

Lecture Notes in Computer Science 4125
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gianluca Moro Sonia Bergamaschi
Sam Joseph Jean-Henry Morin
Aris M. Ouksel (Eds.)

Databases,
Information Systems,
and Peer-to-Peer Computing

International Workshops, DBISP2P 2005/2006
Trondheim, Norway, August 28-29, 2005
Seoul, Korea, September 11, 2006
Revised Selected Papers

13

Volume Editors

Gianluca Moro
University of Bologna, Dept. of Electronics, Computer Science and Systems (DEIS)
Via Venezia, 52, 47023 Cesena (FC), Italy
E-mail: gmoro@deis.unibo.it

Sonia Bergamaschi
Università di Modena e Reggio Emilia, Dip. di Ingegneria dell’Informazione
Via Vignolese 905, 41100 Modena, Italy
E-mail: bergamaschi.sonia@unimo.it

Sam Joseph
University of Hawaii, Dept. of Information and Computer Science
1680 East-West Road, POST 309, Honolulu, HI 96822, USA
E-mail: srjoseph@hawaii.edu

Jean-Henry Morin
Korea University Business School
Anam-Dong, Seongbuk-Gu, Seoul 136-701, Korea
E-mail: jhmorin@korea.ac.kr

Aris M. Ouksel
The University of Illinois at Chicage, Dept. of Information and Decision Sciences
2411 University Hall, Chicago, IL, USA
E-mail: aris@uic.edu

Library of Congress Control Number: 2007924345

CR Subject Classification (1998): H.2, H.3, H.4, C.2, I.2.11, D.2.12, D.4.3, E.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-71660-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71660-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12042593 06/3180 5 4 3 2 1 0

Preface

The aim of the International Workshop on Databases, Information Systems and
P2P Computing was to explore the promise of P2P to offer exciting new pos-
sibilities in distributed information processing and database technologies. The
realization of this promise lies fundamentally in the availability of enhanced
services such as structured ways for classifying and registering shared informa-
tion, verification and certification of information, content distributed schemes
and quality of content, security features, information discovery and accessibil-
ity, interoperation and composition of active information services, and finally
market-based mechanisms to allow cooperative and noncooperative information
exchanges.

The P2P paradigm lends itself to constructing large-scale, complex, adaptive,
autonomous and heterogeneous database and information systems, endowed with
clearly specified and differential capabilities to negotiate, bargain, coordinate and
self-organize the information exchanges in large-scale networks. This vision will
have a radical impact on the structure of complex organizations (business, scien-
tific or otherwise) and on the emergence and the formation of social communities,
and on how the information is organized and processed. The P2P information
paradigm naturally encompasses static and wireless connectivity and static and
mobile architectures. Wireless connectivity combined with the increasingly small
and powerful mobile devices and sensors poses new challenges as well as oppor-
tunities to the database community. Information becomes ubiquitous, highly
distributed and accessible anywhere and at any time over highly dynamic, un-
stable networks with very severe constraints on the information management and
processing capabilities. Which techniques and data models may be appropriate
for this environment, and yet guarantee or approach the performance, versatility
and capability that users and developers come to enjoy in a traditional static,
centralized and distributed database environment? Is there a need to define new
notions of consistency and durability, and completeness, for example?

The workshop concentrated on exploring the synergies between current
database research and P2P computing. It is our belief that database research
has much to contribute to the P2P grand challenge through its wealth of tech-
niques for sophisticated semantics-based data models, new indexing algorithms
and efficient data placement, query processing techniques and transaction pro-
cessing. Database technologies in the new information age form the crucial com-
ponents of the first generation of complex adaptive P2P information systems,
which are characterized by their ability to continuously self-organize, adapt to
new circumstances, promote emergence as an inherent property, optimize lo-
cally but not necessarily globally, deal with approximation and incompleteness.
This workshop also concentrated on the impact of complex adaptive information

VI Preface

systems on current database technologies and their relation to emerging indus-
trial technologies such as IBM’s autonomic computing initiative.

The workshop brought together key researchers from all over the world work-
ing on databases and P2P computing with the intention of strengthening this
connection. In particular, the workshop series emphasizes discussions about
methodologies, models, algorithms and technologies related to data management
and P2P systems. Researchers from other related areas such as distributed sys-
tems, networks, multi-agent systems, artificial intelligence and complex systems
are also invited. We seek high-quality and original contributions on the following
non-exhaustive list of topics:

– Data models and query languages for P2P systems
– Data placement and query answering in P2P systems
– Indexing, caching and replication techniques for P2P systems
– Transaction management for P2P systems
– Metadata management in P2P systems
– Dynamic schema integration, interoperation
– Emergent semantics and evolution of ontologies in P2P systems
– P2P systems and the Semantic Web
– Wireless and mobile data dissemination, delivery, replication and

synchronization in P2P systems
– Scalability, coordination, robustness and adaptability in P2P systems
– Information usage in P2P mobile ad-hoc networks
– Self-organization and emergent behavior in P2P data management systems
– E-commerce and P2P computing
– Participation and contract incentive mechanisms in P2P Systems
– Computational models of trust and reputation
– Community of interest building and regulation, and behavioral norms
– Intellectual property rights in P2P systems
– Resource allocation in P2P systems
– Scalable data structures for P2P systems
– Scalable infrastructure for discovery and composition of P2P services,

service definition language and filtering
– Market-based mechanisms for the exchange of information services and

resources allocation in P2P systems
– Knowledge discovery and P2P data mining
– P2P-oriented information systems
– Complex adaptive information systems
– Information ecosystems and P2P systems
– Security and privacy in ubiquitous P2P systems
– Grid computing infrastructure based on the P2P paradigm
– Multidisciplinary approaches to P2P systems
– Legal issues in P2P networks

This volume is the post-proceedings of DBISP2P 2005 and 2006, the 3rd
and 4th International Workshop on Databases, Information Systems and P2P

Preface VII

Computing,1. Both editions were held in conjunction with the International Con-
ference on Very Large DataBases (VLDB), the 2005 edition was in Trondheim,
Norway (August 28–29, 2005), while the last one was in Seoul, South Korea
(September 11, 2006). The volume contains the papers presented at the work-
shop, fully revised to incorporate reviewers’ comments and discussions; moreover,
it includes an invited paper.

The volume is organized according to the following sessions held in the two
editions:

Third Edition

– Knowledge Discovery and Emergent Semantics
– Query Answering and Overlay Communities
– Indexing, Caching and Replication Techniques
– Complex Query Processing and Routing
– Semantic Overlay Networks
– Services, Agents and Communities of Interest

Fourth Edition

– Data Placement and Searching
– Semantic Search
– Querying Processing and Workload Balancing
– Continuous Queries and P2P Computing

We would like to thank the invited speakers of the third and fourth edition,
respectively, Karl Aberer, full professor at EPFL-IC-IIF-LSIR, for the talk on
“Managing trust in distributed environments” and Vana Kalogeraki, assistant
professor at the University of California, for the presentation of the work on
“Middleware for reliable real-time sensor data management”.

We express our deepest appreciation to the invited panelists of the third
edition, Karl Aberer, Sonia Bergamaschi, Witold Litwin and Pavel Zezula, who
conducted the panel on the theme “Semantic search: is it any new issue in P2P
systems ?”

As far as the number of papers is concerned, in the third edition we received 39
contributions, out of which 12 were accepted as full papers and 11 as short works.
In the fourth edition, which lasted only one day, among the 29 submissions, 11
works were selected as full papers and 4 as short contributions. All submissions
were reviewed for scope, quality, originality and applicability by the Program
Committee, to which we express our gratitude for preparing high-quality reviews
in a short time. Finally, we would like to acknowledge the Steering Committee
for its guidance and encouragement.

This workshop followed the successful first and second editions, which were
both held in conjunction with VLDB, in Berlin (Germany) and in Toronto
(Canada), in 2003 and 2004, respectively. In recognition of the interdisciplinary

1 http://dbisp2p.ingce.unibo.it/

VIII Preface

nature of P2P computing, a sister event called the International Workshop on
Agents and Peer-to-Peer Computing (AP2PC)2 was held in New York, USA and
in Utrecht, The Netherlands, respectively in 2004 and 2005, both in conjunction
with the International Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS).

October 2006 Sonia Bergamaschi
Sam Joseph

Jean-Henry Morin
Gianluca Moro
Aris M. Ouksel

2 http://p2p.ingce.unibo.it/

Executive Committees

Organizers of the Third Edition

Program Co-chairs Gianluca Moro (main contact)
Dept. of Electronics, Computer Science and Systems
University of Bologna, Italy

Sonia Bergamaschi
Dept. of Science Engineering
University of Modena and Reggio-Emilia, Italy

Aris M. Ouksel
Dept. of Information and Decision Science
University of Illinois at Chicago, USA

Invited Panelists Karl Aberer
EPFL, Lausanne, Switzerland

Sonia Bergamaschi
Dept. of Science Engineering
University of Modena and Reggio-Emilia, Modena, Italy

Witold Litwin
Centre d’Études et de Recherches en Informatique

Appliquée
Université Paris Dauphine, Paris, France

Pavel Zezula
Dept. of Computer Systems and Communications
Masaryk University, Brno, Czech Republic

Web Review System Francesco Guerra and Mirko Orsini
University of Modena and Reggio Emilia, Italy

Organizers of the Fourth Edition

Program Co-chairs Gianluca Moro (main contact)
Dept. of Electronics, Computer Science and Systems
University of Bologna, Italy

X Organization

Sonia Bergamaschi
Dept. of Science Engineering
University of Modena and Reggio-Emilia, Italy

Sam Joseph
Dept. of Information and Computer Science
University of Hawaii at Manoa, USA

Jean-Henry Morin
Korea University Business School, Seoul, Korea

Web Review System Francesco Guerra and Mirko Orsini
University of Modena and Reggio-Emilia, Italy

Steering Committee

Karl Aberer, EPFL, Lausanne, Switzerland

Sonia Bergamaschi, Dept. of Science Engineering
University of Modena and Reggio-Emilia, Italy

Manolis Koubarakis, Department of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

Paul Marrow, Intelligent Systems Laboratory,
BTexact Technologies, UK

Gianluca Moro, Dept. of Electronics, Computer Science and Systems
University of Bologna, Italy

Aris M. Ouksel, Dept. of Information and Decision Science
University of Illinois at Chicago, USA
Claudio Sartori, IEIIT-BO-CNR, University of Bologna, Italy

Munindar P. Singh, Dept. of Computer Science
North Carolina State University, USA

Program Committee

Karl Aberer, EPFL, Switzerland
Alessandro Agostini, ITC-IRST Trento, Italy
Peter A. Boncz, CWI, The Netherlands
Silvana Castano, University of Milan, Italy
Isabel Cruz, University of Illinois, USA
Bin Cui, Singapore-MIT Alliance, Singapore
Alex Delis, Polytechnic University, NY, USA
Asuman Dogac, Middle East Technical University, Turkey
Fausto Giunchiglia, University of Trento, Italy

Organization XI

Francesco Guerra, University of Modena and Reggio-Emilia, Italy
Mohand-Said Hacid, Lyon, France
Manfred Hauswirth, EPFL, Switzerland
Vana Kalogeraki, University of California, Riverside, USA
Achilles D. Kameas, Computer Technology Institute, Greece
Anastasios Kementsietsidis, University of Edinburgh, UK
Manolis Koubarakis, University of Athens, Greece
Matthias Klusch, DFKI, Saarbrücken, Germany
Tan Kian Lee, National University of Singapore, Singapore
Maurizio Lenzerini, University of Rome “La Sapienza”, Italy
Witold Litwin, University Paris 9 Dauphine, France
Pericles Loucopoulos, UMIST, Manchester, UK
Jayant Madhavan, University of Washington, USA
Alberto Montresor, University of Bologna, Italy
Jean-Henry Morin, University of Geneve, Switzerland
Gianluca Moro, University of Bologna, Italy
Enrico Nardelli, University of Rome Tor Vergata, Italy
Wolfgang Nejdl, Learning Lab Lower Saxony, Germany
Wee Siong Ng, Singapore-MIT Alliance, Singapore
Mar̀ıa S. Pèrez-Hernandez, Universidad Politècnica de Madrid, Spain
Jean Marc Pierson, INSA de Lyon, France
Evaggelia Pitoura, University of Ioannina, Greece
Dimitris Plexousakis, Institute of Computer Science FORTH, Greece
Rachel Pottinger, The University of British Columbia, Canada
Wolf Siberski, University of Hannover, Germany
Steffen Staab, University of Koblenz-Landau, Germany
Peter Triantafillou, RA Computer Technology Institute and University of

Patras, Greece
Ouri Wolfson, University of Illinois, Chicago USA
Martin Wolpers, Learning Lab Lower Saxony, Germany
PInar Yolum, Bogazici University, Turkey
Pavel Zezula, University of Brno, Czech Republic

Additional Reviewers and Helpers

Christos Goumopoulos
Riad Mokadem
Gabriele Monti
Mirko Orsini
Sahri Soror

Preceding Editions of DBISP2P

The references to the preceding editions of DBISP2P, including the volumes of
revised and invited papers, are:

XII Organization

– DBISP2P 2004 was held in Toronto, Canada, August 29–30, 2004. The Web
site can be found at http://dbisp2p.ingce.unibo.it/2004/; the proceedings
were published by Springer as LNCS volume no. 3367 and are available
online at: http://springerlink.metapress.com/content/hhe7htl85kw7/

– DBISP2P 2003 was held in Berlin, Germany, September 7–8, 2003. The Web
site can be found at http://dbisp2p.ingce.unibo.it/2003/; the proceedings
were published by Springer as LNCS volume no. 2944 and are available
online at: http://springerlink.metapress.com/content/v9fpfwe6c2t9/

Table of Contents

Third Edition

Knowledge Discovery and Emergent Semantics

Galois Connections, T-CUBES, and P2P Data Mining 1
Witold Litwin

Querying a Super-Peer in a Schema-Based Super-Peer Network 13
Domenico Beneventano, Sonia Bergamaschi,
Francesco Guerra, and Maurizio Vincini

Query Answering and Overlay Communities

Database Selection and Result Merging in P2P Web Search 26
Sergey Chernov, Pavel Serdyukov, Matthias Bender,
Sebastian Michel, Gerhard Weikum, and Christian Zimmer

Multiple Dynamic Overlay Communities and Inter-space Routing 38
Pedro Furtado

Benefit and Cost of Query Answering in PDMS . 50
Armin Roth and Felix Naumann

Indexing, Caching and Replication Techniques

Cooperative Prefetching Strategies for Mobile Peers in a Broadcast
Environment . 62

Wei Wu and Kian-Lee Tan

Symmetric Replication for Structured Peer-to-Peer Systems 74
Ali Ghodsi, Luc Onana Alima, and Seif Haridi

A Gradient Topology for Master-Slave Replication in Peer-to-Peer
Environments . 86

Jan Sacha and Jim Dowling

Complex Query Processing and Routing

A Content–Addressable Network for Similarity Search in Metric
Spaces . 98

Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula

Range Query Optimization Leveraging Peer Heterogeneity in DHT
Data Networks . 111

Nikos Ntarmos, Theoni Pitoura, and Peter Triantafillou

XIV Table of Contents

Guaranteeing Correctness of Lock-Free Range Queries over P2P
Data . 123

Stacy Patterson, Divyakant Agrawal, and Amr El Abbadi

Publish/Subscribe with RDF Data over Large Structured Overlay
Networks . 135

Erietta Liarou, Stratos Idreos, and Manolis Koubarakis

Semantic Overlay Networks

A Semantic Information Retrieval Advertisement and Policy Based
System for a P2P Network . 147

Giovanna Guerrini, Viviana Mascardi, and Marco Mesiti

Cumulative Algebraic Signatures for Fast String Search, Protection
Against Incidental Viewing and Corruption of Data in an SDDS 155

Witold Litwin, Riad Mokadem, and Thomas Schwarz

PARIS: A Peer-to-Peer Architecture for Large-Scale Semantic Data
Integration . 163

Carmela Comito, Simon Patarin, and Domenico Talia

Processing Rank-Aware Queries in P2P Systems . 171
Katja Hose, Marcel Karnstedt, Anke Koch,
Kai-Uwe Sattler, and Daniel Zinn

Semantic Caching in Schema-Based P2P-Networks 179
Ingo Brunkhorst and Hadhami Dhraief

Aggregation of a Term Vocabulary for P2P-IR: A DHT Stress Test 187
Fabius Klemm and Karl Aberer

Services, Agents and Communities of Interest

Peer Group-Based Dependency Management in Service-Oriented
Peer-to-Peer Architectures . 195

Sascha Alda

LEAP-DB: A Mobile-Agent-Based Distributed DBMS Not Only for
PDAs . 203

Peter Ahlbrecht and Andreas Bothe

Models and Languages for Overlay Networks . 211
Stefan Behnel and Alejandro Buchmann

A Peer-to-Peer Membership Notification Service . 219
Roberto Baldoni and Sara Tucci Piergiovanni

Querying Communities of Interest in Peer Database Networks 227
Md. Delwar Hossain and Iluju Kiringa

Table of Contents XV

Fourth Edition

Invited Talk

Middleware for Reliable Real-Time Sensor Data Management 235
Vana Kalogeraki

Data Placement and Searching

Oscar: Small-World Overlay for Realistic Key Distributions 247
Sarunas Girdzijauskas, Anwitaman Datta, and Karl Aberer

Keyword Searching in Structured Overlays Via Content Distance
Addressing . 259

Yu-En Lu, Steven Hand, and Pietro Lió

Semantic Search

XML Query Routing in Structured P2P Systems . 273
Leonidas Fegaras, Weimin He, Gautam Das, and David Levine

Reusing Classical Query Rewriting in P2P Databases 285
Verena Kantere and Timos Sellis

Efficient Searching and Retrieval of Documents in PROSA 298
Vincenza Carchiolo, Michele Malgeri, Giuseppe Mangioni, and
Vincenzo Nicosia

P2P Query Reformulation over Both-As-View Data Transformation
Rules . 310

Peter McBrien and Alexandra Poulovassilis

RDFCube: A P2P-Based Three-Dimensional Index for Structural Joins
on Distributed Triple Stores . 323

Akiyoshi Matono, Said Mirza Pahlevi, and Isao Kojima

Query Processing and Workload Balancing

Optimal Caching for First-Order Query Load-Balancing in
Decentralized Index Structures . 331

Anwitaman Datta, Wolfgang Nejdl, and Karl Aberer

On Triple Dissemination, Forward-Chaining, and Load Balancing in
DHT Based RDF Stores . 343

Dominic Battré, Felix Heine, André Höing, and Odej Kao

Priority Based Load Balancing in a Self-interested P2P Network 355
Xuan Zhou and Wolfgang Nejdl

XVI Table of Contents

A Self-organized P2P Network for an Efficient and Secure Content
Location and Download . 368

Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja,
Pilar Manzanares-Lopez, Juan Carlos Sanchez-Aarnoutse, and
Joan Garcia-Haro

Query Coordination for Distributed Data Sharing in P2P Networks 376
Maybin Muyeba and M. Sulaiman Khan

Continuous Queries and P2P Computing

A Comparative Study of Pub/Sub Methods in Structured P2P
Networks . 385

Matthias Bender, Sebastian Michel, Sebastian Parkitny, and
Gerhard Weikum

Answering Constrained k-NN Queries in Unstructured P2P Systems 397
Bin Wang, Xiaochun Yang, Guoren Wang, Lei Chen, Sean X. Wang,
Xuemin Lin, and Ge Yu

Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach 406
Jun Bi, Xiaoxiang Leng, and Jianping Wu

Author Index . 417

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 1–12, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Galois Connections, T-CUBES, and P2P Data Mining

Witold Litwin

CERIA, Université Paris Dauphine, Pl. du Mal. de Lattre, 75016 Paris, France
Witold.Litwin@dauphine.fr

Abstract. Galois connections are bread and butter of the formal concept analy-
sis. They concern objects with properties, represented typically as a single-
valued (.true or null) binary attributes. The closed sets and Galois lattices are
the most studied connections. We generalize them to the relational database
universe with the multi-valued domains. We show interesting queries that ap-
pear from, hard or impossible with SQL at present. As remedy, we generalize
CUBE to a new operator we call θ-CUBE, writing T-CUBE It calculates the
groups according to all the values of the θ operator popular with the relational
joins. We show also the utility of new aggregate functions LIST and T-
GROUP. In this context We finally discuss scalable distributed algorithms in
P2P or grid environment for T-CUBE queries Our proposals should benefit to
both: the data mining and the concept analysis over many objects.

1 Introduction

The formal concept analysis studies the relationship between objects and the proper-
ties in a space of objects and properties. The Galois connection in this universe is a re-
lationship among some objects and some properties. Whether an object has a property
is typically indicated by a binary attribute of the object. Probably the most studied Ga-
lois connection is among a set O of all the objects sharing some set P of properties
such that there is no property beyond P that would be also shared by all the objects in
O. One qualifies (O, P) as closed set. The closed sets over the subsets of a set of ob-
jects sharing a set of properties can be ordered by inclusion over P or O. A popular
result is a Galois lattice. Finding a closed set let us conclude about the maximal
common set of properties. The set may be then abstracted into a concept. The lattice
calculus let us see possible abstractions among the concepts.

For instance, the objects may be the students for some diploma. A property may be
the final “pass” grade at a course, Fig. 1. A closed set would be any couple (S, P) such
that S contains all the students who passed all the courses in P, and, for any other
course, at least one of the students in S failed. It could be for example students 1,3,5
who were the only and all to pass courses a,b,d,e,g. The Galois lattice would show the
inclusion connections. It could show for instance for our closed set that students 1,3
form also a close set over more courses as they share also d. The set of students pass-
ing all the exams (one extremity of the lattice) may or may not be empty. Likewise,
there may or may not be the course that all students pass (the other extremity). The
dean may obviously be interested in mining the resulting (Galois) connections, i.e.,
searching for some closed sets or selected parts of the lattice. Obviously if a close set

2 W. Litwin

includes many more students and much fewer courses than any other, these courses
are perhaps a little too easy.

There were interesting applications of the concept analysis to databases, e.g., to
mine for ISA relationship, [12]. Our example shows however also that the theory of
Galois connections over binary attributes is intrinsically of limited value for that field.
After all, courses usually have multi-valued grades, e.g., 0 to 20 in Dauphine. It is a
truism to say that relational databases deal almost exclusively with multi-valued at-
tributes. If the concept analysis should apply to databases at a larger scale, there is a
need for the related generalization of its universe of discourse. The need may obvi-
ously concern applications to other domains. The latter triggered already two gener-
alization attempts, [4], [11], and a trend called scaling that instead attempt to map the
multi-valued attributes into binary ones. All these proposals were not specific to data-
bases and, as we show later, were in fact too limited for our goal. For instance, the
scaling would typically require a change to the database schema under consideration.
The proposals in [4] would be limited to attributes with totally ordered domain, and,
even in this case, would present other important limitations. Like [11],although for
other reasons.

We therefore propose a different generalization, tailored specially for the database
needs. As the result, we may mine for the Galois connections using SQL. We mine
for the closed sets especially, through a perhaps surprising relationship to the concept
of a grouping in SQL queries through the popular GROUP BY, CUBE etc. operators.
As the result, we propose a generalization of these operators and a new aggregate
function. The database mining gains then new kinds of queries inherited from the
work on the concept analysis, which are hard or impossible to achieve with SQL at
present. In turn, the concept analysis inherits the database techniques for mining large
collections of data. These should help that domain, whose algorithms are basically
limited in practice at present to relatively small collections only, i.e., dozens of ob-
jects usually and hundreds at most.

To give an idea of our proposal, observe that the notion of sharing a multi-valued
property may be given various meanings. Observe further that the basic operation in
the relational database universe of discourse, that is an equi-join, may be meant as a
property sharing. The meaning is that the values of the join attributes are equal through
the “=” comparison operator. More generally, the sharing may concern any operator in
the set θ = {=, ≤, <, <>, ≥, > }. This is the idea in the θ-joins. The meaning of “≤” op-
erator for instance is that an object with a property symbolized by a join attribute value
v, shares this property with any other object whose value v’ of the join attribute is such
that v ≤ v’. Joins seen under this angle are also some Galois connections. Notice in
particular, in the light of the comments to [4] above, that the use of operators “=” and
“<>” does not require a total order on the domain of the join attributes.

Next, observe that the popular GROUP BY operator, also explores the ‘=’ Galois
connection among the objects (tuples) that it groups over the given set of (grouping)
attributes. More generally, the popular CUBE operator groups over any subset of the
set of the grouping attributes, but also along the same ‘=’ connection, [8]. A group T
over some of the attributes under the CUBE, together with every other column form-
ing a group over some other attributes of the tuples in T, if there are any such

 Galois Connections, T-CUBES, and P2P Data Mining 3

columns, form a closed set in this sense. Hence, CUBE is the basis for some closed
sets computation and analysis. Subsequently, one may order the closed sets by inclu-
sion, getting a generalized Galois lattice.

The generalization of the grouping operators we propose below follows this ap-
proach. In short, the new operators group for the other θ-operators as well. We may
then calculate the closed sets also over the other θ values. The idea is somehow simi-
lar to that in θ-joins with respect to the ‘=’-join (equi-join). The new operator general-
izing the CUBE for instance, groups as CUBE, but over the other θ values as well,
even different ones combined in a single grouping operation. We term it T-CUBE and
read θ-CUBE. It. We act similarly with respect to GROUP BY, ROLLUP and
GROUPING SETS, proposing the T-GROUP BY etc. The Galois lattices can be fur-
ther formed by inclusion over the closed sets.

Like CUBE, T-CUBE does not show explicitly the tuples it has grouped to form a
closed set. We combine for this purpose the operator with the LIST aggregate func-
tion [14]. To show the attributes of the closed set, we propose a new aggregate func-
tion we call T-GROUP. The function renders an aggregated value at an attribute iff
given tuples form a group at that attribute over given θ. Otherwise, the result of T-
GROUP is null. As typically for the databases, we can further combine the mining of
a closed set with that of the attributes not in the set. We can apply any SQL aggregate
function to these attributes. Likewise, we can apply aggregate functions other than T-
GROUP to the attributes forming the closed sets.

One knows well that CUBE operator is hard to evaluate. The evaluation of T-
CUBE may be obviously be even harder. A variety of algorithms for CUBE have
been proposed and could serve for ‘=’ closed sets calculus. We propose below algo-
rithms applying also to the other θ ‘s. They use the scalable distributed calculus of
P2P or grid type that appears the most practical. One algorithm uses a distributed hash
scheme valid for all θ’s. Another scheme we termed SD-ELL is specific to θ = ’≥’.

Below we recall the formal definitions of the closed sets and of Galois lattices.
Next we define the syntax and semantics of T-CUBE. Finally, we discuss the compu-
tation of our closed sets. We conclude with the direction for the future work.

2 Galois Connections

The Galois connections are the mathematical framework for extracting concepts and
rules from other concepts. The closed sets and the Galois lattices are the most studied
connections. To recall the basics, a formal context is a triplet (O,A,I), where O is a set
of objects, A is a set of attributes, and I is a binary relation between A and O
(I⊆O×A). The notation o I a, o∈O, a ∈A, indicates that (o,a) ∈ I. For O1⊆O, let O1’
be the set of the common attributes to all these objects, i.e., O1’= {a∈A | o I a for each
o∈O1}. Vice versa, for A1⊆A, let A1’ be all the objects verifying all the attributes of
A1, i.e., A1’= {o∈O | o I a for each a∈A1}. A Galois connection (GC) is the pair of
mappings that we denote (f, g), over P(O) and P(A), where: f: O1→O1’ and g:
A1→A1’. The couple (O1, A1) where O1 = A1’ and A1 = O1’ constitutes a closed set,
(CS), also called concept. The set O1 (vs. A1) is called extent (vs. intent) of (O1, A1).

4 W. Litwin

Fig. 1. A formal context C and its Galois lattice

We usually represent an object o as a tuple with an OID attribute and the binary at-
tributes a that evaluate to .true or ‘1’ iff (o I a). Thus a = 1 means that o possesses the
property represented by a. Fig.1 is an example of a formal context represented in this
way, with O = (1,2,3,4,5,6,7) , e.g. students and A = (a,b,c,d,e,f,g,h), e.g., exams.

The (double) inclusion relation we denote as “≤ “ defines furthermore a partial
order of all the concepts over a formal context:

(O1,A1) ≤ (O2,A2) ⇔ O1⊆O2 and A1⊇A2 ⇔ (O1, A1) is a subconcept of (O2,A2) ⇔ (O2,
A2) is a superconcept of (O1,A1).

A sub-concept corresponds thus to a concept specialization, with possibly less
objects, but with possibly more .true attributes in common (common properties). A
super-concept corresponds to the opposite, i.e., realizes an abstraction of its sub-
concepts. A Galois lattice (GL) is finally the set of all the concepts, ordered by the
relation ≤. Fig.2 shows the GL over the formal context at Fig. 1. Notice that we rep-
resent the sub-concepts above the super-concepts. Several algorithms determine the
CSs, or a GL over a formal context [7] [10]. In practice, these algorithms work only
for contexts of a few hundreds of objects at most, i.e., small from the database mining
perspective.

3 Multi-valued Galois Connections

A relational database contains tuples whose attribute domains are typically multi-
valued. This makes the notion of a GC and the related apparatus of the concept analy-
sis theory basically inappropriate for the database management. The starting point of
any application of these notions to the databases has to be some generalization to the
multi-valued domain. We proceed towards this goal as follows. First, our objects of
interest are the (relational) tuples We further define property sharing as follows. As
we mentioned, the concept of a θ-join already provides some meaning of such sharing
for the join attributes. We consider further a grouping operator θ, θ ∈ {=, ≤, <, <>,
≥, >}. Let a (t) be an attribute value of tuple t. Then, given θ, a set T of tuples t share
the property defined by one or more following attribute values c:

θ = ‘=’ ⇒ T = {t : a (t) = c}, θ = ‘≤’ ⇒ T = {t : a (t) ≤ c}...

 Galois Connections, T-CUBES, and P2P Data Mining 5

Accordingly, consider that we choose c and θ at some attribute x. We say that T forms
a θ-group for c at x, if every t in T shares c value according to the above rules. In the
vocabulary of θ - joins, a tuple t belongs to a group formed at x iff t.x θ c =.true. We
then call c a common property of group T. As usual, one can define the grouping at
several attributes, as the intersection of the groups at each attribute chosen.

Given for each x a choice of θ and of some c, present in some tuple, we say that T
and some set A’ of its attributes form a θ-closed set (T, A’) if T contains all and only
tuples forming the groups for each attribute in A’, and there is no group involving all
the tuples of T on an attribute not in A’. We abbreviate the term generalized closed set
to θ-CS. The notions of a multi-valued θ-Galois connection (θ-GC) and of a multi-
valued θ-Galois lattice (θ-GL) define accordingly.

The choice of c for defining a θ-group and a θ-CS can be the usual one for θ = ‘=’.
For the other θ values, we generalize the usual rule. Let some tuple s, termed seed, be
in the table subject to the grouping. Let s.x be the value of attribute x of s. Let T be the
group formed using some θ values at some attributes of s. Let θ (x) denote θ used at
attribute x. Then, if s.x defines a group for θ (x) over tuples in T, we set c = s.x. We
form A’ from all the groups formed in this way over s.

We represent (T, A’) for a relational calculus basically as a tuple t = (T, v(A)),
where for each attribute x ∈ A’, t.x = c otherwise t.x is null what we denote as t.x =
‘_’. We qualify this representation of a θ-CS as basic. Observe that our rule for v (A)
defines in fact a specific aggregate function, in the common, relational database,
sense. We consider therefore also the aggregate representations of a θ-CS, where one
forms t.x using a different aggregate function.

Example 1. We now illustrate our notions of θ - groups and of θ-CS, and their interest
for the database mining. Hence, consider Table 1, tabulating relation S of students at
Dauphine with key S#, and with the grades per course a,b…h. We wish to find any
students with the grades of Student 1 for course a. If so, we wish to mine for the
courses where these students also share the respective grade student 1.

The θ = ‘=’ at all the attributes of S answers our query. Students {1, 2} form then
the group at a sharing c = 12. They form also the groups at f, for c = 13. The couple
({1, 2}, {a = 12, f = 13}) forms ‘=’-CS, responding to our query. We aggregate this θ-
CS to the tuple ({1, 2},12,_ ,_,_,_,12,_,_}) compatible with the original table and be-
ing the basic representation of the CS.

It should be seen that no current SQL dialect expresses the discussed query. Notice
also that the calculus would apply to the single-valued attributes, e.g., to pas an exam
for a student. It would lead to the usual CSs.

The similar query, but for any student and any course produces several θ-CSs :

({1,2,4,6}, {f = 13}), ({1,3,4}, {g = 12}), ({4, 6}, {b = 14, f = 13}), ({1, 4}, {d = 10,
f = 13, g=12})…

We now mine for every student at least as good as student 1 for course a, and per-
haps for other courses that we wish to mine therefore as well. We apply θ = ‘≥’ at all
the columns, perform the grouping on column a, for a = 12, and find the groupings at
other columns. We get the following θ-CS:

({1, 2,4,5},12,_ ,6,10,_,_,_,6})

6 W. Litwin

Table 1. Table S

S# A b c d e f g h
1 12 16 6 10 12 13 12 6

2 12 12 8 12 11 13 11 8

3 10 13 16 14 11 8 12 10

4 13 14 11 10 13 13 12 14

5 17 10 10 14 13 10 14 12

6 0 14 3 8 4 13 11 10

Next, we wish the least grade of these students for every course, i.e., the minimal
competence level they share. We use at each column the aggregate function c =
minT (x), where T denotes the students in the group of student 1 over a. Our result is
now:

({1, 2,4,5},12,10 ,6,10,11,10,11,6}).

The result meets the definition of a CS over multi-valued attributes proposed in [4],
termed a generalized CS. The example illustrates that the definition in [4] is a specific
case of ours, limited to a ‘≥’-CS, in our vocabulary.

Yet alternatively, for our group {1,2,4,5}, and column b for instance, one could
mine for avg (b). The result b = 13 would give a different measure of the difference
between the grade of student 1 and of the other students for this course. Likewise, we
may ask for students who are at least as good as any other student for any set of
courses. The set of all ‘≥’-CSs will be the answer. In this example its cardinal is in
fact 39. The calculus for the actual course, with about 20 students, showed over 6.000
θ-CSs. This hints about the difficulties for the efficient processing.

Next, we may have interest in the students at most as good as student 1 on a and
possibly at some others courses, or better etc., [15]. We would use θ = ‘≤’ or θ
= ‘>’at all columns getting, in the latter case, CS= ({4,5},12,_, _,_,12, _,_,_}). Again,
no current SQL dialect would express the discussed queries.

4 T-CUBES

The notion of grouping is popular with the database management since the introduc-
tion of GROUP BY operator. It calculates a single grouping over some columns. It
uses Θ = ‘=’ in our vocabulary. Operators for multiple groupings followed. Among
them, CUBE is the most general at present. We recall that CUBE (a1…an) calculates
all the groups over all the subsets of {a1…an} for Θ = ‘=’ in our vocabulary. The
CUBE appears as the natural basis for the calculus of θ-GCs in general, and of θ-CSs
specifically. Notice that the notion of θ-CS appears as a natural 2-d extension of that
of a group. It operates indeed not only on the tuples common to the group, but also
on the common properties.

For our purpose, one has to first generalize CUBE operator so to accept the other
values of θ as the grouping criteria. Next, one has to accompany it with aggregate

 Galois Connections, T-CUBES, and P2P Data Mining 7

functions that show the θ-CS composition, with respect to both the tuples and the at-
tribute values. Notice that CUBE by itself does not provide the group composition at
present. Our proposal is as follows.

We consider a new operator we call T-CUBE. The operator allows for any θ at
any of the columns it should operate upon. It performs the multiple groupings accord-
ingly, e.g., those in Example 1. For θ = ‘=’, T-CUBE reduces to CUBE. Over the
groups provided by T-CUBE, we use basically two following aggregate functions to
form the θ-CS tuple:

1. The LIST (I) function, [14], where I indicates the attribute(s) chosen to identify
each tuple composing the θ-CS.
2. The T-GROUP (θ, x) function. This function tests whether column x forms a group,
given a seed. If so, it renders c as the result, otherwise it evaluates to ‘_’. In the latter
case, it may invoke another aggregate on the column.

For convenience, we consider T-GROUP (x) = T-GROUP (=, x). We also consider
T-GROUP implicit for every attribute without a value expression named in the Select
clause and T-CUBE. T-GROUP inherits then for each attribute its θ under T-CUBE.
The function is also implicit for attributes without a value expression and not in the T-
CUBE, provided T-CUBE uses only one θ value for all the grouping attributes.

We further consider that T-CUBE allows for a restriction on attributes X that is en-
forced only when X are processed as the grouping attributes. For instance, in our mo-
tivating example, one may indicate that, for query Q, only the values of a above 0 are
of interest for θ = ‘≥’ groups to form at this attribute. When T-CUBE evaluation in Q
leads in turn to the grouping on attribute b only, again just for instance, then Q con-
cerns potentially all the values of a. Hence, we may a get a θ-CS involving student 6
with 0 grade.

Finally, as we allow for θ ≠ ‘=’ in T-CUBE, we implicitly generalize the GROUP
BY, ROLLUP… to, respectively, T-GROUP BY, T- ROLLUP... clauses.

Example 2. T-CUBE (a,b,c) means CUBE (a,b,c). Next, T-CUBE (≥,a,b,c) means the
groupings using θ = ‘≥’ at all three attributes. To the contrary, T-CUBE (≥a, =b, >c)
means the groupings using the different θ values at each attribute. Finally, T-CUBE
(=,a : a <> 0,b,c) limits the interest to groups formed at a only for a not 0.

Next, the following query produces mining (1) requested in Example 1. The function
T-CUBE is implicit at attributes a…h.

Select List (s#),a,b,c,d,e,f,g,h
from S
T-CUBE (a)
having a = (select a from S where s# = 1)

Here the functions T-GROUP (=, a)… are implicit. We could write the query alterna-
tively in many ways, [15]:

The next easy query also follows up on Example 1. It gets the generalized CS of
[4], adds to it the average values for b at each group, and restricts the mining to CSs
formed from at least 2 members.

8 W. Litwin

Select List (s#), min (a), min (b), min (c), min (d), min (e), min (f), min (g),
min (h), avg(b)
from S
T-CUBE (≥, a,b,c,d,e,f,g,h)
having count(*) > 1;

See [15] for more motivating examples.

5 T-CUBE Evaluation

The CUBE possibly generates many and big groups [8]. T-CUBE may obviously
generate even larger groups. Efficient algorithms for T-CUBE queries are therefore
crucial. Besides, with respect to our aggregate functions, the single-attribute LIST
function, limited in this way with respect to its semantics in [14], but sufficient here,
is standard at SQL Anywhere Studio. This DBMS does not however offer CUBE.
Tentative implementations of single-attribute LIST as user-defined functions were
also attempted under Oracle that has CUBE. In turn, we are not aware of any imple-
mentation of T-GROUP function as yet. Fortunately, one may expect the task of cre-
ating T-GROUP as a user-defined function rather simple. These are already in the
commercial word, e.g., Oracle and DB2. SQL Server should get user-defined func-
tions in the next release. DB2 and SQL Server have CUBE

With respect to T-CUBE evaluation a scalable distributed architecture for grid or
P2P environment seems the best basis at present, [15]. We consider that the dis-
patcher node (peer) coordinates the query evaluation. It calculates any restrictions,
and distributes, possibly uniformly, the remaining calculus of θ-CSs to the P2P appli-
cation nodes. Only one node possibly determines a θ-CS. The number of nodes in-
volved is chosen so that each one has a reasonably small and about the same number
of θ-CSs to find. A Scalable Distributed Data Structure (SDDS) , e.g. an LH* file,
[13], stores the (distributed) result, possibly in the distributed RAM, for orders of
magnitude faster access than to disks. Each θ-CS has a key, unique regardless of, per-
haps, its duplicate production by different nodes. A duplicated θ-CSs if any, is disre-
garded in this way when the node calls its local SDDS client component with. Each
node reports to the dispatcher once it terminates. The dispatcher performs any post-
processing or returns the control to the user.

To design the algorithms, one may start either from the database heritage or from
the formal concept analysis heritage. The former approach implies the reuse of
GROUP BY and CUBE algorithms, of some of a general relational query evaluation,
and of some for an SDDS. The was a large body of work in these domains, [9], [8],
[16]. The latter direction implies the algorithms already proposed for computing bi-
nary CSs, [10]. More specifically, it involves the algorithms for generalized CSs, [4],
[5]. We now examine both directions

5.1 Database Heritage

We target a general algorithm, applying to every θ. Algorithms valid for some θ only,
θ = ‘=’ especially, are thus out of scope here. Notice however, as we mentioned, that

 Galois Connections, T-CUBES, and P2P Data Mining 9

the major DBMSs have already the CUBE operator, making the implementation of
‘=’-CS calculus potentially simpler. As for θ-joins, we consider some nested-loop ap-
proach. The grouping calculus (i) visits thus sequentially all the tuples concerned, and
(ii) for each tuple, it examines all the possible subsets of the attribute values. For each
choice, termed the current seed, it visits other tuples in T, perhaps all, to determine the
existing groups.

For instance, if we start with student 1, the successive seeds could be (12,_
,_,_,_,_,_,_}), (_,16 ,_,_,_,_,_,_}), (12,16 ,_,_,_,_,_,_}), (_,_ ,6 ,_,_,_,_,_}), (12,_,6
,_,_,_,_,_})… The 1st seed means the grouping calculus over a = 12. Next seed leads
to the grouping over a = 12 and b = 16 etc. Different seeds may produce different θ-
CSs. They may alternatively produce a duplicate. The latter case results for instance
from (12,_ ,_,_,_,_,_,_}) and of (_,_ ,_,_,_,13,_,_).

Our SD calculus replicates T on N > 1 nodes, numbered 0,1…N-1. The choice of N
should let each node to compute θ-CSs only for a fraction of all the seeds. The subse-
quent determination of N may be centralized or distributed. The former defines N up-
front, given the estimate of the number of seeds to process and perhaps of θ-CSs
wished to calculate per node. The latter lets the nodes to determine N dynamically.

We hint here about the centralized distribution only, see [15] for more. We form
the seed as a large integer s concatenating the grouping attributes. Each application
node generates the seeds or gets them pre-computed in a file, to avoid the duplicates.
Then, all nodes use the same hash function h, mapping s on some number a = 0,1…N-
1, where N is a parameter of h. Node a calculates then the θ-CS only for s such that
h (s) = a. The dispatcher chooses N so to divide enough the interval [0, max(s)],
where max(s) is the actual or a maximal possible s, e.g., with all the bits equal to 1.
Each node attempts to store each θ-CS computed, with its key and all the aggregated
values into SDDS, through its client. The key is the value of θ-CS also seen as inte-
ger. This eliminates the duplicates, if any, as we have indicated.

5.2 Concept Analysis Heritage

Several algorithms for CS and GL calculus for binary attributes exist, e.g. the
Ganter’s classic, [7]. As we mentioned, the universe of discourse of these algorithms
makes them unfit for our database mining purpose. Most calculate a GL that is the is-
sue we do not address here (yet). Whether some algorithms can be generalized to our
goal remains an open issue.

The concept analysis community has of course noticed the multi-valued attributes.
However the main direction to formally deal with, called scaling, was apparently
simply to conceptually map such attributes into the binary ones, [11]. The scaling also
seems unfit for our purpose. An alternative and exclusively formal approach to multi-
valued GLs was suggested in [11]. It starts with a generic concept of description. This
one assigns to an object set-valued attribute values, in the way somehow similar to the
way proposed by the symbolic objects approach, [3]. It then orders the objects into a
GL according to the inclusion of the descriptions (called precision of the descriptions)
Our definition of GCs on the basis of the values of the θ-operator is “orthogonal” to
the formalism of [11]. That formalism will be perhaps of more use for the databases if
the set-oriented attributes become more popular.

10 W. Litwin

Another generalization attempt, we already somehow discussed, apparently un-
known to [11], is that in [4], together with the subsequent algorithms in [5]. In our
approach, these proposals are all limited to the ‘≥’-CSs. In contrast, [4] mentions
generalization directions we do not deal with, e.g., towards the fuzzy sets. Next, the
proposed algorithms are not designed for the groupings with restrictions. They gener-
ate the full sets of ‘≥’-CSs. Already for quite a few tuples and attributes, these sets
are in millions of CSs, [15].

Among these algorithms, one termed ELL, generating the ‘≥’-CSs only, i.e., with-
out their GL, appears the fastest, [2]. ELL has two formulations, termed respectively
iterative and recursive. A scalable distributed version of the iterative ELL was
proposed in [1]. The idea was to partition the set of object or of attributes over the
application sites. Unfortunately, as we have found, the calculus needed then the inter-
application node communication, close to gossiping for every CS generated. The mes-
saging cost of the algorithm was consequently prohibitive, already for even dozens of
objects only.

In the wake of the study to overcome this limitation, the recursive ELL appeared
an alternate basis for the scalable distributed computation. The “key to the success”
was to replicate T1. This, - to offset the trouble in [1] that appeared largely due to the
partitioning of T instead. We have termed the new algorithm SD-ELL. Like the cen-
tralized recursive ELL, SD-ELL recursively splits the computation C of the set of the
CSs over T into more and smaller computations of subsets. It then distributes the com-
putations with the copies of T on the application nodes. In the nut-shell, the SD-ELL
dispatcher first picks up any tuple, let us say Student 1 in our Table S. It then splits C
into C1 that calculates all the CSs that contain 1, and C~1 that does the opposite. C1 in-
volves in particular the calculus of the CS, let it be A1, generated by 1, i.e., containing
all and only tuples sharing all the values in 1. Technically, A1 contains thus all and
only the tuples with the attribute values greater or equal to those in 1. The dispatcher
calculates A1 by itself. In our example, we have simply A1 = {1}.

If only two nodes are available, i.e., N = 2, then the dispatcher sends the replicated
T and the requests to perform the respective computations to these nodes. Each node
uses then locally a slightly modified version of the interactive ELL. The nodes collect
the calculated CSs in a (common) SDDS file. With luck, the CPU load of each node is
about ½ of a single node. If it is too much or there are more volunteering nodes, the
dispatcher decomposes the tasks further. To decompose C1, the dispatcher picks up
any element in the set T/A1. This set contains all the tuples that can lead to a CS con-
taining 1. Those in A1 other than 1 obviously cannot.

The dispatcher could pick up thus Student 2. C1 partitions then recursively into (i)
task C1,2 computing all the CSs that contain both 1 and 2, and (ii) task C1,~2 that con-
tains CSs with 1 alone. Each task goes to an application node, again along with the
replicated T. Now, with the uniform distribution luck, both task may end up calculat-
ing about ½ of the CSs devoted to C1. There is also again the CS, let us call it A1,2
that the dispatcher may calculate by itself. A1,2 contains all the tuples sharing the
properties common to both 1 and 2. Actually, A1,2 = {1,2,4}.

On the C~1 task side, the dispatcher can first determine the actual set of tuples that
cannot generate a CS with 1. This set, let it be R1, has to have all the tuples with the
attribute values that are at most equal to the respective ones in 1. Actually we have

1 Appeared during brainstorming on the alternatives to [1] with G. Levy & F. Baklouti.

 Galois Connections, T-CUBES, and P2P Data Mining 11

R1 = {1}. The dispatcher may further decompose C~1 as above, except that it uses R1

instead of A1. That is, it first picks up any element in the set T/R1, let us say 2 again.
Then it defines the tasks C~1,2 calculating all the CSs that contain 2, but not 1, and its
“sibling” C~1,~2 that contains neither tuple. The tasks can be sent to two nodes, again
along with T.

The replication of T results from a subtlety of the above dichotomies. The calculus
of CSs may lead to a kind of collisions for SD-ELL, although not the same as for the
hashing calculus. The collision may concern a task that should not include a tuple,
e.g., C1,~2 with its sibling, C1,2 here. A set generated at the former, intended as a CS,
may happen to be in fact only a strict subset of a CS at the latter, hence not a CS at all
in fact. The difference may be a tuple to avoid at the former, student 2 here. Any CS
involving this tuple should be, and effectively is, generated by the sibling, by its defi-
nition itself. The task generating the subset should therefore be able to recognize the
collision locally. It can, by testing, for each generated set, each tuple to avoid speci-
fied in the task definition, e.g., 2 in our case. The test should show that the attribute
values of the tuple do not share the common properties of the set. We recall that these
are the minimal value of each attribute over the set. Having a copy of T, let every
node to know locally any such values. Iff the test fails, the node recognizes the colli-
sion and drops the set.

In our example for instance, C1,~2 generates the set {1,3,4,5,6}. The properties
shared by all the elements of the set are (0,10,3,8,4,8,11,6). The result is not a CS.
Student 2 indeed also shares these properties. Hence, 2 must belong to the resulting
CS, involving thus the set {1,2,3,4,5,6}. However, task C1,2, by its definition, already
calculates every CS involving 2. Hence, set {1,3,4,5,6} at the node with C1,~2 is a col-
lision. The node of C1,~2 identifies the fact by the local test of the attribute values of 2,
using its copy of T. As the result, it drops the set {1,3,4,5,6}.

All together, provided again the uniform distribution of the values, the 2nd level of
decomposition of both C1 and C~1 on four nodes, reduces the calculus time to about ¼
of that on a single-node. The dispatcher can continue to decompose each task recur-
sively. Each decomposition reduces the remaining set of tuples, after chopping off the
next A or R. Hence, the dispatcher can decompose and possibly reduce the overall
execution time, as long as (i) the remaining set of tuples is not empty, and/or (ii) there
are spare P2P nodes. One can possibly run into thousands of nodes. A P2P or grid net,
seems in this way the only way towards the practical response time for a larger T,
characteristic of the database mining.

The SD application of ELL (SD-ELL) appears a potential basis for ‘≥’-CSs calcu-
lus, with respect to both the distribution and the calculus schemes. Provided however
that one can re-engineer it for the restrictions. See [15] for more on SD-ELL.

6 Conclusion

T-CUBE operator, coupled with the LIST and T-GROUP aggregate functions, ap-
pears useful for data mining. through the multi-valued Galois connection analysis in
larger collections. The P2P and grid environment appears the most appropriate im-
plementation support. Known algorithms for the CUBE processing may apply to T-
CUBE for specific θ values.

12 W. Litwin

Future work should concern deeper analysis and implementation of the described
T-CUBE evaluation algorithms. One should also implement the multi-attribute LIST
and T-GROUP functions The processing of the (multi-valued) θ-GLs remains to be
studied. It seems related to lattices in [6]. Finally, the operators T-GROUP BY, T-
ROLL UP, T-GROUPING SETS should be studied on their own.

Acknowledgments. A grant from Microsoft Research partly supported this research.
The European Commission project ICONS no. IST-2001-32429 helped with early
work towards SD- ELL.

References

1. Baklouti. F, Lévy. G. Parallel algorithms for general Galois lattices building. WDAS 2003,
Carleton Scientific (publ.).

2. Baklouti. F, Lévy. G. A fast and general algorithm for Galois lattices building. Submited
to the Journal of Symbolic Data Analysis. April 2005, 1st revision.

3. Diday, E. Knowledge discovery from symbolic data and the SODAS software. The 4th Eu-
rop. Conf. on Principles and Practice of Knowledge Discovery in Databases, PPKDD-
2000. Springer (publ.).

4. Diday. E, Emilion. R. Treillis de Galois maximaux et capacités de Choquet. Cahier de Re-
cherche de l’Acadèmie des Sciences. Paris, t.325, Série I, p.261-266, 1997.

5. Emilion. R., Lambert. G, Lévy. G, Algorithmes pour les treillis de Galois. Indo-French
Workshop., University Paris IX-Dauphine. 1997.

6. Fagin, R. & al. Multi-Structural Databases. Intl. ACM Conf. on Principles of Database
Systems. ACM-PODS 2005.

7. Ganter. B. Two basic algorithms in concept analysis. Preprint 831, Technische Hochschule
Darmstadt 1984.

8. Gray, J & al. Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery J.,1 , 1, 97,
29 – 53.

9. Garcia-Molina, H., Ullman, J., Widom, J. Database Systems: The Complete Book. Pren-
tice Hall, 2002.

10. Ganter, B. Wille, R., Franzke, C. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, 1999, 294.

11. Gugisch, R. Many-valued Context Analysis using Descriptions. H. Delugach and
G. Stumme (Eds.): ICCS 2001, LNAI 2120, 157-168, 2001, Springer-Verlag.

12. Hainaut, J-L. Recovering ISA Structures. Introduction to Database Reverse Engineering.
Chapter 14. (book in preparation), 2005.

13. Litwin, W., Neimat, M.-A., Schneider, D. LH* : A Scalable Distributed Data Structure.
ACM Transactions on Database Systems (ACM-TODS), 12,.96.

14. Litwin, W. Explicit and Implicit List Aggregate Function for Relational Databases.
IASTED Intl. Conf. On Databases and Applications, 2003.

15. Litwin, W. Galois Connections, T-CUBES, & P2P Database Mining. 3rd Intl. Workshop
on Databases, Information Systems and Peer-to-Peer Computing. VLDB 2005. Also
CERIA Res. Rep. 2005-05-15, May 2005

16. Litwin, W. Scalable Distributed Data Structures. ACM 13th Conf. On Inf. and Knowledge
Mangment (CIKM-2004), Washington DC. 3h Tutorial.

Querying a Super-Peer in a Schema-Based

Super-Peer Network�

Domenico Beneventano, Sonia Bergamaschi, Francesco Guerra,
and Maurizio Vincini

Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

Via Vignolese 905, 41100 Modena, Italy
bergamaschi.sonia@unimore.it

Abstract. We propose a novel approach for defining and querying a
super-peer within a schema-based super-peer network organized into a
two-level architecture: the low level, called the peer level (which con-
tains a mediator node), the second one, called super-peer level (which
integrates mediators peers with similar content).

We focus on a single super-peer and propose a method to define and
solve a query, fully implemented in the SEWASIE project prototype.

The problem we faced is relevant as a super-peer is a two-level data
integrated system, then we are going beyond traditional setting in data
integration. We have two different levels of Global as View mappings:
the first mapping is at the super-peer level and maps several Global Vir-
tual Views (GVVs) of peers into the GVV of the super-peer; the second
mapping is within a peer and maps the data sources into the GVV of the
peer. Moreover, we propose an approach where the integration designer,
supported by a graphical interface, can implicitly define mappings by
using Resolution Functions to solve data conflicts, and the Full Disjunc-
tion operator that has been recognized as providing a natural semantics
for data merging queries.

1 Introduction

Current peer-to-peer (P2P) networks support only limited meta-data sets such as
simple filenames. Recently a new class of P2P networks, so called schema based
P2P networks have emerged (see [1,2,3,4]), combining approaches from P2P as
well as from the data integration and semantic web research areas. Such networks
build upon peers that use metadata (ontologies) to describe their contents and
semantic mappings among concepts of different peers’ ontologies. In particular,
in Peer Data Management Systems (PDMS) [2] each node can be a data source, a
mediator system, or both; a mediator node performs the semantic integration of a
set of information sources to derive a global schema of the acquired information.

� This research has been partially funded by the UE-IST SEWASIE project and the
italian MIUR PRIN WISDOM project.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 13–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 D. Beneventano et al.

As stated in a recent survey [5], the topic of semantic grouping and organiza-
tion of content and information within P2P networks has attracted considerable
research attention lately (see, for example, [6,7]). In super-peer networks [8],
metadata for a small group of peers is centralized onto a single super-peer; a
super-peer is a node that acts as a centralized server to a subset of clients.
Clients submit queries to their super-peer and receive results from it; moreover,
super-peers are also connected to each other, routing messages over this over-
lay network, and submitting and answering queries on behalf of their clients
and themselves. The semantic overlay clustering approach, based on partially-
centralized (super-peer) networks [9] aims at creating logical layers above the
physical network topology, by matching semantic information provided by peers
to clusters of nodes based on super-peers.

In this paper we propose an approach which combines the schema-based
and super-peer network approaches, that is a schema-based super-peer network
(called SEWASIE network from the UE IST project where it was developed -
www.sewasie.org) organized into a two-level architecture: the low level, called the
peer level (which contains a mediator node), the second one, called super-peer
level, (which integrates mediators peers with similar content). More precisely,

– a peer contains a data integration system, which integrates heterogeneous
data sources into an ontology composed of: an annotated Global Virtual View
(GVV) and Mappings to the data source schemas.

– a super-peer contains a data integration system, which integrates the GVV
of its peers into an ontology composed of a GVV of the peers GVVs and
Mappings to the GVVs of its peers.

Fig. 1. (a) The SEWASIE network; (b) The Brokering Agent/SINodes architecture

A typical scenario of the SEWASIE network is shown in Figure 1.a, where
many data peers, called SINodes (SN1 to SN5) are linked to different super-peers,
called Brokering Agents (BA1 to BA3), according to their semantic content. For
example, SN1, SN2, SN5 contain semistructured data sources related to the

Querying a Super-Peer in a Schema-Based Super-Peer Network 15

textile domain (textile enterprises, news, categories, ...) data sources and are
clustered in the same BA (BA1). The same for BA2, that refers to mechanical
domain which contains links to SN3 and SN4. Furthermore, peer nodes may
belong to more than a BA, for example SN4 and SN5 belong to BA2 and BA1
respectively and to the “news” super-peer BA3.

In this paper we propose a novel approach for querying a super-peer within
a schema-based super-peer network. We focus on querying a single BA (super-
peer) (for querying the SEWASIE network for more than one BA see [10,11])
and propose a method fully implemented in the SEWASIE project prototype.

The problem we faced is relevant as a BA is a two-level data integrated system
then we are going beyond traditional setting in data integration.

We have two different levels of mappings (figure 1.b): The first mapping (m1)
is at the BA level and maps several GVVs of SINodes to the GVV of the BA;
the second mapping (m2) is done within an SINode and maps the data sources
into the GVV of an SINode.

Halevy et al [12] showed that, in general, the mapping from the data sources
to the BA Ontology is not simply the composition of m1 and m2 ; Fagin et al [13]
showed that second order logic is needed to express composition.

In [14,11] is proved that if m1 and m2 are GAV (Global as View) mappings,
like in SEWASIE, the mapping is indeed the composition of m1 and m2 ; this
implies that query answering can be carried out in terms of two reformulation
steps

1. Reformulation w.r.t. the BA ontology (mapping m1): this step refor-
mulates the query in terms of the SINodes known by the BA;

2. Reformulation w.r.t. the SINode ontology (mapping m2): this step
reformulates each SINode query obtained in the first step in terms of the
data sources known by the SINode;.

This is the algorithm proved to be sound and complete for a two-level data
integration system [14].

The paper is organized as follows. Section 1.1 gives an overview of the ar-
chitecture of the SEWASIE system. In section 2, we introduce a two-level data
integration system and in section 3, we define the query reformulation process for
this system. In section 3.2 the agent-based prototype for Query Processing in the
SEWASIE system is briefly presented. For more detailed description see [15,11].

1.1 SEWASIE Architecture

The SEWASIE network is an agent-based network developed within the UE IST
SEWASIE project, and the overall architecture is shown in figure 2.

A user is able to access the system through a central user interface where
(s)he is provided with tools for query composition, for visualizing and monitoring
query results, and for communicating with other business partners about search
results, e.g. in electronic negotiations. Within a SINode, wrappers are used to
extract the data and metadata (local schemas) from the sources. The Ontology

16 D. Beneventano et al.

Fig. 2. SEWASIE Architecture

Builder - based on the MOMIS framework [16,17], is a semi-automatic tool to
create a domain ontology as a Global Virtual View (GVV) which is annotated
w.r.t. a lexical ontology (Wordnet [18], Multiwordnet).

Brokering Agents integrate several GVVs from different SINodes into BA
Ontology, that is of central importance to the SEWASIE system. On the one
hand, the user formulates the queries using this ontology. On the other hand, it
is used to guide the Query Agents to the SINodes providing data for a query.

The SEWASIE network can have multiple brokering agents, each one repre-
senting a collection of SINodes for a specific domain. Mappings between different
brokering agents may be established. A Query Agent receives the queries (ex-
pressed in terms of a specific BA ontology) from the user interface, rewrites the
query in terms of the GVVs of the SINodes (in cooperation with the brokering
agent) and sends the queries to the SINodes. The result is integrated and stored
in a result repository, so that it can be used by the various end-user components.

For example, Monitoring Agents can be used to store a query result in a per-
manent repository. The monitoring agent will then execute the query repeatedly,
and compare the new results with previous results. The user will be notified
if a document has changed that fits her monitoring profile. Furthermore, the
monitoring agent can link multidimensional OLAP reports with ontology-based
information by maintaining a mapping between OLAP models and ontologies.
Finally, the Communication Tool provides the means for ontology-based negoti-
ations. It uses query results, the ontologies of the Brokering Agents, and specific

Querying a Super-Peer in a Schema-Based Super-Peer Network 17

negotiation ontologies as the basis for a negotiation about a business contract.
In addition, it uses several agents to support the negotiators in their decision
process (e.g. by filter and ranking offers of potential business partners, or by
monitoring the available resources of a company).

The SEWASIE consortium is constituted by the University of Modena and
Reggio Emilia, the coordinator, which developed the Ontology Builder, the
Query Agent and the agent architecture in collaboration with the University
of Roma La Sapienza and University of Bolzano respectively. The user interface
is a join effort of University of Roma La Sapienza and University of Bolzano.

2 The SEWASIE System

In this section, we describe the two-level data integration system.
An Integration System IS = 〈GV V, N , M〉 is constituted by:

– A Global Virtual View (GV V), which is a schema expressed in ODLI3 [16],
a modified version of the Object Definition Language1. In particular, in the
GVV we have is-a relationships and both key and foreign key constraints.

– A set N of local sources ; each local source has a schema also expressed in
ODLI3 .

– A set M of GAV mapping assertions between GV V and N , where each
assertion associates to an element g in GV V a query qN over the schemas
of a set of local sources in N .
More precisely, for each global class C ∈ GV V we define:
1. a (possibly empty) set of local classes, denoted by L(C), belonging to

the local sources in N .
2. a conjunctive query qN over L(C).

Intuitively, the GVV is the intensional representation of the information pro-
vided by the Integration System, whereas the mapping specifies how such an
intensional representation relates to the local sources managed by the Integra-
tion System in an SINode.

A SEWASIE system is constituted by:

– A set of SINodes SN = {SN1, SN2, . . . , SNn}, where each SINode is a
Integration System SN = 〈GV V, N , M〉 such that N is a set of data sources.

– A Brokering Agent BA, which is an Integration System BA = 〈GV V, N , M〉
where N = SN , i.e., the local sources of BA are the SINodes.

The semantics of an Integration System, and then of the SEWASIE system, is
defined in [19,11].

In many papers (see [16,17]) we described the MOMIS/SEWASIE approach
for the semi-automatic building of the GV V starting from a set of local sources
and giving rise to a Mapping Table (MT) for each global class C of GV V ,
whose columns represent the local classes L(C) belonging to C and whose rows

1 www.service-architecture.com/database/articles/odmg 3 0.html

18 D. Beneventano et al.

Fig. 3. Example of Mapping in the Mechanical domain

represent the global attributes of C. An element MT [GA][LC] represents the
set of local attributes of LC which are mapped onto the global attribute GA.
As an example, figure 3 shows part of the Mapping Table of the global class
Company (of a BA-GVV) that groups the local class Company of SINode1 and
the local class Company of SINode2. At the level of a SINode, we have that (we
consider SINode2), the global class SN2.company is mapped into the local classes
S1.aziende and class S2.company (where SI and S2 are data sources).

In this paper we face and solve a new problem, that is how to define the con-
junctive query qN associated to a global class C. Our approach is the following:
starting from the Mapping Table of C, the integration designer, supported by
the Ontology Builder graphical interface [20], can implicitly define qN by:

1. using and extending the Mapping Table with
– Data Conversion Functions from local to global attributes
– Join Conditions among pairs of local classes belonging to C
– Resolution Functions for global attributes to solve data conflicts of local

attribute values.
2. using and extending the Full Disjunction operator [21], that has been rec-

ognized as providing a natural semantics for data merging queries [22].

Data Conversion Functions
The designer can define how local attributes are mapped onto the global at-
tribute GA by means of Data Conversion Functions : for each not null element
MT [GA][L] we define a Data Conversion Function, denoted by MTF [GA][L],

Querying a Super-Peer in a Schema-Based Super-Peer Network 19

which represents how the local attributes of L are mapped into the global at-
tribute GA. MTF [GA][L] is a function that mut be executable/supported by the
local source of the class L. For example, for relational sources, MTF [GA][L] is
an SQL value expression; the following defaults hold: if MT [GA][L] = LA then
MTF [GA][L] = LA and, if MT [GA][L] contains more than one string attribute,
then MTF [GA][L] is the string concatenation.

T (L) denotes L transformed by the Data Conversion Function; the schema of
T (L) is composed of the global attributes GA such that MT [GA][L] is not null.

Join Conditions
Merging data from different sources requires different instantiations of the same
real world object to be identified; this process is called object identification [23].
The topic of object identification is currently a very active research area with sig-
nificant contributions both from the artificial intelligence [24] and database [25,26]
communities.

To identify instances of the same object and fuse them we introduce Join
Conditions among pairs of local classes belonging to the same global class. Given
two local classes L1 and L2 belonging to C, a Join Condition between L1 and
L2, denoted with JC(L1, L2), is an expression over L1.Ai and L2.Aj where Ai

(Aj) are global attributes with a not null mapping in L1 (L2). As an example, for
BA-GVV.Company the designer can define JC(SN1.Company,SN1.Company) :

SN1.Company.COMPANY ID = SN2.Company.COMPANY ID.

Resolution Functions
The fusion of data coming from different sources taking into account the problem
of inconsistent information among sources is a hot research topic [27,28,29,23,30].
In the context of MOMIS/SEWASIE we adopt the Resolution Function proposed
in [23]. A Resolution Function for solving data conflits may be defined for each
global attribute mapping onto local attributes coming from more than one local
source.

Homogeneous Attributes: If the designer knows that there are no data
conflicts for a global attribute mapped onto more than one source (that is, the
instances of the same real object in different local classes have the same value
for this common attribute), he can define this attribute as an Homogeneous
Attribute; this is the default in our system. Of course, for homogeneous attributes
resolution functions are not necessary. A global attribute mapped onto only one
source is a particular case of an homogeneous attribute.

As an example, in BA-GVV.Company we define all the global attributes as Ho-
mogeneous Attributes except for Address where we used a precedence function:
SN1.Company.ADDRESS has a higher precedence than SN2.Company.ADDRESS.

Full Disjunction
We want to define qN in such a way that it contains a unique tuple resulting
from the merge of all the different tuples representing the same real world object.
This problem is related to that of computing the natural outer-join of many

20 D. Beneventano et al.

relations in a way that preserves all possible connections among facts [22]. Such a
computation has been termed as Full Disjunction (FD) by Galindo Legaria [21].

In our context: given a global class C composed of L1, L2, ..., Ln, we consider
FD(T (L1), T (L2), . . . , T (Ln)), computed on the basis of the Join Conditions.

The problem is how to compute FD. With two classes, FD corresponds to the
full (outer) join: FD(T (L1), T (L2)) = T (L1) full join T (L2) on (JC(L1, L2)).

In [22] was demonstrated that there is a natural outer-join sequence produc-
ing FD if and only if the set of relation schemes forms a connected, acyclic
hypergraph. In our context, a Global Class C with more than 2 local classes is
a cyclic hypergraph, then we cannot use the algorithms proposed in [22]; the
computation of FD is performed as follows. We assume that: (1) each L con-
tains a key, (2) all the join conditions are on key attributes, and (3) all the join
attributes are mapped into the same set of global attribute, say K. Then, it can
be demonstrated that: (1) K is a key of C, and (2) FD can be computed by
means of the following expression (called FDExpr):

Finally, qN is obtained by applying Resolution Functions to the attributes re-
sulting from FDExpr : for a global attribute GA we apply the related Resolu-
tion Function to T (L1).GA, T (L2).GA, . . . , T (Lk).GA; This query qN is called
FDQuery.

3 Query Reformulation in the SEWASIE System

The query reformulation takes into account two different levels of mappings (fig-
ure 1.b): in [14,11] is proved that if m1 and m2 are GAV mappings, the mapping
is indeed the composition of m1 and m2 ; this implies that query answering can
be carried out in terms of two reformulation steps: 1. Reformulation w.r.t. the
BA ontology and 2. Reformulation w.r.t. the SINode ontology. These
reformulation steps are similar and are defined by considering the reformulation
process for an Integration System IS = 〈GV V, N , M〉, that is constituted by:

1. Query expansion: the query posed in terms of the GV V is expanded to
take into account the explicit and implicit constraints in the GV V : all con-
straints in the GV V are compiled in the expansion, so that the expanded
query can be processed by ignoring constraints. Then, the atoms in the ex-
panded query are extracted from the expanded query.

2. Query unfolding: the atoms in the expanded query are unfolded by taking
into account the mappings M between the GV V and the local sources in N .

The algorithm for Query expansion is reported in [14,11]; its output is the ex-
panded query (called EXPQuery) and its atoms (called EXPAtoms); EXPQuery

Querying a Super-Peer in a Schema-Based Super-Peer Network 21

is an union of conjunctive queries on GV V ; an EXPAtom is a Single Class Query
on a Global Class of the GV V .

In the following we will discuss the unfolding process of an EXPAtom by
taking into account the new approach to define qN of the previous section.

3.1 Query Unfolding

We explain the method by considering the BA level, i.e. the BA ontology. Given
a global class C related to the local classes L1, L2, . . .Ln, we consider a Single
Global Query Q over C:
Q = select <Q_select-list> from C where <Q_condition>

<Q_condition> is a Boolean expression of positive atomic constraints: (GA1 op
value) or (GA1 op GA2), where GA1 and GA2 are attributes of C.

As an example, we consider the following query (denoted by expatom):

The output of the query unfolding process is

1. a set of Single Class Queries over the SINodes GVVs (FDAtoms):

FDAtom = select <select-list> from SINode.C where <condition>

where C is a Global Class of the SINode-GVV.
2. the FDQuery which computes the Full Disjunction of the FDAtoms
3. the resolution functions of the attributes in <select-list>

The query unfolding process is made up of the following steps:

1. Atomic constraint mapping: In this step, each atomic constraint of Q is
rewritten into one that can be supported by the local class.

The atomic constraint mapping is performed on the basis of the mapping
functions defined in the Mapping Table. Moreover, the atomic constraint map-
ping depends on the definition of the Resolution Functions for global attributes;
for example, if the numerical global attribute GA is mapped onto L1 and L2,
and we define AVG function as resolution function, the constraint (GA = value)
cannot be pushed at the local sources, because of the AVG function has to be
calculated at a global level, the constraint may be globally true but locally false.
In this case, the constraint is mapped as true in both the local sources. On the
other hand, if GA is an homogeneous attribute the constraint can be pushed at
the local sources. For example, an atomic constraint (GA op value) is mapped
onto the local class L as follows:

(MTF [GA][L] op value) if MT [GA][L] is not null and
the op operator is supported into L

true otherwise

22 D. Beneventano et al.

2. Select-list computation: The select-list of a FDAtom over the local class
L is computed by considering the union of

1. the attributes in <Q_select-list> with a not null mapping in L
2. the set of attributes used to express the join conditions for L
3. the global attributes in <Q_condition> with a not null mapping in L

The set of global attributes is transformed in the corresponding set of local
attributes on the basis of the Mapping Table.

As an example, the set of FDAtoms for expatom is :

FDATOM1 = SELECT COMPANY_ID, NAME, REGION, ADDRESS, CAPITAL_STOCK
FROM SN1.company
WHERE ((CAPITAL_STOCK) > (50) and (REGION) like (’VENETO’))

FDATOM2 = SELECT COMPANY_ID, NAME, REGION, ADDRESS, SUBCONTRACTOR
FROM SN2.company
WHERE ((REGION) like (’VENETO’) and (SUBCONTRACTOR) like (’yes’))

The FDExpr which computes the FD of FDAtom1 and FDAtom2 is:

FDATOM1 full join FDATOM2 on (FDATOM1.COMPANY_ID=FDATOM2.COMPANY_ID)

The unfolded query is then obtained by applying to each query attribute of
FDExpr, the related Resolution Function:

– for Homogeneous Attributes (e.g. REGION) we can take one of the related
values (indifferently FDATOM1.REGION or FDATOM2.REGION);

– for non Homogeneous Attributes (e.g. ADDRESS) we apply the related Reso-
lution Function (in this case the precedence function).

After the query reformulation process, we need to consider query processing
techniques to evaluate queries over our two-level data integration system. This
was not a focus of our present investigation and of the SEWASIE project; at
present, we have just implemented a “naive approach” in an agent-based proto-
type, that will be described in the next section. Techniques for adaptive query
processing [31] are well suited for our context.

3.2 An Agent-Based Prototype for Query Processing

Figure 4 shows the functional architecture of the system prototype for Query
Management. The coordination of query processing is performed by the Query
Agent, which accepts the query from the Query Tool Interface, interacts with a
BA and its underlying SINode Agents, and returns the result as a materialized
view in the SEWASIE DB.

Playmaker: performs the reformulation of the query w.r.t. the BA ontology.
It has two components: the Expander, which performs the Query expansion,
and the Unfolder, which performs the query unfolding. Once the execution of
the PlayMaker is completed, the output of the Play Maker computation is sent
from the BA to the QA with a single message.

Querying a Super-Peer in a Schema-Based Super-Peer Network 23

Fig. 4. Functional Architecture

Query Agent: it performs the following 3 steps:

1. Execution: for each FDAtom (Parallel Execution)
– INPUT: FDAtom
– MESSAGES: from QA to an SINode Agent
– OUTPUT: a table storing the FDAtom result in the SEWASIE DB

2. Fusion: For each EXPAtom (Parallel Execution):
– INPUT: FDAtoms, FDExpr, Resolution Functions

(a) Execution of FDExpr (Full Disjunction of the FDAtoms)
(b) Application of the Resolution Functions on the result of (a)

– OUTPUT: a view storing the EXPAtom result in the SEWASIE DB
3. Final result

– INPUT: Output of the FUSION step
(a) Execution of the Expanded Query

– OUTPUT: Final Query result view stored in the SEWASIE DB

A this point, the Query Agent sends a message to the Query Tool Interface with
the name of the Final Query result.

SINode Agent: One of the modules of the SINode Agent, the SINode Query
Manager, executes queries on the SINode GVV, with a query processing similar
to the one explained at the BA level.

4 Conclusion and Future Work

Future work will be devoted to investigate efficient query processing techniques
to evaluate queries over two-level data integration systems. Furthermore we will
investigate efficient query techniques for querying the super-peer network.

24 D. Beneventano et al.

The above issues will be the goal of our research group within the running Ital-
ian MIUR founded project WISDOM (http://dbgroup.unimo.it/wisdom-unimo),
which is coordinated by our group.

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The chatty web: emergent seman-
tics through gossiping. In: WWW. (2003) 197–206

2. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The
piazza peer data management system. IEEE Trans. Knowl. Data Eng. 16 (2004)
787–798

3. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing : A vision. In: WebDB.
(2002) 89–94

4. Löser, A., Siberski, W., Wolpers, M., Nejdl, W.: Information integration in schema-
based peer-to-peer networks. In Eder, J., Missikoff, M., eds.: CAiSE. Volume 2681
of Lecture Notes in Computer Science., Springer (2003) 258–272

5. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36 (2004) 335–371

6. Broekstra, J.e.a.: A metadata model for semantics based peer-to-peer systems.
In: Proc. of the 1st WWW Int. Workshop on Semantics in Peer-to-Peer and Grid
Computing (SemPGRID 2003), Budapest, Hungary (2003)

7. Castano, S., Ferrara, A., Montanelli, S., Pagani, E., Rossi, G.: Ontology-addressable
contents in p2p networks. In: Proc. of the 1st WWW Int. Workshop on Semantics
in Peer-to-Peer and Grid Computing (SemPGRID 2003), Budapest, Hungary (2003)
http://www.isi.edu/ stefan/SemPGRID/proceedings/proceedings.pdf.

8. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In Dayal, U., Ra-
mamritham, K., Vijayaraman, T.M., eds.: ICDE, IEEE Computer Society (2003)
49–

9. Löser, A., Naumann, F., Siberski, W., Nejdl, W., Thaden, U.: Semantic overlay
clusters within super-peer networks. In Aberer, K., Kalogeraki, V., Koubarakis,
M., eds.: DBISP2P. Volume 2944 of Lecture Notes in Computer Science., Springer
(2003) 33–47

10. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of
peer-to-peer data integration. [32] 241–251

11. Beneventano, D., Lenzerini, M.: Final release of the system prototype
for query management. Sewasie, Deliverable D.3.5, Final Version (2005)
http://www.dbgroup.unimo.it/pubs.html.

12. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: VLDB.
(2003) 572–583

13. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings:
Second-order dependencies to the rescue. [32] 83–94

14. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: What to
ask to a peer: Ontolgoy-based query reformulation. In Dubois, D., Welty, C.A.,
Williams, M.A., eds.: KR, AAAI Press (2004) 469–478

15. Bergamaschi, S., P. Fillottrani, G.G.: The sewasie multi-agent system. In: Proc.
of the 3rd Int. Workshop on Agents and Peer-to-Peer Computing (AP2PC 2004),
New York City, USA July 19-20, 2004. (2004)

Querying a Super-Peer in a Schema-Based Super-Peer Network 25

16. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration
of heterogeneous information sources. Data Knowl. Eng. 36 (2001) 215–249

17. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an inte-
grated ontology. IEEE Internet Computing 7 (2003) 42–51

18. Miller, A.: WordNet: A Lexical Database for English. Communications of the
ACM 38 (1995) 39–41

19. Cal, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under
integrity constraints. Information Systems 29 (2004) 147–163

20. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Building an integrated
ontology within sewasie system. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein,
R., eds.: SWDB. (2003) 91–107

21. Galindo-Legaria, C.A.: Outerjoins as disjunctions. In Snodgrass, R.T., Winslett,
M., eds.: SIGMOD Conference, ACM Press (1994) 348–358

22. Rajaraman, A., Ullman, J.D.: Integrating information by outerjoins and full dis-
junctions. In: PODS, ACM Press (1996) 238–248

23. Naumann, F., Häussler, M.: Declarative data merging with conflict resolution. In
Fisher, C., Davidson, B.N., eds.: IQ, MIT (2002) 212–224

24. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for
information integration. Inf. Syst. 26 (2001) 607–633

25. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in
data warehouses. In: VLDB. (2002) 586–597

26. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy
match for online data cleaning. In Halevy, A.Y., Ives, Z.G., Doan, A., eds.: SIG-
MOD Conference, ACM (2003) 313–324

27. Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tackling inconsistencies in
data integration through source preferences. In Naumann, F., Scannapieco, M.,
eds.: IQIS, ACM (2004) 27–34

28. Bertossi, L.E., Chomicki, J.: Query answering in inconsistent databases. In
Chomicki, J., van der Meyden, R., Saake, G., eds.: Logics for Emerging Appli-
cations of Databases, Springer (2003) 43–83

29. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl. Data Eng. 15 (2003) 1389–1408

30. Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Cooperative
Inf. Syst. 7 (1998) 55–76

31. Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive
query execution system for data integration. In Delis, A., Faloutsos, C., Ghan-
deharizadeh, S., eds.: SIGMOD Conference, ACM Press (1999) 299–310

32. Deutsch, A., ed.: Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 14-16, 2004, Paris,
France. In Deutsch, A., ed.: PODS, ACM (2004)

Database Selection and Result Merging in P2P

Web Search

Sergey Chernov1, Pavel Serdyukov2, Matthias Bender3, Sebastian Michel3,
Gerhard Weikum3, and Christian Zimmer3

1 L3S Research Center, University of Hannover, Expo Plaza 1, 30539,
Hannover, Germany
chernov@l3s.de

2 Database Group, University of Twente, PO Box 217,
7500 AE Enschede, Netherlands
serdyukovpv@cs.utwente.nl

3 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123,
Saarbrücken, Germany

{mbender,smichel,weikum,czimmer}@mpi-inf.mpg.de

Abstract. Intelligent Web search engines are extremely popular now.
Currently, only commercial centralized search engines like Google can
process terabytes of Web data. Alternative search engines fulfilling
collaborative Web search on a voluntary basis are usually based on a
blooming Peer-to-Peer (P2P) technology. In this paper, we investigate
the effectiveness of different database selection and result merging meth-
ods in the scope of P2P Web search engine Minerva. We adapt existing
measures for database selection and results merging, all directly derived
from popular document ranking measures, to address the specific issues
of P2P Web search. We propose a general approach to both tasks based
on the combination of pseudo-relevance feedback methods. From experi-
ments with TREC Web data, we observe that pseudo-relevance feedback
improves quality of distributed information retrieval.

1 Introduction

Current Web search technologies encounter a number of serious obstacles. The
first one is the size of indexable Web, which can be hardly covered entirely
enough due to limited network bandwidth and finite computational resources
of search engines. Consequently, pages are only periodically updated and the
outcome of most search engines is out of date. Another issue is a “Deep Web”
problem, when search engines cannot get access to the information stored by
commercial information providers or to the resources not linked by any page.
There is also the noticeable social perspective. The most powerful player ever,
Google, monopolizes Web search market. It controls a major part of Web search
requests and can establish its own censorship. We think that a search engine
having resort to P2P technology could be able to overcome the described limita-
tions. Collaborative crawling can span a larger portion of the Web, if each peer

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 26–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Database Selection and Result Merging in P2P Web Search 27

would contribute its own focused crawl into the system. In addition, we disclose
various opportunities of topic-oriented search by using intellectual inputs from
users. These considerations induced us to launch the Minerva project [2], a P2P
Web search engine.

In Minerva, each peer has its own collection of crawled or personal docu-
ments. For efficient query routing, all peers collectively maintain a global direc-
tory, which contains peer-summary information about which peer has documents
for which index terms. This information is organized in peer lists constructed
for each term occurring in the system. For example, each peer list contains df
(document frequency) and a sum of tf (term frequency) for respective term at
each peer plus total number of documents (with sum of their lengths) stored
at this peer. To make these peer lists accessible to any peer, to share network
load and to secure this information from loss, Minerva disseminates all peer lists
using Chord distributed hash table (DHT) protocol [22]. It hashes terms and
peer network addresses to know which peer is responsible for managing which
peer list.

