
P2P Query Reformulation over
Both-As-View Data Transformation Rules

Peter Mc.Brien1 and Alexandra Poulovassilis2

1 Department of Computing, Imperial College London
pjm@doc.ic.ac.uk

2 School of Computer Science and Information Systems, Birkbeck College,
Univ. of London
ap@dcs.bbk.ac.uk

Abstract. The both-as-view (BAV) approach to data integration has
the advantage of specifying mappings between schemas in a bidirectional
manner, so that once a BAV mapping has been established between
two schemas, queries may be exchanged in either direction between the
schemas. In this paper we discuss the reformulation of queries over BAV
transformation pathways, and demonstrate the use of this reformulation
in two modes of query processing. In the first mode, public schemas are
shared between peers and queries posed on the public schema can be
reformulated into queries over any data sources that have been mapped
to the public schema. In the second, queries are posed on the schema of
a data source, and are reformulated into queries on another data source
via any public schema to which both data sources have been mapped.

1 Introduction

In [1] we presented the both-as-view (BAV) approach to data integration,
and compared it with global-as-view (GAV) and local-as-view (LAV) [2].
In BAV, schemas are mapped to each other using a sequence of schema trans-
formations which we term a transformation pathway. These pathways are re-
versible, in that a pathway Sx → Sy from a schema Sx to a schema Sy may be
used to automatically derive the pathway Sy → Sx. Also, from BAV pathways
it is possible to extract GAV, LAV and GLAV mapping rules [3]. The BAV ap-
proach has been implemented as part of the AutoMed data integration system
(see http://www.doc.ic.ac.uk/automed).

One advantage of BAV is that it readily supports the evolution of global and
local schemas, including the addition or removal of local schemas. An evolution
of a schema Sx to S′

x is expressed as a pathway Sx → S′
x, and then pathways of

the form Sx → Sy may be ‘redirected’ to S′
x by prefixing the reverse of Sx → S′

x

to derive a pathway S′
x → Sx → Sy. As we discussed in [4], this feature makes

BAV well-suited to the needs of peer-to-peer (P2P) data integration, where
peers may join or leave the network at any time, or may change their schemas
or pathways between schemas.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 310–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

P2P Query Reformulation over Both-As-View Data Transformation Rules 311

Standard centralised data integration of data sources S1, S2, . . . into a global
schema Sp is specified by a set of pathways S1 → Sp, S2 → Sp, . . . managed
centrally by the data integration system. In the AutoMed P2P data integration
system, each peer Px manages the integration of a data source Sx as a pathway
Sx → Sp, and there is a directory service and P2P protocol that allows the peers
to interact. The shared global schema is called a public schema, emphasising
that no single peer controls the global schema but, by contrast, it is simply a
publicly available schema definition that any peers may use. Note that the same
BAV pathway specification is used to map Sx → Sp in both the centralised and
the P2P systems. The directory service allows a peer to discover what public
schemas Sp exist, and which peers support pathways to that public schema [5].

One contribution of this paper is that we specify how, given a pathway Sx →
Sy and a query q posed on Sy, q can be reformulated using a combination of
LAV and GAV techniques into a query q′ posed on Sx. This is an advance on our
previous work which only showed how GAV or LAV views individually could be
derived from BAV pathways. A second contribution of this paper is that the P2P
protocol combined with the reversibility of BAV pathways allows us to support
two types of query processing:

– In public schema querying we simulate centralised data integration within
a P2P environment: a user at a peer Px poses a query on a public schema
Sp, and Px asks each other peer Py supporting Sp to either (1) process the
query and return the result back to Px, or (2) send its pathway to Sp to Px

so that Px can construct the centralised data integration model and process
the query itself.

– In data source querying a user at a peer Px poses a query q on data source
Sx and wishes it to be reformulated into a query q′ on some other data source
Sy. This is achieved by using the pathway Sx → Sp to reformulate q into
a query on Sp. Then Px is able to interact with other peers supporting
the public schema Sp, using the public schema querying techniques already
described.

Previous work on P2P data integration in the Piazza system has used combi-
nations of LAV and GAV rules between schemas, and a combination of GAV and
LAV query processing techniques [6]. Piazza differs from our approach in that
mappings must be specified directly between peers. Whilst our approach does
not preclude this, we also allow mappings to be specified to a public schema,
making our approach more scalable.

Other related work is [7] which uses a superpeer based network topology to pro-
vide better scalability than pure peer-to-peer networks. Routing indexes at super-
peers store information about the data reachable from the peers directly connected
to them, and aid in the forwarding of query requests only to relevant peers.

The need for a superpeer is avoided in the local relational model [8], where
peers are directly related by a combination of a domain relation that specifies
how the data types of the peers are related, together with coordination formulae
that specify that if one predicate is true in one peer, then another predicate is
true in another peer.

