ith region. Then index-β is
defined as:

β =

1
n

k∑

i=1

ni∑

j=1

(Xij − X̄)2

k∑

i=1

ni

n
× 1

ni

ni∑

j=1

(Xij − X̄i)2
=

k∑

i=1

ni∑

j=1

(Xij − X̄)2

k∑

i=1

ni∑

j=1

(Xij − X̄i)2
(10)

where n is the size of the image and X̄ is the mean gray value of the image.
Note that the above measure is nothing but the ratio of the total variation and
within-class variation. Since the numerator is constant for an image, β value is
dependent only on the denominator. The denominator decreases with increase in
homogeneity in the regions. Therefore, for a given image and k value, the higher
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the homogeneity within the regions, the higher would be the β value. The value
of β also increases with k. In an extreme case when there is no partition (i.e.,
the entire image space is being considered as one class), we have k = 1 and
β = 1. Otherwise the value of β is always greater than 1. Significance of the
index-β in evaluation of segmentation results is demonstrated in Section 3.4.

2.4 Experimental Results

The multispectral IRS-1A image data, used in our experiment, contains obser-
vations for the city of Mumbai (Fig. 2). The data contains images of 4 spectral
bands, namely blue, green, red and near infra-red. The images contain 512×512
pixels and each pixel represents a 36.25m × 36.25m region.

Here the task is to segment the image into different landcover regions, using
4 features (spectral bands). The image mainly consists of 6 classes e.g., clear
water (ponds), turbid water (sea), concrete (buildings, roads, airport tarmacs),
habitation (concrete structures but less in density), vegetation (crop, forest ar-
eas) and open spaces (barren land, playgrounds). A labeled set (A) containing
198 points is initially used.

Algorithms Compared. The performance of the active support vector learn-
ing algorithm (‘active SVM’) is compared with the following multispectral image
segmentation algorithms. Among them, methods SVM 1 and SVM 2 represent ex-
treme conditions on the use of labeled samples. In SVM 1 the labeled set is very
small in size but the labels are accurate, while in SVM 2 a large fraction of the
entire data constitutes the labeled set, but the labels may be inaccurate. The k-
means algorithm is a completely unsupervised scheme requiring no class labels.

(i) SVM 1: The conventional support vector machine, using only the initial
labeled set as the entire design set.

(ii) k-means: The unsupervised k-means clustering algorithm.
(iii) SVM 2: The conventional support vector machine, using 10% of the entire

set of pixels as the design set. The labels are supplied by the output of the
k-means algorithm.

Evaluation Criterion. The image segmentation algorithms are compared on
the basis of the following quantities:

1. Total number of labeled data points used in training (nlabeled).
2. Training time (ttraining) on a Sun UltraSparc 350 MHz workstation.
3. Quantitative Classification/Segmenatation Index-β (Section 2.3).

Comparative Results. The performances of different multispectral image seg-
mentation methods are presented in Table 1. Among them, the proposed active
SVM learning algorithm provides the best segmentation quality as measured by
the index-β. The SVM 1 algorithm provides the lowest β value, which is expected
since it uses a very small number of training samples. The unsupervised k-means
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Fig. 2. Original band 4, IRS-1A image of
Mumbai
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Fig. 3. Variation of β value with the num-
ber of labeled data points used by the ac-
tive SVM algorithm

Table 1. Comparative results for the Mumbai IRS image in terms of computation time
and index-β

Method nlabeled ttraining (sec) β

active SVM 259 72.02 + (time for labeling 54 pixels) 6.35
SVM 1 198 28.15 3.45
k-means 0 1054.10 2.54
SVM 2 26214 2.44 ×105 4.72

algorithm also provides much lower β value compared to the active SVM algo-
rithm. The SVM 2 algorithm uses the labels generated by the k-means algorithm,
but provides a relatively small improvement in performance compared to k-means.
The visual quality of the classified images (Fig. 4) also reinforce these conclusion.

Among the supervised classification algorithms, namely, active SVM, SVM 1
and SVM 2, SVM 1 uses the least number of labeled samples and has minimum
training time. However, the active SVM algorithm uses only 54 additional labeled
points compared to SVM 1 with a substantial improvement in segmentation
quality. This is due to the fact that the additional points queried by active SVM
were the most informative ones and contributed to the increase in segmentation
quality. On the other hand, SVM 2 uses a large sized labeled set, consisting of
randomly chosen points, for training. Since, accurate labels for the large training
set used were not available, slightly inaccurate labels were used. The overall effect
shows that the performance of the SVM 2 algorithm is poorer compared to active
SVM inspite of it requiring a much higher computation time.

The variation in segmentation quality (as measured by index-β) with the
number of labeled samples queried by the active SVM algorithm is shown in
Fig. 3. It is seen that the initial SVM designed using the training set of SVM 1
provides a β value of 3.45 which subsequently increases as more point are queried
to a final value of 6.35.
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(a) (b)

(c) (d)

Fig. 4. Classified Mumbai image using (a) active SVM, (b) SVM 1, (c) k-means, and
(d) SVM 2

The main goal of the active learning algorithm is to reduce the requirement of
labeled pixels. Hence, an aggressive query strategy is adopted here. However, the
aggressive strategy is sensitive to wrong labeling by a human expert, resulting
in performance degradation. If in some application, a higher number of labeled
pixels, with possibly few wrong labels, are available, a more conservative query
strategy will provide better performance.

The next two sections deal with the task of pixel classification (image parti-
tioning) in unsupervised framework. While Section 3 addresses the problem of
fuzzy thresholding, Section 4 provides an object extraction method using the
principle of rough sets and granular computing.

3 Fuzzy Set Theoretic Thresholding

Remotely sensed images are normally poorly illuminated, highly dependent on
the environmental conditions, and have very low spatial resolution. Most of the
times a scene contains too many objects (or regions), and these regions are ill-
defined because of both grayness and spatial ambiguities. Moreover, the gray
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value assigned to a pixel is the average reflectance of different types of ground
covers present in the corresponding pixel area. Assigning unique class labels with
certainty is thus a problem for remotely sensed images. Fuzzy set theory provides
a way of handling this problem by associating certainty factors with class labels.

Of the two broad approaches, grey level thresholding techniques are usually
computationally less expensive as compared to those based on pixel classification.
Moreover, in certain remote sensing applications the image is available only in
one band, for example, Panchromatic images, for which segmentation based on
thresholding seems to be convenient and appropriate. Furthermore, the methods
available for image segmentation, like other processing techniques, are problem
dependent. When an image is segmented for visual interpretation, it is ultimately
up to the viewers to judge its quality for a specific application. The process of
evaluation of image quality therefore becomes a subjective one.

In the present investigation we demonstrate the effectiveness of various fuzzy
thresholding and clustering techniques along with quantitative evaluation for
segmentation of remotely sensed images [172,173]. Their comparison with the re-
spective non-fuzzy techniques is also made both qualitatively and quantitatively.
Five different thresholding techniques based on fuzzy and non-fuzzy (probabilis-
tic) entropy, fuzzy geometry and fuzzy correlation, and two clustering (both
fuzzy and non-fuzzy) techniques are considered. Some of the algorithms use
only global information of input images and the others use local information
[21,28,56,58,89,185,186]. The quantitative index used here is based on the con-
cept of homogeneity within a region. Results are demonstrated on the certain
bands of both IRS and SPOT satellite images.

Sections 3.1 and 3.2 present an overview of the thresholding methods used,
including the basic definitions. In Section 3.3 we present, in brief, fuzzy c-means
and hard c-means algorithms and a method to measure the quality of segmented
images. Section 3.4 depicts the performance of various algorithms used.

3.1 Probabilistic Entropy Based Thresholding

In this section we describe entropy of an image, and a few thresholding algo-
rithms. (Performance of these methods have been compared with those of fuzzy
segmentation techniques.)

Global Entropy of an Image. Based on the concept of Shannon [187], entropy
of an image (or its histogram) can be defined as follows. Let F = [f(p, q)]P×Q be
an image of size P ×Q, where f(p, q) is the gray value at (p, q); f(p, q) ∈ GL =
{0, 1, ..., i, ..., L−1}, the set of gray levels. Let ni be the frequency of occurrence
of the gray level i (i ∈ GL). Then

∑L−1
i=0 ni = P ×Q = n (say). The global

entropy of the image is then expressed as

H = −
L−1∑

i=0

pi log2 pi ; pi =
ni

n
. (11)

H is called global, as it depends only on the histogram of the image.
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The concept of global entropy of an image can be viewed from a different angle
also. Instead of considering one probability distribution for the entire image, let
us consider two probability distributions, one for the object and the other for the
background. The sum of the individual entropy of the object and the background
gives the total entropy of the image.

If S is an assumed threshold (i.e., S is the boundary gray value between
background and object), then the probability distribution of the gray levels over
the background portion of the image (assuming lower gray values correspond to
background) is

p0

PS
,

p1

PS
, ...,

pS

PS
, (12)

and that of the object portion of the image is
pS+1

1− PS
,

pS+2

1− PS
, ...,

pL−1

1− PS
; (13)

where PS =
S∑

i=0

pi.

The entropy of the background portion of the image

HBg(S) = −
S∑

i=0

pi

PS
log2(

pi

PS
), (14)

and that of the object portion is

HObj(S) = −
L−1∑

i=S+1

pi

1− PS
log2

pi

1− PS
. (15)

The total entropy of the image is

HTot(S) = HObj(S) + HBg(S). (16)

In order to segregate the object regions from the background [21], one needs to
maximize HTot(S) which results in equiprobable gray levels in each region; and
thus maximizes the sum of homogeneities in gray levels within object and back-
ground. Therefore, the value of S which maximizes HTot(S) gives the threshold
for object and background classification.

Higher Order Entropy of an Image. In an image, pixel intensities are not
independent of each other. This dependency of pixel intensities can be incorpo-
rated by considering sequences of pixels for defining image properties. Entropy
of order r (r = 1, 2, 3...) of an image was defined [28] based on the concept of
sequence of pixels as follows.

Let p(Si) be the probability of occurrence of a sequence Si of gray levels of
length r, where a sequence Si of length r is defined as a permutation of r gray
levels. Let

H(r) = −1
r

∑

i

p(Si) log2 p(Si), (17)
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where the summation is taken over all gray level sequences of length r. For
different values of r we get various orders of entropy.
If r = 1, we get

H(1) = −
L−1∑

i=0

pi log2 pi, (18)

where pi is the probability of occurrence of the gray level i. Note that Equation
(18) is the same as Equation (11) representing the “global entropy” of the image.
For r = 2

H(2) = −1
2

L−1∑

i=0

pi(Si) log2 pi(Si), (19)

= −1
2

∑

i

∑

j

pij log2 pij , (20)

where Si is the sequence of gray level of length two and pij is the probability of
co-occurrence of gray levels i and j. Thus, H(2) (second order entropy of an image)
can be obtained from the co-occurrence matrix (as shown in Fig. 5) of an image.

H(2) takes into account the spatial distribution of gray levels. Therefore, two
images, with identical histograms but having different spatial distributions will
have the same H(1) value, but different H(2) values. Expressions for higher order
entropies for (r > 2) can also be deduced in a similar manner. H(r), r ≥ 2, is
also called the local entropy of order r of an image [28].