At many points, Minerva resembles a large-scale highly dynamic metasearch
engine. We can leverage and adopt existing solutions from metasearch field,
see Fig. 1 [8]. A query q is posed on the set of peers P. A database selection
problem occurs when we select a subset of peers P’ that most probably contain
relevant documents. Then system sends q to every peer in P’ and obtains a set of
document rankings R’ from the local search engines. A result merging problem
occurs when all rankings in R’ are merged into one ranking Rm and the top-k
results from it are presented to the user.

RmSelection Retrieval<P, q> <P’, q> Merging

P1

P2

P3

P4

P5

P1’

<R’, q>

R1’

P2’

P3’

R2’ Rm

R3’

Fig. 1. A query processing scheme in the distributed search system

Looking for an appropriate scheme for the database selection and result merg-
ing for Minerva we evaluated several database selection and result merging meth-
ods in our prototype. We also proposed new methods based on pseudo-relevance
feedback obtained from the best peer in a rough initial database ranking.

An overview of metasearch and recent work on P2P information retrieval (IR)
is introduced in Sect. 2. We present details of our approach for database selection

28 S. Chernov et al.

and result merging in Sect. 3. The experimental setup, evaluation methodology,
and our results are presented in Sect. 4 and . In Sect. 5 we make some topical
conclusions.

2 Related Work

2.1 P2P Search Platforms

ODISSEA [23] uses two-layered search engine architecture and global index
structure distributed over the nodes of the system. The distributed version of
Fagin’s threshold algorithm [11] is used for result aggregation over the inverted
lists. In PlanetP [5] each node maintains an index of its content and summarizes
the set of terms in its index using a Bloom filter. This approach is effective for
several thousands peers, but it is hardly scalable to long queries.

The issue of efficient score aggregation in P2P IR environment with a struc-
tured topology was addressed in [3]. An algorithmic framework KLEE for dis-
tributed top-k queries was presented in [16].

2.2 Database Selection

All database selection methods fall in two classes: ad-hoc and language model
based.

The ad-hoc database selection algorithms suggested in [27,4] use the docu-
ment frequency of a term in a database as the most important evidence for the
database usefulness. The most popular representative of ad-hoc family is CORI
[4]. It adapts classic tf ×idf formula, which proved its effectiveness for document
retrieval, to the problem of database selection. In that case tf (term frequency)
turns into a document frequency, while idf (inverted document frequency) be-
comes analogous icf (inverted collection frequency).

Another group of ad-hoc approaches considers word counts and merely utilizes
the summarized similarity of documents as a usefulness measure [10]. In that case,
similarity is just a sum of tf × idf weights for each query term in each document.
The most sophisticated among such methods, GlOSS, was presented in [12].

Several works [26,21] contain quite successful attempts to apply language
modeling framework for database selection task. They, again, simply work with
a database as a “virtual document” by concatenating all its documents and
simulate document retrieval. However, experimental results show that the per-
formance of the language model based selection is not inferior to any of ad-hoc
selection methods.

2.3 Result Merging

For consistent merging all search engines must produce a document’s relevance
score using same retrieval algorithm and global statistics. However, this require-
ment is not realistic. For example, under tf × idf scoring scheme the tf com-
ponent is document-dependent and fair across all databases. In contrast the idf
component is collection-dependent and we should globally normalize it.

Database Selection and Result Merging in P2P Web Search 29

When environment is cooperative, i.e. scores and documents statistics are
provided by peers, usually Kirsch’s algorithm [13] is used. At query time it
collects local statistics from the selected databases and normalizes document
scores. The semi-supervised method for merging results in a hierarchical P2P
network [15] uses a centralized database of collection samples. In our setup we
cannot afford learning-based approaches, since system is highly dynamic.

A series of publications [7,4,14] describes a CORI merging strategy, which
heuristically combines both resource and document scores. In [7] it was also sug-
gested that the result merging based on raw tf values is a worthwhile approach
when involved databases are homogeneous. Result merging techniques for topi-
cally organized collections were studied in [14]. Their experiments showed that
global idf normalization is the best method, but they did not consider real Web
pages and overlap between collections.

The approach in [Bau99] is designed for the cooperative environment. A prob-
abilistic ranking algorithm is based on the exported statistics from the search
engines. The language modeling based merging from [21] is developed for unco-
operative setup, the probability of generating a query from the language model
of a document is approximated.

3 Pseudo-relevance Feedback for Distributed IR

Our analysis of the distributed IR state of art showed that there is a lack of
original task-oriented approaches. In particular, the authoritative database se-
lection methods are mostly based on the well-known query-document similarity
measures applied with minor changes to the database selection task. The main
assumption is that the estimated collections can be represented by a concatena-
tion of their documents. At the same time, being merged together text sources
lose their individuality and become very heterogeneous and multi-topically ori-
ented. Consequently, the ambiguity of short Web queries becomes extremely high
with respect to these enormously long virtual documents.

There are several ad-hoc query expansion and language model based query
modeling methods operating on the top-k ranked documents. At the same time,
nobody applied these methods in the scope of distributed IR. Moreover, they
have never been used simultaneously for IR, what appears to be an omission in
our opinion.

The merging task is even more sensitive to the ambiguity of short queries and
lack of context. Obviously, we cannot rely on learning methods, since informa-
tion is outdated quickly in P2P system. Thereupon, pseudo-relevance feedback
can be useful. The language model based retrieval algorithms seem the most
promising nowadays, so we want to investigate their pseudo-relevance feedback
opportunities for merging. We intend not to merely normalize the similarity
scores, but also to improve the retrieval algorithm itself.

In the Minerva system, Web pages are crawled with respect to the user’s
bookmarks and assumed to reflect specific interests. We can exploit this fact
using a pseudo-relevance feedback for finding the “preference” language model

30 S. Chernov et al.

from the most relevant database. We assume that it was crawled by the user
with query-related interests and contains some pages on the relevant topic. For
the pseudo-relevance based model estimation we suggest to use the top-k ranked
documents, obtained after query execution on the most highly ranked database
for the current query. We increase the number of attributes that can be used
to compare databases (query expansion) and weight different attributes w.r.t.
their level of importance for the relevance evaluation (query modeling).

Unfortunately, there is no comparative analysis of pseudo-relevant feedback
techniques. We consider two methods to be good representatives of ad-hoc ex-
pansion methods, based on the popular IR heuristics Robertson’s method [19]
and on the Language Model based approach to IR, Ponte’s method [17]. Both
of them assume that a term is more significant if it appears more often in the
top-k documents than in any document of the collection in average. Two query
modeling methods have been proposed in [28] by Zhai and Lafferty and in [24]
by Tao and Zhai. These methods suppose that any term in the pseudo-relevant
documents is generated from two sources: the pseudo-relevance model of a user
PR, since they were chosen by the users query, and the background language
model GE, which can be approximated by the collection language model well
enough. The latter method takes into account that the probability of a term be-
ing generated by the relevance model is decreasing in parallel with the document
score. In both approaches the estimation of p(tk|PR) for each term tk is done
using Expectation-Maximization (EM) algorithm [9].

3.1 Database Selection

We propose a two-step database selection method. At first, from the set of all
available peers P and a query q we build a peer ranking P’ by the database
selection method described in [21]. For the Global English language model GE
we use an approximation from peer lists corresponding to a specific query. Thus,
peers are scored by:

Score(q, Pi) = −
|q|∑

k=1

log p(tk|Pi) (1)

p(tk|Pi) = λ · ctftk

|Pi|
+ (1 − λ) · p(tk|GE) (2)

p(tk|GE) =
∑|P|

i=1 ctfPi
tk∑|T|

k=1

∑|P|
i=1 ctfPi

tk

. (3)

Here, p(tk|Pi) is the generation probability of term tk of language model for
collection Pi; λ is a empirically set smoothing parameter between 0 and 1; ctftk

is the collection term frequency, the number of term occurrences in the database;
T is a system vocabulary, the full set of distinct terms on all peers; p(tk|GE) is
the generation probability of term tk of Global English language model.

Database Selection and Result Merging in P2P Web Search 31

At the next step, the query q is executed on the best database in the ranking
P’1. At first, the top-k ranked documents are used by ad-hoc query expansion
techniques [19,17], to add new terms to the query. Then, this top-k is utilized by
query modeling techniques [28,24] to estimate generation probability p(tk|PR)
for each query term from the pseudo-relevance language model PR. As a result,
we build new database ranking P” using expanded query and term generation
probabilities. We apply cross-entropy, an information-theoretic measure of dis-
tance between two distributions:

H(q, Pi) = −
|q|∑

k=1

p(tk|PR) · log p(tk|Pi). (4)

Apparently, the lower cross-entropy of a database language model w.r.t. the
pseudo-relevance based language model, the higher similarity of these models.
It also turns out that in our formula we combine two values expressing term
importance: query-specific p(tk|PR) and global p(tk|GE).

3.2 Result Merging

Our merging approach also exploits pseudo-relevance feedback adapted for the
distributed setup. Executing the query on the peer, which won the highest rank
from the database selection algorithm, we obtain the top-k best results for our
pseudo-relevance based model estimation. This language model is then used for
adjusting merging results, one user with a highly specified collection of docu-
ments implicitly helps another user to refine the final document ranking.

As in the database selection approach above, we estimate the probability
p(q|PR) from the pseudo-relevance based cluster of documents PR. The proba-
bility p(q|GE) is again approximated using the peer lists information. After the
probabilities p(q|GE), p(q|PR), and the query q were sent to every peer in rank-
ing P’, we compute cross-entropy between the pseudo-relevance based language
model PR and the document language models for every document Dij :

H(tk, Dij) = −p(tk|PR) · log p(tk|Dij). (5)

At second step we compute the ordinary language modeling similarity score,
smoothed by General English language model:

p(tk|Dij , GE) = log(λ · p(tk|Dij) + (1 − λ) · p(tk|GE)). (6)

Finally, we combine both scores in a heuristic manner, the empirically set
parameter β lies in interval from zero to 1:

s =
|q|∑

k=1

β · p(tk|Dij , GE) + (1 − β) · H(tk, Dij). (7)

The search results are sorted in descending order of similarity scores s and the
best top-k URLs are presented to the user.

32 S. Chernov et al.

4 Experiments

4.1 Experimental Setup

The Minerva system is implemented in Java and document databases associated
with peers are managed by Oracle DBMS. We conducted experiments with 50
databases created from the TREC-2002, 2003 and 2004 Web Track datasets
from the “.GOV” domain. For these three volumes, four topics were selected.
The relevant documents from each topic were taken as a training set for the
support vector machine classification algorithm and 50 collections were created.
The non-classified documents were randomly distributed among all databases.
Each classified document was assigned to two collections from the same topic.
For example, for the topic “American music” we had the subset of 15 small
collections and all classified documents were replicated twice in it. The topics
with the numbers of corresponding collections are summarized in the Tab. 1, each
collection was managed by one dedicated peer. Assuming that the search in our

Table 1. Topic-oriented experimental collections

N Topic Number of collections

1 Health and medicine 15
2 Nature and ecology 10
3 Historic preservation 10
4 American music 15

system should be topic-oriented as well as crawling, we selected the set of the 25
out of 100 title queries from the topic distillation task for the TREC 2002 and
2003 Web Track. Queries are selected with respect to two requirements: at least
10 relevant documents exist and query is related to the “Health and Medicine”
or “Nature and Ecology” topics. The set of selected queries is presented in [6],
relevance judgments are available on the NIST site (http://trec.nist.gov).

4.2 Database Selection Experiments

The methodology for evaluation of database selection performance is not stan-
dardized. The most popular approach is to measure a quality of selection by
cumulative recall. It shows which method accumulates relevant documents faster
by selecting databases from the top of its ranking. Let |Dr

i | be a number of rel-
evant documents on peer Pi; N is the number of collections selected from the
top of the database ranking P’. Cumulative recall is a fraction, where term of
fraction is a sum of all relevant documents on first N peers from ranking P’ and
denominator is a total number of relevant documents on all peers in P’:

Recall =
∑N

i=1 |Dr
i |∑|P |

i=1 |Dr
i |

. (8)

Database Selection and Result Merging in P2P Web Search 33

Resulting evaluation is based on macro averaging of cumulative recall over all
test queries. Usually, it is calculated for every N up to sensible system-dependent
number, so we consider selection of at most 20 databases.

We evaluate Robertson’s [19] and Ponte’s expansion [17] methods and find
the best combination of the following parameters for each method: 5, 10 and 20
expansion terms, and 5, 10, 15, 20, 25 pseudo-relevant documents. Boundaries
for the latter parameter are derived from the experiments with document re-
trieval in original papers, where the size of analyzed top-k did not exceed 20. To
estimate the best k for the usage of top-k ranked documents in query modeling
methods, we take 7 values from top-10 to top-70 pseudo-relevant documents, it
conforms with original papers [28,24]. In addition, we study the possibility to
expand a query by terms having the greatest p(tk|PR) assigned by the respective
modeling methods. Earlier, they have been applied for massive expansion (with
full vocabulary) coupled with modeling itself what is completely unfeasible in
distributed IR.

It is interesting to observe that both ad-hoc expansion methods spoil the
selection being applied without consequent query modeling. Their best param-
eter setup allows only to approach the performance of non-expanded queries.
This observation proves that expansion methods are sensitive to the number
of pseudo-relevant documents used, retrieval quality depends on the fraction of
indeed relevant documents in pseudo-relevant subset. Moreover, if we use query
model as a source for expansion terms, the performance decreases dramatically.

Both query modeling methods improve the retrieval quality, when used in
addition to query expansion methods. The modeling method of Tao and Zhai
[24] shows marginally better result. We infer that it is important to apply ad-hoc
expansion and query modeling simultaneously.

To get the baseline for our experiments, we measured 4 most popular exist-
ing selection methods: two language model based methods from [26,21], CORI
[4] and GlOSS [12]. Our results showed that Language model based methods
are constantly more effective and method by Si, Callan and others [21] is the
best. GlOSS appeared to be the worst. We can observe the performance of these
methods and our approach, which uses the combination of Robertsons expan-
sion with Tao and Zhais query modeling, in Table 2. The improvement of our
approach upon the performance of baseline method is comparable to the im-
provement of baseline method over the worst method. Our approach reaches its
maximum selection performance with use of only 5 expansion terms what allows
its integration into P2P Web search without a significant loss of scalability.

4.3 Result Merging Experiments

For the merging methods evaluation in the Minerva system we used the follow-
ing score normalization techniques: TF is a merging by raw tf values; TFIDF
is merging by local tf × idf score; TFGIDF uses tf × idf score with globally
normalized idf ; CORI is a merging method from [4]; LM is a language modeling
retrieval algorithm. More detailes about methods can be found in [6].

34 S. Chernov et al.

Table 2. Cumulative recall at different levels of database rankings

1 2 3 4 5 10 15 20

Our approach 0,128 0,229 0,304 0,375 0,406 0,619 0,759 0,829
LM of Si & Callan 0,092 0,187 0,27 0,352 0,399 0,606 0,733 0,81
LM of Xu & Croft 0,091 0,187 0,27 0,354 0,41 0,603 0,735 0,811

CORI 0,089 0,195 0,244 0,324 0,37 0,588 0,73 0,809
GlOSS 0,102 0,179 0,249 0,322 0,376 0,596 0,715 0,781

For the evaluation, we utilized the framework from [21]. For all tested algo-
rithms, the average precision measure is computed over the 25 queries at the
level of the top-5, 10, 15, 20, 25, and 30 documents. The parameter λ in LM
method is empirically adjusted, different approaches vary it from 0.4 to 0.7. Af-
ter preliminary experiments we set λ to 0.4, as it produced the most robust and
effective results.

We also measured the retrieval accuracy for non-distributed case on the sin-
gle database, which contains all the documents from the 50 peers. Two non-
distributed retrieval algorithms were used: tf × idf is coded as SingleTFIDF,
and language modeling retrieval is coded as SingleLM.

Only 10 selected databases participate in a query execution and, therefore,
the effectiveness of the query routing algorithm influences the quality of result.
We assessed the result merging methods with several database rankings. Due
to space limit, we present results only for manually created IDEAL ranking,
where the collections are sorted in a descending order of the number of relevant
documents.

In Tab. 3 we summarize the results from the result merging experiments with
six merging methods and two non-distributed retrieval algorithms. The best
results in every category are shown in bold. Here are the main observations:

– Retrieval effectiveness of all result merging methods is similar;
– The LM method shows the best performance, it is robust under every

ranking;
– Surprisingly, the TFIDF method is more effective than the TFGIDF tech-

nique, It might be the case that GIDF values, which are averaged over all
databases, are more influenced by noise, while local IDF values are more
topic-specific;

– An effective database ranking allows to outperform single database baseline;

In the second series of experiments, we evaluated ourLMPR technique. Ranking
PR is purely based on the cross-entropy between pseudo-relevance based and doc-
ument language models, see Eq. 5; LM and SingleLM methods remain the same;
LMPR is a heuristic combination of LM and PR rankings, as described in Eq. 7.

At first, we conducted experiments for the separate PR ranking in order to
find the optimum n for estimating our pseudo-relevance based model, for IDEAL
ranking the best choice was n = 10. After we fixed the n parameter, we conducted

Database Selection and Result Merging in P2P Web Search 35

Table 3. The macro-average precision for evaluated merging methods with the
database ranking IDEAL

SingleTFIDF SingleLM TFIDF TFGIDF CORI TF LM

top-5 0,208 0,224 0,248 0,240 0,240 0,264 0,264
top-10 0,176 0,200 0,204 0,204 0,204 0,184 0,220
top-15 0,160 0,181 0,192 0,163 0,189 0,155 0,184
top-20 0,158 0,158 0,180 0,164 0,178 0,142 0,168
top-25 0,142 0,149 0,165 0,150 0,163 0,125 0,157
top-30 0,135 0,141 0,141 0,141 0,144 0,120 0,145

experiments with different values of the β parameter. We carried out experiments
for β = {0.1, . . . , 0.9} and obtained the best combination with β = 0.6. In Tab. 4
we present our combined LMPR method and show the separate performance of
each methods for comparison.

The single PR ranking, which is purely based on the pseudo-relevance feed-
back, is poor with the IDEAL ranking. The average precision of the LMPR is
the same or slightly better in comparison with LM. We conclude that the LMPB
combination of the cross-entropy ranking PB with the LM language model with
β = 0.6 is more effective than the single LM method.

Table 4. The macro-average precision with the database ranking IDEAL, top-10 doc-
uments for the pseudo-relevance based language model estimation, β = 0.6

PR LMPR SingleLM LM

Top-5 0,248 0,272 0,224 0,264
Top-10 0,192 0,220 0,200 0,220
Top-15 0,165 0,187 0,181 0,184
Top-20 0,146 0,170 0,158 0,168
Top-25 0,130 0,157 0,149 0,157
Top-30 0,119 0,144 0,141 0,145

5 Conclusion and Future Work

In this paper, we evaluated existing database selection and result merging meth-
ods. We also proposed and evaluated our approach. Its novelty is in that peers
ranking and final documents ranking are refined with use of the pseudo-relevance
feedback from the best peer in the preliminary peers ranking. In most cases our
methods are more effective than existing ones. We come to the conclusion that
pseudo-relevance feedback information from topically organized collections al-
lows to improve a quality of distributed IR. The presented result indicates that
in future we can think about methods using pseudo-relevance models from sev-
eral databases considering different levels of their query expertise.

36 S. Chernov et al.

Acknowledgment

We would like to thank Wolfgang Nejdl and Paul-Alexandru Chirita for helpful
comments on a paper draft.

References

1. Christoph Baumgarten. A probabilistic solution to the selection and fusion problem
in distributed information retrieval. In Proceedings of the 22th Annual International
Conference on Research and Development in Information Retrieval ACM SIGIR
’99, pages 246–253. ACM Press, 1999.

2. M. Bender, S. Michel, G. Weikum, and C. Zimmer. Bookmark-driven query rout-
ing in peer-to-peer web search. In: Callan, J., Fuhr, N., and Nejdl, W., Workshop
Proceedings of the 27th Annual International Conference on Research and Devel-
opment in Information Retrieval ACM SIGIR ’04, pages 46–57, 2004.

3. W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed Top-k
Retrieval in Peer-to-Peer Networks. Proceedings of the 21th International Confer-
ence on Data Engineering ICDE ’05, Tokyo, Japan, pages 174–185, 2005.

4. J. Callan, W.B. Croft, editor, Advances in information retrieval, Chapter Dis-
tributed Information Retrieval, Kluwer Academic Publishers, pages 127–150, 2000.

5. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
gossiping to build content addressable peer-to-peer information sharing communi-
ties. Proceedings of the 12th IEEE International Symposium on High Performance
Distributed Computing, pages 236–249, 2003.

6. S. Chernov: Result Merging in a Peer-to-Peer Web Search Engine, Saarland Uni-
versity, Master thesis, 2005.

7. J. P. Callan, Z. Lu, and W. B. Croft. Searching Distributed Collections with In-
ference Networks. In E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of
the 18th Annual International Conference on Research and Development in Infor-
mation Retrieval ACM SIGIR ’95, pages 21–28, Seattle, Washington, ACM Press,
1995.

8. N. E. Craswell: Methods for Distributed Information Retrieval, PhD thesis, 2001.

9. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B, Vol. 39(1),
pages 1-38, 1977.

10. N. Fuhr. A decision-theoretic approach to database selection in networked IR. ACM
Transactions on Information Systems, Vol. 17(3), pages 229-249, 1999.

11. R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for Middle-
ware. ACM Symp. on Principles of Database Systems, Santa Barbara, USA, pages
102–113, 2001.

12. L. Gravano, H. Garcia-Molina, and A. Tomasic. GlOSS: text-source discovery over
the Internet. ACM Transactions on Database Systems, Vol. 24(2), pages 229–264,
1999.

13. S. T. Kirsch. Distributed search patent. u.s. patent 5,659,732, 1997.

14. L. S. Larkey, M. E. Connell, and J. P. Callan. Collection selection and results
merging with topically organized u.s. patents and trec data. In Proceedings of
the Tenth International Conference on Information and Knowledge Management
CIKM ’00, ACM Press, pages 282–289, 2000.

Database Selection and Result Merging in P2P Web Search 37

15. J. Lu and J. Callan. Merging retrieval results in hierarchical peer-to-peer networks.
In Proceedings of the 27th Annual International Conference on Research and De-
velopment in Information Retrieval ACM SIGIR ’04, pages 472–473, 2004.

16. S. Michel, P. Triantafillou, and G. Weikum. KLEE: A Framework for Distributed
Top-K Query Algorithms. In Proceedings of the 31st International Conference on
Very Large Data Bases VLDB ’05, pages 637–648, 2005.

17. J. M. Ponte. A Language Modeling Approach to Information Retrieval. PhD thesis,
University of Massachusetts Amherst, 1998.

18. J. M. Ponte and W. B. Croft. A language modeling approach to information re-
trieval. In Proceedings of the 21th Annual International Conference on Research
and Development in Information Retrieval ACM SIGIR ’98, pages 275–281, 1998.

19. S. E. Robertson and S. Walker. Okapi/keenbow at trec-8. In Proceedings of the 8th
Text REtrieval Conference (TREC ’99), pages 151–162, 1999.

20. P. Serdyukov. Query routing in a peer-to-peer web search engine, Saarland Uni-
versity, Master thesis, 2005.

21. L. Si, R. Jin, J. P. Callan, and P. Ogilvie. A language modeling framework for
resource selection and results merging. In Proceedings of the 10th International
Conference on Information and Knowledge Management CIKM ’02, pages 391–
397, ACM Press, 2002.

22. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

23. T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and
K. Shanmugasundaram. Odissea: A peer-to-peer architecture for scalable web
search and information retrieval. In International Workshop on the Web and
Databases (WebDB ’03), pages 67–72, 2003.

24. T. Tao and C. Zhai. A mixture clustering model for pseudo feedback in infor-
mation retrieval. In Proceedings of the Meeting of the International Federation of
Classification Societies, 2004.

25. G. G. Towell, E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird. Learning col-
lection fusion strategies for information retrieval. In International Conference on
Machine Learning, pages 540–548, 1995.

26. J. Xu and B. W. Croft. Cluster-based language models for distributed retrieval.
In Proceedings of the 22th Annual International Conference on Research and De-
velopment in Information Retrieval ACM SIGIR ’99, Berkeley, CA, USA, pages
254–261, 1999.

27. B. Yuwono, D. L. Lee, R. W. Topor, and K. Tanaka. Server ranking for distributed
text retrieval systems on the internet. In Proceedings of the 5th International Con-
ference on Database Systems for Advanced Applications DASFAA ’97, Melbourne,
Australia, pages 41-50, 1997.

28. C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach
to information retrieval. In Proceedings of the 10th International Conference on
Information and Knowledge Management CIKM ’01, ACM Press, pages 403–41,
2001.

Multiple Dynamic Overlay Communities and

Inter-space Routing

Pedro Furtado

Department of Computer Engineering, University of Coimbra
Polo II - DEI - FCTUC

P-Coimbra 3030-290, Portugal
pnf@dei.uc.pt

Abstract. In a broad sense, overlays can be setup as spaces “commu-
nities” for user, data or resource access, publishing and sharing, form-
ing domains within a larger universe. Ad-hoc creation and linking of
spaces can replace single linear address spaces or hierarchically struc-
tured ones. Our focus is on how can such completely independent and
autonomous spaces be created and linked dynamically and information
routed between them: we propose dynamic space management and inter-
space linking and routing alternatives. We compare alternative gateway
strategies and gateway hotspot avoidance. We also study the efficiency
of the proposed schemes analytically.

1 Introduction

An overlay network is formed by a subset of the underlying physical network
nodes. The connections between overlay nodes are provided by overlay links (IP-
layer paths), each of which is usually composed of one or more physical paths.
Most peer-to-peer overlay networks have some relevant characteristics that in-
clude flexibility, ease of scalability, self-organization, load-balancing, adaptation,
and fault tolerance. Nodes can be added or removed flexibly and the system
adapts to such changes automatically. Replication and alternative routing paths
can be used to circumvent routing and node failures. One of the most impor-
tant principles in P2P is totally decentralized control: a node should be able
to keep only information on a small set of neighbors and operations such as
joining or leaving the network should carry reasonably low overheads. One of
the major issues in early unstructured P2P systems was the poor scalability
and unnecessary overhead associated with message flooding that was necessary
to route messages to nodes. Structured P2P systems avoid flooding by using
more elaborate addressing and routing strategies. Efficient content-based access
is implemented by hashing objects and lookup queries into corresponding nodes.
In the future, maybe overlay networks and P2P can assume a much broader
role than only basic file sharing on a single peer-community. P2P is more like
a generic flexible grid of cooperating nodes for some common aim. Naturally,
there can be many communities or domains as in the internet. Multiple com-
munities can emerge as needed, change and be managed dynamically, each one

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 38–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multiple Dynamic Overlay Communities and Inter-space Routing 39

being an overlay - we call these overlays spaces. These characteristics could not
be met satisfactorily with only a partitioned keyspace over a single overlay (e.g.
Skipnet in [1]). Multiple spaces are also explored in hierarchical DHTs. Hier-
archical DHTs are systems in which peers are organized into groups, and each
group has its autonomous intra-group overlay network and lookup service, and
the most reliable peers in the groups are designated as super-peers in a top level
DHT. They have been explored as a way to significantly improve the perfor-
mance and resilience to failures over flat DHT designs. Our proposal of com-
pletely autonomous spaces subsumes hierarchical DHTs, but is more generic.
While hierarchical DHTs are a single, two-level address space over which objects
are distributed, they do not represent completely independent and autonomous
communities of peers. Our proposals more generically provide dynamic ad-hoc
creation and linking of any number of independent communities of users/peers
to access and manage resources. In such a scenario, inter-space linking efficiency
becomes a relevant issue. In typical DHT overlay networks, inter-node links are
setup so that routing into any node takes few hops (e.g. log N hops in Chord),
even though nodes record only a small set of links. There is no such strat-
egy defined for efficient interconnection and routing between autonomous spaces
with ad-hoc linking. There should be no centralized control over the intercon-
nection, no global routing tables and no pre-defined routers in these dynamic
application-level overlay networks. We discuss and evaluate alternative strate-
gies for solving this issue and also define basic space management primitives. We
base most of our work on the Chord system in [2], but it can be implemented
in any P2P overlay network framework. In the analysis section we compare the
alternatives envisioned in this paper. The paper is organized as follows: section
2 discusses related work. Section 3 discusses space management primitives for
space federations and inter-space linking. Section 4 proposes linking and routing
alternatives. Section 5 contains a comparative analysis and section 6 concludes
the paper.

2 Related Work

There has been a large amount of work in the area of overlay networks. Propos-
als for alternative organizations of structured overlay networks include CAN [3],
Chord [2], Pastry [4], Tapestry [5], Skipnet [1]. None considers multiple spaces
(although CAN mentions multiple DHTs) and none considers interconnection is-
sues between spaces. Skipnet does consider hierarchical key spaces, but is still a
constrained single space. Work on hierarchical DHT systems in [6] does consider
multiple spaces and most reliable nodes in each space are elected as super-peers
in a top-level overlay connecting the groups. However, they still represent in
fact a single two-level addressing/lookup space. Our design is more generic and
subsumes hierarchical DHTs. In our case there is no requirement that there
be specific super-peer nodes and that these be part of a top-level overlay. The

40 P. Furtado

world of overlay applications has been evolving from a limited horizon - for file
sharing - into a more generic infrastructure with complex schemas and querying
functionalities. There are many works on representing schemas and processing
more complex queries over P2P, which include MAAN [7], RDFPeers [8], PIER
[9] and PeerDB [10] among others. While MAAN and RDFPeers emphasize
relatively simple querying over simple (RDF) schemas, PIER and PeerDB evolve
more complete data management functionality into a P2P setting.

3 Multiple DHT-P2P Spaces

In this section we discuss how multiple dynamic spaces could be handled. In-
dividual spaces and interconnects between them should maintain the desirable
properties of DHT-P2P overlay networks. As in a single overlay network, a node
should be able to keep only information on a small set of neighbors and opera-
tions related to inter-connection and routing should carry reasonably low over-
heads. There should be flexibility, scalability, self-organization, load-balancing,
adaptation, fault tolerance and decentralized control.

Definition. We define a space as a P2P overlay network, with its set of nodes
and state; A federation is any set of spaces. Disconnected spaces are spaces that
do not share nodes; Connected spaces are spaces that share at least one node;
A subspace is a space whose nodes are completely contained (shared) within the
parent space.

Figure 1 illustrates a Chord network (S1) with subspaces S2 and S3 and a dis-
connected space S4. Spaces S1 and S4 can be inter-connected for data exchange.
In the rest of this section we discuss the creation primitives for multiple spaces
and defer inter-space linking to the next section. Efficient inter-space routing is
discussed later on.

S4

S1

S2

S3

Fig. 1. Chord Spaces

3.1 Creating Multiple Spaces

Considering multiple spaces, we should allow individual space composition to
be determined based on different goals (e.g. for multicasting or broadcasting
within a group; to harbour a specific schema; for computation; for a common
domain or with latency-location properties). In order to allow multiple spaces
to be created dynamically for those varied objectives, there must be a primitive

Multiple Dynamic Overlay Communities and Inter-space Routing 41

for a user, administrator or an application to create an overlay network (space),
possibly with a single node initially:

CREATE Space Type=Chord, bits=20, Nodes=N1, Name=S1;
This example creates an overlay network (space) S1 for up to 220 nodes. The
join operation works as described in [2] for Chord. This involves initializing the
node state (fingers) and updating the state of existing nodes, as well as copying
the keys for which the new node has become a successor. The creator of the
space can specify multiple nodes in the creation syntax. There must also be
access control and security information, whereby the owner has administrative
privileges to grant or revoke access to S1 to nodes, users or entire communities
(spaces). Assuming an application requires a smaller subspace S2 with up to 27
nodes within S1, with an initial set of nodes, the following space can be created:

CREATE Space Type=Chord, bits=7, Nodes=N1.1,. . . ,Nn.1, Name=S1.2,
Parent=S1;
Therefore, spaces can be contained, overlap by some nodes or be completely
separate. As another example of space creation options, consider the creation
of topologically-oriented spaces. Internet domain name prefixes (DNS) or the
binning strategy of [11] can be used to choose the set of nodes to include in
a space. The binning strategy uses landmarks to estimate latencies [12] and
clusters nodes into bins according to distance order to the landmark set. The
following examples create a topological-oriented S1 subspace with 50 nodes and
a domain-oriented space:

CREATESpaceType=Chord,bits=7,Nodes=N1 ,NodeN=50,Name=S1.3,
Parent=S1;
CREATE Space Type=Chord, bits=7, Domain= com.antra, NodeN = 50,
Name = ANTRA, Parent=S1;

3.2 Linking Multiple Spaces

We define a gateway as a node through which the spaces can interconnect, and
an inter-space link - link for short - as a link between nodes from two different
spaces. The gateway is either a node with state from both spaces or a node
that contains state from a single space plus an inter-space link. For inter-space
connection, there must be at least one “gateway” node(s). Nodes that belong
to both spaces can be “natural” gateway(s) for interconnection. In subspaces,
every node is a “natural gateway”. In non-enclosed spaces, natural gateways
may exist if some nodes belong to both spaces. In totally disconnected spaces,
there is no ”natural” gateway. In either case, it may be necessary to add (more)
interconnections between spaces. We distinguish the following interconnections:

Natural and Observer Gateways: A node from space S1 can become a ”nat-
ural” gateway for interconnection to space S2 by making it join S2 as well. This
way it will have fingers to route efficiently within both spaces. However, we do

42 P. Furtado

not assume that forcing some node(s) to join both spaces is desirable, as this
depends on applications. Alternatively, it can be an “observer” gateway - contain
fingers to S2 as if it were an S2 node. These fingers should be bi-directional
(target nodes also contain a finger to the observer node), so that changes in
S2 gateways also update the observer. However, observer has no hash-key value
associated with it for the other space (S2).

Links: A third alternative is to create bi-directional links (a finger in each node
pointing at the other one) between pairs of nodes in S1 and S2 (gateways), as
shown in Figure 2a, in which some nodes have links to the other space. The
main difference between using observers and links is that the observer has the
complete state information as an S2 node (e.g. log N fingers in Chord), while
links have a single finger to an S2 node, requiring an extra hop.

The layout of multiple links or observer fingers is also relevant. Consider a
large number of requests being posed into a space. If observers or links are evenly
distributed, heavy inter-space traffic will be balanced among gateways (at the
overlay network level). Otherwise, the gateways and links become hotspots, po-
tentially raising congestion and delay concerns. For this reason, multiple gate-
ways or links should be evenly distributed.

There are important efficiency issues related to space inter-connection. Within
a single space, a node is able to route efficiently in at most x hops (x = log N in
Chord) due to its fingers. This is not guaranteed between independent spaces,
where it needs to reach a gateway in each space traversed. In the next section we
propose efficient solutions for inter-space routing and avoiding gateway hotspots.

S1
S2

Fig. 2. (a) Interconnection with Multiple Links (b)Chord Routing from 1 to 12

4 Inter-space Routing Policies

Our objective in this section is to evaluate alternative approaches to deal with
inter-space routing efficiently, while ensuring decentralization and avoidance of
hotspots when inter-space communication becomes prevalent. We use Chord
as our basic design framework, but the principles can be applied to any overlay
network. Before discussing inter-space connections, we review intra-space routing
and broadcasting in Chord, as fundamental principles for what follows.

Multiple Dynamic Overlay Communities and Inter-space Routing 43

4.1 Chord Routing and Broadcasting

Chord [2] organizes nodes in an identifier circle modulo 2m , called the Chord
ring. The basic Chord ring requires each node to maintain information on neigh-
bours. Finger tables (2k, k = 0, , log2N − 1) allow each node to maintain the
state of only O(logN) neighbours. Chord hashes both the key of a data object
and a peer’s IP address into an m-bit identifier. The keys’ identifiers map to
peers’ identifiers using consistent hashing. For a lookup query, the object key is
hashed and the resulting succ(id) node is sought. The node chooses a finger to
hop nearer the succ(id) (e.g. the hop that approximates most to succ(id) node).
This process is repeated by the next nodes until the succ(id) node is reached and
returns the object to the requester in at most log N hops (see 2b route from 1
to 12). The authors of [13] proposed a broadcasting strategy for Chord without
flooding or sending more than one message into the same node. A user entity
initiates the broadcast by submitting broadcast(info) to a node Q. This node
acts as a root to a (virtual) broadcast spanning tree. The spanning tree is built
as follows: node Q forwards the message into neighbours with a limit parame-
ter that restricts the forwarding space of a receiving node: broadcast(info,limit).
The limit parameter for a forward into Finger[i] is set to Finger[i+1], meaning
that each neighbour Finger[i] will forward only within the interval [Finger[i],
Finger[i+1]. This forwarding is now applied recursively, forming the spanning
tree. As all nodes are contacted once, broadcasting has a cost N − 1 in number
of messages and log N in number of hops (because nodes have a logarithmically
decreasing forwarding range). In comparison, unicasting (lookup query) had a
cost log N in number of messages and log N in hops.

In the next sections we propose and discuss inter-space routing alternatives
(using Chord), based on efficiency (measured in number of messages and number
of hops) and state and management overhead. More state overhead can buy effi-
ciency, but the challenge is to keep the state overhead low while being reasonably
efficient.

4.2 Strategies with No State Overhead

Consider a query or request to another space. If there is no way to locate the re-
quired gateway directly, the query can be flooded or broadcast within the space.
In flooding, every node sends the request to all its fingers. Broadcasting avoids
some of this overhead using the strategy we described in section 4.1. In either
case, eventually, one of the gateway nodes (or subspace nodes) is reached and
handles the request (and stops forwarding the message):

Space/Parent Flood (SF, PF): Assuming that, upon receipt of the message
to route, every link forwards the request to each of its log N neighbours, there
will be N log N messages. Flooding is not required in DHT, but we include it
for comparison with what an unstructured system would require. We also con-
sider that nodes from the target space that receive the request do not flood
and instead use intra-space routing using their finger tables). If the space has

44 P. Furtado

N nodes (typically very large) and the space has S nodes, the overhead of this
alternative is:

– Number of messages: N log N+logS (single node lookup) or N log N+(S−1)
(broadcast within subspace);

– Number of hops: log N + log S;
– State overhead: 0 or gateway links or fingers.

Space/Parent Broadcast (SB, PB): If the message is broadcast instead of
flooded, we use the strategy in [13] to avoid flooding. The overheads are:

– Number of messages: ≤ (N−1)+logS (single node lookup) or (N−1)+(S−1)
(broadcast within subspace). Note: the broadcast worst case is N − 1 (if the
gateway(s) nodes are leafs of the broadcast spanning tree) and the actual
value is between 0, if the requester is also a gateway, and N − 1. As soon as
a gateway node is found, the routing starts within the other space;

– Number of hops: log N + log S;
– State overhead: 0 or gateway links or fingers.

These approaches may pose scalability issues, as they entail a large, unnecessary
overhead by distributing so many messages.

4.3 Strategies with Extensive State Overhead

The opposite alternative to having no state overhead is to make each node be-
come a gateway. This way inter-space routing will be fastest, but the state storage
and maintenance overhead for a space with N nodes will be O(N), where N can
be very large. Such an overhead is unnecessary.

Subspace Finger (SF) or Tightly Coupled Spaces: If every node has a
neighbour from the other space, routing into it is a single hop away from every
node. However, in order to do this, each node from space S1 needs an extra
finger to link to the other space S2 and, in order to avoid hotspot routes, those
fingers should point at S2 nodes in evenly distributed fashion. The fingers should
be bi-directional in order to guarantee that a change in one node of one of the
spaces also updates the state of the node from the other space. The increase in
state overhead for this strategy is very large: at most one finger per space node
and the extra management overhead with those fingers. The message and hop
cost is 1 + log S (S messages for broadcast in S).

Subspace State (SS) or Mixed Spaces: The best performances could be
obtained if every node would maintain state information (fingers) as if it were
part of the other space as well (log S fingers on Chord) -observer status. It would
be able to route directly into any other node in the other space. The message
and hop cost is log S (S − 1 for broadcast in S).

4.4 Gateway-Based Strategies

DHT-Gateway (DG, DiG): This strategy uses the DHT content-based rout-
ing capability. The lookup value is the name of the other space. In Chord

Multiple Dynamic Overlay Communities and Inter-space Routing 45

this means that the DG is the successor of the hash value of the space name:
succ(hash(SS)) for space SS. The DG node is the gateway - besides its typical
state, it must either join the other space or create a bi-directional link to it.
Requests are routed to the gateway node based on the destination space name
in at most log N messages and hops. This strategy assumes that the node with
identity succ(hash(SS)) and the gateway to the other space must be the same
one, which is limitative. Alternatively, an indirect approach (DiG) allows the
gateway (DG) (node connecting to the other space) and “gateway pointer (DG-
pointer)” (node with identity succ(hash(SS))) to be separate entities, by creating
a finger in the DG-pointer to the DG node. Figure 3a shows a requester node R
of space S routing into subspace SS through the DG-pointer node, which is the
node with identity succ(hash(SS)), and from there into the gateway DG, which
then routes within SS using normal intra-space routing mechanism of Chord.

The DG is a potential hotspot for heavy inter-space traffic and a single-point
of failure. These problems are solved using multiple gateways, as we propose
next.

Multiple Gateways (mDG): multiple gateways (and pointers) can be used
to avoid single-point-of-failure and gateway hotspots. DG nodes are multiplied
(DG-pointers as well, if used). We propose that they be spread evenly by the
space. If there are n DG (or DG-pointer) nodes in a space with N nodes, they
are chosen as multiples of N/n offsets from the succ(hash(SS)) DG or DG-
pointer node. Requesting nodes compute succ(hash(SS)) and choose their nearest
gateway (from the N/n offsets). Figure 3b illustrates the routing of request R
into subspace SS with mGD using the nearest mDG-pointer. We note that the
number of gateway nodes can be made to adjust dynamically depending on
traffic, but we leave this issue for future work. Assuming that m gateways are
evenly distributed:

– Number of messages: ≤ log N/m+logS (single node lookup) or 1+logN/m+
(S − 1) (broadcast within subspace).

– Number of hops: 1 + log N/m + logS;

Space Broadcast with Multiple Gateways (SB-mDG): The use of mul-
tiple gateways can also be useful to decrease the overhead of space broadcast.
The broadcast then occurs only within a fraction of the space. The overheads are:

– Number of messages: ≤ (N/m − 1) + log S (single node lookup) or (N/m −
1) + (S − 1) (broadcast within subspace).

– Number of hops: log N/m + log S;

The next proposals aim at achieving top performance without large state
overhead.

4.5 Caching-Based Strategies

SB- or mDG- with Cached Subspace Fingers (CSF): A balance can be ob-
tained between the efficiency of the SF strategy and the small state achievement

46 P. Furtado

S

SS

R

mDG-pointers
mDGs

SS nodes

Fingers

Route

S

SS

R

Fig. 3. Routing from R to Subspace: (a) DiG (b) mDG

of SB or mDG, by caching fingers upon use instead of creating and maintain-
ing them force-fully. When a request is made, the node verifies if it already has
a finger to the target space, in which case it is used to route directly into it.
Otherwise, it uses the mDG or SB strategies to answer the request. However,
the gateway node is instructed to return a direct finger into the other space to
the requester, which then caches it, optionally with a TTL and LRU policy for
caducity. This way, the next time the node makes a request into the other space,
the cached finger can be used to access it directly. On-demand lazy updates
minimize update overheads when something changes in the other space. If an
outdated finger is used, the supposed gateway intercepts it and responds inval-
idating the finger. If the gateway is not there any more, a timeout invalidates
the finger. The requester then resorts to mDG or SB again, after which it gets
a valid finger once more.

Gateway Publishing (GP): When a gateway is created (based on some pol-
icy, possibly QoS-based), it broadcasts a pair (gateway address, target space) to
all other nodes in the space. When the gateway changes its status (e.g. when it
ceases to be a gateway) it also broadcasts the state update. This way a node
can cache gateway addresses to be used when needed. Multiple gateways can be
used and nodes can choose the most appropriate one, based on some policy. This
strategy has a specific extra overhead related to the need to broadcast into all
nodes the advertisements and the space necessary in each node to hold gateway
information. From the perspective of routing overheads and response time, this
alternative is similar to CSF after the finger to the gateway is cached, therefore
we do not analyze it separately.

5 Comparative Analysis

Figure 4 shows a comparative summary of the overhead of alternatives for a
single request. We show the maximum number of messages (#msgs) and number
of hops (#hops) that are necessary to route within the requester’ space. The
last column also shows the state overhead in total number of extra fingers that
must be kept in nodes plus gateway (we assume there may be 1 or f = log S
fingers per gateway). We can see that SF, SS, CSF and GP are by far the most
efficient from a message routing perspective but involve a considerable total

Multiple Dynamic Overlay Communities and Inter-space Routing 47

state overhead (assuming that N is large). On the other hand, although SF
and SB have no state overhead and a number of hops equivalent to most other
strategies, the number of messages generated is extremely large for SF and large
for SB, which has important consequences for the traffic in the whole overlay
network. The strategies based on gateways or SB with m gateways have more
balanced overheads, although their efficiency is not as good as the best routing
strategies. Caching strategies behave like mDG/SB-CSF for the first request (or
when the finger is outdated) and like SF for other requests. The next figures
use the formulas in Figure 4 to show how the values vary as the number of
nodes increases. Figure 5a (log plot) shows the maximum number of messages
generated for a single request as the number of nodes N increases from 1k to 8M .
In the figure the strategies are roughly the same as in Figure 4 and SBx is “space
broadcast” with x gateways. From here we can see that it is important to use
routing strategies with state instead of broadcast (or flooding) to minimize the
number of messages that are necessary, as the number of messages generated by
SB (or SF) can be very large. SB with multiple gateways decreases the overhead
significantly, but it is still much above the best strategies. SF, CSF and GP
require only one message (direct link) and SS requires 0 messages (it fingers
directly within the subspace). The “latency” of a request - in number of hops
- is shown in Figure 5b. In no state (SF, SB) or small-state strategies (DG,
mDG) multiple gateways are required to drive the number of hops down and the
number of hops for space broadcast (SBx) or gateways (mDGx) is similar. The
more tightly coupled alternatives SF, CSF, GP and SS are fastest because they
provide direct fingers.

In Figures 6 we show the state overheads in #fingers (L = log N defines a
variable number of gateways). Both SS and SF, CSF, GP have overhead that is
O(N), many orders of magnitude larger than the others. Least state overhead (0)
is achieved for DG, SB, SF (strategies with larger latencies and #msgs). These
results show the tradeoff between state space that is required and traffic that is
generated during routing of requests: small or no state alternatives generate mush
more traffic as they need to search for the gateways and are slower than strate-
gies with more state, that is, direct fingers into gateways or nodes from the other
space to be reached. The SS and SF strategies clearly involve too much state over-
head, as each node must always have fingers to nodes in the other space (and in

#msgs (<=) #hops (<=) state

Space Flood (SF) N log N log N 0

Space Broadcast (SB) N-1 log N 0

DHT-Gateway (DG) log N log N f

DG + DGpointer 1+log N 1+log N 1 or f

Multiple Gateways (mDG) 1+log N/m 1+log N/m mx(1or f)

SB+mDG N/m-1 log N/m mx(1or f)

Subspace Finger (SF) 1 1 N

Subspace State (SS) 0 0 N log S

Cached Fingers (CSF) 1 1 N

Gateway Publish (GP) 1 1 N

Fig. 4. Overhead Formulas

48 P. Furtado

Fig. 5. Overheads: #msgs and #hops

Fig. 6. State Overhead: (a) SS and SF (b) Other Strategies

SS each node must have log N fingers). This is even more problematic in highly
dynamic environments due to state updates. The alternative no-state strategies
(SB, SF) are also inconvenient for generating too much traffic overhead. The ap-
proaches we devised based on multiple gateways (mDG or SB-mDG) strike some
balance between traffic and response time on one side and state overhead on the
other side. By assigning the responsibility of broadcasting their gateway status
and modifications to it to gateways (GP) we have shown how SF can be imple-
mented easily. Finally, by caching only needed fingers (CSF) on demand, we can
have top performance while avoiding unnecessary state overhead of (SS, SF).

6 Conclusions and Future Work

In this paper we motivated and proposed multiple overlay spaces and multiple-
space routing in DHT-based overlay networks. We have compared stateful and
stateless alternatives and their tradeoffs. We have shown analytically that flood
or broadcast-based stateless strategies (SB or SF) can generate a lot of unde-
sirable traffic, while stateful alternatives - space fingers and especially full space

Multiple Dynamic Overlay Communities and Inter-space Routing 49

state (SF, SS) - have large state overheads. We also proposed gateway strategies
with and without indirection. In order to minimize the gateway bottleneck issue,
we proposed alternative multiple gateways (mDG) and finger caching (CSF)
strategies. We also proposed gateway publishing (GP), which is associated with
CSF. We compared the alternatives analytically concerning the amount of traffic
and n of hops, showing the tradeoffs and concluding that CSF may be a good
option considering all metrics. In future work we will consider routing strategies
and structures in a global universe of overlay spaces using “Space Name Servers”.

References

1. Harvey, N., et al.: Skipnet: A scalable overlay network with practical locality prop-
erties. In: Proc. USENIX Symposium on Internet Technologies and Systems. (2003)

2. Stoica, et al.: Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In: Proc. International Conference SIGCOMM. (2001)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proc. International Conference SIGCOMM. (2001)

4. Rowstron, Druschel, P.: Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In: Proc. International Conference on Middle-
ware. (2001)

5. Zhao, J., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. In: Tech. Report CSD-01-1141, UC Berkeley. (2001)

6. Garcez-Erice, L., Biersack, E., Ross, K., P.Felber, Urvoy-Keller, G.: Hierarchi-
cal p2p systems. In: Proc. International Conference on Parallel and Distributed
Computing. (2003)

7. Cai, M., Frank, M., Chen, J., , Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. In: Proc. 4th International Workshop on
Grid Computing. (2003)

8. Cai, M., Frank, M.: A scalable distributed rdf repository based on a structured
peer-to-peer network. In: Proc. 13th International Conference on WWW. (2004)

9. Huebsch, et al.: Querying the internet with pier. In: Proc. International Conference
on Very Large Databases. (2003)

10. Ng, W., Ooi, B., Tan, K., Zhou, A.: Peerdb: A p2p-based system for distributed
data sharing. In: Proc. 19th International Conference on Data Engineering. (2003)

11. Ratnasamy, S., et al.: Topologically-aware overlay construction and server selection.
In: Proc. 21th International Conference INFOCOMM. (2002)

12. Ng, W., Zang, H.: Predicting internet network distance with coordinates-based
approach. In:Proc. 21th International Conference INFOCOMM. (2002)

13. El-Ansary, Alima, L.O., Brand, P., Haridi, S.: Efficient broadcast in structured p2p
networks. In: Proc. International Conference on Peer-to-Peer Systems. (2003)

Benefit and Cost of Query Answering in PDMS

Armin Roth and Felix Naumann

Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
{aroth,naumann}@informatik.hu-berlin.de

Abstract. Peer data management systems (PDMS) are a natural ex-
tension to integrated information systems. They consist of a dynamic set
of autonomous peers, each of which can mediate between heterogenous
schemas of other peers. A new data source joins a PDMS by defining a
semantic mapping to one or more other peers, thus forming a network
of peers. Queries submitted to a peer are answered with data residing at
that peer and by data that is reached along paths of mappings through the
network of peers. However, without optimization methods query reformu-
lation in PDMS is very inefficient due to redundancy in mapping paths.

We present a decentral strategy that guides peers in their decision along
which further mappings the query should be sent. The strategy uses statis-
tics of the peers own data and statistics of mappings to neighboring peers
to predict whether it is worthwhile to send the query to that neighbor—
or whether the query plan should be pruned at this point. These decisions
are guided by a benefit and cost model, trading off the amount of data
a neighbor will pass back, and the execution cost of that step. Thus, we
allow a high scale-up of PDMS in the number of participating peers.

1 PDMS and Data Quality

Integrating semantically relevant information is a pressing problem. In practice,
it can be observed that a decentralized P2P fashion of data sharing is preferred
over centralized data integration systems. Users desire to pose queries to their
own schema, and let the queries be transferred via schema mappings to sim-
ilar peers in the neighborhood. Such requirements are addressed by peer data
management systems (PDMS) [1,2,3]. Peers serve both as data sources and as
mediators and queries are translated and transferred using semantic relationships
between peers, so-called mappings, as shown in Fig. 1.

Example application areas include partnerships between companies for devel-
oping complex technical products, cooperations of scientific institutions, and ad
hoc crisis management [2]. PDMS can also serve as a decentralized infrastruc-
ture for mediation between ontologies in the semantic web. Like any information
system integrating data from autonomous sources, PDMS are vulnerable to poor
data quality in the sources, poor mappings to the sources, and thus poor data
quality of query results. Compared to conventional integrated information sys-
tems, this problem is particularly large in PDMS. The data is passed through

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 50–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Benefit and Cost of Query Answering in PDMS 51

P1

20%

P2 P3

P4

100%

20%

60%

70%

20%

20%

P1.Book (Title, ISBN, Author, Year, Publisher, Prize)

70%

60%

P3.Book (Title, ISBN, Author, Year)

P2.Book (Title, ISBN, Author, Year, Publisher, Prize)

P4.Book (Title, ISBN, Author, Year, Publisher, Prize)

Peer schema

Peer

Local data source

Peer mapping

P
1

P
3

P
2

P
4

Part(Name, ID, RespPersonSSN, Supplier)

Person(SSN, Name, Department)

Part(Name, ID, RespPersonName, Supplier)

Part(Name, ID, Supplier)

Fig. 1. Two example PDMS with annotated source coverages, mapping selectivities,
and schema

numerous mappings, each of which can decrease data quality by cumulative pro-
jections and selections.

In general, information quality (IQ) is an important discriminator of data
sets. Here, content-related IQ-criteria are of major interest, including accuracy,
relevancy, and completeness. Due to their autonomy, local sources at peers are
likely to show quite different information quality. For this reason, consideration
of information quality in query answering for PDMS consisting of a large number
of peers is an important problem. In this paper we concentrate on the IQ criteria
coverage and density, which together form an overall completeness measure for
data sources and query results [4]. Current query planning algorithms, such
as [2], find all certain answers to a query. This is not feasible in a web-scale
PDMS: The search space becomes enormous and query plans become very long,
increasing chance of information loss along the paths. In this paper we propose
methods to free PDMS from this restriction and relax the notion of completeness
turning it into an optimization goal instead.

Example 1. Consider the simple PDMS depicted on the left in Fig. 1. Its peers
share a single relation Book. However, peer P3 only exports four attributes,
whereas the others provide two additional attributes, which are projected out
by mappings. Furthermore, the mappings between the peers are annotated with
selectivity scores, representing selection operations at the mappings. They are a
measure for the fraction of data provided by the peer at the mapping head that
is expected to be transferred via the mapping, e.g., the mapping from P2 to P3

removes all but 60% of the tuples provided at P3.

To achieve our goal of efficient and effective query answering in large PDMS, this
paper contributes a comprehensive completeness model for peers and mappings
within a PDMS. We show how to calculate completeness scores for PDMS query
plans. This can be used to improve the search for query plans providing high
completeness by pruning mappings which show considerable loss of information.
Furthermore, our completeness-aware query planning algorithm needs no central
catalog, thus leaves maximum autonomy to the peers.

The remainder of the paper is organized as follows. The completeness model
for PDMS is introduced in Sec. 2. Then, we provide a brief overview on query

52 A. Roth and F. Naumann

planning in PDMS in Sec. 3. Our approach to prune subplans is explained in
Sec. 4 and experimentally studied in Sec. 5. Related work is discussed in Sec. 6
and we conclude in Sec. 7.

2 PDMS and Completeness

2.1 Data Sources and Mappings in PDMS

We formalize a PDMS as a set P = {P1, P2, . . . , Pn} of peers, each of which com-
prises local data sources and mappings both to the local sources and to other peers.

Peers. In general, a single peer can be perceived as a data integration system
consisting of a peer schema S and local data sources. The peer schema describes
data that the peer provides to users, applications, and to other peers. Local data
sources are specified by a set L of local schemas. They are connected to the peer
schema by a set ML of local mappings. Other peers are related to a peer schema
by peer mappings, which form the set MP . In all, each peer is represented by
the four-tuple P = (S, L, ML, MP). We use Datalog notation to express the
relational data model used for schemata, queries, and mappings.

Mappings. Our approach is based on Global-Local-as-View mappings, or GLaV
mappings. Local mappings are of the form QL(L) ⊆ QS(S), where QL and QS are
conjunctive queries. Similarly, a peer mapping Q1(P1) ⊆ Q2(P2) establishes a re-
lationship between the relations of peer schemas of the two sets of peers P1 and P2.
Intuitively, the peer mapping means that Q1 always returns a subset of the result-
ing set of tuples of Q2. GLaV mappings in their general form can be transformed
to a combination of a GaV and a LaV mapping with a fresh relation symbol [2].

Selections play an important role when regarding the completeness of query
results. Selection predicates in mappings express implicit knowledge about peer
schemas. For instance, in writing a mapping to a peer of a company Ford and its
relation Product, one can express that the peer models products of this company
only. A way to express this selection in a GLaV mapping from a peer of a
company AllParts, which offers knowledge about producers of parts, is to insert
a selection predicate: Ford.Product(Name, ID, Supplier) ⊆ AllParts.Part(Name,
ID, Supplier), Supplier = ”Ford”. Also, there may be projections in local and
peer mappings that can affect the completeness of query results. Consider a
mapping from the Part relation of a company Bosch, which includes contact
information, to the peer Ford. Because the Product relation of Ford does not offer
this information, we must use a projection in the mapping: Ford.Product(Name,
ID, Supplier) ⊆ Bosch.Part(Name, ID, -, Supplier).

2.2 Completeness of Data Sets

In many scenarios, users of large integrated information systems are not inter-
ested in all certain answers, because they are not able to examine them all in
detail. Another constraint to large PDMS is the limitation of resources for query

Benefit and Cost of Query Answering in PDMS 53

evaluation and transmission of query results. Facing these restrictions, a user
may be satisfied with a small number of answers of highest quality.

Coverage. Extensional completeness, also coverage, describes the proportion of
the size of a tuple set to the number of all tuples stored within a PDMS. The
measure applies both to the data set a peer actually stores and to a query result.

To calculate coverage we make the closed world assumption for the whole
system. Users perceive a PDMS as a single database described by the schema of
the peer. Thus, the size of the world |wQ| referred to by a query Q against this
schema is the number of tuples matching the query that can be reached using
the network of mappings. In practice, however, knowing this number precisely
is not necessary, because it plays only the role of a normalizing factor.

Definition 1 (Coverage). Let DQ be a set of tuples answering a query Q. The
coverage of DQ with respect to a world wQ is c(DQ) := |DQ|/|wQ|.

Density. The intension queried by the user is the set of attributes AQ asked
for in the query. Intensional completeness of data sets, also density, first suffers
from null values in data sources. Secondly, attributes that are mentioned in
the query may not be available at certain data sources in the PDMS. The user
may be nevertheless interested in having tuples in the query result despite their
missing attributes. Values of missing attributes are filled with null values, thus
creating incomplete tuples. Attribute density is used as a measure for this kind
of completeness. The query-dependent density is the arithmetic mean over all
attributes occurring in a query.

Definition 2 (Attribute density). Let aR be an attribute of a relation R. A
projection of a tuple t of this relation to aR is denoted by t[aR]. With ⊥ denoting
null, the attribute density of a tuple set D for R is defined as d(aR) := |{t ∈
D | t[aR] �=⊥}|/|D|.

Completeness. Intuitively, overall completeness can be regarded as an aggre-
gated measure for the ratio of the amount of data in a certain data set to the
amount of data in the world wQ. It is a combination of coverage and density,
which we aim to maximize. In [4] it is shown that the completeness score of a
data set D can be calculated as C(D) = c(D) · d(D) and 0 ≤ C ≤ 1.

3 Query Planning and Completeness

In this section we review a query planning procedure for PDMS and show how
to value peer mappings according to their completeness. The following Section 4
uses this measure to prune poor plans or subplans.

3.1 PDMS Query Planning

To translate a query, the subgoals are reformulated and passed on along the map-
pings to other peers, which in turn recursively send the query to their neighboring
peers, etc. Reformulation terminates when all branches of recursion have reached

54 A. Roth and F. Naumann

local sources, where the queries can be evaluated on actual data. Clearly, this
process can be performed fully decentrally. To show how the query reformulation
actually uses the mappings between the peers and between the local sources and
the peers, we briefly review the reformulation algorithm of [2].

Creation of the reformulation tree. Consider a query Q posed to some peer.
We aim at a set of query plans, which only contain subgoals representing relations
from local schemas. The answer to Q is the “union” of the results of all these
query plans. The reformulation algorithm published in [2] constructs a so-called
rule-goal tree (Fig. 2 on the left). The goal nodes are formed by (reformulated)

P1.q

Q

P1.Book

P2.Book P3.Book

P4.Book P3.Book

P4.Book

P4.Book

P1.q(Title, ISBN, Author, Year, Publisher, Prize)

P1.Book

P3.BookP4.BookP2.Book

P3.BookP4.Book

P4.Book

s(P1 P2)

s(P2 P4) s(P2 P3)

s(P3 P4)

s(P1 P3)

s(P3 P4)

P3

P3

Goal node

Local source

Rule node

P2

P1

Fig. 2. Rule-goal tree (left) and query plan (right) of our example from Sec. 1. Selec-
tions are represented by the annotated mapping selectivities s.

subgoals to be answered, whereas the rule nodes represent the mappings. The
algorithm continues by expanding leaf nodes using either peer or local mappings.
Depending on the form of the mapping at hand, either a GaV- or a LaV-style
reformulation is performed. In the former case new goal leaves are obtained by
unfolding the view forming the mapping. If the mapping represents a view from
any peer or local source on the schema to which the leaf goal node belongs,
the MiniCon algorithm for answering queries using views is employed [5]. Please
note that this algorithm may be performed fully decentrally by the peers.

Determining query plans. Two approaches are possible to create a query plan.
To achieve first query answers quickly, several query plans may be determined
sequentially in the way shown in [2]. In contrast, if we want to calculate the
overall completeness of the query result, it is more useful to derive a single
overall query plan from the rule-goal tree (Fig. 2). To obtain this single query
plan, we recursively traverse the rule-goal tree. Several outgoing mappings at
a certain goal node lead to a branch in the rule-goal tree. In our query plan
all those subtrees are combined by a union operator. Branching rule nodes are
created by a GaV expansion containing a join. Such a situation is reflected by
a join operation in the query plan. Due to space limitations, we refer to [2] for
transforming LaV expansion into the query plan.

Benefit and Cost of Query Answering in PDMS 55

3.2 Completeness of Query Plans

Intuitively, query reformulation for PDMS is a search problem. During exploration
of the search space, we lack information about the completeness contribution of
local data sources not reached yet. As a consequence, to intelligently explore the
search space collecting high quality query results, we must decide which mappings
promise to be useful. This leads to the question how mappings (and the data
sources “behind” them) contribute to the overall completeness of the query result.

In this work, we assume the mappings to include only select-project-join (SPJ)
queries. In the following, we show how to calculate the influence of S, P, and J
operations used in the mappings on the coverage and density of query results.
Additionally, query plans contain union-type operators, which collect results
returned by alternative mapping paths starting from a certain peer.

Influence of selections and projections. Applying a selection σ to a tuple
set of a relation R reduces the set of tuples by a selectivity factor s. Hence, we
can calculate coverage of the selection result as c(σ(R)) = s · c(R). Assuming
that null-values are distributed equally over all tuples, density is not affected by
a selection d(σ(R)) = d(R). If no statistics about s are available, sampling tech-
niques may be employed to assess it (Sec. 7). Note that this selectivity is applied
to the data of the target of a mapping but also on all other sources reachable
through that mapping. This observation is the foundation of our heuristic for
reducing the reformulation effort (Sec. 4).

Without concessions to the completeness of query answers, projection of query
attributes would not be allowed in mappings. Attributes projected out have to be
padded with null-values. Since a projection R[AP], which reduces the attribute
set AR of R to the attribute set AP , leaves the number of tuples of R unchanged,
the extensional completeness of the result is not affected: c(R[AP]) = c(R).
In contrast, the query-dependent density value is recalculated subtracting the
density of the set of attributes projected out: dQ(R[AP]) = dQ(R) − dQ(R[AR \
AP]). For simplicity, we assume here that projections do not reduce coverage, i.e.,
duplicates generated by projection are not eliminated. We use this observation in
our heuristic to decide which mappings suffer from loss of information (Sec. 4).

Example 2. Suppose we are given the following mapping between two relations at
different peers with the attribute densities listed thereafter: P4.Book(Title, ISBN,
Author, Year, Publisher, Price) ⊆ P3.Book(Title, ISBN, Author, Year) (Fig. 1).

Title ISBN Author Year Publisher Price
P4 90% 100% 80% 60% 40% 70%
P3 90% 100% 80% 60% 0 0

The attribute densities and the query-dependent density of P4.Book as it is
exported by peer P4 amounts to dQ(P4) = 73%. Due to the two projections in
the mapping (attributes Publisher and Price) the density of the same data set
is perceived at P3 with a value of dQ(P3) = 55%, assuming the query asks for
all attributes. As can be seen, projecting out a third of the attributes reduces
the query-dependent density by about a third in this example. It is important

56 A. Roth and F. Naumann

to note that we do not need any statistics to compare mappings wrt. loss of
completeness due to projections.

Influence of joins. Suppose we are given the tuple sets of the two relations
R1 and R2 together with their respective coverage and density values. We aim
to calculate completeness for the result of the join R1 �� R2. If we assume
independence of the representation of objects, which means that there is no
knowledge about extensional overlap, we can draw the following formulas for
the expected coverage and density from [4], where A denotes the union of the
attribute sets of R1 and R2:

c(R1 �� R2) = c(R1) · c(R2) (1)

d(R1 �� R2) =
1

|A|
∑

a∈A
(dR1(a) + dR2(a) − dR1(a) · dR2(a)) (2)

Influence of unions. In general, the contributions to a goal node’s answer
are not union-compatible. We use the full outerjoin-merge operator � from [4],
which is similar to the “outer union” but allows all common attributes but the
key attribute to have conflicting data values. The following equations provide
the expected coverage and density of a full outerjoin-merge for the case of inde-
pendent data sets:

c(R1 � R2) = c(R1) + c(R2) − c(R1) · c(R2) (3)

dR1�R2(a) =
dR1(a) · c(R1)
c(R1 � R2)

+
dR2(a) · c(R2)
c(R1 � R2)

− dR1(a) · dR2(a) · c(R1 �� R2)
c(R1 � R2)

(4)

Using this, the density of R1 � R2, which comprises the attribute set A is the
arithmetic mean of the attribute densities: d(R1 �R2) = 1/|A|

∑
a∈A dR1�R2(a).

In [4], associativity is shown for the coverage criterion for �� and �; density is
proven to be associative only for independent data sets.

Calculating query plan completeness. Using the means presented in the
previous section, we now can calculate the expected completeness of query plans.
In this way we may compare different strategies for completeness-driven PDMS
query reformulation. Please note that such calculations cannot be performed by
a single peer in a real PDMS, because it is based on global information. Rather,
calculations are accumulated along peers as the reformulated query is passed on.

We pass along between the peers information about the aggregated map-
ping selectivity for every distinguished variable and the accumulated projections.
Clearly, several selections based on the same variable may be aggregated along
a mapping path by multiplying their selectivities, which we assume to be the
result of statistical assessment methods (Sec. 7). If we further assume the vari-
ables of the user query being independent of each other, their respective mapping
selectivities can also be aggregated by multiplication. The main idea of our algo-
rithm to calculate the query plan completeness is to traverse the rule-goal tree
recursively in the same way as for single query plan creation (Sec. 3.1), and to
combine the completeness scores on the way back starting with the given values

Benefit and Cost of Query Answering in PDMS 57

at the leaf nodes, which represent only local sources. Combinations of coverage
and density scores of subtrees are required at the occasions highlighted below.
Coverage and density scores of data originating from the local sources are de-
creased by selectivities and projections in the mappings on the path to a certain
peer. If every goal node returns its coverage and density based on the user query,
we can calculate the coverage and density the receiving peer perceives using that
peer’s aggregated mapping selectivity and projections for the path from the peer
to the root of the rule-goal tree.

Branching goal nodes. In this case we use the results from the rule node chil-
dren, which are coverage scores referring to the goal node’s peer. As in query plan
creation we must perform a union and thus may use Equation (3) to calculate
the resulting coverage. Attribute densities are calculated using Equation (4).

Branching rule nodes. To calculate the coverage scores of rule nodes, we use
the results from the underlying goal nodes. As a branching rule node is created by
a join in a mapping, Equation (1) can be employed to determine the resulting
coverage. In the last step we multiply with the mapping selectivity s(m) to
return the coverage score of the data the above peer actually receives. With x
denoting a distinguished variable of the user query occurring in the mapping
m, the mapping selectivity is s(m) =

∏
x∈m sx(m). We use Equation (2) to

propagate the attribute densities.
Our algorithm captures LaV expansions as well, but for brevity we omit this

description. When our recursive algorithm reaches the root of the rule-goal tree
we can calculate the query dependent density and, finally, the completeness of the
query. We summarize the set of statistics we assume a peer should maintain in
our PDMS setting: (i) Coverage and attribute densities for all local data sources,
(ii)Selectivities for all selection predicates in outgoing peer mappings, and join
selectivities for outgoing mappings that contain joins over different peers.

4 Pruning Subplans

The rule-goal tree typically becomes very large and shows a high branching
factor even for relatively small PDMS with tens of peers [6]. Therefore, handling
queries in web-scale PDMS using the algorithm from Sec. 3.1 is not feasible. To
keep query reformulation in PDMS tractable for large PDMS, e.g., for semantic
web applications [7], it is crucial to optimize both query planning and evaluation
to reduce latency and determine first answers quickly.

To meet these problems, we exploit the influence of mappings on the query re-
sults to decide which mapping paths are not worth following or may be deferred.
Our approach tries to identify mapping paths that preserve potential complete-
ness of the intermediate query results “behind” these mappings. In general, during
the query reformulation phase a peer has no knowledge about the completeness
of data it will receive during query evaluation. In the rule-goal tree this fact is
expressed by having subgoals of local sources only at the leaves of the tree.

If we want to avoid coordination between peers about completeness of in-
termediate query results, only the “completeness” of peer mappings may be

58 A. Roth and F. Naumann

exploited to prune the search space. We build on the results from Sec. 3.2 to
characterize the influence of mappings on the completeness of query results in
the PDMS context. In particular, we introduce a heuristic to either prune the
search space or defer expansion of certain mappings to determine the first an-
swers showing high completeness quickly. Because query reformulation is done
recursively, every mapping that needs not be used potentially saves consideration
of many more mappings later. Additionally, in a highly interconnected PDMS
the probability that for a certain mapping path there are alternatives with less
loss of information is considerable. In Sec. 5 we present experiments showing this
effect.

Using selections and projections. Selections not overlapping with the user
query may significantly reduce the amount of data transported by a mapping.
Based on this observation we propose the following strategy for completeness-
based query reformulation in PDMS: If a goal node is related to several mappings
that can be used for expansion, we order them by their selectivity, favoring less
selective mappings. To break ties, we additionally regard projections, favoring
mappings with less projections. In a simple strategy, we only use a threshold
for a normalized measure combining selectivity and the number of variables
projected out to decide which mappings to follow and which to prune (Fig. 2).
This strategy is fully decentral, i.e., no coordination between peers is needed at
all. However, we lose answers. That is why this approach requires a trade-off
between cost and benefit of the answer, which conforms to the concession to the
completeness of query answers in large PDMS described above.

Using joins. Assessing the impact of joins on the coverage of (intermediate)
query results is more subtle. There may be situations where very small join hit
rates between the relations to be joined lead to considerable loss of information.
In such cases it is desirable to have alternative mapping paths that may help to
exploit more data from the join partners. The following example illustrates such
a situation.

Example 3. Regard the PDMS on the right of Fig. 1. The relation Part models
parts of technical products having attributes, such as name, identifier, social
security number and name of the responsible person, and the supplier. Person is
a simple list of persons that are referenced by the foreign key RespPersonSSN.
Assume that P1 is queried on parts of a certain supplier.

We consider a situation where the overlapbetween P3.Part and P4.Person is very
small compared to the size of both relations. As a consequence, the join P3.Part ��

P4.Person filters out all parts from P3 where the corresponding author is not in-
cluded in P4.Person. It follows that P2.Part may offer only a small fraction of parts
stored at P3. However, our query posed to P1 does not ask for responsible persons.
Hence, with respect to the query, the join performed at P2 loses most of the “cov-
erage” available at P3. In recognizing this situation query reformulation could de-
cide not to expand the goal node representing P2.Part. Here, this would not affect
coverage of the final query result, because there is an alternative mapping from
P1.Part to P3.Part, which may help to retrieve all parts at P3.

Benefit and Cost of Query Answering in PDMS 59

As a conclusion from this example we propose a look-ahead strategy to handle
joins between peers : (1) Check if the query to be answered requires to perform
the join. (2) If so, try to assess the information overlap between the join rela-
tions. (3) If the loss of coverage is above a certain threshold, prune or defer the
expansion performing the join. (4) If the joined peer that contributes tuples to
the query result (P3 in the example) can be reached on an alternative mapping
path, finalize the decision of the last step. Observe, that this approach requires
coordination between a small set of peers.

5 Experiments

Due to the complex structure of PDMS the effect of most algorithms and strate-
gies can be validated only experimentally. Our PDMS implements the pruning
strategy exploiting selections and projections in the peer mappings. The query
reformulation is simulated on a single computer. However, we note that this does
not imply any restrictions compared to a fully decentral query reformulation on
multiple sites. In our experiments every peer covers only 5% of the size of the
world. The following table lists the data sets and their characteristics:

Peer schema #Peers rank
P1 Single relation 10 5.7
P2 Single relation 30 3.4
P3 Heterogeneous 50 2.5

Measurements. Alternative paths in highly interconnected PDMS lead to a
quite strong convergence of the completeness to the final result, as can be seen
in Fig. 3 on the left (solid line). There, the final coverage value is almost reached
after about half of the cost for obtaining all answers has been spent. This means
that in the second half of the query reformulation phase many mapping paths
are exploited that are expected to contribute almost nothing to the final result.
We use our approach of threshold-based pruning of mapping paths. Regard the
results depicted on the left in Fig. 3. They show that pruning of mappings
containing selections with medium selectivities (11% of all mappings concerned,
dashed line) may still yield the same completeness as without pruning, but at
half of the cost compared to the experiment without pruning. Moreover, if we
choose an even stronger pruning condition (33% of all mappings concerned), the
cost decreases to 10 times less than without any pruning. The results for the
dataset P2 are displayed on the right in Fig. 3. It also shows a cost reduction of
more than an order of magnitude along with improved completeness at any time
during query reformulation. In this experiment maximally 20% of all mappings
fell under the pruning condition. With the heterogenous PDMS P3 we yield
similar results. There, about 10% of all mappings include selections and a fourth
projects out some attributes. We pruned all mappings which are expected to lose
more than a third of the data of the peer at their head (34 prunings and 1175
reformulations in total) while still achieving 100% completeness. Observe that

60 A. Roth and F. Naumann

Fig. 3. Results and topology of P1 under different pruning thresholds and cost reduc-
tion. Normalized cost are based on the cost for using all mapping paths. Notice that
ending graphs indicate a cost reduction (explicitly depicted on the right).

pruning has to be applied with care: As depicted in the left-most graph in the
left diagram in Fig. 3 very strong pruning can lead to a significant reduction of
query answer completeness. Of course, choosing suitable pruning thresholds is a
matter of experience. We believe that statistics about query answers could help
(Sec. 7). In summary, our experiments clearly show effectiveness and considerable
efficiency gains by applying a rather simple IQ-based pruning of the search space.

6 Related Work

In this section we review the PDMS literature under the aspects of informa-
tion quality and efficiency of query answering. The mediation between schemas
of a PDMS is the main concern of Piazza [2]. Concessions to the complete-
ness of query results are mentioned, but not discussed in detail. New algorithms
usable for safe pruning during query reformulation are contributed in [6]. How-
ever, they are independent from information quality, which according to the
authors remains an open challenge. Additionally, this pruning approach involves
non-local coordination between peers, whereas our mapping-based strategy is
strictly local to autonomous peers. The Semantic Gossiping approach of Aberer
et al. uses cycles in mapping networks to examine loss of information [1]. That
is, instead of explicitly modeling completeness as in our approach, the authors
use instance sampling to assess information quality criteria. The authors use a
simple data model and mappings only between attributes and without selection
queries. Calvanese et al. [3] propose new semantics for PDMS based on epistemic
logic, which leads to general decidability. In this semantics only consistent facts
are exported by a peer. However, the “weaker” logic loses some of the answers
compared with our first order logic approach. In Edutella, semantic overlay net-
works consist of clusters of semantically “similar” peers [8]. This approach does
not utilize arbitrary mappings between peer schemas. According to [9], inaccura-
cies and uncertainties in mappings are an important research perspective, which
we have not adopted yet.

Benefit and Cost of Query Answering in PDMS 61

7 Conclusions

Peer data management systems offer a decentralized and dynamic infrastruc-
ture to share heterogeneous data between autonomous peers. To scale PDMS
to a large number of peers it is crucial to optimally trade-off between the cost
of query execution and the benefit of the query answers. We presented a solu-
tion for PDMS query reformulation that exploits completeness characteristics of
mappings between peers. First, we described the influence of GLaV mappings
on the completeness of query answers. Next, we introduced a fully local strategy
to prune those mappings that have a high expected information loss based on
statistics. Using experiments, we highlighted the the minimal completeness loss
during query reformulation and showed the feasibility of our approach. In sum-
mary, quality based exploitation of mappings may yield efficiency gains of up to
an order of magnitude. Gathering statistics in the PDMS context, relaxing the
assumptions of independent variables and equal distribution of null values, and
a detailed cost model containing network transfers are major challenges for fu-
ture work. Moreover, we aim to refine our search strategy for query reformulation
in presence of limited resources.

Acknowledgments. We want to thank Stefan Winkler for helpful discussions.
This research was supported in part by the German Research Society (DFG
grant no. NA 432).

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent se-
mantics through gossiping. In: World Wide Web Conf. (WWW). (2003)

2. Halevy, A.Y., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data
management systems. In: Conf. on Data Engineering (ICDE). (2003)

3. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of
peer-to-peer data integration. In: Symposium on Principles of Database Systems
(PODS). (2004)

4. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information
sources. Information Systems 29 (2004) 583–615

5. Pottinger, R., Levy, A.Y.: A scalable algorithm for answering queries using views.
In: Conf. on Very Large Databases (VLDB). (2000)

6. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer data management
systems. In: Conf. on Management of Data (SIGMOD). (2004)

7. Heese, R., Herschel, S., Naumann, F., Roth, A.: Self-extending peer data man-
agement. In: Conf. Datenbanksysteme in Business, Technologie und Web (BTW),
Karlsruhe, Germany (2005)

8. Löser, A., Nejdl, W., Wolpers, M., Siberski, W.: Information integration in schema-
based peer-to-peer networks. In: Conf. on Advanced Information Systems Engineer-
ing (CAiSE). (2003)

9. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and rea-
soning about mappings between domain models. In: Proc. of the National Conf. on
Artificial Intelligence (AAAI). (2002)

Cooperative Prefetching Strategies for Mobile

Peers in a Broadcast Environment

Wei Wu1 and Kian-Lee Tan1,2

1 Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576
wuw@nus.edu.sg

2 National University of Singapore, Singapore 117584
tankl@comp.nus.edu.sg

Abstract. In a broadcast environment, mobile hosts can build up a
mobile peer-to-peer (P2) network via short-range transmissions. Such a
network can facilitate cooperation among the peers. In this paper, we
study one such cooperation to reduce the access latency of queries -
that of collaborative prefetching. We propose a novel scheme called the
Announcement-based Cooperative Prefetching (ACP) to enable mobile
peers to prefetch and share different objects. Our simulation results show
that our cooperative prefetching scheme performs much better than in-
dividual prefetching and cooperative caching schemes.

1 Introduction

Data broadcast [1] has been regarded as a very scalable data dissemination
model in mobile environments. In a push-based data broadcast environment, a
server repetitively broadcasts data objects, and mobile hosts (MHs) get data by
listening to the broadcast channel. Before getting its needed data object, a MH
may need to wait for a long time if the number of data objects being broadcast
is large. To reduce the access latency, the MHs cache their frequently accessed
data objects locally, but cache miss still happens when the cache space is not
big enough.

Prefetching [2,8] is a technique that improves a MH’s response time. In prefetch-
ing, a MH continuously listens to the broadcast channel and prefetches important
data objects to reduce cache misses. The importance of a data object to a MH may
be determined by the MH’s access frequency to the object or the waiting time be-
fore the next broadcast of the object or some other criterion.

Via short-range wireless technologies such as IEEE802.11 and Bluetooth, the
MHs in a data broadcast environment can build up a mobile peer-to-peer (P2P)
network. Data management problem in mobile P2P network has begun to gain
more research interests [13]. Several cooperative caching schemes for mobile peers
in broadcast environment have been proposed to reduce their waiting time [4,6].
In cooperative caching schemes, when a mobile peer encounters a local cache
miss, it sends out a request to its neighbors in the mobile P2P network via
short-range communication. If its neighbors have the required data object, the

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 62–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cooperative Prefetching Strategies for Mobile Peers 63

object is transmitted to the initiating peer, otherwise the initiating peer tunes
in to the broadcast channel and waits as normal.

Since it has been shown that prefetching performs better (in response time)
than demand-driven caching (such as LRU) and cooperative caching performs
better than individual caching, we predict that cooperative prefetching may fur-
ther improve the performance of mobile peers. Unfortunately, The inherent char-
acteristics of mobile P2P network such as dynamic and unpredictable network
topology impose challenges on cooperative prefetching.

In this paper, we first analyze the challenges for mobile peers to prefetch
data cooperatively in broadcast environments. Next, we present our solution –
the Announcement-based Cooperative Prefetching (ACP) strategy. Our ACP
scheme enables the mobile peers not only to answer queries cooperatively, but
also to prefetch data cooperatively, while keeping the mobile peers autonomous.

