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Abstract. There has been an increasing research interest in developing
full-text retrieval based on peer-to-peer (P2P) technology. So far, these
research efforts have largely concentrated on efficiently distributing an
index. However, ranking of the results retrieved from the index is a crucial
part in information retrieval. To determine the relevance of a document
to a query, ranking algorithms use collection-wide statistics. Term fre-
quency - inverse document frequency (TF-IDF), for example, is based on
frequencies of documents containing a given term in the whole collection.
Such global frequencies are not readily available in a distributed system.
In this paper, we study the feasibility of aggregating global frequencies
for a large term vocabulary in a P2P setting. We use a distributed hash
table (DHT) for our analysis. Traditional applications of DHTs, such as
file sharing, index keys in the order of tens of thousands. Aggregation of a
vocabulary consisting of millions of terms poses extreme requirements to
a DHT implementation. We study different aggregation strategies and
propose optimizations to DHTs to efficiently process large numbers of
keys.

1 Introduction

Performing Information Retrieval (IR) on top of Peer-to-Peer (P2P) systems
has become an active research field in recent years. In such systems, the peers
organize to jointly build a distributed index. Most of the work in P2P-IR has
concentrated on efficiently distributing the index. In [12], for example, the au-
thors use a distributed hash table (DHT) to map keywords to responsible peers
for indexing. However, this and similar approaches assume that global statistics
of the term vocabulary are available and ready to use for, e.g., calculating top-k
results.

Another indexing technique is presented in [15] and is based on CAN [11].
Documents and queries are represented as latent semantic indexing (LSI) vec-
tors in a Cartesian space. This space is mapped into a structured P2P network
keeping semantically related indexes co-located. Once again, global statistics of
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the term vocabulary, which are necessary to compute the weights for the vectors
in the Cartesian space, are assumed to be available.

In this paper we study the aggregation of global statistic of a large term vo-
cabulary using DHTs. Our main contributions are: a) We introduce optimization
strategies that improve the performance of a DHT to efficiently handle concur-
rent insertions of very large numbers of keys. b) We present an analysis of term
vocabulary aggregation for Internet-scale full-text retrieval.

Our paper is structured as follows: Section 2 gives a brief overview of struc-
tured P2P systems. In section 3 we introduce our optimization strategies for
DHTs. Results of some practical experiments are presented in section 4. Sec-
tions 5 and 6 finish with discussion and conclusions.
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Fig. 1. a) 3-layered architecture b) Insertion of a term vocabulary

2 Overview of Structured P2P Systems

We first provide a short introduction to distributed hash tables (DHTs), also
called structured overlay networks. For a clearer presentation, we structure a
peer into three layers (figure 1(a)).

The lowest layer provides communication between two peers using TCP/IP.
It provides the service send(IP address, message), which sends a message to the
peer listening at the given IP address. This service is used by the structured
overlay network on layer 2 as well as applications on layer 3.

Layer 2 is the routing layer. It provides the service route(key, message), which
routes a message to the peer responsible for the key. It creates and maintains
a routing table, which, given a key, determines the IP of the next hop peer for
forwarding the message. Therefore, layer 2 provides a key → IP mapping. Most
DHTs, such as CHORD, Pastry, or P-Grid [14,13,1] create routing tables of size



Aggregation of a Term Vocabulary for P2P-IR: A DHT Stress Test 189

O(log(n)), where n is the number of peers in the system. The routing entries are
chosen in such a way that the resulting graph has small world properties [10,8].
Routing a message between any two peers is then guaranteed to take O(log(n))
overlay hops on average.

On layer 3 we have the application that is using the DHT. In our case, it is
an IR application, which inserts a local term vocabulary into the DHT using a
route(key, message) function provided by layer 2. To perform the mapping of a
term to a key layer 3 uses a hash function, which is usually provided by layer 2.

3 Aggregation of Term Vocabulary

This section describes aggregation local document frequencies frequencies to
global frequencies. We will first describe the usage scenario and then discuss
insertion strategies.

3.1 Usage Scenario

Each peer stores a local document collection. From its local document collection,
each peer creates a local term vocabulary. For each term in the local vocabulary,
a peer determines the local document frequencies, i.e. the number of documents
the term appears in. Each peer inserts its complete vocabulary together with the
local frequencies into the DHT. Each term and its local frequency are packed
into a message and routed using a key that has been created by hashing the term.
The peer responsible for the key receives the message and stores the containing
(term, frequency) pair in its local database. For each term, there is exactly one
responsible peer. Therefore, for a given term there is one peer that will receive
all local frequencies of this term to calculate its global frequency.

Assume a small document collection of 200,000 documents per peer, which
has a term vocabulary of about 190,000 terms 1. All peers concurrently insert
their vocabulary into the DHT. We will now present several strategies to handle
such a flood of messages and discuss their advantages and disadvantages.