Conditional Entropy: Suppose an image has two distinct portions, the object
X and the background Y . Suppose the object consists of the gray levels {xi}
and the background contains the gray levels {yi}. The conditional entropy of
the object X given the background Y , i.e., the average amount of information
that may be obtained from X , given that one has viewed the background Y , is
defined as

H

(
X

Y

)
= −

∑

xi∈X

∑

yj∈Y

p

(
xi

yj

)
log2 p

(
xi

yj

)
. (21)

S

S

D

L-1

0

A

C

B

L-1

Fig. 5. Four quadrants of the co-occurrence matrix

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



332 B.U. Shankar

Similarly, the conditional entropy of the background Y , given the object X , is
defined as

H

(
Y

X

)
= −

∑

yj∈Y

∑

xi∈X

p

(
yj

xi

)
log2 p

(
yj

xi

)
. (22)

The pixel having gray level yj, in general, can be an mth order neighbor of
the pixel with gray level xi. Since the estimation of probability of such an oc-
currence is very difficult, we assume xi and yj to be gray levels of adjacent
pixel.

The conditional entropy of an image is then defined as [28]

HCon =
1
2

[
H

(
X

Y

)
+ H

(
Y

X

)]
. (23)

As mentioned before, higher order entropy of an image takes into account the
spatial details of it. The way of computing them from the first order (4-neighbors)
co-occurrence matrix of the image is described below.

Strategies for Computing the Probabilities of Co-occurrence. The fre-
quency of occurrence (tij) of gray level i followed by gray level j is defined as
follows:

tij =
P∑

l=1

Q∑

k=1

δ ; (24)

δ = 1, if

⎧
⎨

⎩

f(l, k) = i and f(l, k + 1) = j
or

f(l, k) = i and f(l + 1, k) = j;
δ = 0, otherwise.

The probability of co-occurrence (pij) of gray levels i and j therefore is

pij =
tij

(
∑

g

∑

h

tg,h)
, 0 ≤ g, h ≤ L− 1, (25)

where 0 ≤ pij ≤ 1.
If S, 0 ≤ S ≤ L − 1, is a threshold then S partitions the co-occurrence

matrix into four quadrants, namely, A, B, C and D as shown in
Fig. 5.

Let us define the following quantities:

PA =
S∑

i=0

S∑

j=0

pij , PB =
S∑

i=0

L−1∑

j=S+1

pij ,

PC =
L−1∑

i=S+1

L−1∑

j=S+1

pij , PD =
L−1∑

i=S+1

S∑

j=0

pij .

(26)
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Then,

pA
ij = pij

PA
= tij

S∑

g=0

S∑

h=0

tgh

, pB
ij = pij

PB
= tij

S∑

g=0

L−1∑

h=S+1

tgh

,

pC
ij = pij

PC
= tij

L−1∑

g=S+1

L−1∑

h=S+1

tgh

, pD
ij = pij

PD
= tij

L−1∑

g=S+1

S∑

h=0

tgh

.

(27)

The second order local entropy of the background is then defined as (assuming
lower gray levels correspond to background)

H
(2)
A (S) = − 1

2

S∑

i=0

S∑

j=0

pA
ij log2 pA

ij . (28)

Similarly, the second order local entropy of the object region is

H
(2)
C (S) = − 1

2

L−1∑

i=S+1

L−1∑

j=S+1

pC
ij log2 pC

ij . (29)

Hence the total second order local entropy of object and background can be
written as

H
(2)
W (S) = H

(2)
A (S) + H

(2)
C (S). (30)

The gray level corresponding to the maximum value of H
(2)
W (S) gives the thresh-

old for object-background classification. Since HW considers the entropy within
object and background only, it may be called within class entropy.

Similarly, based on transitional (conditional) entropy threshold for object
background classification is obtained by maximizing H

(2)
Con(S) where,

H
(2)
Con(S) = H

(2)
B (S) + H

(2)
D (S). (31)

Computational Steps

Step 1: Compute the probabilities of occurrence of different gray values or se-
quences (of order r, r = 1, 2) of gray values for each of the assumed thresholds
(say, S, S = 1, 2, 3, ...., L− 2).

Step 2: Using the probability values compute the entropy (e.g., global and local)
of the image.

Step 3: Vary ‘S’ and select those ‘S’s for which the entropy values give local
maxima.

Each of these local maxima corresponds to a threshold. The global optimum
corresponds to object background separation.
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3.2 Fuzzy Set Theory Based Thresholding

A fuzzy subset A of the universe X is defined as a collection of ordered pairs

A = {(μA(x), x), ∀x ∈ X}, (32)

where μA(x), (0 ≤ μA(x) ≤ 1) denotes the degree of belonging of the element x
to the fuzzy set A. The support of a fuzzy set A is the crisp set that contains all
the elements of X that have a non-zero membership value in A.

Since the theory of fuzzy sets is a generalization of the classical set theory, it
has greater flexibility to capture faithfully the various aspects of incompleteness
or imperfection in information of a situation [188]. The flexibility of fuzzy set
theory is associated with the elasticity property of the concept of its membership
function. The grade of membership is a measure of the compatibility of an object
with the imprecise concept represented by a fuzzy set. The higher the value of
membership, the lesser will be the amount (or extent) to which the concept
represented by a set needs to be stretched to fit an object.

Since the regions in an image are not always crisply defined (imprecision may
arise due to both grayness ambiguity and spatial ambiguity), it is natural and
appropriate to avoid committing ourselves to a specific hard decision for image
segmentation. Thus it is natural to consider the image segments to be fuzzy sub-
sets of the image (first suggested by Prewitt [54]); the subsets being characterized
by the possibility (degree) to which each pixel belongs to them. Moreover, (as
mentioned is Section 3) for remotely sensed images the pixel intensities do not
reflect the land cover types present in the corresponding area properly. Assigning
unique class labels with certainty is thus a problem for remotely sensed images.
Hence fuzzy set theoretic approach will be more appropriate for segmenting re-
gions in remotely sensed images which are usually ill-defined.

Fuzzy Entropy of an Image. An L level image F (P×Q) can be considered as
an array of fuzzy singletons, each having a membership value denoting its degree
of possessing some property (e.g., brightness, darkness, edginess, blurredness,
texture etc.). In the notation of fuzzy sets one may therefore write [189]

F = {μF (p, q) : p = 1, 2, . . . , P ; q = 1, 2, . . . , Q} ;

where μF (p, q) denotes the grade of possessing such a property μ by the (p, q)th
pixel. Membership can be defined based on global information, local information,
positional information and a combination thereof depending on the problem.

Let us construct, say, a fuzzy subset bright image characterized by a member-
ship function μF (Fig. 6) using the standard S(i;a, b, c) function of Zadeh [53]
defined as

μF (i) = 0 if i ≤ a

= 2 {(i− a)/(c− a)}2 if a ≤ i ≤ b

= 1− 2 {(i− c)/(c− a)}2 if b ≤ i ≤ c
= 1 if c ≤ i

(33)

where μF (i), which is a function of gray level only, represents the degree of be-
longing of the level i to the fuzzy bright image plane F. b = a + c/2 is the
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crossover point (for which the membership value is 0.5) of the membership
function μF .

Similarly one can use Z-function to construct a dark image plane. Where,

Z = (1− S(i; a, b, c)). (34)

Several attempts have been made in [59,190,191] to determine the appropriate
membership function along with its band width and bounds for image processing
problems.

Fuzzy entropy of an image (having n = P ×Q pixels) using logarithmic gain
function is [192]

H =
1

n ln(2)

n∑

i=1

Sn(μF (p, q)). (35)

Here,

Sn(μF (p, q)) = −μF (p, q) ln{μF (p, q)} − {1− μF (p, q)} ln {1− μF (p, q)} ; (36)

and μF (p, q) represents the membership for the (p, q)th pixel.
Another definition of fuzzy entropy, given in [193,194], using exponential gain

function is

H =
1

n(
√

e− 1)

n∑

i=1

{Sn(μF (p, q))− 1} (37)

with
Sn(μF (p, q)) = μF (p, q)e1−μF (p,q) + {1− μF (p, q)}eμF (p,q). (38)

Note that, these entropy measures, first of all, compute the fuzziness related to
individual pixel of the image and then make an average over all the pixels to get
a quantification of the amount of average ambiguity, the image possesses. Since
their computation depends only on the histogram, they may be called global
fuzzy entropy.
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Higher Order Fuzzy Entropy. Pal and Pal [58] also defined the rth order
fuzzy (local) entropy H(r), r ≥ 2 of an image F (using both logarithmic and
exponential gain functions) which provides a measure of the average amount of
difficulty (ambiguity) in making a decision on any subset of r elements as regards
to its possession of an imprecise property. These are as follows.

Out of the n pixels of the image F , consider a combination of r elements.
Let Sr

i denote the ith such combination and μ(Sr
i ) denote the degree to which

the combination Sr
i , as a whole, possesses the property μ. There are

(
n
r

)
such

combinations. The entropy of order r of the image F is defined as [58]

H(r) =
−1(
n
r

)

⎛

⎝ n
r

⎞

⎠

∑

i=1

[μ(Sr
i ) ln{μ(Sr

i )} + {1− μ(Sr
i )}ln{1− μ(Sr

i )}] (39)

with logarithmic gain function and

H(r) =
1(
n
r

)

⎛

⎝ n
r

⎞

⎠

∑

i=1

[
μ(Sr

i )e1−μ(Sr
i ) + {1− μ(Sr

i )}eμ(Sr
i )
]

(40)

with exponential gain function.
H(r) will give a measure of the average amount of difficulty in taking a decision

on any subset of size r with respect to the property μ. Note that Equations (35)
through (38) correspond to a special case of H(r) for r = 1. H(r), r ≥ 2 is called
higher order fuzzy entropy of the image.

Membership Function and Computation of Second Order Fuzzy
Entropy. For computing the higher order fuzzy entropy of an image, repre-
sented by a fuzzy set, one needs to choose r pixels at a time and to assign a
composite membership value to them. Normally these r pixels are chosen as
adjacent pixels. For the present investigation, we have chosen r = 2.

Let us consider a two dimensional S-type membership function (Fig. 7) rep-
resenting fuzzy bright image plane (assuming higher gray values correspond to
object region). This assigns a composite membership value to a pair of adjacent
pixels as follows:

For a particular threshold S,

– (S, S) is the most ambiguous point, i.e., the boundary between object and
background. Therefore its membership value for the fuzzy bright image plane
is 0.5.

– If one object pixel is followed by another object pixel (i.e., the entries of
quadrant C), then its degree of belonging to object region is greater than
0.5. The membership value increases with increase in pixel intensity.
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– For quadrants B and D where one object pixel is followed by one back-
ground pixel or vice versa, the membership value is less than or equal to 0.5,
depending on the deviation from the boundary point (S, S).

– If one background pixel is followed by another background pixel (i.e., for the
entries in A), then its degree of belonging to object region is less than 0.5.
The membership value decreases with decrease of pixel intensity.

Second order fuzzy entropy (r = 2) computed individually over the entries in
quadrants C, A, D and B of the co-occurrence matrix (Fig. 5) can be termed
as object entropy H2

O, background entropy H2
B, transitional (object to back-

ground) H2
O/B entropy, and transitional (background to object) entropy H2

B/O,
respectively. Therefore, H2

O + H2
B gives the total within class second order

local entropy and H2
(O/B) + H2

(B/O) gives the total second order transitional
(conditional) entropy.