Caching and prefetching in a mobile broadcast environment have received
much attention in the literature. Cache replacement strategies for MHs have
been proposed in [10,14], while prefetching schemes have been studied in [2,8].

Several cooperative caching schemes for mobile peers have also been proposed
for different environments and applications [4,5,6,16].

2 System Model and Assumptions

2.1 System Model

In the system, a server broadcasts data objects to the many MHs through a
broadcast channel. We assume all MHs are in the server’s transmission range.
There is no uplink from MHs to the server – MHs cannot send requests to the
server.

MHs build up a mobile P2P network via short-range wireless transmission.
Every mobile peer (hereafter called MP) can communicate with the MPs in its
transmission range. The MPs do not forward the messages they received. There
are two kinds of communications between MPs: broadcast and P2P transmission.
When a MP broadcasts a message, the MPs in its transmission range will all
receive the message. When a MP sends a P2P message, the target MP receives
the message and other MPs discard the message.

2.2 PT heuristic and Assumptions

The PT heuristic was proposed in [2] for individual prefetching. Under the PT
heuristic, a MH always prefetches data objects that have a high PT value. The
PT value for a data object D at time t is defined as P ∗ T , where P is the
MH’s access probability to D, T is the waiting time from t until D is broadcast.
The rationale behind the PT heuristic is to prefetch those data objects whose
expectation of waiting time is long. The PT heuristic improves the response time
for MHs by reducing the cost of cache misses.

In our cooperative prefetching strategies, we also employ the PT heuristic.
Thus, we make the following two assumptions.

64 W. Wu and K.-L. Tan

– Every MH knows its access probability to all its interested data objects. This
is for the value of P . In practice, a MH can estimate its access probability
to data objects based on its access history.

– For each data object, the MHs know when it will be broadcast. Thus at any
time, every MH knows the remaining time before the broadcast of each data
object. This is for the value of T . In practice, it can be calculated from the
server’s broadcast index.

In this paper, we focus on designing the cooperative prefetching strategy among
MPs. For simplicity, we also assume that all data objects are of the same size
and data objects are not updated.

3 Announcement-Based Cooperative Prefetching (ACP)

Since the objective of cooperative prefetching is to combine the benefits of both
prefetching and cooperation, a simple cooperative prefetching (denoted SCP)
strategy can be like this: each MP does prefetching individually and sends request
to neighbors when a local cache-miss happens. Note that in SCP, although the
MPs answer queries cooperatively, they do prefetching individually. There are,
however, two limitations with SCP.

– The MPs may be prefetching the same objects. Since each MP prefetches ob-
jects based on its access distribution, MPs in the system may be prefetching
the same objects if they have similar access characteristics. In this situation,
few queries can be salvaged from neighboring peers’ cache.

– The topology of the mobile P2P network is dynamic and unpredictable when
the MPs are neither static nor group-based, so it is impossible to find an
optimal cooperative prefetching plan in advance.

To overcome the above problems of SCP, we propose the Announcement-based
Cooperative Prefetching (ACP) strategy. The aim of ACP is to make MPs not
only answer queries cooperatively, but also do prefetching cooperatively, even
when the MPs have similar access characteristics and move freely.

When MPs move freely, every MP’s neighbors are changing. It seems an im-
mediate effect is that a MP should not rely on its neighbors for caching objects.
However, we observe that in prefetching, the biggest penalty for a MP’s not
prefetching a data object D is the MP has a query for D arising just after D is
broadcast. We also observe that it takes some time for all neighbors of a MP
to move beyond the communication range. Thus we argue that a MP can have
some extent of reliance on its neighbors for prefetching some data objects.

The idea of the ACP strategy is: in deciding whether to prefetch an object
D, if a MP knows whether its neighbors will prefetch D, it can make a wiser
prefetching decision for D. For example, if a MP M knows that several of its
neighbors are prefetching D, then M may choose not to prefetch D if D is not
very important to M, since M has a chance to get D from its neighbors. The
benefits of this are: 1) M saves its cache space for another valuable data object,

Cooperative Prefetching Strategies for Mobile Peers 65

2) it avoids the problem that M and its neighbors are prefetching the same data
objects, thus 3) the overall data availability is increased, and the MPs can have
more queries answered by neighbors. Now what we need is simply a mechanism
for a MP to know the prefetching decisions of its neighbors.

A MP can tell its neighbors whether it will prefetch a data object by broadcast-
ing a message. Note that only the information that the neighbors will prefetch the
data object will have impact on a MP’s prefetching decision. So it is only neces-
sary for the MPs that decide to prefetch the data object to broadcast prefetching
decision. Furthermore, each time a MP meets a more valuable data object on the
air, it replaces a cached object with the new one. As a result, some objects may
be replaced soon after they are prefetched, if they are not important to the MP.
Thus telling neighbors that it will prefetch D does not tell how long D will be kept
in its cache. Accordingly, simply knowing that some neighbors will prefetch D, a
MP does not know the extent of reliance it can put on its neighbors.

Considering these factors, we design our ACP strategy as follows. The server
sends out index among its broadcast of data objects so that the MPs know at
when the data objects will be broadcast. Before a data object D is broadcast,
every MP decides whether to prefetch D based on the PT heuristic1, and we
call this the first decision. If the first decision is ”yes” then the MP further
predicts how long D will be in cache. If it predicts that D will be in cache for a
long time, then the MP broadcasts an announcement message to its neighbors.
At the same time, each MP whose first decision is ”yes” counts the number of
announcement messages for D it receives. When D is broadcast, every MP makes
its final decision on whether to prefetch D according to the importance of D
to it and the number of announcement messages it received. If the final decision
is still ”yes”, the MP prefetches D; otherwise, the MP does not prefetch it.

To summarize, when a MP decides to prefetch D and believes it will cache D
for a quite long time, it sends out an announcement message to its neighbors; a
MP’s final prefetching decision for D is based on both the importance of D and
the number of neighbors who will prefetch D. The objective of the announcement
is to affect the neighbors’ prefetching decisions. Note that the announcement
should be made before the broadcast of D, e.g. 2 seconds before D is broadcast,
but the MPs need not make announcement at the same time.

Now, there are two issues to be addressed for ACP: 1) How to predict the time
D will be in cache and whether it deserves an announcement? 2) How should the
neighbors’ announcements for D, if any, affect a MP’s final prefetching decision
for D?

3.1 Deciding Whether to Send Out Announcement

Each MP makes its first decision for D based on the PT heuristic [2]. If there is
empty cache space and the access probability for D is not zero, the first decision
is ”yes”, if the cache space is full, the MP checks the cached objects and see

1 In fact, our ACP scheme is not limited to use the PT heuristic; ACP is actually a
cooperation protocol and each MP is free to use any individual prefetching scheme.

66 W. Wu and K.-L. Tan

whether there is a cached object whose PT value is lower than the PT value of
D, if so, the first decision is ”yes”, otherwise, the first decision is ”no”.

In ACP, every MP records how long a data object was kept in its cache the
last time: when a data object is prefetched, the MP records the timestamp, and
when the data object is replaced, it calculates the time the object is in the cache
and records it. The recorded keeping time of D is used to predict how long D
will be in cache this time.

If the first decision is ”yes”, the MP decides whether to send out an announce-
ment by checking the following inequation.

keeping time

T interval
≥ δ (1)

Here δ is a parameter greater than zero and it is a threshold, and T interval is the
time between two consecutive broadcasts of the data object. If the inequation
is satisfied, the MH sends out an announcement, otherwise it does not. The
intuition is: when an announcement for D is made (the inequation is satisfied),
the neighbors know that the MP may keep D longer than T interval ∗ δ, so they
may have confidence to rely on the MP for D.

Note that δ is a parameter that can be tuned. Also note that a MP whose first
decision for D is ”yes” should count the number the announcement messages for
D it receives.

3.2 Making Final Decision

In ACP, a MP’s final prefetching decision for D is determined by the following
factors: 1) PTd, the PT value of D; 2) PTc, the PT value of the replace candidate
(the cached object with the lowest PT value); 3) γ, the reliance parameter; 4)
n, the number of announcement messages for D the MP received.

Here γ is a parameter (greater than 0 and smaller than 1) modeling the extent
of reliance a MP can put on a neighbor who sent out an announcement for D.
In other words, γ models the probability that when the MP has a query for D
the neighbor still has D and is within the MP’s communication range.

One intuition is that the more the number of neighbors sending out announce-
ment messages for D, the more reliance the MP can put on its neighbors for D,
since it is possible for the MH to get D from any of them. Thus in our scheme,
the total reliance the MH can put on its neighbors for D is γ ∗ n.

When D is broadcast, each MP makes its final prefetching decision for D as
follows.

– If the first decision is ”no”, the final decision is ”no”.
– If the first decision is ”yes” and the MP did not send out announcement for

D, then check whether the following inequation is satisfied.

PTd(1 − γ ∗ n) > PTc (2)

If the inequation is satisfied, the final decision is ”yes”, otherwise it is ”no”.

Cooperative Prefetching Strategies for Mobile Peers 67

– If the first decision is ”yes” and the MP has sent out an announcement for D,
then if γ ∗ n is smaller than 1, the final decision is ”no”, else (γ ∗ n is greater
than 1) the MH generates a random number p between 0 and 1, if p is bigger
than 1/(γ ∗ n), the final decision is ”no”, else the final decision is ”yes”.

The intuition of this final decision process is: (a) if the first decision is ”no”, D is
not important for the MP, so the MP should not prefetch D. (b) If the first decision
is ”yes” but the MP did not sent out an announcement, D is important but not very
important to the MP, and the MP’s neighbors will not rely on the MP for D (since
it did not make announcement), so the MP is free to decide whether to prefetch D
based on the total reliance it can put on its neighbors and it checks whether it still
needs to prefetch D after deducting the reliance on neighbors from D’s PT value.
(c) If the MP sent an announcement for D, D is very important for the MP, and its
neighbors may rely on it for D, thus it is not free to put reliance on its neighbors
and give up prefetching D. However, if it received enough announcements from
neighbors (γ ∗ n > 1), which means it is possible that the MPs share common
access interests for D and too many MPs will prefetch D and the neighborhood is
wasting cache space, then it has a chance by tossing a coin to decide whether to
prefetch D. Even though some MHs having made announcement may choose not
to prefetch D after the coin flip, the overall availability of D is guaranteed by the
process of coin flips, with a high probability.

The final decision for D is made when D is broadcast. That’s why the MPs
should send out announcement before D is broadcast. If the final decision is
”yes”, the MP prefetches D, otherwise, it does nothing.

Note when a MP relies on its neighbors for D, it means the MP is ready to
take the communication overhead for requesting D from neighbors. The MPs
who do not intend to take the communication overhead can tune its reliance
parameter γ to a small value so that it will not rely too much on neighbors.

3.3 Answering Queries Cooperatively

As in existing cooperative caching schemes, when a local cache-miss happens,
the MP broadcasts a request to see whether its neighbors have the needed object.
If so, the MP may retrieve the data object from the neighbor who replies first
and the query gets answered, otherwise, the MP waits the server’s broadcast of
the needed object.

One variant of this query answering strategy can be as follows: when a local
cache-miss happens, the MP checks the T value of the requested object, if the T
value is big, it sends out the request message, otherwise the MP does not send
out the request message and waits for the object on broadcast channel. This
variant saves some energy for both the initiating MP and its neighbors.

4 Simulation Model

To learn the performance of the ACP strategy, we conducted detailed simulation
experiments. In this section, we present the simulation model. It is implemented
in Java using the simjava-1.2 package [7].

68 W. Wu and K.-L. Tan

The simulated mobile environment is an X*Y (m2) area where there are a
broadcast server and NumClient MPs. The bandwidth of the server’s broadcast
channel is BBWidth Mbps while the bandwidth among MPs’ communication
is P2PBWidth Mbps. All MPs are in the server’s communication range. The
transmission range of the MPs is TransRange m. A MP only communicates
with the MPs in its transmission range. When a MP receives a message from
neighbor, it does not forward the message to other MHs. There is no multi-hop
communications.

Server Model. The server has NumDisks broadcast disks and the total number
of data objects is DBSize, and the size of each data object is DataSize KB. The
server broadcasts the data objects repeatedly.

Client Model. Each MP accesses data objects in its access range and the size
of access range is AccessRange. The data objects in access range are divided into
access regions of size RegionSize, and the number of access regions for a MP is
AccessRange/RegionSize. The MPs share a certain percentage (Overlap) of their
access regions as common access regions and the remaining access regions are
selected randomly for each MP. We assign a Zipf distribution with a skewness
parameter θ to the access regions and the data objects within an access region
have the same probability to be accessed. When assigning access distributions
to the access regions, the overlapped parts always get high access probabilities.
This is to avoid scenarios that are biased to our proposed scheme.

Queries. A MP’s queries are generated randomly according to its access distri-
butions. The time interval between a MP’s two consecutive queries is ThinkTime
broadcast units (a broadcast unit is the time required to broadcast a data ob-
ject). Each MP generates NumQuery queries. To avoid the cache warm-up effects,
each MP first generates NumWarmUp warm-up queries after its cache is full.

Cache Space. The size of each MP’s cache space is AccessRange*CacheSize.
For example, if the size of Access Range is 200 and the CacheSize is 20%, then
the cache space can hold 40 data objects.

Movement Model. We use a variant of ”random waypoint” mobility model
[3] as the MPs’ movement pattern. The MP randomly chooses a destination in
the modeled area and randomly chooses a speed which is around MoveSpeed
m/s. Then the MP moves to the destination with that speed. After arriving the
destination, the MP pauses for PauseTime seconds. After that, the MP randomly
chooses another destination and speed, and repeats this movement pattern. At
the beginning, the MPs are randomly scattered in the area.

Default Parameter Settings. The default parameter settings are given in
Table 1. To find the optimal values for parameters δ and γ, we conducted detailed
experiments to learn the effects of δ and γ on ACP’s performance (see [12]). We
find that setting δ and γ too high (e.g. 0.9) or too low (e.g. 0.1) both deteriorate
ACP’s performance, which is consistent with the intuition. ACP performs best

Cooperative Prefetching Strategies for Mobile Peers 69

Table 1. Default Parameter Settings

Parameters Values Parameters Values

Area 1000m * 1000m NumDisk 1
DBSize 1000 data objects DataSize 1 M
BBWidth 10 Mbps P2PBWidth 2 Mbps
NumClient 100 TransRange 150 m
AccessRange 200 data objects Overlap 30% Access Range
RegionSize 10 data objects CacheSize 20% Access Range
MoveSpeed 2 m/s PauseTime 30 s
NumQuery 1000 NumWarmUp 300
Skewness θ 0.5 ThinkTime 10 broadcast unit
δ 0.3 γ 0.5

and quite stable when δ and γ are set to values between 0.3 and 0.6. In the
experiments presented below, we use 0.3 and 0.5 as optimal values of δ and γ
for all MPs. In practice, optimal values for δ and γ can be tuned for different
applications and scenarios and then be shared as global knowledge by the clients.

5 Experiments and Results

In the simulated experiments, the performance metric used is the average re-
sponse time (or the average access latency) measured in broadcast units. For the
queries answered by neighboring peers’ cache, the latencies caused by message
exchange and data object transmission are counted in.

To learn the performance of our Announcement-based Cooperative Prefetch-
ing (ACP) strategy, we compare it with the PT heuristic [2] Individual Prefetch-
ing (IP) scheme, the recently proposed DGCoca [5] Cooperative Caching (CC)
scheme, and the Simple Cooperative Prefetching (SCP) scheme.

Due to space limitation, here we only present the representative experiments.
For more simulated experiments and results, interested reader can refer to [12].

5.1 Effect of Cache Size

The aim of the first set of experiments is to study the effect of cache size on
different cache scheme’s performance by varying cache size from 1% to 100%.

Figure 1 shows that with the increasing of cache size, all schemes exhibit
better response time, because the more cache space a MP has, the more data
objects are cached locally, and more queries are answered by local cache hits. We
see that the performance of CC is better than IP, and the performance of SCP
is similar with CC’s, while ACP outperforms all of them. SCP and CC perform
better than IP because in SCP and CC the MPs answer queries cooperatively.
The reason that ACP performs better than SCP is ACP solves the problems
we described in section 3, thus more data objects are prefetched globally. ACP
outperforms CC because ACP drives the MPs to continuously fresh the cache

70 W. Wu and K.-L. Tan

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
T

im
e

Cache Size

IP
CC

SCP
ACP

Fig. 1. Effect of Cache Size

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
T

im
e

Overlap

IP
CC

SCP
ACP

Fig. 2. Effect of Overlap

space with objects the MPs should not miss. Putting another way, ACP is an
proactive cooperative caching scheme while CC is a passive one. We even observe
that the gain of ACP out of them is considerable and stable.

5.2 Effect of Overlap

The effect of overlap (degree of common interests) on different scheme’s perfor-
mance is studied by varying the overlap percentage from 0 to 100%.

Figure 2 shows both ACP and CC’s performance increase when the overlap
degree is increased. It is because with more overlapped access regions, more data
objects are prefetched (cached) cooperatively and also more queries are answered
cooperatively. It is straightforward that overlap has no effect on IP scheme.

We observe that even when the overlap is set to 0, the performance of ACP is
still much better than other schemes. At first glance, it may look like a mistake.
In fact, it indeed shows the advantage of the ACP scheme. Note that when the
overlap is set to 0, the access ranges of the MPs are all selected randomly. When
NumClient ∗ AccessRange > DBSize, although we set overlap to 0, there are
still some ”invisible” overlaps. When there is overlap, ACP works.

Figure 2 clearly shows the problem of SCP. When the overlap is increased, the
performance declines first then improves. It declines first because the MPs have
similar access probabilities to the specified overlapped parts, so the problem of
prefetching same objects appears. The performance later improves because when
the overlap is big enough, the MPs gain from answering queries cooperatively.

5.3 Effect of Skewness θ

We study the effect of the skewness of a MP’s access distribution (Zipf) on
different scheme’s performance by varying the skewness from 0 to 1.

As shown in figure 3, the performance of all schemes improve with increasing
skewness in access pattern. When the access is skew, a MP accesses some data
objects more frequently than it does to others, and it will prefetch/cache the

Cooperative Prefetching Strategies for Mobile Peers 71

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
T

im
e

Skewness

IP
CC

SCP
ACP

Fig. 3. Effect of Skewness

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

R
es

po
ns

e
T

im
e

Transmission Range

IP
CC

SCP
ACP

Fig. 4. Effect of Transmission Range

frequently accessed objects so that the MP experiences more local cache hits.
We observe that IP, SCP and ACP are more sensitive to the skewness than the
CC does. It’s because prefetching schemes are more sensible to access skewness
than demand-driven caching schemes do.

5.4 Effect of Transmission Range

The effect of MP’s transmission range on different scheme’s performance is stud-
ied by varying MP’s transmission range from 0 to 250 m. Figure 4 shows with
the increase of transmission range, a MP is able to communicate with more
neighbors and the cooperation among neighborhood takes effect.

5.5 Effect of Move Speed

This set of experiments examines the effect of MP’s move speed on different
scheme’s performance by varying MoveSpeed from 0 to 20m/s.

From Figure 5, we observe that the performance of CC declines fast with the
increase of the MPs’ move speed while the performance of ACP is affected little
by the MPs’ move speed. In CC, when a MP puts reliance on its neighbors for a
data object D, it neither caches D nor listens to the broadcast for D, so the cost
of a cache miss (global cache miss) is high. When the MPs move at higher speed,
a MP’s neighbors leave faster, so the chance for cache miss is higher. This is the
reason why CC’s performance declines tremendously with higher speed. In ACP,
when a MP relies on its neighbors for a data object D, it does not prefetch it,
however, the MP is still listening to the broadcast, so when D is broadcast again,
the MP may prefetch it if this time no many neighbors announce to prefetch it.
Another reason that ACP is not affected much by move speed is that in ACP
a MP relies on its neighbors for a data object only when the data object is not
very important for it or when the data object is a commonly interested one.
Remember that in ACP in two situations a MP may rely on its neighbors for
a data object: 1) when the data object’s PT value is quite low; 2) when it receives

72 W. Wu and K.-L. Tan

many announcements from neighbors. For the first situation, it is not a big deal
when neighbors move away. For the second situation, with a high probability the
coming neighbors have the data object, because it is a commonly interested one.

Another observation is when speed is changed from 0 to 1(m/s), the perfor-
mance of ACP improves, but, when the speed continues increasing, ACP’s per-
formance declines. This is because: when the speed is 1, the MPs move slowly.
The good things of moving slowly are: first, the MPs are moving, so they have
chance to meet ”good” neighbors; second, the speed is low so that the neighbor-
hood do not change very frequently. While the speed is fast, the negative effect
of changing neighborhood is shown.

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

0 1 2 5 10 20

R
es

po
ns

e
T

im
e

Speed (m/s)

IP
CC

SCP
ACP

Fig. 5. Effect of Move Speed

 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340

1 10 100 1000 10000

R
es

po
ns

e
T

im
e

Data Size (KB)

IP
CC

SCP
ACP

Fig. 6. Effect of Data Size

5.6 Effect of Data Size

The effect of data size on different scheme’s performance is studied by varying
DataSize from 1 KB to 10 MB. When the broadcast bandwidth is determined, for
broadcasting same number of data objects, the broadcast cycle for large objects
is longer than that for small objects, and the dynamics of neighbors relative to
the broadcast cycle is stronger– more neighbors leave and more neighbors come
during one broadcast cycle. So from figure 6, we see that the effect of data size
is similar with the effect of move speed shown in figure 5.

6 Conclusion

In this paper, we have studied the problem of cooperative prefetching in a
broadcast environment. In such an environment, mobile peers can build up a
mobile P2P network via short-range communications. We have proposed an
announcement-based prefetching scheme (ACP) to allow peers to prefetch differ-
ent objects to facilitate more resource sharing. We have conducted an extensive
performance study, and our results showed that ACP improves the performance
considerably.

Cooperative Prefetching Strategies for Mobile Peers 73

References

1. Swarup Acharya, Rafael Alonso, Michael Franklin and Stanley Zdonik. Broadcast
disks: data management for asymmetric communication environments. in SIGMOD
1995.

2. Swarup Acharya, Michael J. Franklin and Stanley B. Zdonik. Prefetching from
Broadcast Disks. in ICDE 1996.

3. Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu and Jorjeta Jetcheva.
A performance comparison of multi-hop wireless ad hoc network routing protocols.
in MobiCom 1998.

4. Chi-Yin Chow, Hong Va Leong and Alvin Chan. Peer-to-Peer Cooperative Caching
in Mobile Environments. in ICDCSW 2004.

5. Chi-Yin Chow, Hong Va Leong and Alvin T.S. Chan. Distributed Group-based
Cooperative Caching in a Mobile Broadcast Environment. in MDM 2005.

6. Takahiro Hara. Cooperative caching by mobile clients in push-based information
systems. in CIKM 2002.

7. Fred Howell and Ross McNab. SimJava. http://www.dcs.ed.ac.uk/home/hase/
simjava/.

8. Haibo Hu, Jianliang Xu and Dik Lun Lee. Adaptive Power-Aware Prefetching
Schemes for Mobile Broadcast Environments. in MDM 2003.

9. Francoise Sailhan and Valrie Issarny. Cooperative Caching in Ad Hoc Networks.
in MDM 2003.

10. Chi-Jiun Su and Leandros Tassiulas. Joint broadcast scheduling and user’s cache
management for efficient information delivery. in MobiCom. 1998.

11. Ouri Wolfson and Bo Xu. Dissemination of Spatial-Temporal Information in Mobile
Networks with Hotspots. in DBISP2P 2004.

12. Wei Wu and Kian-Lee Tan. Cooperative Prefetching Strategies for Mobile Peers in
a Broadcast Environment. http://web.mit.edu/~wuwei/www/papers/CoPre.pdf

13. Bo Xu and Ouri Wolfson. Data Management in Mobile Peer-to-Peer Networks. in
DBISP2P 2004.

14. Jianliang Xu, Qinglong Hu, Dik Lun Lee and Wang-Chien Lee. SAIU: an efficient
cache replacement policy for wireless on-demand broadcasts. in CIKM. 2000.

15. Liangzhong Yin, Guohong Cao, Chita Das and Ajeesh Ashraf. Power-Aware
Prefetch in Mobile Environments. in ICDCS 2002.

16. Liangzhong Yin and Guohong Cao. Supporting Cooperative Caching in Ad Hoc
Networks. in INFOCOM 2004.

http://www.dcs.ed.ac.uk/home/hase/simjava/
http://www.dcs.ed.ac.uk/home/hase/simjava/

Symmetric Replication for Structured

Peer-to-Peer Systems�

Ali Ghodsi1, Luc Onana Alima2, and Seif Haridi1,2

1 KTH/Royal Institute of Technology
{aligh,seif}@kth.se

2 Swedish Institute of Computer Science (SICS)
onana@sics.se

Abstract. Structured peer-to-peer systems rely on replication as a basic
means to provide fault-tolerance in presence of high churn. Most select
replicas using either multiple hash functions, successor-lists, or leaf-sets.
We show that all three alternatives have limitations. We present and
provide full algorithmic specification for a generic replication scheme
called symmetric replication which only needs O(1) message for every
join and leave operation to maintain any replication degree. The scheme
is applicable to all existing structured peer-to-peer systems, and can be
implemented on-top of any DHT. The scheme has been implemented
in our DKS system, and is used to do load-balancing, end-to-end fault-
tolerance, and to increase the security by using distributed voting. We
outline an extension to the scheme, implemented in DKS, which adds
routing proximity to reduce latencies. The scheme is particularly suitable
for use with erasure codes, as it can be used to fetch a random subset of
the replicas for decoding.

1 Introduction

Research on structured peer-to-peer systems have produced systems which have
strong performance in presence of dynamism. To cope with the dynamism, these
systems rely on replication as a basic means to achieve robustness and fault-
tolerance.

Most existing structured peer-to-peer systems either use multiple hash func-
tions, successor-lists, or leaf-sets for choosing replicas.

Contribution. We analyze using multiple hash functions, successor-lists, and
leaf-sets, and point out their disadvantages. Thereafter, we propose a new repli-
cation scheme, called symmetric replication, which we have implemented and
added to the DKS system[1]. We provide full algorithmic specification of our
scheme, something which we have not found for any other replication schemes
for structured peer-to-peer systems. The advantages of symmetric replication
are manifold. First, it is a general end-to-end scheme and can be applied to all
� This work was funded by the European project EVERGROW, the Vinnova project

GES3 in Sweden.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 74–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Symmetric Replication for Structured Peer-to-Peer Systems 75

structured peer-to-peer systems. Furthermore, each join and leave operation only
requires sending 1 message to maintain the replication degree. Moreover, nodes
can make concurrent requests to any specified replica. This opens up a window
of opportunities. It is more secure as multiple requests to different replicas do
not need to pass through the same node. Hence, distributed voting can be us-
ing the compare the results to increase security, without the risk of having the
results tampered by one node. It can also be used for load-balancing by sending
requests to a random replica. It is particularly useful if used in conjunction with
erasure codes, as a random subset of size k of the replicas can be fetched concur-
rently to reconstruct the original data. Finally, we show an optional extension
of symmetric replication, which is used in DKS to achieve proximity neighbor
selection.

Outline. Section 2 gives preliminaries. In Section 3, we analyze three major
existing replication schemes. We introduce our proposed scheme in Section 4.
Section 5 outlines different techniques that can be built on-top of symmetric
replication. Finally, the last sections, 7 and 8, discuss related work and conclude.

2 Preliminaries

In this section we present preliminary definitions used in the rest of the paper.
We assume a distributed system modeled by a set of peers communicating by

message passing through a communication network that is: (i) connected, (ii)
asynchronous, (iii) reliable, and (iv) provides FIFO communication.

A distributed algorithm running on a peer in the system is described as a set
of rules of the form:

R ::
receive(Sender, Receiver, Message(arg1, .., argn))

Action

The rule R describes the event of receiving Message from Sender at the peer
Receiver and the Action taken to handle that event. A Sender of a message
executes the statement send(Sender, Receiver, Message(arg1, .., argn)) to send
a message to Receiver.

We now give the definitions used in the rest of the paper.
In most systems, each peer in the system is assumed to receive a logical

identifier from an identifier space, denoted I, which is perceived as a ring (modulo
the size of the space). We assume for simplicity that the identifier space is discrete
and defined as I = {0, · · · , N −1} for some large constant N (N ∈ N). The
identifier space is a metric space has a distance function d : I × I→R satisfying
the following criteria: a) d(x, y) ≥ 0, b) d(x, y) = 0, iff x = y, c) d(x, y) = d(y, x),
d) d(x, z) ≤ d(x, y) + d(y, z). If requirements c and d are not satisfied we call it
a “pseudo”-metric space.

We now formally define a structured P2P system.

76 A. Ghodsi, L. Onana Alima, and S. Haridi

Definition 1. A structured P2P system is a P2P system with a “pseudo”-metric
space where each peer in the system has got an identifier from the “pseudo”-
metric space and the choice of the neighbors of a peer are constrained in terms
of the distance function of the “pseudo”-metric space.

On top of a structured P2P system a distributed hash table (DHT) abstraction
can be built by deterministically mapping each identifier i in the identifier space
to a peer with identifier p. We denote the identifiers of the peers in the system
at a certain time P (P ⊆ I).

To make the rest of the paper concrete, we will define a distance function, as
well as a mapping from identifiers to peers, as commonly used in [2,1,3,4]. Our
replication scheme, however, does not assume these definitions and can thus be
applied to a variety of structured P2P systems.

We will assume the distance function is defined as:

d(x, y) = y � x

The operator � : I × I → I is defined as:

�(x, y) = x − y mod N

Similarly ⊕ : I × I → I is defined as:

⊕(x, y) = x + y mod N

We use infix-notation for the binary operators � and ⊕ to ease the reading.
For the mapping of identifiers to peers we map each identifier i in the system

to its successor, which is the first peer met in the identifier space going in clock-
wise direction starting at i. The function sP : I → P is used for this purpose:

sP(i) = i ⊕ min{d(i, p) : p ∈ P}
We call a peer n responsible for an item i iff sP(i) = n. Sometimes we will

refer to peer n as the master peer for item i to distinguish it from other peers
replicating item i.

To provide a DHT abstraction, each data item d is mapped to the identifier
space using a globally known function H . Hence, a data item d is stored on the
peer sP(H(d)).

3 Major Existing Replication Schemes

The use of several hashing functions for replication, which is mentioned in CAN,
Tapestry, and other systems[5,6], is closest to our symmetric replication scheme.
However, it has several major disadvantages. It requires the inverse of the hashing
functions to maintain the replication factor, which is impossible by the definition
of hash functions. To see why, assume a replication degree of two, and hence two
different hashing functions, H1 and H2, which are known by all nodes. Assume a
node with identifier 10 is storing any items with identifiers in the range [5, 10]. An
item with key “course” might be mapped to identifier 7 using H1, and therefore
be stored at node 10. If node 10 fails, this item should be fetched from the
other replica and replication to maintain the replication degree 2. To do this,

Symmetric Replication for Structured Peer-to-Peer Systems 77

however, it would be required to find out the key “course” such that the node
responsible for H2(“course”) can be contacted. Worse, even if the inverse of the
hash functions were available, each single item that the failed peer maintained
would be dispersed all over the system when using different hash functions,
making it necessary to fetch each item from a different peer.

If the replication degree is not restored each time there is a failure, items soon
disappear from the system. Assume every node fails with exponential distribution
with intensity lambda. Then every node fails after an average of 1

λ time units.
Given replication degree f , after an expected f

λ time all replicas would be lost.
The successor-list scheme is, however, able to restore the replication degree

after failures. The scheme [2] fulfills two purposes. One is to replicate items on
the successors such that lookups for items on a failed peer can be resolved by its
successor, since the failed peer’s items automatically become the responsibility
of the successor. The other purpose is to store routing information about f
successors, such that as soon as a node’s successor, p, is detected as failed, it is
quickly replaced with p’s successor. The leaf-set scheme[3,7] has the same two
uses as the successor-list scheme. But in addition, a lookup request might first
arrive at one of the replicas, which then can resolve the lookup.

Our conjecture is that the two mechanisms should be separated. While hav-
ing routing information about the successors or leafs is useful for routing table
correction, replication on the same set has several disadvantages.

The first disadvantage is that both schemes need Ω(f) messages for every join
and leave event to maintain a replication degree of size f . The reason for this is that
if a node leaves the system, its f successors (or 	 f

2
 predecessors and successors
in the leaf-set scheme) will by definition belong to the successor-list (or leaf-set)
of a node which they previously were not in. Hence, they need to fetch or release
items. Figure 1 illustrates this with an example using the successor-list scheme.
The figure shows a system with the peers 1, ..., 7 as indicated by the circles. For
simplicity, the system contains the items 1, ..., 7. Assuming a replication factor of
3, the figure shows the identifiers of the items each peer is replicating. If peer 4
has failed, peers 5, 6, 7 need to establish connections with other peers and fetch
the items 1, 2, 3 respectively to maintain the replication factor.

Furthermore, the re-establishment of the replication degree needs to be coor-
dinated by some node that triggers a replication maintenance algorithm at each
of the successors (and predecessors in the leaf-set case). The coordinating peer
might however fail or leave the system making it necessary to use a more robust
algorithm. Many implementations, such as Bamboo[8], or the previous version of
the DKS system[1], used an epidemic algorithm, where each node sends a mes-
sage to its neighbors whenever it detects a change, leading to θ(f2) messages
for every event, or time interval if the algorithm is periodic, given a replication
degree of size f .

Furthermore, any request to a specific replica, m, must first be routed to
a node in the successor-list, or the leaf set, before it can be forwarded to m.
The reason behind this is that the requesting node has no information about
the logical identifier of the replicas, while the nodes in the successor-list, or the

78 A. Ghodsi, L. Onana Alima, and S. Haridi

Fig. 1. A system populated with peers 1, ..., 7, as indicated by the circles in the figure.
The figure shows the identifier of the items each peer is storing given that the replication
factor is 3. E.g. peer 1 is replicating items 5, 6, 7.

leaf-set, maintain such information. In the successor-list scheme, the first replica
routed to will always be the numerically closest replica in the successor-list, while
in the leaf-set this can be any of the replicas. In both systems, however, the first
replica met is a bottleneck, which can fail, decelerate the whole operation, or in
the case of an adversary, launch a malicious attack.

The leaf-set scheme is, however, better in this respect as it naturally balances
requests to different replicas, given that f ≥ 2b, where f is the replication degree,
and 2b is the arity of the search tree.

Fig. 2. The identifiers associated with each identifier in the system in a system with
identifier space of size N = 16 and a replication factor of size f = 4

4 The Symmetric Replication Scheme

The main idea behind symmetric replication is that each identifier in the system
should be associated with f other identifiers. If identifier i is associated with
identifier r, then any item with identifier i should be stored at the peers respon-
sible for identifiers i, and r. Similarly, any item with identifier r should also be
stored at the peers responsible for the identifiers i, and r.

Formally, each identifier in the system is associated with a set of f distinct
identifiers such that the following always holds: if the identifier i is associated
with the set of identifiers r1, ..., rf , then the identifier rx, for 1 ≤ x ≤ f , is
associated with the identifiers r1, ..., rf as well.

Put differently, the identifier space is partitioned into N
f equivalence classes

such that identifiers in an equivalence class are all associated with each other.
Any such partition will work, but we will for simplicity chose the congruence
classes modulo f .

Symmetric Replication for Structured Peer-to-Peer Systems 79

Subroutine :: JOINREPLICATION

send(n : succ : RETRIEVEITEMS(pred,n))

R1 :: receive(m : n : RETRIEVEITEMS(start, end))

for r :=1 to f do
items[r] := Ø
i := start
while i �=end do

i := i⊕ 1
items[r][i] := localHashTable[r][i]

od
od
send(n : m : REPLICATE(items,start, end))

R2 :: receive(m : n : REPLICATE(items, start, end))

for r :=1 to f do
i := start
while i �=end do

i := i⊕ 1
localHashTable[r][i] := items[r][i]

od
od

Subroutine :: LEAVEREPLICATION

for r :=1 to f do
items[r] := Ø
i := pred
while i �=n do

i := i⊕ 1
items[r][i] := localHashTable[r][i]

od
od
send(n : succ : REPLICATE(items, pred, n))

Fig. 3. Rules R1, and R2 show the replication algorithm for joins and leaves

We now explain how each identifier i is associated to f other identifiers to
achieve replication degree f . Let F = {1, ..., f}, then identifier i is associated to
the f different identifiers given by the function r : I×F → I defined as: r(i, x) =
i ⊕ (x − 1)N

f
Figure 2 shows how identifiers are associated in an identifier space of size

N = 16 and a replication factor f = 4. The black boxes illustrate each identifier
in the identifier space, and on-top of each black box the identifiers associated
with it are shown in light boxes. For example, identifier 0 is associated with the
identifiers 0 (r(0, 1) = 0), 4 (r(0, 2) = 4), 8 (r(0, 3) = 8), 12 (r(0, 4) = 12).

As we mentioned before, in a system without any replication, each item with
identifier i is stored at the responsible peer given by sP(i), which in our example
is the successor of item i. To replicate items in our scheme, the responsible peer
of identifier i stores every item with an identifier associated with i. This implies
that to find an item with identifier i, a request can be made for any of the
identifiers associated with i.

Formally, in a system with the peers P , an item with identifier i is stored on
the f peers given by sP(r(x, i)), for all x (1 ≤ x ≤ f).

For example, if the identifier 0 is associated with the identifiers 0, 4, 8, 12,
any peer responsible for any of the items 0, 4, 8, or 12 has to store all of the

80 A. Ghodsi, L. Onana Alima, and S. Haridi

R3 :: receive(m : n : INSERTITEM(key, value))
for r :=1 to f do

replicaKey := key ⊕ (r − 1) N
f

respNode := FINDSUCCESSOR(replicaKey)
send(n : respNode : ADDITEM(replicaKey, value, r))

od

R4 :: receive(m : n : ADDITEM(key, value, r))
localHashTable[r][key] := value

Subroutine :: LOOKUPITEM(key, r))
replicaKey := key ⊕(i− 1) N

f

respNode := FINDSUCCESSOR(replicaKey)
send(n : respNode : GETITEM(replicaKey))

R5 :: receive(m : n : GETITEM(key))
send(n : m : GETITEMRESP(Key, localHashTable[r][key]))

Fig. 4. The replication algorithms for inserting and looking up items shown by rules
R3, R4

items 0, 4, 8, and 12. Hence, if we are interested in retrieving item 0, we can ask
the peer responsible for any of the items 0, 4, 8, 12.

For the symmetry requirement to always be true, it is required that the repli-
cation factor f divides the size of the identifier space N . We find this reasonable
as the size of the successor-list, as well as N , are constants in most systems. We
have developed an intricate scheme where f can be freely chosen with a deviation
of |1|, but omit it for space reasons.

Algorithms. We now give a description of all algorithms. The algorithms might
need to be slightly modified to fit a system with a different mapping of identifiers
to peers.

Each peer in the system has all its items stored in a two-dimensional (f, N)-
array denoted localHashTable. The first dimension of the array represents the
f identifiers associated with the identifier in the second dimension of the array.
Hence, localHashTable[i][j] represents items with identifiers r(j, i).

Whenever a new peer n joins the system, it makes a call to the sub-routine
JOINREPLICATION (Fig.3) which immediately sends a RETRIEVEITEMS-message
to its successor (denoted succ) asking it about all items n should be storing. The
message declares which items it is interested in by specifying a range (pred,n),
where pred is its predecessor’s identifier and n is its own identifier.

Once the successor peer receives the RETRIEVEITEMS-message it initializes an
empty two-dimensional (f, N)-array called items. Thereafter, each item associ-
ated with an identifier in the specified interval is copied from localHashTable to
items and sent back in a REPLICATE-message to the newly joined peer. Upon
receipt of the REPLICATE-message, the newly joined peer copies items to its lo-
calHashTable. The new peer is now ready to receive requests from other peers in
the system.

The leave algorithm (Fig.3) works similarly to the join algorithm. When-
ever a peer wants to leave the system it makes a call to the sub-routine called
LEAVEREPLICATION which copies all items it is responsible for and sends them

Symmetric Replication for Structured Peer-to-Peer Systems 81

Subroutine :: FAILUREREPLICATION(failedId, predId, r)
start := predId ⊕(r − 1) N

f

end := failedId ⊕(r − 1) N
f

respNode := FINDSUCCESSOR(start)
send(n : respNode :

RESTBCAST(start, end, MSG(start, end, n)))

Subroutine :: MSGHANDLER(start, end, n’))
for r :=1 to f do

items[r] := Ø
i := start
while i �=end do

i := i⊕ 1
items[r][i] := localHashTable[r][i]

od
od
send(n : n′ : REPLICATE(items,start, end))

Fig. 5. The replication algorithms for failures

in a REPLICATE-message to its successor. Notice that we do not delete items that
are no longer a peer’s responsibility. If disk space is limited, such an optimization
could be added.

Figure 4 shows the algorithms used to insert or lookup an item. To save
space, we have not shown the asynchronous algorithm for finding the responsible
of an item. Such an algorithm can commonly be found in most structured P2P
systems. We assume that the sub-routine FINDSUCCESSOR implements a simple
synchronous distributed algorithm which finds the peer responsible for a given
identifier (See [2] for such an algorithm).

To insert an item, the inserting peer simply makes concurrent insertions to
every location where the replica should be stored.

For the lookup algorithm, we only show a sub-routine that takes the two
parameters key and i (1 ≤ i ≤ f) and finds the responsible peer for the i:th
replica of identifier key. On top of this abstraction, different kinds of lookup
services can be built, such as the ones mentioned in Section 5.

For handling failures, the algorithm shown in Figure 5 is used. The sub-
routine FAILUREREPLICATION is called at the successor of the failed peer with
parameters specifying the failed peer’s identifier, the failed peer’s predecessor’s
identifier, and an integer specifying which of the f replicas to fetch the items
from.

For example, assume the system depicted by Figure 2 populated with peers 0,
3, 4, 6, 7, where peer 3 has failed. Peer 4 should ideally fetch items in the range
(1, 3) to restore the replication degree. Items (1, 3) are associated with items
(5, 7), (9, 11), and (13, 15). Peer 4 chooses to fetch them from the peers respon-
sible for (5, 7) which are peers 6 and 7. Instead of sending the message around
the ring in the interval (5, 7) a restricted version of our broadcast algorithm[9] is
used which covers the given interval in O(M) messages, where M is the number
of peers in the given interval. Assuming a uniform distribution of peer identifiers,
the restricted broadcast needs to send one message on average on every failure.

82 A. Ghodsi, L. Onana Alima, and S. Haridi

5 Exploiting Symmetric Replication

In this section we discuss simple end-to-end techniques that exploit symmetric
replication’s ability to do concurrent requests to replicas to enhance the security
and performance of the system.

In the DKS system, distributed voting is used to ensure that data items
received are not tampered with. This is done by sending requests to all m replicas
and deciding which replica to accept based on a majority vote. The probability
that an item has been tampered can be calculated and reported to the requesting
user or application. If the probability that an item is tampered is p, and m
(2 ≤ m ≤ f) concurrent requests are made out of which a majority of g (0 ≤
g ≤ m) answers are identical, the probability of such a configuration is given the
Bernoulli trials:

(
m
g

)
pg(1 − p)m−g. The system can automatically increase the

number of concurrent requests m to achieve a certain degree of certainty in the
results.

The advantage of symmetric replication is not only restricted to enhancing the
security of the system. Symmetric replication can be used to send out multiple
concurrent requests and picking the first response that arrives. The advantages
of this are twofold. First, it enhances performance. Second, it provides fault-
tolerance in an end-to-end fashion since the failure of a peer along the path of
one request does not require repeating the request as it is likely that another
one of the concurrent requests succeeds. If such a scheme is not used, outgoing
messages have to be buffered at a peer together with timers, and whenever a
timeout occurs, the messages need to be sent again with risk of ending up at the
same failed node.

Proximity Neighbor Selection. The symmetry property could be used within
the routing process to achieve proximity neighbor selection. This is particularly
useful in systems such as DKS , Chord, and Koorde, where the legitimate state
of the routing information is rigid[10].

The idea is that each peer in the system augments its routing table to contain
f entries for each routing entry, one for each replica of a routing entry.

For example in a Chord system with an identifier space of size N , each peer
p maintains pointers to the successors of the identifiers p ⊕ 2i for all i (0 ≤
i < log(N)). To enhance this system, the routing information at each peer is
augmented with a pointer to the responsible peer of every identifier associated
with the identifier p ⊕ 2i. Every entry in the routing table is also tagged with
proximity information.

Proximity neighbor selection can then be achieved in the following way. To
route a message to the peer responsible for identifier d, each message in the
routing process is piggy-backed with a parameter r that specifies which of d’s
replicas is currently searched for. A peer n in the routing process can then
calculate its distance to the r:th replica of d. Peer n now has f peers that it can
choose among which each have a shorter distance to each respective replica of d.
Naturally, peer n routes to the peer which has the best proximity, and updates
r in the outgoing message to reflect the intended replica.

Symmetric Replication for Structured Peer-to-Peer Systems 83

6 Evaluation

We have have simulated the symmetric replication scheme and the successor-list
scheme in a stochastic discrete event simulator developed using Mozart[11]. The
symmetric replication scheme is implemented using the algorithms described in
this paper. The lack of algorithmic specification of the successor-list scheme, or
any other scheme for that matter, led us to implement a successor-list scheme
in which every join or leave only costs f messages. In reality, however, many
schemes use more messages to maintain the replication degree.

The method of independent replications has been used to generate unbiased
estimates from independent and identically distributed variables. All the sim-
ulations are non-terminating where nodes join and leave with an exponential
distribution with parameter λ, and a replication factor of 5.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Successor List, fail rate=0.05 n=500
Successor List, fail rate=0.05 n=2000

Successor List, fail rate=0.2 n=500
Successor List, fail rate=0.2 n=2000

Symmetric, fail rate=0.05 n=500
Symmetric, fail rate=0.05 n=2000

Symmetric, fail rate=0.2 n=500
Symmetric, fail rate=0.2 n=2000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Successor List, fail rate=0.05 n=500
Successor List, fail rate=0.05 n=2000

Successor List, fail rate=0.2 n=500
Successor List, fail rate=0.2 n=2000

Symmetric, fail rate=0.05 n=500
Symmetric, fail rate=0.05 n=2000

Symmetric, fail rate=0.2 n=500
Symmetric, fail rate=0.2 n=2000

Fig. 6. Symmetric Replication vs. Successor-List Scheme. X-axis shows the simulated
time line, while the Y-axis shows the total number of messages consumed to maintain
the replication degree.

Figure 6 shows different simulations where the probability of ungraceful fail-
ures is 0.05, 0.1, and 0.2. We also vary the initial number of nodes that are in
the system before the warm-up period to 500 and 2000.

The figure shows that the successor-list scheme consumes more messages to
maintain the replication degree as nodes join and leaves the system, while the
symmetric replication scheme maintains the replication degree with less amount
of messages.

7 Related Work

Beehive[12] proposes to pro-actively replicate items and achieves O(1) lookup
latency. Beehive works well with structured P2P systems based on fixed space
division1, such as Tapestry, Pastry, and P-Grid, it is however not suited for
1 For more information of fixed and relative space division, please refer to [10].

84 A. Ghodsi, L. Onana Alima, and S. Haridi

systems based on relative space division, such as Chord, Koorde, and DKS.
In contrast, symmetric replication works with with both type of systems. In
addition, Beehive replicates on its leaf set as well. Furthermore, Beehive does
not address security issues as the authors acknowledge. Another disadvantage is
that adaptive replication schemes are difficult to build transactions on-top of,
while constant degree schemes are well-suited for that purpose.

In, [13], the security breaches of the successor-list scheme are identified, no
solution is however proposed for the particular problem.

8 Conclusions

We have analyzed the three main approaches used for replication in structured
peer-to-peer systems, multiple hash functions, successor-lists, and leaf-sets, and
found that they have drawbacks.

The first scheme has the drawback that the replication degree cannot be
restored after failures, and hence items will disappear after a while. The other
schemes both require at least Ω(f) messages for each join and leave event to
maintain a replication degree of size f . In practice, however, epidemic algorithms
are used which use O(f2) messages in each round.

The second disadvantage is that the requesting peer cannot directly route
to a specific replica, but the request is routed to the first replica encountered,
which then forwards the request to the desired replica. The possibility of routing
directly to a specific replica is useful if an insertion or update is required, or if
several replicas is to be looked up concurrently. The first replica encountered is
thus a bottleneck, which can fail, decelerate the operation, or launch a security
attack. The leaf-set scheme is better, however, as the first replica met can be
any of the replicas, while in the successor-list scheme, the same peer is always
encountered when searching for a given item.

To rectify the problems in the mentioned other schemes, we proposed a new
scheme and provided full algorithmic specifications of it. The scheme is applica-
ble to all structured peer-to-peer systems. In our scheme, every join and leave
operation requires O(1) message to maintain the replication degree, independent
of the size of the replication factor. Furthermore, requests can be directed to any
specific replica directly. As a result, concurrent requests can be made, which can
be used to prevent security attacks by using distributed voting. Our simulations
verify that the cost of maintaining the replication degree is lower when using
symmetric replication.

Finally, we outlined an optional extension to our scheme to achieve proximity
neighbor selection.

References

1. Distributed k-ary System: http://dks.sics.se (2005)
2. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-

able Peer-to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM
2001, San Deigo, CA (2001) 149–160

Symmetric Replication for Structured Peer-to-Peer Systems 85

3. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science
2218 (2001)

4. Kaashoek, M.F., Karger, D.R.: Koorde: A Simple Degree-optimal Distributed Hash
Table. In: The 2nd Interational Workshop on Peer-to-Peer Systems (IPTPS’03).
(2003)

5. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM 2001. (2001) 161–172

6. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.:
Tapestry: A global-scale overlay for rapid service deployment. IEEE Journal on Se-
lected Areas in Communications (Special Issue: Recent Advances In Service Over-
lay Networks) 22 (2004) 41–53

7. Rowstron, A., Druschel, P.: Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility. In: Proceedings of the 18th SOSP (SOSP
’01), Chateau Lake Louise, Banff, Canada (2001)

8. Bamboo: http://bamboo-dht.org/ (2003)
9. Ghodsi, A., Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: Self-Correcting

Broadcast in Distributed Hash Tables. In: 15th International Conference, Parallel
and Distributed Computing and Systems, Marina del Rey, CA, USA (2003)

10. Alima, L.O., Ghodsi, A., Haridi, S.: A Framework for Structured Peer-to-Peer
Overlay Networks. In: LNCS post-proceedings of Global Computing, Springer
Verlag (2004) 223–250

11. Mozart Consortium: http://www.mozart-oz.org (2003)
12. Ramasubramanian, V., Sirer, E.: Beehive: The Design and Implementation of a

Next Generation Name Service for the Internet. In: ACM SIGCOMM 2004. (2004)
13. Sit, E., Morris, R.: Security Considerations for Peer-to-Peer Distributed Hash

Tables. In: The 1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02).
(2002)

A Gradient Topology for Master-Slave

Replication in Peer-to-Peer Environments�

Jan Sacha and Jim Dowling

Distributed Systems Group, Trinity College Dublin, Ireland
{jsacha,jdowling}@cs.tcd.ie

Abstract. Open peer-to-peer architectures offer many possibilities for
replicating database content, but designers have to deal with problems
such as peer churn rates and inherent uncertainty in decision making.
The lack of global knowledge of peer characteristics poses the specific
problem of reliable peer discovery for database replica placement. This
paper describes a self-organising algorithm for generating a peer-to-peer
gradient topology that helps to solve the problem of replica placement
through the clustering of peers with similar uptime and performance
characteristics. We evaluate the algorithm by simulation, and propose
an approach for master-slave replication that exploits the properties of
the presented topology.

1 Introduction

The peer-to-peer paradigm for building distributed systems has become ex-
tremely popular and it has received increased attention as more and more novel
applications are invented and successfully deployed. The main advantage of the
paradigm is that it allows the construction of systems with unprecedented size
and robustness, mainly due to their inherent decentralisation and redundant
structures. However, the P2P paradigm introduces challenges that are often not
dealt with properly in many proposed P2P architectures. Massive scale and very
high dynamism makes it impossible to capture and maintain a complete pic-
ture of the entire P2P network, consequently, a peer or any other entity is only
able to maintain a partial or estimated view of the system. Inherent decentralisa-
tion, an open environment, lack of trust and unreliable communication introduce
distributed decision making problems. In particular, there is a problem in the
database field of how to select the most suitable peers for storing data.

Existing P2P systems, such as Distributed Hash Table (DHT) based ap-
proaches, usually assume that all peers are similar and have equal capabilities
for maintaining data [1]. For example in Chord [2] it is assumed that the dis-
tribution of resources among the peers is uniform. However, this was shown not
to be the case in real-life systems, where the distribution of peer characteristics,

� This work was supported by the European Union funded ”Digital Business Ecosys-
tem” Project IST-507953.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 86–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Gradient Topology for Master-Slave Replication 87

such as the number of connections, the uptime, available bandwidth or the stor-
age space, usually exhibit the so called scale-free or heavy-tail property [3,4,5,6].
Systems that do not address the heterogeneity of the environment and do not
adapt their structures to the environment often suffer poor performance, espe-
cially in the face of high churn rates, i.e., high frequency of peers entering and
leaving the system [7,8,9].

The main contribution of this paper is a self-organising neighbourhood se-
lection algorithm, that clusters peers with similar performance characteristics
and generates a gradient network topology that helps to solve the problem of
dynamic replica placement. We briefly describe an approach for master-slave
database replication, a heuristic for master election and a heuristic for replica
discovery, which all exploit the properties of the gradient topology in order to
improve the stability of the replicas and minimise the overhead for replica main-
tenance. We evaluate the neighbourhood selection algorithm through simulation
and performance measurements.

The rest of the paper is organised as follows. In section 2 we discuss the gen-
eral requirements for data distribution and replica placement. In section 3 and 4
we introduce the concept of gradient topology and we demonstrate a neighbour
selection algorithm that generates the proposed topology. In section 5 an ap-
proach for master-slave replication based on the gradient topology is presented.
Section 6 contains a detailed description of the simulation settings and the ex-
perimental results. Finally, in sections 7 and 8 we discuss the related work and
our plans for future work.

2 Peer Utility Metrics

When addressing the persistent data requirements for a distributed system, we
must decide on where to store the data. There are two extremes; one is to store all
data in a centralised server, which introduces scalability problems, and the other
one is to partition the data among a set of peers using some indexing scheme,
for example a distributed hash table. Many existing P2P systems assume that
all peers have identical capabilities and responsibilities, and that the data and
load distribution is uniform among all peers [1,2]. However, this approach has a
drawback that the use of low bandwidth/stability/trust peers to store data can
potentially degrade the performance of the entire network [7].

To solve this problem, many systems only allow data to be stored on the
fastest, highest bandwidth, and most reliable, trusted peers, called superpeers
[8,9]. This approach, however, introduces another problem of superpeer election.
It is not obvious how to identify and select the superpeers from the set of peers
in the network, mainly due to the lack of a global knowledge about the sys-
tem. Solutions based on flooding potentially require communication with all N
peers in the network. Other solutions include hard-wiring them in the system or
configuring them manually. However, this conflicts with the assumptions of self-
management, decentralisation, and the lack of a central authority that controls
the structure of the system. An adaptive self-organising system is preferable,

88 J. Sacha and J. Dowling

where the peers automatically and dynamically elect superpeers, accordingly to
the demand, available resources and other runtime constraints. Alternatively,
the system may resign from the two-state distinction between superpeers and
ordinary peers and it may assign roles for peers relative to their capabilities.

The selection of peers for replica placement could potentially be based on
criteria such as peer stability, available bandwidth and latency, storage space,
processing performance, an open IP address and willingness to share resources.
Peer availability, or uptime, is especially relevant, since every peer entering or
leaving the system introduces extra overhead, due in part to required data trans-
fers or routing structure reconfiguration. The system could also employ a peer
reputation model and use it as a criteria for replica placement, for example only
the most trusted peers might be allowed to host a replica.

We define a peer’s utility as a function of the above parameters. The utility is
a critical factor in the algorithm that generates the P2P gradient topology and
is used in the replica placement strategy presented in this paper.

In a closed system, where all peers trust each other, it is sufficient that every
peer evaluates its own utility level. Neighbouring peers can exchange the utility
information without any verification procedure, since trust is assumed. In an
open, untrusted environment, a separate mechanism is needed to assure that the
utility claimed by the peers corresponds to their actual status. Managing trust
in a decentralised system, however, is beyond the scope of this paper and will
not be discussed further.

A key principle in our approach is that persistent data is stored by the highest
utility peers. This strategy addresses a problem faced by many existing P2P
systems, where some data items, especially less popular, are hardly accessible
or even lost due to peers’ instability or lack of resources such as storage space
or bandwidth. In our design, the system tries to maximise data availability,
security and the quality of service by placing data replicas on the most reliable,
high performance hosts.

3 Gradient Topology

We propose a P2P topology, which we call a gradient topology, where the highest
utility peers, maintaining persistent data, are highly connected with each other
and form a logical core of the network, while the network around the core is com-
posed of other peers considered less performant or less reliable (see Figure 1).
Assuming the scale-free, heavy-tailed distribution of resources [4,5,6], a great
majority of peers belongs to the latter category. The number of core peers is rel-
atively small, but the amount of contributed resources and stability of core peers
is significantly higher than the outer peers. The main advantages of grouping
high utility peers in a logical core are the following:

– Searching for high utility peers maintaining replicas, or suitable for main-
taining replicas, is less expensive in terms of number of messages generated,
since it only requires communication with a small subset of peers in the
network.

A Gradient Topology for Master-Slave Replication 89

Core

Replica-Suitable Nodes

Other nodes

Fig. 1. Gradient topology based on peer utility

– The overhead for replica synchronisation is reduced since peers storing repli-
cas are located close to each other, at least in terms of number of hops, and
are connected by stable, good quality routes.

In practice, the core peers act more as servers, while the outer peers act more
as clients. The core peers should be well-connected, have high bandwidth and
processing power, and should be able to maintain a relatively high number of
connections. On the other hand, peers far from the core are not suitable for
maintaining replicated data, due to poor reliability, resource constraints or the
owner’s unwillingness to contribute resources to the system. It is not desirable to
place such peers in the core since they would decrease the system’s performance.

4 Neighbour Selection Algorithm

In order to create the gradient P2P topology and enable the emergence of a
stable core, we initially thought of the following neighbour selection rule: two
peers may become neighbours if they have similar utility status. Additionally,
high utility peers should have more neighbours, since they have more resources
available to maintain network connections.

However, our early experiments showed that a greedy selection policy, where
peers always select neighbours with the most similar characteristics to their own,
leads to high network clustering and in consequence long distances between peers.
In some cases the clusters got disconnected and the network became partitioned.
Another problem was that the highest utility peers did not always connect to
a single core, and sometimes there were multiple clusters of high utility peers
separated from each other by a number of lower utility peers.

We improved the algorithm by allowing the peers to connect to other non-
similar peers, with the connection probability exponentially decreasing with the
difference in peer utility. However, it turned out that a randomised strategy,

90 J. Sacha and J. Dowling

Fig. 2. Neighbourhood set exchange from Peer A to Peer B

where a percentage of neighbours was always selected at random, gave the best
results. Random connections serve several purposes. First of all, they allow the
peers to discover potential neighbours with similar utility level, even in remote
regions of the network, which in turn enabled the formation of a single cluster
containing the highest utility peers. Random connections thus play a similar
role to the exploration in traditional multi-agent systems. Second, random links
prevented the graph from being disconnected. As shown in [10], even a small
number of random connections, for example 20 per peer, is sufficient to make
the probability of network partitioning negligibly small in practice. Finally, our
randomised algorithm has the advantage that it is quite simple and it does not
require tuning parameters specific to the deployment environment, such as the
network size or average peer connectivity.

A peer maintains two independent sets of neighbours, randomly-selected con-
nections, and greedily-selected connections to peers with similar utility status
(see Figure 2). New connections are discovered by gossiping, i.e., by randomly
contacting already existing neighbours and exchanging with them the lists of
connections. It is important to note, that the connections inserted to the ran-
dom sets are always selected from other peers’ random sets, which guarantees
that the sets remain random. The details of the algorithm implementation and
the simulation settings are described in Section 6.

5 Replication Strategy

In this section, we demonstrate how the gradient network topology can be ex-
ploited by a master-slave database replication strategy. We present an approach,
where the replica placement is based on peer utility, available resources and de-
mand. Due to the information contained in the network structure, the selection of
high utility peers suitable for replica placement does not require communication
between all peers in the system.

We assume that each peer can potentially create an independent database, and
replicate it over some of the peers in the network in order to improve its availability
and persistence guarantees. A peer that creates the first copy of a database, which

A Gradient Topology for Master-Slave Replication 91

(a) Peers S1, S2 and S3 compare their
utility to elect a new master.

(b) Master compares the utility of peers S1,
S2 and S3 to select the best peer for slave
replica placement.

Fig. 3. Slave replica searching and master election algorithms exploiting the implicit
information about peer utility contained in the network topology

we call the master replica, becomes the database owner. Subsequent replicas of the
database hosted by other peers are called slave replicas. The users issue queries to
the database that can be resolved by any replica. The owner, and potentially other
authorised users, can also update or delete a database. There is only one master
replica of a database and it is responsible for handling and synchronising updates.
Slave replicas are created automatically, on demand.

We restrict the set of peers that are allowed to create database replicas to
those with utility above a replica-suitable threshold. A master replica threshold
defines a minimum peer utility to host a master replica, and a slave replica
threshold defines a minimum utility level to host a slave replica. It is important
to note, that the system does not require any form of consensus between peers on
the threshold values, since the thresholds can be determined for each database
individually.

5.1 Replica Placement

In our approach, a peer that already hosts a replica, in particular the master, re-
quests a new replica placement on one of its neighbours when a certain condition
is met, for example when the number of user queries exceeds some critical level
and a new replica is needed to handle the load. It is crucial in this approach that a
peer initiating the replication must be able to find other peers suitable for hosting
new replicas, i.e., peers with utility above the slave replica threshold. This should
be satisfied in the gradient topology, since all peers storing replicas are clustered
in the highly connected core, and share a similar, high utility status. Search mes-
sages do not need to be propagated to lower utility neighbours, since all high utility
peers are located in the core of the network (see Figure 3(b)).

Replicas are removed on demand, adaptively. When a peer decides that the
cost of a replica’s maintenance is higher than the cost of handling queries, for

92 J. Sacha and J. Dowling

example the frequency of queries drops below some threshold value, the replica
can be deleted. Alternatively, replicas might be selected for removal using a Least
Recently Used strategy as in Freenet [11].

5.2 Replica Synchronisation

Database replicas must be synchronised between the master and the slaves af-
ter update operations. We add the constraint that an update operation, either a
modification, an addition or a removal, must be performed on the master replica,
while queries can be handled by any slave. This requirement shouldn’t signifi-
cantly reduce the scalability of the system if the rate of queries is much higher
than the rate of updates, which is commonly the case for example in name ser-
vices or knowledge base systems. If an update is delivered to an ordinary replica,
the replica forwards it to the master, and the master propagates the update to
all replicas. This guarantees that concurrent updates from different peers are
serialised and sent in the same order to all copies of the database, hence, there
are no write-write conflicts.

The updates can be propagated either instantaneously, or in a lazy fashion, for
example by periodic gossiping, with the latter technique being used to reduce
bandwidth consumption and improve scalability at the cost of reduced data
consistency. Lazy replica synchronisation can be initiated either by the master
or by the slave, for instance after a peer crash or a restart. Thus the system
provides eventual consistency of the replicas [12]. The core peers storing replicas
should be well-connected, have high bandwidth and processing power, which
should enable fast data dissemination and frequent replica synchronisation.

5.3 Master Election

In the P2P gradient topology, peers have relative positions defined by their util-
ity metric. This allows us to develop an efficient election algorithm that doesn’t
require flooding, as peers can use a heuristic that excludes peers with lower util-
ity, i.e., topologically further from the core, when sending election messages (see
Figure 3(a)). This heuristic, however, does not guarantee that the highest utility
peer will become a master unless all peers in the core are fully connected. There-
fore, we modify our heuristic to provide a directed, gossiping election model. The
election initiating peer also sends the election message to a certain number of
neighbouring peers with lower utility, but still inside the core, and they can re-
strict further propagation of the message to only peers with higher utility. Given
high enough connectivity between peers in the core, within a certain probability
the peer with the highest utility should win the election.

5.4 Replica Discovery

A searching mechanism is needed for peers to discover nearby replicas of a
database they request access to. Traditional unstructured systems, such as Gnu-
tella, have used flooding algorithms for finding resources. This approach works

A Gradient Topology for Master-Slave Replication 93

Algorithm 1: Main loop of the simulation
for N steps of the simulation do

increase the number of peers by 1%;
probabilistically remove peers according to their utility;
forall peers p in the network do

p.step();
end

end

Fig. 4. Main loop of the simulation

well for highly replicated data, however, it doesn’t scale in principle. A num-
ber of techniques have been proposed to improve search in unstructured P2P
networks, such as random walk, iterative deepening or routing indices [13].

For the topology presented in this paper, we are designing a gradient routing
algorithm that will be based on two main factors: the neighbour utility informa-
tion (utility gradient), and heuristic values learned by the system (as for instance
in Freenet [11]). By increasing the probability of forwarding queries to high util-
ity neighbours, the algorithm can effectively route queries towards the core of
the network.

6 Evaluation

We evaluated our approach by modelling a P2P network in RePast, a multi-agent
simulation toolkit for large-scale systems. The simulation was implemented in
Java. A network was created consisting of over 100,000 peers, which we believe
is sufficiently large to model realistic large-scale applications. The experiments
ran on a Pentium 4 machine with a 3GHz processor and 3GB main memory.

The simulation is based on a discrete time model and all events are executed
in discrete time steps. The actions performed by peers are synchronous, however,
our algorithm does not rely on the peer synchrony and hence the results obtained
in the experiments can be generalised for asynchronous environments as well.
Following the assumptions of decentralisation and a lack of a global view of
the system, each peer maintains a limited number of neighbours and performs
actions using local knowledge only. We assume also a scale-free distribution of
resources with the maximum number of peer connections following the power-
law (Pareto) distribution, starting from 10 connections and reaching about 50
neighbours for the most powerful peers. Similarly, the utility distribution follows
the power-law. We model the network growth by adding new peers at each step
of the simulation, where we start with a network containing only one peer, and
at each time step the size is increased by 1 percent. Additionally, at each step a
number of peers are removed, which models random failures or peer departures,
with the probability of a peer departure being inversely proportional to its utility.
Bootstrapping of the system is implemented with a centralised name repository

94 J. Sacha and J. Dowling

Algorithm 2: Agent step
if number of neighbours = MAX NEIGHBOURS then

disconnect random neighbour;
end
if number of similar neighbours < MAX SIMILAR then

choose randomly neighbour p from all known neighbours;
get all neighbours n1..nk from p;
choose peer n with the most similar utility from n1..nk;
connect to n;

end
if number of random neighbours < MAX RANDOM then

choose randomly neighbour p from all known neighbours;
get all random neighbours n1..nk of peer p;
choose randomly peer n from n1..nk;
connect to n;

end

Fig. 5. Algorithm performed by an agent at one step of the simulation

Fig. 6. Visualisation of a 200-node network in our RePast simulation using the
Fruchmen-Reingold algorithm. High utility peers are marked with dark colors. Sta-
ble core of the network is visible in the center.

containing the 50 most recent peer names, where peers are added and removed
in FIFO order. Figure 4 shows the pseudo-code of the simulation.

Figure 5 shows the randomised algorithm performed by each peer at every step
of the simulation. A peer maintains two independent sets of neighbours, randomly-
selected connections, and greedily-selected connections to peers with similar util-
ity status. The latter set is twice as large as the former. At every step, if the number

A Gradient Topology for Master-Slave Replication 95

1% highest utility peers
10% highest utility peers
All peers

Legend

1

2

3

4

5

6

Hops

0 20000 40000 60000 80000 100000

Number of Peers

(a) Average distance between peers
as a function of the network size.

2

2.5

3

3.5

4

4.5

5

Hops

0 0.2 0.4 0.6 0.8 1

Peer Utility

(b) Average distance between peers as
a function of peer utility, network size
100,000 peers.

Fig. 7. Results of the neighbourhood selection algorithm

of neighbours of a peer reaches the maximum, the peer drops a random connec-
tion, and attempts to establish a new one by gossiping with a neighbour.

Figure 6 presents a visualisation of a sample network consisting of 200 peers,
generated by the neighbour selection algorithm, where we can see that the topol-
ogy evolved to the desired form where the highest utility peers are clustered
together and constitute a stable core.

Figure 7 shows the measurement results obtained from our simulation. We can
see that the average path length between peers is relatively low (about 5-6 hops
for 100,000 peers), and that it varies with peer utility. The average distance
between the highest utility peers is lower than the average distance between
lower utility peers. This confirms our observation that the highest utility peers
are highly connected with each other and form a stable core of the network.

7 Related Work

Most existing P2P systems that exploit the heterogeneity of the environment are
based on structured P2P overlays. In Chord [2] it has been noted that a single
physical peer can host multiple virtual peers, and therefore, the heterogeneity of
resources in a DHT network can be addressed by assigning more virtual peers
to higher performance hosts. OceanStore [14] proposed to elect a primary tier
“consisting of a small number of replicas located in high-bandwidth, high con-
nectivity regions of the network” for the purpose of handling updates, but no
specific algorithm for the election of such a tier is presented. Mizrak et. al.[9] pro-
poses a super-peer based approach for the exploitation of resource heterogeneity,
however, unlike our architecture, it relies on a DHT overlay.

96 J. Sacha and J. Dowling

In the field of unstructured P2P networks, there has been a lot of work devoted
to searching (e.g. [13]) and to replication strategies [15], but there has been lim-
ited research on network topology generation and peer neighbourhood selection
algorithms. Yang and Molina [8] investigate general principles of superpeer-based
networks and give practical guidelines for the design of such networks, however,
they don’t describe any specific algorithms for super-peer election or network
structure maintenance. The closest to our approach is the work of Jelasity,
in particular his research on decentralised topology management (T-Man [10]),
however, he doesn’t address the problem of reliable peer discovery and dynamic
replica placement in an open P2P system.

8 Conclusions and Future Work

This paper describes the general requirements for data replication in peer-to-
peer environments. We have proposed a gradient network topology where the
highest utility peers are highly connected with each other and form a logical core
suitable for maintaining data replicas. A self-organising neighbourhood selection
algorithm has been presented that generates the proposed gradient topology
by clustering peers with similar uptime and performance characteristics. The
algorithm has been evaluated through simulation, and measurement results have
confirmed that the approach is scalable and robust.

The main advantage of the gradient topology is that the network structure
contains information about the peer utility, which allows the peers to discover
other high utility peers without flooding the entire network with search messages.
The gradient topology allows the search space to be limited to a small subset
of all peers in the system. This property allows us to address the problem of
dynamic replica placement, master replica election, and replica discovery in an
open, decentralised environment. The gradient topology should also reduce the
cost of replica maintenance, since peers storing data replicas are located close to
each other and are connected by stable, high-capacity routes.

Our project is still at an initial stage and requires a lot of further research.
We are planning to develop a heuristic routing mechanism based on peer utility
gradient, which will allow peers to discover database replicas in their proximity.
We are also going to evaluate the proposed replica placement strategies and the
master election algorithm. We are building a prototype implementation based
on the Berkeley DB middleware.

References

1. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Proceedings of the 18th Interna-
tional Conference on Distributed Systems Platforms, Springer (2001) 329–350

2. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM Com-
puter Communication Review. Volume 31., ACM Press (2001) 149–160

A Gradient Topology for Master-Slave Replication 97

3. Barabsi, A.L., Bonabeau, E.: Scale-free networks. In: Scientific American. Volume
288. (2003) 60–69

4. Sen, S., Wong, J.: Analyzing peer-to-peer traffic across large networks. In: Trans-
actions on Networking. Volume 12., ACM Press (2004) 219–232

5. Leibowitz, N., Ripeanu, M., Wierzbicki, A.: Deconstructing the kazaa network.
In: Proceedings of the 3rd International Workshop on Internet Applications, IEEE
Computer Society (2003) 112–120

6. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The bittorrent p2p file-sharing
system: Measurements and analysis. In: the 4th International Workshop on Peer-
To-Peer Systems, Cornell, USA (2005)

7. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In:
Proceedings of the USENIX 2004 Annual Technical Conference. (2004) 127–140

8. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of
the 19th International Conference on Data Engineering, IEEE (2003) 49–60

9. Mizrak, A.T., Cheng, Y., Kumar, V., Savage, S.: Structured superpeers: Leveraging
heterogeneity to provide constant-time lookup. In: Proceedings of the 3rd IEEE
Workshop on Internet Applications. (2003) 104–111

10. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management.
In: the 3rd International Workshop on Engineering Self-Organising Applications,
Utrecht, The Netherlands (2005)

11. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: Proceedings of the 1st International
Workshop on Designing Privacy Enhancing Technologies, Springer (2000) 46–66

12. Tanenbaum, A., van Steen, M.: Distributed Systems: Principles and Paradigms.
Prentice Hall, New York (2002)

13. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems,
IEEE Computer Society (2002) 5–14

14. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., , Zhao, B.:
Oceanstore: An architecture for global-scale persistent storage. In: Proceedings
of the 9th international Conference on Architectural Support for Programming
Languages and Operating Systems. (2000) 190–201

15. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: Proceedings of the 16th International Conference
on Supercomputing, ACM Press (2002) 84–95

A Content–Addressable Network for Similarity

Search in Metric Spaces�

Fabrizio Falchi1, Claudio Gennaro1, and Pavel Zezula2

1 ISTI-CNR, via G. Moruzzi 1, 56124 Pisa, Italy
{fabrizio.falchi,gennaro}@isti.cnr.it

2 Masaryk University, Brno, Czech Republic
zezula@fi.muni.cz

Abstract. In this paper we present a scalable and distributed access
structure for similarity search in metric spaces. The approach is based
on the Content–addressable Network (CAN) paradigm, which provides
a Distributed Hash Table (DHT) abstraction over a Cartesian space. We
have extended the CAN structure to support storage and retrieval of
generic metric space objects. We use pivots for projecting objects of the
metric space in an N-dimensional vector space, and exploit the CAN
organization for distributing the objects among the computing nodes of
the structure. We obtain a Peer–to–Peer network, called the MCAN,
which is able to search metric space objects by means of the similarity
range queries. Experiments conducted on our prototype system confirm
full scalability of the approach.

1 Introduction

The proliferation of digital contents such as video, images, or text imposes the
use of access methods for efficiently storing and retrieving this information. The
concept of similarity searching based on relative distances between a query and
database objects has become a solution for a number of application areas, e.g.
data mining, signal processing, geographic databases, information retrieval, or
computational biology. This approach formalizes the problem by the mathemati-
cal notion of the metric space [1], so the data elements are assumed to be objects
from a metric space domain where only pairwise distances between the objects
can be determined by respective distance function.

However, the need to deal with larger and larger, possibly distributed, archives
requires an access structure to speedup the retrieval. Unfortunately, the use of
single–site access structures is becoming prohibitive due to the lack of scalability
of such systems, however fast they are. In fact, as the current literature demon-
strates, see for example [2], the response time of access structures for metric
spaces is linearly increasing with the size of the searched file.

� This work was partially supported VICE project (Virtual Communities for Edu-
cation), funded by the Italian government, and by DELOS NoE, funded by the
European Commission under FP6 (Sixth Framework Programme).

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 98–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A CAN for Similarity Search in Metric Spaces 99

The approach proposed in this paper is to use a Peer–to–Peer (P2P) structure
composed of a network of nodes whose number can vary on the basis of the size
of the data-set. The aim is to maintain the global response time stable as the
data-set size grows. In this respect, the P2P paradigm is quickly gaining in
popularity due to their scalability and self-organizing nature, forming bases for
building large-scale similarity search indexes at low costs. However, most of the
numerous P2P search techniques proposed in the recent years have focused on
the single-key retrieval [3,4,5].

In particular, we present a distributed storage structure for similarity search in
metric spaces that is based on the original idea of the Content–Addressable Net-
work (CAN) [4], which is a distributed hash table abstraction over the Cartesian
space. Our distributed storage structure, called MCAN, is able to index objects
of a generic metric space. The advantage of the metric space approach to the
data searching is its “extensibility”, since in this way, we are able to perform the
exact match, range, and similarity queries on any collection of metric objects.
More in general, our proposal can be seen as a Scalable and Distributed Data
Structure, (SDDS) – original proposal LH* [6] is intended for the primary key
retrieval – which uses the P2P paradigm for the communication in a Grid-like
computing infrastructure. A fundamental property of this paradigm is that in-
sertion of an object, even if it implies a node split, does not require immediate
update propagation to all network nodes.

The rest of the paper is organized as follows. In Section 2, we summarize the
necessary background information. Section 3 presents the MCAN distributed
structure and its functionality. Section 4 reports the results of performance eval-
uation experiments. Section 5 concludes the paper and outlines directions for
future work.

2 Background

2.1 Content–Addressable Network (CAN)

The CAN is a distributed hash table that uses a function for mapping “keys”
onto “values” in order to assign them a position into the table. In the CAN, the
table is composed of a finite set of individual network nodes. Each node of the
network is dynamically associated with a partition of a d-dimensional Cartesian
space. Usually, the Cartesian space is a d-torus (in the sense that the coordinate
space wraps), and is targeted to store (K, V) pairs, where K is an identifer of
the object and V is a pointer to a copy of the object. The basic operations of
the CAN are insertion, lookup and deletion of respective (K, V) pairs. In order
to be compatible with the metric space, we generically refer to these pairs as
“objects”, and we use the notation X ∈ S, for indicating an object X of an
arbitrary space S of all possible pairs (or objects) X ≡ (K, V).

From the formal point of view, we can define the mapping function of the
CAN as:

G : S → PN , (1)

100 F. Falchi, C. Gennaro, and P. Zezula

where PN is an hyper–rectangle of R
N defined as:

PN = [0, D1] × [0, D2] × . . . × [0, DN] , (2)

with Di denoting the i − th side length of the CAN structure.
The principle of the CAN is to divide the hyper-rectangle PN into a finite

number of distinct rectangular zones, each of them associated to one and only
one node of the network. The nodes are responsible for storing and searching of
objects covered by their zone. Moreover, each node is aware of the nodes that
cover adjacent zones, i.e., its neighbors. More precisely, for an N -dimensional
space, two zones are neighbors if their sides overlap along N − 1 dimensions and
are adjacent along one dimension.

The basic operation in CAN is the lookup(key) function, which returns the
corresponding “value” (the IP address of the node, for instance) for the given
“key” (the coordinates of the point). This is useful for insertion, deletion, and
retrieval purposes. The search starts from an arbitrary node of the CAN, and
proceeds by routing a message towards its destination by simple greedy forward-
ing to the neighbor with coordinates closest to the destination coordinates. In
general, if we divide PN uniformly into n zones, each node maintains 2N neigh-
bors. Furthermore, the average routing path length is given by (N/4)n(1/N). In
a real scenario, since the objects are not uniformly distributed, the space will be
not uniformly divided and these values could vary significantly (see Section 4).

2.2 Metric Spaces

The mathematical metric space is a pair M = (D, d), where D is the domain
of objects and d is the distance function able to compute distances between any
pair of objects from D. It is typically assumed that the smaller the distance, the
closer or more similar the objects are. For any distinct objects X, Y, Z ∈ D, the
distance must satisfy the following properties:

d(X, X) = 0 reflexivity
d(X, Y) > 0 strict positiveness
d(X, Y) = d(Y, X) symmetry
d(X, Y) ≤ d(X, Z) + d(Z, Y) triangle inequality

2.3 Pivot-Based Filtering

In general, the pivot-based algorithms can be viewed as a mapping F from the
original metric space M = (D, d) to a N -dimensional vector space with the L∞
distance. The mapping assumes a set T = {P1, P2, . . . , PN} of objects from D,
called pivots, and for each database object O, the mapping determines its charac-
teristic (feature) vector as F (O) = (d(O, P1), d(O, P2), . . . , d(O, PN)). We obtain
a new metric space as MN (RN , d∞). At search time, we compute for a query
object Q the query feature vector F (Q) = (d(Q, P1), d(Q, P2), . . . , d(Q, PN)) and
discard for the search radius r an object O if

d∞(F (O), F (Q)) > r (3)

A CAN for Similarity Search in Metric Spaces 101

In other words, the object O can be discarded if for some pivot Pi,

| d(Q, Pi) − d(O, Pi) |> r (4)

Due to the triangle inequality, the mapping F is contractive, that is all discarded
objects do not belong to the result set. However, some not-discarded objects may
not be relevant and must be verified through the original distance function d(·).
For more details, see for example [7].

3 MCAN

The basic idea of our approach is to extend the CAN architecture in order to
manage objects X of a generic metric space M = (D, d). However, in metric
spaces it is not possible to exploit any knowledge of coordinate information, and
only distances between objects can be computed. To cope with this problem, we
use the pivots paradigm for mapping the objects of the metric space to an N
dimensional vector space. In particular, let P1, . . . , PN be the number of pivots
selected from the metric data-set, we map an object O ∈ D, by means of the
function F () (introduced in the previous section) defined as:

F (O) : D → R
N = (d(O, P1), d(O, P2), . . . , d(O, PN)) (5)

This virtual coordinate space is used to store the object O into the MCAN
structure, specifically into the node that owns the zone where the point F (O)
lies. Note that, the coordinate space of the MCAN is not Cartesian since the
distance between two objects in MCAN is evaluated by means of the L∞ distance
(instead of the Euclidean distance). Routing in MCAN works in the same manner
as for the original CAN structures. An MCAN node maintains a coordinate
routing table that holds the IP address and virtual coordinate zones of each of
its immediate neighbors in the coordinate space.