3.2 Blunt Message Handling

When an application calls route(key, message), the straight-forward procedure
is to use the routing table to map the key onto the next-hop IP and pass the
message to layer 1 to be sent to the next hop. This strategy works fine when only
a couple of hundreds to a few thousands of messages have to be inserted and
when those messages are reasonably large. However, when inserting a term vo-
cabulary, sending millions of small messages containing only a (term, frequency)
pair individually is extremely inefficient. The overhead of message headers is
high and message compression is ineffective for small messages.
1 We computed this value from a sample collection of Reuters news articles avail-

able at http://about.reuters.com/researchandstandards/corpus/. The growth of the
vocabulary follows Heap’s law [9].
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3.3 Splitting the Vocabulary into Blocks

Our second strategy optimizes the insertion process by processing (term, fre-
quency) pairs in blocks. Figure 1(b) shows for peer A how the vocabulary is
divided into blocks. Most DHTs use randomized hashing to achieve a uniform
distribution of keys. In this case, about 1/2 of the terms in the vocabulary maps
to peers on the left side of the circle and are therefore sent to neighbor 4 as next
hop. 1/4 will be sent to neighbor 3, 1/8 to neighbor 2, 1/16 to neighbor 1, and
1/16 maps to peer A itself. In general, O(Log(n)) blocks have to be sent.

This scheme has the following advantages: a) some of the blocks are large
enough to be efficiently compressed. b) Shipping few large packets over TCP/IP
is faster than shipping many small packets of only a few bytes.

However, in which layer of the architecture should we split the vocabulary
into blocks? If we do it in layer 3, it has to know about the key → IP mapping of
layer 2, which should be hidden to upper layers. Handing the whole vocabulary
down to layer 2 would require making the interface of layer 2 application-specific,
which is also not a desirable solution. Therefore, we propose a third strategy,
message queueing at layer 1.

3.4 Message Queuing

In this strategy layer 3 and 2 do not have to deal with message packing at all.
Messages with single (term, frequency) pairs are handed over to layer 1 with the
send(IP address, message) function. Layer 1 takes care of efficiently shipping
messages to their next-hop IP. To build blocks of messages layer 1 maintains a
queue for each outgoing IP address. As the size of the routing table at layer 2
is O(log(n)), we also need O(log(n)) outgoing IP queues at layer 1. Each queue
stores messages according to the following scheme: Each queue has a timer and a
threshold. Messages are delayed in the queue until either the threshold is reached
or a timeout occurs. A timer is started when a message is inserted into an empty
queue. When the message threshold is reached or a timeout occurs all messages
in the queue are packed together. This pack of messages is then compressed and
sent to the next-hop IP as one large packet.

This approach has the following advantages: a) it is completely hidden to
upper layers: many small messages can be inserted into the DHT in bursts and
efficiently processed at layer 1. b) It is more flexible compared to approach 2:
messages from other peers that have to be forwarded can be packed together
with messages originating from the same peer.

The threshold should be set high enough for compression to be effective, but
not too high to avoid unnecessary delays. The queue threshold can be defined
in either number of message or number of bytes. To avoid that time critical
messages, such as queries, are delayed, we added a message flag that specifies
whether a message can be delayed. Time-critical messages are instantly sent,
irrespective of timeout and threshold.
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3.5 Avoiding Flooding

When all peers in the network concurrently start to insert their vocabularies,
the network can be flooded and break down if no additional measures are taken.
In this subsection, we will present mechanism to avoid such an overload of the
system.

Priority queues. As first mechanism to avoid overload we propose using pri-
ority queues: We have two types of messages: a) the messages that are already
in the system and are travelling (over several overlay hops) to their final desti-
nation. b) The messages that are about to be inserted into the system (by an
application on layer 3). The first type of messages should have priority over the
newly inserted messages. We give higher priorities to messages that have been
in the system for a long time. Such messages are close to their final destinations
and therefore will soon get out of the system to make space for new messages.

Receiver feedback. The second mechanism is receiver feedback. We are in an
environment of heterogeneous peers, i.e. some peers have more processing power
than others. It is therefore important to avoid that slower peers are flooded
with messages. TCP flow control already does some work, however, cannot fully
prevent slower peers from being overloaded. Therefore, we introduced a feedback
mechanism on top of TCP. A peer (at layer 1) can forward the next message
to the same IP address only after having received an acknowledgement, which
the receiver returns after the message has been processed. The delay of this
acknowledgement thus depends on the current load of the receiving peer.

4 Experimental Results

We performed experiments in the local EPFL gigabit LAN on 64 SUN Ultra 10
with 360 MHz CPU and 256 MB RAM. The results are for 4, 8, 16, 32, and
64 peers, one peer running per machine. We implemented our DHT in JAVA.
Messages are objects, which are serialized and compressed at layer 1. For com-
pression we use the java GZIP classes. The queue threshold is 100 messages and
the timeout 1s. Figure 2(a) shows the results of our runs for vocabularies of
96,000 and 192,000 terms per peer.