Fuzzy Geometry of an Image Subset. Entropy, as defined in Section 3.2,
may be used in representing grayness ambiguity in an image, i.e., the indefinite-
ness in making a decision whether an individual pixel is black or white, or a
collection of pixels possesses an image property or not. There is another kind
of ambiguity in an image called spatial or geometrical ambiguity (which refers
to indefiniteness in the shape and geometry of regions within the image). These
can be represented by fuzzy geometrical properties. Some of them [56,185] which
are used in this investigation are described below.

Fuzzy Geometrical Properties. Let μ represent an image fuzzy subset and
μ be piecewise constant (for digital image). Then
Area. The area of μ is

a(μ) =
∑

μ. (41)

Perimeter. The perimeter of μ is

p(μ) =
L−1∑

i=0

L−1∑

j=0

|μ(i)− μ(j)| × tij (42)

where μ(i) and μ(j) are the membership values of two adjacent pixels having
gray value i and j, respectively, and tij is the frequency of occurrence of the gray
value i followed by j.
Compactness. The compactness of a fuzzy set μ having area a(μ) and perime-
ter p(μ) is defined as

comp(μ) =
a(μ)
p2(μ)

. (43)

Physically, compactness means the fraction of maximum area (that can be en-
circled by the perimeter) actually occupied by the fuzzy region (concept) rep-
resented by μ. Of all possible fuzzy discs, compactness is minimum for its crisp
version.
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Length. The length of μ is

l(μ) = max
p
{
∑

q

μ(p, q)}. (44)

Breadth. Similarly, the breadth of μ is

b(μ) = max
q
{
∑

p

μ(p, q)}. (45)

The length (breath) of an image fuzzy subset gives its longest expansion in the
y direction (x direction). If μ is crisp, μ(p, q) = 0 or 1; then length (breadth) is
the maximum number of pixels in a column (row).
Index of Area Coverage (IOAC). The index of area coverage of μ is defined
as

IOAC(μ) =
a(μ)

l(μ)× b(μ)
. (46)

IOAC of a fuzzy image subset represents the fraction (which may be improper
also) of the maximum area (that can be covered by the length and breadth of
the image) actually occupied by the image. The IOAC is the minimum for the
non-fuzzy case of all possible fuzzy versions of a rectangle.

Fuzzy Correlation. Let Ω be a closed interval in IR. Let μ1 : Ω −→ [0, 1] and
μ2 : Ω −→ [0, 1] be two continuous fuzzy membership functions. The correlation
C(μ1, μ2) between the fuzzy membership functions μ1 and μ2 (defined on the
same domain) was defined by Murthy et al. [195], and Pal and Ghosh [186].
C(μ1, μ2) basically gives a measure of relation between the natures of μ1 and
μ2, i.e., with change of x what happens to μ1 and μ2.

Now if the functions are discrete in nature (as applicable to digital image),
the expression for correlation takes the form [186],

C(μ1, μ2) =

⎧
⎨

⎩
1− 4

X1+X2

∑

x

{μ1(x)− μ2(x)}2 if X1 + X2 �= 0

1 if X1 + X2 = 0
(47)

where X1 =
∑

x

{2μ1(x)− 1}2 and X2 =
∑

x

{2μ2(x) − 1}2.

Correlation Between Two Fuzzy Representations (Properties) of an
Image. Fuzzy correlation between two representations of an image characterized
by μ1 and μ2 is defined as [186]

C(μ1, μ2) = 1− 4
X1 + X2

∑

p

∑

q

{μ1(p, q)− μ2(p, q)}2 (48)

with X1 =
∑

p

∑

q

{2μ1(p, q)− 1}2 and X2 =
∑

p

∑

q

{2μ2(p, q)− 1}2 where

μ1(p, q) and μ2(p, q) denote the degree of possessing the property μ1 and μ2,
respectively, by the (p, q)th pixel.
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Let μ2 be the nearest two tone version of μ1 such that

μ2(x) =
{

0 if 0 ≤ μ1(x) ≤ 0.5
1 otherwise. (49)

Let μ1 (or Ff ) denote a fuzzy bright image plane of F having the crossover point
at S, say, and be dependent only on gray level. Then μ2 (or F ) represents its
closest two tone version thresholded at S. Then the fuzzy correlation between a
fuzzy representation of an image and its nearest two tone version is expressed
as:

C(μ1, μ2) = 1 − 4

X1 + X2

(
S∑

i=0

{
[μ1(i)]2 h(i)

}
+

L−1∑

i=s+1

{
[1 − μ1(i)]2 h(i)

}
)

(50)

with X1 =
L−1∑

i=0

[2μ1(i)− 1]2 h(i)

and X2 =
L−1∑

i=0

[2μ2(i)− 1]2 h(i) =
L−1∑

i=0

h(i) = P ×Q = constant.

Here, h(i) is the frequency of the ith gray level.

Correlation Measure Using Local Information. Higher order correlation
using local information (obtained from co-occurrence matrix) can also be defined
[186] similarly as in higher order entropy of an image (Section 3.2).

Correlation between any two properties of F computed over the entries in indi-
vidual quadrants A, C, B & D of the co-occurrence matrix (Fig. 5) can be termed
background correlation [C(μ1, μ2)B ], object correlation [C(μ1, μ2)O], transitional
(background to object) correlation [C(μ1, μ2)B/O], and transitional (object to
background) [C(μ1, μ2)O/B] correlation, respectively. They may be computed by
using similar expressions with different ranges of i and j. For example,

C(μ1, μ2)B = 1− 4
X1 + X2

S∑

i=0

S∑

j=0

{
[μ1(i, j)− μ2(i, j)]2 tij

}
, (51)

with X1 =
S∑

i=0

S∑

j=0

{
[2μ1(i, j) − 1]2 tij

}
, and X2 =

S∑

i=0

S∑

j=0

{
[2μ2(i, j) − 1]2 tij

}
,

tij is the frequency of occurrences of the gray level i followed by j.
Similarly for computing C(μ1, μ2)O, i and j will range from S + 1 to L − 1;

for C(μ1, μ2)B/O, i will range from 0 to S and j from S + 1 to L − 1; and for
C(μ1, μ2)O/B , i will range from S + 1 to L− 1 and j from 0 to S.

Note that C(μ1, μ2)O + C(μ1, μ2)B gives the total within class local correla-
tion and C(μ1, μ2)O/B + C(μ1, μ2)B/O gives the total transitional (conditional)
correlation.

From the properties of correlation we notice that if two functions μ1 and
μ2 are very close then C(μ1, μ2) is very high whereas, C(μ1, μ2) is least when
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μ2 = 1 − μ1. Since F is the nearest two tone version of Ff , C(Ff , F ) gives a
measure of closeness of the two images Ff and F . The principle of maximizing
fuzzy correlation for image segmentation is described in [186].

Computational Steps of Fuzzy Thresholding. Given an L level image F
of dimension P × Q with minimum and maximum gray values imin and imax,
respectively, the algorithm for its fuzzy segmentation (through thresholding) into
object and background may be described as follows:

Step 1: Construct the membership plane using the standard S(i; a, b, c) function
(Equations (33)) as

μ(p, q) = μ(i) = S(i; a, b, c) (52)

(called bright image plane if the object regions possess higher gray values)

or μ(p, q) = μ(i) = 1− S(i; a, b, c) (53)

(called dark image plane if the object regions possess lower gray values)
with crossover point b, and a band width Δb = c− a.

Step 2: Compute the parameter I(F ) representing either grayness ambiguity
or spatial ambiguity (as designated by H(r), correlation, compactness and
IOAC, etc.) or both (i.e., product of grayness and spatial ambiguities).

Step 3: Vary b between imin and imax and select those b for which I(F ) has
local minima or maxima depending on I(F ). (Maxima correspond for the
correlation measure only.) Among the local minima/maxima, let the global
one have crossover point at S.

The level S, therefore, denotes the crossover point of the fuzzy image plane μF ,
which has minimum grayness and/or geometrical ambiguity. The μF plane then
can be viewed as a fuzzy segmented version of the image F . For the purpose
of non-fuzzy segmentation, we can take S as the threshold (or boundary) for
classifying or segmenting an image into object and background. In case the image
has multiple regions, there will be a set of local optima corresponding to them.
Faster methods of computation of the fuzzy parameters have been described by
Pal and Ghosh [185].

Note that w = Δb is the length of the window (such that [0, w] → [0, 1])
which was shifted over the entire dynamic range. As w decreases, the μF plane
tends to have more intensified contrast around the crossover point, thus result-
ing in a decrease of ambiguity in F . As a result, the possibility of detecting
some undesirable thresholds (spurious minima) increases because of the smaller
value of w. On the other hand, an increase in w results in a higher value of
fuzziness and thus leads towards the possibility of losing some of the weak
minima.

The criteria regarding the selection of membership function and the length of
window (i.e., w) have been reported in [191], assuming continuous functions for
both histogram and membership function.
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3.3 Segmentation by Clustering

Clustering is a method of partitioning a given set of patterns into a number
of homogeneous groups (clusters) depending on the similarity in features. The
number of groups is normally pre-specified; but can also be varying. Initial clus-
ters are normally chosen randomly and gradually modified to obtain the final
clusters (or optimal cluster centers). A number of clustering algorithms (both
non-fuzzy and fuzzy) exists in the literature [61,196]. In the present investiga-
tion we used the hard and fuzzy c-means (HCM and FCM) techniques. Here we
describe them in brief.

Hard c-Means Algorithm. Let X = {x1, x2, . . . , xk, . . . , xn}, xk ∈ IRp,
be a finite data set in the p-dimensional space; xkj is the jth feature of the
data point xk. Let c (2 ≤ c < n) be the number of clusters and V =
(V 1,V 2,. . . , V i, . . . , V c), V i ∈ IRp be the set of cluster centers (prototypes).
The data set is then classified and cluster centers are updated iteratively until the
classification in two successive stages remain unaltered; which can be measured
by the average difference between the partitions (prototypes) computed in two
successive stages. If this average difference is less than a pre-defined small positive
value ε(> 0) then the process can be terminated and the clusters can be taken
as optimal. The classification strategy is as follows:
A data point k is assigned to class i if,

dik = min
1≤s≤c

(dsk); (54)

where d2
ik =

p∑

j=1

(xkj − vij)2, vij =
1
ni

ni∑

k=1

(xkj),

and ni is the number of data points assigned to ith class.

Fuzzy c-Means Algorithm. Let X, c, and V be defined as above and U =
[uik]c×n be a fuzzy c-partition of X . The membership uik represents the degree of
belonging of the pattern xk to the ith class, where 0 ≤ uik ≤ 1,

∑c
i=1 uik = 1,

∀ k = 1, 2, . . . , n and 0 <
∑n

k=1 uik < n, ∀ i = 1, 2, . . . , c.
FCM finds U and V iteratively by minimizing

Jm(U, V ) =
c∑

i=1

n∑

k=1

(uik)m||xk − V i||2A (55)

where m > 1 and the inner product induced norm metric

|| . ||2A = (xk − V i)T A (xk − V i) = d2
ik;

where A is any p × p positive definite matrix (in the present study we used the
Euclidean norm, i.e., A is an identity matrix). Based on the necessary conditions
for a local minimum of Jm, cluster prototypes and memberships are computed
as follows:
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V i =

n∑

k=1

(uik)m xk

n∑

k=1

(uik)m

, 1 ≤ i ≤ c. (56)

Let, Ik = {i | 1 ≤ i ≤ c, dik = 0} , and Ik = {1, 2, · · · , c} − Ik.
If Ik �= Φ, assign uik = 0 ∀ i ∈ Ik, and assign arbitrarily uik, such that∑

i∈Ik
uik = 1.