3.1 Notation

In this section we provide a number of definitions required to present our results.
We use the capital letter for indicating metric space objects X ∈ D, the over-
line small letter for denoting the corresponding vector in the coordinate space
x ∈ R

N , and xi for representing the values of its i-th coordinate. Moreover, we
denote a node of MCAN by the bold symbol n. Since there is no possibility
of confusion, we use the same symbol d(.) for indicating the distance between
metric objects and for indicating the L∞ distance between the corresponding
point in the coordinate space, e.g., d(x, y) = d∞(F (X), F (Y)), where x = F (X)
and y = F (Y). As we already explained, the MCAN is contractive, therefore
d(x, y) ≤ d(X, Y) always holds.

Each node n maintains its region information referred as n.R. Moreover, since
the region n.R is an hyper–rectangle it can be uniquely identified by its vertex
closer to the origin, denoted as n.R.x = (n.R.x1,n.R.x2, . . . ,n.R.xN), and by

102 F. Falchi, C. Gennaro, and P. Zezula

the lengths of the relative sides, i.e., n.R.l1,n.R.l2, . . . ,n.R.lN . More precisely,
the region n.R is defined as follows

n.R = {∀x ∈ R
N | ∀ i, n.xi ≤ xi < n.xi + n.li}

The node n also maintains the set of the neighbor nodes’ information n.M =
{m1, . . . ,mh}.

Given a point x = F (X), the predicate X ∈ n allows us to check if the
corresponding point x lies in the zone maintained by the node n. More formally:

X ∈ n ⇔ x ∈ n.R

A range query of radius r and centered in the object C is denoted as Q = (c, r).
The predicate Q ∩ n allows to check if the query region Q intersects the zone
associated with n. Note that, the range query in the L∞ space is given by an
hypercube of side 2r centered in c.

We can now introduce the formal definition of an N -dimensional MCAN struc-
ture, referred as MCANN , which is composed of a set of k (k > 0) network nodes
{n1, . . . ,nk} such as:

1. ∀ i, j | i 	= j ni.R ∩ nj .R = ∅
2. PN =

⋃k
i=1 ni.R

3. n ∈ m.M ⇔
∃k | 1 ≤ k ≤ N, (n.R.xk +n.R.lk = m.R.xk)∨(m.R.xk +m.R.lk = n.R.xk),
∀w 	= k [n.R.xw,n.R.xw + n.R.lw[∩[m.R.xw,m.R.xw + m.R.lw[= ∅

In the definition, Point 1. states that the zones covered by the network nodes do
not overlap. Point 2. states that the union of the zones cover the whole MCANN

space PN (there are no holes). Finally, Point 3. declares the condition for a
network node n to be a neighbor of m (as explained in Section 2).

3.2 Construction

An important feature of the CAN structure is its capability to dynamically
adapt to data-set size changes. As we will see in the experimental evaluation, we
are interested in preserving the scalability of the MCAN, which means that we
want to maintain stable the response time of the queries. Since the size of the
space allocated to store objects in each node is limited, when a node exceeds its
limit it splits by sending a subset of its objects to a free node and by assigning
its part of original region. Note that, limiting the storage space, and then the
number of objects each node can maintain, we also limit the number of distance
computations a node have to evaluate during a range query computation.

It is important to observe that in some cases we might want to use all the nodes
available in the network. Previous work like [4] have studied this possibility in a
generic CAN structure by allowing a node to split even if it does not exceed it
storage space. Obviously, such methodology can also be applied in our MCAN.
On the other hand, in a P2P environment, we would like to leave the nodes

A CAN for Similarity Search in Metric Spaces 103

the possibility to freely join and leave the network, without corrupting it. As
explained in [4], this is possible with a CAN, even providing some fault-tolerance
capabilities [8].

Since the pivots needed to be determined before the insertion starts, we as-
sume a characteristic subset of the indexed data-set (about 500 objects) is known
at the beginning. In the MCAN, we use the Incremental Selection algorithm de-
scribed in [7]. In principle this algorithm tries to maximize the average L∞

distance between arbitrary pairs of vectors of the N–dimensional space (i.e.
d∞(F (X), F (Y))).

3.3 Insertion

An insert operation can start from any node of the MCAN. It starts by mapping
the inserted object X to the virtual coordinate space using function F (), then
it checks if x = F (X) lies in the zone maintained by the node n itself (i.e.
X ∈ n). If this is not the case, the node has to forward the insertion request.
From this point, the insertion proceeds with the greedy routing algorithm used
for standard CAN structures: the inserting node forwards the insertion operation
to the neighbor node which is closer to the point x by using the L∞ distance.
The objective is to find the node n for which X ∈ n, minimizing the number of
messages. If x lies in the region maintained by the receiving node, the object X
is stored there, otherwise a neighbor node is selected with the same technique
and the insert operation is forwarded again until the object X is inserted.

The node m which stores the object X must reply to the node who started
the insert operation. If the node m exceeds its capacity it is split. Eventually,
the object X is inserted into m or into the new allocated node.

3.4 Split

In MCAN, we apply a balanced split, that is the resulting regions contain prac-
tically the same amount of data (object occupancy). During this process, the
splitting node will just request a node from a free node list to join the network,
and one half of the data, in terms of occupancy, is reallocated there.

If we define n1 as the splitting node, n1.R as the old region, n1.R
′ as the

new one, and n2 as the new node, the split regions must satisfy the following
equations:

n1.R
′ ∪ n2.R = n1.R , n1.R

′ ∩ n2.R = 0

Moreover, to respect these constrains, we create the new two regions by dividing
the original one along one coordinate of the space. Therefore, the new regions,
n1.R

′ and n2.R, must satisfy the following two equations:

n1.R
′.xs = n1.R.xs, n2.R.xs = n1.R.xs +n1.R

′.ls, n2.R.ls = n1.R.ls −n1.R
′.ls

Note that that we only have to chose s and n1.R
′.ls. In order to decide s, for

each dimension i we find n1.R
′.li that divide the objects into two halves. To

avoid regions with small sides we chose s as the dimension i for which |n1.R
′.li −

n1.R.li/2| is minimum.

104 F. Falchi, C. Gennaro, and P. Zezula

After the splitting process, the node n1 sends a message to all its neighbors
informing them about the update of its region. To those neighbors, which are also
neighbors of n2, it sends also information about the new node. The new node is
informed by n1 about its neighbors that are a subset of the n1 neighbors. At the
end, n1 can discard information about the nodes that no more are its neighbors.

3.5 Range Query

A range query operation can start from any MCAN node. As shown in Figure 1,
for a given query object and range radius, there is a certain number of nodes
whose regions intersect the query region (which is an hypercube Q = (c, r)
as defined in Section 3.1). Obviously, only the intersecting nodes must process
the range query operation. The requesting node maps the query object into the
virtual coordinate space using the function F (). Then it checks if it is involved in
the range query operation (i.e., when it intersects Q). If the node is not involved
in the query, it forwards the range query operation to the neighbor node that
is closest to region Q, using the L∞ distance. This operation is performed in a
similar way as described for the insert operation.

Fig. 1. Example of range query in a two dimensional space. The darker square is the
query region, while the brighter rectangles correspond to the involved nodes.

When a node that is involved in the range query is reached by the query
request, it forwards it to each neighbor that is also involved and then it starts
processing the range query over its local data-set. During the range query ex-
ecution inside a single node, a local access structure can also be used. In this
paper, we used the same pivots chosen to define the MCAN space to reduce
the number of distance evaluations performed inside a single node. Using the
pivot-based filtering, we are able to significantly reduce the number of distance
evaluations inside the nodes. In a more sophisticated implementation of MCAN,
each node could have its own local data structure to efficiently search inside a
single node.

A CAN for Similarity Search in Metric Spaces 105

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

n
 N

o
d

es

Vector Dataset Text Dataset

Fig. 2. Number of nodes for increasing
data-set size

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

lo
ad

 f
ac

to
r

Vector Dataset Text Dataset

Fig. 3. Average number of objects per
node for the MCAN3 and for increasing
data-set size

In order to allow the requesting node to know when all the nodes involved in
the query have finished to work, the MCAN proceeds as follows:

– A node involved in the range query:
• it receives the range query request Q = (c, r) and a (possibly empty) list

of the nodes already involved in the query (which we refer to as INL),
• it forwards the query request to its neighbors involved in the query which

are not included in INL adding them to the list and sending the new INL*
to them,

• it computes the query over its local data,
• it replies with a message containing its result set (if any) and the INL*.

– The requesting node as it receives the reply messages, updates a local list
of the involved nodes in the query, and marks the ones that have already
answered.

– The requesting node will know that the operation is terminated when all
nodes of the local list will have replied (i.e., when all the nodes of the list
have been marked). The result set of the query is given by union of the result
sets of the replying nodes.

Note that, the first node involved in the query receives an empty INL. Another
important observation is that with this scheme we do not guarantee that a node
does not receive multiple requests for the same query. However, this is not a
problem since each distinct query is associated with a unique identifier, so that
a node ignores multiple requests.

4 Performance Evaluation

In this section we present a preliminary experimental evaluation of MCAN. The
metric data-sets used are: 100,000 of 45-dimensional vectors of color features
extracted from images; 100,000 Czech sentences of length between 20 and 300

106 F. Falchi, C. Gennaro, and P. Zezula

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

n Nodes

n
u

m
b

er
 o

f
h

o
p

s

d1 d2 d3

d4 d5

Fig. 4. Average number of hops for dif-
ferent dimensions as the number of nodes
grows (vector data-set)

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

n Nodes

n
u

m
b

er
 o

f
h

o
p

s

d1 d2 d3

d4 d5

Fig. 5. Average number of hops for dif-
ferent dimensions as the number of nodes
grows (text data-set)

characters. Vectors are compared by the Euclidean distance measure while for
sentences we use the Edit distance.

We analyze the behavior of the structure in different dimensional spaces: from
1–d (i.e., involving one pivot), to 5–d space (i.e., involving five pivots). As already
explained, we use the pivots also to reduce the number of distance computations
during the query evaluation on individual nodes. However, independently of the
number of dimensions N used by MCANN , we always generate 10 pivots in
the experiments and we use the first N pivots for creating the MCANN zones.
Moreover, all 10 pivots are used for filtering during a range query execution
internally in nodes.

To study the scalability of the system, we fix the storage space available for
each node and then, starting from a single server, we add objects into the system.
When a server reaches its storage space limit, it splits. The limit was chosen in
a way that after all the 100,000 objects have been inserted, the MCANN is com-
posed of around 100 nodes. The node from which an insert operation or a range
query starts is randomly selected. Moreover, in order to study the scalability of
the system we perform a range query operations every 5,000 insertions.

In Figure 2, we report the number of nodes in the system as the data-set
grows, for the MCAN3 case (the other cases are very similar). Note from these
experiments that, the number of nodes exhibit a stepwise behavior. This is due
to the fact that the objects are randomly ordered, therefore the nodes are filled
uniformly and then they tend to split at the same time. This is particularly
evident for the vector data-set, where the objects have a fixed size, while the
size of objects of the text data-set (strings) is variable.

In Figure 3, we report the average load factor for both the data-sets. We define
the load factor as the total number of objects stored into the MCAN structure
divided by the capacity of storage available on all nodes. As can be seen in the
figure, the values are always between 0.5 and 1. This is always guaranteed, because
when a node is split, half of the objects are migrated to the new node, therefore
the node occupation cannot be less than 50%.

A CAN for Similarity Search in Metric Spaces 107

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

n Nodes

n
u

m
b

er
 o

f
n

ei
g

h
b

o
rs

d1 d2 d3

d4 d5

Fig. 6. Average number of neighbors for
different dimensions as the number of
nodes grows (vector data-set)

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

n Nodes

n
u

m
b

er
 o

f
n

ei
g

h
b

o
rs

d1 d2 d3

d4 d5

Fig. 7. Average number of neighbors for
different dimensions as the number of
nodes grows (text data-set)

In Figures 4 and 5, we report the average number of hops an insert opera-
tion travels, starting form a random node. For a given number of nodes, the
number of hops is strictly correlated to the average number of neighbors each
node has: the more the neighbors, the less the hops. In Figures 6 and 7, we
report the average number of neighbors as a function of the total number of
nodes for different space dimensionality. Comparing the number of hops with
the number of neighbors, we can see that a good choice for the space dimen-
sionality could be N = 3. In fact, by using more than 3 dimensions we do not
reduce significantly the number of hops but significantly increase the number
of neighbors and correspondingly the complexity of choosing the next node
during the forwarding operations.

4.1 Range Query

For the performance evaluation of range queries, we selected 100 random objects
from the data-set and for each of them we performed 8 different range queries
every 5,000 insert operations. Due to lack of space, we do not report the average
result set size for the different query radii, since they are linear to the data-set
size. However, the heaviest range queries return around 3% of the objects for
both vector and text data-sets. Note that, these results are independent from
the type of access structure but depend on specific characteristics of the given
data-sets.

In Figures 8 and 9 we report the average percentage of nodes involved during
a range query operation for different radii as the data-set size grows. Observe
that the bigger is the radius of the range query, the more the nodes involved
in the query evaluation are. In a naive distributed system we could randomly
distribute the objects among the nodes but in this case we would always involve
all the nodes even for small radii.

For simple operations like the exact match, the standard CAN has been
proved to be scalable. MCAN extends CAN by allowing similarity operations

108 F. Falchi, C. Gennaro, and P. Zezula

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Fig. 8. Percentage of nodes involved in
the range query as function of the data-
set size for different radii (vector data-set)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Fig. 9. Percentage of nodes involved in
the range query as function of the data-
set size for different radii (text data-set)

over generic metric space data-sets. In this scenario, we must be able to per-
form more complex operations such as similarity range queries. To preserve
scalability also for such operations, we need more nodes as the complexity of
the query grows. This aspect is evident in the plots of Figures 8 and 9, where
the percentage of nodes involved for a small radius is smaller then the ones
we obtains for greater radii. Note that, for a given range query, the percent-
age of nodes involved is almost constant. In fact, for a given range query the
number of results is linearly dependent on the number of objects in the data-
set and then the number of nodes involved is proportional to the number of
results.

To study the complexity of the range queries, we use the number of distance
computations. However, for the case of the edit distance (i.e., the Czech-sentences
data-set) we must consider the fact that the complexity of a single distance
computation is not constant but it is proportional to the string lengths. In this
case we decided to use the equivalent complexity of the edit distance defined as
L(a)L(b)/μ(L)2, where a, b are two strings evaluated with the edit distance, L(.)
is the length of the string, and μ(L) is the average length of the strings of the
data-set.

In Figures 10 and 11, we report the average complexity of the range query
operations as function of the number of equivalent distance computations of the
most stressed node. This quantity measures in a way the intraquery parallelism as
the parallel response time of a range query, if we neglect the message latency. In
fact, the requesting node will have to wait the answer of all the involved nodes
and then the response time of the query will be proportional to the number
of distance computations of the most stressed node. Obviously this quantity
is upper bounded by the capacity of the nodes of the MCAN. However, our
experiments show that for most of the ranges, the intraquery parallelism remains
quite lower than this upper bound, which, for example, in the case of the vector
data-set is 1,542.

A CAN for Similarity Search in Metric Spaces 109

0

200

400

600

800

1000

1200

1400

1600

0 20000 40000 60000 80000 100000

n Objects

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Fig. 10. Average number of distances
evaluated by the most stressed node for
each query and for different query range
(vector data-set)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000

n Objects

eq
u

iv
al

en
t

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Fig. 11. Average number of equivalent
distances evaluated by the most stressed
node for each query and for different
query range (text data-set)

5 Related Work and Conclusions

There have been several recent attempts to propose distributed structures for
multi-dimensional or vector-based data. The MAAN structure [9] uses locality
preserving hashing to support multi-attribute and range queries under the Chord
protocol. The kd-trees and space-filling curves have been used by Prasanna, Yang
and Garcia-Molina in [10] to support multi-dimensional range queries in P2P
environments. A P2P system for information retrieval based on the vector space
model and the latent semantic indexing together with the CAN P2P protocol has
been proposed by Tang, Xu and Dwarkadas [11]. The problem of vector-based
similarity search in P2P Data Networks has nicely been formalized by Banaei-
Kashani and Shahabi [12] as the family of Small-World based Access Methods,
SWAM. So far, the only native metric-based distributed data structure is the
GHT* [13,14].

To the best of our knowledge, the MCAN structure is the first attempt to
bridge Content–Addressable Networks and the capabilities of metric space in-
dexing. MCAN is based on the concept of choosing pivots to map objects of a
generic metric space in a multidimensional vector space of the MCAN. Since
the mapping is contractive, 100% recall for queries processed by the MCAN is
guaranteed.

The results summarized in Figures 8 and 9 should be considered as the first
attempt to also demonstrate the interquery parallelism ability of MCAN. In fact,
if on the one hand it is important to guarantee fast response time to individual
queries, on the other hand the query should not involve the whole network,
because other queries can be issued to the network at the same time, and not
active nodes can simultaneously start evaluating them. Obviously, queries with
large radii need more computational resources than small queries, but typically,
there is always sufficient space for other queries to run. Also observe that the
computational load on nodes activated by a query is not the same and on some

110 F. Falchi, C. Gennaro, and P. Zezula

nodes the load is really minor. We are planning to fully investigate this issue in
the near future.

Further future directions include the implementation of the Nearest Neigh-
bor queries, more sophisticated leaving and join policies, and transaction
management.

References

1. Chvez, E., Navarro, G., Baeza-Yates, R., Marroqun, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33 (2001) 273–321

2. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21 (2003) 9–13

3. Devine, R.: Design and implementation of DDH: A distributed dynamic hashing
algorithm. In: FODO. (1993) 101–114

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proc. of ACM SIGCOMM 2001. (2001) 161–172

5. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proc. of the 2001
ACM SIGCOMM Conference. (2001) 149–160

6. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* — a scalable, distributed data
structure. ACM Transactions on Database Systems 21 (1996) 480–525

7. Bustos, B., Navarro, G., Chvez, E.: Pivot selection techniques for proximity search-
ing in metric spaces. In: Proc. of SCCC01. (2001) 33–40

8. Saia, J., Fiat, A., Gribble, S.D., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. In: IPTPS. (2002) 270–279

9. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. In: GRID ’03: Proceedings of the Fourth
International Workshop on Grid Computing, Washington, DC, USA, IEEE Com-
puter Society (2003) 184

10. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-
dimensional queries in p2p systems. In: WebDB ’04: Proceedings of the 7th Inter-
national Workshop on the Web and Databases, New York, NY, USA, ACM Press
(2004) 19–24

11. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-
organizing semantic overlay networks (2002)

12. Banaei-Kashani, F., Shahabi, C.: Swam: a family of access methods for similarity-
search in peer-to-peer data networks. In: CIKM ’04: Proceedings of the Thirteenth
ACM conference on Information and knowledge management, ACM Press (2004)
304–313

13. Batko, M., Gennaro, C., Zezula, P.: A scalable nearest neighbor search in p2p sys-
tems. In: Proc. of the the 2nd International Workshop on Databases, Information
Systems and Peer-to-Peer Computing. Lecture Notes in Computer Science (2004)
To appear.

14. Batko, M., Gennaro, C., Zezula, P.: Scalable similarity search in metric spaces.
In: Proc. of the DELOS Workshop on Digital Library Architectures: Peer-to-Peer,
Grid, and Service-Orientation. (2004) 213–224

Range Query Optimization Leveraging Peer
Heterogeneity in DHT Data Networks

Nikos Ntarmos, Theoni Pitoura, and Peter Triantafillou

R.A. Computer Technology Institute and
Computer Engineering & Informatics Dept.,

University of Patras, Rio, Greece
{ntarmos,pitoura,peter}@ceid.upatras.gr

Abstract. In this work we address the issue of efficient processing of range
queries in DHT-based P2P data networks. The novelty of the proposed approach
lies on architectures, algorithms, and mechanisms for identifying and appropri-
ately exploiting powerful nodes in such networks. The existence of such nodes
has been well documented in the literature and plays a key role in the architecture
of most successful real-world P2P applications. However, till now, this hetero-
geneity has not been taken into account when architecting solutions for complex
query processing, especially in DHT networks. With this work we attempt to fill
this gap for optimizing the processing of range queries. Significant performance
improvements are achieved due to (i) ensuring a much smaller hop count per-
formance for range queries, and (ii) avoiding the dangers and inefficiencies of
relying for range query processing on weak nodes, with respect to processing,
storage, and communication capacities, and with intermittent connectivity. We
present detailed experimental results validating our performance claims.

1 Introduction

Structured P2P systems have provided the P2P community with efficient and combined
routing/location primitives. This goal is accomplished by maintaining a structure in the
system, emerging by the way that peers define their neighbors. These systems are usu-
ally referred to as Distributed Hash Tables (DHTs)[1,2,3]. DHTs have managed to take
routing and location of data items in P2P systems to the next level; from the nondeter-
ministic, flood-based techniques used in unstructured P2P overlays, DHTs provide us
with strong probabilistic (under node failures and skewed data and access distributions)
guarantees on the worst-case number of hops required to route a message from a node
to any other node in the system or, equivalently, for a node in the system to locate data
items published therein. Unfortunately, traditional DHT overlays were designed to only
support exact-match queries. This has led researchers to investigate how they could
enhance P2P systems to support more complex queries[4,5,6,7,8,9,10,11,12,13,14,15].
On another axis, one of the main characteristics of widely deployed P2P networks (e.g.
Gnutella, Kazaa, etc.) is that participating peers are largely heterogeneous, with regard
to their processing power, available main memory and disk storage, network bandwidth,
and internet connection uptime. Relevant studies of P2P networks [16,17] have shown
that this large heterogeneity is also depicted in the distribution of the query processing

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 111–122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 N. Ntarmos, T. Pitoura, and P. Triantafillou

chores across the node population; in the Gnutella network, about 70% of nodes share
no files at all with the community, while 5% of nodes serve almost 95% of the queries
posed.

Recognizing heterogeneity among peers and harnessing it to speed-up complex
query processing has not been done before in the structured P2P world, although most
workable real-world P2P applications utilize it, by building multi-level hybrid networks.
Our philosophy is based on this very observation. We wish to bring this “hybrid” design
into the DHT world and utilize it for complex query processing. The question now is
how to do this efficiently. Therefore, we believe that harnessing the power of power-
ful and “altruistic” nodes is the key to providing an efficient way to expedite complex
query processing in a P2P setting. In this work we discuss the range query case. Note
that we do not propose another range queriable P2P overlay. We leverage the function-
ality, scalability, and performance of such network overlays, and present a two-layered
architecture were powerful nodes are identified and assigned extra tasks. We do so in
an efficient and low-overhead way, using the functionality already provided by the un-
derlying structured P2P network, with significant gains in range query processing costs.
To our knowledge, this is the first work to look into this issue.

2 Range Queries over DHTs

Traditional DHTs. DHTs use an m-bit circular identifier space for nodes and ob-
jects/documents, and modulo-N arithmetic (with N = 2m being the maximum number
of nodes/documents in the system). Both node and document IDs are usually based on
some randomizing (usually cryptographic) hashing (e.g. SHA-1) of a node/document
specific piece of information. Nodes maintain links to other nodes in the overlay, ac-
cording to the DHT’s geometry and distance function[18]. Using these links, DHTs
can route between any two nodes in the overlay in O(log N) hops, while maintaining
O(log N) links. A document d inserted into a DHT is stored on the node whose ID is
closer to the document’s ID, according to the DHT’s distance function. This node is
called the document’s “successor” (or “root”). We assume that data stored in the P2P
network are structured in a (k + l)-attribute relation R(a1,..., ak,b1,...,bl), where ai, bi

are the attributes of R, with every tuple t in R being uniquely identified by a primary
key t.key. This key can be either one of the attributes of the tuple, or can be calculated
otherwise (e.g. based on the values of one or more of the attributes of t). Furthermore,
attributes ai are used as single-attribute indices of t, with each ai being characterized
by the domain t.ai.D : {t.ai.vmin, t.ai.vstep, t.ai.vmax} of its values.

Now suppose that every index tuple is added to the DHT, using an ID generated by
(SHA-1) hashing the attribute’s value. This would result in tuples being spread across all
participating nodes in a uniform manner, but would also lead to tuples with successive
index values being stored on completely unrelated nodes. This fact renders traditional
DHTs highly inefficient for range query processing; given a range on the domain of
the index values, a traditional DHT has to execute queries for each and every value in
the range interval! A range query for r consecutive values would require on average r
queries to be executed, for a total of O(r × log(N)) hops. In a non-densely populated
value domain, most of these queries would return no data items. If all nodes had global
knowledge on every value stored in the P2P overlay (we’ll call this system the Enhanced

Range Query Optimization Leveraging Peer Heterogeneity in DHT Data Networks 113

DHT), they could then skip queries for non-existing values. Thus, if only r′ out of r
values exist in the system, it would take on average r′ queries, or O(r′× log(N)) hops.
Although better than O(r × log(N)), this still is too expensive for a real-world system.

Range-queriable DHTs. After the first wave of DHTs, the peer-to-peer research com-
munity started investigating structured overlays that would allow for more complex
queries than simple equality, while achieving the same performance and scalability fig-
ures of early DHTs. This has lead to the design and implementation of several spe-
cially crafted DHTs, capable of efficient complex query processing: SkipNet[4], Skip
Graphs[5], OP-Chord[11], PIER[13], Mercury[14], P-Trees[6], as well as the works by
Ganesan et al.[7,8], Gupta et al.[9], and Sahin et al.[10], are examples of such systems.

The common idea behind these overlays with regard to range query processing, is
that traditional DHTs destroy the locality of content, due to the randomizing (crypto-
graphic) hash functions used to construct document IDs prior to insertion, but locality
is a desired property when sequential access is sought, as is the case in range queries.
Due to this, these overlays use the actual content (e.g. attribute values in a P2P-based
RDBMS environment, file names in a file-sharing system, etc.) rather than the outcome
of a (cryptographic) hash function to sort and store documents on the overlay. Thus doc-
ument locality is preserved and range query processing consists of: (i) locating the node
responsible for the start of the range, and (ii) following one-hop “successor” pointers
until we reach the node responsible for the end of the range, gathering results in the
meantime. If the desired range spans q nodes on the overlay, the above lead to a hop-
count complexity of O(log N + q); O(log N) hops for phase (i), plus q more hops for
phase (ii). We will use the term LP-DHT ring to refer to such a locality-preserving,
range-queriable overlay in the rest of this paper.

3 The RangeGuard

Our intention is to form a second LP-DHT ring, the RangeGuard ring, above the LP-
DHT ring (fig. 1), composed of powerful nodes – the RangeGuards or RGs – burdened
with extra functionality chores. Each such node is responsible for storing the index
tuples placed in nodes between its predecessor RangeGuard and itself. Thus, if there
are M RGs in the system, they partition the normal LP-DHT ring into M continuous
and disjoint ranges. Each RG maintains routing information for both the lower-level
ring and the RangeGuard ring. Additionally, there is a direct link from each peer to
the next RG in the upper-level ring (i.e. to the RG responsible for the peer). Nodes in
the lower-level ring probe their RG (e.g. as part of the standard LP-DHT stabilization
process), and automatically update the index tuples it stores.

RGs must be (i) powerful enough and willing to withstand the extra (storage, pro-
cessing, communication) load, and (ii) connected most of the time, to provide hop-count
guarantees for range queries and to avoid large transfers due to their joining/leaving.
This, in turn, calls for a mechanism to identify and exploit candidate RGs in an effi-
cient and transparent manner1. Given the functionality offered by our initial (without
RangeGuards) infrastructure, RGs are identified and located as follows.

1 We assume that peers will not act maliciously or selfishly (leaving countermeasures for such
behavior as a possibility for future work), as is the case with most DHT-based research.

114 N. Ntarmos, T. Pitoura, and P. Triantafillou

Normal LP ring

����: RangeGuard
: Normal node

������
��
��
��
�� ��

��
��
��
��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

���������
�
�
�
��

��
������

��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

�������
�
�
�

��

��

RangeGuard ring

Fig. 1. The RangeGuard architecture. RGs form a second LP-DHT ring of their own, taking re-
sponsibility (using consistent hashing) for ranges of nodes on the lower-level ring.

3.1 Node Performance Counters and the Node Performance Relation (NPR)

The administrator of each node selects whether she wants her node to be a candidate
for RangeGuard membership or not (much like it is done now with super-peers in most
unstructured P2P sharing applications). A candidate node n, with id n.id, keeps track
of the amount n.α of retrieval and/or just routing requests it serves. This information
is updated periodically, every E seconds (also called an epoch). Thus, it keeps two
node performance counters (or NPCs) – n.αc and n.αp – of requests served during the
current and the previous epoch respectively.

This information is stored in the system as a four-attribute node performance relation
NPR : {n.id, n.αp, U , status}, with primary key n.id, and indexed by n.αp. status
is a boolean variable, set to true if the node is a member of the RangeGuard. U is a
counter, incremented on every update of the tuple, and left-shifted (assuming a little-
endian architecture) (i) on every update or (ii) every E+δ seconds, with the timer being
reset on every update. δ is a quantity depending on measurable characteristics (e.g.
round-trip / ping time) of the end-to-end connection between node n and the node stor-
ing the index tuple with n’s metadata. U encapsulates the amount of time a peer stays
connected to the network. We believe that the network uptime of a peer and the number
of requests it has served during this time, are enough evidence of a node’s power and
fitness for the RG ring. More elaborate metrics may be used instead, under the same
intuition of storing these tuples on the lower LP-DHT ring; investigation of such met-
rics is an open issue and a subject of ongoing and future work. If a node wishes to cease
being a candidate RG, it suffices to set a low value (e.g. 0) for its αp and stop updating
this information (so that its U value decays with inactivity). Also note that the NPR
tuple of a node n is stored on this very node, since the primary key of the relation is the
n.id attribute.

Cost of Maintaining NPR. Candidate RG nodes must update their NPR index tu-
ple – remember that NPR tuples are also indexed by their n.αp field. This operation
requires 2 LP-DHT ring lookups every epoch E ; one lookup to delete the index tuple
for the old value of n.αp, and one to insert the index tuple for the new value of n.αp.
The overall cost, in terms of hops, is O(log(N)) (since every lookup needs O(log(N))
hops), while the bandwidth consumption is minimal given the very small size of these
index tuples. Alternatively, we can either keep a link to the node last seen storing the
relevant index tuple and start the lookup from there, or follow a soft-state approach.
Moreover, the overall cost is tunable via E , so we can trade-off NPR index freshness
for bandwidth and hops.

Range Query Optimization Leveraging Peer Heterogeneity in DHT Data Networks 115

3.2 Joining the RangeGuard

A node that is to join the RangeGuard uses its RG as the “bootstrap” node for the
RangeGuard ring. The RG is responsible for retrieving the metadata of the candidate
node and checking whether it is powerful enough (i.e. has served more requests than
a predefined threshold) and has stayed online for long enough (based on the corre-
sponding U value) to be allowed into the RangeGuard. If all prerequisites2 are met, the
standard LP-DHT join protocol is executed and the candidate node is promoted to the
RG ring, otherwise the protocol terminates. After that, it updates the status field in its
entry in the NPR relation on the lower-level ring to reflect its promotion to RG status
and notifies nodes in its arc of responsibility of its existence. Alternatively, this step
may be left as part of the lower-level ring stabilization/maintenance process. The cost
of joining the RangeGuard ring consists of: (i) the cost to contact and send the relevant
NPR tuple to the RG responsible for the joining node (1 hop), and (ii) the cost of
the standard LP-DHT ring join protocol, for the RG ring. Thus, the hop-count cost for
joining the RG ring is in O(log(M)), while the extra bandwidth consumption is min-
imal (given the expected small size of the RG ring and the very small size of NPR
tuples).

Admission into the RangeGuard. There are two ways for a node to be admitted into
the RangeGuard: either (i) be promoted by a node already in the RangeGuard who
wishes to shed some of its load, or (ii) volunteering to take up some region in the
address space for which there exists no RG.

i. Promotion. Due to irregularities in the data or access distribution, a RangeGuard
may get overloaded with incoming requests. Moreover, it is possible for a region in
the RangeGuard to be underpopulated (e.g. imagine the RangeGuard ring in its setup
phases). In such cases, a member of the RangeGuard can ask for support from candidate
RangeGuards by promoting them to RG status.

With the infrastructure described earlier, when a RG wants to promote a node to
RangeGuard status for a region around a point p – i.e. the id of a node in a distance of
at most ε from a point p in the lower-level ring, with access count greater than a in the
previous epoch, and a U value above u – it merely executes the range query:

select id from NPR where U > u and αp > a and 0 ≤ id − p < ε

The result set of this query will contain the IDs of candidate RGs in the region of
interest. It is then up to the RG who originated the query to select the best candidate,
inform it of its promotion, and initiate the join protocol to add it to the RG ring.

ii. Volunteering. Candidate RGs may lie in any region on the lower-level ring. For
data/access distribution irregularity reasons similar to the ones urging RangeGuards to
ask for support, it is possible for some regions to have such low data/access loads that
the RangeGuard responsible for them has never been in need of support. This could
result in large arcs/ranges on the lower-level ring being mapped to a single Range-
Guard node, located many hops away on the lower-level ring from the first nodes on

2 These thresholds will probably vary depending on the semantics sought from the RangeGuard.
Calculating crisp theoretical thresholds is an orthogonal issue and left as future work.

116 N. Ntarmos, T. Pitoura, and P. Triantafillou

this arc. Although this is not an issue in the steady state, it may increase the time
needed by a node on this arc to find a new RG, should the current RG leave the system
abnormally.

We, thus, allow candidate RG nodes on the lower-level ring to volunteer for an RG
position; if a candidate RG detects a situation as the one described earlier (i.e. a large
distance between itself and its RG), it can contact the latter and ask to be promoted to
RG status. The RG is responsible for going through the αp and U checks and admitting
the candidate to the RangeGuard or not.

3.3 Leaving the RangeGuard

Similarly, a RG may decide to leave the RangeGuard if it finds itself in a situation
where its arc of responsibility becomes very small (due to candidate RGs being pro-
moted to RG status in its vicinity), or the load it faces as an RG drops below some
predefined threshold (e.g. an estimate of the load it should have, based on uniform
data/access load). A RG that wishes to leave the RangeGuard ring, goes through the
following steps: (1) it follows the LP-DHT ring “leave” protocol, transferring its RG-
related stored data to the appropriate node(s) on the RG ring, (2) it updates the status
field in its entry in the NPR relation on the lower-level ring, to denote that it is no
longer a RangeGuard, and (3) optionally, it notifies the nodes that link to it on the RG
ring to update their links, or leaves this to be done as a part of the RG ring stabiliza-
tion/maintenance process.

Note that our approach uses standard LP-DHT ring operations to set up and maintain
the RangeGuard ring. With the exception of the second step, the procedure described
above is the standard LP-DHT leave protocol. Also note that the leaving RG does not
need to notify nodes on its arc of responsibility of their new RG, since that will be
achieved during the lower-level ring stabilization process. Consequently, the cost for a
node to leave the RangeGuard is equal to the cost of executing the standard LP-DHT
leave protocol for the RG ring, while data transfer is minimal due to the very small size
of NPR tuples and the size of the RG ring. On the other hand, there is the requirement
for several RangeGuard peers with enhanced capabilities. This is not unrealistic, since
many peers in real-life applications have proved to be more powerful. With the notion
and exploitation of RangeGuards we can harness this power heterogeneity to achieve
higher efficiency in range query processing.

3.4 Range Query Processing Using RGs

With RangeGuards in the scene, a query (ai.vlow , ai.vhigh) on attribute ai will be sent
from the requesting node directly (1 hop) to the RG responsible for the requesting
node’s data. After this point the RangeGuards assume responsibility to gather the re-
quested information, using the LP-DHT algorithm described earlier, except that now all
operations take place on the RangeGuard ring (fig. 2). With data placement on the lower
ring being reflected on the RangeGuard ring, the requested index tuples will reside be-
tween RGl responsible for ai.vlow and RGh responsible for ai.vhigh. This algorithm
requires 1 routing hop to reach the RangeGuard ring, another O(log(M)) hops in the

Range Query Optimization Leveraging Peer Heterogeneity in DHT Data Networks 117

: Normal node

���������
�
�
�

��
��
��
��
�������

�
�
�

���
�
�
�

��
��
��
��
��������

����
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�� �
�
�
�

�
�
�
�

�
�
�
�

����

Requested range

Without RangeGuard

With RangeGuard

��
��
��
��

�����������
�
�
�

�
�
�
�

�
�
�
�

���
�
�
�
������������

��
��
����
��
��
�� �� ���� �������� �����

�
�
�

�� �� �
�
�
�

��
��
��
��

��
��
��
��

...from requesting node

: RangeGuard

Fig. 2. Range query processing with and without RGs

RG ring to reach RGl, and as many routing hops as there are RangeGuards between
RGl and RGh. Moreover, the O(log(M)) term can be further improved to O(1), by
using techniques similar to those presented in [19] or [20].

Since, there will probably be much fewer RGs in the system than there are nodes,
and RangeGuards are more powerful (with respect to computing capacities, network
bandwidth, and network uptime) than the average node in the system, this architecture
is significantly more efficient that the one presented earlier. Specifically, for 5% × N
RGs, although the worst-case hop-count efficiency remains in O(N), it now has a rather
significantly lower constant modifier (i.e. a 5% – or 20 times – lower hop-count). Note
that we require a mere 5% × N nodes to be powerful and altruistic in our setting; as
relevant research has pointed out [16,17], we can expect an average 5% of the node pop-
ulation in wide-scale peer-to-peer data sharing networks, such as Gnutella and Kazaa,
to be powerful, altruistic nodes. Thus, by harnessing the full power of all these nodes,
we can achieve even higher performance gains than those outlined above.

3.5 Modifications to the LP-DHT Overlay

We have extended the underlying LP-DHT system in the following fields. First we have
provided appropriate protocols to allow nodes to join/leave the RangeGuard ring, while
guaranteeing correct operation of the overall system, as well as a method to discover
and use candidate RGs (described in detail in sect. 3.2 and 3.3). We have also altered
the query processing protocol, to utilize and harness the extra functionality offered by
the RangeGuard (described in sect. 3.4). As far as routing state is concerned, we have
added 1 more entry to each node to point to the RG responsible for it. For fault-tolerance
reasons and faster recovery from failing/leaving RGs, we may choose to maintain links
to the next k RGs. Note that routing state size is still in O(log N).

With the extra information in the nodes’ routing tables, we also need to tweak the
stabilization process to include the RG entry in the set of links to probe. Much like
the standard stabilization process, a node issues a query for its ID on the RG ring. The
relevant information is by design stored on the responsible RG; thus, the response to
this query will originate from the RG currently responsible for the arc in which the
querying node is located. If the RG responsible for the node has changed (e.g. due to
more candidate RGs joining the RangeGuard), the node will get back a response from
a different RG and will thus update its RG link. Finally, if all of a node’s k RG links

118 N. Ntarmos, T. Pitoura, and P. Triantafillou

have failed simultaneously, then the node can fall-back to querying the lower-level ring
for a RangeGuard (i.e. a node whose status field is set to true) in its vicinity.

4 Load Distribution on the RG Ring

In order to emulate the 95%-5% observation of [16] (i.e. 5% of all nodes serve 95% of
all requests in the system), we have nodes on the LP-DHT ring flip a biased coin and
dispatch queries to the RG ring with a 0.95 probability, while processing them solely on
the LP-DHT ring with probability 0.05. Apart from relevant provisions by the LP-DHT,
the load is further balanced on the RG ring by the load-aware join/leave protocols.

As far as join/leave is concerned, remember that RGs may call for support from
candidate RG nodes when overloaded, and may decide to leave the RG ring if their
load is too low or their arc of responsibility is too narrow. In the former case, the RG
calling for help can choose among several candidate RGs, as returned from the relevant
query. Since this node knows which part of its arc of responsibility causes it the more
load, it can choose an appropriate candidate RG to shed this very load. The above
algorithm is able to provide us with the basics for having a balanced access load. As
already mentioned, we expect candidate RangeGuards to be uniformly distributed on
the lower-level ring. Thus, RangeGuards calling for help will have a good probability
of finding a candidate RangeGuard in their arc of interest.

With respect to data placement, if the popularity of a value does not depend on its
position in the attributes domain (e.g. value v is not the most popular for all attributes
in the system) then having multiple attributes mapped on the same ring translates to
having multiple popular items distributed to all nodes on the system. In the opposite
case, a random but easily computable offset value (e.g. the cryptographic hash of the
the attribute’s name) can be added (mod the maximum document ID) to all values in the
attribute’s domain. This provides us with enough randomization in the data placement
to guarantee similar results, as we shall see in sect. 5.2. Note that, for an N -node system
and the worst-case skewed distribution (i.e. one value being selected with probability 1
and the rest with probability 0), then N attributes are required to have a balanced load,
under a best-case distribution of load based solely on the above facts. However, since
the RG ring is much smaller than the LP-DHT ring, the required number of attributes
is much smaller (i.e. M<<N attributes for an M -node RG ring).

Furthermore, due to this difference in the sizes of the RG and the LP-DHT rings,
every RG node is responsible for the values assigned to multiple nodes on the LP-DHT
ring, which leads to an even smoother distribution of the load on the RG ring. Moreover,
we can easily apply load balancing techniques developed for the underlying LP-DHT,
to further balance the load on both lower-level and RG nodes (e.g. virtual nodes[21], or
load-aware node migration[22], when using OP-Chord[11]; rely on the load balancing
effects of the overlay itself, when using SkipNets[4] or Skip Graphs[5], etc.).

5 Performance Evaluation

We will be using our home-brewed LP-DHT, OP-Chord[11], as our overlay of choice.
OP-Chord is based on Chord, with an order-preserving hash function used instead of

Range Query Optimization Leveraging Peer Heterogeneity in DHT Data Networks 119

SHA-1 for document ID generation, and the same range query processing principles
discussed in sect. 2. We have extended the basic Chord simulator (available through
http://www.pdos.lcs.mit.edu/chord/), adding support for index tuples and range
queries, and implementing our OP-Chord and RangeGuard architectures. We have
chosen to test two aspects of the system: (i) the hop count efficiency of our range
query processing algorithm, and (ii) the distribution of storage requirements and ac-
cesses on participating RG nodes during range query processing, under realistically
skewed distributions.

5.1 Hop Count

The experiments used a single-index-attribute relation, with the index attribute tak-
ing 5, 000 integer values, following a Zipf distribution with θ=0.7 over D[17]. Range
queries are generated using a separate Zipf distribution over the domain D (again with
θ=0.7) for their lower bound, and a uniformly distributed range span S, ranging from
1% to 50% of the attribute domain. We report on a series of 50, 000-queries experiments
for a system with N=1, 000 nodes, M=50 (≈5%×N) range guards, and 50, 000 tuples
(the reported results are not sensitive to these values).

Performance Reference Points. We have compared the hop-count efficiency of the
RG architecture against (i) plain Chord (PC), as a representative of traditional DHTs,
(ii) an imaginary, enhanced Chord (EC), where for each range R the system knows the
IDs of the n′ nodes storing values in Ra, (iii) our OP-Chord architecture, and (iv) a
hybrid system where 95% of queries are processed on the RG ring and the remaining
5% are dealt with on the OP-Chord ring (see sect. 4). Assume we have an integer range
query r = <vlow, vhigh>. Further assume that the requested index tuples are stored on
n′ nodes, under Chord’s hashing scheme, and on k nodes, managed by k′ RangeGuards,
under our OPHF scheme. Then, in order to gather all possible results:

– PC: |r| queries, or O(|r| log(N)) hops, are needed.
– EC: |n′| queries, or O(|n′| log(N)) hops, must be executed.
– OP : we must first route to the node holding vlow and then follow k-1 successor

pointers, for an O(log(N)+k) overall hop count.
– RG: we must route to the closest RG (1 hop), then to the RG holding vlow (O(log

(M) hops) and follow k′ − 1 successor pointers, for an O(log(M) + k′) overall
hop count.

– OP + RG: we flip a biased coin and choose among OP or RG processing, with
the hop count complexities outlined above.

Fig. 3 summarizes the measured hop-counts per range query. Traditional DHTs were
not designed with range queries in mind thus Chord performs poorly. The (unrealis-
tically) enhanced Chord brings the required hop count down to ≈20% of the Chord
figure. However, total global knowledge is required to implement this approach. On the
other hand, by using the order-preserving hashing scheme and the RangeGuard archi-
tecture, the hop count is decreased by a factor of approx. 50 to 500 compared to PC,

120 N. Ntarmos, T. Pitoura, and P. Triantafillou

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50

H
op

s
pe

r
qu

er
y

Range span (% of attribute domain)

169.0

1,303.3

2,720.0

5,553.3

14,053.3

31.1

240.0
500.9

1,022.7

3,102.3

15.2

54.4

105.7
204.5

504.2

4.1
7.9

12.6
21.7

50.8

3.4
5.5

7.8
12.5

27.4

Plain Chord
Enhanced Chord

OP-Chord
90% RangeGuard 10% OP-Chord

RangeGuard

Fig. 3. Hop count per range query (log-plot)

10 to 110 compared to EC, and 5 to 20 compared to OP for different range spans, with
the performance of OP + RG following closely behind.

5.2 Load Distribution

The effect of random offsets and of overlapping multiple attributes in the access/storage
load balancing is beneficial in our setting. To showcase this claim, we have performed
the following experiment: assume we have an OP-Chord ring; we add nodes to the
system, at random positions on the OP-Chord ring (simulating the quasi-uniform place-
ment resulting from the use of SHA-1); we let the system stabilize and add 20, 000
multi-attribute tuples in the system. The values of the index attributes are drawn from
the [1, 40, 000] integer interval according to a Zipf distribution with θ = 0.7. If, on the
other hand, we assume a uniform value occurrence distribution (as opposed to the above
Zipfian distribution), the following results carry on to a Zipf load access distribution.
We vary (i) the number of index attributes per tuple, from 1 (the classic single-attribute
case of the currently available Chord system) up to 400 attributes, and (ii) the num-
ber of nodes in the network from 1, 000 to 5, 000, 10, 000, and 20, 000. Note that, e.g.
in the 20, 000-node case, should these nodes be RG nodes, they would be enough to
administer a 400, 000-node network, under the 5%-intuition described earlier.

Figure 4 shows the ratio of the highest to the lowest load in the system. Naturally,
the optimal load ratio is 1, in which case all nodes in the system will have the same
load. With a θ = 0.7 Zipfian value occurrence distribution in an 1,000-node network,
the highest-to-lowest single-attribute node access/storage load ratio load is 7.5, drop-
ping to 1.97 for 8, and 1.06 for 400 attributes. We have noted on the figures the load
ratio for the single-attribute case (denoted by the “load = ” points) and the number of
attributes required for this load to drop below 2 (denoted by the “# of attributes” points).
With nodes being placed on the lower-level ring using Chord’s SHA-1, we can expect
RangeGuards to be uniformly distributed on the ring. Thus, the above situation holds
for both the lower-level ring and the RangeGuard ring of our architecture. Note, how-
ever, the increase in the latter with the number of nodes in the network. As we expect
RG nodes to be a small percentage of all network nodes, the above results show that,
for the RG ring, load distribution will be within acceptable bounds (even without the
other relevant mechanisms discussed in sect. 3). For much larger networks, we shall
either need a very large number of attributes to achieve a good load distribution and/or
more elaborate load balancing mechanisms[23].

Range Query Optimization Leveraging Peer Heterogeneity in DHT Data Networks 121

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 50 100 150 200 250 300 350 400

M
ax

/m
in

 n
od

e
lo

ad
 r

at
io

ratio = 7.5

8 attributes

1,000 nodes

 0
 5

 10
 15

 20
 25
 30
 35

 0 50 100 150 200 250 300 350 400

ratio = 33.25

50 attributes

5,000 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

M
ax

/m
in

 n
od

e
lo

ad
 r

at
io

of attributes

ratio = 65.5

140 attributes

10,000 nodes

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

of attributes

ratio = 130.0

330 attributes

20,000 nodes

Fig. 4. Highest-to-lowest node load ratio

6 Related Work

All earlier research efforts focusing on complex query processing over DHTs
[4,5,6,7,8,9,10,11,12,13,14,15] failed to recognize and exploit the key fact that the ap-
propriate utilization of powerful nodes can speed up query processing significantly.
Viewed from a complementary angle, earlier research failed to recognize that in large
scale data sharing networks, there exist nodes which are weak, with respect to their
processing, storage, and communication capacity, and that there also exist nodes with
orders of magnitude more horsepower[17]. Our proposal avoids the pitfall of relying
upon weak nodes for query processing. Furthermore, we follow a data management
approach to discovering and harnessing powerful nodes: keeping metadata for partic-
ipating nodes as a relation over the LP-DHT ring allows us to swiftly and efficiently
locate such nodes and, by promoting them to RangeGuard status, to use them in the
core of routing and query processing.

7 Conclusions

With this work we address the problem of efficient range query processing in struc-
tured P2P networks. Our approach leverages existing DHT-based P2P research. Our
approach is centered on a new architecture that facilitates the exploitation of powerful
nodes, coined RangeGuards, in the network, assigning to them specific tasks for further
significant speedups during range query processing. This architecture is based on: (i)
a way to efficiently identify and collect RangeGuards, and (ii) mechanisms to utilize
them during range query processing. Our performance results have shown that signifi-
cant savings can be achieved by the proposed architecture. Perhaps most importantly, a
key advantage of the proposed architecture is that the dangers and inefficiencies of rely-
ing on weak nodes for range query processing, with respect to their processing, storage,
and communication capacities, and their intermittent connectivity are avoided.

122 N. Ntarmos, T. Pitoura, and P. Triantafillou

Acknowledgments

Peter Triantafillou was partly funded by FP6 of the EU through IST DELIS (#001907).
Nikos Ntarmos was funded by the PENED 2003 Programme of the EU and the General
Secretariat for Research and Technology of the Hellenic State.

References

1. Stoica, et al., I.: Chord: A scalable peer-to-peer lookup service for internet applications. In:
Proc. ACM SIGCOMM. (2001)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM. (2001)

3. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: Proc. Middleware. (2001)

4. Harvey, N., Jones, M., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay
network with practical locality properties. In: Proc. USITS. (2003)

5. Aspnes, J., Shah, G.: Skip Graphs. In: Proc. SODA. (2003)
6. Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-peer net-

works using P-trees. In: Proc. WebDB. (2004)
7. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with

applications to peer-to-peer systems. In: Proc. VLDB. (2004)
8. Ganesan, P., Yang, B., Garcia-Molina, H.: Multi-dimensional indexing in peer-to-peer sys-

tems. In: Proc. WebDB. (2004)
9. Gupta, A., Agrawal, D., Abbadi, A.: Approximate range selection queries in peer-to-peer

systems. In: Proc. CIDR. (2003)
10. Sahin, O., Gupta, A., Agrawal, D., Abbadi, A.: Query processing over peer-to-peer data

sharing systems. Technical Report UCSB/CSD-2002-28, UC Santa Barbara (2002)
11. Triantafillou, P., Pitoura, T.: Towards a unifying framework for complex query processing

over structured peer-to-peer data networks. In: Proc. DBISP2P. (2003)
12. Gribble, et al., S.: What Can Peer-to-Peer Do for Databases, and Vice Versa? In: Proc

WebDB. (2001)
13. Huebsch, et al., R.: Querying the internet with PIER. In: Proc. VLDB. (2003)
14. Bharambe, A., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range

queries. In: Proc. SIGCOMM. (2004)
15. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services. In:

Proc. P2P. (2002)
16. Adar, E., Huberman, B.: Free Riding on Gnutella. First Monday (2000)
17. Saroiu, S., Gummadi, K., Gribble, S.: A measurement study of peer-to-peer file sharing

systems. In: Proc. MMCN. (2002)
18. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact

of DHT routing geometry on resilience and proximity. In: Proc. SIGCOMM. (2003)
19. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays. In: Proc.

HotOS IX. (2003)
20. Ntarmos, N., Triantafillou, P.: AESOP: Altruism-Endowed Self-Organizing Peers. In: Proc.

DBISP2P. (2004)
21. Rao, et al., A.: Load balancing in structured P2P systems. In: Proc. IPTPS. (2003)
22. Karger, D., Ruhl, M.: New algorithms for load balancing in P2P systems. In: Proc. IPTPS.

(2004)
23. Pitoura, T., Ntarmos, N., Triantafillou, P.: HotRod: Range query processing and load bal-

ancing in peer-to-peer data networks. Technical Report TR 2004/12/05, R.A. Computer
Technology Institute (2004)

Guaranteeing Correctness of Lock-Free Range

Queries over P2P Data�

Stacy Patterson, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science, University of California Santa Barbara
Santa Barbara, CA 93106, USA

{sep,agrawal,amr}@cs.ucsb.edu

Abstract. As P2P systems evolve into a platform for full-fledged dis-
tributed database management systems, the need arises for sophisticated
query support and guarantees on query correctness. While there has been
recent work addressing range queries in P2P systems, the work on query
correctness is just beginning. Linga et al.[1] provided the first formal
definition of correctness for range queries in P2P systems and described
a lock-based range query technique that is provably correct. A natu-
ral question that arises is whether it is possible to develop a lock-free
protocol that can meet the same guarantee of correctness. In this pa-
per, we demonstrate the feasibility of lock-free correct protocols by first
developing a simple, proof-of-concept query protocol and verifying that
this protocol meets the correctness conditions. We then describe a more
robust extended protocol and prove that for stable systems with only
item insertions, item deletions, and item redistributions, this extension
insures that every range query can be satisfied correctly.

1 Introduction

P2P systems provide the benefits of fault tolerance, load balancing, and scala-
bility, making them a promising platform for distributed storage systems. Initial
work on P2P systems focused on the development of distributed hash tables,
or P2P indexes [2,3,4,5]. These P2P indexes allow for the storage of key/value
pairs and the ability to do exact match search for an item using the item’s
key. In order to realize the full potential of P2P systems for distributed data
management, these systems must provide support for more sophisticated query
predicates. Recent work in the area of P2P range indexes enables efficient single
and multi-dimensional range queries [6,7,8,9,10]. However, these systems do not
provide any guarantees on the correctness of query results. Specifically, they do
not guarantee that the query results include all and exactly those items that sat-
isfy the range query predicate in the presence of item insertions, item deletions,
and range redistributions. Such correctness guarantees are a necessary step in
the evolution of P2P systems into full-fledged distributed database management
systems.
� This research was funded in part by NSF grants IIS 02-23022, CNF 04-23336, and

INT 00-95527.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 123–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 S. Patterson, D. Agrawal, and A. El Abbadi

Linga et al.[1] are the first to address correctness of range queries. This work
provides a formal definition of correctness for range queries and describes a
technique for range queries that is provably correct. The technique relies on
locking to insure that no data items that satisfy the query predicate will be
omitted from the result. A natural question that arises is whether it is possible
to develop a lock-free technique that meets the same definition of correctness.
In this paper, we demonstrate that a lock-free provably correct query protocol is
feasible. We develop a simple, lock-free protocol in the context of P-Ring[7], the
same P2P range index used in the lock-based approach. Our protocol returns
only correct query results and rejects any query that cannot be satisfied correctly
under the current system conditions. We also develop an extended protocol that
greatly decreases the number of queries that will be rejected by the system.
Specifically, in a stable ring where no new peers join and no peers fail or leave,
this extension insures that every range query can be processed correctly without
being rejected.

The remainder of the paper is organized as follows. In Section 2, we present
the system model and provide background on P-Ring. In Section 3, we formalize
the notion of query correctness. In Section 4, we describe a simple, correct range
query protocol, and in Section 5, we describe a more robust extension to that
protocol. Finally, we conclude in Section 6.

2 Background

2.1 System Model

The model we adopt is a generalization of many existing P2P systems. The
system consists of a collection of peers, P , where a peer is a single processor
that contributes some amount of storage space to be used by the system. Each
peer, p ∈ P , has a unique physical identifier, such as an IP address. Each peer
also has a unique logical identifier, denoted p.id, which is a key chosen from a
discrete key space. We assume the existence of an underlying network layer that
allows a peer to communicate with another peer using a direct communication
channel. All messages are delivered within some known, bounded time-delay and
message ordering is preserved within any given channel.

The system allows nodes to join and leave at any time. We assume a fail-stop
model for peer departures. The system provides a lookup(key) operation which
locates, with high probability, the peer that is the immediate successor of the
key. The system also provides operations for item insertion and item deletion.
Additionally, the system supports single dimensional range queries of the forms
[lb, ub], (lb, ub], [lb, ub), and (lb, ub) where lb is the lower bound and ub is the
upper bound of the range predicate.

2.2 P-Ring

We describe our techniques in the context of P-Ring, a P2P index framework that
supports both range queries and exact match queries. Our techniques can be gen-
eralized to other range indexes that support single dimension range queries [6,8].

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 125

The P-Ring architecture is divided into several layers, each encapsulating specific
functionality of the system. The foundation of a P-Ring system is a Chord ring
[4] which provides the connectivity in the system. The Data Store layer sits on
top of the Chord ring and is responsible for data item storage and load balancing
operations. P-Ring also provides a Replication Manager that is responsible for
maintaining replicas to improve item availability in the presence of peer failures.
Finally, the P-Ring Content Router provides a routing structure that enables
efficient lookup(key) operations. We encapsulate the functionality needed for
correctness in the lower levels of the system. Our approach is therefore limited
to changes in the Chord ring and Data Store layers.

Chord Ring. In the Chord ring, each peer, p, stores the identity (both phys-
ical and logical) of its predecessor, denoted pred(p), and its successor, denoted
succ(p), in the ring. p also keeps a list of additional successors as a redundancy
measure in case succ(p) fails. Each peer is responsible for a portion of the key
space which is the range (pred(p).id, p.id]. These values are the lower and upper
bounds of the peer’s range, which we also denote by p.lb and p.ub respectively.
In a consistent ring pred(p).ub = p.lb for all peers, p, in the system. We assume
that when a new peer joins the ring, its predecessor and successor are notified
and update their successor and predecessor pointers to reflect the existence of
the new peer as part of the join process.

Data Store. One of the goals of a P2P storage system is to evenly distribute
data items among all of the peers in the system. In many systems, load balancing
is achieved through the use of consistent hashing [11]. For example, in CFS [12],
peer IDs are generated using a hash function that insures with high probability
that the IDs are uniformly distributed across the key space. Item IDs are also
generated using a hash function, and items are stored at the peer whose ID
immediately succeeds the item ID. This approach is effective in insuring that
every peer is responsible for roughly the same number of items. However, a hash
function does not generate IDs that preserve the order of the items.

In P2P range indexes, the item ID assignment policy must preserve item order
so that range queries can be answered efficiently. To maintain item order, P-Ring
uses the search key of the item as the item ID, denoted i.skv where i is an item.
With this policy, a range query of the form [lb, ub] can be answered by first doing
a lookup(lb) to locate the peer responsible for the lower bound of the query and
then traversing along the Chord ring following successor pointers until the peer
responsible for ub is reached.

Since the P-Ring ID assignment scheme does not guarantee uniform item
distribution across peers, it is possible for a peer to become heavily loaded if
a particular range contains too many items. It is also possible for a peer to be
underloaded if its range is less popular. To address this issue, P-Ring provides
three explicit load balancing operations, split, merge, and redistribute. If a peer
becomes overloaded, it invites a new peer to join the ring and divides its range
and the corresponding data items with the new peer through a split operation. If
a peer’s storage space is underutilized, it informs its successor through a merge

126 S. Patterson, D. Agrawal, and A. El Abbadi

operation. The successor, in a redistribute operation, either gives part of its
range and associated items to its predecessor or gives up its entire range to its
predecessor and leaves the ring. With these load-balancing operations, P-Ring
can guarantee that the number of items stored at each peer is between sf and
2sf for some storage factor sf.

3 Query Correctness

We adopt the definition of correct query results given in [1]. This definition
depends on the notion of a history, which describes the operations of the system
and a partial ordering upon them. The partial order, ≤, is a ”happened before”
relationship such that for any two operations o1 and o2, we say that o1 happened
before o2 if o1 completed before o2 began. If it is not the case that o1 happened
before o2, it is possible the operations executed in parallel. The formal definition
of a history is as follows.

Definition 1 (History). History H is a pair (O, ≤) where O is a set of oper-
ations and ≤ is a partial order defined on these operations.

The definition of a correct query result also relies on the definition of a truncated
history.

Definition 2 (Truncated History). Given a history H = (OH, ≤H) and an
operation o ∈ OH, Ho = (OHo , ≤Ho) is a truncated history if OHo = {o′ ∈
OH|o′ ≤H o} and ∀o1, o2 ∈ OHo(o1 ≤H o2 ⇒ o1 ≤Ho o2).

In other words, a truncated history is a history that contains all and only those
operations that happened before a particular operation.

3.1 Correct Query Results

Intuitively, a correct query result will contain exactly those items in the P2P
system that satisfy the range predicate. The dynamic nature of the system com-
plicates the definition of what it means for an item to be “in the system”. At
a high level, an item is in the system, or live, if it has been inserted at some
peer and not yet been deleted from any peer. We use the same terminology from
[1] but adopt a slightly different definition of a live item. insertItem(i) denotes
the successful insertion of item i into the system. deleteItem(i) denotes the suc-
cessful deletion of the item i from the system. We use itemsH(p) to denote the
collection of items stored at a peer p.

Definition 3 (Live Item). An item i is live in a history H, denoted liveH(i),
iff (insertItem(i) ∈ H) ∧ (deleteItem(i) /∈ H).

Additionally, in P2P systems, we must address the issue of node failures with
regards to the items stored at a failed node. When a node fails, its successor in
the Chord ring assumes responsibility for the node’s range, but only once the
successor becomes aware of the failure. We consider this detection of failure to

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 127

be an implicit delete of every item stored at the failed peer. So, it is only after
the failure is detected that these items are no longer live.

We now state the definition of a correct query result from [1]. In the definition,
satisfiesQ(i) denotes whether item i satisfies the range predicate of query Q.

Definition 4 (Correct Query Result). Given a history H, a set R of items
is a correct query result for a query Q initiated with operation os and successfully
completed with operation oe iff the following two conditions hold:

1. ∀i ∈ R (satisfiesQ(i) ∧ ∃o ∈ OH(os ≤H o ≤H oe ∧ liveHo(i)))

2. ∀i (satisfiesQ(i) ∧ ∀o ∈ OH(os ≤H o ≤H oe ∧ liveHo(i)) ⇒ i ∈ R)

The first condition states that if an item i is included in the query result, then it
was live at some time during the query. The second condition states that every
item that was live for the entire duration of the query is included in the result.

The goal of this paper is to explore lock-free techniques for range queries that
produce correct query results according to the above definition.

3.2 Incorrect Query Results: Examples

In [1], the authors present two examples of how a naive approach to range query
execution that consists of simply traversing along the ring will give incorrect
query results. We summarize these examples here. In Section 4.3 we show how
our lock-free implementation disallows these incorrect scenarios.

(10)(5)

(15)

(18)

(20)

p5 p1

p2
p3

p4

Fig. 1. Example P-Ring

(10)(5)

(15)

(18)

(20)

p5 p1

p2
p3

p4

(6)

p

Fig. 2. P-Ring with new node

Inconsistent Successor Pointers. Consider the ring shown in Figure 1 and
suppose each peer maintains a successor list of size 2. The successor list for p4 is
{p5, p1}. p5 is responsible for the range (20, 5] and p1 is responsible for the range
(5, 10]. Suppose that p1 becomes overloaded and splits its range with a new peer
p, as shown in Figure 2. When p joins, it becomes responsible for the range (5, 6]
and p1 becomes responsible for the range (6, 10]. A query with range predicate
(20, 9] arrives at p4, and p4 responds to the query with the data items in the
range (20, 5]. Then, p5 fails. p4 tries to forward the query to p5 and detecting the
failure, forwards the query to p1. Note that p4 has not yet updated its successor
list to reflect the existence of p. p1 will respond to the query with items in the
range (6, 9] and the range (5, 6] will have been omitted from the query result.

128 S. Patterson, D. Agrawal, and A. El Abbadi

Concurrent Redistribution. In the second scenario, we see that it is possible
for a query to produce incorrect results even if the successor pointers are com-
pletely consistent. Consider again the ring in Figure 1. Suppose a query (10, 18]
arrives at p2. p2 returns the items in the range (10, 15] and forwards the query to
its successor, p3. Suppose, at the same time, p3 is in the process of redistributing
part of its range with p2 and has transferred the range (15, 16] to p2. When the
query arrives at p3, p3 will return items in the range (16, 18] and the items in
(15, 16] will be missing from the query result.

In both cases, the incorrect query results stem from the fact that there is
some degree of uncertainty about the range for which a peer is responsible. If we
can eliminate this uncertainty by clearly defining the range for which a peer can
safely answer queries, then we can use this to produce a correct query protocol.

4 A Simple Protocol

First we examine how to remove any uncertainty in range responsibility that may
be introduced through the split, merge, and redistribute operations. Then, we
present a correct, lock-free range query protocol.

4.1 Range Ownership

When a peer performs a split, merge, or redistribute operation, its range changes.
It is this change that is problematic for range queries. The first step to query
correctness is to clarify range responsibility when these operations are performed.
To do this, certain steps of each operation must be performed atomically. We
outline these atomic steps for the merge operation. The atomicity requirements
for split and redistribute are defined similarly.

When peer p experiences underflow, it invokes the merge operation to request
that its successor relinquish some or all of its range to p. The result is that p
increases the range it is responsible for and receives the data items associated
with the range addition. The merge operation is given in Algorithm 1. In line
2, p alerts its successor of the underflow and waits for the successor’s response.
In line 4, p updates its set of items to include the items that were given up
by its successor. In line 5, p updates its range to include the range relinquished

Algorithm 1. p.merge()

1. // send message to successor and wait for result
2. (newRange, newItemList) = succ(p).initiateMerge(p, |p.range|);
3. // execute next two steps atomically
4. p.list.add(newItemList);
5. p.range.add(newRange);

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 129

by its successor. By executing steps 4 and 5 atomically, p insures that it will only
process operations (item insertions, item deletions, lookups, and range queries)
for the new range once it has incorporated all live items in the range into its
Data Store.

4.2 Correct Range Queries

The simple query protocol is shown in Algorithm 2 and Algorithm 3. This is
a slight modification of the original P-Ring protocol[1] without locking. The
query begins with a lookup(lb) operation. rangeQuery is then invoked at the
peer responsible for lb. processQuery is invoked at each subsequent peer that
participates in the query ending at the peer responsible for ub. We assume for
simplicity that processQuery and rangeQuery are each executed atomically.
Rather than passing the same lower bound to its successor when forwarding
the query along the ring, each peer p sends p.ub as the lower bound. By doing
so, p informs its successor of what part of the range query remains to be an-
swered. The successor accepts the query only if it is able to exactly satisfy this
lower bound, thus eliminating the possibility of gaps or duplicates in the query
results.

We assume that during any query execution there are only a finite number of
new peers entering the system. Therefore, every query terminates at some time.

Theorem 1. Using the simple protocol, every query that is accepted (terminates
with no peer rejecting it) produces a correct query result.

Proof. Consider a query Q = [lb, ub] that begins with operation os and ends
successfully with operation oe. The operations rangeQuery and processQuery
insure that, if the query terminates without rejection, the intervals r satisfied at
each of the peers that participate in the query are non-overlapping. The union
of these intervals is exactly equal to [lb, ub].

Since the union of the intervals satisfied at each peer equals [lb, ub], ∀i ∈
R satisfiesQ(i) holds. Let i be any item such that i ∈ R and satisfiesQ(i) holds.
It must be the case that i was returned by some peer in line 6 of processQuery
or rangeQuery. If we call this invocation of processQuery (or rangeQuery)
operation o, then we have insertItem(i) ≤H o, and if i was deleted in this history,
o ≤H deleteItem(i). So, there exists an operation o such that, os ≤ o ≤ oe and
also such that liveHo(i). Therefore, Condition 1 of the the Correct Query Result
definition holds.

Consider i such that satisfiesQ(i) is true and ∀o ∈ OH(os ≤H o ≤H oe ∧
liveHo(i)) holds. We claim that there must be some peer p such that i ∈ p.range
for the operation p.processQuery (or p.rangeQuery). Suppose this is not the
case. Then, for some peers p1 and p2 where p2 is the successor of p1, we have
i.skv > p1.ub during the invocation of p1.processQuery (or p1.rangeQuery)
and i.skv < p2.lb during the invocation of p2.processQuery. In this situation,

130 S. Patterson, D. Agrawal, and A. El Abbadi

p2 would detect the discontinuity in the range satisfied by p1 and its own range
and would reject the query at line 2 of processQuery. Since the query terminates
successfully, it must be the case that there exists a peer p such that i ∈ p.range
for the operation p.processQuery. Therefore i ∈ R. This proves Condition 2 of
the Correct Query Result definition. �	

Algorithm 2. p.rangeQuery(lb, ub, initiator)

1. if lb /∈ p.range then
2. Reject query
3. else
4. r := (lb, ub] ∩ p.range 1

5. items := items in p.items that are in range r
6. Send items to initiator
7. if ub /∈ p.range then
8. Invoke succ(p).processQuery(p.ub,ub, initiator) asynchronously
9. end if
10. end if

Algorithm 3. p.processQuery(lb, ub, initiator)

1. if lb �= p.lb then
2. Reject query
3. else
4. r := (lb, ub] ∩ p.range 1

5. items := items in p.items that are in range r
6. Send items to initiator
7. if ub /∈ p.range then
8. Invoke succ(p).processQuery(p.ub,ub, initiator) asynchronously
9. end if
10. end if

4.3 Incorrect Query Results Revisited

For both examples of incorrect range query results given in Section 3, if the
simple protocol is used, some peer will reject the query. In the case of the incon-
sistent successor pointers, p4 will forward the query with range [5, 10] to p1. p1

will then reject the query because the lower bound of the range query, 5, does
not equal p1.lb, which is 6. For the case of concurrent range redistribution, p2

will forward the query [15, 18] to p3. p3 will reject the query because the lower
bound of the query, 15, does not equal its lower bound, 16.

1 The items may be returned in parallel with the forwarding of the query to succ(p).

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 131

5 Extension to Simple Protocol

One drawback of the scheme described above is that the system cannot satisfy a
range query if that range encompasses a portion of the index that is concurrently
in transit from one peer to another as a result of a redistribution. This issue exists
even if there are no topology changes in the system. In this section, we describe
an extension to the simple technique that overcomes this drawback. We show
that in a system with no topology changes, the extended protocol can satisfy all
queries correctly.

Suppose that peer p2 relinquishes part of its range to its predecessor p1 as
a result of a redistribute operation. Instead of deleting the items that p2 has
given up to p1, p2 marks the items as relinquished and keeps them for some
period of time. What can p2 safely do with the relinquished part of its range?
It cannot accept any inserts or deletes for this range because it is no longer the
owner of the range and cannot guarantee that the future owner of the range, p1,
can consistently incorporate these insert and delete operations. p2 also cannot
accept lookup(key) operations for the relinquished range because it may report
that no item exists for a given key even if an insert for this key has been suc-
cessfully completed at p1. Similarly, p2 may return an item in response to a
lookup after that item has been successfully deleted from p1. p2 can, however,
use this relinquished range to satisfy range queries that have been forwarded
from p1. If p1 forwards a query to p2 with a lower bound equal to the lower
bound of the relinquished range, then p1 has not yet assumed responsibility for
this range, and therefore no new items have been inserted into nor have any
items been removed from the range. So, p2 can return items in the relinquished
range with no risk of omitting any live items and no risk of returning any deleted
items.

The extended query protocol that uses this approach is given below. As in
the simple protocol, the query begins with a lookup(lb) operation. rangeQuery
in Algorithm 2 is invoked at the peer responsible for lb. The processQuery algo-
rithm given in Algorithm 4 is invoked by each subsequent peer that participates
in the query. The relinquished range is denoted by p.range∗ = (p.lb∗, p.ub∗]. The
set of items in p.range∗ is denoted p.items∗.

The question arises as to how long p2 needs to keep the relinquished range
and items. p2 can delete the relinquished range and items once it knows that
p1 has received them. This confirmation can come in the form of an explicit
acknowledgment message from p1. Additionally, if p2 receives a query forwarded
by p1 with the lower bound equal to p2.lb and not p2.lb∗, p2 no longer needs to
store the relinquished range. Finally, since p2 is storing the relinquished range to
answer queries on behalf of p1, if p2 detects that p1 has failed or if p2 is notified
that it has a new predecessor, it no longer has any use for the relinquished range.
Note that p2 can delete the relinquished items at any time, and after the deletion,
query processing becomes identical to the simple protocol.

We now prove the correctness of the extended protocol.

132 S. Patterson, D. Agrawal, and A. El Abbadi

Algorithm 4. p.processQuery(lb, ub, initiator)

1. if lb �= p.lb and lb �= p.lb∗ then
2. Reject query
3. else
4. if lb = p.lb∗ then
5. r∗ := (lb, ub] ∩ p.range∗

6. items := items in p.items∗ that lie in range r∗

7. lb := p.ub∗

8. end if
9. if ub > p.lb then
10. r := (lb, ub] ∩ p.range
11. items := items∪ items in p.items that lie in range r
12. end if
13. Send items to initiator2

14. if ub ≥ p.ub then
15. Invoke succ(p).processQuery(p.ub,ub, initiator) asynchronously
16. end if
17. end if

Theorem 2. Using the extended protocol, every query that terminates success-
fully without being rejected produces a correct query result.

Proof Sketch. The extended protocol is identical to the simple protocol except for
the case where a range redistribution between a peer p and its predecessor pred(p)
takes place concurrent with the processing of a range query at pred(p) and p.

Consider a query Q = [lb, ub] that begins with operation os and ends success-
fully with operation oe. As in the simple protocol, the operations rangeQuery
and processQuery insure that, if the query terminates without rejection, the
intervals r ∪ r∗ satisfied at each of the peers that participate in the query are
non-overlapping. The union of these intervals is exactly equal to [lb, ub]. There-
fore, ∀i ∈ R satisfiesQ(i) is true.

Let i be any item returned by peer p (i.e. i ∈ R and satisfiesQ(i) holds).
i was either in p.range or in p.range∗ during the execution of p.processQuery
(or p.rangeQuery). If i ∈ p.range, then Condition 1 for a Correct Query Result
holds by the same argument given in the proof of Theorem 1. If i ∈ p.range∗ then
insertItem(i) happened before p sent i to pred(p) in a redistribute operation.
And pred(p).processQuery happened before pred(p) received items from the
redistribute (otherwise, pred(p) would have forwarded the query with lb equal
to p.lb). So, pred(p).processQuery ≤H redistribute ≤H p.processQuery. If i
was deleted, then pred(p) must have received p’s relinquished range before the
deleteItem(i) operation so insertItem(i) ≤H redistribute ≤H deleteItem(i).

2 As in the simple protocol, the items may be returned in parallel with the forwarding
of the query to succ(p).

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 133

Taking o′ = redistribute, liveHo′ (i) is true, and therefore Condition 1 for a
Correct Query Result holds.

The proof of Condition 2 is similar to that given in the proof of the simple
protocol. �	
This extended protocol greatly increases the system’s ability to satisfy queries.
In fact, in a system with no topology changes, the extended protocol can satisfy
all queries correctly. We prove this by first showing that in a stable ring every
lookup(key) will eventually complete successfully . Therefore, for a range query
Q = [lb, ub], it is always possible to locate the peer responsible for lb. We then
show that if a peer keeps the relinquished range until it receives confirmation that
the range has been assumed by its predecessor, no query will ever be rejected.

Lemma 1. In a stable ring with consistent successor pointers having only item
insertions, item deletions, and range redistributions every lookup(key) will even-
tually terminate successfully.

Proof. Suppose that due to outdated routing information, a lookup(key) message
is forwarded to a node p after p has transferred the range containing key to
its predecessor. When p receives the lookup request, it detects that it is not
the owner of key and forwards the request either to its successor or to some
other peer in its routing structure. It can be shown that eventually some peer
will be permanently responsible for the range containing key. At that time, the
lookup must terminate successfully. In any redistribution, a node p with range
(p.lb, p.ub] transfers some portion of that range, (lb, new lb], to its predecessor,
and p becomes responsible for the range (new lb, ub]. Since the key space is
discrete, eventually there is some node that is responsible for the range (ub−δ, ub]
with key ∈ (ub − δ] such that no further subdivision of the range (ub − δ, ub] is
possible. In this case, the only way for the peer to give up responsibility for this
range is to leave the system. This is impossible under the assumption that the
system topology is stable. �	

Theorem 3. In a stable ring with consistent successor pointers having only item
insertions, item deletions, and range redistributions, every query can be answered
correctly using the extended protocol.

Proof. Theorem 2 shows that any query that is not rejected produces a correct
query result. Here we show that in a stable ring, no query will ever be rejected.
By Lemma 1, every lookup(lb) eventually arrives at the peer responsible for the
lb. The first step in a range query with range predicate [lb, ub] is a lookup(lb)
operation and therefore in p.rangeQuery the Reject statement at line 2 will
never be invoked. A query will be rejected at line 2 in p.processQuery if lb is
not equal to either the lower bound of p.range or the lower bound of p.range∗.
In the case that there is a concurrent redistribution for which pred(p) has not
yet received the new range and items, lb will be equal to p.lb∗. In all other cases,
any query forwarded by pred(p) will be equal to p.lb. So, if a query is rejected at
line 2, then it must have been forwarded to p by some peer other than pred(p).

134 S. Patterson, D. Agrawal, and A. El Abbadi

This can only occur if that peer has an inconsistent successor pointer, which is
impossible under the assumption of the theorem. �	

6 Conclusion

In this paper, we have presented two lock-free techniques for range queries in P2P
systems that provably guarantee correct query results, a simple protocol and a
more robust extension. Both techniques have the benefit of simplicity in analysis
and implementation. Additionally, in a system with no topology changes, the
extended technique can satisfy every range query correctly. This work represents
an initial step towards better formalization and understanding of P2P systems.

References

1. Linga, P., Crainiceanu, A., Gehrke, J., Shanmugasundaram, J.: Guaranteeing cor-
rectness and availability in p2p range indicies. In: SIGMOD. (2005) 323–334

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable
content-addressable network. In: SIGCOMM. (2001) 161–172

3. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware. (2001) 329–350

4. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM.
(2001) 149–160

5. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications Vol. 22, No. 1 (2004) 41–53

6. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM. (2004) 353–366

7. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram,
J.: P-ring: An index structure for peer-to-peer systems. Cornell University Tech-
nical Report (2004)

8. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: VLDB. (2004) 444–455

9. Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries in
peer-to-peer systems. In: CIDR. (2003) 141–151

10. Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for
caching range queries. In: ICDE. (2004) 165–176

11. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: ACM Symposium on Theory of Computing.
(1997) 654–663

12. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: SOSP ’01. (2001) 202–215

Publish/Subscribe with RDF Data over Large

Structured Overlay Networks�

Erietta Liarou, Stratos Idreos, and Manolis Koubarakis

Department of Electronic and Computer Engineering
Technical University of Crete, GR73100 Chania, Greece
{erietta,sidraios,manolis}@intelligence.tuc.gr

Abstract. We study the problem of evaluating RDF queries over struc-
tured overlay networks. We consider the publish/subscribe scenario where
nodes subscribe with long-standing queries and receive notifications when-
ever triples matching their queries are inserted in the network. In this pa-
per we focus on conjunctive multi-predicate queries. We demonstrate that
these queries are useful in various modern applications e.g., distributed
digital libraries or Grid resource discovery. Conjunctive multi-predicate
queries are hard to answer since multiple triples are necessary for their
evaluation, and these triples will usually be inserted in the network asyn-
chronously. We present and evaluate query processing algorithms that are
scalable and distribute the query processing load evenly.

1 Introduction

Evaluating RDF queries in distributed environments is an open research prob-
lem. Semantic Web research can gain a lot from recent developments in the area
of peer-to-peer (P2P) systems, and especially from results in the area of struc-
tured overlay networks. We discuss RDF query processing over a popular kind of
such networks, called distributed hash tables (DHTs) [1]. DHT protocols allow
nodes holding data items to self-organize and offer data lookup functionality in
a provably efficient, scalable, fault-tolerant and adaptive way.

The problem of designing distributed algorithms to evaluate RDF queries
over structured overlay networks has been considered by many papers so far
e.g., [2,3,4,5,6,7]. We can distinguish two scenarios for query processing in these
papers. In the one-time query case [5,2,3], a user poses a query like “give me all
songs by Leonard Cohen” and the system replies with a set of answers/pointers
to nodes that hold related resources. In the publish/subscribe scenario [4,2,8],
a user subscribes with a continuous query like “notify me when a new song
of Leonard Cohen becomes available” and receives notifications when matching
resources become available.

We consider RDF queries in the style of RDQL [9] using triples as the atomic
construct. Our long term research goal is to create a set of algorithms for the pub-
lich/subscribe scenario that will support all useful query types in languages such
� This work was supported in part by the European Commission project Ontogrid

(http://www.ontogrid.net/).

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 135–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 E. Liarou, S. Idreos, and M. Koubarakis

as RDQL and RQL. In this paper we make a first step towards this direction by
providing a set of algorithms that support the class of conjunctive multi-predicate
queries and demonstrate that queries of this class are useful in applications. Con-
junctive multi-predicate queries over a distributed DHT environment were first
considered in [2] where algorithms for one-time query processing scenarios are
proposed. Here we consider the publish/subscribe scenario for such queries over
DHTs.

The contributions of this paper are the following. We propose two distributed
algorithms for evaluating continuous conjunctive multi-predicate queries on top
of DHTs. In our experiments we use Chord [10] as the underlying DHT due to
its relative simplicity and widespread popularity. However, the implementation
of our ideas which is underway, is DHT-agnostic: it will work with any DHT ex-
tended with the APIs we define. The case of conjunctive multi-predicate queries
is an interesting one since more than one triples may be needed to answer a
query. Since typically triples do not arrive in the network at the same time, the
network should “remember” the queries that have been partially satisfied and
create notifications only when all subqueries of a given query are satisfied. We
introduce the notion of query chains to handle this problem. We argue that our
algorithms are appropriate for large networks since their main emphasis is to dis-
tribute the query processing load to as many nodes as possible, while at the same
time keeping the network cost in terms of overlay hops low. We experimentally
evaluate and compare our algorithms in a simulated environment.

The organization of the paper is as follows. Section 2 describes Chord and our
assumptions regarding the system and data model. Sections 3, 4 and 5 describe
the two query processing algorithms. In Section 6 we experimentally evaluate
the performance of our algorithms. Finally, Section 7 concludes the paper.