312 P. Mc.Brien and A. Poulovassilis

Our approach combines the respective advantages of these systems by having
virtual public schemas — allowing peers to reuse the existing integration of other
peers with public schemas — but having no physical superpeer nodes that may
act as a bottleneck in the system — in particular, any peer can combine the
integrations of other peers with public schemas in order to form direct pathways
between peers for query and update processing.

In [9] global-local-as-view (GLAV) rules [10] are used to specify the constructs
of each schema in terms of the constructs of some set of other peer schemas.
There is no distinction between source and global schemas, and any number of
GLAV rules may be specified between schemas. However, unlike BAV, [9] does
not differentiate between sound, complete and exact rules, as the GLAV rules
are always sound. CoDB [11] generalises this to allow sound and complete GLAV
rules to be specified.

The remainder of the paper begins with a review of the BAV data integration
approach in Section 2 together with details of a data integration example. We then
describe in Section 3 the process of query reformulation over BAV pathways, and
illustrate how it supports public schema querying. In Section 4 we discuss how to
improve support for data source schema querying, where a certain degree of path-
way repair may be needed in order to fully support data source schema querying.

2 Overview of BAV Data Integration

The basis of the BAV approach to data integration is a low-level hypergraph-
based data model (HDM). Higher-level modelling languages are specified
in terms of this lower-level HDM. An HDM schema consists of a set of nodes,
edges and constraints, and each modelling construct of a higher-level modelling
language is specified as some combination of HDM nodes, edges and constraints.
For each type of modelling construct of a modelling language (e.g. Table, Col-
umn, Primary Key and Foreign Key in the relational model) there are available a
set of primitive schema transformations for adding such a construct to a schema,
removing such a construct from a schema and, in the case of constructs with tex-
tual names, renaming such a construct. Schemas are incrementally transformed
by applying to them a sequence of primitive schema transformations, each prim-
itive transformation adding, deleting or renaming just one schema construct.

In general, schema constructs may be extensional i.e. have a data extent
associated with them (e.g. Table and Column in the relational model) or may
be constraints (e.g. Primary Key and Foreign Key in the relational model). In
this paper we will restrict our discussion to the relational model, and hence
extensional schema constructs consist of sets of values. The general form of a
primitive transformation that adds an extensional construct c of type T to a
schema S in order to generate new schema S′ is addT (c, qS), where qS is a query
over S specifying the extent of c in terms of the existing constructs of S. The
semantics of this transformation are that ∀x . x ∈ c ↔ x ∈ qS . In the AutoMed
implementation of BAV, qS is expressed in a functional intermediate query
language (IQL) (see Section 2.1).

P2P Query Reformulation over Both-As-View Data Transformation Rules 313

When it is not possible to specify the exact extent of the new construct c being
added in terms of the existing schema constructs, the primitive transformation
extendT (c, Range ql qu) must be used instead of add. This adds a new construct
c of type T to a schema S, generating a new schema S′. The query ql over S
states what is the minimum extent of c in S′; ql may be the constant Void if no
lower bound on the extent can be specified. The query qu over S states what is
the maximal extent of c in S′, and may be the constant Any if no upper bound
on the extent can be specified. For non-Void ql therefore, ∀x.x ∈ c ← x ∈ ql; and
for non-Any qu, ∀x . x ∈ c → x ∈ qu. Also, addT (c, qS) is equivalent to extendT
(c, Range qS qS).

In a similar fashion, the transformation deleteT (c, qs) when applied to schema
S′ generates a new schema S with the construct c of type T removed. The extent
of c may be recovered using the query qS on S, and ∀x . x ∈ c ↔ x ∈ qS . Note
therefore that from a transformation deleteT (c,qS) used to transform schema
S′ to schema S we can automatically infer that addT (c,qS) transforms S to
S′, and vice versa. When it is not possible to specify the exact extent of the
construct c being deleted from S′ in terms of the remaining schema constructs,
the transformation contractT (c, Range ql qu) must be used instead of delete. This
removes a construct c of type T from schema S′ to form a new schema S. The
query ql over S states what is the minimum extent of c in S′, while the query qu

over S states what is the maximal extent of c in S′. Again, q1 may be Void and
qu may be Any. deleteT (c, qS) is equivalent to contractT (c, Range qS qS). Also,
from contractT (c, Range ql qu) used to transform schema S′ to schema S we can
infer that extendT (c, Range ql qu) transforms S to S′, and vice versa.

Finally, the transformation renameT (c, c′) causes a construct c of type T in a
schema S to be renamed to c′ in a new schema S′, where ∀x.x ∈ c ↔ x ∈ c′. Thus,
from renameT (c, c′) used to transform S to S′ we can infer that renameT (c′, c)
transforms S′ to S.