If Ik = Φ, uik =

⎛

⎝
c∑

j=1

(
dik

djk

) 2
m−1

⎞

⎠
−1

, 1 ≤ i ≤ c, 1 ≤ k ≤ n. (57)

To implement the FCM algorithm we initialize either U or V , and then FCM
iterates between (56) and (57) until U or V or both stabilize.

Computational Steps. Using the above mentioned clustering techniques im-
age pixels are labeled as one of the region types in the image; thereby providing
its segmentation. We used a 2-D feature space with feature values as average and
busyness of the concerned image pixel. The computational steps are described
below.

Step 1: Choose the number of classes and the initial values for the means (for
FCM an initial partition can also be chosen instead of means of the classes).

Step 2: Classify the samples by assigning them to the class corresponding to the
closest mean (or assign membership value for each class in case of FCM).

Step 3: Re-compute the means of the classes (weighted means for FCM).
Step 4: If the change in any of the means is less than some pre-assigned small

positive quantity (say, ε > 0) then STOP else go to Step 2.

Here, we briefly discuss the two features, average and busyness used with
FCM and HCM. Let us consider a 3 × 3 window centered at (i, j), with gray
levels as indicated in Fig. 8.

– The average gray level a over the window centered at the (i, j)th position
(gray value a5) of the image is

a =
1
9

(
9∑

k=1

ak

)
. (58)

a1 a2 a3

a4 a5 a6

a7 a8 a9

Fig. 8. Gray values over a 3 × 3 window
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Fig. 9. Enhanced (Histogram equalized)
Calcutta (IRS) image

Fig. 10. Enhanced (Histogram equalized)
Mumbai (IRS) image

Fig. 11. Enhanced (Histogram equalized)
Calcutta (SPOT) image
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Fig. 12. Histogram of the original Cal-
cutta (IRS) image
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Fig. 13. Histogram of the original Mum-
bai (IRS) image
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Fig. 14. Histogram of the original Cal-
cutta (SPOT) image
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– The busyness B over the window in Fig. 8 is:

A1 = |a1 − a2|+ |a2 − a3|+ |a4 − a5|+ |a5 − a6|+ |a7 − a8|+ |a8 − a9|,

A2 = |a1− a4|+ |a4− a7|+ |a2− a5|+ |a5− a8|+ |a3− a6|+ |a6− a9|, and

busyness = B =
A1 + A2

12
. (59)

Quantitative Measure (Index-β). We have used several algorithms with
different parameters in this investigation. Each of these gives rise to a partition
(segmentation) of the image space. We evaluate the segmentation results quan-
titatively using the index-β, described in Section 2.3, (Equation (10))[172,173].
This measure gives the homogeneity within the regions and increases with in-
crease in homogeneity for a fixed number of classes (say c).

3.4 Implementation and Results

The algorithms mentioned in the previous sections have been implemented on
a number of remotely sensed images. We present here results on two IRS-1A
(band-4) images and one SPOT (band-3) image. The IRS-1A image was taken
using the scanner LISS-II (Linear Imaging Self Scanner) in the wavelength range
[0.77μm−0.86μm] and it has a spatial resolution of 36.25m×36.25m [101]. One
of the images is covering an area around the city of Calcutta (Fig. 9), whereas
the other one is covering the city of Mumbai (Fig. 10). The SPOT images have a
spatial resolution of 20.0m× 20.0m and a wavelength range [0.79μm− 0.89μm]
[99], covering a portion of the city of Calcutta (Fig. 11). All the three images are
of size 512× 512. Due to poor illumination, the actual object classes present in
the input image are not visible clearly. For this reason we have not included the
original input images, instead an enhanced version (histogram equalized) of the
input images highlighting the different object regions are shown in Figs. 9, 10
and 11, corresponding to Calcutta(IRS), Mumbai (IRS) and Calcutta (SPOT),
for the convenience of readers. However, the algorithms were implemented on
the actual input images whose histograms are shown in Figs. 12, 13 and 14,
respectively. As seen from the histogram (Fig. 12), a deep valley is present near
the gray level 23, closely surrounded by two significant peaks at gray levels 21
and 33. Some weak valleys are also present at levels 55, 62, 65, 70, 72 and 76,
but they are not apparent in Fig. 12. The histogram (Fig. 13) of the Mumbai
(IRS) image depicts a valley at gray level 18, surrounded by two peaks at levels
11 and 25. The other valleys at 57, 59, 64, 66 and 70 are not significant. For the
Calcutta (SPOT) image in Fig. 11 the histogram is shown in Fig. 14. There are
three main peaks (two strong at 18 and 29, and one weak at 22) with valleys, at
20 and 23. The other valleys, which are not visible, are at levels 66, 70, 72, 76,
78, 80, 88, 90, 92, 95, 98 and 103.

For implementing fuzzy c-means (FCM) and hard c-means (HCM) clustering
algorithms we have chosen the number of clusters c = 4, 5 and 6. Average
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Fig. 15. Segmented Calcutta (IRS) image
with highest β(= 9.949) value and c = 5

Fig. 16. Segmented Calcutta (IRS) image
with lowest β(= 4.357) value and c = 5

Fig. 17. Segmented Calcutta (IRS) image
using FCM when c = 5, β = 5.880

Fig. 18. Segmented Calcutta (IRS) image
using HCM when c = 5, β = 5.171

(Equation (58)) and busyness (Equation (59)), computed over a 3 × 3 neigh-
borhood incorporating local information, are used as features. For FCM, the
fuzzifier m (in Equation (55)) was taken as 2.

At first in Tables 2 to 4, we present the thresholds obtained by fuzzy correla-
tion, fuzzy entropy and fuzzy geometry, respectively, for different window sizes
(w = 7, 9, 11, 13, 15, 17,19) for Calcutta (IRS) image (Fig. 9). The results corre-
sponding to probabilistic entropy are shown in Table 5. The computed β values
are also shown in the tables. As expected, the number of thresholds (where ∗ in-
dicates global optima) decreases as w increases. Note that membership functions
corresponding to w = 9 and 11 satisfy the criteria of bounds3 of Murthy and
Pal [190].

3 Bounds determine the range so that any membership function defined within this
range will provide similar segmented results.
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Fig. 19. Segmented Calcutta (IRS) image
with highest β(= 4.790) value and c = 4

Fig. 20. Segmented Calcutta (IRS) image
with highest β(= 2.422) value and c = 2

Fig. 21. Segmented Calcutta (IRS) image
using FCM/HCM when c = 2, β = 2.198
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Fig. 22. Variation of maximum value of
β with the number of classes

To demonstrate the significance of the β value we provide segmented results
corresponding to the highest and lowest β values, obtained over all these meth-
ods, for a fixed number of regions. Figs. 15 and 16 depict such example images
for β = 9.949 and β = 4.357, respectively, when the number of regions, c, is five.
For the purpose of comparison we also show the results of FCM (Fig. 17 with
β = 5.880) and HCM (Fig. 18 with β = 5.171 ) for c = 5. From these, the β
value is seen to reflect well the quality of segmentation. For example, the details
of linear structures like roads, airport runway, water canals are seen to be more
prominent in Fig. 15 (having higher β value) as compared to others.

Let us now consider the segmented output (Fig. 19) corresponding to the best
β value (= 4.790) when the number of regions, c, is four. Comparing the results
of Fig. 15 (when c = 5) we see that some of the roads, canals (linear structures)
which are visible in Fig. 15 are not present in Fig. 19. Also it can be seen from
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Table 2. Thresholds based on fuzzy correlation

Serial no. Kind of Window size Threshold β value
Information w values

1.1 Global 7 19∗, 23, 31, 36, 39, 47 14.286
1.2 9 24∗, 31, 36, 47 9.634
1.3 11 24∗, 31, 37, 47 9.949
1.4 13 24∗, 32, 38, 48 9.612
1.5 15 24∗, 48 1.711
1.6 17 24, 49∗ 1.681
1.7 19 24∗ 1.466
1.8 Local 7 19, 24∗, 32, 36, 47 9.533
1.9 (within class) 9 19, 24∗, 32, 37, 48 9.989
1.10 11 25∗, 37, 48 4.486
1.11 13 25∗, 37 3.762
1.12 15 25∗, 36 4.011
1.13 17 25∗, 36 4.011
1.14 19 25∗, 36 4.011
1.15 Local 7 19, 24, 36, 40, 48∗ 5.983
1.16 (transitional) 9 19, 24, 36, 48∗ 4.894
1.17 11 24, 36, 48∗ 4.790
1.18 13 24, 37, 48∗ 4.358
1.19 15 24∗, 38 3.311
1.20 17 24∗, 38 3.311
1.21 19 38∗ 1.900

∗ indicates the global maximum.

Fig. 19 that the main city area consisting of dense concrete structure is merged
with the sparse concrete structure class (habitation class) around the river.

Figs. 20 and 21 show a comparison of object-background partition (i.e., c = 2)
as obtained by the thresholding with highest β (= 2.422) value, and HCM/FCM
(β = 2.198). Both visually and by β values the segmented version in Fig. 20 is
seen to be superior to that of Fig. 21.

Fig. 22 demonstrates the variation of maximum value of β, obtained over
different methods, for c = 2, 3, 4, 5, 6, 7. As expected (mentioned in Section
2.3), the β value increases with increment of c.

Let us now consider Fig. 20, which has highest β value among those with
c = 2, for object-background classification. Here the threshold is seen to be
32, distinguishing object region containing water body and city area from the
background containing habitation, vegetation and open spaces. Interestingly,
it is seen from the correlation based segmentation results (Table 2) that the
segmented images with a threshold at or around 32 usually posses high β value.
This indicates the significance of the said threshold.

From Tables 2 and 3 it is seen that the thresholds corresponding to global
correlation and global entropy measures for ω = 9 and 11 are almost identical.
(Note that thresholds 24, 31, 37 and 47 correspond to the boundary between
water body, city area, habitation, vegetation and open spaces). Similar is the
case with transitional correlation (Table 2) and transitional entropy measures
(Table 3). Further, the thresholds obtained by two gain functions are seen to be
similar for both global and local entropy.