2 System Model and Data Model

We assume an overlay network where all nodes are equal, as they run the same
software and have the same rights and responsibilities. Each node n has a unique
key (e.g., its public key), denoted by key(n). Nodes are organized according to
the Chord protocol and are assumed to have synchronized clocks. This property
is necessary for the time semantics we describe later on in this section. In prac-
tice, nodes will run a protocol such as NTP [11] and achieve accuracies within few
milliseconds. Each data item i has a unique key, denoted by key(i). Chord uses
consistent hashing to map keys to identifiers. Each node and item is assigned an
m-bit identifier, that should be large enough to avoid collisions. A cryptographic
hash function, such as SHA-1 or MD5 is used: function Hash(k) returns the
m-bit identifier of key k. The identifier of a node n is denoted as id(n) and is
computed as follows: id(n) = Hash(key(n)). Similarly the identifier of an item i
is denoted as id(i) and is computed as follows: id(i) = Hash(key(i)). Identifiers
are ordered in an identifier circle (ring) modulo 2m i.e., from 0 to 2m −1. Key k
is assigned to the first node which is equal or follows Hash(k) clockwise in the
identifier space. This node is called the successor node of identifier Hash(k) and

Publish/Subscribe with RDF Data over Large Structured Overlay Networks 137

is denoted by Successor(Hash(k)). We will often say that this node is responsi-
ble for key k. A query for locating the node responsible for a key k can be done
in O(log N) steps with high probability [10], where N is the number of nodes in
the network. Chord is described in more detail in [10].

We use the API defined in [12,13] for implementing pub/sub functionality
on top of Chord. [12] deals with languages from Information Retrieval while
[13] with two-way equi-join queries and there is no overlap of [12,13] with the
algorithms of this paper. Let us now shortly describe this API. Function send
(msg, id), where msg is a message and id is an identifier, delivers msg from
any node to node Successor(id) in O(logN) hops. Moreover, function multi-
Send(msg, I), where I is a set of d > 1 identifiers I1, ..., Id delivers msg to nodes
n1, n2, ..., nd such that nj = Successor(Ij), where 1 < j ≤ d. This happens in
d ∗ O(logN) hops. Function multiSend() can also be used as, multiSend(M, I),
where M is a set of d messages and I is a set of d identifiers. For each Ij , message
Mj is delivered to Successor(Ij) in d∗O(logN) hops. A detailed description and
evaluation of this API can be found in [12].

In the application scenarios we target, each network node is able to describe
in RDF the resources that it wants to make available to the rest of the network,
by creating and inserting metadata in the form of triples. In addition, each
node can subscribe with a continuous query that describes information that this
node wants to receive notifications for. We use a very simple concept of schema
equivalent to the notion of a namespace. Thus, we do not deal with RDFS and
the associated simple reasoning about classes and instances. Different schemas
can co-exist but we do not support schema mappings. Each node uses some of
the available schemas for its descriptions and queries.

Each triple t has a time parameter called published time, denoted by pubT (t),
that represents the time that the triple is inserted into the network. Each query
q has a unique key, denoted as key(q), that is created by concatenating an
increasing number to the key of the node that posed q. Each query q has a time
parameter, called subscription time, denoted by subscrT (q) that represents its
creation time. Each subquery qi of a query q is also assigned a subscription time
subscrT (qi) = subscrT (q). A triple t can satisfy qi iff subscrT (qi) ≤ pubT (t),
i.e., only triples that are inserted after a continuous query was subscribed can
satisfy it. We will not have a complicated formal definition of notification as it
might be appropriate for some applications.

We concentrate on the class of conjunctive multi-predicate queries. A con-
junctive multi-predicate query q is a formula in the following form:

?x1, . . . , ?xn : (?s, p1, o1) ∧ (?s, p2, o2) ∧ · · · ∧ (?s, pn, on)

where ?s is a variable, p1, . . . , pn are URIs and o1, . . . , on are variables, URIs or
literals. ?x1, . . . , ?xn are variables and {x1, . . . , xn} ⊆ {s, o1, . . . , om}. Variables
will always start with the ’?’ character as in [2]. The formulas (?s, p1, o1),...,(?s,
pn, on) will be called subqueries of q. A query will be called atomic if it consists
of a single conjunct.

A substitution θ is a finite set of the form {?v1/c1, . . . , ?vn/cn} where each
?vi is a distinct variable and each ci is a URI or literal. Each constant ci is

138 E. Liarou, S. Idreos, and M. Koubarakis

cpu

memory

Gbyte

disk

brand

MHz

bit

rpm

OS

software
citedBy

hasCitation
topic

author title confernce

year

buffer

Distributed CiteSeer scenario Network monitoring scenario

typeclass

range of property

property

Legend :

Fig. 1. Possible schemas for example applications

called a binding for ?vi. Note that we deal only with ground substitutions. Let
q be a query and θ a variable substitution. Then qθ will denote the result of
substituting each variable of q with its binding in θ.

A set of triples T = {t1, . . . , tn} satisfies a query q = q1 ∧ . . . ∧ qk with
variable substitution θ, if for each i = 1, . . . , k there exists j, 1 ≤ j ≤ n such
that triple tj satisfies qi with θ (i.e., qiθ = tj) and subscrT (qi) ≤ pubT (tj). A
triple t satisfies an atomic query q with variable substitution σ, if qσ = t and
subscrT (q) ≤ pubT (t).

Let T be an RDF database and q be a query in the above form. A substitu-
tion θ in variables ?x1, ..., ?xn is an answer to q if T satisfies q. A notification
corresponding to a query q of the above form is just a substitution θ which is an
answer to q.

Conjunctive multi-predicate queries over a distributed DHT environment were
first considered in [2] for one-time query processing scenarios. Note that this
class of queries allows join only on s (i.e., s is a subject common to all triples).
Such queries can be used to express many interesting queries for P2P applica-
tions using RDF. For example, assume a distributed digital library that provides
functionalities like those of CiteSeer. Library nodes could publish descriptions
of academic literature in electronic format. The schema of the left graph of Fig-
ure 1 can be part of the schema used in such an application. Nodes can also
subscribe with queries looking for publications with specific characteristics. A
possible query could be: “Notify me when a paper by Smith is published that is
related to P2P networks. List all citations in this paper”. This is a conjunctive
multi-predicate query that can possibly be expressed as follows:

?x, ?y : (?x, author, “Smith”) ∧ (?x, topic, “P2P”) ∧ (?x, citation, ?y)

It is well-known from systems such as EDUTELLA [5] that RDF is nicely
suited for capturing digital library resource metadata. The fact that resource
metadata may enter the network asychronously makes continuous query evalu-
ation an incremental long-running activity (see Sections 3, 4 and 5). In reality,
there will be applications where the metadata about a specific resource are all
inserted in the network at the same time and applications where metadata are
inserted in steps. For example, a digital library such as the ACM Digital Library
might be expected to publish all metadata of a specific document (e.g., author,
title, etc.) simultaneously. On the contrary, in the CiteSeer scenario, the system
continuously crawls the web and collects information on Computer Science pub-
lications. In this case, as more details about a specific publication are created,
previous CiteSeer entries will be updated.

Publish/Subscribe with RDF Data over Large Structured Overlay Networks 139

Another example application where the class of queries studied is useful is
Grid resource monitoring. In this application where computational resources
(e.g., mainframes, personal computers, mobile devices, etc.) are connected in an
overlay network. Users of this network would like to use cpu, memory, disk and
other resources available in the overlay to carry out various computation- and
data-intensive tasks. Part of the schema used in such a scenario could be the right
graph of Figure 1. A continuous conjunctive multi-predicate query according
to this schema might be “Notify me whenever a PC running Linux with the
BLAST bioinformatics package installed, becomes available”. This query can be
expressed as follows:

?x : (?x, type, PC) ∧ (?x, OS, Linux) ∧ (?x, software, BLAST)

Similarly with CiteSeer, evaluating continuous queries for resource discovery in
Grid environments needs data that might not be inserted in the system at the
same time. Thus, algorithms have to “remember” previously inserted triples that
partially satisfy a query. As new triples arrive, this memorized information is
used to determine what queries have been fully satisfied. In general, applications
where metadata is incrementally refined and updated seem to be prevalent in
the Semantic Web and the Semantic Grid and can be nicely served by semi-
structured data models like RDF and dynamic P2P networks.

3 A High-Level View of Our Algorithms

In our algorithms, when a continuous query is submitted, it is indexed somewhere
in the network and waits for triples to satisfy it. Each time a new triple is
inserted, the network nodes cooperate to determine what queries are satisfied
and create notifications. The case of conjunctive multi-predicate queries is an
interesting one, since a single triple may satisfy a query q only partially by
satisfying a subquery of q. In other words, more than one triples may be needed to
answer a query. Moreover, since the appropriate triples do not necessarily arrive
in the network at the same time, the network should “remember” the queries that
have been partially satisfied in the past (e.g., by keeping intermediate results)
and create notifications only when all subqueries of a given query are satisfied.

We could index queries to a globally known node or set of nodes, but this
would eventually overload these nodes. In a P2P environment we want as many
nodes as possible to contribute some of their resources (storage, cpu, bandwidth,
etc.) for achieving the overall network functionality. The resource contribution of
each node will obviously depend on its capabilities, its gains from participating
in the network, etc. In this paper we make the simplifying assumption that all
nodes are altruistic, with equivalent capabilities, and, thus, can contribute to
query evaluation in identical ways.

Let us first consider an atomic query q = (?s1, p1, ?o1). We can simply assign
q to the successor node x of Hash(p1) by using the constant part p1 of the query.
Triples that have predicate value equal to p1 will be indexed to x too, where they
will meet q. Assume now the atomic query q′ = (?s2, p2, o2). We can index q′ ei-
ther to node x1 = Successor(Hash(p2)) or to node x2 = Successor(Hash(o2)).

140 E. Liarou, S. Idreos, and M. Koubarakis

We prefer the second option since intuitively there will be more object values
than predicate values in an instance of a given schema, which will allow us to
distribute queries to a greater number of nodes. Another solution is to index q′

to the node x3 = Successor(Hash(p2 + o2)). We use the operator + to denote
the concatenation of string values. This is the best option because the possible
combinations of predicate and object values will be greater than the number of
object values alone, so this will lead to an even better distribution of queries.

The difficulty with arbitrary conjunctive multi-predicate queries is that they
demand more than one conditions to be satisfied before the whole query can
be satisfied. As an example, consider the query q = q1 ∧ q2 ∧ q3. Our approach
is to split the query to the subqueries that it consists of, and to index each
subquery separately. Then, three usually different nodes will be responsible for
query processing regarding q. Each one will be responsible for a single subquery of
q, e.g., nodes r1, r2 and r3 will be responsible for q1, q2 and q3 respectively. These
nodes will form the query chain of q, denoted by chain(q). Each one of these
nodes will monitor the satisfaction of only the subquery that it is responsible for.
To determine the satisfaction of q, we have to allow some kind of communication
between these three nodes. In this way, as triples arrive and satisfy a subquery
e.g., in node r1, r1 will forward partial results of q to r2. Node r2 will forward
partial results that also satisfy the second subquery to r3 and r3 will realize that
the whole query is satisfied and create a notification.

The first algorithm that we present creates a single query chain for each
conjunctive multi-predicate query while the second one creates multiple query
chains for a single query to achieve a better query processing load distribution.
The presented algorithms are useful for the evaluation of conjunctive multi-
predicate queries. However, the general idea of these algorithms is the base of
our research towards the creation of distributed algorithms that will also support
more general query types, e.g., arbitrary queries. In the following sections we
describe our algorithms in detail.

4 The Single Query Chain Algorithm

In this section we introduce the single query chain algorithm (SQC). The main
characteristic of this algorithm is that for each query, it creates a single query
chain. Let us assume a node n that wants to subscribe with the query q =
q1 ∧ q2 ∧ ...∧ qk where each subquery qj is of the form (?x, pj , ?oj) or (?x, pj , oj).
We will use functions subj(qj), pred(qj) and obj(qj) to denote the string value
of the subject, the predicate and the object of subquery qj respectively.

Indexing a query. Node n will index q by creating a query chain and as-
signing responsibility for q to the nodes in the chain as follows. For each sub-
query qj , n creates a message index-query(qj , key(q), key(n)) and computes
an identifier Ij using the elements of qj that are constant. If qj is of the form
(?x, pj , ?oj), then Ij = Hash(pred(qj)), while if it is of the form (?x, pj , oj), then
Ij = Hash(obj(qj)). The identifier Ij will lead to the node that will be responsi-
ble for subquery qj . In this way, a set M of k messages is created and a set I of

Publish/Subscribe with RDF Data over Large Structured Overlay Networks 141

r1

r2

r3

{?s/s1,?o/o1} is sent
to r2

Step 1

t1=(s1,p1,o1)

successor(Hash(p1)), stores q1

successor(Hash(o2)),stores q2

successor(Hash(p3)),stores q3

r1

r2
Create and deliver notification
{?s/s1,?o/o1},{?s/s1},{?s/s1,?o/o1}

t2=(s1,p3,o1) t3=(s1,p2,o2)

{?s/s1} and {?s/s1,?o/o1} are
forwarded to r3r3

r2

r3

q =(?s,p1,?o),(?s,p2,o2),(?s,p3,?o)

Query q is inserted and a query chain for q is
created by nodes r1, r2 and r3.

Step 2

Triple t1 arrives at r1 and
satisfies q1.

Step 3

Triple t2 arrives at
r3 and satisfies q3.

t2 is stored
in TT

Step 4

Triple t3 arrives at r2 and satisfies q2.

t1 is stored in TT

{?s/s1,?o/o1} is
stored in IRT

t3 is stored in TT

Fig. 2. The algorithm SQC in operation

k identifiers. The successors of those identifiers are called the responsible nodes
for each subquery of q and form the query chain of q. Node n calls the function
multiSend(M, I) to index the query with complexity k ∗ O(logN) overlay hops.
The multiSend() function sorts I in the clockwise direction starting from id(n)
so the query chain that will be created will require the minimum overlay hops
when forwarding intermediate results [12].

Each node r that receives an index-query(qj , key(q), key(n)) message stores
qj in its local query table (QT) along with key(q), key(n), and two other param-
eters: next(qj) and position(q). Parameter next(qj) will be used by r to reach
the next node in the chain when needed, i.e., next(qj) is the identifier of the
next node. Parameter position(q) is used to show the position of r in chain(q).
position takes the value first or last if r is first or last in chain(q) respectively.
Otherwise, position takes the value middle. The construction of query chains in
SQC is shown graphically in Figure 2 through an example.

Indexing a new triple. A new triple has to meet all relevant queries.
Since subqueries are indexed either according to their predicate or their ob-
ject value, a new triple t = (s, p, o) has to reach both Successor(Hash(p))
and Successor(Hash(o)) for SQC to be complete. Thus, a node that inserts a
new triple t will use function multiSend(msg, F), with msg =index-triple(t,
key(n)) and F = {Hash(p), Hash(o)}, to index t in 2 ∗ O(logN) hops.

Forwarding intermediate results when new triples arrive. Let us now
discuss how a node reacts upon receiving a new triple t. The node stores t in its
local triple table (TT) and searches its QT for matching subqueries. We will first
discuss what happens if this node is first in the query chain of a query q. For sim-
plicity we assume that the nodes of the query chain are ordered as r1, . . . , rk and
are responsible for subqueries q1, . . . , qk respectively. If t satisfies q1 with sub-
stitution θ then a message msg=extend-matching ({q1}, θ, key(q)) is created
and forwarded to the next node in chain(q) with function send(msg, next(qj)).
Otherwise, triple t is ignored and there is nothing to be done.

If a message extend-matching ({q1, . . . , qj−1}, θ, key(q)) arrives at a node
rj in the middle of a query chain for some query q, then rj tries to find out if the
message can be forwarded further in the query chain. This can happen only if rj

is storing triples that satisfy the subquery qj of q that rj is responsible for. Thus,
rj searches its local TT for such triples. If there is a triple t′ and variable substi-
tution σ such that qjθσ = t′, then the list of satisfied subqueries {q1, . . . , qj−1}

142 E. Liarou, S. Idreos, and M. Koubarakis

can be extended with qj and the next node in the chain should be notified with
a message extend-matching ({q1, . . . , qj}, θσ, key(q)). Furthermore, rj stores
{qjθσ} locally in its intermediate results table (IRT) which is necessary when
triples arrive directly to rj (see below).

Let us now discuss what happens when a node rj+1 in the middle of the
query chain of a query q, receives a new triple t′′. t′′ will be stored in the local
TT and rj+1 will search locally for satisfied subqueries. Assume that t′′ satisfies
a subquery qj+1 of query q with variable substitution λ, so that qj+1λ = t′′.
The difference with the case of being first in chain(q) is that rj+1 will not
forward t′′ to the next node unless the previous node in chain(q) has already
sent appropriate intermediate results. Thus, rj+1 will search its IRT for partially
satisfied subqueries of q. If {q1, . . . , qj} such subqueries exist, a message extend-

matching ({q1, . . . , qj , qj+1}, θσλ, key(q)) will be created and forwarded to the
next node in chain(q) as in the previous paragraph.

When a node that is at the end of a query chain receives a message extend-

matching ({q1, . . . , qj , qj+1}, θσλ, key(q)), it will search its IRT for partially
satisfied subqueries as in the previous paragraph, but then instead of forwarding
intermediate results (there are no more nodes in the chain), it will use the key
of the node that posed the query to deliver any notifications.

An example with SQC in operation is shown in Figure 2. Events take place
from left to right, i.e., initially query q is indexed and then triples arrive. For
readability reasons, only the steps that affect query q are shown.

Grouping queries. Since a large number of subqueries are expected to be
similar, i.e., some of their components are identical, they are grouped together
at each node. For example, all subqueries that have been indexed to a node r
using predicate p will be satisfied when a triple with predicate p arrives (since
the subject and object are variables), so r can locally store these subqueries
as a group, and check their satisfaction in one step when such a triple arrives.
In addition, when nodes send messages extend-matching (), subqueries with
the same parameter next are grouped so that these results are delivered with a
single message to reduce network traffic.

Links. Each node in a chain will contact more than once its next node, so
nodes can maintain pointers (the IP addresses) to their next nodes for efficiency.
This happens with a hash table based local data structure, called query chain
routing table (QCRT). Thus, intermediate results are forwarded in a single hop.

5 The Multiple Query Chains Algorithm

In this section we present the multiple query chains algorithm (MQC). With
this algorithm we extend the ideas of SQC to achieve a better distribution of the
query processing load. MQC exploits the values of incoming triples to distribute
the responsibility of evaluating a query to more nodes than SQC. More precisely,
instead of creating a single query chain for a query q at the time that q is inserted,
MQC indexes q to a single node r according to one of q’s subqueries. Then, when
a triple satisfying this subquery arrives at r, the value of its subject is used to

Publish/Subscribe with RDF Data over Large Structured Overlay Networks 143

successor(Hash(s1+p2+o2))

r3 successor(Hash(s1+p3))

r1

Step 1
t1=(s1,p1,o1)

successor(Hash(p1))

r1

r2

Create and deliver
notification

t2=(s1,p3,o3) t3=(s1,p2,o2)

t3 and t1 are
forwarded to r3r3

r2

r3

q =(?s,p1,?o),(?s,p2,o2),(?s,p3,?o')

A node inserts query q.
A rewriter node r1 is assigned q1.

Step 2

Triple t1 arrives at r1 and satisfies q1. q is
rewritten to q' and a query chain is created

for q' by r1, r2 and r3.

Step 3

Triple t2 arrives at
r3 and satisfies q'3.

t2 is stored
in r3

Step 4

Triple t3 arrives at r2
and satisfies q'2.

q' =(s1,p1,o1),(s1,p2,o2),(s1,p3,?o')

Fig. 3. The algorithm MQC in operation

rewrite q. For each different rewritten query derived from q, a different query
chain is created. Thus, in SQC each subquery of a query q is assigned to a
single node, while in MQC rewritten instances of each subquery are assigned to
multiple nodes, namely to as many nodes as the distinct subject values in the
arriving triples. In addition, MQC combines the known parts of a subquery to
index it in order to achieve better distribution as discussed in Section 3.

Indexing a query. Assume a node n that wants to subscribe with the query
q = q1 ∧ q2 ∧ ... ∧ qk that consists of k subqueries of the form (?x, pj , ?oj) or
(?x, pj , oj). First, a subquery qj of q is selected and q is indexed to a node
corresponding to qj . This node is r = Successor(Hash(pred(qj) + obj(qj))) if
both pred(qj) and obj(qj) are constant, or r = Successor(Hash(pred(qj))) if
only pred(qj) is constant. We call node r the rewriter of q. This terminology
comes from [13]. Later on, we will discuss good ways to choose a rewriter but at
the moment we can assume that this is a random choice. The rewriter stores q
in its local QT and waits for triples that satisfy qj . Since the query is indexed
to a single node, the cost is O(logN) overlay hops. Each query has one rewriter,
while all queries with the same indexed part have the same rewriter.

Indexing a triple. Since a query might be indexed using a combination of
the constant parts of a subquery, we need a new tuple t = (s, p, o) to reach
the successor nodes of identifiers I1 = Hash(p) and I2 = Hash(p + o). In
addition, since queries are rewritten according to their subject values (as we will
see below) we also need new triples to reach the successor nodes of the identifiers
I3 = Hash(s + p) and I4 = Hash(s + p + o). Thus, a node n1 that inserts a
new triple t will use function multiSend(msg, I) to index t to these 4 nodes in
4∗O(logN) hops, where msg =index-triple(t, key(n1)) and I = {I1, I2, I3, I4}.

Receiving a new triple. Let us now discuss what happens when a new
triple t arrives at a rewriter node r. r checks if its QT contains any query q with
a subquery qj satisfied by t. For each such query q and subquery qj , r does the
following. It rewrites the formula q1 ∧ . . . ∧ qj−1 ∧ qj+1 ∧ . . . ∧ qk by replacing
the subject variable in each subquery with subj(t) to arrive at a new query
q′. Then, r uses subj(t) to determine the nodes that participate in the query
chain for q′. If this is the first time that q has been satisfied in r by a triple
with subj(t), then there is no chain yet for q and this subject value. Multiple
chains are created for q and different subject values, as triples arrive. In order to
create a query chain for a rewritten query, a rewriter node r performs a similar

144 E. Liarou, S. Idreos, and M. Koubarakis

C6

C1 C7

C2 C3

p18

C4 C5

p17p1p2
p3

p4

p5

p6

p9

p11

p12

p19
p20

p21

p22p23

p14 p15 p16

p8

p24

p13p10

p7

class

subclass

range of property

property

Legend :

Fig. 4. The schema used in our experiments

procedure with the one that a query node performs upon indexing a query in
SQC only that this time the first node of the chain is already known, namely it is
node r. In addition, instead of calculating the index identifier of each subquery
according to predicate or object, the index identifier is calculated according to
the concatenated string of subj(t) with the predicate or the predicate/object
combination of each subquery. As in SQC, the object option is preferred if the
object is a constant. Also, index identifiers are sorted according to their distance
from the identifier of r to minimize network traffic. From there on, query chains
work exactly as in SQC. Each node is responsible for one of the subqueries
in the rewritten query. Intermediate results flow in the chain as in SQC while
notifications are created by the last node in the chain.

An example with MQC in operation is shown in Figure 3. Notice that a query
chain is created in step 2 after the query is rewritten due to a new triple.

6 Experiments

In this section we experimentally evaluate our algorithms. We implemented a
simulator of Chord in Java, on top of which we developed our algorithms. We
synthetically create RDF triples and queries assuming the RDFS schema of
Figure 4. Since our algorithms do not do RDFS reasoning, subclass links in
Figure 4 are used to propagate instantiation links and make all class information
explicit. We assume a set of 1000 subject values and randomly assign each subject
to a class. We also assume a set of 1000 object values and randomly assign each
one to the range of a property. To create an RDF triple t, we first randomly
choose a class C. Then we randomly choose an instance of C to be subj(t), a
property p of C or of the superclasses of C to be pred(t) and a value from the
range of p to be obj(t). We use conjunctive multi-predicate queries with three
subqueries. To create a query of this type, we first randomly choose a class that
the query will refer to. Then, we randomly choose three distinct properties of
this class to be the predicates of the three subqueries. All subqueries have the
same subject variable while the object parameter of each subquery can be a
constant value or a variable. When an object is constant, we randomly choose a
value that belongs to the specific property chosen for this subquery.

We present what happens while increasing the total number of triples in the
network. Our metrics are (a) the number of overlay hops needed to insert a

Publish/Subscribe with RDF Data over Large Structured Overlay Networks 145

0

200

400

600

800

1000

1 2 4 8
Inserted triples (x1000)

O
v
e

rl
a

y
 h

o
p

s
 (

x
 1

0
0

0
) SQC

MQC

(a) Overlay hops

0

50

100

150

200

250

1 2 4 8
Inserted triples (x1000)

T
o

ta
l
lo

a
d

 (
x
 1

0
0

0
) SQC

MQC

(b) Total load

0

50

100

150

200

250

1 161 321 481 641 801 961
Ranked nodes

C
o

m
u

la
tiv

e
 lo

a
d

 (
x1

0
0

0
)

SQC

MQC

(c) Cumulative load (T=8K)

Fig. 5. Evaluating continuous conjunctive multi-predicate queries

number of triples, create and deliver notifications for all matching queries, (b)
the total query processing load generated in the network and (c) the distribution
of this load. The query processing load that a node incurs is defined as the sum
of the number of triples that this node receives so as to check if locally stored
queries are satisfied plus the number of subqueries that have to be compared
against the triples locally stored in this node.

We design our experiment as follows. We create a network of 103 nodes and
install 104 queries. Then, we insert T = 1K triples and we evaluate the metrics
described above. The last step is repeated three more times; each time we double
T to reach 8K triples.

In Figure 5(a) we show the number of hops needed to insert a number of
triples and evaluate all indexed queries. SQC outperforms MQC approximately
by a factor of three. This is due to the fact that MQC creates more than one query
chains for each query, which means that when nodes in SQC can use QCRTs,
nodes in MQC have to create new chains and forward partial results using the
Chord infrastructure or in other words in SQC nodes can train their QCRTs more
quickly (there are less possible values). For both algorithms network traffic is
linearly increased with the number of incoming triples. In addition, experiments
where QCRTs are not used showed that MQC has similar performance with
SQC (higher by a factor of 4 of the SQC performance with QCRT).

In Figure 5(b) we show the total load created by a number of incoming triples.
We observe that the load increases linearly with the number of incoming triples.
MQC creates a slightly higher load because more nodes have to be contacted
and process messages. In Figure 5(c) we present the cumulative query processing
load after 8K triples have been inserted. On the x-axis, nodes are ranked starting
from the node with the highest query processing load. The y-axis represents
the cumulative load, i.e, each point (a, b) in the graph represents the sum of
load b for the a most loaded nodes. We observe that although MQC reaches a
slightly higher total load, it achieves to distribute this load to a significantly
higher portion of network nodes, i.e., in MQC there are 850 nodes (out of 1000)
participating in query processing, while in SQC there are only 250 nodes.

MQC manages to fulfill our goals for a better load distribution which comes
with a higher cost in total network traffic, as it is shown in Figure 5(a). However,

146 E. Liarou, S. Idreos, and M. Koubarakis

this extra network traffic is suffered by more nodes (that have to create and for-
ward the extra messages) in MQC. In a longer version of this paper, various ex-
periments are underway that explore how other parameters (i.e., larger network
sizes, increasing numbers of indexed queries, skewed distributions etc.) affect the
performance of the algorithms.

7 Conclusions

We deal with the problem of evaluating RDF queries over DHTs. We proposed
novel algorithms for resolving continuous conjunctive multi-predicate queries
with emphasis on distributing load and keeping network traffic low.

References

[1] Balakrishnan, H., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, I.: Looking
up data in P2P systems. CACM 46 (2003) 43–48

[2] Cai, M., Frank, M., Pan, B., MacGregor, R.: A Subscribable Peer-to-Peer RDF
Repository for Distributed Metadata Management. J. Web Sem. 2 (2004)

[3] Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: GridVine: Building
Internet-Scale Semantic Overlay Networks. (In: ISWC ’04)

[4] Chirita, P.A., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/Subscribe for RDF-
based P2P Networks. (In: ESWC ’04)

[5] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer,
M., Risch, T.: EDUTELLA: A P2P Networking Infrastructure Based on RDF.
(In: WWW ’02)

[6] Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M.T., Brunkhorst,
I., Löser, A.: Super-peer-based routing strategies for RDF-based peer-to-peer
networks. J. Web Sem. 1 (2004) 177–186

[7] Kokkinidis, G., Christophides, V.: Semantic query routing and processing in P2P
database systems: The ICS-FORTH SQPeer middleware. (In: P2P&DB ’04)

[8] Chirita, P.A., Idreos, S., Koubarakis, M., Nejdl, W.: Designing Semantic Pub-
lish/Subscribe Networks using Super-Peers. In: Semantic Web and Peer-to-Peer.
Springer Verlag (Forthcoming)

[9] Miller, L., Seaborne, A., Reggiori, A.: Three implementations of SquishQL, a
simple RDF query language. (In: ISWC ’02)

[10] Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A
Scalable P2P Lookup Service for Internet Applications. (In: SIGCOMM ’01)

[11] Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The Price of Validity in
Dynamic Networks. (In: SIGMOD ’04)

[12] Tryfonopoulos, C., Idreos, S., Koubarakis, M.: LibraRing: An Architecture for
Distributed Digital Libraries Based on DHTs. (In: ECDL ’05)

[13] Idreos, S., Tryfonopoulos, C., Koubarakis, M.: Distributed Evaluation of Contin-
uous Equi-join Queries over Large Structured Overlay Networks. (In: ICDE ’06)

A Semantic Information Retrieval Advertisement and
Policy Based System for a P2P Network

Giovanna Guerrini1, Viviana Mascardi2, and Marco Mesiti3

1 DI, Università di Pisa, Italy
2 DISI, Università di Genova, Italy
3 DICO, Università di Milano, Italy

{guerrini,mascardi,mesiti}@disi.unige.it

Abstract. In this paper we propose a semantic based P2P system that incorpo-
rates peer sharing policies, which allow a peer to state, for each of the concepts it
deals with, the conditions under which it is available to process requests related to
that concept. The semantic routing approach, based on advertisements and peer
behavior in answering previous requests, takes also into account sharing policies.

1 Introduction

In most P2P architectures, query answering is based on flooding algorithms, that prop-
agate requests from one node to another till a given number of nodes has been reached.
Typical routing protocols are based on distributed hash tables for improving routing ef-
ficiency. However, these indexes support a keyword based search rather than a semantic
search. The advantages of a semantic routing, that keeps into account the semantics of
data requests and shared resources, are well-accepted in terms of search effectiveness.

Whatever strategy is adopted for query routing, most existing systems are based on
the assumption that, when connected to the network, peers are unconditionally available
to share their resources with anyone interested in them. This assumption is, however,
not reasonable in many contexts and for many reasons. Peers may wish to set some
sharing policies depending on different factors such as temporal conditions (e.g., the
time at which the request is received), internal state and connection conditions (e.g., the
workload when the request is received), and conditions on the characteristics of the peer
submitting the request (e.g., its membership to a group), that can typically be expressed
through credentials [22]. A peer can thus customize its behavior by tailoring the general
system behavior to its specific sharing needs and constraints.

In this paper, we propose a semantic routing approach in a P2P system that allows
single peers to enforce their own sharing policies. The resources made available to the
system may deal with many different subjects, or themes, and peers may register to one
or more thematic groups. Relevant information retrieval is achieved through the use of
a thematic global ontology (TGO) for each theme dealt with by the system; the TGO
associates a semantics with the resources to be shared within the thematic group. All
the peers that register to a thematic group share the TGO of the group. For the sake of
clarity in the paper we will focus on a system with a single thematic group. Each peer
associates instances of its local resource base with concepts of the TGO that better de-
scribe them. Peers actively push their expertises by sending advertisements, containing

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 147–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 G. Guerrini, V. Mascardi, and M. Mesiti

Paper

Journal Proc.Monogr.Article Author

Researcher
Person

synonym, 1

by, 0.5
is_a, 0.7

in, 0.6
in, 0.6 in, 0.6

is_a, 0.7

Fig. 1. A portion of a TGO for a computer science thematic group

the concepts of the TGO that better describe the resources they share. Semantic query
routing is guided both by the advertised peer expertises and by the relevance of peer
answers to previous requests. This relevance is quantified in a relevance degree associ-
ated with each concept of the TGO, which is updated each time a peer gets an answer
to a request involving that concept.

This approach, as a novel feature, integrates in this context the sharing policy and
credential notions, thus allowing a more flexible resource sharing mechanism. To allow
a peer to enforce different policies for different resources, different sharing policies can
be associated with different ontology concepts that the peer’s user deal with. Policies
associated with concepts of the ontology are actively pushed by the peer together with
advertisements, so that other peers can avoid sending and forwarding requests that will
not be processed. Thus, sharing policies also affect the routing algorithm.

In the remainder of the paper, Section 2 introduces basic concepts and Section 3 dis-
cusses the peer architecture and the system main functionalities. Section 4 compares
our approach with related ones and concludes. For space constraints details of the de-
veloped approach can be found in [9].

2 Basic Concepts

In this section we introduce the basic notions our approach relies on. An XML format
has been chosen for the representation and exchange of these components. The XML
Schemas stating the exact format of each component can be found in [9].

Ontologies. In our system, all the peers that registered to a thematic group share the the-
matic global ontology of that group, TGO. TGO is a directed weighted graph, where
nodes (V) represent concepts, arcs (E) represent relations between concepts (including
the is a relation), and weights, ranging in [0, 1], represent how similar two related con-
cepts are. Each peer P is characterized by a set of concepts of interest CoI such that
CoI ⊆ V . For example, a portion of the TGO describing the computer science publi-
cation domain is shown in Fig. 1. The CoI of a peer mike in this domain might be, for
instance, CoImike = {Article, Proceedings}. A function SimC will be employed
to measure the semantic distance between two sets of concepts. This function uses an
auxiliary function simc for evaluating the similarity between a set of concepts and a
single concept of the ontology. Both simc and SimC refer to the TGO for knowing the
weights of the relations among concepts. Details of these functions are in [7].

Credentials and Policies. Credentials are a means to control resource access and to
condition resource sharing to certain peer characteristics. A credential c=(n, {(p1, v1),
. . . , (pk, vk)}) is a named set properties, that is, name-value pairs. The XML docu-
ment corresponding to a credential is shown in Fig. 2(a). The use of credentials asserting

A Semantic Information Retrieval Advertisement and Policy Based System 149

<C r e d e n t i a l name=” D I S I @ U n i g e A f f i l i a t i o n ”>
<P r o p e r t y name=” Fi r s tName ” v a l u e =” Son ia ” /><P r o p e r t y name=” LastName ” v a l u e =” P i n i ” />
<P r o p e r t y name=” P o s i t i o n ” v a l u e =” R e s e a r c h e r ” /> <P r o p e r t y name=” O f f i c e ” v a l u e =” 5 ” />

</ C r e d e n t i a l> (a)

<P o l i c y i d =” 1 ”>
<TempConstDef name=”TC1”>
<I n t e r v a l E x p r name=” s i n c e J a n 1 s t ”> <b e g i n> 0 1 / 0 1 / 0 5 : 0 0 </ b e g i n> </ I n t e r v a l E x p r>
<P e r i o d i c T i m e E x p r name=” 9 to13ofWorkingDays ”> <S t a r t T i m e E x p r>

<Week> a l l </ Week>
<DaySet><Day>2</ Day><Day>3</ Day><Day>4</ Day><Day>5</ Day><Day>6</ Day></ DaySet>
<Hour> 10 </ Hour> <D u r a t i o n E x p r> <Hours> 4 </ Hours> </ D u r a t i o n E x p r>

</ S t a r t T i m e E x p r></ P e r i o d i c T i m e E x p r>
</ TempConstDef>
<I n t e r n a l C o n d i t i o n t y p e =” s t a t e ” prop =” P e n d i n g R e q u e s t s ” op=”LE” v a l u e =” 15 ” />
<I n t e r n a l C o n d i t i o n t y p e =” s t a t e ” prop =” CPUIdleTime ” op=”L” v a l u e =” 50 ” />
<C e r t C o n d i t i o n prop =” P o s i t i o n ” op=”EQ” v a l u e =” R e s e a r c h e r ” />

</ P o l i c y> (b)

Fig. 2. (a) An example of credential and (b) an example of policy

properties of individuals raises issues related to certification of properties, their authen-
ticity and verification. These issues are beyond the scope of this paper, thus, in our system,
we assume the presence of a peer that releases and certifies credentials of peers joining
a thematic group.

Peers restrict their availability to share resources through sharing policies. Each pol-
icy is characterized by a temporal condition stating the time instants the policy is en-
abled. Temporal conditions are expressed, according to [3,16], as a 〈[begin, end], P 〉
pair, where begin, end are time instants denoting the endpoints of a time interval and P
is a periodic expression of the form P =

∑n
i=1 Oi·Gi � r·Gd where Gd, G1, . . . , Gn

are time granularities or calendars, such that Gd is finer than Gn, for i = 2, . . . , n,
Gi is finer than Gi−1, O1 = all, Oi ∈ 2N ∪ {all} and r ∈ N. Suppose for exam-
ple we wish to represent the period between 9.00 and 13.00 of working days, starting
from January 1, 2005 at 00. The corresponding temporal condition is: [2005/01/01 :

00, ∞], all.Weeks + {2, . . . , 6}· Days + 10·Hours � 4·Hours.
A policy is 4-tuple (id, tC, iC, cC), where tC is a temporal condition and iC, cC

denote a conjunction of internal state/connection and credential conditions, respectively.
Internal state/connection and credential conditions are of the form (prop op value)
where op is comparison operator in {≤, ≥, <, >, =}. Suppose, for instance, that a peer
wishes to share resources in the temporal period previously presented, but only when
the pending requests are less than 15, the CPU idle time is below the 50% and the
requester is a researcher. The XML representation of this policy is shown in Fig. 2(b).

A policy p = (id, tC, iC, {(n1 op1 u1), . . . , (nm opm um)}) is satisfied by a cre-
dential c = (n, {(p1, v1), . . . , (pk, vk}) and a peer P if the current time instant belongs
to set of time instants described by tC, ∀ i ∈ [1, m] ∃ j ∈ [1, k] (ni = pj)∧(uj opi vi),
and P internal and network property values meet iC. For instance, consider a peer P1

that receives on Monday, July 4, 2005 at 9:30 a data request with the credential of
Fig. 2(a). If P1 enforces the policy in Fig. 2(b), does not have pending requests, and is
not performing any computation, then the policy is satisfied.

Advertisement and Data Request Messages. Messages exchanged among peers can
be advertisements, data requests, and answer messages. Advertisement and data request

150 G. Guerrini, V. Mascardi, and M. Mesiti

<Advs i d =” AdvChi2 ” TTL=” 5” BS=” 0 . 8 ” P e e r I d = ” P457 ” TimeSent = ” 2 7 / 0 6 / 0 5 : 1 4 : 1 3 ”>
<Concept name=” Pape r ”> </ Concept>
<P o l i c i e s name=” C h i a r a ”> <P o l i c y i d =”1”> s e e Fig . 2 (b) </ P o l i c y> </ P o l i c i e s>

</ Advs> (a)

<DataReques t i d =”QD2” TTL=”3 ” BS=”1 ” P e e r I d = ” P473 ” TimeSent = ” 2 7 / 0 6 / 0 5 : 1 4 : 1 3 ”>
<Query> <QueryPred op=”EQ” v a l u e =” C a r d e l l i ”>

<P a t h E x p r e s s i o n> <Concept name=” Pape r ”>
<P r o p e r t y name=” by ” /> <P r o p e r t y name=”name” />

</ Concept> </ P a t h E x p r e s s i o n> </ QueryPred>
<QueryPred op=”EQ” v a l u e =” 1980 ”>

<P a t h E x p r e s s i o n> <Concept name=” Pape r ”>
<P r o p e r t y name=” y e a r ” />

</ Concept> </ P a t h E x p r e s s i o n> </ QueryPred> </ Query>
<C r e d e n t i a l> s e e Fig . 2 (a) </ C r e d e n t i a l>

</ Da taReques t> (b)

Fig. 3. (a) An example of advertisement and (b) an example of data request

messages that are forwarded to other peers are characterized by Time To Live (TTL) and
Broad Search (BS) values, stating the maximal distance between the message sender
and the last receiver, and the fraction of peers to forward the message to, respectively.
Moreover, each message is characterized by an Id, by the Id of the sender peer, and by
the time of the sending.

Advertisements are employed to disseminate information on expertises and sharing
policies of the peer’s user. An advertisement consists in concepts in the TGO that are
related to resources the peer’s user is willing to share, and a list of policies pL stating
the sharing policies for resources related to these concepts. In checking satisfaction,
policies in the list are considered in order, and the iC and cC conditions are checked for
the first policy in the list for which now belongs to the set of instants described by tC.
For example, Fig. 3(a) shows the XML document corresponding to the advertisement
message sent by peer Chiara that shares papers under the previously presented policy.

Data requests are characterized by a concept and a set of credentials. The concept
belongs to the TGO, and may be optionally qualified with a number of predicates,
interpreted as a conjunction, that allow to filter the resources of interest. Data request
languages more sophisticated than ours can easily be accommodated in our framework.
For example, Fig. 3(b) shows the XML document corresponding to the data request
message sent by peer Sonia looking for papers published by Cardelli in 1980. The
credential of Fig. 2(a) is attached to the request.

3 Architecture and Functionalities

In this section we describe the main functionalities of the system relying on the archi-
tecture graphically depicted in Fig. 4. More details can be found in [9].

Peer Registration
When a new peer wishes to register to a group of the P2P network, it connects to the
“special peer”. The peer Id is inserted in the list of peers known by the special peer, and
the registering peer uses this list to initialize its local Peers structure (initially, with null
global relevance and no concept-specific relevances associated with each peer). Then,
a graphical interface showing the TGO is presented to the peer’s user who can browse

A Semantic Information Retrieval Advertisement and Policy Based System 151

SEARCH
ENGINE

Routing Engine

REQUEST
ROUTING
ENGINE

ADV
ROUTING
ENGINE Answer

Request

Forward
Request/ADV

Request

Advertisement
Answer

Peers

Ads

Policies

KB

ResourcesTGO

CoI
Recent

Requests

Recent
Ads

FUNCTIONALITIES

DATA STRUCTURES

Component Description

TGO & CoI
the thematic global ontology and the concepts of interest. Some indexes are kept over the TGO allowing, given
a concept, to directly retrieve its more specific/general concepts and the set of its properties.

Knowledge Base
the set of ontology instances together with their property values. It is handled and indexed through classical
database technology.

Resources the set of resources the peer is willing to share with other peers. Each resource is linked by an instance in KB.

Peers
information on the peers the peer is aware of: peer Id, global relevance degree and concept-specific relevance
degrees. Some auxiliary structures allow a direct access to the relevance value of a concept-peer pair and to
efficiently get the peers ordered by global relevance.

Ads
information on the advertisements received by other peers: sender peer Id, advertised concept set, sharing
policies for those concepts, indexed to get a direct access to the sharing policies of a concept-peer pair.

Recent Requests/
Ads

information on the data requests (the advertisements, respectively) the peer recently received: Data request/Adv
Id, sending time, sender peer Id, indexed on the message Id.

Policies local peer sharing policies, indexed on the concepts they refer to.

Fig. 4. Peer architecture

the TGO, read the textual explanation associated with each concept, identify her con-
cepts of interest (CoI , see Section 2), and realize the concepts that better describe the
local resources she wishes to share. The TGO is then copied locally in the peer’s data
structures. Now the peer’s user can, when she wishes, populate the peer’s local knowl-
edge and resource bases, as well as the Policies structure with the sharing policies to
be enforced. The peer is now ready for sending advertisements and data requests, as
discussed in what follows.

Advertisement Handling
– Sending. A peer wishing to advertise its expertises simply sends advertisement mes-
sages, as described in Section 2, to the peers it is aware of (stored in the Peers structure).

– Receiving. A peer receiving an advertisement message first of all checks whether it
has already received it looking at the RecentAds structure. If so, it simply discards it.
Otherwise, the message is inserted in the RecentAds and Ads structures. If the sender
peer was not known, it is also inserted in the Peers structure (with null global relevance
e no concept-specific relevance). Note that all the received advertisements are stored.
A graphical interface, however, allows the peer’s user to browse the Ads advertisement
database, ordered either by sending time or similarity of the advertised topics with the
peer concepts of interest in its CoI , computed through SimC , and delete some of them.

– Forward. A received advertisement is forwarded to a set of known peers according to
the TTL and BS components of the message. Specifically, if TTL is greater than 0,
the message is forwarded to BS peers with the TTL value decremented by 1. The peers
to forward the message to are chosen among the known peers in the Peers structure. A

152 G. Guerrini, V. Mascardi, and M. Mesiti

fraction is randomly chosen, whereas the others are the ones whose sets of advertised
concepts (as stored in Ads) are most similar to the concepts in the advertisement to be
forwarded, according to the similarity function SimC .

Data Request Handling
– Peer Relevance. When a peer gets an answer to one of its requests, it updates the
information in the Peers structure related to the relevance of the sending peer to keep
into account the new answer. The peer receiving some resources as answers to a data
request evaluates them by stating which ones are relevant (and thus are accepted),
and which others are not (and thus are discarded). A special bonus can be explicitly
assigned for extremely relevant answers, through a parameter β whose default is 0.
According to the evaluation of the peer P ′ getting a set of resources as answer to a
request Q, the relevance degree got by a peer P sending the answer, related to a con-
cept c belonging to the set of concepts appearing in Q, is a value in [0, 1] computed
as: Relevance(P, c, Q) = accepted resources

received resources + β. The Relevance(P, c, Q) value con-
tributes to the previous relevance of peer P and concept c, named relP,c, in the Peers
structure of peer P ′, if such an entry was there. Otherwise a new entry for peer P ,
concept c and this value is inserted. The global relevance of a peer relP is the sum
of the concept-related relevances relP,c of the peer and is thus updated accordingly.
The relevance of a peer P with respect to a set of concepts C is then obtained as
Rel(P, C) =

∑
c ∈ C relP,c +

∑
c ∈ C, c≺ c′ αd · relP,c′ where α ∈ [0, 1], ≺ de-

notes the is a relation in the ontology, and d is the distance between c and c′ in the is a
hierarchy of the ontology. The basic principles in using relevance, inherited from [19],
are indeed the following: (i) a data request is submitted to a peer that answered well to
previous requests on the same concepts; (ii) a peer that answered well on a specific con-
cept, is likely to be quite knowledgeable on more general concepts related to the same
topic; (iii) a peer that answered well to previous requests on several different concepts,
is likely to be well-informed in general (on any concept).

– Sending. When a peer wishes to submit a data request Q to the system, it may in-
clude any of its credentials in Q. Then, it selects the peers to send the request to, taking
into account the advertisements it received and the peer relevance, for the concepts the
data request involves. A list of peers is computed by ordering the set of peers in Peers
according to their Rel(P, C) value, being C the set of concepts involved in Q. This
list is pruned by deleting the peers for which an advertisement has been stored for the
involved concepts with associated policies whose credential conditions are not met by
credentials in Q, obtaining a list Lr. A similar list Lg is obtained by taking into account
the global relevance of the peer relP . A last list La is computed by ordering the peers
in Ads according to the similarity of the advertised concepts and the concepts in data
request Q, computed through function SimC , including only the peers for which the
credential condition of an associated policy is met by a credential in Q. The request is
sent firstly to the peers in Lr that also belong to La, then to other peers in Lr, then to
other peers in La, then to peers in Lg not considered so far, till the desired number of
peers is reached.

– Receiving. A peer receiving a data request Q first of all checks whether it has al-
ready received it looking at the RecentRequests structure. If so, it simply discards it.

A Semantic Information Retrieval Advertisement and Policy Based System 153

Otherwise, Q is inserted in the RecentRequests structure and, if the sender peer was
not known, it is also inserted in the Peers structure (with null global relevance and no
concept-specific relevance). Then, the peer checks whether it can answer Q, checking
the satisfaction of its own policies associated with the concepts in Q w.r.t. the current
time, its current state, and the credentials in Q. If so, its own resources satisfying the
data request conditions are sent to the requesting peer. In any case, the request is then
forwarded to other peers, following the same behavior adopted for advertisement for-
warding, for what concerns the TTL and BS values and the choice of forwarding to a
fraction of randomly chosen peers. The other peers to forward the request to are selected
with the same list-based approach discussed above for request sending.

4 Concluding Remarks

We have compared our system with FreeNet (freenet.sourceforge.net), Edutella
[15,14], KEEx [4], Napster (www.napster.com), Piazza [12], the Trusted Computing
P2P (TC-P2P) Architecture [18], and SWAPSTER [11,20], along the three features that
characterize our proposal: (i) use of ontologies to answer data requests, and to better
route them; (ii) use of advertisements to push information about a peer’s expertise; (iii)
use of sharing policies to allow a controlled flexible access to the peer’s resources.

The choice of these systems has been driven by the will of considering a spectrum
of heterogeneous proposals, where heterogeneity involves both the motivation and the
nature of the proposal, and the intended application domain. Our comparison shows that
very few systems address all the three aspects that characterize our proposal in a deep
and exhaustive way, although most of them implement mechanisms to face at least two
of them (see [9] for a full account of the results of our comparison). The originality of
our proposal lies in addressing all of them into an integrated P2P system.

The system that is closer to ours is SWAPSTER, that has been used to implement
two concrete applications: Bibster [11], and Xarop [20]; the developers of SWAPSTER
also investigated several query routing strategies by simulation experiments.

Although it is not a P2P system, the framework developed inside the SEWASIE Eu-
ropean project [2] shares some similarities with our proposal as far as the management
of ontologies is concerned. In fact, in SEWASIE each SINode (a mediator-based sys-
tem) provides a global virtual view (GVV) of the information sources managed within
it, which may resemble the TGO of our proposal, and Brokering Agents integrate sev-
eral GVVs from different SINodes into a Brokering Agent Ontology. In our proposal,
TGO integration has not been investigated yet, but the adoption of a Brokering Agent
Ontology suggested by SEWASIE could be a feasible direction to follow.

Most (although not all) of the systems that we have considered in our compari-
son have been tested on real applications. Although the implementation of our sys-
tem is still to be completed, we have already implemented many crucial components
such as those for evaluating the similarity between concepts, developed using Jena
(http://jena.sourceforge.net). The main direction of our future work is
thus completing the implementation, in order to release a first version, based on JXTA
(http://www.jxta.org), in few months.

freenet.sourceforge.net
www.napster.com
http://jena.sourceforge.net
http://www.jxta.org

154 G. Guerrini, V. Mascardi, and M. Mesiti

Acknowledgements. We acknowledge P. Bouquet, I. Clarke, E. Franconi, W. Siberski,
and S. Staab for their precious advices in drawing the comparison with related work.
We also thank C. Casanova for contributing with her Master’s Thesis to the design of
our system.

References

1. T. Andreasen, et al. On Ontology-based Querying. In Proc. of the IJCAI Workshop on
Ontologies and Distributed Systems, 2003.

2. S. Bergamaschi, et al. The SEWASIE EU IST project. SIG SEMIS Bulletin, 2(1), 2005.
3. E. Bertino, et al. An Access Control Model Supporting Periodicity Constraints and Temporal

Reasoning. ACM Transactions on Information and Systems, 23(3):231–285, 1998.
4. M. Bonifacio, et al. KEEx: A Peer-to-Peer Solution for Distributed Knowledge Management.

In Proc. of Int’l Symposium on Knowledge Management, 2004.
5. S. Castano, et al. Semantic Information Interoperability in Open Networked Systems. In

Proc. Conf. on Semantics of a Networked World, 2004.
6. R. Chen and W. Yeager. Poblano, a Distributed Trust Model for Peer-to-Peer Networks. TR,

Sun Microsystem, 2001.
7. V. Cordı̀, et al. Designing and Implementing an Ontology-Based Distance between Sets of

Concepts. TR, DISI TR-05-11, Uni. di Genova, 2005.
8. E. Franconi et al. A Robust Logical and Computational Characterisation of Peer-to-Peer

Database Systems. In Proc. of the VLDB Workshop DBISP2P, 2003.
9. G. Guerrini, V. Mascardi, and M. Mesiti. A Semantic Information Retrieval Advertisement

and Policy Based System for a P2P Network. TR, DISI TR-05-10, Uni. di Genova, 2005.
10. P. Haase, et al. Peer Selection in Peer-to-Peer Networks with Semantic Topologies. In Proc.

of Conf. on Semantics of a Networked World: Semantics for Grid Databases, 108–125, 2004.
11. P. Haase et al. Bibster – A Semantics-Based Bibliographic Peer-to-Peer System. In Proc. of

Int’l Semantic Web Conf., 122–136, 2004.
12. A. Halevy, et al. The Piazza Peer Data Management System. IEEE Transactions on Knowl-

edge and Data Engineering, 16(7), 2004.
13. W. Nejdl, et al. Ontology-Based Policy Specification and Management. In Proc. of European

Conf. on Semantic Web, 290–302, 2005.
14. W. Nejdl, et al. Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-

To-Peer Networks. In Proc. of Int’l WWW Conf., 2003.
15. W. Nejdl et al. Edutella: A P2P networking infrastructure based on RDF. In Proc. of Int’l

WWW Conf., 2002.
16. M. Niezette and J. Stevenne. An Efficient Symbolic Representation of Periodic Time. In

Proc. of Int’l Conf. on Information and Knowledge Management, 1992.
17. R. Rada, et al. Development and Application of a Metric on Semantic Nets. IEEE Transac-

tions on Systems, Man, and Cybernetics, 19(1):17–30, 1989.
18. R. Sandhu, et al. Peer-to-Peer Access Control Architecture Using Trusted Computing Tech-

nology. In Proc. of Symposium on Access Control Models and Technologies, 2005.
19. C. Tempich, et al. Remindin’: Semantic Query Routing in Peer-to-peer Networks Based on

Social Metaphors. In Proc. of Int’l Conf. on WWW, 640–649, 2004.
20. C. Tempich et al. XAROP: A Midterm Report in Introducing a Decentralized Semantics-

Based Knowledge Sharing Application. In PAKM’04 Conf., 259–270, 2004.
21. G. Tonti et al. Semantic Web Languages for Policy Representation and Reasoning: A Com-

parison of KAoS, Rei, and Ponder. In Proc. of the Int’l Semantic Web Conf., 419–437, 2005.
22. M. Winslett, et al. Using Digital Credentials on the World Wide Web. Journal of Computer

Security, 5, 1997.

Cumulative Algebraic Signatures for Fast String

Search, Protection Against Incidental Viewing
and Corruption of Data in an SDDS

Witold Litwin1, Riad Mokadem1, and Thomas Schwarz2

1 Université Paris Dauphine,
Centre d’Études et de Recherches en Informatique Appliquée,

Place du Maréchal de Lattre de Tassigny - 75775 Paris cedex 16, France
2 Department of Computer Engineering,

Santa Clara University,
500 El Camino Real,

Santa Clara, CA 95053, USA

Abstract. Scalable Distributed Data Structures (SDDS) are a class of
data structures for multicomputers (a distributed system of networked
computers) that allow data access by key in constant time (independent
of the number of nodes in the multicomputer) and parallel search of the
data. In order to speed up the parallel search of the data fields of the
records, we propose to encode the records of a Scalable Distributed Data
Structure (SDDS) using pre-computed algebraic signatures. The encod-
ing / decoding overhead is linear in the size of the records. It speeds up
prefix searches, longest prefix matches, and string searches. In addition,
the encoding protects the privacy of the SDDS data against the owners of
the workstations that make up the multicomputer. Additional encoding
protects the integrity of the data against malfunctions.

1 Introduction

High capacity networks allow the tight integration of many commodity work-
stations into a single system. The performance / price ratio of commodity PCs
together with their speed allow us to use the combined RAM of workstations as
a faster form of storage than traditional disk storage offers. Scalable Distributed
Data Structures (SDDS) are designed for these systems; they store records iden-
tified by a key while offering key based access times that are independent of
the number of computers used. In addition, they allow record searches in all
nodes in parallel. The SDDS version of Linear Hashing [L80], LH*, implements
a dictionary data structure, whereas RP* additionally allows for range queries
[LNS94, LNS96]. Both store records in distributed RAM and achieve much bet-
ter access than local disk can offer. Indeed, key search or insert speed can be
three hundred times [DL00, LMS04] faster. This provides an experimental con-
firmation of Jim Grays old conjecture about the advantages of distributed RAM
presented at UC Berkeley in 1992 based on the calculations in [G88].

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 155–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

156 W. Litwin, R. Mokadem, and T. Schwarz

The workstation storing SDDS data might belong to a large organization. At
present, the records are assumed to contain the original value of the user / appli-
cation data. This exposes them to eyes of the administrator of the workstation
on which they are stored, a situation with which neither workstation adminis-
trator nor data owner might be comfortable with. Furthermore, a malfunction
at a workstation might corrupt the SDDS data. Most importantly, the most
expensive operation is a search (in parallel over all workstations) of all local
records for a substring. Our scheme greatly speeds up these searches, especially
prefix searches in addition to protecting the data against corruption and acci-
dental viewing. It does not protect the privacy of the data against a determined
attacker with system access. However, the threat of social sanctions within an
organization as well as the normal system defenses against outsiders should keep
our data reasonably secure.

Our solution comes at minimal costs, namely the need to encode the record for
insertion and to decode the record for accessing it at the SDDS client machine.
Performance of key based access (search by key, insert, delete, update) to the
record at the server is as fast as before. To protect against corruption, we insert
additional data in the record. The storage overhead is small; a typical value
would be 0.5% to pinpoint data corruption to blocks of 256B. Given a database
workload (with a preponderance of string searches), our speed-up should prove
very attractive.

2 Record Encoding

SDDS records consist of a key and a data field. Typically, keys are just Record
Identifiers (RI). In this case, knowing a key does not divulge any information.
The Data field (D-field) contains all the data in the record. We are not concerned
about the internal format of the D-field.

In SDDS-2004, the SDDS prototype [C04], we use algebraic signatures for
non-key data search. String searches are either partial or full. A partial search
might be a prefix search where we match the first x symbols (bytes, Unicode
characters, etc.) against the x-symbol search string.

We now recall briefly the algebraic signature calculus [LS04]. It is based on
treating the characters that make up the record as elements of a Galois field. To
recall, a Galois field is a finite algebraic structure GF(L) that allows addition,
subtraction, multiplication, and division of its L elements, has a zero element
and a one element, and exhibits the same rules for algebraic manipulations as the
fields of rational, real, and complex numbers. In the case of ASCII characters,
our field is GF(28), whereas in the case of Unicode characters, we use the field
GF(216). Our scheme works for other bit string lengths as well, but these two
are the most common ones. In these Galois fields, sum and difference of two
elements are both the bit-wise XOR of the operands, and the zero element 0
is the string zero. Multiplication and division are more involved, we refer to
[LMS04] for a brief discussion on the way we implement them using logarithm
and antilogarithm tables.

Cumulative Algebraic Signatures 157

Let pi be the ith symbol in a data field P of l symbols, i = 1, 2, . . . , l; l < 2f .
Let α �= 0 be an element of GF(2f). Below, α is a primitive element, i.e. every
non-zero element in GF(2f) is a power of α. The single symbol algebraic signature
is defined by the formula

sigα(P) =
l∑

i=1

piα
i.

A k-symbol signature (1 < k < 2f) is a vector

sig(α1,α2,...,αk)(P) =
(
sigα1

(P), . . . , sigαk
(P)

)
.

A particular wise choice is (α1, α2, . . . αk) := (α, α2, . . . , αk). This k-symbol sig-
nature detects any difference of at most k symbols in a D-field of length up to
2f for sure. For larger D-fields, the probability of an unnoticed error (collision
probability, ...) is 2−kf , if we can assume a uniform distribution of symbol values.

Unlike other signature schemes, the algebraic signature has algebraic proper-
ties including the certain detection of collisions we just mentioned. Other prop-
erties seem to be promising for other uses as well and we will encounter them
in what follows. For instance, our signatures change whenever the symbols in
the string are permuted, in contrast to calculating the bitwise XOR of all the
symbols in the string. If a D-field is larger than 2f − 1, then we divide it into
pages of at most that size. We calculate a k-symbol signature of the successive
pages as the field signature.

We encode a given data field p1, . . . pl as (s1, . . . sl) with si = sigα(p1, . . . pi)
Basically, the ith symbol of the encoding is the signature of the prefix. We cal-
culate our encoding incrementally & cumulatively by si+1 = si + pi · αi+1 im-
plemented as si+1 = antilogα(logα(pi + i)) ⊕ si. Here, the i-th power is taken
modulo 2f − 1. The addition in the implementation formula is integer addition
and ⊕ is the normal bitwise XOR. The taking of the antilogarithm amounts to
a table look-up.

Given an encoded data field (s1, . . . sL), we iteratively recoup the original
string starting at the end by the formula pi = (si+1 + si)/αi. Thus, decoding is
as fast as encoding.

In addition to encoding the D-field, we also embed a k symbol signature for
each page at the end of the page. Assume a page size of N . The k symbol
signature stored at the end of page i is then

(sigα(p1, p2, . . . piN), sigα2(p1, p2, . . . piN), . . . , sigαk(p1, p2, . . . piN)) ,

that is, a latter page signature “includes” the earlier page signatures. However,
the algebraic properties allow us to easily recover individual page signatures
from the cumulative page signatures. A typical value would be k = 4 for GF(28)
and k = 2 for GF(216). In the first case, a page contains 256B and the overhead
is 1/64, in the second case, a page contains 217B = 128KB and the overhead
for large records is vanishingly small. In either case, the collision probability is
2−32. If that probability is too high (or if the symbol distribution is too skewed),
then we can simply increase k.

158 W. Litwin, R. Mokadem, and T. Schwarz

3 Searches

We describe now four types of searches in the data field, the full match, the prefix
match, the string match, and the longest prefix search. A fifth search operation,
looking for the longest common substring is also feasible, but we do not present
it here for space reasons.

Full Match: A full (non-key) search is the search for all records with the entire,
non-key field equal to the string provided by the application. In SDDS-2004, the
client calculates the sequence of page signatures for the search string and sends
these over to the servers. These compare the page signatures for all pages in the
record and send the records for which they have a hit to the client. The client
then verifies the accuracy of the match. Since in general a record will not contain
many pages, the packets send by the client to the servers will be small.

Prefix Match: The application searches here for every record with the first l
symbols of a D-field matching a search string of l symbols. The client sends
the length of the search string and its one-symbol signature to all the servers.
These compare the lth symbol of each of their records with the signature sent
by the client and send all matches to the client. In the case of 16b signatures,
the number of false hits is small (≈ 0.00015% of all records), but in the case of
8b symbols, the number is higher (≈ 0.39% of all records), and it makes sense
to weed out false positives at the server by sending the search string along or by
adding symbols signatures to make up a k symbol signature. Even in this case,
we still do not have to perform a standard string search for the majority of the
records.

String Match: For a string match, the client sends the length l of the search
string and the one symbol signature of the search string to all servers. Since
sigα(pi, pi+1, . . . pi+l) ·αi = sigα(p1, . . . pi+l)− sigα(p1, . . . pi−1) the server multi-
plies the received symbol signature with αi in order to see whether the substring
starting at position i in the record’s D-field matches. This takes one Galois field
multiplication with α and one XOR. Thus, while the search takes proportionally
to n− l), n being the record length, it is quite fast. As before for prefix matches,
the size of the symbols used indicates the number of false positives to be ex-
pected. Based on this number, the servers might have to weed out false positives
before sending the records found to the client.

Longest Prefix Match: For this search, the application provides a string S =
(s1, s2, . . . sl (in encoded form) and requests every record whose D-field shares
with S the longest prefix with respect to all the records in the file. In a first stage,
each server sends the length of the best local match to the client, who then selects
the best match. We now discuss the first stage. Basically, we walk through the
records matching against the longest prefix seen so far, and try to see whether
any record provides a better match. To match at the first record with D-field
r1, r2, . . . we compare s1 with r1, if successful, s2 with r2, then s4 with r4, s8

with r8 etc., i.e. increasing the index as the square. If we are unsuccessful, we use

Cumulative Algebraic Signatures 159

binary search to determine the next index at which we compare. For example,
if we fail matching s16 with r16, then we would try matching s12 with r12. The
rationale behind this strategy is that initial matches should be a good predictor
of future matching. When we match at subsequent matches, we of course start
testing at the current best match, but then proceed in a similar way.

Our procedure runs the risks of collisions, i.e. of false positives. We resolve
these collisions at each server, that is, each server checks whether the record
with the longest prefix match indeed matches. It does so whenever it finds a
record that seems to have a longer prefix match than seen before. Originally,
we experimented with collision control at the client, which, depending on the
probability of collision and the number of servers might be more effective.

4 Performance

We implemented our scheme on a small network comprising 2GHz Pentium
machines using Windows 2000 and connected by a 1Gb/sec network. In our trials,
we use records of with a 4B key and 100B D-fields. We found that both encoding
and decoding are fast enough to constitute a small overhead (≈ 15%) for SDDS
inserts and record retrieval, taking around 0.045 ms/KB and consisting of a few
table lookups and an XOR operation per symbol. That non-key string searches
cost less for encoded data than for non-encoded data is especially attractive.

Table 1. Timing of String Match (left) and Prefix Match (right)

Record Record Prefix Offset Time
Position Size Size (msec)

1 20 5 13 0.44
1 100 20 70 0.68
1 100 20 80 0.689

100 250 15 80 451
100 250 30 80 437
200 250 15 80 884

Record Record Prefix Time
Position Size Size (msec)

1 100 20 0.369
100 250 20 37.8
100 250 35 37.7
200 250 20 71.3
300 250 20 120.53
500 250 20 197.5

The string search performance depends on the location of the correct record
within the bucket and to a small degree on the offset of the search string in the
record we are looking for. It turns out that it takes about 400 msec to search
through 100 records with D-fields of size 250B. (Table 1 left). In a compari-
son with the Karp-Rabin string search algorithms, [H71, KR87], our algorithm
proved to be slightly faster. Searching records with 100 B D-fields, a search for
a 15B string took on average 1.40 msec per record searched for our scheme com-
pared to 1.45 msec for Karp-Rabin. Prefix searches are much faster, since we
only need to look at a single position per record. It takes about 30 - 40 msec per
100 records (Table 1 right).

To test the longest prefix match, we made several experiments putting the
longest prefix in a record at the beginning, in the middle, and at the end of a

160 W. Litwin, R. Mokadem, and T. Schwarz

Table 2. Longest Prefix Search

Record Time
Position (msec)

1/100 380
49/100 423
99/ 100 453

bucket with 100 records of size 250B. The times reported in Table 2 are measured
at the client talking to a single server. When we did the search on three servers
simultaneously, the times slightly increased because the client needs to compare
the results. For example, with three servers, the time in the last row of Table 2
increases to 470 msec. This small increase shows that our scheme is scalable.

5 Protection Against Incidental Corruption

The goal here is to detect silent record corruption and identify its location with
a certain preselected location. We only need to worry about D-field corruption
since the corruption of the key will be detected by normal SDDS operations. If the
SDDS offers protection against bucket unavailability by adding parity records as
in LH*RS, then silent corruption of one record can spread to all records recovered
with the help of this record. A first level of protection is offered by the k-symbol
signatures at the end of each page. However, pages can be large (216 in case of
Unicode characters, and therefore we might decide to insert k-symbol signatures
for smaller fields. In each case, we will discover the silent corruption of up to k
symbols in each field for sure and larger corruptions with very high probability.

6 Protection Against Accidental Viewing

Because record D-fields are encoded and because record identifiers have no intrin-
sic meaning (or are strongly encrypted otherwise), even a system administrator
looking at a core dump file cannot see bits and pieces of records. However, a
determined attacker with some idea about the structure of the D-field can break
the encoding rather quickly. We developed a small test program found the α
quickly by looking at a few hundred ASCII records just assuming that the be-
ginning of the record was printable. The same program idea should work quickly
for Unicode. Thus, our privacy protection is as strong as putting business letters
in a sealed envelope. Almost anyone can break that level of security, but the gain
stands no comparison with the social and legal consequences of being found out,
and so very few coworkers steam open envelopes.

7 Related Work

At this stage we are not aware of any specific work sharing our assumption of
incidental protection. Any trivial approach we are aware of does not match our

Cumulative Algebraic Signatures 161

string search performance. For instance, this is the case of a table-based arbitrary
substitution of characters at the client.

String matching has received attention for a long time [CL03]. The Karp-Rabin
type schemes share with ours the principle of incremental calculation of the new
value to match when the search moves to the next symbol [H71, KR87]. In addi-
tion, our component signature definition is quite similar to theirs. Like our scheme,
several algorithms propose preprocessing the string to search in [C97]. Algorithms
exist also that search compressed text, e.g., [NT04] and algorithms referenced by
[NT04]. The performance of these algorithms varies strongly depending on the
compression efficiency. A general comparison still seems to be lacking. However,
our algorithms seem to be faster with their O(1) prefix search complexity and the
O(n−l) string search complexity. All other major algorithms we know have higher
complexity, of O(l) and of O(n) respectively, at best [CL03]. However, to be fair,
we need to add the record decoding time of the matching records to our times.

For comparisons to be valid, we stress again the context of our non-key
searches, namely that we are searching in a large file or database. In our con-
text, searches are far more frequent than inserts and searches are highly selective.
Thus, our encoding overhead is amortized over many searches and only a small
fraction of records need to be decoded for a search.

Protection against corruption constitutes a form of data scrubbing [S+04].
Our record scrubbing occurs as part of a record access operation at the client
and not preventively at the server. See [S+04] for related trade-offs.

8 Conclusions

We have presented a scheme that protects data stored in an SDDS against inci-
dental viewing and against corruption at the server. The main idea is to encode
the data field by storing as character i the single symbol algebraic signature of
the prefix of characters 1 to i of the data field. This does not incur any overhead.
Since the data field is no longer encoded in plain text, we incidentally protect the
field against accidental viewing. In addition, we embed a k-signature for pages to
protect against data corruption. This introduces only a slight storage overhead.

The speed of string matches opens interesting perspectives for the popular
join, group-by, rollup, and cube database operations. We are in the process of
investigating signature calculation speeds. Apparently, extensive, sophisticated
use of tables and changing the definition of the single symbol signature without
loosing the algebraic properties can speed up encoding and decoding consider-
ably. Finally, one could investigate porting our encoding idea to the related, but
slightly different original form of the Karp-Rabin hash function.

Acknowledgements

We thank Jim Gray for comments on early ideas and the support for this work
through MS grant. We are also grateful to Lionel Delafosse for comments on the
related work. We thank Peter Tsui for implementing the cracking algorithm.

162 W. Litwin, R. Mokadem, and T. Schwarz

References

[C04] SDDS-2004 Prototype. http://ceria.dauphine.fr/
[C97] M. Crochemore: Off-line serial exact string searching, in Pattern Matching

Algorithms, A. Apostolico and Z. Galil, eds., Oxford University Press, New
York, 1997) Chapter 1, pp 1–53.

[CL03] M. Crochemore and T. Lecroq: Pattern Matching and Text Compression
Algorithms, in The Computer Science and Engineering Handbook, A.B.
Tucker, Jr, ed., CRC Press, Boca Raton, 2003, Chapter 8.

[DL00] A. Diene and W. Litwin: Performance Measurements of RP* : A Scalable
Distributed Data Structure For Range Partitioning. 2000 Intl. Conf. on Infor-
mation Society in the 21st Century: Emerging Technologies and New Chal-
lenges. Aizu City, Japan, 2000

[G88] J. Gray: The Cost of Messages. 7th CAM Symposium on Principles of Dis-
tributed Computing, ACM Press. Aug. 1988, 1-7.

[H71] M. Harrison: Implementation of the Substring Test by Hashing. Communi-
cations of the ACM 14(12): 777-779(1971)

[KR87] R. Karp and M. Rabin: Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, Vol. 31, No. 2, March 1987.

[L80] W. Litwin: Linear hashing : a new tool for file and table addressing. Proceed-
ings of the sixth conference on very large databases (VLDB), 1980. Also in
Readings in database systems, Morgan Kaufmann series in data management
systems, 1994.

[L81] W. Litwin: Trie Hashing. ACM-SIGMOD 1981 Intl. Conference On Manage-
ment of Data. Ann Arbor, USA (May, 1981), 19-29.

[LMS04] W. Litwin, R. Moussa, T. Schwarz: LH*RS: A Highly Available Distributed
Data Storage System. Intl. Conf. On Management of Very Large Databases,
VLDB-04, Toronto 2004.

[LNS94] W. Litwin, M-A. Neimat, and D. Schneider: RP*: A Family of Order-
Preserving Scalable Distributed Data Structures. VLDB-94.

[LNS96] W. Litwin, M-A. Neimat, and D. Schneider: LH* - A Scalable Distributed
Data Structure. ACM Transactions on Data Base Systems. December 1996.

[LS04] W. Litwin, T. Schwarz: Algebraic Signatures for Scalable Distributed Data
Structures. IEEE Intl. Conf. On Data Eng., ICDE-04, 2004.

[NT04] G. Navarro and J. Tarhio: LZgrep: A Boyer-Moore String Matching Tool for
Ziv-Lempel Compressed Text. Software Practice and Experience (SPE), to
app.

[S+04] T. Schwarz, Q. Xin, E. Miller, D. Long, A. Hospodor, and S. Ng: Disk Scrub-
bing in Large Archival Storage Systems. 12th IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS) 2004.

PARIS: A Peer-to-Peer Architecture for

Large-Scale Semantic Data Integration

Carmela Comito1, Simon Patarin2, and Domenico Talia1

1 University of Calabria, Rende, Italy
{ccomito,talia}@deis.unical.it

2 University of Bologna, Bologna, Italy
patarin@cs.unibo.it

Abstract. We propose a novel peer-to-peer architecture, PARIS, aimed
at exploiting the unprecedented amount of information available today
on the Internet. In PARIS, the combination of decentralized semantic
data integration with gossip-based (unstructured) overlay topology man-
agement and (structured) distributed hash tables provides the required
level of flexibility, adaptability and scalability, and still allows to perform
rich queries on a number of autonomous data sources. We describe the
logical model that supports the architecture and show how its original
topology is constructed. We also present the usage of the system in de-
tail, in particular, the algorithms used to let new peers join the network
and to execute queries on top of it.

1 Introduction

Our always more connected world makes available to everyone an unprecedented
volume of information. The surge of the Semantic Web, online bibliographic
databases, file sharing networks, etc. are only few among the many examples of
today’s data sources. These data sources are characterized by their heterogeneity,
and their dynamic and autonomous nature. In this context, semantic interop-
erability and source organization are key challenges to be addressed to allow
information search, access and retrieval. In other words, one needs to be able to
write queries and to execute them efficiently, over all available data sources.

In the past years, solutions have been proposed that address each of these
problems independently. In the domain of semantic integration, formal integra-
tion models have been defined, query languages have been designed, schema
mediation techniques have been proposed [1,2,3,4,5,6]. All those systems focus
on a decentralized integration approach: each peer represents an autonomous
information system, and semantic data integration is achieved by establishing
mappings directly among the various peers. Even if these systems achieve schema
integration by adopting different formalisms, all of them abstract themselves
from the underlying infrastructure and regard the system as a graph of inter-
connected data sources. Similarly, peer-to-peer topologies [7,8,9,10] have proven
incredibly useful to manage and (self-)organize large networks of autonomous
nodes. These systems only provide data sharing at file level, and a limited query

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 163–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 C. Comito, S. Patarin, and D. Talia

language, usually based on file name search. So, little effort has been spent with
respect to rich semantic representations of data and query functionalities beyond
simple keyword searches.

Some projects exist that rely on peer-to-peer overlay networks and offer rich
semantic for data sharing. However, we differentiate from them by the design of
an original topology which makes use of both structured and unstructured peer-
to-peer overlay techniques. PIER [11] proposes an architecture for relational
query processing with an index based on CAN [12] but it does not offer any data
integration functionalities. Edutella [13] is a schema-based peer-to-peer network
that maintains a semantically enriched information system for the educational
domain.

The PARIS (Peer-to-peer ARchitecture for data Integration Systems) archi-
tecture aims at filling this gap and proposes an integrated approach in which
semantic integration, based on schema mapping, and peer-to-peer topology are
tightly bound to each other. The combination of decentralized data integra-
tion techniques [14] with gossip-based (unstructured) overlay topology manage-
ment [8] and (structured) distributed hash tables [9] enables rich queries to be
performed on a number of autonomous data sources and makes their processing
efficient. External efforts required to augment the system and to maintain it, are
kept to a minimal level, while still providing the level of flexibility, adaptability
and scalability required to cope with the targeted highly dynamic environment.

The rest of this paper is organized as follows. The system model is presented
in Section 2. Then we present the PARIS topology design in Section 3. Sec-
tion 4 describes the actual architecture of the system and Section 5 gives some
concluding remarks, together with possible developments of this work.

2 System Model

The primary design goal of PARIS is to develop a decentralized network of
semantically related schemas that enables the formulation of queries over au-
tonomous, heterogeneous and distributed data sources. The environment is mod-
eled as a system composed of a number of peers, each bound to a data source.
Peer schemas are connected to each other through declarative mappings rules.
PARIS builds on the data integration model introduced for the XMAP inte-
gration framework [14]. The underlying integration model of this framework is
based on schema mappings to translate queries between different schemas. Query
translation is performed through the XMAP query reformulation algorithm.

We model our system as a collection P of peers which are logically bound
to data sources. Each data source Dp is represented by exactly one peer p and,
conversely, each peer has access to a single data source, named its local data
source. A local schema Sp is associated with the data source Dp. Each peer also
holds a collection Mp of mappings from its local schema to other foreign schemas.
Finally, a peer knows a list (view) of other peers (neighbors). Peers are able to
execute the above mentioned reformulation algorithm (XMAP) and to answer
locally the queries they receive.

PARIS: A Peer-to-Peer Architecture 165

From the point of view of a single peer, the other peers in the network can
be classified into four “groups”. (1) The peer local group is made of all peers
pi that share the same schema. We note Lp the local group of peer p and Lp =
{ pi ∈ P | Spi = Sp }. Every peers in a local group L share the whole collection
of mappings, denoted ML, relative to the group schema SL (the shared local
group schema). (2) With respect to a peer local group L, the semantic direct
group, DL, is made of all local groups Li with which a point-to-point mapping
for the group local schema SL is known. Formally: DL = { Li ∈ L | SL � SLi },
where L is the set of all known local groups, and SA � SB denotes the existence
of a direct mapping from schema A to schema B. The local groups of a semantic
direct group share all their mappings, so the mapping collection, MDL , of DL is
composed by the union of the mappings of each local groups Li. (3) Again, with
respect to a peer local group L, the semantic transitive group, TL, is made of
all local groups Li whose schema is semantically related to the peer local schema
SL through a transitive mapping: TL = { Li ∈ L | (∃ L0, . . . , Lk ∈ Lk+1 | SL �

SL0 ∧ SL0 � SL1 ∧ . . . ∧ SLk
� SLi) }. All members of a semantic transitive

group share the same mapping collection MTL composed by the union of the
mappings of each local group. (4) Finally, the peer foreign group is made of all
remaining peers, i.e. all those that are not semantically related to the peer local
schema. These notions are illustrated in the next section (Figure 1), when the
topology is presented.

Schemas, queries, and peers are given unique identifiers. How schema identifiers
are generated (central authority or decentralized hashing of the mapping contents)
is not pertinent to our system, provided that we have some assurance that they
are truly unique. Peer and query identifiers are to be considered relative to their
schema, which means that these identifiers are in practice “prefixed” with their
schema identifier. In the case of queries, the schema to be considered is the “orig-
inal” schema, i.e. the schema over which the query was formulated when it was
first submitted to the system. In both cases, we can assume that some local in-
formation (e.g. IP addresses, process identifiers, local time, etc.) combined with a
random source should be enough to generate these identifiers safely.

3 Topology

We have made the design choice to keep topology management and actual data
integration at two distinct levels. This separation of concerns allows us to ex-
ploit recent algorithmic advances in the later domain on top of a scalable and
robust overlay. We have chosen an hybrid topology for PARIS that mixes both
kinds of overlays: structured and unstructured ones. More precisely, local groups
are organized in unstructured overlays, while peers (or a large subset of them)
are also part of a DHT. This combination differentiates PARIS topology from
previously proposed architectures that have not taken advantage of both kinds
of overlay at the same time [15,16].

From the definition of local groups (see Section 2), it is clear that all peers
in the same local group share the same schema. What we want is the reverse to

166 C. Comito, S. Patarin, and D. Talia

be also true: that all peers with the same schema are in the same group. It is
therefore necessary to have strong guaranties that a group will remain connected
even if a large number of peers fail. As outlined above, gossip-based membership
protocols are particularly well-suited for this task. We have chosen Scamp [8]
to implement this protocol. Besides its conceptual simplicity, it offers excellent
robustness, load-balancing and error-recovery properties.

In parallel, peers also participate in a DHT. From the way we construct peer
identifiers (i.e. prefixed by the schema identifier, see Section 2), it is clear that
all peers sharing the same schema will be contiguous in the identifier space. Our
usage of the DHT will be limited to the capacity of sending messages to a random
peer with a specific schema. This means that we make use of the routing interface
of the DHT, and ignore its storage capacities. We have chosen to use Chord [9] to
implement this DHT. We have stated that, compared to unstructured overlays,
DHTs do not support very well frequent peer connections and disconnections.
To relax this constraint, we select only the peers that have the best performance
within a local group to be part of the DHT. Naturally, a minimum number of
peers within a group is required for this selection mechanism to take place. The
nodes who do not take part in the DHT will maintain a set of peer addresses
(within their own local group) that will act as “gateways” to the DHT. This list
is maintained in an epidemic manner as it is the case for the standard peer view.

The resulting overall topology is depicted in Figure 1. In this figure, we assume
that the following mappings exist: SA � SC , SC � SB, and SC � SD. From
the point of view of the peer p we can classify the other peers as follows. The
peer p belongs to the local group Lp = A (i.e. whose shared local schema is
SA). Then, the local group A forms a semantic direct group with the local group
C. The semantic transitive group of the local group A is composed of the local
groups C, B and D. Finally, the local groups E and F are foreign groups for the
peer p.

4 Functional Architecture

This section discusses the functional architecture of PARIS. We have discussed
topology issues in the previous section and will not discuss here the exact mech-
anisms required to maintain it. Details may be found in the original descriptions
of these algorithms [8,9].