The first observation we can make is that the execution time to insert all
vocabularies is about twice as long for 192K terms as for 96K terms. We therefore
conclude that our implementation is stable.

Second, we observe that the insertion time grows considerably slower than the
total number of terms: with 192K terms per peer, increasing the total number
of terms from 4 ∗ 192K ≈ 770K to 64 * 192K ≈ 12M, a factor of 16, increases
the total insertion time from 460s to 1600s, which is a factor of 3.5.

Figure 2(b) shows experiments with varying queue thresholds of 1, 10, and 100
messages. A threshold of 1 means that messages are not queued, i.e. each mes-
sages is sent individually. The number of keys inserted by each peer is 19,2K,
i.e. 10% of the amount in figure 2(a). With queue threshold t set to 10, the
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Fig. 2. Insertion times for a) varying voc. sizes and b) varying queue thresholds

insertion time decreases already significantly by 80%. A queue threshold of 100
messages leads to a decrease of 89%. The decrease in bandwidth consumption
is 87% for t = 10 and 97% for t = 100. The reason for this dramatic decrease
is that Java produces very large object serializations, which can be very well
compressed. Compression of multiple small messages can therefore increase the
performance significantly.

5 Discussion

5.1 Redistribution of Aggregates

Once the local term frequencies are aggregated, the global frequencies have to be
distributed to interested peers. If all peers are interested in the same vocabulary,
we could simply broadcast the global frequencies. Efficient broadcast strategies
in DHTs have been presented in recent research papers, such as in [6,7]. However,
such an assumption is not realistic in large networks. Another possibility is that
aggregates are streamed to interested peers. This could be done using a multicast
protocol, such as presented in [4,5]. The integration of such a protocol is part of
future work.

5.2 Fighting Malicious Peers

As all peers are allowed to insert term-frequency pairs, some peers could try
to insert false values to change ranking to their advantages. Trust in P2P is
not the focus of this paper. Nevertheless, we sketch possible solutions: a) There
exist environments where all peers in the network are trusted, e.g. when they
belong to a company network or a closed P2P group of cooperating universities.
Malicious behavior would lead to the exclusion from the group. b) False frequen-
cies that are excessively high could be detected by comparing to former values
of the global frequencies of this term. However, a peer could still repeatedly insert
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small values for the same term to increase its frequency. A solution could be to
monitor, which peer is inserting which frequencies to detect malicious pees.

Trust in P2P is a large research area on its own. We believe that our appli-
cation of DHTs is not fundamentally different from other applications and that
solutions in trust management would therefore be applicable.

5.3 Updating Term Frequencies

Local document collections and therefore term vocabularies keep changing over
time. It is necessary to update term frequencies. One possible approach might be
to re-run the complete aggregation process, e.g. every couple of days or weeks,
depending on how fast the local document collections change. Another option
might be to instantly insert updates. The responsible peer that aggregates fre-
quencies for a certain term would then have to estimate update rates to calculate
approximate global term frequency. Further problems during the aggregation
process can arise when peers fail. Handing peer failures and replication of data,
however, is orthogonal to this work. We leave improvements in these areas to
future work.

5.4 Scaling It Up

In our experiments the size of the local vocabularies was about 200K terms,
which corresponds to a collection of roughly 200K documents. The insertion
time with 64 peers was approx. 30 min. Let’s assume a peer stores 5 million
documents. The corresponding term vocabulary would contain about 1 million
terms (according to Heap’s law [9]) and could therefore be inserted in less than 3
hours with 64 peers (five times the time necessary than for the 200K vocabulary).
In a network of 2000 peers the insertion time would be approx. 5 hours. Such
a network could thus maintain the global term vocabulary for a collection of 10
billion documents, about the size of the Google index a the time of writing.

6 Conclusions

In this workshop paper we showed that it is possible to aggregate an Internet-
scale term vocabulary with P2P technology. This result is important as many
P2P-IR systems require global document frequencies of terms for efficient index-
ing and ranking. We proposed mechanisms to improve standard DHTs to handle
very large numbers of messages. These strategies can serve as suggestions for im-
proving existing DHT implementations. Aggregation of a term vocabulary is only
one (though very important) possible application that can benefit from our im-
provements. In principle our techniques using message packing, priority queues,
and receiver feedback are necessary for efficiently implementing any distributed
application that sends very large numbers of small messages.

As future work, we are planning experiments in a more ”hostile” environment
than the university Intranet, e.g. in PlanetLab 2. In such an environment we
2 www.planet-lab.org
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expect more unevenly loaded peers and large variations in network delays as
well as peer failures, which will require refinements of our queueing strategies.
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