In the case of IOAC and Compactness (Table 4), interestingly, only one thresh-
old in the range 30-32 is obtained irrespective of the window size. Although the
method produced only one threshold, its importance is evident from Fig. 20
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Table 3. Thresholds based on fuzzy entropy

Serial no. Kind of Form of Window size Threshold β value
Information gain function w values

2.1 Global logarithmic 7 19, 23, 31∗, 36,47 9.793
2.2 9 24, 31∗,37,47 9.949
2.3 11 24, 31∗, 37, 47 9.949
2.4 13 24, 38∗,48 3.788
2.5 15 23∗, 49 1.639
2.6 17 23∗ 1.432
2.7 19 - -
2.8 Global exponential 7 19, 23, 31∗, 36,47 9.793
2.9 9 24, 31∗,37,47 9.949
2.10 11 24, 31∗, 37, 47 9.949
2.11 13 24, 38∗, 48 3.788
2.12 15 24∗, 49 1.681
2.13 17 23∗ 1.432
2.14 19 - -
2.15 Local logarithmic 7 18, 24, 31∗, 36, 49 9.473
2.16 (within class) 9 25, 37∗,48 4.486
2.17 11 25, 37∗, 47 4.531
2.18 13 26, 36∗ 4.146
2.19 15 26, 35∗ 4.202
2.20 17 26, 36∗ 4.146
2.21 19 26, 36∗ 4.146
2.22 Local exponential 7 18, 24, 31∗, 36,49 9.473
2.23 (within class) 9 25, 37∗, 48 4.486
2.24 11 25, 37∗, 47 4.531
2.25 13 25, 36∗ 4.011
2.26 15 26, 36∗ 4.146
2.27 17 25, 36∗ 4.011
2.28 19 26, 36∗ 4.146
2.29 Local logarithmic 7 19∗, 24, 37, 40, 49 4.933
2.30 (transitional) 9 19∗, 24, 37, 49 4.357
2.31 11 24, 37∗, 49 4.274
2.32 13 24, 38∗, 48 3.788
2.33 15 24, 31∗ 2.981
2.34 17 23, 31∗ 2.963
2.35 19 30∗ 2.173
2.36 Local exponential 7 19∗, 24, 37, 40, 48 4.945
2.37 (transitional) 9 19∗, 24, 37, 49 4.357
2.38 11 24, 37∗, 47 4.358
2.39 13 24, 38∗, 49 3.764
2.40 15 24∗ 1.466
2.41 17 23, 31∗ 2.963
2.42 19 31∗ 2.319

∗ indicates the global minimum.

Table 4. Thresholds based on fuzzy geometry

Serial no. Optimizing Window Threshold β value
property size w values

3.1 Compactness 7 32∗ 2.422
3.2 9 32∗ 2.422
3.3 11 32∗ 2.422
3.4 13 32∗ 2.422
3.5 15 32∗ 2.422
3.6 17 32∗ 2.422
3.7 19 31∗ 2.319
3.8 IOAC 7 31∗ 2.319
3.9 9 30∗ 2.173
3.10 11 30∗ 2.173
3.11 13 31∗ 2.319
3.12 15 31∗ 2.319
3.13 17 31∗ 2.319
3.14 19 31∗ 2.319

∗ indicates the global minimum.

where it is seen to clearly demarcate the silhouettes of the objects present in
the input image. This may be due to the incorporation of spatial ambiguities in
the optimizing function. Note that this important threshold is missing in all the
cases of Table 5.
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Table 5. Thresholds based on probabilistic entropy

Serial no. Kind of Form of Threshold β value
Information gain function values

4.1 Global Logarithmic 20, 26∗ 1.603
4.2 Global Exponential 19, 26, 34∗ 4.208
4.3 Local Logarithmic 20∗ 1.149

(within class)
4.4 Local Logarithmic 19, 24∗ 1.475

(transitional)
4.5 Local Exponential 19, 35∗ 2.712

(within class)
4.6 Local Exponential 19, 23∗, 37 3.579

(transitional)

∗ indicates the global maximum.

Fig. 23. Segmented Mumbai (IRS) image
with highest β(= 18.308) value and c = 5

Fig. 24. Segmented Mumbai (IRS) image
with lowest β(= 11.243) value and c = 5

From the previous discussion we therefore see that β values provide a good
quantitative index for measuring homogeneity in segmented regions. For a fixed
c, its values increases with the quality of segmentation. Fuzzy set theoretic ap-
proaches are better than the probabilistic entropic methods. This may be due
to the fact that fuzzy approaches described here exploit the ambiguities (both
in grayness and in spatial domain) of the image in an effective way. Among the
fuzzy techniques, fuzzy geometry based optimization (which basically optimizes
the spatial ambiguities) is seen to provide a single threshold, over a wide varia-
tion of window size; which is able to segregate the basic structures in the image
well. Surprisingly, the global information based fuzzy correlation and fuzzy en-
tropy measures provided better performance (higher β value) for extracting the
structures. Among the local information based techniques, within class fuzzy cor-
relation based algorithms, showed an upper edge. From all the results obtained
by thresholding algorithms, it therefore appears that fuzzy correlation and fuzzy
entropy using global information (with w = 9 and 11) are the best optimizing
criteria from the point of possessing β value and detecting the structural details
(Fig. 15).
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Fig. 25. Segmented Mumbai (IRS) image
using FCM when c = 5, β = 15.815

Fig. 26. Segmented Mumbai (IRS) image
using HCM when c = 5, β = 16.056

It may be noted here that in the case of Mumbai (IRS) image (Fig. 10) and
Calcutta (SPOT) image (Fig. 11), the performances of various techniques are
similar to that of Calcutta (IRS) image (Fig. 9). Therefore some of the typical
results on these images are reported here.

Let us now consider the Mumbai IRS image (Fig. 10). Figs. 23 and 24 depict
the segmented images for highest (β = 18.308) and lowest (β = 11.243) β values
for c = 5. For the purpose of comparison we also consider the results of FCM
(Fig. 25 with β = 15.815) and HCM (Fig. 26 with β = 16.056) for c = 5.
Like Calcutta IRS image, the β value reflects the quality of segmentation. The
details of linear structures (rail roads, airport runway etc.) are seen to be more
prominent in Fig. 23 (with highest β value) than others.

As in the case of Calcutta IRS image, IOAC and compactness resulted in
a single threshold for all the cases irrespective of ω. However, the threshold
obtained by IOAC is different from that of compactness. Among the different
segmented regions for c = 2, IOAC has highest β value. Here the threshold at
19 is seen to discriminate the water body well from the land.

Finally, we consider the Calcutta SPOT image (Fig. 11). Figs. 27 and 28
depict the segmented versions for highest (β = 9.375) and lowest (β = 6.467)
values of β obtained over all the thresholding methods for c = 5. Comparing
them with FCM (Fig. 29, β = 6.388) and HCM (Fig. 30, β = 6.676) we see that
the details of structures are more prominent in Fig. 27. This also strengthens the
fact that β values provide a good quantitative measure of image segmentation.

4 Object Extraction Using Granular Computing and
Rough Sets

Sections 2 and 3 dealt with image classification (supervised) and segmentation
(unsupervised) methodologies based on support vector machine and fuzzy set
theory, respectively. Here we explain the significance of rough sets [197] in image
segmentation problem and the role of granular computing.
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Fig. 27. Segmented Calcutta (SPOT) im-
age with highest β(= 9.375) value and
c = 5

Fig. 28. Segmented Calcutta (SPOT) im-
age with lowest β(= 6.467) value and
c = 5

Fig. 29. Segmented Calcutta (SPOT) im-
age using FCM when c = 5, β = 6.388

Fig. 30. Segmented Calcutta (SPOT) im-
age using HCM when c = 5, β = 6.676

It has been argued, both from philosophical and theoretical points of views,
that information granulation is essential to human problem solving, and hence
has very significant impact on the design and implementation of intelligent sys-
tem. Zadeh [78] identified three basic concepts that underlie the process of hu-
man cognition, namely, granulation, organization, and causation. “Granulation
involves decomposition of whole into parts, organization involves integration of
parts into whole, and causation involves association of causes and effects”.

A granule is a clump of objects (points), in the universe of discourse, drawn
together by indistinguishability, similarity, proximity, or functionality. Granu-
lation leads to information compression/summarization. In situations involving
incomplete, uncertain, or vague information, it may be difficult to differentiate
different elements and instead it is convenient to consider granules, i.e., clump or
group of indiscernible elements, for performing operations. Granular computing
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(GrC) may be regarded as a unified framework for theories, methodologies and
techniques that make use of such granules in the process of problem solving.

Recently, rough set theory [197] has become a popular mathematical frame-
work for granular computing. The focus of rough set theory is on the ambigu-
ity caused by limited discernibility of objects in the domain of discourse. Its
key concepts are those of object ‘indiscernibility’ and ‘set approximation’. The
primary use of rough set theory has so far mainly been in generating logical
rules for classification and prediction [198] using information granules; thereby
making it a prospective tool for pattern recognition, image processing, feature
selection, data mining and knowledge discovery process from large data sets.
Use of rough set rules based on reducts has significant role for dimensional-
ity reduction/feature selection by discarding redundant features; thereby hav-
ing potential application for mining large data sets [199]. As far as rough set
theoretic image processing is concerned, there is hardly any investigation re-
ported so far. However, in related areas like pattern analysis/clustering mention
may be made of the studies of Wojcik [200], and Pal and Mitra [126]. While
rough sets are used in [200] for describing image features for analysis, they
are used in a part in [126] for initializing EM algorithm in conjunction with
minimal spanning tree (MST) for clustering with application to multi spectral
images.

In the present section, we demonstrate an application of rough sets and gran-
ular computing for object extraction from gray scale image. In gray scale images
boundaries between object regions are often ill-defined. This uncertainty can be
handled by describing the different objects as rough sets with upper (outer) and
lower (inner) approximations. The set approximation capability of rough sets
is exploited in the present investigation [174] to formulate an entropy measure,
called rough entropy, quantifying the uncertainty in an object-background im-
age. This has been done by defining an image as a collection of pixels and the
equivalence relation induced partition as pixels lying within each non-overlapping
window over the image. With this definition the roughness of various transforms
(or partitions) of the image can be computed using image granules, i.e., windows,
of different sizes.

Maximization of the said rough entropy measure minimizes the uncertainty
arising from vagueness of the boundary region of the object. Therefore, for a
given granule size, the threshold for object-background classification can be ob-
tained through its maximization with respect to different image partitions. A
guideline for selecting the appropriate granule size from gray level distribution
is given, as well as a way of computing the rough entropy efficiently only in
one pass (or scan) of the image. Effectiveness of the method is demonstrated on
different kinds of remotely sensed images.

The section is organized as follows: Basic definitions of rough sets, description
of an image as a rough set, and a definition of rough entropy are provided in
Section 4.1. The problem of object extraction minimizing roughness is addressed
in Section 4.2. Results of the experiments are provided in Section 4.5.
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4.1 Rough Entropy Measure of an Image

Rough Sets. Let A =< U, A > be an information system, and let B ⊆ A and
X ⊆ U . We can approximate the set X using only the information contained
in B by constructing the lower and upper approximations of X . If X ⊆ U , the
sets {x ∈ U : [x]B ⊆ X} and {x ∈ U : [x]B ∩X �= ∅}, where [x]B denotes the
equivalence class of the object x ∈ U relative to IB (the equivalence relation),
are called the B-lower and B-upper approximations of X in U . They are denoted
by BX and BX , respectively [197]. The objects in BX can be certainly classified
as members of X on the basis of knowledge in B, while objects in BX can only
be classified as possible members of X on the basis of B. These are illustrated
in Fig. 31 where the sets of dark-gray granules represent lower approximation,
while those of both dark-gray and light-gray granules together denote upper
approximation. Therefore, a rough set is nothing but a crisp set with rough
representation.

The roughness of a set X with respect to B can be characterized numerically
[197] as Rα = 1 − |BX|

|BX| . This means if roughness of the set X is 0 then X is
crisp with respect to B, and if Rα > 0 then X is rough (i.e., X is vague with
respect to B). For details one may refer to Pawlak [197], Skowron and Rauszer
[198] and Komorouski et al. [199].