2.1 AutoMed’s IQL Query Language

IQL is a comprehensions-based functional query language [12], and such lan-
guages subsume query languages such as SQL-92 and OQL in expressiveness
[13]. It supports strings e.g. ’Computer Science’, booleans True and False, real
numbers, integers, tuples e.g. {1,2,3}, and sets, bags and lists. There are several
polymorphic primitive operators for manipulating sets, bags and lists. The op-
erator ++ concatenates two lists, and performs bag union and set union on bags
and sets, respectively. The operator flatmap applies a collection-valued function
f to each element of a collection and applies ++ to the resulting collections.
For sets, it is defined recursively as follows, where [] denotes the empty set and
(SCons x xs) denotes a set containing an element x with xs being the rest of the
set (which may be empty):

flatmap f [] = []
flatmap f (SCons x xs) =(f x) ++(flatmap f xs)

Henceforth in this paper, we confine our discussion to collections that are sets.

314 P. Mc.Brien and A. Poulovassilis

The operator flatmap can be used to specify comprehensions over sets.
These are of the form [h | q1; . . . ; qn] where h is an expression termed the
head and q1, . . . , qn are qualifiers, with n ≥ 0. Each qualifier is either a fil-
ter or a generator. A generator has syntax p <− e where e is a set-valued
expression and p is a pattern i.e. an expression involving variables and tuple
constructors only. The variables of p are successively bound by iterating through
e. Any variables appearing in the head, h, inherit these bindings. A filter is a
boolean-valued expression, which must be satisfied by the values generated by
the generators in order for these values to contribute to the final result of the
comprehension. Comprehensions are a convenient high-level syntax and add no
extra expressiveness to languages such as IQL since they translate into applica-
tions of flatmap. We give the translation below for a set comprehension, where
Q denotes a sequence of qualifiers and [h] a set comprising a single element h:

[h | p <− e; Q] ≡ flatmap (lambda p.[h | Q]) e
[h | e; Q] ≡ if e = True then [h | Q] else []
[h |] ≡ [h]

IQL supports unification of variables appearing in the patterns of genera-
tors within the same comprehension. For example, [{a, b, c, d, e} | {a, b, c} <−
r; {d, c, e}<−s] is equivalent to [{a, b, c, d, e} | {a, b, c}<−r; {d, c2, e}<−s; c = c2]

Several equivalences hold for these IQL operators [14], which follow from their
definition and from the interpretation assigned to the Void and Any constants.

2.2 An Example

Figure 1 shows four schemas S1, S2, S3, Sp. S1, S2, S3 are data source schemas
while Sp is what in a centralised data integration system would be called a global
schema and in our P2P system is called a public schema. The semantics of
the application domain are that a student with name sname may repeatedly sit
the exam for a course (identified by ccode, and each having a title) over any
number of semesters, and achieve an exam mark on each exam sitting. However,
for all attempts of the course, the student will have the same tutor (tutors having
been introduced at the start of 1994, along with a coursework mark cwmark that
students can attempt only once per course). Each student studies for one degree.
Each degree is identified by a dcode, has a title dname and has an associated
qualification.

Schema Sp is a virtual schema modelling the application domain, omitting the
information about tutors and about the qualification associated with degrees.
The cwmark is shown as optional (by a ‘?’ suffix) since it was only awarded from
1994 onwards. Schema S1 represents a data source that holds information about
courses with a ccode greater or equal to 500, and holds data in first normal form
(since dname is dependent on just sname and title is dependent on just ccode).
Schema S2 represents a data source that holds information about courses with
a ccode less than 500, and is also in first normal form, since it holds in tname
the tutor’s name (an optional attribute), which is dependent on just sname and
ccode. Schema S3 represents a data source that details students’ tutors, the

P2P Query Reformulation over Both-As-View Data Transformation Rules 315

S1 studies(sname,ccode,sem,mark,title,dname)

S2 teach(sname,ccode,sem,mark,tname?)

S3 degree(dcode,dname,qual)
ug(sname,dcode)
reg(sname,ccode,cwmark,tutor)

Sp degree(dcode,dname)
student(sname,dcode)
course(ccode,title)
sit(sname,ccode,sem,mark,cwmark?)

Fig. 1. Three data sources S1, S2, S3, and a public schema Sp

degrees students studied, and the coursework mark students gained for courses,
and is held in third normal formal.

We consider below fragments of the pathways S1 → Sp and S2 → Sp in order
to illustrate the BAV approach and the use of IQL queries within transforma-
tions. Within S1 → Sp it is necessary to decompose the studies table in S1 in
order to produce the separate course table that is present in Sp. Here is the
fragment of that pathway:

1 extendTable(〈〈course〉〉, Range ([{c} | {s, c, t} <− 〈〈studies〉〉]) Any)
2 extendColumn(〈〈course,ccode〉〉, Range [{c, c} | {c} <− 〈〈course〉〉] Any)
3 extendColumn(〈〈course,title〉〉, Range ([{c, ti} | {{s, c, t}, ti} <− 〈〈studies,title〉〉]) Any)
4 contractColumn(〈〈studies,title〉〉,

Range Void [{{s, c, t}, ti} | {s, c, t} <− 〈〈studies〉〉; {c, ti} <− 〈〈course,title〉〉])

Transformation 1 states that the course table in Sp contains as its set of keys
at least those ccode attributes of studies in S1 (the first argument of the Range
constructor). We note here that the AutoMed representation of a relational table
models the table itself by its set of primary key values, and models each attribute
a of the table by the projection of the table onto the primary key attributes plus
a (see [1]).