4.1 Network Management

Letting nodes join (and leave) the network is obviously an important task to
fulfill. We view this process as an iterative one, where the initial state is a
network made of a single peer, to which nodes are added sequentially, one after
the other.

For a node, joining the network means being inserted in its local group (the
group corresponding to its local schema) and (possibly) in the DHT. In order to
do so, it is sufficient to provide the node with the address of any single peer in the

PARIS: A Peer-to-Peer Architecture 167

local
group

DHT

schema
identifier space

A B

C

D

E F

direct
semantic

group

transitive
semantic

group

p

Fig. 1. PARIS hybrid topology. Black nodes are peers with the best connectivity prop-
erties that are selected to participate to the DHT. White nodes willing to send mes-
sages to another group must hop through a black node in their local group. Groups are
named from the point of view of A, assuming the following mappings exist: SA � SC ,
SC � SB, SC � SD.

system. This peer will take the incoming node schema identifier to locate a peer
belonging to the corresponding local group using the DHT (possibly through
a gateway), according to the technique described in Section 3. Here, we must
distinguish two cases, whether this localization phase succeeds or not.

In the case of a successful localization, the incoming node obtains the address
of a peer that belongs to its local group. It will then use this “local contact” node
to initiate the join protocol of the gossip-based overlay. The local contact (which
is, by construction, part of the DHT) will decide next whether the incoming
peer should be instructed to join the DHT or not. A failed lookup means that
there exists no other peers that share the same schema as the incoming node. As
a consequence, the incoming node will form a new group by itself and its first
contact will make it join the DHT (helped by a gateway, if necessary).

4.2 Query Processing

Processing queries submitted by the clients of the system is the main task of
PARIS. A query may be submitted to any peer able to understand it, which
means that queries submitted to any given peer must be expressed over its local
schema. This condition holds for queries internally forwarded by the system.
Upon reception of a query, each peer executes the following algorithm.

The peer first looks up the query identifier in the processed query table and
drops it if it has already been processed. Then it inserts the query identifier in the
processed query table. If it detects that the request has been submitted directly

168 C. Comito, S. Patarin, and D. Talia

to it, it will apply the reformulation algorithm to recursively produce reformu-
lated queries expressed over all schemas semantically connected to the schema
over which the query is formulated.1 After the reformulation it determines the
associated local groups for each schema over which one or more reformulations of
the original query have been produced. And, for each local group, it uses the DHT
(possibly through a gateway) to send the reformulated queries to exactly one peer
within the group according to the group local schema. Whether it has been refor-
mulated or not, the query is broadcasted to neighbors in the local group before
being executed locally and results returned to the originating client.

This algorithm is illustrated in Figure 2. We can see that the query QA is
submitted to peer p (i). QA is reformulated by p into QC and, then, into QB and
QD (ii). The reformulated queries are sent to G, P ’s gateway through the DHT
(iii) and, from there, to peers in local groups B, C and D, respectively (iv). The
original query is then broadcasted within the local group (v).

In this algorithm, contrary to the usual flood-based approach, the overlay is
constructed in such a way that we know a priori that the neighbors of a given
node are “interested” in the queries we forward to them only spurious messages
exchanged are those sent to peers that have already seen the query. Even in this
case, the processing overhead to reject such queries is minimal (a lookup in a
table).

4.3 Mapping Management

In the steady state, we have said (Section 2) that all peers within a seman-
tic transitive group share the same collection of mappings. We must maintain
this invariant when the network evolves. As for request processing, we assume
that mappings are submitted to a peer whose local schema is the source of the
mapping.

Mappings are manually crafted by administrators or users of the system.
When such a mapping is added to a running peer (or an existing one modi-
fied), the mapping is broadcasted to all the members of its local group. This
mapping is also sent to one member of each local group in the semantic transi-
tive group using the DHT. These members will then broadcast this information
to the other members of their respective local groups. This protocol is called the
“new mapping” protocol.

When a node joins the network, if its local group is not empty, its local
contact will provide it with the current knowledge of the group. Respectively,
the incoming peer will run the above new mapping protocol for each mapping it
knows which is not yet known by the group.

Finally, when the first node of a local group is inserted in the system, it will
use the mappings it knows to contact other peers in its semantic direct group.
1 In detail, this means: first find all local groups in the semantic transitive group of the

local group to which the peer that has received the query belongs to. Then, on the
basis of the available mapping rules, determine for which schemas among them it is
possible to reformulate the given query. Finally, for each of the latter ones, produce
one or more reformulations of the original query.

PARIS: A Peer-to-Peer Architecture 169

A
B

C

D

local group
broadcastA p

(i)

(ii)

(iii)

(iv)
(v)

(iv)

(iv)

(v)

client
Q

A

Q
B

Q
C

Q
D

G

Fig. 2. Query processing in PARIS. In this example, we suppose that a query is sub-
mitted to a node of A and that we have the following mappings: SA � SC , SC � SB,
SC � SD.

The first node it finds will be used to run the new mapping protocol. It might be
the case that no neighbors are found, for example when there exists some group
for which no peer has joined the network. Mappings for which no peer has been
found yet are flagged as such and reformulated queries are also sent to those “still
empty” groups. When a peer is eventually found in a previously empty group, the
“new mapping” algorithm is run with this peer and the reformulation algorithm
is re-run to take the newly acquired information into consideration.

5 Conclusion and Future Work

We have presented PARIS a peer-to-peer architecture that enables data inte-
gration in a large-scale network of data sources. Building on an original hybrid
topology, PARIS proposes an efficient query processing framework over a set
of semantically heterogeneous data sources. The management of peers itself is
scalable as it requires only minimal information for a node to join the network.
PARIS is on going work; in particular, some refinements could be brought to the
limited broadcasting infrastructure: dynamically building a diffusion tree over
an unstructured overlay is not very difficult, but making it robust enough to
meet our requirements is. Load balancing issues should also be investigated: we
are currently considering using different view sizes to reflect the different capaci-
ties of peers. Adaptive query processing could also help us balance the load over
the data sources. We are in the process of evaluating the infrastructure through
simulation and we plan to start the development of a software prototype in the
short term.

170 C. Comito, S. Patarin, and D. Talia

References

1. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing : A vision. In: WebDB
2002. (2002) 89–94

2. Calvanese, D., Damaggio, E., Giacomo, G.D., Lenzerini, M., Rosati, R.: Semantic
data integration in P2P systems. In: DBISP2P 2003. (2003) 77–90

3. Franconi, E., Kuper, G.M., Lopatenko, A., Serafini, L.: A robust logical and com-
putational characterisation of peer-to-peer database systems. In: DBISP2P 2003.
(2003) 64–76

4. Halevy, A.Y., Suciu, D., Tatarinov, I., Ives, Z.G.: Schema mediation in peer data
management systems. In: ICDE 2003. (2003) 505–516

5. Kementsietsidis, A., Arenas, M., Miller, R.J.: Mapping data in peer-to-peer sys-
tems: Semantics and algorithmic issues. In: SIGMOD 2003. (2003) 325–336

6. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting executable map-
pings in model management. In: SIGMOD 2005. (2005) 167–178

7. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Middleware 2001. (2001) 329–350

8. Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Peer-to-peer membership man-
agement for gossip-based protocols. IEEE Transactions on Computers 52 (2003)
139–149

9. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking 11 (2003) 17–32

10. Jelasity, M., Guerraoui, R., Kermarrec, A.M., van Steen, M.: The peer sampling
service: experimental evaluation of unstructured gossip-based implementations. In:
Middleware 2004. (2004) 79–98

11. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the internet with PIER. In: VLDB 2003. (2003) 321–332

12. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Computer Communication Review. Volume 31., Dept. of
Elec. Eng. and Comp. Sci., University of California, Berkeley (2001) 161–172

13. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: EDUTELLA: a P2P networking infrastructure based on RDF. In:
WWW2002. (2002) 604–615

14. Comito, C., Talia, D.: XML data integration in OGSA grids. In: VLDB DMG’05.
(2005) To appear.

15. Boncz, P.A., Treijtel, C.: Ambientdb: Relational query processing in a P2P net-
work. In: DBISP2P 2003. (2003) 153–168

16. Löser, A., Naumann, F., Siberski, W., Nejdl, W., Thaden, U.: Semantic overlay
clusters within super-peer networks. In: DBISP2P 2003. (2003) 33–47

Processing Rank-Aware Queries in P2P Systems

Katja Hose, Marcel Karnstedt, Anke Koch, Kai-Uwe Sattler, and Daniel Zinn

Department of Computer Science and Automation, TU Ilmenau
P.O. Box 100565, D-98684 Ilmenau, Germany

Abstract. Efficient query processing in P2P systems poses a variety of
challenges. As a special problem in this context we consider the evalu-
ation of rank-aware queries, namely top-N and skyline, on structured
data. The optimization of query processing in a distributed manner
at each peer requires locally available statistics. In this paper, we ad-
dress this problem by presenting approaches relying on the R-tree and
histogram-based index structures. We show how this allows for optimiz-
ing rank-aware queries even over multiple attributes and thus signifi-
cantly enhances the efficiency of query processing.

1 Introduction

Schema-based Peer-to-Peer (P2P) systems, also called Peer Data Management
Systems (PDMS), have recently attracted attention as a natural extension of
federated database systems which are studied since the early eighties. PDMS
add features of the P2P paradigm (namely autonomous peers with equal rights
and opportunities, self-organization as well as avoiding global knowledge) to the
virtual data integration approach resulting in the following characteristics: each
peer can provide its own database with its own schema, can answer queries,
and is linked to a small number of neighbors via mappings representing schema
correspondences. However, the expected advantages of PDMS like robustness,
scalability and self-organization do not come for free: In a large-scale, highly
dynamic P2P system it is nearly impossible to guarantee a complete and exact
query answer. The reasons for this are among others possibly incomplete or
incorrect mappings, data heterogeneities, incomplete information about data
placement and distribution, and the impracticality of an exhaustive flooding.
Therefore, best effort query techniques seem to be more appropriate. By “best
effort” we mean that we do not aim for exact results or guarantees but instead try
to find the best possible solution w.r.t. the available local knowledge. Examples
of such query operators are among others similarity operations, nearest neighbor
search, top-N as well as skyline operators.

However, even if we relax exactness or completeness requirements we still need
estimations about the error rate. In case of top-N queries this means that we
give a probabilistic guarantee that x percent of the retrieved objects are among
the top N objects that we would get if we asked all the peers in the system.

Assuming an astronomical application scenario with XML data from sky ob-
servations and XQuery as the common query language, a typical query would

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 171–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 K. Hose et al.

ask for astronomical objects that match a condition to a certain degree. For
instance, a researcher could query the 10 stars closest to a given sky position as
shown in the following top-N query:
for $s in fn:doc("sky.xml")//objects
order by distance($s/rascension, $s/declination, 160, 20)
limit 10 return ...

Here, distance is used as a ranking function and limit restricts the result set
to the first N elements returned by order by.

Though one can easily combine multiple ranking functions it is often difficult
to define the weights for the individual attribute rankings in order to determine
the global rank. For this purpose, a more feasible operator is the skyline operator
[1] returning the set of those points that are not dominated by any other point1.
For example, a query asking for the brightest stars close to a given sky position
could be formulated as follows:
for $s in fn:doc("sky.xml")//objects
skyline of distance($s/rascension,

$s/declination, 160, 20), max($s/brightness)
return ...

Of course, the skyline operator can also be combined with the limit clause in
order to restrict the size of the result set.

In order to process such queries in P2P systems in an efficient way, appropriate
strategies are needed that reduce the number of queried peers as well as the size
of the transferred (intermediate) result sets. The contribution of this paper is
twofold: (i) we present a novel routing filter capturing multidimensional data
summaries and (ii) we discuss strategies for processing top-N and skyline queries
in P2P systems by exploiting these routing filters.

2 Multidimensional Routing Indexes Based on the QTree

Before presenting techniques for realizing the operators motivated in the previous
section we will describe the principles of query processing in P2P systems. As
sketched in the example in Section 1 we assume peers to export their data in
XML and to be able to process queries based on XPath. We further assume the
existence of correspondence links between pairs of peers representing schema
mappings that we can use for query translation.

A first but naive strategy would be flooding the network, i.e., asking all the
peers that are available in the P2P system. Of course, this works but results in
high execution costs. These costs can be reduced by minimizing the number of
asked peers. In P2P systems this is usually done by applying routing indexes
[2,3] for routing the query to only those peers that are most likely to contribute
to the final result. For this purpose, we use the concept of routing filters, as
presented in [4]. These routing filters cover both schema and instance level and
are based on one-dimensional histograms for numerical data.
1 A point dominates another point if it is as good as or better in all dimensions and

better in at least one dimension.

Processing Rank-Aware Queries in P2P Systems 173

2.1 Routing Indexes

In general, routing indexes represent summarized information about the data
a peer can provide. Thus, situations occur where we cannot exactly determine
whether the indexed peer actually provides query relevant data or not. Conse-
quently, in addition to reducing message volume and the number of round-trips
(our algorithms are restricted to only one round-trip), further cost reduction
can be achieved by not forwarding the query to such ‘questionable’ peers. This
results in taking the risk of ‘missing’ some ‘good’ data items. The risk that the
strategy takes can be quantified and output to the user as a guarantee for the
result. In [5] we have presented a strategy that provides probabilistic guarantees
for one-dimensional top-N queries. Due to limited space we will not discuss this
approach more detailedly.

Having routing filters for one-dimensional queries based on one-dimensional
histograms, using histograms for the multidimensional case seems to be the nat-
ural consequence. But as also discussed in [6] one-dimensional histograms are
insufficient to adequately capture the necessary information about data distri-
butions in the multidimensional case. However, as the main motivation for his-
tograms is to anticipate the number of data items for selection and join queries,
it is likely that one bucket covers a large area that contains only few data items
and many buckets are used for approximating an area containing a large num-
ber of data items. Though this is a good approach for anticipating selection
queries, it is not very clever for processing search queries like top-N and skyline.
In that case it makes a big difference, if and especially where single data items
are located in a bucket. Thus, we have developed a data structure (QTree) as a
symbiosis of histograms and R-trees. It fulfills the following demands: (i) pro-
viding information about attribute correlation, (ii) being resource-adaptive and
resource-efficient in terms of required disk space, (iii) being efficient in construc-
tion, maintenance and modification in terms of CPU cycles.

2.2 QTree-Based Routing Indexes

Each node in a QTree corresponds to a multidimensional rectangular bounding
box. Just like in R-trees, a child’s bounding box is completely enclosed in the
box of its parent. Leaf nodes are represented by ‘buckets’ containing statistical

(a) Raw Data

ROOT

A

B

A1

20

A220

C

B1

B2

20

(b) Topology

ROOT

A C B

A1 A2 B1 B2

(c) Graph View

Fig. 1. QTree

174 K. Hose et al.

information about those data points that are contained in the bucket’s bound-
ing box. The smallest buckets consist of only one point. In the following, we
will consider buckets that only provide the number of data points as statistical
information, though it is also possible to store mean value or other measures
like standard deviation in a bucket. Each QTree has two parameters: (i) fmax

maximum fanout, (ii) bmax maximum number of buckets. bmax limits the total
number of a tree’s buckets and thus its size and memory requirements. Fig. 1
illustrates a two-dimensional QTree with the following parameters: fmax = 3,
bmax = 5. Fig. 1(a) shows the original data, Fig. 1(b) the QTree’s bounding
boxes, and Fig. 1(c) the QTree with its buckets and inner nodes.

The QTree represents the basis of the routing filters (QRoutingFilters) that
we will use in the next section to process multidimensional top-N and skyline
queries. A QRoutingFilter describes the data of all neighboring peers in just
one index structure. The root node of a QRoutingFilter has one child for each
neighbor of the filter owning peer. The data of each child is represented by a
QTree and subsumes not only the data of the neighbor itself but also the data
that is accessible via this neighbor within a specified hop count distance. The
main benefit of maintaining the data altogether consists in the fact that the
number of buckets for each neighbor can be chosen (even altered) dynamically.

3 Processing Multidimensional Top-N Queries

This section presents an algorithm based on QRoutingFilters that allows for
efficiently processing top-N queries in P2P systems. Considering a peer’s local
data as well as the buckets of its QRoutingFilter we can efficiently determine
the subset of neighbors that provide relevant data.

W.l.o.g. let us assume that the score value (that is assigned to a data item
by the ranking function) has to be minimized. Let smax(B) and smin(B) denote
the maximum and minimum scores that any point in bucket B might have.
Furthermore, let count(B) denote the number of data points in B and Ball the
set of all buckets. The basic principles of the top-N algorithm are:

– determine a set Bsuff ⊆ Ball so that the worst score s is minimized and the
following equation holds:∑

Bi∈Bsuff

count(Bi) ≥ N , s := max
Bi∈Bsuff

smax(Bi)

– based on the worst score s determine all buckets Badd ⊆ Ball \ Bsuff that
might contain data items that have a better score than s:

Badd := {Bj ∈ Ball \ Bsuff | smin(Bj) < s}
– Btop−N := Bsuff ∪ Badd

Based on Btop−N, the top-N algorithm is defined as follows:

1. Calculate the top-N result considering all local data and all the buckets of
the routing filter

Processing Rank-Aware Queries in P2P Systems 175

2. Forward a top-K query to all neighboring peers p owning buckets in Btop−N,

where K := min
{

N,
∑

p owns Bi
count(Bi)

}

3. Receive the answers of those neighbors and combine their results to a pre-
liminary top-N result that is either sent to the query’s sender or displayed
to the user

p1

p2p3

4
B

4

A

10
C

5
D

5

Ep4

(a) Algorithm

Local Data: p2, p3, p4

R 1

R 2

R 3

A

B

C

p1

D

E

(b) QRoutingFilter

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

S
en

t D
at

a
S

iz
e

Number of buckets in QRoutingFilter

N=1
N=10
N=50

N=100

(c) Total Message Volume

Fig. 2. Top-N Algorithm using QRoutingFilters

Fig. 2(a) illustrates an example of our top-N algorithm: Assume we are looking for
the top 10 elements near the asterisk. Fig. 2(b) shows the corresponding QRout-
ingFilter. p2, p3, and p4 are local data items, hence they are not indexed by the
filter. In the example, buckets A and B (each containing 4 data items), p1, and
p2 would be sufficient to provide the top 10 elements: Bsuff = {A, p1, p2, B}. The
worst-case score for any point in Bsuff is visualized as a circle around the aster-
isk. Badd contains bucket C since this is the only bucket that might provide better
data items than Bsuff . Considering Btop−N := Bsuff ∪Badd only neighbors 1 and
2 have to be queried whereas no query has to be forwarded to peer 3.

Experimental Evaluation. For evaluation we analyzed the influence of the
size that each routing filter is granted on the number of asked peers as well as on
the total network traffic. Based on the attributes rahour (right ascension of the
observation) and dedeg (declination of the observation) of our astronomical test
data we calculated 3-dimensional x,y,z -coordinates using a fixed distance of 1000
as radius. Thus, all objects are located on the surface of a sphere. Together with
the vmag (stellar magnitude in the V system) attribute we built 4-dimensional
QRoutingFilters for each peer. The maximum number of buckets in our experi-
ments varies whereas fmax is set to 10. All our top-N queries randomly choose
a point on the sphere and minimize the sum of the Manhattan distances to the
chosen point and to the maximum of vmag.

We also varied N in our tests. The results of our tests are shown in Fig. 2(c).
The total number of data points sent through the network is shown as a function
of bmax. The more elements are asked the more data has to be sent. Larger
routing filters significantly reduce the network traffic. These results perfectly
match our expectations. However, the total number of involved peers could only
be reduced significantly when allowing a high number of buckets.

176 K. Hose et al.

4 Skyline Queries

The main idea of our strategy for processing skylines based on QRoutingFilters
is to generalize the “dominates” relation � in a way that it can be applied not
only on data items but also on arbitrary buckets A and B:

A � B :⇔ a � b ∀a ∈ A, ∀b ∈ B

Single data items are interpreted as buckets with no extension. Based on this
relation it is possible to calculate a skyline over the local data of a peer, enriched
by all buckets of the QRoutingFilter. For this purpose � over buckets can be
determined using the idea of a worst and a best data item. If items aworst ∈ A
and bbest ∈ B can be constructed such that

∀a′ ∈ A : a′ � aworst and ∀b′ ∈ B : bbest � b′

then
A � B ⇔ aworst � bbest

The following fact directly leads to an algorithm for processing skyline queries
in P2P systems: All buckets containing data items that are elements of the
resulting skyline are elements of the skyline over buckets. The reason is that if
an arbitrary bucket B contains a point b that would be part of the overall skyline,
there cannot exist any other bucket A that dominates B. Assuming that such
an A exists leads to a contradiction: All possible elements in A had to dominate
all possible elements in B - thus, also b had to be dominated by all elements in
A. Furthermore, as A is not empty, there exists at least one element a ∈ A. So
we have found an element a for that a � b holds. This is a contradiction to: b is
part of the resulting skyline. The skyline algorithm for each peer can be defined
accordingly:

1. Calculate the skyline over the local data and all buckets of the routing filter
2. Forward the query to those peers corresponding to the buckets of that skyline
3. Combine the peers’ answers to a preliminary skyline that is sent back or

displayed to the user

In order to further reduce the data volume that is shipped back during query
execution, the data of some buckets is sent along with the query: those, that
are likely to dominate a huge amount of the receiver’s data. In order to choose
these “most selective” buckets, one has to determine how many data items each
bucket dominates. Calculating this exactly would be quite inefficient, so we only
count for each bucket A how many elements are thrown out of the result skyline
because of A. We use a nested loop algorithm for local skyline processing. Before
each loop all buckets are sorted decreasingly according to the number of buckets
they have already thrown out of the skyline. Thereby, those buckets that have
already thrown out a huge amount of data are tested first. Consequently, “se-
lective” buckets become even more “selective”. The data of those buckets that
superseded the most data items of the corresponding peer is forwarded to the
selected neighbor peers. This data consists of a bucket’s worst point since this
is all information the receiver has to know about a bucket.

Processing Rank-Aware Queries in P2P Systems 177

Fig. 3(a) shows an example of a skyline over buckets, the corresponding rout-
ing filter is shown in Fig. 2(b) with p2, p3, and p4 being local data items. Assum-
ing that both dimensions are to be minimized, buckets A, B, C as well as p1 and
p2 are members of the resulting skyline. The reason is that only the following
dominations occur: A � p3, C � E, C � p4, p2 � p4, B � D, and B � p4. Notice
that A � p2 because a point in the bottom left corner of A would dominate p2.
Furthermore, A � C since it might be possible that A only has data items that
are located left of C. As a result the query has to be forwarded to only neighbors
1 and 2.

A

B

p1

p2

C
p3

E

p4D

MIN

M
I
N

(a) Algorithm

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

A
sk

ed
 P

ee
rs

Number of buckets in QRoutingFilter

with QTreeFilters
naive approach/ simple pruning

(b) Asked Peers

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000

Se
nt

 D
at

a
Si

ze

Number of buckets in QRoutingFilter

with QTreeFilters
naive approach
simple pruning

(c) Total Message Volume

Fig. 3. Skyline Algorithm using QRoutingFilters

Experimental Evaluation. In our skyline tests we analyzed the total number
of points that was sent through the network in order to answer a query. Like in
the top-N experiments we varied the number of buckets for the QRoutingFilters.
We queried the skyline over our astronomical test data using the Manhattan
distance as ranking function. For each query we randomly chose a point P on
the sphere and a vmag value. Whereas the distance was to be minimized the
vmag value was to be maximized. The resulting skylines had an average of 10
data items. The approach like stated above uses QRoutingFilters for routing the
query efficiently and sends the “most selective skyline points” along with the
query. We used a threshold of 1 what means that all those skyline points that
dominated at least one other data point are sent along with the query. In Fig. 3
this strategy is referred to as “with QRoutingFilters”. It is compared to two other
approaches: naive and simple pruning. Naive means that the network is flooded
and each peer sends its local skyline to the initiating peer which then processes
the final result. The simple pruning approach is based on the same principle but
the skyline is already checked for dominance by those peers that forward the
answer to the initiating peer. Thus, the answer is pruned by forwarding only not
dominated skyline points.

Simulation results are shown in Fig. 3(b) and Fig. 3(c). The sum of all points
that were sent through the network is displayed on the axis of ordinate whereas
QRoutingFilter sizes are displayed in a logarithmic scale on the abscissa. The
naive and simple pruning approaches do not differ significantly because pruning
the answer results reduces costs only a little. Using routing indexes, especially
QRoutingFilters, on the other hand can effectively reduce the network traffic:
A filter that occupies not more than 100 buckets almost halves the amount of

178 K. Hose et al.

sent data volume compared to a strategy without filter usage. Although these are
good results w.r.t. the network traffic the number of asked peers starts decreasing
only for large filter sizes (1600 and more buckets per peer), see Fig. 3(b). In order
to further decrease the number of asked peers we are working on probabilistic
algorithms that relax correctness and completeness requirements.

5 Conclusion

In this work we followed two main goals: processing rank-aware queries while re-
ducing the number of involved peers as well as the amount of data sent through
the network. We introduced strategies for achieving both of these goals and fo-
cused on the evaluation of a novel data structure called QTree. A QTree combines
histograms with the advantages of R-trees. We have shown that the utilization of
this structure allows for processing multidimensional top-N and skyline queries
efficiently on numerical data. Main open issues and primary content of our cur-
rent and future work are:

– Approximate query answering techniques, as they promise much more effi-
ciency than always trying to provide exact answers.

– Details of the QTree which are in the first line the construction and mainte-
nance of this innovative data structure.

– How to support rank-aware queries based on string data? This includes find-
ing an index structure that efficiently represents strings, is easy to maintain,
and supports lookups for arbitrary strings.

– How to support arbitrary combinations of attributes? This involves combi-
nations of numerical data and string data.

Further aspects, but not in the primary focus of our current work, are the support
of limited knowledge in P2P systems and a comparison of QTrees to multidi-
mensional histograms.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proceedings
of ICDE 2001. (2001) 421–430

2. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-Peer Systems. In: Proc.
Int. Conf. on Distributed Computing (ICDCS 2002), Vienna, Austria. (2002) 23–34

3. Petrakis, Y., Koloniari, G., Pitoura, E.: On Using Histograms as Routing Indexes
in Peer-to-Peer Systems. In: Proc. DBISP2P 2004. (2004) 16–30

4. Karnstedt, M., Hose, K., Stehr, E.A., Sattler, K.: Adaptive Routing Filters for Ro-
bust Query Processing in Schema-Based P2P Systems. In: IDEAS 2005, Montreal.
(2005) 223–228.

5. Hose, K., Karnstedt, M., Sattler, K., Zinn, D.: Processing Top-N Queries in P2P-
based Web Integration Systems with Probabilistic Guarantees. In: Proc. WebDB
2005. (2005) 109–114

6. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer: A principled and
practical approach. In: Proceedings of SIGMOD 2005. (2005) 119–130

Semantic Caching in Schema-Based

P2P-Networks

Ingo Brunkhorst1 and Hadhami Dhraief2

1 L3S Research Center
Expo Plaza 1

D-30539 Hannover, Germany
brunkhorst@l3s.de

2 Distributed Systems Institute, Knowledge Based Systems, University of Hannover
Appelstrasse 4

D- 30167 Hannover, Germany
dhraief@kbs.uni-hannover.de

Abstract. In this paper, we present the use of semantic caching in the
environment of schema-based super-peer networks. Different from tradi-
tional caching, semantic caching allows the answering of queries that are
not in the cache directly. The challenge of answering the queries using the
cache is reduced to the problem of answering queries using materialized
views. For this purpose, we implemented the MiniCon-algorithm, which
delivers the maximally-contained-rewritings of a posed query based on
the stored views. Using simulation and experimental results, we will show
the benefit of semantic caching.

1 Introduction

P2P computing provides a very efficient way of storing and accessing distributed
resources.

Our goal in the Edutella project [1] is designing and implementing a scalable
schema-based P2P infrastructure for the Semantic Web. Edutella relies on the
W3C metadata standards RDF1 and RDF Schema (RDFS) and uses basic P2P
primitives provided by Project JXTA2.

Consider a group of researchers or students sharing metadata for papers they
are currently discussing, or learning material they are using. Additionally, meta-
data repositories from universities and institutes are providing metadata for
documents and courses. In this milieu where we deal with a significant number
of participant peers and super-peers the network resources become more precious
and the avoidance of superfluous queries and messages is crucial.

As a schema-based peer-to-peer network, Edutella constitutes an interesting
application area for semantic caching. Applying caching techniques reduces the
response time of the network and decreases the bandwidth and load for the end-
user nodes. Different from traditional caching approaches, the semantic caches
1 Resource Description Framework: http://www.w3.org/RDF/
2 Project JXTA(TM) http://www.jxta.org/

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 179–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.w3.org/RDF/
http://www.jxta.org/

180 I. Brunkhorst and H. Dhraief

we propose have the benefit of being able to answer queries that are not in the
cache directly. Our approach tries to rewrite the query so that available entries
from the cache can be used to answer the request.

In this paper we will focus on the use of semantic caching in a schema-based
system. Answering the queries using the cache is reduced to the problem of
answering queries using materialized views. For this purpose, we implemented
the MiniCon-algorithm, which delivers the maximally-contained rewritings of a
given posed query based on the stored views. In the next section, we discuss
semantic caching in general and how it compares to other caching strategies, fol-
lowed by Section 3 in which we explain our approach to using semantic caching
in the schema-based Edutella network. Section 4 gives a description of the sim-
ulation we used and presents the results. Section 5 concludes with a summary
and directions for further work.

2 Related Work

Semantic caching in client-server or multi-database systems has received growing
interest recently. Dar et al. proposes in [2] a model for client-side caching and
replacement in a client-server database system and show the performance of the
semantic caching approach compared to the traditional page caching and tuple
caching. They mention the easy extension of their approaches to a multiple-server
architecture or P2P network, but do not investigate the specific issues related to
P2P networks, such as the placement of the cache data structures or the most
appropriate cache replacement policy. Moreover, they only consider selection
queries on single relations. Dealing with more complex queries is, however, an
important issue in the context of semantic caching, and in our approach, we do
consider them. More specifically, we consider scalable algorithms for answering
conjunctive queries (even with arithmetic comparisons3) using views. Godfrey
and Gryz present in [3] a general formal framework for semantic caching. The
key idea of semantic caching is to remember the queries in addition to the query
results. Semantic caching uses dynamically defined groups of tuples. We discern
two types of semantic caching [4,2]: Semantic Query Caching (SQC) [3] and
Semantic Region Caching [2]. Semantic caching can be considered as a passive
caching strategy in contrast to active caching, a.k.a. replication, where the caches
are filled using automatically generated queries during the periods of low network
load. While replication aims at providing high data availability, semantic caching
gives the priority to the optimization of response time.

In the context of P2P systems, semantic caching has so far not been investi-
gated. There is some work on caching in P2P networks, mainly associated with
replication and focusing on cache replacement strategies. Kangasharju and Ross
present in [5] a set of distributed algorithms for replication and cache replace-
ments policies (e.g. Top-K MFR and Top-K LRU) for P2P caches assuming
an underlying DHT infrastructure. They show that Top-K MFR provides near
optimal performance. Whether this cache replacement policy performs also in
3 Not implemented in our current prototype.

Semantic Caching in Schema-Based P2P-Networks 181

schema-based super-peer networks, remains to be investigated. Wierzbicki et al.
compare in [6] some conventional cache replacement policies in the case of P2P
traffic and show that the LRU policy performs very well. An important addi-
tional challenge for P2P networks, and in particular super-peer networks is the
placement of caches. While in client-server architectures the caches are placed
at the clients, in P2P networks there is a need to define the most appropriate
location. In addition, interesting for our implementation are semantic caching
approaches investigated in the context of web caches. The traditional approach
of web caches consists of using dedicated machines for centralized caching of
web pages. A decentralized P2P-approach has been shown in SQUIRREL [7].
However, the course of action there does not use semantic caches or investigates
the cache management at the peers. Lee and Chu present in [8] caching via
query matching techniques for Web databases. They also only consider disjoint
conjunctive predicates, the caches are located in the wrappers.

3 Semantic Caching in Super-Peer Networks

Super-peer based P2P infrastructures are usually based on a two-phase routing
architecture, which first routes queries in the super-peer backbone, and then dis-
tributes them to the peers connected to the super-peers. Our routing mechanism
is based on two distributed routing indices storing information to route within
the super-peer backbone and between super-peers and their respective peers.
Super-peers in Edutella [9] employ routing indices which explicitly acknowl-
edge the semantic heterogeneity of schema-based P2P networks, and therefore
include schema information as well as other possible index information. The
HyperCuP [10] topology is used to organize the super-peers into a structure
that enables efficient and non-redundant query broadcasts. Peers connect to
the super-peers in a star-like fashion, providing content and content metadata.
The characteristics of the super-peer backbone are exploited for maintaining the
routing indices and executing distributed query plans.

3.1 Answering Queries Using Semantic Caches

Semantic caching is simply storing queries and their results. The stored queries
and their respective results are called views. For our approach, we assume that
“only” conjunctive queries are used, which are equivalent to select-project-join
queries. Conjunctive queries are considered as the most used query class. In order
to answer an incoming query from the cache, we have to rewrite it in terms of the
stored views. The major obstacle for query rewriting is the query containment
problem. The problem is known to be NP-complete [11], even for conjunctive
queries without built-in atoms. The primary source of complexity is the fact
that there are an exponential number of candidate rewritings that need to be
considered. However, there are algorithms which efficiently generate maximally-
contained rewritings (MCR) of a conjunctive query using a set of conjunctive

182 I. Brunkhorst and H. Dhraief

views. We decided to use the MiniCon algorithm to answer incoming queries
using the cached views and content, since it is one of the established well-scalable
algorithms for answering queries using views.

3.2 Cache Management Strategies in Edutella

Cache Locality: In order to place the caches and to implement semantic caching
in Edutella, it is expedient to look at the different peer types and their char-
acteristics. We distinguish two types of peers in Edutella: Super-Peers, which
maintain the backbone structure of the network, they facilitate the best net-
work connections and highest availability, as well as high capacity for processing
messages. Peers are connected via slow connections and sometimes are only
available for short durations only. These nodes are run on end-users’ computers.
The super-peers seem to be the ideal place for caching, in order to attend an op-
timal exploitation of caching. Due to their characteristics, the super-peers offer
the best requirements for caching. Super-peers are responsible for query routing
according to routing indices and query processing as well.

Cache Replacement Strategies: The cache replacement policy defines a strat-
egy for replacement of items when additional space is needed in the cache. The
caches that are placed on the super-peers must be maintained according to this
strategy. The strategy is used to assign values to the items in the cache, the
items with the lowest value are then replaced first. In the traditional systems we
distinguish between temporal locality [2] and spatial locality. Temporal locality
expresses the concept that items that have been referenced recently are likely
to be referenced again in the near future. A “hard and fast” policy does not
exist. Each of the replacement policies has both advantages and disadvantages.
The choice of a certain replacement policy depends on the use case. The most
known replacement strategies are FIFO - First In First Out, Random, LRU -
Least Recently Used and LFU - Least Frequently Used. In our approach we only
use the LRU-Policy, a strategy that is based on the temporal locality principle,
i.e. the items which have not been used for the longest time are replaced.

Cache Misses Issues: If a query cannot be completely answered using the local
cache, the query is forwarded to the neighboring super-peers according to the
HyperCuP protocol. This technique of handling cache misses is referred to as
faulting. The query and the obtained results are then cached at all super-peers
on the path from the requester to the provider.

3.3 Answering Queries in Edutella Using MiniCon

Queries in Edutella are formulated in QEL4, a query language based on datalog.
The MiniCon algorithm [12] aims at finding the maximally-contained rewriting
(MCR) of a conjunctive query using a set of conjunctive views. It starts simi-
lar to the bucket algorithm [13], i.e. in the first step it maps each query subgoal

4 QEL Query Exchange Language: http://edutella.jxta.org/spec/qel.html

http://edutella.jxta.org/spec/qel.html

Semantic Caching in Schema-Based P2P-Networks 183

Table 1. Example MiniCon Descriptions (MCD)

V h ϕ G

V1(A,B) A → A, B → B A → X, B → Y g1, g2, g3

V2(C) C → C X → C g1,g2

V3(Z) Z → Z Y → Z g3

V4(D, E, D) D → D, E → E, F → D X → D, Y → E, X → F g1, g2, g3

to a view subgoal and determines if there is a partial mapping from the query
subgoal to the view subgoal. Let’s consider the following query:
Q3(X, Y) : −hasSubject(X, “Edutella”), hasLanguage(Y, “de”), hasRating(X, “good”),

which can be separated into the subgoals g1(X) : −hasSubject(X, “Edutella”),
g2(Y) : −hasLanguage(Y, “de”) and g3(X) : −hasRating(X, “good”),

and the views:

V1(A,B) : − hasSubject(A, “Edutella”), hasLanguage(B, “de”), hasRating(A, “good”)

V2(C) : − hasSubject(C, “Edutella”), hasRating(C, “good”)

V3(Z) : − hasLanguage(Z, “de”)

V4(D, E, F) : − hasSubject(D, “Edutella”), hasLanguage(E, “de”), hasRating(F, “good”)

Once the partial mappings are found, the algorithm focuses on variables rather
than on subgoals. The subgoal g of a query Q is mapped to a subgoal gi of a
view V according to specific rules (for details see [12]). The set of such query
subgoals that have to be mapped to subgoals from one view (and the mapping
information) is called a MiniCon Description (MCD).

The MCDs (generalized buckets) that only overlap on distinguished view vari-
ables are combined. Given a query Q, a set of views V and the set of MCDs C
for Q over the views in V , the only combinations of MCDs that result in non-
redundant rewritings of Q are of the form C1, C2, ..., Cl, where

Subgoals(Q) = Goals(C1) ∪ Goals(C2) ∪ . . .

∀i �= j, Goals(Ci) ∩ Goals(Cj) = ∅.

Table 1 shows the corresponding MiniCon descriptions for the Query Q3 and
the Views V1 to V4 as presented above: The column h is representing a homo-
morphic mapping of variables from the head, and ϕ is showing the mapping of
the variables from the query to the variables from the view. All combinations of
the MCDs where the elements from G contain all the subgoals of the Query Q
are valid rewritings of the query, in this example V1, V4, and the combination of
V2 and V3.

4 Simulation

4.1 Experimental Setup

In addition to implementing and testing the Semantic Caching in the Edutella net-
work, we simulated a larger network using a discrete simulation framework [14].

184 I. Brunkhorst and H. Dhraief

We extended the existing simulation framework [15] with an implementation for a
semantic cache based on the MiniCon algorithm. Queries are routed using the Hy-
perCuP protocols. For the simulation of caching strategies we only use a topology
consisting of randomly distributed peers and super-peers. In the Edutella network
we distinguish between provider and consumer peers. Provider peers are provid-
ing data to the other peers and can be queried for metadata, consumer peers are
used to send queries to the network and retrieve the results.

Assumptions: Provider and Consumer peers join and leave the network on a
regular basis. Provider peers are considered more stable than consumer peers,
and stay in the network for a longer duration. Super-Peers are considered well
maintained and highly available, they remain integrated into the topology the
whole time. Content is not simulated in the network, instead each provider peer
has a fixed probability of 10 percent for generating a response for a received
query. We assume that there won’t be a fixed schema, only that the set of schema
properties and values is identifiable and consists of arbitrary many named ele-
ments. Each of the query literals represents a combination of a schema property
and a value, e.g. hasSubject(X, “Edutella”). We assume a Zipf-like distribution
of schemas because it is a validated law on distributions [15] in many empiri-
cal studies and recent research has shown that it holds for the internet as well.
Another assumption is that quite often new posed queries are refinements of
previous queries, due to the fact that the initial query sometimes doesn’t give
the wanted results.

Hypothesis: Caching implemented in the super-peer backbone of the P2P net-
work should reduce the amount of messages routed to the data providing peers.
With semantic caching the benefit should be larger than with classic caching algo-
rithms, since not only the exact matching cache entries are used to answer the re-
quest. The distribution of query literals should also have an effect on the hit/miss
ratio of the cache, especially if new queries are refinements of already sent queries.

Experiments: For the experiments we simulated a network of 500 provider,
1000 consumer and 64 static super-peers. The Zipf-distribution used for this
simulation consisted of 48 properties and 16 values for constructing query literals.
Each query consisted of up to three different literals.

Different caching strategies: The first simulation compares five different
caching strategies, including a network without caching. For classic and semantic
caching, two different configurations were used. In the first setup only data from
providers connected to the corresponding super-peer is cached, messages in the
super-peer backbone are transmitted without caching. In the second approach
all messages on a super-peer are cached.

Influence of query property/value distribution: To show the influence of
the type of distribution of query literals, a simulation was performed with three
different configurations. For the first run the properties and values of query lit-
erals were uniformly distributed. The second and third simulation uses the same

Semantic Caching in Schema-Based P2P-Networks 185

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

semantic cachingsemantic caching
 local

 providers only

trad. cachingtrad. caching
 local

 providers only

no caching

N
um

be
r

of
 M

es
sa

ge
s

Caching Strategy

Number of Messages regarding Caching Type

Provider: Queries Received
Super-Peer: Queries Forwarded

Super-Peer Queries Answered from Cache

(a) Caching strategies

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

refined querieszipfuniform

N
um

be
r

of
 M

es
sa

ge
s

Query Literal Distribution

Number of Messages for different Query Literal Distributions

Provider: Queries Received
Super-Peer: Queries Forwarded

(b) Query distributions

Fig. 1. Simulation Results

Zipf distribution as in the first experiment. Additionally, in the third simulation
a new query is always generated by extending a previously sent query.

4.2 Results

Figure 1a shows the total (accumulated) number of messages in the network after
the consumers sent 10000 queries. Every caching strategy reduces the amount of
messages transmitted in the system. Without caching the providers alone had to
process approx. 5.5×106 messages to answer the posed queries. While traditional
caching in the super-peers reduces the load for the provider to approx. 4.5× 106

messages, the use of semantic caching further reduces the amount of messages to
2.7×106 (for more details see [16]). Figure 1b shows the results for three different
query literal distributions. Semantic caching works best for Zipf distributions,
and where new queries are refinements of previously posed queries.

5 Summary and Future Work

Our simulations and experiments have shown, that semantic caching can be used
to optimize routing in our schema-based P2P infrastructure. Especially for net-
works, where a large number of queries is similar, i.e. distributed according to
Zipf’s law, the semantic caching approach improves the efficiency more then clas-
sic caching does. By implementing the MiniCon algorithm we have an efficient
way to find the maximally-contained rewriting of a given query using the views
contained in the caches. An interesting extension would be a more efficient han-
dling of cache misses using remainder queries. Instead of forwarding the query
in case answering from the cache is not possible, the query is checked if it can be
split (rewritten) in a “cache answerable” and a “cache non-answerable” part. The
“cache non-answerable” part, called remainder query is forwarded to the other
super-peers in the backbone. If the query can completely be answered from the
cache, then we obtain a null remainder query, i.e., no communication with other

186 I. Brunkhorst and H. Dhraief

super-peers is needed. The advantage of this approach is a lower network load.
However, the query rewriting implies an increased complexity.

References

1. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmr,
M., Risch, T.: EDUTELLA: A P2P Networking Infrastructure based on RDF. In:
Proc. 11th WWW Conference, Hawaii, USA (2002)

2. Dar, S., Franklin, M.J., Jónsson, B., Srivastava, D., Tan, M.: Semantic data caching
and replacement. In: Proc. 22th VLDB, Morgan Kaufmann Publishers Inc. (1996)
330–341

3. Godfrey, P., Gryz, J.: Answering queries by semantic caches. In: Proc. 10th DEXA,
Florence, Italy (1999)

4. Luo Li, Birgitta König-Ries, N.P., Makki, K.: Strategies for semantic caching. In:
Proc. 12th DEXA. Volume 2113 of Lecture Notes in Computer Science., Springer
(2001) 99–106

5. Kangasharju, J., Ross, K.W., Turner, D.A.: Adaptive replication and replacement
in P2P caches. Technical Report EURECOM+1102, Institut Eurecom, France
(2002)

6. Wierzbicki, A., Leibowitz, N., Ripeanu, M., Wozniak, R.: Cache replacement poli-
cies revisited: The case of p2p traffic. In: 4th. GP2P Workshop, Chicago, Il. (2004)

7. Iyer, S., Rowstron, A., Druschel, P.: Squirrel: A decentralized peer-to-peer web
cache (2002)

8. Lee, D., Chu, W.W.: Towards intelligent semantic caching for web sources. J.
Intell. Inf. Syst. 17 (2001) 23–45

9. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I.,
Loser, A.: Super-peer-based routing and clustering strategies for RDF-based peer-
to-peer networks. In: Proc. 12th WWW Conference, Budapest, Hungary (2003)

10. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCuP—Hypercubes, Ontolo-
gies and Efficient Search on P2P Networks. In: International Workshop on Agents
and Peer-to-Peer Computing, Bologna, Italy (2002)

11. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10
(2001) 270–294

12. Pottinger, R., Levy, A.Y.: A scalable algorithm for answering queries using views.
In: VLDB ’00: Proc. 26th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc. (2000) 484–495

13. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: VLDB ’96: Proc. 22th International Confer-
ence on Very Large Data Bases, Morgan Kaufmann Publishers Inc. (1996) 251–262

14. Cowie, J., Liu, H., Liu, J., Nicol, D.M., Ogielski, A.T.: Towards realistic million-
node internet simulation. In: PDPTA. (1999) 2129–2135

15. Siberski, W., Thaden, U.: A simulation framework for schema-based query routing
in p2p-networks. In: Proc. Workshop on P2P Computing and Databases, EDBT,
Heraklion, Greece (2004)

16. Brunkhorst, I., Dhraief, H.: Semantic caching in schema-based p2p-networks.
Technical report, L3S Research Center (2005) http://www.l3s.de/php/
publikation.php.

http://www.l3s.de/php/publikation.php
http://www.l3s.de/php/publikation.php

Aggregation of a Term Vocabulary for P2P-IR:

A DHT Stress Test�

Fabius Klemm and Karl Aberer

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

{Fabius.Klemm,Karl.Aberer}@epfl.ch

Abstract. There has been an increasing research interest in developing
full-text retrieval based on peer-to-peer (P2P) technology. So far, these
research efforts have largely concentrated on efficiently distributing an
index. However, ranking of the results retrieved from the index is a crucial
part in information retrieval. To determine the relevance of a document
to a query, ranking algorithms use collection-wide statistics. Term fre-
quency - inverse document frequency (TF-IDF), for example, is based on
frequencies of documents containing a given term in the whole collection.
Such global frequencies are not readily available in a distributed system.
In this paper, we study the feasibility of aggregating global frequencies
for a large term vocabulary in a P2P setting. We use a distributed hash
table (DHT) for our analysis. Traditional applications of DHTs, such as
file sharing, index keys in the order of tens of thousands. Aggregation of a
vocabulary consisting of millions of terms poses extreme requirements to
a DHT implementation. We study different aggregation strategies and
propose optimizations to DHTs to efficiently process large numbers of
keys.

1 Introduction

Performing Information Retrieval (IR) on top of Peer-to-Peer (P2P) systems
has become an active research field in recent years. In such systems, the peers
organize to jointly build a distributed index. Most of the work in P2P-IR has
concentrated on efficiently distributing the index. In [12], for example, the au-
thors use a distributed hash table (DHT) to map keywords to responsible peers
for indexing. However, this and similar approaches assume that global statistics
of the term vocabulary are available and ready to use for, e.g., calculating top-k
results.

Another indexing technique is presented in [15] and is based on CAN [11].
Documents and queries are represented as latent semantic indexing (LSI) vec-
tors in a Cartesian space. This space is mapped into a structured P2P network
keeping semantically related indexes co-located. Once again, global statistics of
� The work presented in this paper was carried out in the framework of the EPFL

Center for Global Computing and supported by the Swiss National Funding Agency
OFES as part of the European FP 6 STREP project ALVIS (002068).

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 187–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 F. Klemm and K. Aberer

the term vocabulary, which are necessary to compute the weights for the vectors
in the Cartesian space, are assumed to be available.

In this paper we study the aggregation of global statistic of a large term vo-
cabulary using DHTs. Our main contributions are: a) We introduce optimization
strategies that improve the performance of a DHT to efficiently handle concur-
rent insertions of very large numbers of keys. b) We present an analysis of term
vocabulary aggregation for Internet-scale full-text retrieval.

Our paper is structured as follows: Section 2 gives a brief overview of struc-
tured P2P systems. In section 3 we introduce our optimization strategies for
DHTs. Results of some practical experiments are presented in section 4. Sec-
tions 5 and 6 finish with discussion and conclusions.

Layer 3

Layer 2

Layer 1 TCP/IP

Structured Overlay Network

IR and other applications

mapping

term

key

IP address

unit of addressing

mapping

send IP addr, msg()

route key, msg()

calls

calls

calls

(a)

peer A

voc. of peer A

neighbor 1

neighbor 2

neighbor 3

neighbor 4

(b)

Fig. 1. a) 3-layered architecture b) Insertion of a term vocabulary

2 Overview of Structured P2P Systems

We first provide a short introduction to distributed hash tables (DHTs), also
called structured overlay networks. For a clearer presentation, we structure a
peer into three layers (figure 1(a)).

The lowest layer provides communication between two peers using TCP/IP.
It provides the service send(IP address, message), which sends a message to the
peer listening at the given IP address. This service is used by the structured
overlay network on layer 2 as well as applications on layer 3.

Layer 2 is the routing layer. It provides the service route(key, message), which
routes a message to the peer responsible for the key. It creates and maintains
a routing table, which, given a key, determines the IP of the next hop peer for
forwarding the message. Therefore, layer 2 provides a key → IP mapping. Most
DHTs, such as CHORD, Pastry, or P-Grid [14,13,1] create routing tables of size

Aggregation of a Term Vocabulary for P2P-IR: A DHT Stress Test 189

O(log(n)), where n is the number of peers in the system. The routing entries are
chosen in such a way that the resulting graph has small world properties [10,8].
Routing a message between any two peers is then guaranteed to take O(log(n))
overlay hops on average.

On layer 3 we have the application that is using the DHT. In our case, it is
an IR application, which inserts a local term vocabulary into the DHT using a
route(key, message) function provided by layer 2. To perform the mapping of a
term to a key layer 3 uses a hash function, which is usually provided by layer 2.

3 Aggregation of Term Vocabulary

This section describes aggregation local document frequencies frequencies to
global frequencies. We will first describe the usage scenario and then discuss
insertion strategies.

3.1 Usage Scenario

Each peer stores a local document collection. From its local document collection,
each peer creates a local term vocabulary. For each term in the local vocabulary,
a peer determines the local document frequencies, i.e. the number of documents
the term appears in. Each peer inserts its complete vocabulary together with the
local frequencies into the DHT. Each term and its local frequency are packed
into a message and routed using a key that has been created by hashing the term.
The peer responsible for the key receives the message and stores the containing
(term, frequency) pair in its local database. For each term, there is exactly one
responsible peer. Therefore, for a given term there is one peer that will receive
all local frequencies of this term to calculate its global frequency.

Assume a small document collection of 200,000 documents per peer, which
has a term vocabulary of about 190,000 terms 1. All peers concurrently insert
their vocabulary into the DHT. We will now present several strategies to handle
such a flood of messages and discuss their advantages and disadvantages.

3.2 Blunt Message Handling

When an application calls route(key, message), the straight-forward procedure
is to use the routing table to map the key onto the next-hop IP and pass the
message to layer 1 to be sent to the next hop. This strategy works fine when only
a couple of hundreds to a few thousands of messages have to be inserted and
when those messages are reasonably large. However, when inserting a term vo-
cabulary, sending millions of small messages containing only a (term, frequency)
pair individually is extremely inefficient. The overhead of message headers is
high and message compression is ineffective for small messages.
1 We computed this value from a sample collection of Reuters news articles avail-

able at http://about.reuters.com/researchandstandards/corpus/. The growth of the
vocabulary follows Heap’s law [9].

190 F. Klemm and K. Aberer

3.3 Splitting the Vocabulary into Blocks

Our second strategy optimizes the insertion process by processing (term, fre-
quency) pairs in blocks. Figure 1(b) shows for peer A how the vocabulary is
divided into blocks. Most DHTs use randomized hashing to achieve a uniform
distribution of keys. In this case, about 1/2 of the terms in the vocabulary maps
to peers on the left side of the circle and are therefore sent to neighbor 4 as next
hop. 1/4 will be sent to neighbor 3, 1/8 to neighbor 2, 1/16 to neighbor 1, and
1/16 maps to peer A itself. In general, O(Log(n)) blocks have to be sent.

This scheme has the following advantages: a) some of the blocks are large
enough to be efficiently compressed. b) Shipping few large packets over TCP/IP
is faster than shipping many small packets of only a few bytes.

However, in which layer of the architecture should we split the vocabulary
into blocks? If we do it in layer 3, it has to know about the key → IP mapping of
layer 2, which should be hidden to upper layers. Handing the whole vocabulary
down to layer 2 would require making the interface of layer 2 application-specific,
which is also not a desirable solution. Therefore, we propose a third strategy,
message queueing at layer 1.

3.4 Message Queuing

In this strategy layer 3 and 2 do not have to deal with message packing at all.
Messages with single (term, frequency) pairs are handed over to layer 1 with the
send(IP address, message) function. Layer 1 takes care of efficiently shipping
messages to their next-hop IP. To build blocks of messages layer 1 maintains a
queue for each outgoing IP address. As the size of the routing table at layer 2
is O(log(n)), we also need O(log(n)) outgoing IP queues at layer 1. Each queue
stores messages according to the following scheme: Each queue has a timer and a
threshold. Messages are delayed in the queue until either the threshold is reached
or a timeout occurs. A timer is started when a message is inserted into an empty
queue. When the message threshold is reached or a timeout occurs all messages
in the queue are packed together. This pack of messages is then compressed and
sent to the next-hop IP as one large packet.

This approach has the following advantages: a) it is completely hidden to
upper layers: many small messages can be inserted into the DHT in bursts and
efficiently processed at layer 1. b) It is more flexible compared to approach 2:
messages from other peers that have to be forwarded can be packed together
with messages originating from the same peer.

The threshold should be set high enough for compression to be effective, but
not too high to avoid unnecessary delays. The queue threshold can be defined
in either number of message or number of bytes. To avoid that time critical
messages, such as queries, are delayed, we added a message flag that specifies
whether a message can be delayed. Time-critical messages are instantly sent,
irrespective of timeout and threshold.

Aggregation of a Term Vocabulary for P2P-IR: A DHT Stress Test 191

3.5 Avoiding Flooding

When all peers in the network concurrently start to insert their vocabularies,
the network can be flooded and break down if no additional measures are taken.
In this subsection, we will present mechanism to avoid such an overload of the
system.

Priority queues. As first mechanism to avoid overload we propose using pri-
ority queues: We have two types of messages: a) the messages that are already
in the system and are travelling (over several overlay hops) to their final desti-
nation. b) The messages that are about to be inserted into the system (by an
application on layer 3). The first type of messages should have priority over the
newly inserted messages. We give higher priorities to messages that have been
in the system for a long time. Such messages are close to their final destinations
and therefore will soon get out of the system to make space for new messages.

Receiver feedback. The second mechanism is receiver feedback. We are in an
environment of heterogeneous peers, i.e. some peers have more processing power
than others. It is therefore important to avoid that slower peers are flooded
with messages. TCP flow control already does some work, however, cannot fully
prevent slower peers from being overloaded. Therefore, we introduced a feedback
mechanism on top of TCP. A peer (at layer 1) can forward the next message
to the same IP address only after having received an acknowledgement, which
the receiver returns after the message has been processed. The delay of this
acknowledgement thus depends on the current load of the receiving peer.

4 Experimental Results

We performed experiments in the local EPFL gigabit LAN on 64 SUN Ultra 10
with 360 MHz CPU and 256 MB RAM. The results are for 4, 8, 16, 32, and
64 peers, one peer running per machine. We implemented our DHT in JAVA.
Messages are objects, which are serialized and compressed at layer 1. For com-
pression we use the java GZIP classes. The queue threshold is 100 messages and
the timeout 1s. Figure 2(a) shows the results of our runs for vocabularies of
96,000 and 192,000 terms per peer.

The first observation we can make is that the execution time to insert all
vocabularies is about twice as long for 192K terms as for 96K terms. We therefore
conclude that our implementation is stable.

Second, we observe that the insertion time grows considerably slower than the
total number of terms: with 192K terms per peer, increasing the total number
of terms from 4 ∗ 192K ≈ 770K to 64 * 192K ≈ 12M, a factor of 16, increases
the total insertion time from 460s to 1600s, which is a factor of 3.5.

Figure 2(b) shows experiments with varying queue thresholds of 1, 10, and 100
messages. A threshold of 1 means that messages are not queued, i.e. each mes-
sages is sent individually. The number of keys inserted by each peer is 19,2K,
i.e. 10% of the amount in figure 2(a). With queue threshold t set to 10, the

192 F. Klemm and K. Aberer

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70

tim
e

to
 in

se
rt

 [s
]

number of peers

192K
96K

(a)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70

tim
e

to
 in

se
rt

 [s
]

number of peers

t=1
t=10

t=100

(b)

Fig. 2. Insertion times for a) varying voc. sizes and b) varying queue thresholds

insertion time decreases already significantly by 80%. A queue threshold of 100
messages leads to a decrease of 89%. The decrease in bandwidth consumption
is 87% for t = 10 and 97% for t = 100. The reason for this dramatic decrease
is that Java produces very large object serializations, which can be very well
compressed. Compression of multiple small messages can therefore increase the
performance significantly.

5 Discussion

5.1 Redistribution of Aggregates

Once the local term frequencies are aggregated, the global frequencies have to be
distributed to interested peers. If all peers are interested in the same vocabulary,
we could simply broadcast the global frequencies. Efficient broadcast strategies
in DHTs have been presented in recent research papers, such as in [6,7]. However,
such an assumption is not realistic in large networks. Another possibility is that
aggregates are streamed to interested peers. This could be done using a multicast
protocol, such as presented in [4,5]. The integration of such a protocol is part of
future work.

5.2 Fighting Malicious Peers

As all peers are allowed to insert term-frequency pairs, some peers could try
to insert false values to change ranking to their advantages. Trust in P2P is
not the focus of this paper. Nevertheless, we sketch possible solutions: a) There
exist environments where all peers in the network are trusted, e.g. when they
belong to a company network or a closed P2P group of cooperating universities.
Malicious behavior would lead to the exclusion from the group. b) False frequen-
cies that are excessively high could be detected by comparing to former values
of the global frequencies of this term. However, a peer could still repeatedly insert

Aggregation of a Term Vocabulary for P2P-IR: A DHT Stress Test 193

small values for the same term to increase its frequency. A solution could be to
monitor, which peer is inserting which frequencies to detect malicious pees.

Trust in P2P is a large research area on its own. We believe that our appli-
cation of DHTs is not fundamentally different from other applications and that
solutions in trust management would therefore be applicable.

5.3 Updating Term Frequencies

Local document collections and therefore term vocabularies keep changing over
time. It is necessary to update term frequencies. One possible approach might be
to re-run the complete aggregation process, e.g. every couple of days or weeks,
depending on how fast the local document collections change. Another option
might be to instantly insert updates. The responsible peer that aggregates fre-
quencies for a certain term would then have to estimate update rates to calculate
approximate global term frequency. Further problems during the aggregation
process can arise when peers fail. Handing peer failures and replication of data,
however, is orthogonal to this work. We leave improvements in these areas to
future work.

5.4 Scaling It Up

In our experiments the size of the local vocabularies was about 200K terms,
which corresponds to a collection of roughly 200K documents. The insertion
time with 64 peers was approx. 30 min. Let’s assume a peer stores 5 million
documents. The corresponding term vocabulary would contain about 1 million
terms (according to Heap’s law [9]) and could therefore be inserted in less than 3
hours with 64 peers (five times the time necessary than for the 200K vocabulary).
In a network of 2000 peers the insertion time would be approx. 5 hours. Such
a network could thus maintain the global term vocabulary for a collection of 10
billion documents, about the size of the Google index a the time of writing.

6 Conclusions

In this workshop paper we showed that it is possible to aggregate an Internet-
scale term vocabulary with P2P technology. This result is important as many
P2P-IR systems require global document frequencies of terms for efficient index-
ing and ranking. We proposed mechanisms to improve standard DHTs to handle
very large numbers of messages. These strategies can serve as suggestions for im-
proving existing DHT implementations. Aggregation of a term vocabulary is only
one (though very important) possible application that can benefit from our im-
provements. In principle our techniques using message packing, priority queues,
and receiver feedback are necessary for efficiently implementing any distributed
application that sends very large numbers of small messages.

As future work, we are planning experiments in a more ”hostile” environment
than the university Intranet, e.g. in PlanetLab 2. In such an environment we
2 www.planet-lab.org

194 F. Klemm and K. Aberer

expect more unevenly loaded peers and large variations in network delays as
well as peer failures, which will require refinements of our queueing strategies.

References

1. K. Aberer. P-Grid: A self-organizing access structure for P2P information systems.
Sixth International Conference on Cooperative Information Systems, 2001.

2. K. Aberer, F. Klemm, M. Rajman, and J. Wu. An Architecture for Peer-to-Peer
Information Retrieval. 27th Annual International ACM SIGIR Conference (SIGIR
2004), Workshop on Peer-to-Peer Information Retrieval, 2004.

3. A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable multi-
attribute range queries. In SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pages 353–366, New York, NY, USA, 2004. ACM Press.

4. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: High-bandwidth content distribution in a cooperative environment.
In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS03), Berkeley, CA, 2003.

5. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: A large-scale
and decentralized application-level multicast infrastructure. In IEEE Journal on
Selected Areas in Communications (JSAC) (Special issue on Network Support for
Multicast Communications), October 2002.

6. S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient broadcast in struc-
tured p2p networks. In IPTPS, pages 304–314, 2003.

7. A. Ghodsi, L. O. Alima, S. el Ansary, P. Brand, and S. Haridi. Self-correcting
broadcast in distributed hash tables. In Series on Parallel and Distributed Com-
puting and Systems (PDCS’2003), ACTA Press, Calgary, 2003.

8. S. Girdzijauskas, A. Datta, and K. Aberer. On small world graphs in non-uniformly
distributed key spaces. 2005.

9. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Aca-
demic Press, Inc., Orlando, FL, USA, 1978.

10. J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In
Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000.

11. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. 2001.

12. P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. Middle-
ware03, 2003.

13. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), 2001.

14. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings of
ACM SIGCOMM, 2001.

15. C. Tang, C. Xu, and S. Dwarkadas. Peer-to-Peer Information Retrieval Using
Self-Organizing Semantic Overlay Networks. In SIGCOMM, 2003.

Peer Group-Based Dependency Management in

Service-Oriented Peer-to-Peer Architectures

Sascha Alda

Department for Applied Computer Science, University of Bonn
Roemerstrae 164, 53117 Bonn, Germany

alda@cs.uni-bonn.de

Abstract. Dependency management in service-Oriented peer-to-Peer
architectures aims at handling functional dependencies between a public
service hosted by a service providing peer and all consumer peers that
rely on that service. The analysis of dependencies on consumer peers is
important for supporting the adaptation of a public service. The unco-
ordinated adaptation of public services potentially leads to malfunctions
in the environment of depending peers. In this paper, a novel way for
handling service dependencies in peer-to-peer architectures is proposed.
This approach suggests that peers of a peer group agree on a common
adaptation policy that prescribes how service providing peers have to
deal with potential dependencies before an adaptation can be pursued.

1 Introduction

Service-oriented peer-to-peer architectures leverage the original notion of central-
ized service-oriented architectures (SOA) by enabling hosts (peers) to function as
provider, consumer, and registrar of services at the same time. This architectural
style facilitates new ways for the composition of services towards applications. A
peer may compose services from service providing peers with local components,
which in turn may serve as the implementation of a new service provided by the
same peer. Other third party peers locating and using that service thus hold a
direct and a transitive dependency on both provider peers given in this scenario.
In peer-to-peer architectures, dependencies cannot be assumed as static but can
be violated due to two reasons:

– owing to the fluctuating topology of peer-to-peer architectures (peers tend
to fail or are unavailable), services can become unavailable. Affected peers
that deploy applications relying on a failed service are no longer able to offer
a correct run of these applications and malfunctions may occur.

– the operator of a provider peer is always capable of adapting the interface or
the implementation of a peer service without any prior notice to depending
consumers. Malfunctions can also occur within the consumer’s environment.

An efficient dependency management for service-oriented peer-to-peer architec-
tures turns out to be indispensable for guaranteeing a stable environment in

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 195–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 S. Alda

which applications are accomplished to operate in a reliable manner. However,
existing implementations of peer-to-peer architectures cover this management
issue insufficiently. Existing general-purpose notions for describing and identi-
fying dependencies among services (or software entities in general) prove to be
inflexible for peer-to-peer architectures. The intention of this paper is to dis-
cuss the requirements of dependency management accurately and, moreover, to
explain why existing approaches fail to serve as a solid solution for this man-
agement activity. This present paper also outlines main aspects of the DeEvolve
peer-to-peer platform [1] [2] that incorporates novel approaches for managing
dependencies within a peer-to-peer architecture. Integral part of DEVOLVE is
a runtime environment for the deployment of component-based peer services.
DeEvolve features an adaptation environment enabling component assemblers
to flexibly define and to adapt compositions of peer services during runtime.
Any attempt to adapt a composition has to precede an analysis of consumer de-
pendencies, to reveal dependencies to current and potential consumers. Depen-
dencies impose an adaptation policy that prescribes how provider peers within
a distinct group have to account for dependencies, and how these are to be
resolved.

The goal of this paper is to present our recently unpublished material for
analyzing consumer dependencies in service-oriented peer-to-peer architecture.
In the next section, we first summarize some related work. In section 3 the
DeEvolve platform is introduced for a better understanding of the rest of the
paper. The fourth section features a description of the analysis of consumer
dependencies. Section 5 concludes the paper by summarizing the main aspects
as well as future directions.

2 Related Work

Recent conventional implementations of service-oriented architectures have been
realized in terms of Web Services (architectures) [3]. In a typical Web Services
scenario, providers of services are not aware of clients that have located and are
making use of their services. Hence, intended adaptations to public Web Services
deployed on a provider host (e.g. changing the WSDL description) cannot be
communicated with any depending client. The DEVOLVE platform enables con-
sumer peers to subscribe into a list of depending peers that is maintained by each
service providing peer. The service providing peer is then capable of instantly
analyzing all registered dependencies and of contacting these dependent peers
in case of any conflicting changes. The ability of peers to organize themselves
into self-governed peer groups constitutes one of the distinguishing character-
istics of peer-to-peer architectures. The concept of self-organization has mainly
been implemented by the JXTA framework [4] making it possible for peers to
detect existing peer groups, to apply for a group membership and finally to join
a group. Recent projects have utilized this framework for instance for building
student forum systems [5]. The JXTA framework typically supports peer group

Peer Group-Based Dependency Management 197

organization with respect to functional properties (e.g. retrieving and sharing
documents). In our approach, we adopt the peer group idea for enabling peers
to agree upon a common adaptation strategy and, thus, a non-functional prop-
erty. The management of dependencies between distributed services has been
studied by different authors [6] [7] [8]. In accordance to our work, all approaches
represent dependencies in a graph-like structure, thus allowing the analysis of
transitive dependencies. Ensel et al. [6] provide an extensive catalogue of pos-
sible parameters and metrics for rating dependencies. Our approach adopts the
idea of rating dependencies to allow a fine-grained analysis of dependencies. In
contrast to Ensel’s work, we provide more accurate meanings (semantics) of the
applied parameters. All mentioned approaches assume global and fixed strate-
gies and conditions for reacting on dependencies. In our approach, however, these
strategies and conditions can be formulated dynamically in terms of adaptation
policies by peer groups. Thus, peer groups are able to react to new or updated
conditions in their self-governed application environment.

3 The DeEvolve Platform

The DeEvolve peer-to-peer architecture is a runtime environment for deploying
component-based services. These services consist of local and remote compo-
nents. Remote components serve as an interface for external peer services that
are provided and deployed by other third-party remote peers. Any composition
can be published as a peer service that can in turn be discovered and integrated
by other consumer peers. A peer adopts two different roles within a peer archi-
tecture: the role of a provider and that of consumer of peer services.

DeEvolve supports two different types of compositions, orchestration and
choreography composition (figure 1). Orchestration corresponds to the conven-
tional client-server architectural style, but with more than one server (i.e.
service providing peer) involved. Choreography composition allows for workflow-
like structures with several peers transitively connected and without a single

Fig. 1. Composition Types supported by DeEvolve

198 S. Alda

established control peer. We have developed a new composition language called
PeerCAT [1] for describing the composition of services to new applications. A
description of a composition includes meta-information about the structure of a
composition, about the involved components and the dependencies among them.
We build tools like the DeEvolve Console that allows to define compositions in
both textual and graphical ways.

DeEvolve is built on top of the JXTA framework [4], in particular to realize
fundamental mechanisms for publishing and discovering peer services within
a peer-to-peer network. For the actual description of peer services, so-called
advertisements are used, which contain any necessary information to bind the
peer service (e.g. network address, port number) as well as an unstructured text
used to envision the semantics of a distinct peer service. These advertisements
are published to a number of well-known rendezvous peers which are in the
scope of the providing peer (see [4] for more information of these discovery
mechanisms). DeEvolve also adopts JXTA’s peer group concept enabling peers
to organize into self-governed peer groups despite any network boundaries. Like
peer services, peer groups are described by advertisements which are used to
announce the existence of peer groups. Having located these advertisements,
peers are capable of applying and of joining to that group.

DeEvolve realizes a API to provide operations for adapting single compo-
nents as well as compositions of local and remote components (peer services)
during runtime. The idea is to adopt operations for the creation of component-
based applications (e.g., setting parameters of components, adding components,
connecting components) also for the adaptation of these (e.g. changing the con-
nection of two components, removing components). The incentive for adapting
compositions is provoked either by user-triggered demands or by exceptions that
have occurred in the environment (e.g. unavailability of provider peers). DeE-
volve is responsible to detect exceptions and to determine the consequences to
affected local components. Handler routines can be defined for establishing re-
actions to handle occurred exceptions. These routines can either be executed
autonomously by DeEvolve or in interaction with an operator.

4 Dependency Analysis in DeEvolve

This section elucidates the approach on analyzing consumer dependencies in a
service-oriented peer-to-peer architecture. The model that our approach is based
on presumes two assumptions. The first assumption implies that any consumer
peer can subscribe to a list maintained by a provider peer if the peer relies on a
public service offered by that provider. If an adaptation is planned, the operator
of a provider peer is able to consult all subscribed peers before the adaptation
can be carried out. The second assumption states that peers of a peer group
have agreed to a common adaptation policy in the run-up to the adaptation of a
service. The purpose of a policy is to clarify how a provider peer should handle
existing dependencies if an adaptation to a service is planed.

Peer Group-Based Dependency Management 199

4.1 Registration of Consumer Dependencies

The consumer of a peer service is able to determine the dependency value of
each used peer service and to register this value to the provider of the consumed
peer service. The attribute can hold one of the following five values:

No Dependency. The peer service has a dependency on a consumed service,
but yet no concrete importance value has been determined.

Interest Dependency. The peer operator has indicated a consumable peer
service as an interest service. An interest service is not directly used by
local components, but is designated for a later usage or for an upcoming
composition with local components towards a new peer service.

Low Functional Dependency. The peer operator has composed a consum-
able peer service with other local components towards a new peer service
that is used directly by the peer operator. The importance of this functional
dependency as low.

Strong Functional Dependency. The operator has composed a consumable
peer service with local components towards a new peer service that is used
directly by the operator. The importance of this dependency is strong.

Transitive Functional Dependency. The operator has composed a peer ser-
vice with other local components towards a new peer service that has also
been located and used by other third-party peers. So, transitive dependencies
exist within the topology of the peer-to-peer architecture.

These dependency values are sorted according to the impact the dependent
peer service has on the local peer service: while we assume that the impact of
the first dependency value (No Dependency) is low, the impact of the last value
(Transitive Functional Dependency) is quite high. Consequently, an unheralded
adaptation of a peer service with one transitive functional dependency would
cause the most critical violations of behaviour in a peer-to-peer network.

Dependency values are determined and transferred automatically to the re-
spective provider peer of a service. For instance, the indication of a located peer
service to become an interest service within the peer operator’s environment
causes the triggering of a notification message to the provider peer. During the
composition of an interest peer with local components to a new service, the value
is updated. The operator can choose between a strong and a weak dependency
value. If a third party peer has located and used this new service in its local
environment, the value is updated to a transitive functional dependency.

4.2 Adaptation Policy

An adaptation policy is represented as an aggregation of two concepts, that is,
an adaptation condition and an adaptation strategy. An adaptation strategy
denotes an explicit procedure describing how a service providing peer has to
proceed in case of dependent consumer peers. An adaptation condition dictates

200 S. Alda

when a selected strategy can be executed. We distinguish between four different
types of adaptation strategies:

Conservative Adaptation an adaptation can only be executed if no depen-
dencies are available. This strategy presumes no consultation with dependent
peers. It can be applied to application with high demands on availability
(24x7) and reliability or with only little maintenance support.

Negotiation an adaptation can only be carried out if all dependent consumer
peers have been consulted. Moreover, all consulted peers have to acknowledge
the adaptation request. This strategy can be utilized in application scenarios
in which many high-value dependencies on consumer peers can be expected.

Notification an adaptation can only be carried out if all dependent consumer
peers have been notified in advance. Note that there is no approval necessary.
This strategy can be applied in structures with high maintenance support
where a circumventive reaction to adaptation requests can be expected.

Liberal Adaptation an adaptation can be carried out directly without any
notification of or consultation with dependent peers. This strategy can be
applied to scenarios with only little or even no degree on decentralization.

Adaptation strategies preceding negotiation or notification assume communi-
cation between the service provider and all pertaining consumers. Negotiation
requires the establishment of a bi-directional channel (like a synchronous chat)
between provider and consumers. Such channel can be used many times in either
direction to debate on details of the planned adaptation.

The effectuation of an adaptation strategy may be varied through the insertion
of an adaptation condition. An adaptation condition can be formulated in terms
of both the number of current dependencies on the consumable service and
the potential dependency values available for these dependencies. Also, a target
variable tv is to be declared in order to state when a condition is fulfilled or
not. An adaptation condition can also be expressed as a function that takes all
registered dependent remote peer services rs that are dependent on a consumable
service ls provided by a peer i, whereas all dependent services and the local
service belong to peer group m (PS denotes the set of all peer services):

condm : PSn × R → (true, false),

condm(lsm
i,j , rs

m
i,j,1, ..., rs

m
i,j,n, tvm) =

{
true if condition is fulfilled
false else (1)

Function condm denotes the adaptation condition that was previously defined
and prescribed by a peer group with index m. The term rsm

i,j,k denotes the k−th
of n remote services that are dependent on the j − th consumable peer service of
peer with index i. The function itself is able to internally apply various auxiliary
functions to see if the condition is fulfilled or not. For instance, the function
value(rsm

i,j,k) returns the corresponding (numerical) dependency value of the
depending remote service rsm

i,j,k. Function count(lsm
i,j) returns the total number

of dependent remote services for a local service lsm
i,j . The following example of

Peer Group-Based Dependency Management 201

an adaptation condition computes a weighted average of dependency values. If
the result is greater than tv, the condition is true:

condm(lsm
i,j , ..., tvm) =

{
true if 1

count(lsm
i,j)

∑n
k=1 value(rsm

i,j,k) ≥ tvm

false else
(2)

Note again that the adaptation condition states whether or not the defined strat-
egy is valid. For instance, if cond function in (2) delivers true as a result, the
strategy selected by a peer group can be put into effect. For strategies Notifica-
tion, Negotiation, and Conservative Adaptation we assume the rule that if the
condition is false, the next lower strategy can be executed. The function in (3)
models the entire adaptation policy that takes the result of the condition (1)
and the chosen strategy to compute which strategy is valid for a given applica-
tion scenario. We assume that each strategy has an index indicating its priority
(conservative (3) to liberal adaptation (0)):

policym : (true, false) × N → N,

policym(condm, stratm(i))) =
{

stratm(i) if condm(..) = true
stratm(i − 1) if condm(..) = false ∧ i ≥ 1 (3)

For a consumer peer service that associates many peer groups with adaptation
policies and, thus, strategies of different order, the strategy with the highest
order has preference during analysis.

4.3 Prototypical Implementation

We implemented a first prototype of our analysis model for the DeEvolve plat-
form. Once a composed application is published as a peer service, consumer
peers can subscribe to the pertaining provider peer. Before an adaptation of a

Fig. 2. Snapshot of the Visualization Tool for Dependency Analysis

202 S. Alda

peer service is executed, the peer provider has to generate a graphical visual-
ization of existing dependencies to consumer peers with the DeEvolve Analysis
tool (figure 2). Starting from the left node representing the local peer service, all
dependent remote consumer peer services are visualized on the right side. Con-
sumer peers are assigned to the respective peer groups they belong to. Attached
to each peer group node is the adaptation strategy imposed by the group. The
annotations on the edges denote dependency values that declare the importance
of a dependency between provider and consumer. Based on the current visual-
ization of the dependency graph, the peer operator can run an analysis of the
dependencies to determine if an adaptation can be executed. In the example of
figure 2, the policy of peer group Employee allows for adaptation after notifica-
tion, while the policy of group Students requires negotiation with all dependent
peers. The overall result points out that the adaptation cannot be carried out,
as there is at least one policy that does not allow an immediate adaptation.

5 Conclusion

In this paper a new approach for handling consumer dependencies in service-
oriented peer-to-peer architectures has been proposed. Apparently, this approach
can be enhanced by existing reputation models. A reputation model could
thereby be utilized, to make assumptions about the continuity a peer is provid-
ing its services. Any intended violation of consumer dependencies could limit the
reputation of a provider in a given community.

References

1. Alda, S., Cremers, A.B.: Strategies for component-based self-adaptability model in
peer-to-peer architectures. In: Proc. of 4th International Symposium on Component-
based Software Engineering (CBSE7), Springer (LNCS 3054) (2004) 59–67

2. Alda, S., Cremers, A.B.: Towards composition management for peer-to-peer archi-
tectures. In: Proc. of Workshop Software Composition (SC 2004), affiliated to the
7th European Joint Conference on Theory and Practice of Software (ETAPS 2004).
(2004) 59–67

3. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., , Weerawarana, S.:
Unraveling the web services web: An introduction to soap, wsdl, and uddi. IEEE
Internet Computing 6 (2002) 86–93

4. Sun: Jxta v2.0 protocols specification (2003) URL: http://spec.jxta.org/v2.0/.
5. Halepovic, E., Deters, R.: Building a p2p forum system with jxta. In: Proc. of 2nd

IEEE International Conference on Peer-to-Peer Computing (P2P2002). (2002)
6. Ensel, C., Keller, A.: Managing application service dependencies with xml and the

resource description framework. In: Proc. of 7th International IFIP/IEEE Sympo-
sium on Integrated Management (IM 2001). (2001)

7. Hasselmeyer, P.: Managing dynamic service dependencies. In: Proc. of 12th In-
ternational Workshop on Distributed Systems: Operations / Management (DSOM’
2001). (2001)

8. Kon, F., Campbell, R.H.: Dependence management in component-based distributed
system. IEEE Concurrency 8 (2000)

LEAP-DB: A Mobile-Agent-Based Distributed

DBMS Not Only for PDAs

Peter Ahlbrecht and Andreas Bothe

Technical University of Braunschweig, Institute of Information Systems,
P.O.box 3329, D-38023 Braunschweig, Germany

{p.ahlbrecht|andreas.bothe}@tu-bs.de

Abstract. Mobile devices are subject to severe constraints like restricted
IO, processing and storage capabilities or intermittent connectivity. These
issues of course also pertain to applications running on the mobile hard-
ware, and for instance with regard to processing and displaying vast
amounts of data or the special requirements imposed by supporting trans-
actions, database and information systems are particularly affected. Mo-
bile agents have frequently been suggested as a remedy for at least some
of these problems, but only few implementations actually utilising them
are known. In this paper, we present the design and implementation of a
distributed database system applying mobile agent technology to support
mobile devices. In particular, being based on the agent platform JADE-
LEAP, it allows a P2P usage of PDAs, which is so far not supported by
major DBS vendors.

1 Introduction

For the portable types of mobile hardware, from notebook computers and Per-
sonal Digital Assistants (PDAs) to smart and mobile phones, functionality re-
lated to information systems—like accessing a database from or running one on
them—is becoming more and more popular. However, though these devices con-
tinuously gain more power, they still show severe constraints when compared to
stationary computers, and IS-related software is particularly vulnerable to these
constraints [1], [2]. The mismatch between restricted resources and the need to
obtain or process a large set of data is obvious. Furthermore, data-intensive appli-
cations and distributed systems relying on an unstable communication network
with low bandwidth are said to have a special need for replication techniques [3],
and in order to overcome unreachableness of mobile devices or to allow for better
performance when being faced with long-lived transactions, several transaction
models have been suggested which relax some of the ACID properties commonly
associated with database transactions; cf. [4] for an overview on these models.

Mobile agents—software objects at user level which may migrate from one
computer in a network to another, provided a suitable runtime environment is
available on those nodes—have frequently been suggested as a means to over-
come at least some of these obstacles [5], [6]. In moving to and computing the
result at the place where the data is stored, they reduce processing and storage

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 203–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

204 P. Ahlbrecht and A. Bothe

requirements at the mobile device, and by doing this in an asynchronous way
they relax the issue of intermittent connectivity: once dispatched to the target,
they work autonomously and wait to return until a connection to their source
becomes available again.

However, despite these convincing theoretical advantages, only very limited
practical implementations utilising mobile agents for information/database sys-
tems with mobile devices seem to be available. To the best of our knowledge, so
far only the prototype described in [7] realises this combination, based on the
Aglets mobile agent platform. Our approach also employs mobile agents, but is
based upon JADE-LEAP [8], [9], which compared to Aglets comes with a built-
in support for mobile hardware like cellular phones and PDAs. It therefore also
allows a peer-to-peer (P2P) usage on PDAs, while major vendors of database
systems like IBM, Oracle or Microsoft by now only support a mobile client and a
stationary backend-server, or a stand-alone database application on the mobile
device [10], [11].