Image as a Rough Set. In gray scale images boundaries between object regions
are often ill defined because of grayness and/or spatial ambiguities [201]. This
uncertainty can be handled by describing the different objects as rough sets
with upper (or outer) and lower (or inner) approximations. Here the concepts of
upper and lower approximation can be viewed, respectively, as outer and inner
approximations of an image region in terms of granules.

Let the universe U be an image consisting of a collection of pixels. Then if we
partition U into a collection of non-overlapping windows (of size m × n, say),
each window can be considered as a granule G. In other words, the induced
equivalence classes Im×n have m × n pixels in each non-overlapping window.

Fig. 31. Rough representation of a set
with upper and lower approximations
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Given this granulation, object regions in the image can be approximated by
rough sets [174].

Let us consider an object background separation (a two class) problem of
an M × N , L level image. Let prop(B) and prop(O) represent two properties
(say, gray level intervals 0, 1, · · · , T and T + 1, T + 2, · · · , L−1) that characterize
background and object regions, respectively. Given this framework, object and
background can be viewed as two sets with their rough representation as follows:

The inner approximation of the object (OT ):

OT =

{
⋃

i

Gi | Pj > T, ∀j = 1, · · ·mn, and Pj is a pixel belonging to Gi

}

Outer approximation of the object(OT ):

OT =

{
⋃

i

Gi, ∃j, j = 1 · · ·mn s.t. Pj > T, where Pj is a pixel in Gi

}

Inner approximation of the background (BT ):

BT =

{
⋃

i

Gi | Pj ≤ T, ∀j = 1, · · ·mn, and Pj is a pixel belonging to Gi

}

Outer approximation of the background (BT ):

BT =

{
⋃

i

Gi, ∃j, j = 1 · · ·mn s.t. Pj ≤ T, where Pj is a pixel in Gi

}

Therefore, the rough set representation of the image (i.e, object OT and back-
ground BT ) for a given Im×n depends on the value of T.

Let the roughness of object OT and background BT be defined as

ROT = 1− |OT |
|OT | = |OT |−|OT |

|OT |
RBT = 1− |BT |

|BT | = |BT |−|BT |
|BT |

(60)

where |OT | and |OT | are the cardinality of the sets OT and OT , and |BT | and
|BT | are the cardinality of the sets BT and BT , respectively.

Rough Entropy Measure. Rough Entropy (RE) [174] of an image for a given
T , can be defined as

RET = −e

2
[ROT loge(ROT ) + RBT loge(RBT )]. (61)

Its plot for various values of ROT and RBT is shown in Fig. 32.
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(1) The value of RET lies between 0 and 1.
(2) RET has a maximum value of unity when ROT = RBT = 1/e, and minimum

value of zero when ROT , RBT ∈ {0, 1}.
(3) (a) Since the boundary pixels are common for both object and background,

we have OT −OT = BT −BT = QT , say. Therefore,

ROT = RBT , iff |OT | = |BT |.
Under this condition, the distribution of RET on the diagonal (joining
(0,0) and (1,1)) is shown in Fig. 33, where RET attains a maximum
value of unity at ROT = RBT = 1/e.

(b) When |OT | < |BT |, then ROT > RBT and |OT | > |BT |, then ROT <
RBT .
In either case, RET will decrease from its maximum value of unity
and will reach a value of zero at (0, 0), (0, 1), (1, 0) and (1, 1) in the
(ROT , RBT ) plane (Fig. 32).
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Fig. 33. Plot of rough entropy for the val-
ues (0,0) to (1,1) on the diagonal of Fig.
32 (i.e., when ROT = RBT )
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Fig. 34. Histogram of the Calcutta (IRS,
NIR) image, minimum estimated base
width is 8 between 16 and 24 graylevel

4.2 Object Extraction by Minimizing Roughness

Let us describe a method of object enhancement/extraction based on the prin-
ciple of minimizing the roughness of both object and background regions, i.e.,
maximizing RET . As explained in Section 4.1, one can compute for every T the
RET of the image, representing the background and object regions (0, · · · , T ) and
(T + 1, · · ·L − 1), respectively, and select the one for which RET is maximum.
In other words, select

T ∗ = arg max
T

RET , (62)

as the optimum threshold to provide the object background segmentation. Note
that maximizing the rough entropy to get the required threshold basically implies
minimizing both the object roughness and background roughness.
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Fig. 35. Histogram of the Calcutta
(SPOT, NIR) image, minimum estimated
base width is 6 between 14 and 20
graylevel

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Greylevel

R
e
la

tiv
e
 F

re
q
u
e
n
cy

Fig. 36. Histogram of the Calcutta
(SPOT, PAN) image, minimum estimated
base width is 5 between 24 and 29
graylevel

4.3 Choice of Granule Size

As can be seen, the determination of T ∗ by maximization of rough entropy or
minimization of roughness depends on the granule size. A choice of granule size
can be made from gray level distribution of the image by selecting a value approx-
imately equal to the minimum of half the width of base regions corresponding
to all the peaks in the histogram. This will allow the algorithm to take into ac-
count the local information (details) of all the regions, as indicated by different
peaks in the histogram, and facilitate the detection of the smallest region. Any
granule larger (or smaller) than this may result in losing some desirable regions
(or detection of spurious undesirable regions) by the decrease (or increase) in
the value of T ∗, assuming that the regions of interest correspond to lower side
of the histogram. The details of the selection procedure are shown in Section 4.5
with histograms of different images.

4.4 Algorithm for Threshold Selection

Following is the algorithm for efficient implementation of the aforesaid method-
ology for selecting T ∗:

Let max gray and min gray be the maximum and minimum gray level values
of the image, respectively. Let granulei represent a window of m× n pixels. Let
total number of granules be total no granule.
Initialize: Four integer arrays namely object lower, object upper, background
lower, background upper each of size(max gray - min gray +1) to zero.

Step 1: for i = 1 to total no granule
max granulei = maximum gray value of pixels in granulei

min granulei = minimum gray value of pixels in granulei

(a) for max granulei ≤ j ≤ max gray
object lower(j) = object lower(j) +1
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(b) for min granulei ≤ j ≤ max gray
object upper(j) = object upper(j)+1

(c) for min gray ≤ j ≤ min granulei

background lower(j)= background lower(j)+1
(d) for min gray ≤ j ≤ max granulei

background upper(j)= background upper(j)+1
Step 2: for l = min gray to max gray

object roughness(l) = 1 - [ object lower(l)/object upper(l)]
background roughness(l) = 1-[background lower(l)/background upper(l)]
Rough entropy(l) = - [ e

2 ] ×[object roughness(l) loge(object roughness(l))
+ background roughness(l) loge(background roughness(l))]

Step 3: Threshold(optimal) = arg max
l

[rough entropy(l)]. ♦

Remark: Given the max gray and min gray values, the computation of rough
entropy (and hence the algorithm) requires only a single scan of pixels in the
image, since max granulei and min granulei are computed exactly once for each
i. Therefore the computational complexity of the algorithm is same as that of
histogram computation (i.e., algorithm has a linear complexity in term of size
of an image).

4.5 Experimental Results

The effectiveness of the methodology for object extraction based on rough en-
tropy (Equation (61)) is demonstrated on three different types of satellite images
taken over some parts of Calcutta City. The first one is from Indian Remote Sens-
ing (IRS) Satellite, whereas the second and third ones are from Satellite Pour
d’Observation de la Terre (SPOT). The first and second correspond to a sin-
gle band of multispectral (MSS) images in the Near-Infrared (NIR) region of
spectrum and the third one is a Panchromatic (PAN) image, covering a large
range of the visible region of spectrum. Also the spatial resolution and dynamic
range (another representation of maximum gray level) for the images are quite
different, the details are given in Table 6.

The Calcutta (IRS, NIR) image is covering an area around the city of Calcutta
(Fig. 37(a)). The SPOT images using HRV multispectral, and HRV Panchro-
matic (High Resolution Visible) cover some portions of the extended Calcutta
City. These areas mainly represent water bodies and vegetation. Each of these
images is of size 512 × 512.

Table 6. Details of the satellite images used with rough entropy[99,101]

Image Satellite Imaging Wavelength Spatial Dynamic
Name Instrument (μm) Resolution Range

(metres) (bits)
Calcutta (IRS, NIR) IRS LISS-IIm 0.77 – 0.86 36.25 × 36.25 7
Calcutta (SPOT, NIR) SPOT HRVm 0.79 – 0.89 20 × 20 8
Calcutta (SPOT, PAN) SPOT HRVp 0.51 – 0.73 10 × 10 8

m = multispectral mode
p = panchromatic mode
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It may be noted here that all these images are having very poor illumination,
the actual object classes present in the input images are not visible clearly. This
can be seen in the histograms provided in Figs. 34, 35 and 36. Therefore an
enhanced version of each of the input images highlighting the different object
regions is shown in Figs. 37(a), 38 (a) and 39(a), for convenience.

At first we discuss about the selection of the granule size (window size) for the
computation of rough entropy on these images. The histograms (Figs. 34, 35 and
36 ) of all these images are almost bimodal. For the Calcutta (IRS, NIR) image
(Fig. 34), the base width of the two regions are approximately 8 and 30, and
therefore according to the criterion in Section 4.3, 4 × 4 (half of the smaller base
width) is the choice of the granule size. Similarly, for the Calcutta SPOT (MSS)
image it is 3 × 3, because the base widths are 6 and 22. The SPOT Panchromatic
image has base widths 5 and 12, therefore the choice again is 3 × 3.

Note that all these images (Figs. 37(a), 38(a) and 39(a)) have many more ob-
ject regions. However, considering it as a two class (object and background)
problem, different segmented results are shown in Figs. 37, 38 and 39. For

(a) (b)

(c) (d)

Fig. 37. Thresholds by maximizing rough entropy using granule of different sizes on
Calcutta (IRS, NIR) image: (a) original, (b) threshold = 30, granule size = 4 × 4, (c)
threshold = 26, granule size = 6 × 6, and (d) threshold = 33, granule size = 2 × 2
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(a) (b)

(c) (d)

Fig. 38. Thresholds by maximizing rough entropy using granule of different sizes on
Calcutta (SPOT, NIR) image: (a) original, (b) threshold = 25, granule size = 3 × 3,
(c) threshold = 22, granule size = 6 × 6, and (d) threshold = 30, granule size = 2 × 2

Calcutta(IRS, NIR) image the output shown in Fig. 37(b) corresponds to gran-
ule size of 4 × 4 which produced a threshold of 30. The other two outputs,
Figs. 37(c) & (d), are due to threshold 33 with granule size 2 × 2 and threshold
26 with granule size 6 × 6, respectively. It may be noted here that the value
of T ∗ increases/ decreases with decrease/ increase in granule size. Here we can
see that while all the three output images are able to segment the water bodies
(represented by the lower peak region in the histogram) from the rest of the
objects, increase in T ∗ value to 33 introduces more spurious (undesirable) re-
gions (Fig. 37(d)), whereas decrease in T ∗ value to 26 fails to detect some useful
regions (e.g., airport runways, roads, canals) as object (Fig. 37(c)). This justifies
the selection of 30 as the more appropriate threshold, and hence the choice of
granule size 4 × 4.