Transformations 2 and 3 add the ccode and title columns to course. Again
these are extend transformations with upper bound Any. The final transformation
4 removes the title attribute of the studies table and specifies the upper bound

that the title attribute in Sp places on the extent of the title attribute in S1.
The pathway S2 → Sp needs to specify that the tutor tname has no repre-

sentation in Sp, using transformation 5 below. The remainder of the pathway
is not required for the examples that follow, and is therefore omitted from our
discussion.
5 contractColumn(〈〈teach,tname〉〉, Range Void Any)

3 Query Reformulation over BAV Pathways

In this section, we discuss how query reformulation can be undertaken over BAV
pathways. We first illustrate how BAV pathways can be used for GAV and LAV
query reformulation, and hence can support GAV and LAV query processing.
We then present a BAV-specific query reformulation algorithm which subsumes
as special cases GAV and LAV query reformulation.

316 P. Mc.Brien and A. Poulovassilis

GAV query reformulation is based on query unfolding. For example, to
evaluate a query q on Sp with respect to S1, we traverse the pathway Sp → S1
(i.e. the reverse of the pathway S1 → Sp described earlier) replacing each scheme
in q that appears in an delete or contract transformation with the corresponding
query of that transformation.

Example Query 1: To reformulate the query
q1 = [{ti} | {c, ti} <− 〈〈course, title〉〉; c = 500]

first 4 is ignored (since its reverse is an extend transformation), and then 3
unfolds 〈〈course,title〉〉 giving:

[{ti} | {c, ti} <− Range([{c, ti} | {s, c, t, ti} <− 〈〈studies, title〉〉]) Any; c = 500]
Using equivalence rules for IQL [14], this simplifies to

Range[{ti} | {c, ti} <− [{c, ti} | {s, c, t, ti} <− 〈〈studies, title〉〉]; c = 500] Any
and then to:

Range[{ti} | {s, c, t, ti} <− 〈〈studies, title〉〉; c = 500] Any
Transformations 2 and 1 have no further effect on this query, and thus this
is the transformed query that can execute on data source S1.

As another example, consider table reg in S3 that has sname and ccode as its key
attributes. In the pathway S3 → Sp, reg is mapped to table sit ofSp that has sname,
ccode and sem as its key attributes since students may (re)sit the examination part
of any course once in any semester. Recall that the tutors for courses were only
introduced from sem 1 of 1994.Below is the relevant fragment of the pathway S3 →
Sp.Wenote that transformation 6 contains the expressionConst1s c in the head of
the comprehension. Here, Const1 is an IQL constructor (Skolem function), used
because it is not possible to derive the sem attribute of 〈〈sit〉〉 from 〈〈reg〉〉.
6 extendTable(〈〈sit〉〉,

Range [{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉] Any)
7 extendColumn(〈〈sit,sname〉〉, Range [{{s, c, t}, s} | {s, c, t} <− 〈〈sit〉〉] Any)
8 extendColumn(〈〈sit,ccode〉〉, Range [{{s, c, t}, c} | {s, c, t} <− 〈〈sit〉〉] Any)
9 addColumn(〈〈sit,cwmark〉〉,

[{{s, c, t}, cw} | {s, c, t} <− 〈〈sit〉〉; {{s, c}, cw} <− 〈〈reg,cwmark〉〉])
10 extendColumn(〈〈sit,sem〉〉, Range [{{s, c, t}, t} | {s, c, t} <− 〈〈sit〉〉] Any)
11 deleteColumn(〈〈reg,sname〉〉, [{{s, c}, s} | {s, c} <− 〈〈reg〉〉])
12 deleteColumn(〈〈reg,ccode〉〉, [{{s, c}, c} | {s, c} <− 〈〈reg〉〉])
13 deleteColumn(〈〈reg,cwmark〉〉, [{{s, c}, cw} | {{s, c, t}, cw} <− 〈〈sit,cwmark〉〉])
14 contractTable(〈〈reg〉〉, RangeVoid [{s, c} | {s, c, t} <− 〈〈sit〉〉; t >= ‘1994-1’])

There are a family of constructors Const1, Const2, . . . Any expression of the
form Consti e1 . . . en is only comparable with an expression constructed using
the same constructor i.e. with an expression of the form Consti e′1 . . . e′n. Thus,
an expression of the form Consti e1 . . . en = Consti e′1 . . . e′n evaluates to
True if ej = e′j evaluates to True for all j otherwise it evaluates to False, and
similarly for the other comparison operators. Any other kind of comparison of
Consti returns the value Null, denoting “unknown”. If Null is the value of a filter
in a comprehension, then the result will be a Range expression i.e. the second
rule of comprehension translation in Section 2.1 becomes:

[h | e; Q] ≡ if e = True then [h | Q] elseif e = False then []
else (RangeVoid [h | Q])

P2P Query Reformulation over Both-As-View Data Transformation Rules 317

Example Query 2: Consider the following query posed on Sp:
q2 = [{s, c, cw} | {{s, c, t}, cw} <− 〈〈sit,cwmark〉〉; t >= ‘1997-1’]

Unfolding 〈〈sit,cwmark〉〉 using 9 we obtain:
[{s, c, cw} | {s, c, t, cw} <− [{s, c, t, cw} | {s, c, t} <− 〈〈sit〉〉;

{{s, c}, cw} <− 〈〈reg, cwmark〉〉]; t >= ’1997-1’]
which using IQL equivalences [14] simplifies to

[{s, c, cw} | {s, c, t} <− 〈〈sit〉〉; {{s, c}, cw} <− 〈〈reg, cwmark〉〉; t >= ’1997-1’]
Unfolding 〈〈sit〉〉 using 6 we obtain:

[{s, c, cw} | {s, c, t} <− Range[{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉] Any;
{{s, c}, cw} <− 〈〈reg, cwmark〉〉; t >= ’1997-1’]

Using IQL equivalences [14] this simplifies to
Range[{s, c, cw} | {s, c, t} <− [{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉];

{{s, c}, cw} <− 〈〈reg, cwmark〉〉; t >= ’1997-1’] Any
Swapping the last two qualifiers of the outer comprehension, and moving t >=
’1997-1’ into the inner comprehension gives:

Range[{s, c, cw} | {s, c, t} <− [{s, c, Const1 s c} |
{s, c} <− 〈〈reg〉〉; (Const1 s c) >= ’1997-1’];

{{s, c}, cw} <− 〈〈reg, cwmark〉〉] Any
At run time this gives the same result as the following query, since Const1 s c >=
’1997-1’ evaluates to Null:

Range Void [{s, c, cw} | {s, c, t} <− [{s, c, Const1 s c} |
{s, c} <− 〈〈reg〉〉]; {{s, c}, cw} <− 〈〈reg, cwmark〉〉]

i.e. it returns as an upper bound the student names, courses they have taken
and coursework marks obtained from S3.

Consider now the 〈〈studies,dname〉〉 attribute of S1, which corresponds in Sp to
some instances of the join between 〈〈student,dcode〉〉 and 〈〈degree,dname〉〉. This
is expressed in BAV by the following fragment of the pathway S1 → Sp:
15 extendTable(〈〈student〉〉, Range [{s} | {s, c, t} <− 〈〈studies〉〉] Any)
16 addColumn(〈〈student,sname〉〉, [{s, s} | {s} <− 〈〈student〉〉])
17 extendColumn(〈〈student,dcode〉〉, RangeVoid Any)
18 extendTable(〈〈degree〉〉, Range [{d} | {s, d} <− 〈〈student,dcode〉〉] Any)
19 addColumn(〈〈degree,dcode〉〉, [{d, d} | {d} <− 〈〈degree〉〉])
20 extendColumn(〈〈degree,dname〉〉, Range [{d, dn} | {s, d} <− 〈〈student,dcode〉〉;

{{s, c, t}, dn} <− 〈〈studies,dname〉〉] Any)
21 contractColumn(〈〈studies,dname〉〉, RangeVoid[{{s, c, t}, dn} | {s, c, t} <− 〈〈sit〉〉;

{s, d} <− 〈〈student,dcode〉〉; {d, dn} <− 〈〈degree,dname〉〉])
Example Query 3: Consider the following query on Sp:

q3 =[{s} | {s, d} <− 〈〈student,dcode〉〉; {d, dn} <− 〈〈degree,dname〉〉;
dn = ‘CS’]

Using GAV, 〈〈degree,dname〉〉 would unfold using 20 and 〈〈student,dcode〉〉
would then unfold using 17 , obtaining:

[{s} | {s, d} <− Range Void Any;
{d, dn} <− Range[{d, dn} | {s, d} <− Range Void Any;
{{s, c, t}, dn} <− 〈〈studies, dname〉〉] Any; dn = ’CS’]

which simplifies to just RangeVoid Any, i.e. giving no answers.