This paper is organised as follows: Section 2 presents some background mate-
rial on issues pertaining to distributed database systems and the agent platform
underlying our implementation. Section 3 details the design and section 4 covers
aspects of the implementation of the system. Finally, section 5 concludes this
survey and points out future work.

2 Databases on Mobile Devices and JADE-LEAP

From the large variety of different types of mobile devices available today, our
focus is on those which can be carried around by a user and support access to
or running a database system on it. We are particularly interested in PDAs be-
cause of their increasing popularity and the upcoming database-system-related
functionality provided on them: As already mentioned in the introduction, ma-
jor vendors have begun to develop “light” versions (e.g. DB2 Everyplace by
IBM, Oracle Database 10g Lite by Oracle, SQL Server CE by Microsoft) of their
database system software, which can be used on mobile devices as clients to
access backends on stationary servers, and open source projects (eXtremeDB,
hSQLDB, etc.) started working on database systems usable as stand alone ap-
plications on PDAs [11]. Our aim, however, is to realise a distributed database
system which allows PDAs to be used as peers, either on their own or in conjunc-
tion with notebook and stationary computers, where we pick up the definitions
from [1] of a distributed database (DDBS) as “a collection of multiple, logically
interrelated databases distributed over a computer network”, and a distributed
database management system (DDBMS) as “the software system that permits
the management of the DDBS”.

As already mentioned, mobile agents ultimately need a runtime environment
supplied by hosts, which conform to some agent API or agent system. They enable
creation, execution and migration of as well as communication between agents
and other hosts. Standardisation efforts by the Object Management Group
(OMG) and the Foundation for Intelligent Physical Agents (FIPA) regarding the

LEAP-DB: A Mobile-Agent-Based Distributed DBMS Not Only for PDAs 205

infrastructure and provided actions have led to the Mobile Agent System Interop-
erability Facility (MASIF) specification [12] and the FIPA set of standards [13],
respectively, where the latter is concerned with agent-related topics (including mi-
gration) from the area of Artificial Intelligence, while the former focuses on mobile
agents in particular. In order to exploit mobility, usually a number of hosts will
be used to provide a distributed agent environment.

The Java Agent DEvelopment Framework (JADE) [8] is on the one hand a
FIPA-compliant software framework for developing agent systems, on the other
hand it provides a runtime environment for such agent applications [14]. With
regard to the latter, an instance of the runtime environment is referred to as
a “container”, and several containers from one or more computers can be used
to create a distributed agent platform. The container instantiated as the first
one of a platform, the so-called “main container”, has to be active and available
throughout the existence of the platform, and all other containers joining the
platform have to register with it. Avoiding to do so will make a newly instantiated
container become another main container, and thereby also instantiate another
platform. Communication between agents on different platforms is possible, but
migration of agents is restricted to hosts of the same platform. JADE is entirely
implemented in Java, with the minimal system requirements being version 1.4
of its runtime environment or the JDK.

As several agent development environments were available, but none was ca-
pable of running on mobile devices with restricted resources, the objective of the
Lightweight and Extensible Agent Platform (LEAP) project was to bridge this
gap [9]. This objective was realised by providing a set of libraries that can be
used to modify parts of the JADE kernel—resulting in three different profiles,
which can then be used to develop applications for certain classes of devices:
1. The midp profile is targeted towards devices offering the Mobile Information
Device Profile of the Java 2 Micro Edition, frequently found for instance on Java
enabled mobile phones. 2. The pjava profile is to be used with hardware sup-
porting PersonalJava, which includes many types of PDAs. 3. The j2se profile
plays the LEAP counterpart to plain JADE. It is geared towards stationary PCs
and servers, and can be used with the other profiles within the same platform.

3 LEAP-DB Design

We now describe the design of our DDBMS based on the JADE-LEAP agent
platform. Due to space restrictions, our focus will be on schema integration for
heterogeneous databases.

The system should be usable from mobile as well as stationary devices linked
via wireless or wireline connections. Due to the selection of the agent platform
JADE-LEAP as the basis for the implementation, exactly one of the devices
has to run the platform’s main container, while all others will participate by
joining with a simple container. An autonomous database plus the corresponding
DBMS may exist on any device, but it is also permissible to use a client solely
for querying—without itself providing a data source.

206 P. Ahlbrecht and A. Bothe

The system should allow formulating global queries and running global trans-
actions, but prior to be able to do so first a global database schema has to
be determined. All the tasks are carried out by various stationary and mobile
agents. Re-using the concepts developed in [7], the stationary types of agents
are the managerAgent, the wrapperAgent and the transactionManager, while
the brokerAgent and the runnerAgent are of the mobile kind.

The managerAgent acts as the main coordinator on a device, governing inter-
actions with the user, creation and termination of mobile agents, and communi-
cation between brokerAgent or runnerAgent on the one hand and wrapperAgent
on the other. In addition to this, the managerAgent running within the main
container is also responsible of integrating the individual local schemata into
the global schema and distributing the latter to the various participants. The
wrapperAgent provides access to the local data. For reasons of simplicity, we
assume a relational database system to be available on every device—noting,
however, that it is also possible to store data in other formats like files with
comma separated values or XML-structures [15]. Accordingly, we strive to im-
plement a jdbcWrapperAgent, which will provide access to the local data using
the JDBC interface. The transactionManager is created by the managerAgent
and will be in charge of splitting a global transaction into subtransactions, which
will then be carried out by the mobile runnerAgents governed by the former. Fi-
nally, the brokerAgents are mainly needed in the process of forming the global
database schema. Upon joining the system, the managerAgent on a device will
create a brokerAgent and provide it with the information concerning the lo-
cal database schema. The brokerAgent then migrates to the main container,
forwarding its schema information to the global managerAgent, who then inte-
grates this schema into the global schema and returns the new global schema to
the brokerAgent. The latter then returns to the source device, while the global
managerAgent creates brokerAgents which will update the schema information
at the other participants. Fig. 1 illustrates this design with a possible scenario
including two PDAs and a stationary computer by a deployment diagram in
the Agent UML [16], an extension of the Unified Modeling Language (UML)
intended to support the development of agent systems.

As our system was to be based on agents, using an ontology for exchanging
the schema information seemed natural. We designed a DatabaseOntology, whose

PDA1

:managerAgent

:jdbcWrapperAgent

local
DBMS

Workstation1

<<visitor>>
:brokerAgent

<<visitor>>
:runnerAgent

:managerAgent

<<moves>>

<<acquintance>>

<<acquintance>>

:jdbcWrapperAgent

:transactionManager

<<home>>
:runnerAgent

:managerAgent

PDA2

local
DBMS

<<acquintance>>

<<acquintance>>

<<moves>>

<<acquintance>>

<<home>>
:brokerAgent

<<acquintance>>

<<acquintance>>

Fig. 1. Scenario in Agent UML illustrating the agents making up the system

LEAP-DB: A Mobile-Agent-Based Distributed DBMS Not Only for PDAs 207

AgentAction

localDBSchemaUpdate

globalDBSchema

localDBSchema

ForeignKey

PrimaryKey

1

tabName: String
mappings: String

Table

attrbName: String

mappings: String
datatype: String

Attribute

DatabaseOntology

contains

contains

1

1

0 . . 1 0 . . 1

references
1 . . *

1

dbName: String
managerAgent: AID

Database

contains
1

1

containerID: String

attributes

1

1 . . *

1 . . *

tables

Fig. 2. DatabaseOntology for exchange of database schema information

structure is shown in fig. 2. Unsurprisingly, a database is identified uniquely by
its name, the managerAgent in charge of it and the container it lives on. A
database may comprise one or more tables, which in turn may consist of one or
more attributes. The latter may possibly function as primary or foreign keys. In
addition, tables and attributes are also characterised by their respective names,
and attributes furthermore by their datatypes. The attribute mappings is only
used in descriptions of the global database schema, providing the origin of the
object it qualifies.

The ontology also contains agent actions, which tell an agent how to handle
a message it just received. To be precise, an agent action forms one part of a
message exchanged between agents. The format of the messages in the FIPA
compliant Agent Communication Language (ACL) is standardised to contain
the following fields:
– the sender and receiver of the message
– the so-called performative, indicating the sender’s intention—examples be-

ing: a REQUEST, denoting that the sender would like the receiver to execute
some action; an INFORM, signalling that the receiver is to be informed about
something; etc.

– the contents as the actual information of the message—depending on the
performative this could be, e.g., facts in conjunction with an INFORM, the
action to be executed for a REQUEST, etc.

– the language, determining the syntax for the message contents
– the ontology, providing the vocabulary and semantics for the symbols
– additional fields for determining the flow of control
Owing to the agent-based-approach, we devised several interaction protocols

in which the messages and agent actions are used; fig. 3 illustrates the protocol
for the construction of the global database schema, which will be explained
thoroughly in section 4. The diagram is again given in the Agent UML, this time
by a protocol diagram [17], where the important points to note with regard to the
conventional UML are that these diagrams combine sequence and state diagrams,
that a life line or message can be split up in order to allow the description of

208 P. Ahlbrecht and A. Bothe

globalManager:managerAgent homeManager:managerAgent

GlobalSchemaRequest

:brokerAgent

X

X

GlobalSchemaInform

handle error

request(globalDBSchemaX with localDBSchema)

request(globalDBSchema
without localDBSchema)

compute global DB schema

failure(globalDBSchema)

request schema

inform(globalDBSchema) store global DB schema

inform(globalDBSchema)

managerAgent
inform own

DB schema
return with global

Fig. 3. Interaction protocol in Agent UML

parallel or alternative behaviours—indicated by a fork bar or a diamond which
may show an “X” to describe AND, OR or eXclusive-or branching, respectively—
and that they can be packaged to facilitate re-use.

4 Aspects of the Implementation

In this section, we describe the implementation of the schema integration, as it
is the first item to be considered in a DDBMS unless the entire system including
the databases can be designed from the very beginning, which will rarely be the
case for mobile systems.

Our algorithm for the schema integration is build upon the work by Lawrence
and Barker [18]. However, in order to ease a prototypical implementation, we so far
avoided realising the dictionary suggested by them, and made the following simpli-
fying assumptions with regard to the different types of conflicts which may occur
during integration [2]: tables and attributes from different databases representing
the same aspect of the universe of discourse are identified by the same name (“no
descriptive conflicts”); attributes representing the same aspect of the universe of
discourse use the same data type and range of value (“neither type, nor value con-
flicts”); and integrity constraints and user rights are so far not considered.

As described in section 3 and illustrated in fig. 3, the algorithm is carried
out by the global managerAgent when receiving the request about the database
schema from a brokerAgent, which itself may or may not provide a local schema.
In case of the latter, the algorithm works on an empty DatabaseOntology and
the global one as the input parameters.

For every table of the schema to be integrated, it first has to be checked
whether a table with the same name already exists in the global schema. If this
is not the case, the table is included into the global schema and a corresponding

LEAP-DB: A Mobile-Agent-Based Distributed DBMS Not Only for PDAs 209

mapping is added to the latter. The mapping, hidden from the user, stores the
origin of the table, allowing to determine the required sources for answering
queries later on. The attributes of the table are processed in the same manner.
They can be added straightforwardly to the newly created table of the global
schema, but attention has to be paid when creating the corresponding mappings:
for attributes bearing a foreign key, on the one hand also a link to the referred
attribute has to be added, on the other hand the mapping of the referred at-
tribute has to be adjusted. The adjustment, however, is postponed until the end
of the algorithm, as the table containing the referenced attribute may not have
been added to the global schema so far.

If a table with the same name already exists, the mapping for the table is
added in the same way. Attributes, however, are treated differently. For an at-
tribute without a foreign key but with an existing attribute of the same name,
only the mapping is added. If an attribute is not contained within the table
under consideration, but in a table referenced by an already included attribute,
then the mapping of the new attribute is only added to the table holding the
included one. If the attribute so far does not occur in the global schema, it is
added to the table together with the corresponding mapping.

Fig. 4 illustrates this process for a scenario corresponding to the one modelled
in fig. 1 with PDA1 replaced by a notebook computer. The global managerAgent
runs on a stationary PC. A database “DB1” stores the data on the notebook, and
the one on the PDA (= PDA2 in fig. 1) is named “DB2”, both being administered
by hSQLDB. With the managerAgents realising the user interface, fig. 4 a) and b)
show the schemas of the local databases used on the notebook and PDA, respec-
tively, prior to integration, while fig. 4 c) depicts the global schema at the PDA
after integrating both mobile devices into the system. The mappings added to the
tables and attributes indicate the successful construction of the global schema.

Fig. 4. Screenshots taken during schema integration; c) taken from a redirected display
of the PDA in order to increase readability

210 P. Ahlbrecht and A. Bothe

5 Conclusion

With this paper, we showed that is possible to realise a distributed database
management system for mobile devices like notebook computers and PDAs on
top of mobile agents. The emphasis was on presenting the overall design of the
system, but aspects of the implementation based on the JADE-LEAP agent
platform were also discussed, namely the schema integration utilising various
agents and an algorithm for the metadata management. Of course, realising
large parts of the implementation, e.g. the transaction management, remains as
future work. Furthermore, as security is a major issue particularly in the area
of mobile technology, investigating how to include the security add-on JADE-S
into the system would be highly interesting.

References

1. Öszu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice
Hall (1999).

2. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Addison-Wesley
(2000).

3. Huang, Y., Sistla, P., Wolfson, O.: Data Replication for Mobile Computers. In:
Proc. 1994 ACM SIGMOD Int. Conf. on Management of Data. (1994) 13–24.

4. Seydim, A. Y.: An Overview of Transaction Models in Mobile Environments.
Internet (2002). http://engr.smu.edu/∼yasemin/mobile trans.pdf

5. Chess, D. et al.: Itinerant Agents for Mobile Computing. In Huhns, M.N., Singh,
M.P., eds.: Readings in Agents. Morgan Kaufmann (1997) 267–282.

6. Brewington, B. et al.: Mobile agents in distributed information retrieval. In Klusch,
M., ed.: Intelligent Information Agents. Springer (1999) 355–395.

7. Brayner, A., Filho, J.: Sharing Mobile Databases in Dynamically Configurable
Environments. In: CAiSE 2003. LNCS 2681 (2003) 724–737.

8. JADE. Java Agent DEvelopment Framework. http://jade.tilab.com/.
9. Bergenti, F., Poggi, A.: LEAP: A FIPA Platform for Handheld and Mobile Devices.

In: ATAL 2001. Proc. 8th Int. Workshop. LNCS 2333 (2002) 436–446.
10. Laberge, R., Vujosevic, S.: Building PDA Databases for Wireless and Mobile

Development. Wiley (2003).
11. Mutschler, B., Specht, G.: Mobile Datenbanksysteme. Springer (2004). In German.
12. MASIF. OMG Doc. orbos/98-03-09: ftp.omg.org/pub/docs/orbos/98-03-09.pdf.
13. FIPA. The Foundation for Intelligent Physical Agents. http://www.fipa.org/.
14. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA2000 Compliant Agent

Development Environment. In: Agents’01. Proc. 5th Int. Conf. on Autonomous
Agents. LNCS 1222 (2001) 216–217.

15. Ahlbrecht, P., Röver, J.: Specification and Implementation of Mobile-Agent-Based
Data Integration. In: Databases and Information Systems II, Kluwer Academic
Publisher (2002) 269–283.

16. Manson, G. et al: FIPA Modeling Area: Deployment and Mobility. Internet (2003).
http://www.auml.org/auml/documents/DeploymentMobility.zip.

17. Odell, J., Parunak, H.v.D., Bauer, B.: Representing Agent Interaction Protocolls
in UML. In Wagner, G., ed.: Proc. of AOIS-2000 at CAiSE*00. (2000) 29–40.

18. Lawrence, R., Barker, K.: Automatic Integration of Relational Database Schemas.
Technical Report 2000-662-14, University of Calgary (2000)

Models and Languages for Overlay Networks

Stefan Behnel and Alejandro Buchmann

Databases and Distributed Systems Group,
Darmstadt University of Technology (TUD), Germany

{behnel,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. Implementing overlay software is non-trivial. In current pro-
jects, overlays or frameworks are built on top of low-level networking
abstractions. This leaves the implementation of topologies, their mainte-
nance and optimisation strategies, and the routing entirely to the devel-
oper. Consequently, topology characteristics are woven deaply into the
source code and the tight coupling with low-level frameworks prevents
code reuse when other frameworks prove a better match for the evolving
requirements.

This paper presents OverML, a high-level overlay specification lan-
guage that is independent of specific frameworks. The underlying system
model, named “Node Views”, abstracts from low-level issues such as I/O
and message handling and instead moves ranking nodes and selecting
neighbours into the heart of the overlay software development process.
The abstraction decouples maintenance components in overlay software,
considerably reduces their need for framework dependent source code and
enables their generic, configurable implementation in pluggable EDSM
frameworks.

1 Introduction

Recent years have seen a large body of research in decentralised, self-maintaining
overlay networks like P-Grid [1], ODRI [2], Chord [3] or Gia [4]. They are com-
monly regarded as building blocks for Internet-scale distributed applications.

Contrary to this expectation, current overlay implementations are built with
incompatible, language specific frameworks on top of low-level networking ab-
stractions. This complicates their design and prohibits code-reuse in different
frameworks. It also hinders the comparison and exchangeability of different
topologies within an application.

Our recent work [5] promotes a data abstraction as a much cleaner foundation
for the implementation of overlay software. It decouples components for routing
and maintenance and enables abstract, framework independent specifications.

This paper presents OverML, a new set of languages that were specifically
designed for the framework independent specification and implementation of
adaptable overlay networks. Section 2 briefly overviews the underlying data
driven system model that is more thoroughly explained and motivated in [5].
The remaining sections then describe OverML, a set of abstract XML spec-
ification languages for the major parts of overlay implementations: topology
specifications, event flows, messages and node attributes.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 211–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

212 S. Behnel and A. Buchmann

2 Node Views, the System Model

We model overlay software as data management systems by applying the well-
known Model-View-Controller pattern [6]. It aims to decouple software compo-
nents by separating the roles for data storage (model), data presentation (views)
and data manipulation (controllers).

Node
database

Controllers

configure

update tr
ig

ge
r

View
definitions Views

Nodebase for define

Overlay Routing

Overlay Application

provides/activates uses

Messages

Messages

Fig. 1. The system model

In our case, the model is
an active local database on
each node, a central storage
place for all data that a node
knows about remote nodes.
The major characteristics of
the overlay topology are
then defined in node views of
the database. They represent
sets of nodes that are of in-
terest to the local node (such
as its neighbours). Different
views provide different ways of selecting and categorising nodes, and therefore
different ways of adapting topology characteristics to application requirements.

The controllers are tiny EDSM states that are triggered by events like time-
outs, incoming or leaving messages or changes in the views. They perform simple
maintenance tasks like updating node attributes when new data becomes avail-
able or sending out messages to search new nodes that match the view definitions.

Controllers and other overlay components like message handlers or routers
use node views for their decisions. Database and views decouple them from each
other and simplify their design considerably. Even more so, as this architecture
can provide powerful operations like selecting and adapting topologies with a
single view selection command. The abstract view definition becomes the central
point of control for the characteristics of the overlay.

3 OverML, the XML Overlay Modelling Language

We propose the XML Overlay Modelling Language OverML for specifying the
four portable parts of overlay software: node attributes, messages, view
definitions and EDSM graphs. Because of space limitations, only the first three
are presented here. Schema definitions are provided at http://
www.dvs1.informatik.tu-darmstadt.de/research/OverML/, which is also
the XML namespace that we abbreviated in the examples.

3.1 SLOSL, the View Specification Language

The view definitions implement adaptable topologies which makes them the
key components in overlay software. They are expressed in Slosl, the SQL-
Like Overlay Specification Language. As the XML representation of Slosl is
relatively straight forward (using Content MathML [7]), we will stick to the more

http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/
http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/
http://www.w3.org/TR/MathML2/

Models and Languages for Overlay Networks 213

readable representation. We start with a simple example, an implementation of
an extended Chord graph [3].

1 CREATE VIEW c h o r d f i n g e r t a b l e
2 AS SELECT node . id , node . r ing d i s t , buc k e t d i s t = node . r ing d i s t−2i

3 RANKED lowest (nodes+i , node . msec latency / node . r i n g d i s t)
4 FROM node db
5 WITH l o g k = log (K) , nodes = 1
6 WHERE node . supports chord = true AND node . a l i v e = true
7 HAVING node . r i n g d i s t in (2i : 2i+1)
8 FOREACH i IN (0 : l o g k)

While most clauses behave as in SQL, the new clauses RANKED and HAVING–
FOREACH were added to provide simple statements for highly expressive overlay
specifications. A more detailed description of the example follows, leaving out the
obvious clauses CREATE VIEW and FROM.

SELECT. The interface of this view contains the attributes id and ring dist
of its nodes (ID and distance along the ring), as well as a newly calculated
attribute bucket dist.

RANKED. To support topology adaptation, the nodes in the created view
are chosen by the ranking function lowest as the nodes + i top node(s) that
provide the lowest value for the given expression. Rankings are often based on
the network latency, but any arithmetic expression based on node attributes
or even user defined functions can be used.

WITH. This clause defines variables or options of this view that can be set at
instantiation time and changed at run-time. Here, log k will likely keep its
default value, while nodes allows adding redundancy at runtime.

WHERE. Any SQL boolean expression based on node attributes can be used
in this clause. It constrains nodes that are valid candidates for this view
(node selection). Here we use an attribute supports chord that is true for
all nodes that know the Chord protocol. The second attribute, alive, is true
for nodes that the local node considers alive.

HAVING–FOREACH. This pair of clauses aggregates valid candidates into
buckets for node categorisation. In the example, the HAVING part states
that the ID distance must lie within the given half-open interval (exclud-
ing the highest value) that depends on the bucket variable i. The FORE-
ACH part defines the available node buckets by declaring this bucket vari-
able over a range (or a list, database table, . . .) of values. It can define
a single bucket of nodes, but also a list, matrix, cube, etc. of buckets.
The structure is imposed by the occurrence of zero or more FOREACH
clauses, where each clause adds a dimension. Nodes are selected into these
buckets by the HAVING expression (which is optional and defaults to
true). A node can naturally appear in multiple buckets if the HAVING
expression allows it.

The bucket abstraction is enough to implement graphs like Chord, Pastry, Kadem-
lia or de-Bruijn in less than a dozen lines and should be just as useful for a large
number of other cases. It is not limited to numbers and ranges, buckets can be

214 S. Behnel and A. Buchmann

1

3

2

?

FROM

WHERE

WHERE

F
O

R
E

A
C

H

1

2

3

HAVING

HAVING

HAVING

RANKED

Fig. 2. Implementing the chord topology in Slosl

defined on any list or even on a database table. Numbers are commonly used in
structured overlays (which are based on numeric identifiers), while strings could
be used for topic-clustering in unstructured networks.

The clauses FROM, WHERE, HAVING–FOREACH, RANKED and SELECT
directly impact the nodes and attributes in the view. We will therefore explain
their interaction semantics in terms of an execution order as illustrated in fig-
ure 2. Note, however, that Slosl is a declarative language and that query opti-
misers and source code generators may handle specific Slosl statements quite
differently.

1. FROM selects all nodes from the parent view. Note that the database
may be globally incomplete or outdated (as the missing node in figure 2
suggests).

2. WHERE restricts this set to nodes matching a boolean expression.
3. FOREACH sorts the selected nodes into buckets by evaluating the HAV-

ING expression for each node and each value of the bucket variable(s).
4. RANKED restricts the maximum number of nodes in each bucket and

selects only those nodes for which the ranking expression yields the best
results.

5. SELECT finally selects the attributes of each node that are visible in this
view. Note that Slosl inherits SQL’s powerful capability of calculating
attribute values based on arbitrary SQL expressions. If bucket variables
are used in these expressions, the same node can carry different attribute
values in different buckets of the created view.

3.2 NALA, the Node Attribute Language

Attribute definitions can currently utilise the data types of XML Schema [9] or
SQL [10].1 For SQL types, OverML allows the definition of custom data types
based on the predefined types as follows.

1 The 2003 SQL/XML standard [11] defines a mapping between the two.

http://www.w3.org/TR/xmlschema-2/

Models and Languages for Overlay Networks 215

<types xmlns:sql=”OverML/ sq l ”>
<sql:composite type name=” tcpaddres s ” /> < !−−composite data type−−>

3 <sq l : inet name=” address ” />
<sql :short int name=”port ” />

</sql:composite>
6 <sql:decimal type name=” id128 ” bits=”128”/> < !−−r e s t r i c t e d decimals−−>

<sql:decimal type name=” id256 ” bits=”256”/>
</types>

Line 6 and 7 define customised descendents of the normal sql:decimal data
type that are restricted to a fixed size to represent node IDs. Note that for
specific restrictions, some implementations may not support an exact mapping
to storage types and may need to do range checking. The sql:composite meta
type allows composing multiple simple types into one new structured type.

Any base type or custom type can be used for node attributes. Attributes
have a name and a number of flags as shown in the following example.

<nala:attributes xmlns:nala=”OverML/nala ” xmlns:sql=”OverML/ sq l ”>
<nala:attribute name=” id ” type name=” id256 ” selected=” true ”>

3 <nala :stat ic /> <nala:transferable /> <nala : ident i f i er />
</nala:attribute>
<nala:attribute name=”knows chord” type name=” sq l : b o o l e an ”

6 selected=” true ”>
<nala :stat ic /> <nala:transferable />

</nala:attribute>
9 <nala:attribute name=” la tency ” type name=” s q l : i n t e r v a l ”

selected=” true ” />
</nala:attributes>

For easier extensibility, all flags except ’selected ’ are represented as XML
elements. Their meaning is as follows:

identifier. The attribute uniquely identifies a node. If a node carries multiple
identifiers, each one is treated independently as a unique identifier. This
allows different levels of identification, most notably physical and logical ad-
dresses. Note that multiple types (like IP address and port) can be combined
into a single new type, which can then be used as identifier.

static. The attribute is static and does not change once it is known about a
node. All identifiers are implicitly static, but not all static attributes fulfil
the uniqueness requirement of an identifier.

transferable. The attribute can be sent in messages. Some attributes (like net-
work latency) only make sense locally and should be marked non-transferable.

selected. Selects the attribute for use in the database. Unselected attributes
can reside in the specification without actually being used during execution.
They can be dynamically activated at need, just like Slosl statements.

3.3 HIMDEL, the Hierarchical Message Description Language

Messages combine attributes and other content into well defined data units for
transmission. Their definition follows a hierarchy rooted in the top-level header,
followed by a sequence of other headers and finally a sequence of content fields.
Being an XML language, OverML presents this hierarchy in a natural way.

216 S. Behnel and A. Buchmann

<msg:message hierarchy xmlns:msg=”OverML/msg” xmlns:sql=”OverML/ sq l ”>
<msg:container type name=” id s ”>

3 <msg:attribute access name=” source ” type name=” id ” />
<msg:attribute access name=”dest ” type name=” id ” />

</msg:container>
6 <msg:header access name=”main header”>

<msg:container−ref access name=” addre s s e s” type name=” id s ” />
<msg:message type name=” j o i n r e qu e s t ” /> < !−−1 s t message−−>

9 <msg:message type name=”view message”> < !−−2nd message−−>
<msg:viewdata structured=” true ” access name=” f i n g e r t a b l e ”

type name=” cho rd f i n g e r t a b l e ” />
12 </msg:message>

<msg:header>
<msg:content access name=”type ” type name=” s q l : sm a l l i n t ” />

15 <msg:message type name=”typed message”> < !−−3rd message−−>
<msg:content access name=”data” type name=” s q l : t e x t ” />

</msg:message>
18 </msg:header>

</msg:header>
<msg:protocol access name=”tcp” type name=”tcp”>

21 <msg:message−ref type name=”view message” />
<msg:message−ref type name=”typed message” />

</msg:protocol>
24 <msg:protocol access name=”udp” type name=”udp”>

<msg:message−ref type name=” j o i n r e qu e s t ” />
</msg:protocol>

27 </msg:message hierarchy>

In this representation, a message becomes a path through the hierarchy that
describes the ordered data fields (i.e. content and attribute elements) that are
ultimately sent through the wire. Message data is encapsulated in the hierarchy
of headers that preceed it along the path. Headers and their messages are finally
encapsulated in a network protocol, apart from their specification. This makes
it possible to send the same message through multiple channels and to decide
the best protocol at runtime.

Multiple independent messages can be defined within the same header. Mes-
sages and headers branching away from a message path are completely ignored,
i.e. the ’joined message’ in the example is not part of the ’view message’ and the
second header is not part of any of them.

This means that the tag order on the message path is important. It describes
the field order when serialising data, but it also defines the data fields that are
actually contained in a message. If a header is extended by content or container
elements after the definition of a message, the preceeding messages will not
contain the successor fields, as they are not on its path. In the example, the
’view message’ will not contain the content field named ’type’. This field is,
however, available in the ’typed message’ and all messages that are defined later
under the same header tag.

As shown in the example, container elements can also be used as chil-
dren of the message hierarchy tag. Here, their definition is not part of the
message hierarchy itself. They only predefine container modules for replicated
use in headers and messages where they are referenced by their type name
attribute.

The Source code interface to messages and their fields. is defined using
the access name attribute. Accessing the fields of a message from an object
oriented language should look like the following Python snippet.

Models and Languages for Overlay Networks 217

def r e c e i v e v i ew mes sage (view message) :
ne t addre s s = (view message . tcp . ip , view message . tcp . port)
main header = view message . main header
s ou r c e i d = main header . addre s s e s . source
f i n g e r nod e s = view message . f i n g e r t a b l e

The following rules define the access paths. They allow for a concise, but
nevertheless structured and well defined path to each element.

1. As the basic unit of network traffic, a message is always the top-level element.
2. Everything defined within the message becomes a second level element, ref-

erenced by its access name.
3. Entries within containers are referenced recursively, namespaced by the ac-

cess name of their parent.
4. Following the path from the message back to the root header, all headers

and the protocol become second-level elements, referenced by access name.
Their child fields and container elements are referenced recursively as before.
Children of nameless headers become elements of the message itself.

The message specification allows EDSM states to be triggered by framework-
independent subscriptions to message names or header hierarchies. A simple
subset of the XPath language [8] lends itself for defining these subscriptions.
Note that even expensive abbreviations like ’//’ can be resolved at compile time
or deployment time using the message specifications.

The network serialisation of messages depends on framework and lan-
guage, whereas the specification above does not. There is a huge number of
network representations for messages that are in more or less wide-spread use.
In any case, the specified message hierarchy can directly be mapped to an XML
serialisation format. But also in flat serialisations like XDR [12], mapping the
message specification is straight forward when laying out the data fields depth-
first along the message path. Depending on the attribute ’structured ’, Views are
serialised either as bucket structure (XML subtrees or XDR arrays) or as plain
node data. The latter can avoid duplicate data if nodes appear unchanged in
multiple buckets.

4 Conclusion, Current and Future Work

This paper presented OverML, a language for abstract overlay specification.
Based on a Model-View-Controller architecture, it provides portable, framework-
independent abstractions for the major components in overlay software. The
achieved modularisation facilitates the development of generic components which
enables pluggable development and integration of overlay systems.

The Slosl language lifts the abstraction level for overlay design from messag-
ing and routing protocols to the topology level. Its short, SQL-like statements
meet the requirements for design-time specification, topology implementation
and run-time adaptation of highly configurable overlay systems.

http://www.w3.org/TR/xpath

218 S. Behnel and A. Buchmann

OverML and Slosl make the design of the main characteristics of overlay soft-
ware simple, fast, and independent of languages and frameworks. Our prototype
implementation comprises a graphical editor for OverML specifications as well as
a proof-of-concept runtime environment. Their combination moves the develop-
ment of the remaining framework specific software components to the very end of
the design process and supports it with a powerful and generic high-level API.

Future work will include better mechanisms for view and query optimisa-
tion. Our current PostgreSQL implementation maps Slosl statements to rather
complex, generic SQL queries. Building on the large body of literature on query
modification and optimisation, we can imagine a number of ways to investigate
for pre-optimising these statements. This is most interesting for recursive views
and for merging view definitions when sending them over the wire.

We believe that high-level, integrative overlay design is an interesting new field
that builds upon major achievements in the areas of databases, networking and
software engineering. We would be glad to seed interest in new implementations
of OverML compatible frameworks, Slosl optimisers, source code generators,
as well as possible mappings to existing frameworks.

References

1. Aberer, K.: P-Grid: A Self-Organizing access structure for P2P information sys-
tems. In: Proc. of the Sixth Int. Conference on Cooperative Information Systems
(CoopIS 2001), Trento, Italy. (2001)

2. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of struc-
tured peer-to-peer systems: Routing distances and fault resilience. [13]

3. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proc. of the 2001
ACM SIGCOMM Conference, San Diego, California, USA (2001)

4. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like p2p systems scalable. [13]

5. Behnel, S., Buchmann, A.: Overlay networks - implementation by specification.
In: Proc. of the Int. Middleware Conference (Middleware2005), Grenoble, France
(2005)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)

7. The World Wide Web Consortium: Mathematical Markup Language (MathML)
Version 2.0 (Second Edition). (2003)

8. The World Wide Web Consortium: XML Path Language (XPath) Version 1.0.
(1999)

9. The World Wide Web Consortium: XML Schema Part 2: Datatypes Second Edi-
tion. (2004)

10. ISO Document ISO/IEC 9075:2003: Database Language SQL. (2003)
11. ISO Document ISO/IEC 9075:14-2003: Database Language SQL - Part 14: XML-

Related Specifications (SQL/XML). (2003)
12. Srinivasan, R.: XDR: External Data Representation Standard. RFC 1832 (Draft

Standard) (1995)
13. The 2003 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications (SIGCOMM). (2003)

A Peer-to-Peer Membership Notification

Service�

Roberto Baldoni and Sara Tucci Piergiovanni

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Rome, Italy
{baldoni,tucci}@dis.uniroma1.it

Abstract. The problem of providing a peer with a good approxima-
tion of the current group membership in a peer-to-peer (p2p) setting is
a key factor to the successful usage of any application-level multicast
protocol (e.g. gossip based protocols). A p2p setting makes this problem
hard to be solved due to the its inherent dynamic and asynchronous na-
ture. This paper studies the problem of implementing a fully distributed,
also called p2p, Membership Notification Service (MNS) which is able
to handle any number of simultaneous join and leave while allowing reli-
able delivering of messages among peers which remain permanently alive
inside the group.

1 Introduction

We are interested in studying group membership in very large scale peer-to-peer
environments formed by processes sharing a common interest. In this setting,
hundreds of thousands of processes communicate through application-level mul-
ticast protocols over an overlay network formed by the peers themselves [10,4].
This environment is inherently asynchronous and dynamic because peers con-
tinuously join and leave the system. This implies that the multicast protocol, to
be effective, has to rely on a group membership service 1 to individuate at each
point in time the set of intended peer receivers for each multicast message.

Group membership has been extensively studied in the literature in the context
of group communications. Traditionally, group membership [5] supports process
group communication [2] with the following two objectives [11]: (i) determining
the set of processes that are currently up and (ii) ensuring that processes agree
on the successive values of this set. These group membership approaches require
“long enough” periods of time in which (i) no membership changes occur and
(ii) the underlying system model shows a synchronous behavior [6]. The scale and

� The work described in this paper was partially supported by the Italian Ministry of
Education, University, and Research (MIUR) under the IS-MANET project.

1 The multicast can also directly embed the membership management, but in the
following we maintain separated these two concerns: multicast communication of
application information and group membership management.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 219–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 R. Baldoni and S.T. Piergiovanni

dynamic nature of a p2p environment make the requirement of a “long enough”
period of stability and synchrony problematic to discharge in practice.

Recently, in the context of WAN, Anker et al. [1] proposed the notion of
Membership Notification Service (MNS) which provides each process with an
approximation of the current group membership, without being synchronized
with the message stream. This approach allows handling any number of simulta-
neous join/leave events concurrently and allows message reliability among those
members that remain permanently alive against on-going membership changes.
The authors proposed a client/server implementation of a MNS. More specifi-
cally, there is a set of servers and each server is in charge of (i) being the access
points for joining nodes, (ii) tracking the departures of processes (both failures
and voluntarily leaves) and (iii) providing views of the membership to whom
requested them.

The aim of this paper is to study what are problems which arise in imple-
menting a fully distributed (or p2p) MNS in a p2p setting and, then, to propose
a solution.

The contribution of the paper is twofold, the paper firstly presents two impos-
sibilities results that delimitate under which assumptions a p2p MSN implemen-
tation can be realized. Secondly, it introduces a p2p MNS solution that manages
concurrent leaves. The presented solution dynamically builds and maintains an
overlay topology in which processes are partially ordered by a rank which is
assigned to a process at join time. This weak order is taken into account at leave
time. The algorithm serializes any two concurrent leave operations executed by
neighbor processes in the overlay topology that could lead to a partition of the
topology itself. These departures are ordered by process rank. All the other
concurrent leave operations are not serialized.

The paper is organized as follows. Section 2 presents the system model in-
cluding the group membership management. Section 3 formally introduces the
MNS specification, the impossibility results and the circularity problem. Section
4 shows a p2p MNS implementation.

2 System Model

The system consists of an unbounded but finite set of processes Π2. Any process
may fail by crashing. A process that never fails is correct. The system is asyn-
chronous: there is no global clock and there is no timing assumption on process
scheduling and message transfer delays. Each pair of processes pi, pj may com-
municate along point-to-point reliable links. To simplify the description without
losing generality, we assume the existence of a fictional global clock, whose out-
put is the set of positive integers denoted by T .
Group Membership. Each process pi ∈ Π may become member of a group G.
Once member, it may decide to leave the group. To this aim pi may invoke the
following operations: join(G) to enter G and leave(G) to exit the group. The
2 Note that in the informal parts of the paper we use the term ”peer” as a synonym

of ”process”.

A Peer-to-Peer Membership Notification Service 221

set of processes constituting the group G at time t ∈ T is denoted as G(t).
At any time t, G(t) is a subset of Π with size unbounded but finite. The rules
defining the membership of G are the following:

1. a process p ∈ Π becomes a member of G immediately after the completion of
join(G).
2. a process p ceases to be member of G immediately after the completion of
leave(G).
3. a process p may become member of G at most once 3.

A group member p ∈ G is stationary if it is correct and never invokes
leave(G). A group member p ∈ G is transient if it is correct and eventually
executes leave(G).

Note that, since G(t) is unbounded and finite at any point of time, the number
of stationary processes is unbounded and finite, as well.

Membership Management. To abstract in a general manner the membership man-
agement we consider that each process can locally access a distributed oracle.
Each process pi invokes the join(G) and leave(G) operations through the MNS
local module MNSi that is in charge of the actual execution of these operations.
Each MNSi module provides pi with a local view of the group, i.e. a list of pro-
cesses representing the current membership of the group as perceived by MNSi.
We assume that MNSi crashes only when pi crashes.

Upon the invocation of join(G) by pi, MNSi generates an event denoted as
invi(join(G)), then MNSi is granted permission to access the group on behalf
of pi. After that, MNSi returns to pi with an upcall by generating the event
resi(join(G)), thus at this point pi ∈ G.

Upon the invocation of leave(G) by pi, denoted as invi(leave(G)), MNSi

obtains permission for pi to leave the group. After that, MNSi returns to pi with
an upcall resi(leave(G)), thus from this time on pi is no longer a member of G.

Note that MNSi may provide pi with a local view even when pi is not a group
member. In this case we call the view access viewi. As long as pi belongs to the
group, the local view is called group viewi. Only between events resi(join(G))
and resi(leave(G)) we say that pi ∈ group viewi.

3 MNS Specification

The view information for one group can be represented as a knows-about di-
rected graph K = (Π, E) [9]. For each pair of processes pi, pj , there will be an
edge (pi, pj) in the graph if pj ∈ group viewi, and an edge (pj , pi) if pi ∈
group viewj . There exists an edge (pi, pi) for every process pi such that pi ∈
group viewi

4. This graph actually represents the overlay network to be used as
underlying communication network by an application-level multicast protocol in
a peer-to-peer environment.
3 This is not a restriction because the process may join with another identifier.
4 Note that there exists an edge (pi, pi) even for each faulty member pi that crashes

before generating resi(leave(G)).

222 R. Baldoni and S.T. Piergiovanni

3.1 Specification

Safety. Since view information is propagated along edges of the knows-about
graph, once joins and leaves cease, every stationary member pi belonging to
the graph should have for each stationary member at least one path formed by
stationary members 5. This is necessary because even though leaves and joins
no longer occur, crashes are still possible. Such crashes could partition the set
of stationary members. Therefore, if this condition is satisfied, the view of each
stationary member eventually includes all stationary members. Formally,

Property 1 (Safety). Let K = (Π, E) denote the knows-about graph at time t
s.t. no edge (pi, pi) will be added or removed for each t′ > t (i.e., joins and leave
cease at time t). Let us consider the subgraph Ks = (S, Es) such that

(i) pi ∈ Π and pi is stationary ⇔ pi ∈ S
(ii) ∀ pi, pj ∈ S, (pi, pj) ∈ E ⇔ (pi, pj) ∈ Es.

Then, ∀pi, pj ∈ S there exists an edge (pi, pj) in the transitive closure of Es for
each t′ > t.
Liveness. A trivial group membership implementation may maintain safety by
blocking the completion of each join(G)/leave(G).

Then, to avoid static implementations the following property holds:
Property 2 (Liveness). The execution of the join(G) and leave(G) operations
requires finite time.

3.2 Impossibility Results

The following impossibility results stem from the general assumption that access
viewi is a random set of processes belonging to Π , without any relation with the
current membership. Unfortunately, as we see later, to guarantee the MNS spec-
ification even access viewi has to satisfy some property (stated in Corollary 1).
While this property is very lightweight, it nonetheless necessarily introduces a cir-
cularity problem.

Impossibility Result 1. If there exists a time t ∈ T s.t. G(t) ≡ ∅, the MNS
specification cannot be guaranteed.

Proof. (sketch) Let us suppose by contradiction that at some point of time t,
|G(t)| ≡ ∅.

Assume a process pi executing join(G) produces the invi(join(G)) event
while |G(t)| ≡ ∅. pi does not know whether the group is empty or not as
access view is neither complete nor accurate. pi can send a JOIN message to its
access view but cannot get any acknowledgement (like any concurrent joining
process) since G(t) is empty. To respect Liveness, pi has become a member after
a finite amount of time exploiting a time-out strategy 6. Then, at time t + T pi

5 Our Safety specification is partially inspired by the group membership specification
in [9].

6 The strategy can encompass mechanisms such as setting a timeout T or retransmit-
ting the JOIN message k times.

A Peer-to-Peer Membership Notification Service 223

concludes to be alone in G and includes in group viewi only itself. Because of the
asynchrony of the underlying system, another process pj with pj �∈ access viewi

and pi �∈ access viewj can decide to join. As pj does not ”see” pi, it uses the
same strategy and generates resi(join(G)) including in group viewj only itself
at time t + T . If both pi and pj are stationary no edge connects them at time
t′ ≥ t + T . If no other join and leave occur there is no way to add that edge at
a later moment. Hence, no edge will connect them for each t′ ≥ t + T violating
Safety.

Lemma 1. Let us suppose that |G| is never empty. Then, any process pi cannot
generate resi(join(G)) until there exist at least one edge (pi, pj) ∈ E and one
edge (pj , pi) ∈ E.

Proof. (sketch) Let us suppose that resi(join(G)) is generated at time t and
that G(t) contains a stationary member p. By the way of contradiction, let us
suppose that does not exist any edge (pi, pj) in E at time t. However, after
resi(join(G)) pi has an edge (pi, pi) ∈ E at time t. If pi is also stationary then
G(t) contains two stationary processes and no edge in the transitive closure of E.
If no other join and leave occur there is no way to add that edge in a successive
moment. No edge will connect them for each t′ ≥ t + T , violating Safety.

Impossibility Result 2. If there exists a time t ∈ T s.t. G(t) contains no
stationary member, the MNS specification cannot be guaranteed.

Proof. (sketch) Let us suppose by contradiction that there exists a point of time
t ∈ T s.t. G(t) does not contain stationary members. From Lemma 1 every
joining process has to establish two edges with a process pj , before generating
resi(join(G)). From Liveness it has to establish those edges in a finite time.
Without loss of generality suppose that at time t, G(t) comprises k faulty mem-
bers and c transient processes. Taken any subset S(t) ⊆ G(t), of one process pj ,
that process is either faulty or transient. Let us assume that:

1. pj is transient and belongs to G between times tJj and tLj .
2. pi generates invi(join(G)) and sends at time t a JOIN message to each

member of G(t).

As the system is asynchronous, the delay experienced by JOIN on the fair lossy
link connecting pi to pj , could be greater than tLj −tJj and then the message of pi

would not reach pj. Moreover, pj does not yet know pi, so pj cannot communicate
with pi before the JOIN arrives to pj . Then, pi cannot establish any edge with
pj . pi cannot establish in a finite time any edge unless some other stationary
member will join the group. However, no stationary member can surely join in a
finite time for the same reason that blocks pi. Thus, pi waits for an infinite time
violating Liveness.

From Impossibility Result 2, the following Corollary holds:

Corollary 1. If access viewi does not eventually contain at least one stationary
member, the MNS specification cannot be guaranteed.

224 R. Baldoni and S.T. Piergiovanni

This constraint on access view poses a circularity problem when the MNS is
implemented in a pure p2p fashion, i.e. it is implemented in a fully decentralized
manner by members themselves and no process plays a special role from the
beginning. In this case, to fill the access view in order to be compliant with
Corollary 1, a run time discovery has to be performed. This discovery cannot
be push-based (from the current members of the group to the newcomer): none
can indeed provide the newcomer with a view as no member of the group knows
the newcomer 7. Thus, to discover a current peer, the newcomer has to contact
someone (e.g. a special process) that knows some peer. Following a pure peer-
to-peer approach (where there is no special process), only a peer may have this
knowledge. Then, to know a peer, the newcomer must already know a peer: a
classic instance of the hen-and-egg problem.

Circularity, in these systems, may be avoided by assuming either that eventu-
ally the newcomer will somehow know someone inside the group or the existence
of special processes constantly known by all other processes from the beginning—
at the cost, however, of losing a pure peer-to-peer approach.

4 A p2p MNS Implementation

In this section we provide a p2p MNS implementation. In particular, the MNS
is implemented by the peers themselves where each peer only has only a partial
view of the group[8,7]. The interested readers are referred to [3] for a performance
analysis of the algorithm and its comparison with [8].

The proposed algorithm may concurrently handle join/leave operations gen-
erating, in a decentralized manner, knows-about graphs respecting Safety. The
resulting graphs show a particular structure in which each member has around
itself a clique of at least f + 1 members, where f is the number of tolerated
failures. The other important feature of the algorithm consists in imposing
a partial order on processes to manage concurrent leaves that may partition
the graph. The algorithm also exploits heartbeat messages to monitor node
failures.

Data Structures. The variable group viewi is the union of two different vari-
ables: sponsorsi and sponsoredi. sponsorsi is a list of processes (identifiers)
which guarantee to pi the connection8 to the group, i.e. upon the join operation
the list contains all processes the grant pi the permission to enter the group,
then if some of these sponsors leaves the list will contain some other process
that replaces the left one. sponsoredi is a list of processes (identifiers) which pi

is responsible for in terms of connection. A variable ranki gives an indication
of the position of pi in the graph, inducing a partial order on nodes. A boolean
variable leaving is initialized to ⊥.

7 The number of potential newcomers is unbounded. As a consequence the identifiers
of potential newcomers cannot be available at design time.

8 The connection is intended here as the connection to the overlay in terms of knows-
about relation.

A Peer-to-Peer Membership Notification Service 225

Initialization of the group. A set of processes {p1, ...pf+1} ⊆ Π totally intercon-
nected and defined in the initialization phase instantiates the group9. All these
processes have rank ranki = 0. They are special processes, they never leave the
group.

Join Management. Rules of the algorithm:

– MNSi sends a JOIN message to access viewi
10

– When MNSi receives a JOIN message from MNSj and pi ∈ group viewi:
(1) MNSi inserts pj in sponsoredi; (2) it sends an acknowledgement to pj

along with its own rank ranki.
– When MNSi receives f+1acknowledgments: (1) MNSi includes in sponsorsi

all the senders and pi; (2) it sets ranki = max(rankk, ∀senderpk)+1 and (3)
returns to pi generating resi(join(G)). From this time on with an heartbeat
mechanism all sponsorsi are monitored. Each time a sponsor is suspected to
be faulty, MNSi tries to re-establish the missed connection searching another
sponsor pj with rankj < ranki.

Leave Management. Rules of the algorithm:

– MNSi (i) sets leavingi = � and (ii) sends a LEAVE message to sponsorsi,
so composed 〈LEAV E, sponsoredi, ranki〉;

– When MNSi receives a LEAVE message 〈LEAV E, sponsoredr , rankr〉 from
MNSj and rankj > ranki and leavingi = ⊥: (1) MNSi inserts sponsoredr

in sponsoredi; (2) it sends an acknowledgment to pj and (3) sends a message
〈NEWSPONSOR, oldsponsor = pj〉 to sponsoredr .

– When MNSi receives an acknowledgment from its sponsors: (1) discards pi

from sponsorsi and (2) returns to pi generating resi(LEAV E(G)).
– When MNSi receives 〈NEWSPONSOR, oldsponsorr〉 from MNSj and

oldsponsorr ∈ sponsorsi: MNSi includes pj in sponsorsi and discards
oldsponsorr from sponsorsi.

Thanks to ranks, it is possible to induce a partial order on the nodes. In
practice, when two nodes pi, pj with rank ranki < rankj want to concurrently
leave, a partition may occur if they actually leave at the same time. The algo-
rithm sequences the leaves, by allowing a leave of a process of rank rankj only
if none of its sponsor pi with rank ranki < rankj is concurrently leaving. Note
that pj remains blocked as long as new sponsors of pj are concurrently leaving.
Eventually, if all processes with rank lower than rankj leave, then pj will have
as sponsors processes with rank 0. Since by construction these processes never
leave (they are stationary), then also pj eventually will leave (Liveness).

Each process, if no failures occur, maintains at any time a knows-about graph
with connectivity at least equal to f + 1. If some failure occurs during over-
lay changes, a recovery mechanism restore the connectivity of graph. If overlay
9 Impossibility results are circumvented because of the presence of these processes.

10 The mechanism to fulfill access view, addressing Corollary 1, will be discussed in
the reminder of this Section.

226 R. Baldoni and S.T. Piergiovanni

changes (joins/leaves) subside, the resulting knows-about graph has connectivity
f + 1 and remains always connected until f failures occur. Safety is maintained
until these f failures occur. Anyway, a restoring mechanism will restore con-
nectivity until only stationary processes are in the overlay. From this time on
connectivity among stationary members is always guaranteed.

References

1. Tal Anker, Danny Dolev and Ilya Shnayderman: Ad Hoc Membership for Scal-
able Applications. Proceedings of 16th International Symposium on DIStributed
Computing, (2002)

2. Kenneth Birman and Robert van Renesse: Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press (1994)

3. Roberto Baldoni, Adnan Noor Mian, Sirio Scipioni and Sara Tucci Piergiovanni:
Churn Resilience of Peer-to-Peer Group Membership: a Performance Analysis. In-
ternational Workshop on Ditributed Computing (2005), to appear.

4. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Antony Rowstron: Scribe:
A Large-scale and Decentralized Application-level Multicast Infrastructure. IEEE
Journal on Selected Areas in communications (2002)

5. Gregory Chockler, Idit Keidar, Roman Vitenberg: Group Communication Specifi-
cations: a Comprehensive Study. ACM Computing Surveys 33(4): 427-469 (2001)

6. Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernardette Charron-
Bost. On the Impossibility of Group Membership. In 15th Annual ACM Symposium
on Principles of Distributed Computing, (1996)

7. Patrick Th. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Petr
Kouznetsov, Anne-Marie Kermarrec: Lightweight Probabilistic Broadcast. ACM
Transactions on Computuer Systems 21(4): 341-374 (2003)

8. Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent Massoulié: Peer-to-Peer
Membership Management for Gossip-Based Protocols. IEEE Transactions on Com-
puters 52(2): 139-149 (2003)

9. Richard A. Golding and Kim Taylor: Group Membership in the Epidemic Style.
Technical Report UCSC-CRL-92-13, University of California, Santa Cruz (1992).

10. John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, James W.
O’Toole: Overcast: Reliable Multicasting with an Overlay Network. Proceedings of
the 4th Symposium on Operating System Design and Implementation, San Diego
(2000)

11. André Schiper and Sam Toueg: From Set Membership to Group Membership: A
Separation of Concerns, Technical Report, EPFL, Lausanne, (2003)

Querying Communities of Interest in Peer

Database Networks

Md. Delwar Hossain and Iluju Kiringa

School of Information Technology and Engineering, University of Ottawa
800 King Edward St.

Ottawa, Ontario, Canada, K1N 6N5
{dhossain,kiringa}@site.uttawa.ca

Abstract. Peer databases are individual, independently developed data-
bases that contain local data, but are also linked to each other through ac-
quaintances for the purpose of sharing data. Many researchers have
tackled the problem of query processing in P2P networks. Only recently
have researchers started to exploit the idea of community-based querying
in peer database networks. P2P communities are formed using common
claimed attributes. We develop a community-based search algorithm for
peer databases. The algorithm combines an existing community forma-
tion and discovery algorithm with an existing query translation mecha-
nism for peer databases. We have implemented the algorithm and report
on preliminary experiments.

1 Introduction

The P2P paradigm of computing is defined as the distribution of computer re-
sources and information through direct, point-to-point exchange. A P2P network
is composed of nodes (peers), each of which contains both strictly local resources
as well as resources to be shared. Those shared resources are also said to be ex-
ported by the peer. A node can work as a client as well as a server. Efficient P2P
search techniques for P2P networks are proposed in [17]. In addition to efficient
search techniques, it has been noticed that peers usually tend to form P2P com-
munities [3,7,10,16]. The term “P2P community” comes from common interests.
Here, common interests are the same resources or attribute that are exported by
a set of peers. To follow [10], “a non-empty set N of peers forms a peer-to-peer
community if all peers in N claims the same attributes”. Moreover, an elaborated
search mechanism based on the idea of communities of interest is proposed in [10].
In the sequel, the term community will refer to the set of attributes that charac-
terizes the common interests. Some others are outlined in [3,7].

Meanwhile, database management systems (DBMSs) are being built around
the P2P computing paradigm [1,6,13]. Such DBMSs are called peer DBMSs [1].
Among a few others (e.g., [6,13]), the Hyperion project [1] develops algorithms for
peer database management. Peer DBMSs form a network of nodes (peers) which
coordinate querying, updating, and sharing of data at run-time. One of the most
important features of a network of peer DBMSs is that peers establish and abolish

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 227–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 Md.D. Hossain and I. Kiringa

links at run-time. In this context, the set of all peer DBMSs breaks down into mul-
tiple communities of interest formed around common, shared attributes. However,
existing P2P query mechanisms do not specifically exploit the idea of communi-
ties of interest in networks of peer DBMSs. Community-based querying assumes
guidelines on how users will search in an interest-based locality. The issue is two
fold: (1) to discover and form communities; (2) to apply community-based search
algorithms. We provide an algorithm for community-based query processing in
peer DBMSs. The idea is to exploit the concept of community of interest to en-
hance query processing in a network of peer DBMSs. The main contributions are:
combining the community formation and discovery algorithms described in [10]
with a query processing algorithm developed in [9] by considering explicit com-
munities; and implementing the algorithm in a peer database network. Our algo-
rithm forms peer communities by using an escalation method [10] which consists
in having a peer claim as many relational attributes as possible. After discovering
the formed communities, our algorithm uses a query translation technique inher-
ited from [9] to get results from other peers in targeted communities. The query
processing algorithm translates a query posed against a peer to the vocabulary of
all the peers that belong to the same communities which have been formed and
discovered using an extension of the method of [10]. Since these communities are
formed and discovered in advance, they are explicit communities.

2 Querying Communities of Interest

2.1 Motivating Example and Preliminary Concepts

We consider a movie domain with ten peers P1, ..., P10 (Figure 1). We assume
the relational data model. Each peer has strictly local (or personal) attributes
and shared (or claimed) attributes.

The movie domain contains the following attributes, which are denoted as let-
ters: Movie name = N, Film Director = D, Movie type = T, Country of movie =
C, Movie award = A, Actor/Actress = H, Year of movie = Y. Each peer claims
a subset of its personal attributes to be shared with other peers. For example,
peer P1 claims the set [Y,C,T,N]. We now show portions of the schema of the
aforementioned movie domain. To be brief, we only give schemas of peers P1
and P7.

Schema of peer P1:
Movie (MovieID, DirName, TypeID, CountryCode, AwardType, ActName, Year)
MovieName (MovieID, MovieTitle)
MovieType (TypeID, Type)
Director (DirName, CountryCode, MovieID)
Country (CountryCode, CountryName, MovieID)
Award (AwardType, AwardName, MovieID)
Schema of peer P7:
MovieDesc (MovID, Country, MovCategory, AwardCategory,

ActorName,ActressName, MovieYear)

Querying Communities of Interest in Peer Database Networks 229

Fig. 1. A Movie Domain

Movie (MovID, MovName)
Category (MovCategory, CategoryName)
Award (AwardCategory, AwardTitle)

Attribute mappings: Different peers may contain the same attributes under
different names. Through attribute mappings, attributes of two different peers
are matched.

Mapping tables: Mapping tables provide a mechanism for sharing data and
for associating values residing in different peers [11]. We use them for discovering
communities in some cases, but they are mainly used for query translation of
different peers. A mapping table may say, e.g., that the value “Action” of the
attribute ”Type” is mapped to both ”War” and ”Fighting”.

Item file: The item file is used to store the description of attributes of the
database. More specifically, it provides the full name of each attribute of the
database. Each peer database has an item file. A main table is a master file
where all necessary information is kept. It contains data of some or all of the
attributes as a code for security purposes. It is a main table of the database.
The item file is needed to recognize the claimed attributes in every peer. Peers
declare claimed attributes through the item file, but the processing related to
communities (e.g. calculation of link weight, discover communities, etc.) is done
by the related database.

Community board: A community board is a data structure that stores com-
munity peers identity (e.g., peer name, signature of claimed attributes set). Each
peer has a community board, but, as an example, Figure 1 shows only the com-
munity board of peer P7. In Figure 1, a SQL query Q, and the related meta-
information are also shown. We assume that communities are formed using an
attribute escalation method where attributes are claimed through the item file

230 Md.D. Hossain and I. Kiringa

of peer databases. Attribute escalation is a process in which attributes are pro-
moted from a private attribute of a peer to a claimed attribute set to form
communities. Communities are discovered by computing the link weight and
comparing the latter with predetermined threshold values. The link weight is
the weight calculated for each claimed attribute of a peer V based on the num-
ber of links from V that can reach, after at most one indirection, other peers
that claim the same attribute [10]. Threshold value remains a ”magic number”
that depends on a number of observations. In our implementation, we set the
threshold value at 60%.

2.2 Community-Based Querying Algorithm

In the context of our running movie community example, we now informally
explain the community-based query processing algorithm. We assume that at-
tribute mapping and mapping tables are all in place. The main ingredients of
our community-based query processing approach are queries, communities, and
peer databases. Our solution has two steps: (1) Forming and discovering commu-
nities; and (2) translating a given query to be sent to the desired communities.

Step 1: Communities are discovered by examining database attributes. The
attributes of peer databases are described in the item file of the peer. Each peer
claims some attributes from the item file; then it calculates the link weight of
these claimed attributes. After that, it compares this link weight with a globally
predetermined threshold value. If the link weight is greater than the threshold
value then the peer belongs to a community with those attributes as signature.
Each peer may belong to one or more communities. Details of this algorithm
are given in [10]. At the end of Step 1, every peer knows about communities to
which it belongs and which attributes it claims. For example, peer P7 will know
that it belongs to the community [P1,P7,P10] formed by peers P1, P7, and P10.

Step 2: Suppose that the SQL query Q is posed at peer P1. From the query
Q, peer P1 will get the following meta-information: year (2003), movie type (Ac-
tion), and country (America). If peer P1 cannot execute Q, it just discards it;
else peer P1 executes Q and sends the results back to the user and copy the
query in its community board. Now, peer P7, which knows that it belongs to
the same community as P1, will download the query Q from peer P1. Peer P7
will then compare its claimed attributes with the meta-information of query Q.
Since the meta-information of Q matches the attributes claimed in peer P7, the
latter will first translate Q into its schema, using the mapping tables. Peer P7
stores the translated query Q’ in its community board, execute Q’ and send the
results back to peer P1. Each peer in the network proceeds in a similar manner.

Periodically and asynchronously each neighboring peer of P7 which has a
common community with P7 will visit P7’s community board. If a neighbor can
answer any query that is stored in that community board, it copies the given
query into its own community board. This process repeats until all peers of the
community have been checked. Algorithm 1 summarizes the community-based
query processing mechanism described above.

Querying Communities of Interest in Peer Database Networks 231

Algorithm 1. Community-Based Query Execution and Propagation

Community-based search using Query Translation
/* This algorithm is run at each peer Pi */
Begin
Assume that the list of communities has already been compiled and let this list
be COM; each one of the members of COM is a set of attributes;

Periodically do the following:
For each acquaintance Pj of Pi do

Check any query Q stored in Pj’s community board CBj
Set identifier PQ of the peer that initiated Q
Extract the meta-information MI(Q) of Q
If MI(Q) matches COM[k] for some k then

Translate Q using the algorithm of [11];
Let Q’ be the translation of Q;
Copy Q’ the community board of Pi;
Execute Q’ and send results back to PQ

End-If
End-For

End

3 Implementation

3.1 System Architecture

Figure 2 extends the Hyperion DBMS architecture [1] with a community-based
search component. In the Hyperion architecture, a peer consists of three main
components: an interface (GUI) for posing queries to the system and perform-
ing administrative tasks, a P2P layer that encompasses the peer-oriented data
management functionalities, and an underlying DBMS. The P2P layer includes
a Query Manager (QM) used to process and propagate queries, and an Acquain-
tance Manager (AM) for establishing acquaintances between peers. Through the
AM, the P2P layer allows a peer database to establish or abolish acquaintances
at run time, thereby forming a logical peer-to-peer network. The underlying
DBMS manages a database containing local databases, as well as mapping ta-
bles and attribute mappings which enable data exchange with other peers.

The P2P layer of the Hyperion architecture is augmented a Community Dis-
covery layer (CD). The CD layer has four sub-components: an Attribute Es-
calator/Item Matcher (AE/IM), a Community Formator (CF), a Link weight
Calculator (LC), and a Community Discovery Rule Manager (CDRM). The CD
layer is connected with the QM and AM for propagating the given query into
a desired community. The AE/IM escalates attributes by intersecting personal
items with claimed items. The CF is responsible for forming communities. The
LC calculates link weights of each of the claimed attributes. Finally, the CDRM
discovers communities by comparing link weights with given threshold values.

232 Md.D. Hossain and I. Kiringa

P2P User Interface

 Peer Manager

Acquaintance

DBMS

Hyperion P2P Database Network Hyperion Database Management System (Peer DBMS)

Peer node in a Hyperion network

Acquaintance link

Interest group Local
Sources

Mapping
Tables

Manager

Query
Manager

CD Layer

AE/IM

LC

CDRM

 CF

CD Layer

Fig. 2. Architecture for a Community-Based Hyperion Peer

3.2 Implementation and Experiments

We have implemented our community-based query algorithm which is mentioned
in section 2.2. We used MySQL 4.1.9 as our underlying DBMS for the local
peer databases. Following the existing Hyperion infrastructure [18], our pro-
totype is built on top of JXTA [8] using Java SDK 1.4.2. We provide a user
interface for declaring claimed attributes, discovering communities, and posing
queries to the peer database network. We are mainly concerned with measur-
ing the correctness and efficiency of discovering communities in a peer database
network. We created 10 peers on 4 different machines using the JXTA pack-
age. To measure the efficiency and effectiveness of our algorithm, we did some
experiments. Because of the unreliability of JXTA pipes at the time of the
experiments, and motivated by the desire to create a signification amount of
peers, we decided to create two networks of 100 and 300 peers, respectively, all
on one single machine. We collected data for evaluating the following: the com-
munity refreshment within different time intervals; the effect of community
changes on query propagation; and the time complexity of our algorithm. Due
to space limitations, we only report on the findings with respect to community
refreshment.

For plotting percentage of community changes, we gathered two sets of data:
one is the change induced by peers that join or leave the networks; the other
is the variation of peer database attributes within different time intervals. In
our networks, each peer contains a maximum of 12 personal attributes, and

Fig. 3. Community Refreshment by Changing Peers and Attributes

Querying Communities of Interest in Peer Database Networks 233

a peer was explicitly placed into only one group. Our algorithm sets the link
threshold at 60%. Figure 3 shows community refreshment within different time
intervals. The curves of Figure 3 are in different shapes. The percentage of com-
munities change depends on how many peers change their status (i.e. joining or
leaving the network, and changing claimed attributes) after community refresh-
ment. A large time interval (typically 30 minutes) for community refreshment
shows more community changes than shorter intervals. Our observation deter-
mines that peers change their attributes more frequently than they join or leave
networks.

4 Related Work

Peer database networks are a serious option for the next generation of multi-
database systems [11]. The work reported in the present paper contributes to
the implementation of the idea of run-time (as opposed to design time) mul-
tidatabase systems [1]. The vision reported in [6] presents the first complete
articulation of the idea of data coordination based on the concept of commu-
nity of interest. In [4,5], web communities are presented along with their own
concepts of community formation. The community formation and discovery tech-
niques that we used are inherited from the work reported in [10,16]: we adapt the
algorithms described there to our context of relational peer databases. In our
context, communities are formed using common claimed relational attributes.
In addition, we refined the attribute escalation and community discovery algo-
rithms: in [10], all the subsets of a peer’s claimed attributes are checked in order
to determine community membership; on the contrary, we do introduce an opti-
mization that allows to discard a membership in, e.g., [A,B,C] whenever a peer
does not belong to, e.g., [A]. Doing so, our algorithm reduces the number of
iterations during community discovery.

5 Conclusion and Future Work

We have addressed the problem of using the concept of peer communities to
enhance query propagation in a network of peer databases. We discover com-
munities by taking into account relational attributes claimed by peers on the
network. Such communities are explicit. A query translation scheme uses map-
ping tables to translate a given query to the vocabulary of every peer community.
Attributes mentioned in the given query are used in the choice of the targeted
communities. We implemented the algorithms for explicit communities on top of
JXTA and did some experimentations. As future work, we plan to implement the
algorithm for discovering communities on the fly. This amounts to discovering
communities in a distributed way as queries are being propagated. Currently,
the system accepts only queries with simple condition parts, but queries with
more elaborated conditions could be incorporated in our algorithm as well.

234 Md.D. Hossain and I. Kiringa

Acknowledgment

We would like to thank Mujtaba Kambatti for making his community simulator
available to us and for other useful feedbacks.

References

1. Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R.J., and My-
lopoulos, J.: The Hyperion Project: From Data Integration to Data Coordination.
In SIGMOD Record (2003)32(3): 53-58

2. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
and Zaihrayeu, I.: Data Management for Peer-to-Peer Computing: A Vision. Proc.
of the 5th International Workshop on the Web and Databases (WebDB) 2002

3. Doucet, A. and Lumineau, N.: A collaborative approach for query propagation in
peer-to-peer systems. Proc. of SWDB 2003

4. Flake, G.W., Lawrence, S., Giles, C.L., and Coetzee, F.M.: Self-organization and
identification of web communities. IEEE computer (2002)35(3):66-71

5. Gibson, D., Kleinberg, J., and Raghavan, P.: Inferring web communities from Link
topology. Dept. of Computer Science. UC Berkeley Berkeley USA, 1999

6. Giunchiglia, F. and Zaihrayeu, I.: Making peer databases interact - A vision for an
architecture supporting data coordination. Proc. of CIA 2002

7. Gnasa, M., Alda, S., Grigull, J.,and Cremers, A.B.: Towards Virtual Knowledge
Communities in Peer-to-Peer Networks. Proc. of the SIGIR Workshop on Dis-
tributed Information Retrieval, 2003

8. JXTA Project: http://www.jxta.org
9. Kementsietsidis, A. and Arenas, M.: Data sharing through query translation in

autonomous sources. Proc. VLDB 2004
10. Khambatti, M.: Peer-to-Peer communities: Architecture, Information and Trust

Management. Ph.D. Thesis, Arizona State University, December 2003
11. Litwin, W., Mark, L., and Roussopoulos, N.: Interoperability of multiple au-

tonomous databases. ACM Computing Surveys (1990)22(3):267-293
12. Lumineau, N. and Doucet, A.: Sharing Communities Experiences for Query Prop-

agation in Peer-to-Peer Systems. Available at http://www-poleia.lip6.fr/padoue
13. Piazza PDMS: http://data.cs.washington.edu/p2p/piazza
14. Serafini, L., Giunchiglia, F., Mylopoulos, J., and Bernstein, P.A.: Local relational

model: A logical formalization of database coordination. Technical Report DIT-03-
002, Informatica e Telecomunicazioni, University of Trento, June 2003

15. Siong Ng, W., Ooi, B.C.,Tan, K.L., and Zhou, A.: PeerDB: A P2P-based system
for distributed data sharing. Proc. of ICDE 2003

16. Vassileva, J.: Supporting peer-to-peer user communities. Proc. of CoopIS 2002
17. Yang, B. and Garcia-Molina, H.: Efficient Search in Peer-to-peer Networks. Inter-

national Conference On Distributed Computing System, 2002
18. Rodriguez-Gianolli P., Garzetti M., Jiang L., Kementsietsidis A., Kiringa I., Masud

M., Miller R., and Mylopoulos J.: Data Sharing in the Hyperion Peer Database
System. Proc.VLDB 2005

Middleware for Reliable Real-Time Sensor

Data Management

Vana Kalogeraki

Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521
vana@cs.ucr.edu

Abstract. The integration of sensors in networks of embedded systems
revolutionize distributed networked applications in a variety of disci-
plines. The development of the appropriate middleware components and
tools that simplify the programming of the applications and enable reli-
able and timely communication is a key challenge. This paper describes
challenges and basic building blocks in the design of such middleware.
We first examine in-network data management computations that can
be performed in a sensor network. Then we discuss the various chal-
lenges that must be addressed in providing a convenient and powerful
middleware environment that simplifies the development of distributed
applications on sensor networks, concentrating on in-network storage and
real-time data dissemination. Such a sensor network middleware is ex-
pected to significantly promote the wide adoption of distributed sensor
network applications.

1 Introduction

Advances in wireless technology and embedded sensor devices are revolutionizing
the way that sensor data is collected and analyzed. Large-scale deployments of
sensor network devices have already emerged in environmental monitoring (such
as atmosphere and habitat monitoring [1,2], seismic and structural monitor-
ing [3]), industry manufacturing [4,5], healthcare and disaster recovery missions.

Consider for example a sensor network deployment for environmental monitor-
ing. Imaging and non-imaging sensors can be used to capture continuous streams
of data such as temperature, position, movement, as well as images or other con-
ditions related to the observed phenomenon. In many of these deployments, it is
often more energy efficient to store locally a large window of measurements (at
the generating site) and transmit specific readings to a centralized server (i.e.,
the sink) only when requested. For instance, biologists analyzing a forest are
usually interested in the long-term behavior of the environment (e.g., forests,
plant growth). Therefore the sensors are not required to transmit their readings
to the sink at all times. Instead, the sensors can work unattended and store their
reading locally until certain preconditions are met, or when the sensors receive
a query over the radio that requests specific data.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 235–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

236 V. Kalogeraki

Another example is a disaster recovery scenario. In military battlefields, there
is need for reliable and high quality communication to ensure that high priority
events are delivered to the operations center in a timely manner. The sensor
devices are either placed manually at predetermined locations, or (in some envi-
ronments where human intervention is not possible) the sensors can be thrown
from an airplane to self-organize into a network. Sensor nodes in military deploy-
ments can be useful to sense and monitor data streams of interest or to detect
and track objects as they move through the battlefield. Such deployments require
reliable and real-time communication. Time requirements are usually expressed
in the form of deadlines, where the typical objective is to ensure that packets
are delivered end-to-end, from the sources to the operations station, within their
deadline. Once deployed, sensors are prone to failures due to manufacturing
defects, environmental conditions (such as fires) or battery depletion. In such
circumstances, the data (e.g., sensors’ reports) may become stale or get lost.
Thus, reliable functioning of wireless sensor devices is of paramount importance
to guarantee correct operation and ensure that critical events are accurately
reported.

Compared to peer-to-peer networks, sensor networks have the following key
characteristics:

– Ad hoc sensor network topology. The network is peer-to-peer, composed of
several wireless sensor devices deployed in a particular region. A static sen-
sor network environment is typically assumed, although a small number of
autonomous mobile devices could also be part of the network. Sensor net-
works are based on wireless technology. Sensors are often deployed in large
numbers (to increase redundancy). The density of the nodes depends on
the type of application. Nodes can directly communicate with other devices
within their transmission radius, but no direct communication with remote
nodes is possible. New sensor nodes may be added or removed during the
network lifetime. Furthermore, nodes may turn on and off based on some
sleep pattern or because of failures. As opposed to peer-to-peer systems,
failed or damaged devices can affect the correct operation of the application.

– Limited resource capabilities. Sensors are expected to be battery equipped.
Each device has limited processing, storage and communication capabilities
and thus sophisticated management policies are not appropriate. Resource
constraints are much more stringent in sensor networks, compared to peer-
to-peer networks. This is due to the fact, that, sensor networks are often
expected to be deployed in environments where human intervention or net-
work maintenance may not be possible. The resource constraints of the nodes
(such as bandwidth and memory constraints) also limit the degree to which
data can be collected and communicated to other nodes in the network. For
example, since multiple nodes share the same communication channel, the
bandwidth available per node depends on the area density as well as the
traffic in the network. Furthermore, the local RAM memory of the sensor
devices is limited. Also, the non-volatile on-chip flash memory featured by
most sensors today is also very limited. However, several sensor devices, such

Middleware for Reliable Real-Time Sensor Data Management 237

as the RISE hardware platform [6] and the TSAR storage architecture [7,8],
propose to equip sensor devices with off-chip flash memory which supple-
ments each sensor with several Megabytes of storage. We believe that future
sensor nodes will feature more SRAM and flash storage, which will allow
larger volumes of data to be stored and analyzed in-situ.

– Unreliable environment. Failures are inevitable in sensor networks. Failures
can be caused due to hardware or software faults (such as manufacturing
defects, battery depletion, program errors) or due to communication errors.
Failures can be addressed by including a significant amount of redundancy
in anticipation of possible failures during the application operation. The
sensor network must be able to detect and recognize failures and be able to
dynamically adapt to changing conditions and maintain correct operation.

– Aperiodic initiation of data streams. Sensor network applications can vary
from periodic applications, such as environmental monitoring, to event-based
applications, including target tracking, emergency response and military ap-
plications. In event-based sensor networks, events are aperiodic and are likely
to be generated at random times and at random places in the network (e.g.,
sensors tracking a moving object). Different types of applications have dif-
ferent requirements in terms of resource and rate demands. For example,
in a disaster recovery situation, there might be need for high quality video
surveillance and prioritized flow delivery between event sources and control
locations. In such scenarios, a key question is how to handle bursty data and
data rates far in excess of that currently available for communication.
Thus, the limited resource capabilities of the sensor devices, the lack of cen-
tralized control, the unreliable communication environment and the variable
resource requirements and rate demands of the applications, generate signif-
icant challenges to sensor data management.

The remaining of this paper is structured as follows: We first provide a brief
description of data management computations in sensor networks (Section 2). In
Section 3 we discuss the middleware components required to support distributed
data management applications. Related work is discussed in Section 4 and finally
Section 5 concludes the paper.

2 Data Management on Sensor Networks

In this section we give an overview of in-network data management computations
in sensor networks.

2.1 Attribute-Based Queries

The ability to query data streams produced by a sensor network has been a topic
of much research in recent years. Previous approaches require data streams to
be transmitted to a centralized server for further processing, storage and anal-
ysis. This approach has been widely utilized in peer-to-peer data management
systems. However, in a sensor network setting, these approaches suffer from high

238 V. Kalogeraki

communication cost and latency since they require that all the data must be
transmitted to a central location. To overcome these limitations, systems like
Cougar [9] and TinyDB [10] process attribute queries using a declarative SQL
language. Their goal is to monitor continuous streams of data produced at geo-
graphically distributed sources and use sensor resources in an efficient way when
collecting the query results. In-network aggregation techniques [11,12] improve
the centralized approaches, by pushing partial computation to the internal nodes
along the path from the data sources to the centralized server. These techniques
can be efficiently used when raw sensor data is required, or when one wants some
aggregate data from multiple nodes (such as AVG, MAX, MIN and SUM).

Although collecting attribute query results is an important problem, these
techniques still require some amount of computation at the server. Further-
more, to perform more intelligent computations such as top-k queries and spa-
tial queries, more efficient techniques are required: (1) First, although attribute
queries can be used for collecting spatial query results, we can significantly re-
duce the energy consumption in processing spatial queries by exploiting the
fact that the sensors with the query result are usually located in the same ge-
ographical area. (2) Second, some applications may not require the collection
and transmission of the entire volume of sensor data, rather they are interested
in identifying and monitoring a relatively small subset of data of interest (e.g.,
top-k results). However, to compute top-k queries in a distributed environment,
it may be necessary to retrieve data from multiple sensors and compare their
values to generate the results of interest.

2.2 Spatial Queries

Spatial queries are a subset of queries in which the database or the sensor network
is queried by location rather than an attribute. Spatial queries are used to answer
questions, such as ”find the average temperature in a geographical area or count
the number of sensors within one mile of a point of interest”. In a sensor network,
however, spatial queries have to be processed in a distributed manner. Because
of the resource limitation of sensor nodes, it is desirable to process the query
only on those sensors that have relevant data or are used to route the data to
the centralized server (i.e., sink). The idea behind these techniques is to create a
spatial index on groups of objects which are geographically related, and use this
index to process spatial queries. The unique characteristics of the sensor networks
generate new challenges for processing spatial queries in sensor network settings:

– Distributed query execution. Queries must be computed in a distributed
manner, because sensor data are distributed in the network, and there is no
global collection of the data.

– Distributed and dynamic index maintenance. The high energy cost of com-
munication requires to decide where to compute the queries to optimize the
resource usage. In addition, the spatial index must reorganize itself to re-
spond to dynamic changes in the environment or sensor failures.

Middleware for Reliable Real-Time Sensor Data Management 239

To be able to process spatial queries efficiently, we have developed a dis-
tributed SPatial IndeX (SPIX) over the sensor network[13]. SPIX imposes a hi-
erarchical structure in the network and is maintained by the sensors to efficiently
evaluate spatial queries. This distributed spatial index is built once by flooding
a message into the network and maintained dynamically when sensors fail or
new sensors join. Spatial queries are disseminated from a centralized server. The
server is responsible for preparing the query, submitting it into the sensor net-
work and getting the result back. The spatial query will be disseminated into the
routing tree and the result will be sent back to the server. When a sensor receives
the query, it decides if the query applies locally and/or needs to be submitted to
one of its children in the routing tree. A query applies locally if there is a non-
zero probability that the sensor produces a result for the query. To determine
this, each sensor node in SPIX maintains a minimum bounded area (MBA), that
represents the geographical area covered by the sensor. The sensor’s MBA covers
itself and the nodes below it. When a node receives a spatial query, it intersects
the query area to its MBA. If the intersection is not empty, it applies the query
and forwards the request to its children. SPIX has a number of advantages. It
allows us to: (1) Bound the branches that do not lead to any result, (2) Find
a path to the sensors that might have a result, and (3) Aggregate the data in
the sensor network to reduce the number of packets transferred and save energy.
We can also appropriately select the MBA sizes of the sensors and intelligently
choose the parents in the spatial index, which allows us to further optimize the
construction of the tree and save more energy in processing spatial queries.

2.3 Top-K Queries

Top-k queries are useful in sensor networks when we are interested in evaluating
queries over multiple sources and only retrieving those results that match well the
given query. An example of a top-k query might be ”Find the three moments on
which we had the highest average temperature in the last month?”. The objective
of a top-k query in a sensor network is to find the k highest ranked answers to
a user defined similarity function. Since the execution of a query is typically
associated with the transfer of data over the wireless network, the objective is to
accomplish this in an energy efficient manner, that is, by transferring as fewer
readings to the sink as possible and using a fixed number of rounds.

Computing distributed top-k queries is significantly more complicated than
aggregating the local readings of individual sensors. The problem is that the top
k data values of a single sensor are not necessary the top k values of the entire
sensor network. Thus, multiple rounds of data exchanges may be required to
answer such queries. We have studied the problem of distributed TOP-k query
processing in sensor network environments. We have developed the Threshold
Join Algorithm (TJA), which is an efficient solution to this problem[14]. TJA
resolves top k queries in the network rather than in a centralized fashion, min-
imizing the communication between nodes but also exploiting well the inherent
parallelism of the network itself. We have shown that our approach is highly
efficient and accurate in computing distributed top-k queries.

240 V. Kalogeraki

3 Middleware Components

In this section we present our middleware components for supporting distributed
data management applications. Our goal is to provide a general purpose mid-
dleware that can be used to support a variety of applications. In this section we
focus on middleware components for in-network data storage and real-time data
dissemination.

3.1 In-Network Data Storage

The high energy cost of transmitting continuous data streams in sensor net-
works has motivated the development of in-network data storage schemes that
facilitate both energy savings and long-term data storage. The challenge in cur-
rent sensor network architectures is that the local RAM memory of the sen-
sors is both volatile and very limited. Furthermore, the non-volatile on-chip
flash memory featured by some sensors today is also very limited. To over-
come these limitations, recently, sensor network architectures have been pro-
posed that equip sensor devices with off-chip flash memory. Examples of such
architectures are the RISE hardware platform [6] and the TSAR storage archi-
tecture [7,8]. These aim to: (1) supplement each sensor with several Megabytes
of storage, and (2) assist in creating an energy-efficient distributed storage plat-
form suitable for resource-constrained sensor nodes. The use of flash memory in
the sensor nodes offers new opportunities for pervasive monitoring of the envi-
ronment. Local storage on the flash memories enable the devices to store and
manage data, as generated at the sensors, and do that in an energy efficient
manner.