Similarly, for the Calcutta (SPOT, NIR) image, the output shown in Fig. 38(b)
corresponds to granule size of 3 × 3 which produced a threshold of 25. The other
two outputs, Figs. 38(c) & (d), are due to threshold 30 with granule size 2 × 2
and threshold 22 with granule size 6 × 6, respectively. Like the previous image
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in Fig. 37, the T ∗ value increases/ decreases with decrease/ increase in granule
size. Here also we can see that all the three output images are able to segment
the water bodies (represented by the lower peak region in the histogram) from
the rest of the object regions. The increase in T ∗ value to 30 introduces more
spurious (undesirable) regions (Fig. 38(d)), whereas decrease in T ∗ value to 22
fails to detect some useful regions. Particularly, the water canal which is clearly
visible in Fig. 38(b) along with some other linear structures, is not segmented
well in Figs. 38(c) and (d). While, in Fig. 38(c) some of these objects are unable
to come out from the background, in Fig. 38(d) too many undesirable regions
have come out as objects. This also justifies the selection of 25 as the more
appropriate threshold, and hence the choice of granule size 3 × 3.

Finally, the output of the Calcutta (SPOT, PAN) image is presented in
Fig. 39(b) corresponding to granule size of 3 × 3 which produced a thresh-
old of 31. The other two outputs, Figs. 39(c) and (d), are due to threshold
32 with granule size 2 × 2 and threshold 28 with granule size 5 × 5, respec-
tively. Like the previous images, the T ∗ value increases/ decreases with decrease/

(a) (b)

(c) (d)

Fig. 39. Thresholds by maximizing rough entropy using granule of different sizes on
Calcutta (SPOT, PAN) image: (a) original, (b) threshold = 31, granule size = 3 × 3,
(c) threshold = 28, granule size = 5 × 5, and (d) threshold = 32, granule size = 2 × 2
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increase in granule size. Here also we can see that all the three output images
are able to segment the water bodies (represented by the lower peak region in
the histogram) from the rest of the objects. Increase in T ∗ value to 31 introduces
more spurious (undesirable) regions (Fig. 39(d)), whereas decrease in T ∗ value
to 28 fails to detect some useful regions, particularly some structures. These are
evident from the point of visibility of various curvilinear objects and regions like,
water lakes, which came out nicely in Fig. 39(b). Thus the results here also jus-
tify the selection of 31 as the more appropriate threshold, and hence the choice
of granule size 3 × 3.

5 Gray Level Based Hough Transform for Region
Extraction

While Sections 3 and 4 concern with the problem of segmenting an image using
gray level thresholding into homogeneous regions, the present one deals with the
said problem in terms of homogeneous line segments.

Hough transform (HT) [5,202] is used for finding straight lines or analytic
curves in a binary image. There are several ways in which Hough Transform
(HT) for straight lines can be formulated and implemented. Risse [203] has
listed some of these forms and analyzed them alongwith their complexities. The
most popular one is (ρ, θ) form, which is given by Duda and Hart [204]. This
parametric form specifies a straight line in terms of the angle θ (with the abscissa)
of its normal and its algebraic distance ρ from the origin. The equation of such
a line in x-y plane is,

x cos θ + y sin θ = ρ (63)

where θ is restricted to the interval [0, π]. Some of the advantages of this para-
metric form are its simplicity and ease in implementation.

Hough transforms are applied usually on binary images. Hence, one needs to
convert, initially, the gray level image to a binary one (through thresholding,
edge detection, thinning etc.) to apply Hough Transform (HT). Note that, in
the process of binarization, some information regarding line segments in the
image may get lost. Thus, it becomes appropriate and necessary to find a way
of making Hough Transform (HT) applicable directly on gray level images.

In this section, we present a technique [175] for extracting homogeneous re-
gions of arbitrary shape and size in a gray level image based on Hough transform.
The regions are defined in terms of homogeneous line segments. The technique in-
cludes some operations which are performed in a window to obtain homogeneous
line segments. For every quantized (ρ, θ) cell in the Hough space (ρ represents
perpendicular distance of the straight line from the origin, θ represents angle
made by normal to the straight line with the x-axis), the variance of the pixel
intensities contributing to the (ρ, θ) cell is computed. The cells whose variances
are less than a pre-specified threshold, are found. Each such cell would represent
a homogeneous line segment in the image. The window is then moved over the
entire image, so as to result in an output consisting of only the homogeneous line
segments; thereby constituting different homogeneous regions. The performance
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of the method has been demonstrated on Indian Remote Sensing (IRS) Satellite
images for different parameter values.

In this connection we mention the methods of gray scale Hough transform
(GSHT) of Lo and Tsai [205], fuzzy Hough transform (FHT) of Basak and Pal
[206], and generalized Hough transform (GHT) of Ballard [207]. GSHT enables
one to find thick lines (called bands) from gray scale images. Therefore, it can be
used for detecting road like structures only in remote-sensing images. FHT can
handle the impreciseness/ ill-definedness in shape description. GHT is able to
extract arbitrary shapes from the edge map of a gray level image using prototype
information of the objects to be extracted. Note that our method does not need
this information and is thus able to extract objects of irregular shapes and
arbitrary sizes as found in remote sensing images.

The rest of this section is organized as follows: Section 5.1 provides the def-
inition and formulation of the region. A Strategies of region extraction in gray
level image using Hough transform is described in Section 5.2. Algorithm and
implementation are described in Section 5.3. The Section 5.4 presents results on
the remote sensing images.

5.1 Definition and Formulation

A region in a gray level image can be viewed as a union of several line segments, so
that it consists of a connected set of pixels having low gray level variation. There-
fore, to extract a region, we need to define a line segment in gray level image. A line
segment in a gray level image is defined using two threshold parameters, minimum
length of the line (l) and maximum variation of the line (v). The mathematical
formulation of the region in terms of line segments is stated below.

Def. 1: A pixel P = (i, j) is said to fall on a line segment joining the pixels
P1 = (i1, j1) and P2 = (i2, j2) if ∃ λ0, 0 ≤ λ0 ≤ 1 such that

λ0 P1 + (1 − λ0) P2 = P.

Def. 2: A collection of pixels L(l, v) is said to be a line segment in a gray level
image if,

there exist P1 = (i1, j1) and P2 = (i2, j2), P1 �= P2; such that
L(l, v) = { P : P is a pixel falling on the line segment joining P1 and
P2 },
• The number of pixels in L(l, v) is ≥ l, and
• The variance of the gray values of pixels in L(l, v) ≤ v.

Let Al,v = {L(l, v) : L(l, v) is a line segment in the image}. That is Al,v

represents the collection of all line segments in the image.
Def. 3.1: A pixel P is said to be in the homogeneous region if P ∈ L(l, v), at

least for one L(l, v) ∈ Al,v.
Def. 3.2: A pixel P is said to be in the non-homogeneous region if P �∈ L(l, v),
∀ L(l, v) ∈ Al,v.
Let NH = {P : P is a pixel in the non-homogeneous region }.
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The region R is defined as follows.

Def. 4.1: Let L1(l, v) and L2(l, v) ∈ Al,v. Then L1(l, v) and L2(l, v) are said
to be directly connected if either L1(l, v) ∩L2(l, v) �= φ or ∃ pixels P1 ∈
L1(l, v) and P2 ∈ L2(l, v) such that P1 is one of the eight neighbors of P2.
Note that a line segment L(l, v) is directly connected to itself.

Def. 4.2: Two line segments Lα(l, v) and Lβ(l, v) belonging to Al,v are said to
be connected if they are directly connected or there exist Li(l, v) ∈ Al,v ;
i = 1, 2, ..., k where k ≥ 3 such that Li(l, v) and Li+1(l, v) are directly
connected ∀i = 1, 2, ..., (k − 1)
where L1(l, v) = Lα(l, v) and Lk(l, v) = Lβ(l, v).

Def. 4.3: Let BLα(l, v) = {L(l, v) : L(l, v) ∈ Al,v, and L(l, v) and Lα(l, v)
are connected }, Lα(l, v) ∈ Al,v.
Note that for Lα(l, v), Lβ(l, v) ∈ Al,v either
BLα(l, v) = BLβ

(l, v) or BLα(l, v) ∩BLβ
(l, v) = φ

Note also that
⋃

Lα(l,v)∈Al,v

BLα(l, v) = Al,v.

That is Al,v is partitioned into finitely many sets using BLα(l, v)’s.
Def. 4.4: Let RLα(l, v) = ∪L(l,v)∈BLα (l,v)L(l, v). Then RLα(l, v) is said to be a

region generated by Lα(l, v). Note that RLα(l, v) is a set consisting of pixels
in the given image. Observe also that the same region can be generated by
different line segments (follows from Def. 4.3)

Observations on the Above Definitions

(a) A line segment may be termed as a region according to the above definitions.
(b) The variance of n points x1, x2, ..., xn, is given by 1

n

∑
(xi − x)2 where

x = 1
n

∑n
i=1 xi. Now, variance < v =⇒ ∑

(xi − x)2 < nv.
Observe that there may be a point (say, x′) among x1, x2, ..., xn, such

that (x′ − x)2 may be high (say, (x′ − x)2 > kv, where k > 1). Even then∑
(xi − x)2 can still be less than nv. This observation indicates the removal

of noise upto some extent by the proposed variance based definition of line
segment.

(c) The values for l and v are to be chosen “appropriately” to obtain the actual
regions in an image. Some portions of the actual regions may not be obtained
if the value of l is high. If the value of v is high, the number of pixels de-
tected to constitute various regions increases, and therefore the possibility of
some spurious collection of pixels being termed as region increases. Reducing
the value of v, on the other hand, decreases the number of detected pixels;
thereby increasing the possibility of losing some actual regions. Similarly if
the value of l is low then some unwanted regions may arise.

(d) Observe that a pixel P does not fall into any region =⇒ There exists no
line segment passing through P with low gray level variation (i.e. variance
of the gray level values of the pixels on any line segment passing through P
is greater than v). Hence the above stated definitions intend to suppress the
pixels in the non-homogeneous region of the image.
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(e) Note that the two adjacent collection of connected pixel, each collection hav-
ing different average gray value, may fall into the same region; thereby losing
their identity according to the definition. (However, in such cases, a further
processing may be necessary to separate (partition) the said collection.) ♠

The definitions regarding regions have been stated above. There may exist several
other ways of obtaining the said regions from the image. Note that regions have
been defined as a union of line segments, and Hough transform is a standard
method of obtaining line segments. But the Hough transform finds line segments
in a binary image. In order to make Hough Transform (HT) applicable directly
on a gray level image, we formulate a method in the next section which is able
to find line segments (and hence the regions) in a gray level image.

5.2 Strategies of Region Extraction in Gray Level Image Using
Hough Transform

Extraction of line segments [175]:

(i) Consider the equation for a straight line to be x cos θ + y sin θ = ρ.
Apply suitable sampling on θ and ρ, and construct the Hough accumulator.
Transform each point of the image (pixel) using different values of θ (and its
corresponding ρ values). Note that a point in the image space is mapped to
more than one cell in the Hough space and each of these cells represents a
line in the image space.

(ii) Compute, for each cell, the length of the corresponding line (�) as the total
number of image points (pixels) mapped into that cell, i.e., the cell count.
Variance of the said pixel values may be termed as the variance (V ) of the
corresponding line.