318 P. Mc.Brien and A. Poulovassilis

However the query q3 on Sp can yield answers using LAV query processing.
There are two main techniques for this, the inverse rule algorithm [15,16] and
the bucket algorithm [17]. For simplicity we focus here on the former. Using
the inverse rule approach, the definition of a construct c by a query of the form
[h | Q] is inverted in a two-step process. First, replace each variable in Q that
does not appear in h by a distinct Consti with arguments the variable(s) in h. For
example, 15 has two such variables, c and t which are replaced by Const2 s and
Const3 s respectively; while in 21 , there is one such variable d, which is replaced
by Const8 s dn (see below). Next, for each generator p<−cs in Q, generate a
query defining cs in terms of [p | h <− c; Q′] where Q′ consists of all the filters
from Q. To illustrate, we list below all the inverse rules derived from the fragment
15–21 of the BAV pathway S1 → Sp.
15.1 〈〈studies〉〉 =RangeVoid [{s, Const2 s, Const3 s} | {s} <− 〈〈student〉〉]
16.1 〈〈student〉〉 = [{s} | {s, s} <− 〈〈student,sname〉〉]
18.1 〈〈student,dcode〉〉 =RangeVoid [{Const4 d, d} | {d, d} <− 〈〈degree,dcode〉〉]
19.1 〈〈degree〉〉 = [{d} | {d, d} <− 〈〈degree,dcode〉〉]
20.1 〈〈student,dcode〉〉 =RangeVoid [{Const5 d dn, d} | {d, dn} <− 〈〈degree,dname〉〉]
20.2 〈〈studies,dname〉〉 =RangeVoid [{{Const5 d dn, Const6 d dn, Const7 d dn}, dn} |

{d, dn} <− 〈〈degree,dname〉〉]
21.1 〈〈student,dcode〉〉 =Range [{s, Const8 s c t dn} | {{s, c, t}, dn}<−

〈〈studies,dname〉〉] Any
21.2 〈〈degree,dname〉〉 =Range [{Const8 s c t dn, dn} | {{s, c, t}, dn}<−

〈〈studies,dname〉〉] Any
21.3 〈〈sit〉〉 =Range [{s, c, t} | {{s, c, t}, dn} <− 〈〈studies,dname〉〉] Any

Query processing that requires to use a particular construct can now combine
the direct definition of the construct within the BAV pathway with all the inverse
rules for that construct derived from the BAV pathway. These definitions can
be combined using a merge function defined as follows, where union and intersect
are set union and set intersection:

merge (Range e1 e2) (Range e1′ e2′) =Range (union e1 e1′) (intersect e2 e2′)
Returning to our example, when a query is submitted to Sp and answers

are required from S1, the rules 15 ,16 , 17 ,18 ,19 ,20 , 21.1 , 21.2 , 21.3 , can be used. In
particular, for processing query q3 above, we have:

〈〈student,dcode〉〉 =merge 17 21.1 = 21.1 and
〈〈degree,dname〉〉 =merge 20 21.2 = 21.2

Substitution now for 〈〈student,dcode〉〉 and 〈〈degree,dname〉〉 in q3 gives:
[{s} | {s, d} <− Range[{s, Const8 s c t dn} |

{{s, c, t}, dn} <− 〈〈studies, dname〉〉] Any;
{d, dn} <− Range[{Const8 s c t dn, dn} | {{s, c, t}, dn} <−
〈〈studies, dname〉〉] Any; dn = ’CS’]

which simplifies to:
Range[{s} | {s, d} <− [{s, Const8 s c t dn} | {{s, c, t}, dn} <− 〈〈studies, dname〉〉];

{d, dn} <− [{Const8 s c t dn, dn} | {{s, c, t}, dn} <− 〈〈studies, dname〉〉];
dn = ’CS’] Any

which when evaluated would give the same set of answers as:
Range[{s} | {{s, c, t}, dn} <− 〈〈studies, dname〉〉; dn = ’CS’] Any

P2P Query Reformulation over Both-As-View Data Transformation Rules 319

3.1 BAV Query Reformulation

Following the examples presented above, we now summarise how combined GAV
and LAV query reformulation can be carried out over a BAV pathway Sx → Sy,
with the aim of obtaining the maximal information that would be derivable from
the BAV pathway by means of GAV and LAV query processing techniques.

Suppose we wish to reformulate a query q posed on Sx to be posed with respect
to Sy. (We note that, due to the reversibility of BAV pathways, from a pathway
Sx → Sy it is also possible to reformulate a query q posed on Sy to be posed
with respect to Sx. The process is exactly as described below except that now it
is with respect to the, automatically derivable, reverse pathway Sy → Sx. This
was the scenario illustrated in the examples above, where pathways Sx → Sp

were used to reformulate queries on Sp so that they could be evaluated on Sx.)
The first step is to construct a set of view definitions, V , defining constructs

in Sx in terms of constructs in Sy. This is undertaken by traversing the pathway
Sx → Sy, and at each transformation step t taking one of the following actions:

– if t is of the form rename(c, c′) the rule c = c′ is added to V ;
– if t is of the form delete(c, q) or contract(c, q), the rule c = q is added to V ;
– if t is of the form add(c, q), where q is a comprehension referencing schema

constructs c1, . . . , cn in its generators, then invert the rule c = q (as described
above) to obtain a set of rules of the form ci = qi for 1 ≤ i ≤ n such that
the only scheme referenced in each qi is c; add these rules to V ;

– if t is of the form extend(c, RangeVoid qu), where qu is a comprehension as in
the case of add(c, q), then invert the rule c =RangeVoid qu to obtain a set of
rules of the form ci =Range qi Any; add these rules to V ;

– if t is of the form extend(c, Range ql Any), where ql is a comprehension as in
the case of add(c, q), then invert the rule c =Range ql Any to obtain a set of
rules of the form cj =RangeVoid qj ; add these rules to V ;

– if t is of the form extend(c, Range ql qu), where ql and qu are comprehensions
as in the case of add(c, q), then invert the rule c =Range ql qu by inverting
separately qu and ql, as in the previous two cases, to obtain from qu a set
of rules of the form ci =Range qi Any and from ql a set of rules of the form
cj =RangeVoid qj ; add these rules to V ;

We note that the worst-case complexity of constructing V is O(N×M) where N is
the number of primitive transformations in the pathway and M is the maximum
number of schema constructs appearing in comprehension expressions.

Once constructed, V can be used to reformulate a query q posed on Sx with
respect to Sy. We term a schema construct c which appears in Sy final otherwise it
is non-final. The query reformulation algorithm is as follows, where the function
NF (q) returns the set of non-final schemes occurring in an IQL query q:

while NF (q) �= ∅
for each c ∈ NF (q)

e := Range Void Any
for each rule r ∈ V such that head(r) = c

320 P. Mc.Brien and A. Poulovassilis

e := merge e body(r)
q := [c/e]q

In other words, non-final constructs in q are successively replaced by their
definition in V until there are no non-final constructs left. It is easy to see
that this process terminates: Let G be the graph obtained from V by creating
a node in G for each schema construct in the head of a rule in V and an arc
c → c′ in G if c′ appears in a rule defining c. The acyclicity of G follows from
the syntactic properties of BAV transformation sequences: an add or extend
transformation can only add a construct that does not exist in the input schema,
and the query within the transformation can only refer to constructs existing in
the input schema; a delete or contract transformation can only delete a scheme
that exists in the input schema and the query within the transformation can
only refer to schemes existing in the output schema. By the acyclicity of G the
query reformulation algorithm must terminate. The complexity of the query
reformulation algorithm is again O(N × M).

4 Data Source Schema Query Processing

BAV pathways can in principle be used to map directly between peer schemas
in a P2P data integration scenario, and the techniques we have described above
can be used to reformulate queries with respect to a BAV pathway between two
peer data source schemas. However, in AutoMed we also support P2P BAV data
integration via public schemas, as already described in the Introduction. A
desirable property in data integration is that the mapping between a pair of
schemas Sx and Sy should form a complete mapping, in the sense that it
identifies all possible mappings between schema objects in Sx and Sy. In our
P2P framework, we can construct mappings between Sx and Sy by finding some
shared or public schema Sz for which we already know the pathways Sx →
Sz and Sz → Sy, and form a concatenation of these two pathways to form
a pathway Sx → Sy. However, this pathway may not in general represent a
complete mapping, since Sz might not contain a schema object to represent
data associated with schema objects that appear in Sx and Sy and for which a
mapping could be specified in a direct pathway from Sx to Sy. Suppose that SOx

is a schema object in Sx and SOy is a schema object in Sy for which a mapping
between SOx to SOy could be established, but that it is currently absent due to
the absence of a corresponding schema object in Sz . Then the pathway Sx → Sz

must contain a transformation of the form
a contractObjx(SOx, Range Void Any)

expressing the fact that SOx cannot be derived or represented in Sz, and simi-
larly Sz → Sy must contain a transformation of the form
b extendObjy(SOy, Range Void Any)

expressing the fact that SOy cannot be derived or represented in Sz.
Hence, we can use the presence of pairs of transformations of the form of a

and b to extract pairs of schema objects that might be mappable between Sx

P2P Query Reformulation over Both-As-View Data Transformation Rules 321

and Sy, and feed such pairs into a schema matching process [18] in order to
derive any mappings that exist between objects as yet unmapped in Sx and Sy.
AutoMed supports a suitable schema matching tool [19], which automatically
derives possible matchings between pairs of schema objects, and the transforma-
tions representing their mapping; the user is then asked to confirm or manually
modify the matchings and generated transformations.

Thus, to construct a complete mapping Sx → Sy from two complete mappings
Sx → Sz and Sz → Sy, we can: (i) Form the setUx of schema objects that appear in
contract transformations in Sx → Sz, and the set Uy of schema objects that appear
in extend transformations in Sz → Sy. (ii) Perform a pairwise match of objects in
Ux against objects in Uy; for each positive match found, remove the transforma-
tion steps that contract/extend the matched pair of objects, and replace with the
transformations that represent the match found. To illustrate, we return to our
running example. Within the pathway S3 → Sp there are two transformations:

22 contractColumn(〈〈degree,qual〉〉, RangeVoid Any)
23 contractColumn(〈〈reg,tutor〉〉, RangeVoid Any)

When deriving the pathway S2 → S3 from S2 → Sp (which will include trans-
formation 5) and the reverse of S3 → Sp, a schema match table as follows is first
formed (the filled in circles indicate that the reverse of a transformation is being
used):