(iii) For a cell in the Hough space if the length of the line is less than l or
variance of the line is greater than v then suppress the cell in the Hough
space.

(iv) Remap this Hough space (containing unsuppressed cells) to image space.
This process of remapping preserves all those pixels which are not suppressed
in at least one of the cells of the Hough space. Since this transformation
preserves only the location of pixels, not their gray values, they may be
restored from the original image.

Let us consider an image of size M ×M . If M is too large compared to the
threshold parameter l, then � values (cell counts) will be larger, and as a result,
variance of the gray levels on a line may exceed the threshold value v. Many
genuine line segments, therefore, may not be detected in such a case. To avoid
this, the search process for obtaining the line segments is to be conducted locally.
That is, a window of size ω×ω needs to be moved over the entire image to search
for line segments. Here ω may be taken as, 2l > ω ≥ l, because ω ≥ 2l may still
lead to the suppression of actual lines in the image.
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Extraction of Regions [175]:
One can clearly see that the above mentioned process extracts line segments
which are connected according to the Definition 4. Therefore the collection of
these line segments will result in regions of different sizes and shapes.
Note:

– There is no restriction on the shape of the “region” thus obtained. The only
restriction, we used on the size of the region (i.e., length of the line ≥ l), is
a weak one.

– The method does not need any prior representation of the shape of region
to be detected. Therefore, it can extract regions of arbitrary shape and size.

5.3 Algorithm and Implementation

It has been mentioned in the earlier section that values for l (length of the line),
v (variance threshold) and ω (window size) are to be selected and the obtained
lines are to be remapped to image domain to procure regions. This process of
remapping the cells in the Hough space is to be carried out on every window.
The steps of the entire algorithm are stated below.

Step 1: For a window (ω×ω) of the image obtain the Hough accumulator values
for different ρ and θ. ρ values and θ values are sampled suitably in their
respective domains. For each cell in Hough space, mean and variance
of corresponding pixel values in the image domain are computed using
two more accumulators (one for sum of gray values

∑
x and one for

sum of squares of gray values
∑

x2). These sum and sum of squares
along with the count of cells (�) will be used for computing the variance

V =
∑

x2

� −
(∑

x

�

)2

of the cell. If the cell count is < l then replace the
cell count by zero (i.e., the cell is suppressed). If V > v then also replace
the cell count by zero. The cells with count non-zero are remapped to
image domain preserving the position of window.

Step 2: Repeat Step 1 for all possible windows of size ω × ω in the image.
Step 3: Restore the gray values of remapped pixels from the original image.

The number of computations in the aforesaid algorithm can be reduced dras-
tically in the following way.

(i) Note that for a given window size ω, Hough transformation of the pixel does
not change with its location, because the reference frame for computing θ
(and hence ρ) remains the same. Thus, the Hough accumulator values can
be calculated only once and be used for every position of the window.

(ii) Again, all possible windows of size ω × ω need not be considered. The
window can be moved by half of its size, both horizontally and vertically. This
process, though marginally reduces the accuracy of the regions obtained,
decreases computations drastically.
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(iii) Keeping the point (iv) of Section 5.2 in mind, the process of restoring gray
values in the aforesaid Step 3 can be combined with Step 1 by preserving
only those pixels in the image domain which are not getting suppressed in
at least one cell of the Hough space.

5.4 Experimental Results

We have applied the proposed method on IRS images to demonstrate its use-
fulness. The IRS images considered here have spatial resolution of 36.25m ×
36.25m, wavelength range 0.77μm - 0.86μm and gray level values in the range
0-127. Size of the images is 512 × 512. An enhanced (linearly stretched) image is
provided in Fig. 40(a) (city of Calcutta) and Fig. 41(a) (city of Mumbai) for the
convenience of readers, since the original images are poorly illuminated. However
the method has been implemented on the original images.

In the present investigation, we have used w = 16 and l = 14 for various
values of v. The output corresponding to Fig. 40(a) and 41(a) for v = 0.2,
0.4 and 0.6 are shown in Figs. 40(b), 40(c) and 40(d), and Figs. 41(b), 41(c)

(a) (b)

(c) (d)

Fig. 40. Input and output Calcutta IRS images: (a) Input image, (b) Output with v
= 0.2, (c) Output with v = 0.4, and (d) Output with v = 0.6
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(a) (b)

(c) (d)

Fig. 41. Input and output Mumbai IRS images: (a) Input image, (b) Output with v
= 0.2, (c) Output with v = 0.4, and (d) Output with v = 0.6

and 41(d), respectively. As stated in Step 3 of the Algorithm (Section 5.3) the
extracted regions have their original gray values restored. Justification of the
result (output image) is evident from the observations laid down in Section 5.1
and under the note in Section 5.2. For example, as v increases, the number and
size of the detected regions are seen to increase. (Note that the set of pixels in Fig.
40(b)(41(b)) is a subset of that of Fig. 40(c)(41(c)), and that in Fig. 40(c)(41(c))
is a subset of Fig. 40(d)(41(d)). Similarly, decreasing v enables one to detect
tiny homogeneous regions as separate classes, even when they are embedded in
a different wide homogeneous region. That is why the two bridges over the river
Ganges in Calcutta image (Fig. 40(b)) and a bridge on the Arabian sea (Thane
creek) in Mumbai image (Fig. 41(b)) became prominent as separate regions for
v = 0.2. For v = 0.4 and 0.6, they disappeared in Fig. 40 and became faint in
Fig. 41. (This makes “the evidence”, for the existence of a bridge, available for a
further stage of the vision process to recognize or deal with.) In other words, as
v increases the Ganges in Calcutta image comes out as a single region and the
sea in Mumbai image becomes smoother. Similarly, note from the lower parts
of Figs.40 and 41 that the two dense city areas (namely, Howrah and Calcutta)
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Fig. 42. Clustered image of Calcutta (us-
ing pixel gray value and average over its
3 × 3 neighborhood)

Fig. 43. Clustered image of Mumbai (us-
ing pixel gray value and average over its
3 × 3 neighborhood)

on two sides of the river (Fig. 40), and the dense city area of Mumbai (Fig. 41)
become prominent because of the increase in the number of constituting pixels
with higher values of v. Note further that these extracted city areas did not
get merged with the river (Fig. 40) and the sea (Fig. 41). Experiment was also
conducted for other values of l such as l = 15 and 16, but the results were not
much different.

As a comparison of the performance, we consider the hard c-means (HCM)
algorithm (with c=2, i.e., object and background classification) which is a widely
used segmentation algorithm based on pixel classification [89,99,208]. Here the
input features are considered to be the gray level value of the pixel and the
average value over its 3 × 3 neighborhood. (This method with c = 2 is chosen
for comparison because this also provides object background classification like
ours.) From the segmented output (Figs. 42 and 43) one may note that the
algorithm failed to isolate the respective city areas from the river and sea. It
also could not, unlike Fig. 40(b) and Fig. 41(b), enhance the bridge regions.

To restrict the size of the article, we have presented the results corresponding
to v = 0.2, 0.4 and 0.6 for ω = 16 and l = 14 only, although the experiment
was also conducted for other values of l (e.g., 15 and 16) and ω (e.g., 8, 24 and
32). Variance of pixel values is used here as a measure of homogeneity of line
segment. One may use any other homogeneity measure for this purpose.

6 Conclusions and Scope of Future Research

In Section 2, a new method known as active support vector learning algorithm
for supervised pixel classification in remote sensing images is presented. The goal
is to minimize the number of labeled points required to design the classifier. The
algorithm uses an initial set of small number of labeled pixels to design a crude
classifier, which is subsequently refined by using more number of points obtained
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by querying from a pool of unlabeled pixels. It is seen that the number of labeled
points required by the active learning algorithm is far less compared to the
conventional support vector machine. It also provides better accuracy compared
to completely unsupervised segmentation algorithms or a supervised algorithm
having access to only partially accurate class labels of a large number of pixels.
An index-β to evaluate the classification/ segmentation in terms of homogeneity
of regions is introduced. For a given k (number of classes), the higher the value
of β, the better is the homogeneity within the classified/ segmented regions.

Fuzzy thresholding provides a useful segmentation technique for remote sens-
ing images. This is the objective of Section 3. Among the various thresholding
techniques fuzzy correlation provided the best performance, followed by fuzzy
entropy as far as β value and the detection of various land cover types are con-
cerned. FCM provided superior performance to HCM. The time requirement of
a thresholding techniques considered here, on an average, is seen to be of the
order of 1/100th of HCM and 1/1000th of FCM. Significance of the index-β in
evaluating the segmentation is also demonstrated here successfully.

Rough entropy of an image is defined using the concept of image granules in
Section 4. Based on this measure, a method of extracting object regions from an
image is described by minimizing both object and background roughness. Here
granules carry local information and reflect the inherent spatial relation of the
image by treating pixels of a window as indiscernible or homogeneous. Maxi-
mization of homogeneity in both object and background regions during their
partitioning is achieved through maximization of rough entropy; thereby provid-
ing optimum results for object background classification. The guideline described
for the choice of granule size from gray level distribution is seen to be appro-
priate. Note that as far as rough set theoretic image processing is concerned,
there is hardly any investigation reported so far. In this context the aforesaid
investigation is unique.

A method of extracting regions in a gray level image using the principle of
Hough transform has been described in Section 5. A definition of “region” in
terms of homogeneous line segments (instead of clusters) is provided. Since the
methodology does not involve any parametric form or representation in terms
of template of the shape of regions, it has the ability to detect regions of any
arbitrary shape and size.

Although the methods described here performed well for the test images, they
need further investigation for wide utility.

The active learning strategy of Section 2 adopted the method of queries for the
most interesting/ambiguous unlabeled point as measured by its distance from
the current separating hyper-surface. Other query strategies based on version
space splitting, logistic regression may be used in the future study. Also, besides
active learning, other semi-supervised learning techniques, and co-training may
help in circumventing the problem arising from the scarcity of labeled data in
remote sensing image analysis.

Fuzzy thresholding described in Section 3 provided a useful segmentation
technique for single band remotely sensed images. However, there is no way
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to apply these thresholding techniques to a multi-feature images, like color and
multispectral images. On the other hand, one can segment the images in different
bands and combine them to take a decision based on the multifeatured images.
Therefore, extending the fuzzy thresholding methods to multispectral data sets,
can be an interesting area to explore.

The method of segmentation by rough entropy as described in Section 4 di-
vides the image only into two regions (i.e., object and background). Extension of
the algorithm to multi-class segmentation problem is therefore natural for their
wide applications and constitute a part of further investigation. Moreover, the
sensitivity of the method to noise needs to be investigated. The use of granular
computing for image segmentation using other rough set methods (e.g., granular
clustering) can also be attempted. It may be mentioned here that there exist
some definitions of rough entropy useful for other applications. For example, the
one defined by Beaubouef et al. [209] is applicable to relational database and the
one of Düntsch and Gediga [210] for optimal granulation and feature selection.

The investigation using Hough transform (Section 5) needs two parameters,
one is length and the other is the variation v. An investigation for detecting
automatically v will constitute a part of further research. A strategy for using
this method for multispectral image needs to be formulated to make it more
useful for real life applications. A comparatively fast method may be developed
for finding the homogeneous line segments; thereby making the overall algorithm
computationally inexpensive.
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