Data Source S2 Data Source S3
Transformation Schema Object Transformation Schema Object

5 〈〈teach,tname〉〉 22 〈〈degree,qual〉〉
23 〈〈reg,tutor〉〉

The schema matching process should then discover that 〈〈teach,tname〉〉 and
〈〈reg,tutor〉〉 match (specifically, that they are equivalent, with the exception of
the key used). Hence transformations 5 and 23 can be removed and the fol-
lowing transformations added to the end of S2 → S3:

24 addColumn(〈〈reg,tutor〉〉, [{{s, c}, tu} | {{s, c, t}, tu} <− 〈〈teach,tname〉〉])
25 deleteColumn(〈〈teach,tname〉〉, [{{s, c, Const1 s c}, tu} | {{s, c}, tu} <− 〈〈reg〉〉])

5 Concluding Remarks

The BAV approach has the advantage in a P2P data integration setting of al-
lowing bidirectional logical mappings to be specified between peers. We have
discussed how these mappings can be used to support two types of query pro-
cessing in a P2P data integration system, where either queries are posed on the
schema of a data source at a peer or on a virtual public schema. We have shown
how GAV and LAV query reformulation can be combined over BAV pathways
— specifically, for a comprehensions-based query language — thus obtaining the
maximal information from BAV pathways that would be derivable by means of
GAV and LAV query processing techniques.

We have focused here on query processing along a single BAV pathway, which
cannot generate cyclic relationships between schema objects and hence for which

322 P. Mc.Brien and A. Poulovassilis

query answering is decidable c.f. [20]. The extension of P2P query processing
along a network of arbitrary BAV pathways is an area of ongoing work, and
in particular we wish to investigate the applicability of the epistemic semantics
approach of [9,21] to BAV.

References

1. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transfor-
mation rules. In: Proc. ICDE’03, IEEE (2003) 227–238

2. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS’02,
ACM (2002) 233–246

3. Jasper, E., Tong, N., McBrien, P., Poulovassilis, A.: View generation and opti-
misation in the AutoMed data integration framework. In: Proc. Baltic DB&IS04.
Volume 672 of Scientific Papers., Univ. Latvia (2004) 13–30

4. McBrien, P., Poulovassilis, A.: Defining peer-to-peer data integration using both
as view rules. In: Proc. DBISP2P, at VLDB’03. (2003) 91–107

5. Bellahsène, Z., Lanzanitis, C., McBrien, P., Rizopoulos, N.: Querying distributed
data in a super-peer based architecture. In: Proc. IWI2006 (in conjunction with
WWW06). (2006)

6. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: Data management infras-
tructure for semantic web applications. In: Proc. WWW’03. (2003)

7. Loser, A., Nejdl, W., Wolpers, M., Siberski, W.: Information integration in schema-
based peer-to-peer networks. In: Proc. CAiSE’03. LNCS, Springer (2003)

8. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing: a vision. In: Proc.
WebDB’02. (2002) 89–94

9. Calvanese, D., Damagio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic
data integration in P2P systems. In: Proc. DBISP2P, at VLDB’03. (2003)

10. Friedman, M., Levy, A., Millstein, T.: Navigational plans for data integration. In:
Proc. 16th National Conference on Artificial Intelligence, AAAI (1999) 67–73

11. Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I.: Queries and updates in the
coDB peer-to-peer database system. In: Proc. VLDB. (2004) 1277–1280

12. Jasper, E., Poulovassilis, A., Zamboulis, L.: Processing IQL queries and migrating
data in the AutoMed toolkit. Technical Report No. 20, AutoMed (2003)

13. Buneman et al., P.: Comprehension syntax. SIGMOD Record 23(1) (1994) 87–96
14. McBrien, P., Poulovassilis, A.: P2P query reformulation in AutoMed. Technical

Report No. 33, AutoMed (2006)
15. Qian, X.: Query unfolding. In: Proc. ICDE, IEEE (1996) 48–55
16. Duschka, O., Genesereth, M.: Answering recursive queries using views. In: Proc.

PODS, ACM (1997) 109–116
17. Levy, A., Rajamaran, A., Ordille, J.: Querying heterogeneous information sources

using source description. In: Proc 22nd VLDB. (1996) 252–262
18. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.

VLDB Journal 10 (2001) 334–350
19. Rizopoulos, N.: Automatic discovery of semantic relationships between schema

elements. In: Proc. of 6th ICEIS. (2004)
20. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema mediation in peer data

management systems. In: Proc. ICDE’03, IEEE (2003)
21. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of

peer-to-peer data integration. In: Proc. PODS. (2004) 241–251

	Introduction
	Overview of BAV Data Integration
	AutoMed's IQL Query Language
	An Example

	Query Reformulation over BAV Pathways
	BAV Query Reformulation

	Data Source Schema Query Processing
	Concluding Remarks