Data storage has been a basic research topic of systems research. A number
of large-scale, peer-to-peer data storage systems have been proposed in the lit-
erature. Data-centric sensor networks differ from traditional peer-to-peer data
storage systems in two important ways: (1) in peer-to-peer systems data objects
can be available at multiple nodes in the network and each node is responsi-
ble to store a number of objects, regardless of where the data was generated
in the network, and (2) the resource limitations of the sensor devices require
economical usage of resources and the design of efficient mechanisms to retrieve
the data. When developing in-network storage support on flash memories, the
following main questions arise: (i) what file structures and index structures are
required to allow us to store and efficiently retrieve data from the flash, (ii)
how to address the unique characteristics and constraints of flash memories. We
have proposed the MicroHash index[15], an efficient external memory structure
for wireless sensor devices. MicroHash exploits the asymmetric read/write and
wear characteristics of flash memory and offers high performance indexing and
searching capabilities in the presence of a low energy budget which is typical for
the devices under discussion and at a small cost of constructing and maintaining
the index.

Middleware for Reliable Real-Time Sensor Data Management 241

3.2 Real-Time Data Dissemination

Support for timely packet dissemination is a fundamental requirement for a num-
ber of sensor network applications. Typically, a sensor network integrates, within
the same network, a rich collection of sensing devices with different requirements
in terms of transmission rates, bandwidth and jitter demands. In these settings,
data from a multiplicity of sensor-detected events, will typically have to flow
via data paths that are largely interference-coupled. Collisions of packets from
simultaneous flows may create congested hotspots, which in turn, cause flows
to experience arbitrary delays and packet drops. The problem becomes more
critical in situations where we have multiple types of traffic and some flows
are more important than others and thus need to be delivered with bounded
delay[16]. The characteristics of the sensor networks such as limited availabil-
ity of resources, interference-coupled paths as well as the aperiodic initiation of
event-based flows, make the problem more challenging. Current congestion con-
trol or admission control approaches are not adequate to address these problems.
The majority of these techniques are reactive in nature and are implemented only
after congestion has already occurred and, thus, may not be able to avoid exces-
sive packet losses. Furthermore, these approaches fail to take into consideration
the different requirements of the individual classes of flows.

In our work we have addressed the problem of congestion and rate control in
the presence of multiple classes of interfering flows[17,16]. In particular, we have
proposed: (i) distributed mechanisms for identifying congestion control and, (ii)
rate allocation mechanisms to effectively and fairly manage flows from multiple
classes of traffic. Our goal is to dynamically regulate sensor traffic to control
congestion and schedule the flows end-to-end based on the sensor traffic charac-
teristics and the real-time requirements. Our congestion control mechanisms are
based on a collective and distributed estimation of the current traffic intensity in
the network to identify the onset of congestion. Our estimation technique is sim-
ple, decentralized, lightweight and should be implemented efficiently within the
sensors’ localized scope. To support multiple classes of sensor traffic, in the case
that where many flows are present in the network, our rate allocation mechanism
assigns lower rates to low priority flows. Using such an approach, our techniques
allow us to effectively allocate and adjust the rates of the flows based on the
sensor traffic requirements and current network conditions.

4 Related Work

In this section we discuss related work in the areas of data management, in-
network storage and real-time data dissemination.

Data Management. Several attribute-based query processors have been devel-
oped for sensor networks. Madden et al [10,12] have proposed an Acquisitional
Query Processor (ACQP) that executes attribute queries over a sensor network.
ACQP builds a semantic routing tree (SRT) that is conceptually an attribute
index on the network. It stores a single one-dimensional interval representing the

242 V. Kalogeraki

range values beneath each of its children in each node. Every time a query arrives
at a node s, s checks to see if any child’s value overlaps the query range. If so, it
prepares and forwards the query. SRT provides an efficient way for disseminat-
ing queries and collecting query results over constant attributes. Systems such
as TinyDB [18] and Cougar [9] achieve energy reduction by pushing aggregation
and selections in the network rather than processing everything at the sink. Both
approaches propose a declarative approach for querying sensor networks. These
systems are optimized for sensor nodes with limited storage and relatively short-
epochs, while our techniques are designated for sensors with larger external flash
memories and longer epochs.

Range queries have also been studied in dynamic [19] and large-scale envi-
ronments [20,21,22]. However, because of the resource limitation of the sensor
devices, building an efficient centralized index or distributed index to execute
queries presents a number of challenges. Ferhatosmanoglu et al [23] have pro-
posed peer-tree, a distributed R-Tree method using peer-to-peer techniques. The
basic idea is that the sensor network is partitioned into hierarchical rectan-
gle shaped clusters, and then they implement joins/splits of clusters when the
number of items (sensor nodes) in the cluster satisfies certain criteria. The au-
thors have shown how to use the peer-tree structure to answer Nearest Neighbor
queries. In [23], the peer-tree is created bottom up by grouping together nodes
that are close to each other. Each group of nodes selects a representative, which
acts as the parent of this group of nodes, and these representatives are in turn
grouped together at the next level. As a result, the connections between parents
and children become progressively longer, and there is no way to guarantee that
they can be implemented as single hops in the sensor network unless we make
the assumption that the nodes’ transition range is in the order of the dimensions
of the sensor field. We note however that such long transmission ranges would
have large energy costs. Our technique, on the other hand, operates in a top
down fashion when constructing the hierarchy, and guarantees that each parent
to child connection is only one hop away.

In-network Storage. A few techniques have been proposed for data storage
and indexing in sensor networks. Matchbox, is designed to provide a simple file
system for mote-based applications. The advantage is that it hides the lower de-
tails of wear-leveling and provides a pointer to each file (page in our context) on
the flash memory. Matchbox works with the packaged with the TinyOS distribu-
tion [24]. This approach has the disadvantage that it requires a large footprint
to keep track of these pointers. An efficient and reliable file storage system,
called ELF (Efficient Log Structured Flash File System) [25] has been proposed
for sensor networks. ELF is a log-like file structure designed for wear-leveling.
It works by updating desired file page and writing it into a new flash memory
space. The TSAR indexing scheme [7] stores data locally at sensor nodes and
indexes them by higher tier nodes called proxies. Distributed Index of Features
in Sensor networks (DIFS [26]) and Multi-dimensional Range Queries in Sen-
sor Networks (DIM [27]) extend the data-centric storage approach to provide
spatially distributed hierarchies of indexes to data. All these techniques provide

Middleware for Reliable Real-Time Sensor Data Management 243

index topologies at the network level, but do not provide details on how to ef-
ficiently write the index information into the sensor flash memories as we do
in our approach. Furthermore, flash-based file systems have been proposed in
the last few years, such as the Linux compatible Journaling Flash File System
(JFFS and JFFS2) [28], the Yet Another Flash File System (YAFFS) [29] specif-
ically designed for NAND flash with it being portable under Linux, uClinux, and
Windows CE.

Real-time Data Dissemination. A few projects have investigated techniques
for real-time data communication in sensor networks. Most of these techniques
have focused on providing Medium Access Layer (MAC) or routing solutions.
MAC–based scheduling solutions, however, may fail to consider two important
pieces of information: (a) the urgency of a packet to be transmitted and (b) the
queuing delay. Furthermore, localized MAC protocols are limited as they can-
not consider the congestion state of the flows and delays along their complete
routing path. Localized time-division-based solutions (TDMA) can be employed
to guarantee deterministic access times but are quite complex and require coor-
dination among the sensors which is expensive in terms of message exchanges.
An alternative approach would be to provide the higher priority packets with
lower back-off times that would allow them to access the channel with higher
probabilities [30][31]. But in spite of this, due to interference range effects,low
priority packets contend with those of high priority. Furthermore, loss of control
packets still could occur, causing route failures and other associated effects.

Routing protocols for real-time delivery have also been proposed [32,33]. These
techniques attempt to schedule the packets either at the MAC or routing layer to
guarantee timely delivery. The SPEED protocol [32] utilizes greedy Geograph-
ical Forwarding and attempts to maintain a required speed between hops as
packets are propagated in the network. SPEED uses rerouting when the de-
lay becomes excessive. One disadvantage of SPEED is that it can suffer from
instability caused by sudden congestion, which can cause highly variant delay
measurements. The RAP protocol [33] relies on MAC prioritization to provide
soft guarantees by locally considering the velocity at a node which can be dy-
namically readjusted. An extension to SPEED has been recently proposed in
[34] where reliability requirements are considered. In [35] the authors proposed
DEED, a dissemination tree which is constructed while considering end-to-end
delay constraints.

In order to support high delivery ratios, congestion control [36][17] in combina-
tion with rate control [37] techniques have been proposed for sensor networks. In
these works, the goal is to adjust the rate using Additive-Increase-Multiplicative-
Decrease (AIMD) or similar schemes to react in the case of network overload.
In [38], fairness is also achieved by regulating and balancing the incoming load
introduced from each sensor. This technique can be extended to consider differ-
ent priority classes, however a tree–based routing protocol is required to achieve
this functionality. In [16], the joint problem of prioritization and scheduling has
been studied for real-time traffic management in sensor networks. The goal is

244 V. Kalogeraki

to dynamically regulate real-time traffic to control congestion and schedule the
flows end-to-end to meet application real time requirements.

5 Conclusions

In this paper we have studied middleware components for supporting distributed
data management computations in sensor networks. Our middleware includes in-
network data storage and real-time data dissemination mechanisms that simplify
the development of distributed applications and allow us to achieve reliable, real-
time sensor data management. Middleware for sensor networks is an emerging
and very promising research area. We believe that as future sensor devices will
feature more resources, more complex in-network processing applications will be
developed which will further increase the resource demand and wide adoption of
sensor network applications.

Acknowledgments

This work has been supported by NSF Awards 0330481 and 0627191.

References

1. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis
of a large scale habitat monitoring application. In: SenSys’04. (2004)

2. Sadler, C., Zhang, P., Martonosi, M., Lyon, S.: Hardware design experiences in
zebranet. In: ACM SenSys’04. (2004)

3. Xu, N., Rangwala, S., Chintalapudi, K., Ganesan, D., Broad, A., Govind an, R.,
Estrin, D.: A wireless sensor network for structural monitoring. In: ACM SenSys’04.
(2004)

4. Crossbow’05: Crossbow Technology Inc., (http://www.xbow.com/)
5. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: a tiny aggregation service

for ad-hoc sensor networks. In: OSDI 2002, Boston, MA (2002)
6. Banerjee, A., Mitra, A., Najjar, W., Zeinalipour-Yazti, D., Kalogeraki, V. an

d Gunopulos, D.: Rise co-s : High performance sensor storage and co-processing
architecture. In: IEEE SECON’05. (2005)

7. Desnoyers, P., Ganesan, D., Shenoy, P.: Tsar: A two tier sensor storage architecture
using interval skip graphs. In: SenSys’05. (2005)

8. Mathur, G., Desnoyers, P., Ganesan, D., Shenoy, P.: Ultra-low power data storage
for sensor networks. In: IEEE SPOTS’06. (2006)

9. Bonnet, P., Gehrke, J., Seshardi, P.: Toward sensor database systems. In: MDM
2001, Hong Kong (2001)

10. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acqui-
sitional query processor for sensor networks. In: SIGMOD 2003, San Diego, CA
(2003)

11. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques
for sensor databases. In: ICDE 2004, Boston, MA (2004)

12. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation
service for ad-hoc sensor networks. In: OSDI 2002, Boston, MA (2002)

Middleware for Reliable Real-Time Sensor Data Management 245

13. Soheili, A., Kalogeraki, V., Gunopulos, D.: Spatial queries in sensor networks. In:
International Symposium on Advances in Geographic Information Systems (GIS
2005) , Bremen, Germany, November. (2005)

14. Zeinalipour-Yazti, D., Vagena, Z., Gunopulos, D., Kalogeraki, V., Tsotras, V., Vla-
chos, M., Koudas, N., Srivastava, D.: The threshold join algorithm for top-k queries
in distributed sensor networks. In: Intl. Workshop on Data Management for Sensor
Networks DMSN (VLDB’2005), Trondheim, Norway (2005)

15. Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos, D., Najjar, W.: Micro-
hash: An efficient index structure for flash-based sensor devices. In: 4th USENIX
Conference on File and Storage Technologies (FAST 2005), San Fransisco, CA
(2005)

16. Karenos, K., Kalogeraki, V.: Real-time traffic management in sensor networks. In:
In Proc. of RTSS, Rio de Janeiro, Brazil (2006)

17. Karenos, K., Kalogeraki, V., Krishnamurthy, S.V.: A rate allocation framework
for supporting multiple classes of traffic in sensor networks. In: In Proc. of RTSS.
(2005)

18. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional
query processor for sensor networks. In: SIGMOD’03. (2003)

19. Tao, Y., Papadias, D.: Spatial queries in dynamic environments. ACM Trans.
Database Systems 28 (2003) 101–139

20. Sahin, O.D., Gupta, A., Agrawal, D., Abbadi, A.E.: A peer-to-peer framework for
caching range queries. In: Proc. of ICDE 2004, Boston, MA (2004)

21. Zheng, B., Xu, J., Lee, W.C., Lee, D.L.: Grid-partition index: A hybrid ap-proach
to nearest-neighbor queries in wireless location-based services. VLDB Journal
(2004)

22. Gupta, A., Agrawal, D., Abbadi, A.E.: Approximate range selection queries in
peer-to-peer systems. In: CIDR 2003, Asilomar, CA (2003)

23. Ferhatosmanoglu, H., Demirbas, M.: Peer-to-peer spatial queries in sensor net-
works. In: 3rd IEEE International Conference on Peer-to-Peer Computing (P2P
2003), Linkoping, Sweden (2003)

24. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for network sensors. In: ASPLOS’00. (2000)

25. Dai, H., Neufeld, M., Han, R.: Elf: an efficient log-structured flash file system for
micro sensor nodes. In: ACM SenSys’04. (2004)

26. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., Shenker, S.: Difs: A
distributed index for features in sensor networks. In: Elsevier Journal of Ad Hoc
Networks 2003. (2003)

27. Li, X., Kim, Y., Govindan, R., Hong, W.: Multi-dimensional range queries in
sensor networks. In: In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems. (2003)

28. Woodhouse, D.: Jffs : The journalling flash file system. (In: Red Hat Inc.
http://sources.redhat.com/jffs2/jffs2.pdf)

29. Wookey: Yaffs - a filesystem designed for nand flash. (In: Linux 2004 Leeds, U.K)
30. Yang, X., Vaidya, N.H.: Priority scheduling in wireless ad hoc networks. In:

MobiHoc ’02: Proceedings of the 3rd ACM international symposium on Mobile ad
hoc networking & computing. (2002) 71–79

31. Woo, A., Culler, D.E.: A transmission control scheme for media access in sensor
networks. In: Proc. MobiCom. (2001) 221–235

32. He, T., Stankovic, J.A., Lu, C., Abdelzaher, T.F.: SPEED: A stateless protocol
for real-time communication in sensor networks. In: Proc. of ICDCS. (2003)

246 V. Kalogeraki

33. Lu, C., Blum, B.M., Abdelzaher, T.F., Stankovic, J.A., He, T.: RAP: A real-time
communication architecture for large-scale wireless sensor networks. In: Proc. IEEE
RTAS. (2002)

34. Felemban, E., Lee, C.G., Ekici, E., Boder, R., Vural, S.: Probabilistic QoS guaran-
tee in reliability and timeliness domains in wireless sensor networks. In: INFOCOM.
(2005)

35. Kim, H.S., Abdelzaher, T.F., Kwon, W.H.: Dynamic delay-constrained minimum-
energy dissemination in wireless sensor networks. ACM Transactions on Embedded
Computing Systems 4 (2005) 679–706

36. Wan, C.Y., Eisenman, S.B., Campbell, A.T.: CODA: Congestion detection and
avoidance in sensor networks. In: Proc. ACM SenSys. (2003)

37. Sankarasubramaniam, Y., Akan, O., Akyildiz, I.: ESRT: Event-to-sink reliable
transport in wireless sensor networks. In: Proc. of ACM MOBIHOC. (2003)

38. Ee, C.T., Bajcsy, R.: Congestion control and fairness for many-to-one routing in
sensor networks. In: Proc. ACM SenSys. (2004)

Oscar: Small-World Overlay for Realistic Key

Distributions�

Sarunas Girdzijauskas1, Anwitaman Datta2, and Karl Aberer1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{sarunas.girdzijauskas,karl.aberer}@epfl.ch

2 Nanyang Technological University (NTU), Singapore
anwitaman@ntu.edu.sg

Abstract. The research on P2P systemswhich support skewed key distri-
butions has rapidly advanced in the recent years. Yet, the assumptions on
the skews we are dealing with remained pretty simple: most of the existing
literature assumes simple monotonous key distribution skews. However,
this is not always the case. For example, Gnutella filename traces show that
complex key-distributions rather than monotonous skews occur in prac-
tice. We show that one of the seminal P2P systems which support skewed
keys - Mercury [7], performs poorly given such complex distributions gen-
erated from the trace of Gnutella filenames. We discuss the shortcomings
of such state-of-the-art techniques. We present an overlay network Oscar,
based on a novel overlay construction mechanism, which does not depend
on the key-distribution complexity. We demonstrate through simulations
that our technique performs well and significantly surpasses Mercury for
such realistic workloads.

1 Introduction

The rapid spread of broadband Internet allowing numerous users to equally par-
ticipate in the communication process uncovered the broad potential of P2P
networks. Free of the drawbacks of centralized systems and with a potential of
providing scalable, fault tolerant services, P2P systems flourished in the recent
years. A wide range of P2P systems were proposed (e.g. [1,15,17]) and P2P be-
came widely recognized as a fundamental computing and networking paradigm.
Structured P2P systems started being considered as the next generation appli-
cation backbone on the Internet. Although a vast majority of structured P2P
systems are conceptually similar, they differ in the rules which describe how to
choose the neighboring links at each peer (to form routing tables). These rules
� The work presented in this paper was (partly) carried out in the framework of the

EPFL Center for Global Computing and supported by the Swiss National Funding
Agency OFES as part of the European project Evergrow No 001935. The work
presented in this paper was supported (in part) by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Foundation under grant number
5005-67322.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 247–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

248 S. Girdzijauskas, A. Datta, and K. Aberer

heavily depend on the nature of the peer identifiers (keys). To ease the net-
work construction task most of the structured P2P systems use uniform hash
functions for assigning identifiers to the peers. This, however, limits the use of
data-oriented P2P systems, e.g. only simple keyword search capabilities are sup-
ported. One of the biggest challenges in such data-oriented systems is to preserve
semantic relationships among resource keys (such as ordering or proximity), or
to allow semantic data processing (such as complex queries or information re-
trieval). This implies that the construction of (efficient) overlay networks has to
support the use of non-uniform hashing functions.

However this is not a trivial task and up to now there exist only very few over-
lay networks which support non-uniform key distributions. Some examples are
CAN [8], Mercury [7], P-Grid [1], skip graphs [5,11] and their derivatives [4,9].
These however suffer from other problems, e.g. the search efficiency in terms of
the number of overlay hops cannot be guaranteed in CAN for an arbitrary par-
titioning of the key-space (zones). Because of its storage load-balancing, P-Grid
has highly imbalanced peer in/out-degree. Skip graphs need to have O(log N) level
rings at each peer and do not provide a possibility to choose routing table entries
in a randomized manner (level ring neighbors are determined by a peer’s mem-
bership vector and the existing skew in the system). In such a way skip graphs
are lacking the flexibility which is provided by the truly randomized approaches
(e.g. based on Small-World construction principles like Mercury) and cannot ad-
dress some of the heterogeneity issues, e.g. different constraints of bandwidth at
each peer. Meanwhile Small-World construction principles do not restrain a peer
on having fixed amount of links: the out-degree of a peer can vary, still providing
guarantee of efficient search. Because the links are chosen randomly, the in-degree
of a peer can also be easily adjusted. Such features of Small-World approaches
enables exploiting the heterogeneity of the peers not only storage-wise but also
bandwidth-wise. In such a way peers are free to choose the amount of outgoing
and incoming links locally, based on their bandwidth or other constraints.

Although Mercury can address most of the aforementioned issues and have
many good properties, the sampling technique that Mercury uses does not scale
given complex distributions, which however often occur in practice. Mercury
can easily deal with “simple” skewed distributions but does not address the
fact that “real-world” distributions are highly complex. Later in the paper we
will show that in certain cases Mercury nodes will suffer of in-degree imbalance
which results in decrease of search performance and increase of the hot-spots
in the network. In general, the problem of most of the current state-of-the-
art approaches dealing with non-uniform key distributions is the resulting node
degree imbalance.

The aforementioned problem with Mercury is that for the construction of the
P2P network it uses an approximation of the global key distribution from a lim-
ited set of uniform samples. Since it is not possible to correctly approximate the
distribution if it is highly complex, the resulting P2P networks will have poor
performance. Therefore we suggest a novel overlay network Oscar (Overlays us-
ing SCAlable sampling of Realistic distributions) based on overlay construction

Oscar: Small-World Overlay for Realistic Key Distributions 249

algorithms which use a scalable sampling technique and are capable of efficiently
constructing and maintaining “routing efficient” networks given any complex
key distribution function. Such “routing efficient” networks will enable to enjoy
all the benefits of the system which supports non-uniform key distribution (e.g.
range queries) and will not suffer of node in-degree imbalance hence exhibiting
nice lookup performance. We will show in an evaluation that for a network of
12000 peers we outperform Mercury by having 20 times lower routing latency
in the network, yet using sample sets of comparable sizes and similar workload
characteristics.

The paper is organized as follows. In Section 2 we give the background on
structured P2P concepts and observe the occurrence of complex distributions.
In Section 3 we analyze the drawbacks of existing approaches and illustrate some
of their shortcomings with examples. Then in Section 4 we present our proposed
solution: a scalable sampling for construction of routing-efficient networks and
the corresponding algorithms for building Oscar overlay. In Section 5 we show
the performance of our proposed approach in the simulation environment and
we conclude our findings in Section 6.

2 Background

Before going into details let us introduce basic concepts which are widely used
in structured P2P systems and will be used later on in the paper. To facilitate
the understanding in the following we will use the notations of concepts which
were generalized and classified in [2].

Basic concepts for structured P2P. A structured overlay network consists of
set of peers P (N = |P|) and set of resources R. There exists an identifier space I
(usually on the unit interval I ∈ [0..1), e.g. Chord [17], Symphony [15]) and two
mapping functions FP : P → I and FR : R → I (e.g. SHA-1). Thus each peer
p ∈ P and each resource r ∈ R are associated with some identifiers FP (p) ∈ I and
FR(r) ∈ I, respectively. There exists a distance function dI(u, v) which indicates
the distance between a peer u and a peer v in I. Each peer p has some short-range
links ρs(p) ⊂ P and long-range links ρl(p) ⊂ P which form a peer’s routing table
ρ(p) = ρs(p) ∪ ρl(p). There exists a global probability density function f setting
the manner of how peer identifiers are distributed in I. Any resource r ∈ R in
the P2P system can be located by issuing a query for FR(r). In structured P2P
systems queries are usually routed in a greedy fashion, i.e. always choosing the
link ρ ∈ ρ(p) which minimizes the distance to the target’s identifier.

Complex Distributions. As discussed earlier in data-oriented P2P applica-
tions using a uniform hash function FR (e.g. SHA-1) is not adequate and we will
have to deal with hash functions, which produce highly skewed key distributions.
In the following we will show an example by which we illustrate the necessity of
having key spaces with complex skews.

Let us assume a data-oriented P2P system where the resources are identi-
fied and looked-up by filenames. A widely used technique in P2P systems is the

250 S. Girdzijauskas, A. Datta, and K. Aberer

following: each peer p and each resource r have identifiers FP (p) and FR(r) on
a 1-dimensional ring I ∈ [0..1). Each peer is responsible for all the resources
which map to the identifier range D(p) ∈

[
FP (p), FP(psucc)

)
, where the peer

psucc is the successor of the peer p on the identifier ring I. We cannot use any
uniform hash function such as SHA-1, as used in DHTs like Chord and Pas-
try, since we want the function FR to preserve ordering relationships between
the resource keys (e.g. enabling the straightforward use of range queries), i.e.
FR(ri) > FR(rj) iff ri > rj . Such a order preserving function will lead to very
skewed distribution of resource identifiers over the identifier ring I. For exam-
ple in Figure 1(a) (dotted line) we can see a distribution function of filename
identifiers in I extracted from Gnutella trace (20’000 filenames crawled in 2002).
Despite the complex skew, we would like that each peer p would be responsible
for a “fair” (or equal) amount of resources and be storage-load balanced, i.e.
|Rpi | ≈ |Rpj | for any i and j, where Rp ⊂ R and ∀r ∈ Rp|FR(r) ∈ D(p). In
such a way the peer identifiers will have to reflect the distribution of resource
identifiers. Hence the peer identifier distribution will have a similar shape as
the resource identifier distribution. Since in general the resource identifier distri-
butions are usually non-uniform and exhibit complex skews, the resulting peer
identifier distribution will have to have a complex skew as well.

3 Problems with Existing Solutions

Dealing with skewed spaces. In the seminal work of Kleinberg [12] it has
been shown how to construct “routing efficient” network on d-dimensional mesh.
The follow up works [6,15] showed how to adopt the “kleinbergian” network
construction principles for P2P systems with uniform key distribution. In [10] it
has been shown that it is indeed possible to construct “routing efficient” small-
world network in the 1-dimensional space even if the peers are non-uniformly
distributed on the unit interval. For doing so it was shown that a peer u has
to choose a peer v as long-range neighbor with a probability that is inversely
proportional to the integral of the probability density function f between these
two nodes, i.e.

P [v ∈ ρl(u)] ∝ 1

|
∫ FP(v)

FP(u)
f(x)dx|

. (1)

However, it is non-trivial to apply this technique in practice because it requires
at each peer the global knowledge about the data load in the system, hence the
key distribution f . Therefore, an efficient algorithm to gather the global distri-
bution locally is needed. One possible technique was proposed in Mercury [7].
Since Mercury has the most advanced features comparing to other similar ap-
proaches (as discussed in the Introduction) in the following we will compare our
work only to Mercury.

Problems with Mercury. The idea in Mercury was to uniformly sample
the network and approximate the distribution function f . However, this ap-
proach assumes very “simple” distribution functions where the peer load changes

Oscar: Small-World Overlay for Realistic Key Distributions 251

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Identifier (key) space

Gnutella filename distribution
Zipf distribution

(a) Probability density functions:Zipf
(solid) vs Gnutella filename(dotted)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

50

peer number (sorted according to in−degree)

In
−

de
gr

ee

Small−World with perfect knowledge
Mercury

(b) In-degree of the resulting network of
2000 peers (sorted according to in-degree)

Fig. 1.

monotonously over the key space, e.g. Zipf (Figure 1(a), solid line). In fact,
as previously discussed, the load distributions are much more complex in the
“real-life”. It is clear that to correctly approximate a “simple” monotonous Zipf
distribution we need only a few samples k. But when the distribution becomes
more complex, a larger number of samples becomes necessary. This hinders the
scalability of the system. It is easy to notice that the more resources are in the
system, the more complex the distribution function f becomes. Such distribu-
tions might be totally arbitrary and the only sufficient “approximation” of the
distribution would be gathering in a sample set the complete set of values. That
of course would not scale. Thus we will be forced always to use “inaccurate ap-
proximations” which in turn would lead to poor performance of the resulting
system. The network constructed based on a inaccurate approximation of the
distribution function will suffer heavy in-degree imbalance, resulting in a high
increase of the messages in the system.

Evaluation of Mercury. Our intuition is validated by simulations using real
traces of the aforementioned Gnutella file name distribution. We started the
network from the scratch and using Mercury’s technique we repeatedly added
peers to the network until it reached a network size of 2000 peers. In one case we
assumed “perfect” knowledge of the distribution and in the second we relied on
the random sample set gathered at each peer, similarly to Mercury’s sampling
technique. In Figure 1(b) we can see the distribution of the node in-degrees in
both cases. It can be clearly seen that using only a partial view of the distri-
bution some peers were heavily loaded while others almost did not have any
incoming links. The search cost of the network constructed using a partial view
of the distribution had also increased. In this network on average 2.9 times more
messages have been generated during search than in the network with perfect
knowledge.

The problem with this example is that Mercury seeks to approximate the
whole distribution. But as we show, such an attempt is not feasible - distri-
butions are too complex and Mercury’s sampling technique will never scale. In

252 S. Girdzijauskas, A. Datta, and K. Aberer

the following we will present a scalable distribution sampling technique together
with the modified overlay construction algorithm which scales given a probability
density function of any complexity.

4 Network Construction Using Scalable Sampling

Since it is obvious that “approximating” the whole distribution function is not
scalable, one could ask the question: “Do we really need to know the distribution
function for the whole identifier space with the same granularity?”. Maybe it is
enough to “learn” well only some regions of the identifier space while leaving
some others vaguely explored. Indeed, it is. We will present here a novel P2P
construction technique which will require the information only regarding a very
small part of the global distribution.

4.1 The Insight and the Proposed Method

According to the continuous Kleinberg’s approach [6,15,10] for construction of
“routing efficient” network in 1-dimensional space, each node u has to choose
two short-range neighbors and one or more long-range neighbors. Short-range
neighbors of u are immediate successor and predecessor on the unit ring. A peer
u chooses it’s long-range neighbor v in the unit interval with the following pdf
g(x), where x = dI(u, v):

g(x) =
∫ 1

1
N

1
x ln N

dx (2)

It has been proven that a network constructed in such a way is a “routing-
efficient” network, where a greedy routing algorithm on expectation requires
O(log2

2 N
l) hops, where l is the number of long range links at every peer. This

means that a node u will tend to choose a long-range neighbor v rather from
its close neighborhood than from the further regions. The pdf g(x) according
to which the neighbors are chosen also has one nice property when we partition
it into logarithmic partitions. If we partition the identifier space into log2 N
partitions A1, A2, ..Alog N , such that the distance between the peer u and any
other peer v in Aiis bounded by 2−i ≤ dI(u, v) < 2−i+1 the peer v will have
equal probability to be chosen from each of the resulting partitions (Figure 2).
Indeed, the probability that v will be chosen by u in some interval Ai is exactly

1
log N and does not depend on i:

P (FP(v) ∈ Ai) =
∫ 2i−log N

2i−log N−1

1
x ln N

dx =
1

log N
(3)

In practice choosing non-uniformly at random but according to some contin-
uous pdf is complicated. Thus equation 3 gives us an insight of how to modify
a network construction algorithm, in which the neighbors will be chosen not by
some continuous pdf g(x), but uniformly at random in certain regions. If we do

Oscar: Small-World Overlay for Realistic Key Distributions 253

not violate the pdf characteristics all the desirable properties of the “routing
efficient” network will be preserved. We propose the long-range link acquiring
procedure in the following way: each peer u first chooses uniformly at random
one logarithmic partition and then within that partition uniformly at random
one peer v. This peer v will become a long-range neighbor of u. Of course, this
approach perfectly fits the case with uniform key-distributions. In such cases the
partitions can be recalculated in advance at each peer. However, when assuming
skewed key-spaces, it is not straightforward how to define logarithmic partitions,
hence how to choose the long-range link.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Identifier (key) space

Fig. 2. pdf g(x) (solid bars) and the A1, A2, .., Alog2 N partitions separated by the
dotted lines

In the case of uniform peer identifiers the expected number of peers within
some range of length d is actually equal to d · N assuming unit length identifier
space. Thus, the division of such an identifier space into logarithmic (base-2) par-
titions is nothing else but recursively halving the peer population. That means
a peer u with identifier 0 (FP (u) = 0) will define the partition A1 which will
contain half of the peer population, i.e. all the peers which identifiers are bigger
than 1

2 , A2 – all the peers which identifiers are bigger than 1
4 and smaller than 1

2
and so on. This technique can be easily adopted to the case with any identifier
skew, just instead of using the predefined borderlines between the logarithmic
partitions we will use a median value of the logarithmically decreasing peer pop-
ulations, i.e. the border between A2 and A1 will be the median m1 of the whole
peer population P , the border between A3 and A2 will be the median m2 of
the subpopulation P \ A1 etc. In general the border value between Ai+1 and Ai

will be the median mi of the subpopulation P \ Bi, where Bi = ∪i−1
j=1Aj . For

finding the median values we can employ the method proposed by Mercury for
collecting the set random peer identifiers in the network, i.e. by issuing random
walkers with TTL = log2 N . To sample the subsets of the population Bi the
random walkers will have to be slightly modified. The random walkers will have
to choose randomly not any link from ρ(p) of some current peer p, but a random

254 S. Girdzijauskas, A. Datta, and K. Aberer

peer from ρ′(p), where ρ′(p) = {u ∈ ρ(p)|FP (u) ∈
[
FP (p), mi

)
}. Simulation

experiments show that such a technique yields very good results in practice even
with very low sample sizes (∼ 5 samples per subset as we show in Section 5).

4.2 The Algorithms for Long-Range Link Construction

Here we will formally describe Oscar network construction model and the algo-
rithms. Each peer has to perform three operations: join, rewireLongLinks and
leave. For the successful construction of a P2P network each peer has to estab-
lish short-range links and long-range links. Since we use the same techniques
for short-range link establishment and maintenance (e.g. self-stabilizing, ring
maintenance algorithms [3,13,14,16,17]) as similar approaches such as Chord,
Symphony or Mercury we will not discuss it in detail. The establishment of
short-range links ensures correctness of the greedy routing algorithm1, while
long-range links are peculiar to different approaches and serve as “routing opti-
mization” links. Thus we will focus mainly on the main method of our proposed
approach, the rewireLongLinks algorithm.

In Oscar, as in many other P2P approaches for joining the network a peer
u has to know at least one peer already present in the system and to con-
tact it. The joining peer is assigned with some identifier FP (u). For joining
the network u issues a query with it’s identifer FP(u) and it inserts itself into
the unit ring between the responding peer and its successor (establishment of
the short-range links). Afterwards the peer u establishes l long-range links using
the longRangeLink algorithm.

The randomBoundedWalk algorithm. For successful usage of the
longRangeLink algorithm it is necessary to be able to sample not only the
whole population of peers P but also some subpopulation of peers B. There-
for a specific random walk algorithm is needed. The algorithm will produce
random walkers which would be able to “walk” only within a subpopulation of
peers B ⊂ P restricted by a predefined scope variable range, such that pB ∈ B
iff FP(pB) ∈ range. Such an algorithm randomBoundedWalk (Algorithm 1) is
a modified random walker, where the message is forwarded not to any random
link of the current message holder u, but to a randomly selected u’s link p, which
satisfies the condition FP(p) ∈ range(Algorithm 1, line 3).

The longRangeLink algorithm. To choose a neighbor according to the pro-
posed technique the longRangeLink algorithm (Algorithm 2) has to define
O(log2 N) logarithmic partitions (ranges) in the identifier space. To find the
fist partition the longRangeLink algorithm starts with issuing k random walkers
within the defined range of the identifer space using the randomBoundedWalk
algorithm. Initially the defined range spans the whole identifier space starting
from the identifier of peer’s u successor on the identifier ring up to the peer’s u

1 Establishment of short-range links results in a virtual ring topology in such a way
ensuring the correctness of the greedy routing algorithm (a message always can be
forwarded closer to a target).

Oscar: Small-World Overlay for Realistic Key Distributions 255

Algorithm 1. Bounded Random Walk Algorithm [r] =
randomBoundedWalk(u, range, TTL)
1: if TTL > 0 and R �= � then
2: TTL = TTL − 1
3: R = {p ∈ ρ(u)|FP(p) ∈ range};
4: next = chooseRandomly(R)
5: [r] = randomBoundedWalk(next, range, TTL)
6: else
7: r = u
8: end if

identifier itself (Algorithm 2, line 2). After the collection of the random sample
set Psample the peer u finds the median value of all the peer identifiers of the set
Psample (line 9). Having the median value the peer u can define the first, furthest,
partition A1 which will span the identifier space from the found median value up
to the peer’s u identifer value (line 14). The range value for performing the next
random walk within the subgraph P \ A1 is reduced (line 18) and the algorithm
continues by repeating the same steps (lines 4- 19) to find the successive parti-
tions A2, A3, .. etc. The algorithm stops finding the partitions when the median
value is equal to the identifier of the u’s successor FP(usuccessor) (line 10). In
such a way the algorithm acquires on expectation log2 N partitions. To assign
the long-range link, the randomBoundedWalk algorithm chooses uniformly at
random one of the partitions Ai(line 20) and then assigns the random peer v
from that partition using queryToRange algorithm (line 21). The queryToRange
algorithm is a greedy routing algorithm, which minimizes distance to the given
range Ai and terminates whenever the first peer v in that range is reached. Since
the algorithm requires k samples per each logarithmic partition, the expected
number of needed samples per peer in total is O(k log N).

Note that the algorithm does not require knowledge or estimation of the
total number of nodes in the network. The only place where theoretically the
estimation of N is needed is the TTL value of a random walk. As explained in [7]
the TTL should be set to the value of log2 N . However, the simulations show that
it is sufficient to set the TTL value equal to the number of previously calculated
partitions. In such a way Oscar algorithms are tuned to be independent of the
estimation of the network size N .

Since churn exists in P2P networks and the peers join and leave the system dy-
namically each peer has to rewire it’s long range links from time to time. This can
be done either periodically or adaptively. One of the dynamic techniques could
be monitoring the average amount of hops in the routing path. If the number of
routing hops increases above some threshold the long-range link rewiring can be
triggered locally and autonomously by individual peers. In such a way the Os-
car system can self-optimize its performance under dynamically changing network
conditions. However for the correctness of the system, as discussed previously, we
rely on the already devised self-stabilizing algorithms (e.g. [3,13,14,16,17]) which
maintain the virtual ring (short-range links) under churn.

256 S. Girdzijauskas, A. Datta, and K. Aberer

Algorithm 2. Long range link construction algorithm [v] = longRangeLink(u)
1: ρ(u) = �; i = 0;

2: range =
[
FP(usuccessor); (FP(u) + 1) mod 1

)
;

3: notEnoughPartitions = true;
4: while notEnoughPartitions do
5: i = i + 1; Psample = �;
6: for j=1 to k do
7: Psample = Psample ∪ randomBoundedWalk(u, range, TTL)
8: end for
9: m(i) = median(Psample)

10: if m(i) = FP(usuccessor) then
11: notEnoughPartitions = false;
12: end if
13: if i=1 then
14: partitions(i) =

[
m(i); (FP(u) + 1) mod 1

)
;

15: else
16: partitions(i) =

[
m(i); m(i − 1)

)
;

17: end if
18: range =

[
FP(usuccessor); m(i)

)
;

19: end while
20: choose random partition randPart uniformly from partitions;
21: [v] = queryToRange(u, randPart)

5 Simulations

Here we show that the network built according to our proposed technique per-
forms well and does not suffer of the drawbacks that state-of-the-art systems
like Mercury have. We base our experiments on a simulation of the bootstrap of
the Oscar network starting from the scratch and simulating the network growth
until it reaches 12000. Since our goal is to show the ability of our proposed
technique to construct “routing efficient” networks and dealing with churn is an
orthogonal issue, we have simulated a fault-free environment, i.e. system with-
out crashes. Each peer was assigned with an identifier randomly drawn from the
Gnutella filename pdf (as in Figure 1(a)).

During the growth of the networks we were periodically rewiring long-range
links of all the peers. When the networks have reached the size of 12000 nodes,
we have performed three random rewiring on each node and then measured the
performance of the networks. For the construction of Oscar network we have set
the number of samples for each logarithmic partition (parameter k) equal to 5. As
suggested in Mercury [7] we have set the parameters k1 and k2 values to log2 N
for constructing the Mercury network. Each peer in our Mercury simulation has
constructed a distribution approximation from the sample set of k1 · k2 random
walks. In such a way we have approximated the exchange of Mercury’s estimates
in an epidemic manner where each peer issues k1 random walks and each of the
selected nodes reports back the k2 most recent estimates. With such settings the

Oscar: Small-World Overlay for Realistic Key Distributions 257

0 2000 4000 6000 8000 10000 12000
10

0

10
1

10
2

10
3

10
4

peer number (sorted accoring to in−degree)

A
ve

ra
ge

 S
ea

rc
h

C
os

t

Gnutella Key Distribution Case

Oscar
Mercury

(a) Distribution of in-degree
in the networks

4000 6000 8000 10000 12000
0

100

200

300

400

500

Network Size

A
ve

ra
ge

 L
at

en
cy

 (
tim

e
sl

ot
s)

Performance Simulation

Oscar
Mercury

(b) Average latency given
different network sizes

4000 6000 8000 10000 12000
8

10

12

14

16

18

20

22

24

Network Size

A
ve

ra
ge

 m
es

sa
ge

 c
os

t

Performance Simulation

Oscar
Mercury

(c) Average search cost
given different network sizes

Fig. 3. Simulation Results

average amount of sampling messages are similar in both networks (5 log N in
Oscar and log2 N in Mercury) what provides comparable simulation conditions.

The results have shown that the Oscar network had a much better distribution
of in-degree and the resulting lower message cost and routing latency in the
network. In Figure 3(a) it can be seen that the original approach used in Mercury
has a significantly higher in-degree imbalance. Since in reality each peer can
process only limited amount of requests per one time slot, having such high
imbalance causes significant routing latency in the network. We have simulated
the delay in the networks where each peer could process at most 2 logN requests
per one time slot and log N random queries were issued at each peer per one
time slot. After performing the simulation the Mercury network consisting of
12000 peers had a 20 times higher routing latency, and twice higher message
cost cost for routing the queries. As shown in Figures 3(b,c) such trends also can
be observed given different network sizes (from 3000 to 12000 peers).

6 Conclusions

In this paper, we have addressed the problem of dealing with skewed key distri-
butions in data-oriented P2P environments. We argue that in such environments
it is much more likely to encounter highly complex key-distributions, rather than
simple monotonic skews. We have shown that with such complex distributions
nowadays approaches (e.g. Mercury) cannot cope successfully. In this paper we
have presented a novel overly network Oscar based on construction algorithms
which are capable of constructing “routing efficient” networks given any complex
key distribution using a novel technique of scalable sampling. We have shown
in our experiments that the proposed approach performs well and outperforms
Mercury. As for now, we are working on the analytical part which will theoreti-
cally support our proposed technique. Also we are pursuing several possibilities
to further improve network construction algorithms. One of them is to reduce
the network sampling even more by aggregating already existing sample sets in
the network (e.g. using sample sets of a peer’s immediate neighbors) instead of
sampling the network from the scratch.

258 S. Girdzijauskas, A. Datta, and K. Aberer

References

1. K. Aberer. P-Grid: A self-organizing access structure for P2P information systems.
In CoopIS, 2001.

2. K. Aberer, L. Onana Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and
S. Haridi. The essence of p2p: A reference architecture for overlay networks. In
P2P2005, August 31-September 2 2005, Konstanz, Germany.

3. D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. Fast construction of overlay
networks. In In 17th ACM Symposium on Parallelism in Algorithms and Architec-
tures(SPAA 2005),Las Vegas, NV, USA, 2005.

4. J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balancing and locality in range-
queriable data structures. In Twenty-Third Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing (PODC), 2004.

5. J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.
6. L. Barriere, P. Fraigniaud, E. Kranakis, and D. Krizanc. Efficient routing in net-

works with long range contacts. In DISC 01, pp 270-284, 2001.
7. A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-

attribute range queries. In ACM SIGCOMM, Portland, USA, 2004.
8. P. Fraigniaud and P. Gauron. The content-addressable network d2b. Technical

Report Technical Report LRI 1349, Univ. Paris-Sud, 2003.
9. Prasanna Ganesan, Mayank Bawa, and Hector Garcia-Molina. Online balancing of

range-partitioned data with applications to peer-to-peer systems. In VLDB, 2004.
10. S. Girdzijauskas, A. Datta, and K. Aberer. On small world graphs in non-uniformly

distributed key spaces. In NetDB 2005, April 8-9 2005 Tokyo, Japan, 2005.
11. N. J. A. Harvey, Jones, M. B., S. Saroiu, M. Theimer, and A. Wolman. Skipnet:

A scalable overlay network with practical locality properties. In Proceedings of
the 4th USENIX Symposium on Internet Technologies and Systems, Seattle, WA,
March 2003.

12. J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In
Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000.

13. X. Li, J.Misra, and G. Plaxton. Active and concurrent topology maintenance. In
In the 18th Annual Conference on Distributed Computing (DISC), 2004.

14. D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Analysis of the evolution of
peer-to-peer systems. In In Proceedings of the twenty-first Annual Symposium on
Principles of Distributed Computing (PODC-02), pages 233242, New York, ACM
Press, 2002.

15. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a
small world. In 4th USENIX Symposium on Internet Technologies and Systems,
USITS, 2003.

16. Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology
p2p systems. In Fifth IEEE International Conference on Peer-to-Peer Computing
(P2P’05), 2005.

17. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. In Proceedings of
the ACM SIGCOMM, 2001.

Keyword Searching in Structured Overlays
Via Content Distance Addressing

Yu-En Lu, Steven Hand, and Pietro Lió

University of Cambridge Computer Laboratory
{firstname.lastname}@cl.cam.ac.uk

Abstract. We present a novel keyword search scheme for file sharing applica-
tions based on content distance addressing (CDA). Through CDA, we are able
to associate node IDs with content distances and thus reduce several complex
keyword queries to routing problems on structured overlays. Unlike traditional
approaches, we require neither set intersection process nor replication for query
processing as a result of content distance addressing. In this paper, we present the
design and theoretical analysis of CDA for keyword search as well as simulation
results using real world parameters.

1 Introduction

There have been extensive studies for keyword query processing in both structured and
unstructured overlay design, primarily motivated by the potential to build a P2P search
engine. The fundamental query primitive in such system is:

Given a set of keywords, return all objects with description containing these
keywords.

Unstructured overlays, such as Gnutella, build local indexes and use flooding or ran-
dom walks over the overlay to give a complete result. This approach is simple and is
effective for objects with lots of identical copies in the network. However, it still re-
quires a broadcast to ensure the completeness of query results. Also, it is not clear as to
how exhaustive this approach is for objects of only moderate occurrances.

Structured overlays, in contrast, adopt the distributed data structure paradigm, one of
the most recognised approach being distributed hash tables (DHT). DHTs give unique
identifiers to each object stored and place them at a unique address in the overlay. This
approach gives good performance for exact keyword queries where the exact descrip-
tion is given. In fact, Castro et al. [2] showed that structured overlays can give better
performance even for flooding-based search schemes.

With an eye on this fundamental difference, several systems have been proposed to
combine the best of both worlds. Hybrid search systems [12] proposed to distiguish
the use of structure and unstructured overlays by the popularity of data. eSearch [19]
publishes each document by each of its keywords and expand search range on DHT by
associated metadata (keywords as well).

We argue that the inherent difficulty here is that identifiers in DHT do not pose for
any query semantics but uniqueness. Thus, objects containing the same keywords is in-
different from everything else. We argue that whilst identifiers should be made random
to give good load-balancing properties, they should not be made pair-wise independent.
Instead, identifiers should be able to reflect the notion of distance between objects.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 259–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

260 Y.-E. Lu, S. Hand, and P. Lió

In this paper, we propose a simple scheme Content Distance Addressing, a bundle
of a new hash function and additional overlay links, that gives identifiers the notion
of distance in terms of Hamming distance. Like DHTs, objects are addressed in the
overlay by their identifiers. Unlike DHTs, the object address now reflects its keyword
composition using CDA. Like unstructured overlays, we use a kind of multicast to find
relevant objects to the keyword query. Unlike unstructured approaches, each hop in the
multicast now yields precise query semantics.

The contributions of this paper are three-fold. Firstly, we propose to associate object
IDs with distance semantics. A new vaiant of locality preserving hash function, Sum-
mary hash, is presented for identifier generation. Modelled as a set of keywords, object
descriptions with overlaps in keywords would have close hash values in terms of Ham-
ming distance. We show that Summary hash not only preserves distance semantics, but
also provides low collision probability for dissimiliar objects in Section 3.2.

We then formulate the keyword search problem in to Hamming proximity routing
problems in a hypercube graph in Section 3.1. We show that the query space defined
by these problems corresponds to topologically close regions in the overlay in Section
3.3. Therefore, the keyword query processing problems are reduced to a overlay rout-
ing problem. Interestingly, we show that the required primitive is inherent in standard
hypercube routing primitives and how to make this scheme applicable to most DHTs
today (section 3.5).

Finally, we give a reference implementation of such structured overlay and study its
performance under real world dataset via simulation in Section 4.2 and 4.3.

2 A High Level Presentation

2.1 Hashing

Consider each object as b bit string where the value of each bit is initially ’0’. Summary
hash produce the hash value of an object by flipping a certain bit if the corresponding
keyword is present. For example, suppose the corresponding bit for “Harry” and “Pot-
ter” is 2 and 3, then the object “Harry Potter” can be encoded as 0110. In Figure 1(a),
we can see what hash values the “Harry Potter” related objects may have.

To evaluate the query “Harry Potter” is therefore to first land at the node 0110. Then
we may find similar objects related to it by further querying nodes 0111 and 1110 and
so on. This parameter b, as we shall see later, turns out to be the parameter for the degree
of clustering of the resulted address space. We give the analyses of Summary hash in
section 3.2.

To insert an object, we simply computes the Summary hash value and place the
object pointer at the corresponding node. Thus, removing an object from the system
would require only the deletion of the pointer. Here, we assume that the routing scheme
is built into the overlay, we present the details of the overlay in section 3.4.

2.2 Routing in Hypercube Graphs

A b-dimension hypercube Cb is a graph (V, E) where V is the set of nodes labelled by
{0, 1, 2, . . . , 2b − 1} and E is a pair of nodes in V denoting the set of links. Given any

Keyword Searching in Structured Overlays Via Content Distance Addressing 261

two nodes u, v, there exists an edge (u, v) ∈ E if and only if the labels of u and v differs
at exactly one bit. To route a message from node 0000 to 1111, 0000 can first try to “fix”
the first bit by sending the message to 0001, where it is forwarded to 0011 and so on.

Therefore, to probe all neighbours of address within Hamming distance α, it suffices
to first send the query message to the neighbours of the seed. These neighbours, each
of Hamming distance 1, further propagate the message to their neighbours. Thus, in α
hops, all nodes with label within Hamming distance α will be reached.

In practice, however, the number of machines network nodes is unlikely exactly 2b.
A mechanism to emulate a complete hypercube graph is therefore needed. We propose
a variant based on a special case of [14]. A surrogate is uniquely picked for every
hypercube labels by matching their IDs. A node x is said to be the surrogate of y if
x’s ID has the longest matching prefix to y and x is the smallest in lexicographic order
among all nodes with the same matching prefix. Details for how various types of queries
perform on the hypercube are presented later in section 3.5. Due to space constraints,
we give only the lemmas in the following texts and leave their proofs in the appendix.
For a detailed description of the surrogate mechanism, we give an implementation in a
declarative language: P2 [13] in appendix.

2.3 Query Processing

We can now introduce the query processing algorithm. The query processing consists
of two phases– the landing phase and the probe phase. In the landing phase, one hashes
the query to find the node responsible , which we shall refer to as the seed node. One
can arrive at the seed node by using standard DHT routing schemes. Then one may
proceed into the probe phase in which nearby nodes are probed to find objects similar
to the query.

The probe phase is subject to a user specified argument α, which specifies the prob-
ing radius in the probe phase.1 The probe phase would start from the seed node and send
query messages to all nodes with overlay address within Hamming distance α. To see
how this may be made efficient, we need to introduce the notion of hypercube graphs
first.

2.4 Dataset Characterisation

We evaluate our results for the FreeDB [4] database, a free online CD album database
containing 21 million songs which shall be representative for current P2P information
retrieval applications for its size and diversity.

Analysing the dataset, we have observed that there is a significant skew in the number
of keywords for most songs and keyword frequency. It is clear that most songs can be
described by only two thousand keywords , and contain no more than thirty keywords.
In fact, eSearch [19], a web IR system, evaluated system performance with number
of keywords no more than 20 and [6] reported roughly 6 keywords per document in
average in Chinese web corpus.

1 This parameter clearly depends on the characteristics of the dataset and user requirements. For
text applications such as information retrieval and online file sharing, having α = 30 would
suffice, as reported in [19] and confirmed by our statistic of FreeDB.

262 Y.-E. Lu, S. Hand, and P. Lió

Fig. 1. An example song placement in a hypercube and characterisation of the data space

We demonstrate the main data characteristics in Figure 1(b). Observe that since most
songs would cluster around each other in the hash space, our land and probe search
mechanism effectively exploits the clustering property as a result of Summary hash.

3 Our Approach

3.1 Query Model

In this subsection, we give a more formal description of our query model. Let K =
{k1, k2, · · · , km} denote the set of all possible keywords and K be the power set of K ,
containing all possible sets of keywords. Any keyword query Q must therefore be in
K. We denote the set of all objects as O in which every element o has an associated
keyword set K(o).

We define several types of query as following:

k-Related objects query: given a query string Q, return the set: {o ∈ O|Q ⊆ K(o),
|K(o)\Q| ≤ k}.
k-Partial match query: given a query string Q, return the set {o ∈ O|K(o) ⊆ Q,
|Q\K(o)| ≤ k}.
(f, k)-Flawed query: given a query string Q and let F be the set of flawed keywords,
return the set {o ∈ O|Q\F ⊆ K(o), d(K(o), Q\F) ≤ k, |F | ≤ f}
Notice that the definition of flawed query above assumes the existence of a number of
correct keywords in the query. Under this definition, flawed query may be seen as a
larger case of k-partial match query.

Keyword Searching in Structured Overlays Via Content Distance Addressing 263

3.2 Summary Hash

We propose a simple hash method — the Summary Hash — that preserves keyword
information in the hashed name of an object. The basic idea is to consider b bit string
initially set to 0, each keyword is assigned a bit position. Given a keyword description
P , we iterate each element pj and flip the corresponding bit.

More formally, let π : K → {1, 2, . . . , b} be uniformly random and P ∈ K. Let ai

denote the number of keywords in P such that π(pj) = i. We specify Summary hash
H : K → {0, 1}b as:

h(p) =
b∑

i=1

1{ai mod 2=0} · 2b−i (1)

where ai is the number of keywords in p such that π(pj) = i, ∀pj ∈ p and 1{.} is the
characteristic function. Below, we show that Summary hash (1) is locality preserving
under Hamming distance metric.

Lemma 1. ∀p1, p2 ∈ K, dH(p1, p2) ≤ dH(h(p1), h(p2)).

While Summary hash does give similar hash values for similar descriptions, we shall
also consider the collision probability, i.e., the chances for dissimilar descriptions to
have similar hash values. Let m be the number of keywords. Here, we consider each
object as a m-dimensional {0, 1} vector and Summary hash serves as the projection
function to {0, 1}b. We give the collision probability below, notice that we do not need
m to be known. Real world dataset results are shown later in Section 4.3.

Lemma 2 (Discrimination). Let B ⊂ {0, 1}m, |B| = c2b/2 where 0 ≤ c ≤ 1. Pr[h|B
is one to one] ≥ 1 − c2 when m >> b and m is the number of keywords.

In addition to collision probability, it is also important to consider the load-balancing
property. We show that, at least in theory, Summary hash partitions the keyword space
to hash space fairly below.

Lemma 3 (Equal Division of Space). Let h : {0, 1}m → {0, 1}b and m ≥ b > 0.
∀v ∈ {0, 1}b, |h−1(v)| = 2m−b.

3.3 Keyword Query Reduction

Given the basic properties of the hash function, in this section, we deduce the set of
points covered by the query to the nodes in Cb = (V, E) where Cb is a b-bit hypercube.
Let Bv(k) = {u|dH(u, v) ≤ k, u, v ∈ V } (the ball of radius k around node v). We
bound the range of these nodes in Cb in Theorem 1.

Theorem 1. Both k-related objects and k-partial match query Q can be answered by
probing Bh(Q)(k). (k, f)-flawed query can be answered by probing Bh(Q)(k + f).

One may wonder if Summary hash end up packing most of the objects into the same
subcubes in Cb. The following lemma bounds the overlapping region for two arbitrary
Hamming balls of radius α. This result shows us that clusters of related objects are safely

264 Y.-E. Lu, S. Hand, and P. Lió

stored in Hypercubic manifolds of their own 2. Lemma 4 implies that given two clusters,
say documents related to “Harry Potter” and “Prince of Persia”, would have very little
overlapping and thus each cluster tends to be assigned to different groups of nodes.

Lemma 4. Let u, w ∈ V and d(u, w) = Δ, 0 ≤ Δ ≤ 2α where α is a constant. Then
we have

|Bu(α) ∩ Bw(α)| =
α∑

a=0

∑

t

(
Δ

t

)(
m − Δ

a − t

)

where
t = [max{0,
a+Δ−α

2 �}, min{a, Δ}] if
a+Δ−α
2 � ≤ min{a, Δ}. Otherwise, t = nil.

Now we can turn our attention to the flawed query. Whilst most typos in keywords
may be corrected by using a dictionary, this technique is useful for recovering other
potentially important keywords in the system as well. In fact, in traditional IR systems
relevance feedback– the process to produce more accurate query string by adding more
keywords – is done by picking terms from the retrieved documents. Here, we show how
this may cost in Summary hash based systems.

Recall that f is the number of flawed keywords or keywords to expand and Q is the
set of query keywords. Intuitively, suppose f = |F | is not large, the seed h(Q) will not
miss the correct seed too much and therefore shall still cover a fraction of the correct set
of nodes. Therefore, one shall be able to collect objects that is in Bh(Q)(α)∩Bs(α) and
therefore recover the f flawed keywords. The following lemma comes directly by the
application of lemma 4 and standard Chernoff bound. It gives the precise probability
we can recalibrate to the correct seed node s from its neighbours according to their
distance.

Lemma 5. Let Di be the number of objects of distance i to s, i.e., |{v|d(s, v) = i}|
and f be the number of flawed keywords in the query Q. Let Ei denote the event that
query Q cannot find 1 object containing s in {v|d(s, v) = i}.
Pr[

⋂α
i=0 Ei] ≤

∏α
i=0(Dip)1/Dip

where p(f, b, α)=
∑

t (2f
t)(b−2f

α−t)
(b

α) and t=[max{0,
 i+2f−α
2 �}, min{i, Δ}] if
 i+Δ−α

2 �≤
min{i, Δ}. Otherwise, t = nil.

3.4 Keyword Edges and Emulation

So far, we have discussed how keyword queries can be processed on the hypercube
graph Cb. Here, we would like to discuss possible technical realisations of Cb in cur-
rent overlays. The easiest way is to embed Cb into any of the current DHT overlays.
Such an embedding may be realised by using the surrogate mechanism as described in
Section 2.2. Similar to [14], such design would require at most b edges for each node
and therefore incurrs rather small maintainence overhead.

Another approach is to emulate a hypercube from current DHTs. With little modifica-
tion, Chord [18] can simulate hypercube as well. Observe that in contrast to Hypercube,

2 Numerical results suggests that with suitable b and α, for example b = 100, α = 30 the
overlapping region is roughly 10−5 of the volume of the ball.

Keyword Searching in Structured Overlays Via Content Distance Addressing 265

each i-th finger of node x in Chord links nodes of ID x + 2i mod 2b on a ring. The
neighbours of a node in the hypercube is either the direct i-th successor of a node or its
i-th predecessor in Chord. Also, it is also possible for other existing DHTs to emulate
hypercube. For example Hypercubic graphs such as de Bruijn and Butterfly graphs can
simulate hypercube with only constant slowdown [9]. Therefore the same algorithms
can be used for Koorde [7] to simulate the hypercube.

Our implementation choice here is to directly simulate the DHT with the hypercube
using the surrogate definition as in [14]. Due to space limitations, we provide the de-
tailed implementation using P2 [13] in appendix.

3.5 Probing the Ball

In section 3.3, we have shown that processing these types of query are equivalent to
performing the query on nodes of a bounded Hamming distance to the seed. Therefore,
the fundamental primitive supporting these queries is to “multi-cast” the query to every
node within that distance from the seed.

More specifically, one first choose the seed node using h(Q) where Q is a query
(which may be expanded by the search application) and multi-cast from seed the query
to every node within distance α. We can see that the search is essentially first reaching
the seed via DHT routing and then route to all neighbours within Hamming distance α
from seed.

Routing toward h(Q) can be done similarly to the standard hypercube routing dis-
cussed in Section 2.2. At each hop, each node picks either one of its neighbors or itself
by the length of matching prefix. If the length is the same, it forwards the message
towards the node with smaller ID. Routing terminates when a node finds no other but
itself to forward to.

The probing procedure for complete hypercube graphs can be revised to fit our sur-
rogate routing as in Algorithm 1.

The correctness of Algorithm 1 is as following:

Lemma 6. Let Probe(u, α) denote the set of nodes reached by Algorithm 1 where
u ∈ V and α is constant. Probe(u, alpha) ≡ Bu(α)

Algorithm 1. Probing Bu(α)
Procedure Probe(Message msg, String hv, Integer pos, Integer step)

processMessage(msg);
if step==0 then

return
end if
for each i-th neighbor y of x where i ≥ pos do

if y equals x or dH(y, hv) ≤ α then
return

end if
y.Probe(msg, hv, i+1, step −1)

end for

266 Y.-E. Lu, S. Hand, and P. Lió

Now, we analyse the message and time complexity of our search algorithm under the
synchronous network model. Notice that we give analyses under synchronous network
model so that we may compare with and characterise different systems. The algorithm
can clearly operate asynchronously. The following bound for query performance can be
obtained by standard Chernoff bound and lemma 6. Observe that p(b, α) controls the
fraction of the nodes to be probed. Therefore, even with α can be as high as 30 and
above, the actual number of nodes required to probe is only proportion to the ratio of
the probing ball and the size of the entire hypercube.

Theorem 2. Let n be the total number of physical nodes in the Peer-to-Peer name space,
b be the dimension of hypercube graph, and p(b, α)=

∑α
t=1

(
b
t

)
/2b. The message com-

plexity of the keyword search algorithm with radius α is Ω
(
log n+np(b, α) log n

log log n

)

with probability at least 1 − n−1 on a hypercube overlay and the time complexity is
O(log n + α).

4 Evaluation

So far, we have described the concept of content distance addressing (CDA). Firstly,
Summary hash produces hash values for object descriptions in such a way that similar
descriptions would have similar hash values in terms of Hamming distance. Eyeing on
the similarity between the keyword query semantics and hypercube routing, we provide
reductions from the keyword query semantics to hypercube routing. We then demon-
strated how we can built a hypercube routing graph in the face of insufficient nodes and
present the routing mechanisms necessary for query processing.

In this section, we evaluate CDA in terms of its retrieval capability measured by re-
call rate 3 determined by α against network cost. Since the radius α would determine
the range to be probed in the hypercube, we show how α is related to the recall rate
below in section 4.2. Notice that since most songs in FreeDB contains less than 30 key-
words, having α = 30 would, in most of the cases, give recall rate 1.0. We then evaluate
network costs for any given recall rate in section 4.3. Recall that the dimensionality b
of the hypercube and the number of nodes populating the address space would collec-
tively decide the number of nodes involved in query processing as shown in Theorem
2. Therefore, we conduct our experiments in both evaluations with different network
configurations characterised by b, n �.

In the figures presented, we show results under various configurations b, n � with
parameters 12, 4096 �, 20, 4096 �, 20, 16384 �, and 60, 16384 �. We
provide these configurations so that one may observe the individual and combined effect
of b, n.

4.1 Experimental Setup

In this section, we present simulation results of the proposed scheme. We instantiate
a network with n nodes to simulate a b-dimensional hypercube. End to end round trip

3 The ratio of the number of relevant objects retrieved and number of all relevant objects in the
system.

Keyword Searching in Structured Overlays Via Content Distance Addressing 267

time are derived from the King dataset [5] , measurements to 1,724 DNS servers, to
reflect the topologically dispersed nature in P2P systems. We use these entries in King
dataset to model inter-domain latency. Each node is assigned to a random domain, and
then an intra-domain latency (1-100 ms) is given in order to model the latency occurred
inside a domain. That is, the end to end latency from A to B is the sum of A and
B’s intra-domain latency and the inter-domain latency between them. Although intra-
domain latency is not always a uniform distribution, we would like to point out that this
range is larger than most LAN based connections and thus shall suffice representing the
network in most cases.

Below, we define the metrics for evaluation:

– Recall: Percentage of relevant objects retrieved
– Percentage of Nodes Probed: Percentage of nodes that received message during

both DHT and Probe phase.
– Number of Messages
– Elapsed Query Processing Time: The duration of the whole query process: from the

time a random node issues a query to the time the last message is processed.
– Bandwidth/Data ratio: Ratio of bandwidth used and actual data size

Notice that the precision metric, the ratio of relevant documents retrieved and total
number of relevant documents, is always 1.0 under the definition in Section 3.1. This
is due to that the query is propagated through the nodes so that the nodes can simply
return only the documents with matching keywords.

4.2 Retrieval Performance and Data Placement

Firstly, we present in Figure 2(a) the relationship between probing radius α and the
average recall rate. Notice that whilst this alpha may represent a very large hypercube
address space, the number of nodes to probe is in fact dictated by the ratio between
the volume of the probing ball and the size of the whole hypercube as suggested by
Theorem 2.

As shown in Figure 2(a), the recall rate reaches 1.0 in our sample song set when α
reaches around 30 with 60, 16384 �, confirming our previous observation. Also,
most songs may be retrieved with alpha around 20 as shown by 60, 16384 �. This
reflects the underneath data characteristics that most songs contains less than 20 key-
words. The curve of 60, 16384 � as well as 20, 4096 � exhibit stepping be-
haviour compared to their lower dimension counter-parts. This is due to the fact that
surrogate nodes are assigned a larger region in the hypercube and thus one can retrieve
more (distant) songs by just visiting one node.

We present the percentage of nodes probed in Figure 2(b). As predicted in Theorem 2,
the number of nodes to probe follows the accumulated binomial distribution. As the
dimensionality increases, each node is responsible for increasing size of keyword space
and thus give dramatic jumps in recall rate whilst using much less nodes. For example,
the recall jumps from 0.3 to 0.72 in 60, 16384 � when α = 22. However, its merely
a few more node to probe as shown in Figure 2(b). Moreover, we can observe that CDA
scales well as it is insensitive to the size of network , as the cases 20, 4096 �,
20, 16384 � show. Compare to random walk approaches in unstructured network, we

268 Y.-E. Lu, S. Hand, and P. Lió

(a) Recall against α (X-axis) with various configurations
� b, n �. Notice increasing the size of the network does
not affect recall curve much while change in dimen
onality in

-
herently changes the alpha required. The step

ping behavior shown by� 60, 16384 � is due to the
of surrogate routing.

(b) Percentage of nodes to probe against recall rate (X-axis)
required under configuration � b, n �. We may see that
CDA is insensitive to the size of network by comparing con-
figurations under same dimensionality with different n.

si

effect

-

Fig. 2. Recall rate and its associated costs

can see that CDA gives a precise semantics to the query and the network costs and
scales smoothly without using super nodes that stores most of the information in the
network.

One may wonder if the scalability demonstrated above is achieved by trading load-
balanceness. In Figure 3, we show that this is the case. Indeed, reducing the number of
nodes to query implies concentrating data objects onto a smaller region in the overlay
and hence the imbalance. However, from the figure, we can observe that this imbalance
in fact reflects the data characteristics. Nevertheless, the imbalance is still smooth when
we change the dimensionality b or n.

We may see that the load distribution is not entirely uniform in Figure 3. This is
due to that although Summary hash does partition the keyword space equally, the load
distribution reflects the fact that most songs are clustered around certain topics such
as “Mozart” and “Harry Potter”. That is, although different clusters are assigned onto
different regions in the hypercube by Summary hash, there exists great difference in
density among clusters.

In comparison, consider using distributed inverted index where each object is pub-
lished on per keyword basis. One would find that most documents are described by the
most common keywords which could be a few thousand in total. In such cases, there
would exist only a few thousand keys in the DHT and therefore adding nodes beyond
that scale does not help sharing the load and the load imbalance could thus be even
worse. Also, the cost for using bloom filters for large collections has been proven un-
fruitful as in [21].

This can be observed in Figure 3 where we also simulated an inverted index publish-
ing each song using 6 keywords 4. We can see that with 6 times more storage, its load
distribution, though more even, corresponds to the top 5% loaded nodes in some cases
and that can be as low as 2% when we use b, n �= 20, 16384 �.

4 This number can go up to 20 in [19] and [6] reported 6 in Chinese corpus.

Keyword Searching in Structured Overlays Via Content Distance Addressing 269

Fig. 3. This is a histogram of distribution of songs in FreeDB where X-axis is the number of songs
in log scale and Y-axis is the number of nodes. Notice that the curve of distribution reflects the
clustering property of the dataset. Also, the increased imbalance in higher dimension hypercubes
reflects the fact that most songs are clustered in low dimension manifolds. We can see that an
inverted index using standard DHTs, though spread loads fairer, uses significantly more storage
that every node would have the load correspond to the top 5% nodes in � 20, 16384 �.

Therefore, we believe that our scheme is better for large scale systems since we do
not require expensive intersections as in inverted index and the induced load-imbalance
is acceptable even for large datasets such as FreeDB.

4.3 Performance

In this subsection, we look at the recall attained as a function of network cost in terms
of number of messages, query elapse time, and overhead ratio. Notice that b is actually
the parameter to control the degree of clustering. Therefore, the number of messages
required along with the elapsed time improves as b grows larger as suggested by Theorem
2. This is due to the fact that the number of nodes required to attain a given recall rate
decreases, as the load distribution become more and more imbalanced as in Figure 3.

Following Theorem 2, the elapse time grows linearly as recall rate increases (see
Figure 2(a)). Observe that the seemly dramatic increase in elapse time after recall is
greater than 0.7, this is due to that there more far more nodes probed as well as in Figure
2(b). We may see that b value again controls the elapse time by reducing the number
of messages required to attain the given recall rate. Notice that when the size of the
network increases, the latency does not increase much under the same dimensionality.
This is due to the increase of n is comparatively ineffective as the size of the hypercube
and probing phase is parallell. We may compare the significant reduction in elapsed
time in 20, 16384 � and 60, 16384 �.

Last, but not least, we look at the overhead of our protocol. We can see that the
actual data size is roughly equal with processing overheads in large scale network as in
Figure 4.3. However, when recall reaches 1.0, larger networks incur larger overhead as
eventually the size of the search messages out grow the actual data to be transmitted.
In our sampled song clusters such as “Mozart” and “Dvorak” have merely 26, 038 and
5, 222 songs each of which contains less than 70 bytes. Consider the IP packet header

270 Y.-E. Lu, S. Hand, and P. Lió

(a) Simulated query elapse time (in seconds) with recall
rate(X-axis) using α from 1 to 30 in settings of different
� b, n �.

(b) Recall rate (Y-axis) against total bytes spent in settings
of different� b, n �. The maximum absolute bandwidth
consumption is 70 Kbytes in our simulation. Notice that this
is totally acceptable for network of such size in simulation.

Fig. 4. Query Performance Simulations

and control variables to be carried in each query and answer message in a large network,
this is not surprising. On the other hand, we would would like to point out that the
absolute performance is entirely feasible.

5 Related Work

The most commonly adopted approach to support keyword search on DHTs follows
the distributed inverted index paradigm [10,16,19,17,21]. The document space is par-
titioned by keywords, and each node is responsible for a set of keywords and holds
the list of documents containing the keyword. Retrieval is therefore done by a set in-
tersection among the lists of keywords. Tackling the overheads during set intersection,
several techniques such as bloom filters [10,16] and top-k pruning [21] are proposed to
reduce network bandwidth required for the set-intersection stage and optimise network
latency. Some common problems are: inverted indices require storage a constant factor
times the size of data and thus the problem of consistency maintenance. [19] adopts a
hybrid index scheme to reduce the necessity for excessive set-interaction and storage.

An important approach to tackle the object location problem is to associate network
with contents which is sometimes referred to as semantic routing [8,3]. Attenuated
bloom filter is used in [8] to summarise contents, and [3] establishes the relevance of
nodes via statistical estimators.

Recently, various new proposals such as [6,1] take it further, giving query seman-
tics in the network structure. Joung et al. [6] consider keyword queries as binomial tree
routing on hypercube graphs. Instead of using Bloom filters for generating identifiers
as in [6], we proposed Summary hash which yields provably good collision and load-
balancing properties (as shown in Section 3.2) for content distance addressing. Our
query semantics are different from the one proposed in [6] and gives a precise con-
trol over cost spent. We propose the multicast scheme for incomplete hypercube graph
instead of assuming DHTs underneath.

Keyword Searching in Structured Overlays Via Content Distance Addressing 271

Other search scheme exploiting data locality are [20,11,1]. Tang et al. [20] uses very
high-dimensional CAN [15] to process queries in the object space. Based on Locality
Sensitive Hashing (LSH), [1] constructs the search tree based on hash prefix and gives
fast retrieval for similarity searches.

6 Conclusion and Future Works

In this paper, we present a new Peer-to-Peer keyword search scheme based on content
distance addressing. CDA associates object identifiers in structured overlays with dis-
tance semantics. Therefore, several classes of keyword search problems can be reduced
to routing problems on hypercube graphs. Our new hash function significantly improves
prior search scheme and we also give methods for constructing hypercubic overlays for
efficient multicasting without resorting to an additional layer of DHT. Together, our ap-
proach provides precise keyword query semantics with efficiency and effectiveness of
structured overlays.

We aim to study in detail on the performance and storage aspects of our scheme
as well as comparison with major structured and unstructured keyword search systems
in the future. Also, an important problem is with the dimensionality b. As shown in
previous analyses, b controls the degree of clustering in the node space and thus suitable
α would depend b. The choice of b depends on the scaling property required by the
system developer and is preferrable since it enables customisation to suit for various
applications. However, alpha would depend on the underneath dataset characteristics.
We have shown that our current construct is feasible for online file sharing and IR
applications in this paper by evidences in both prior work and statistic in FreeDB. In
the future, we plan to investigate how we may extend this scheme further for multimedia
databases.

References

1. Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest: self-tuning indexes for
similarity search. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 651–660, New York, NY, USA, 2005. ACM Press.

2. M. Castro, M. Costa, and A. Rowstron. Debunking some myths about structured and un-
structured overlays. In Proceedings of the Second Symposium on Networked Systems Design
and Implementation, Boston, USA, May 2005.

3. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proceedings
of the Twenty Eighth Conference on Distributed Computing Systems, July 2002.

4. FreeDB.org. FreeDB database . http://www.freedb.org.
5. Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling. King

dataset. 2004. http://pdos.csail.mit.edu/p2psim/.
6. Yuh-Jzer Joung, Chien-Tse Fang, and Li-Wei Yang. Keyword search in DHT-based peer-to-

peer networks. In Proceedings of the Twenty-fifth International Conference on Distributed
Computing Systems, 2005.

7. M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed hash
table. In Second International Workshop on Peer-to-Peer Systems (IPTPS ’03), Feburary
2003.

272 Y.-E. Lu, S. Hand, and P. Lió

8. John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells, and Ben
Zhao. Oceanstore: An architecture for global-scale persistent storage. In Proceedings of the
Ninth international Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000). ACM, November 2000.

9. Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays •
Trees • Hypercubes. Morgan Kaufmann, San Mateo, CA 94403, 1992.

10. J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris. The feasibility of peer-
to-peer web indexing and search, 2003.

11. Xin Li, Young Jin Kim, Ramesh Govindan, and Wei Hong. Multi-dimensional range queries
in sensor networks. In SenSys ’03: Proceedings of the 1st international conference on Em-
bedded networked sensor systems, pages 63–75, New York, NY, USA, 2003. ACM Press.

12. Loo, Huebsch, Stoica, and Hellerstein. The case for a hybrid P2P search infrastructure. In
International Workshop on Peer-to-Peer Systems (IPTPS), LNCS, volume 3, 2004.

13. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe,
and Ion Stoica. Implementing declarative overlays. SIGOPS Oper. Syst. Rev., 39(5):75–90,
2005.

14. C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of the ninth annual ACM
Symposium on Parallel Algorithms and Architectures, pages 311–320. ACM Press, 1997.

15. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A scal-
able content-addressable network. In Proceedings of the 2001 conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pages 161–172.
ACM Press, 2001.

16. Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In Proceed-
ings of International Middleware Conference, pages 21–40, June 2003.

17. S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. Making peer-to-peer keyword searching
feasible using multi-level partitioning. In Proceedings of International Workshop on Peer-
to-Peer Systems, San Diego, CA, USA, February 2004.

18. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001
conference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, pages 149–160. ACM Press, 2001.

19. Chunqiang Tang and Sandhya Dwarkadas. Hybrid global-local indexing for efficient peer-
to-peer information retrieval. In Proceedings of the First Symposium on Networked Systems
Design and Implementation (NSDI ’04), pages 211–224, 2004.

20. Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer information retrieval
using self-organizing semantic overlay networks. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer communications,
pages 175–186. ACM Press, 2003.

21. Jiangong Zhang and Torsten Suel. Efficient query evaluation on large textual collections in
a peer-to-peer environment. In Proceedings of the Fifth IEEE International Conference on
Peer-to-Peer Computing, Konstanz, Germany, August 2005. IEEE Computer Society Press.

XML Query Routing in Structured P2P Systems

Leonidas Fegaras, Weimin He, Gautam Das, and David Levine

University of Texas at Arlington, CSE
416 Yates Street, P.O. Box 19015, Arlington, TX 76019

{fegaras,weiminhe,gdas,levine}@cse.uta.edu

Abstract. This paper addresses the problem of data placement, index-
ing, and querying large XML data repositories distributed over an ex-
isting P2P service infrastructure. Our architecture scales gracefully to
the network and data sizes, is fully distributed, fault tolerant and self-
organizing, and handles complex queries efficiently, even those queries
that use full-text search. Our framework for indexing distributed XML
data is based on both meta-data information and textual content. We in-
troduce a novel data synopsis structure to summarize text that correlates
textual with positional information and increases query routing precision.
Our processing framework maps an XML query with full-text search into
a distributed program that migrates from peer to peer, collecting relevant
document locations along the way. In addition, we introduce methods to
handle network updates, such as node arrivals, departures, and failures.
Finally, we report on a prototype implementation, which is used to vali-
date the accuracy of our data synopses and to analyze the various costs
involved in indexing XML data and answering queries.

1 Introduction

In the past few years, the P2P model has emerged as a new and popular com-
puting model for many Internet applications, such as file sharing, collaborative
computing, and instant messaging. A P2P network consists of a large number of
nodes, called peers, that share data and resources with other peers on an equal
basis. Peers are connected through a logical network topology implemented on
top of an existing physical network, which may dynamically adapt to cope with
peers joining and departing, as well as with network and peer failures. In con-
trast to traditional client-server architectures, a node in a P2P network can act
as both a service provider and a client. Compared to traditional client-server
systems, P2P systems are more scalable, flexible, fault-tolerant, and easier to
deploy. Since no central coordination exists in a P2P system, there is no central
point of failure. Additionally, network resources can be fully utilized and shared,
and the server workload can be distributed among all the peers in the system.

Despite their benefits when compared to centralized systems, the most impor-
tant challenge in designing a P2P system is search efficiency, especially in the
presence of complex data and sophisticated search queries. Based on their search
techniques, P2P systems can be classified into two main categories: unstructured
and structured P2P systems. In unstructured P2P systems, which include file

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 273–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

274 L. Fegaras et al.

sharing systems, such as Napster, Gnutella, KaZaA, and Freenet, there is no
global protocol for data placement and the network topology is not tightly con-
trolled. Their basic search strategy is to partially flood the P2P network with
search messages or to randomly traverse the network until the desired data are
found. Unstructured P2P systems offer easier deployment, more flexibility, and
lower cost of maintenance than structured systems. However, they usually have
poor search performance and do not scale very well, because the query load of
each node grows linearly with the total number of queries, which in turn grows
with the number of nodes in the system.

In a structured P2P system, the location of data is determined by some global
scheme, such as a global hash function that hashes a search key to a node. Thus,
keys are distributed to peers, forming a virtual Distributed Hash Table (DHT).
By limiting the routing state of each peer to a small number of logical neighbors
(typically logarithmic to the network size), structured P2P systems form overlay
networks in which both the lookup time for a key and DHT maintenance take a
logarithmic number of routing hops between peers. Thus, by adding an accept-
able amount of lookup overhead, structured P2P systems offer higher availability
and better scalability than traditional client-server architectures and unstruc-
tured P2P systems. Moreover, the well-distributed DHT-based data placement
strategy naturally leads to load balancing in the system. Examples of DHT-based
P2P systems are Pastry [9], Chord, and CAN.

While the benefits of structured P2P systems are significant, regardless of
the type of data, there has been recent interest in indexing and querying data
that are far more complex than the simple keys supported by DHT-based P2P
networks, such as relational data [5,4] and XML [3,1]. The greatest challenges
faced by these systems are data placement and query processing, because queries
over these data are typically complex and, if not carefully optimized, may involve
routing and processing massive data.

In this paper, we consider the problem of data placement, indexing, and query-
ing large schema-less XML data repositories distributed over an existing P2P ser-
vice infrastructure. Instead of developing a new special-purpose P2P architecture
from the ground up, we are leveraging existing P2P technology, namely DHT-
based P2P systems. We have chosen to work on XML because XML is now the
language of choice for communication among cooperating systems. In our frame-
work, any peer may publish XML documents, by making them available to all par-
ticipating peers, and may submit queries against the published data. Although the
published XML documents remain at the publication site, the P2P infrastructure
serves as a distributed index for routing queries originated by any peer to the docu-
ment sources that contain the query answers, rather than for retrieving the actual
XML fragments of the answer. The query language considered by our framework
is XPath, extended with simple syntactic constructs for full-text search. An XML
document in our framework is indexed on both its textual content and its struc-
tural makeup, called the structural summary, which is a concise summary of all
valid paths to data in the document. Even though a formal schema, such as a DTD,

XML Query Routing in Structured P2P Systems 275

would have been useful information for indexing and accessing data, our frame-
work does not require it. The textual content of a document is summarized into
data synopses, which capture both content and positional information in the form
of bit matrices across the dimensions of indexed terms and their positions in the
document. These matrices are small enough to accommodate frequent document
publishing but precise enough to reduce the number of false positives in locating
documents that satisfy the structural and content constraints of a query.

Although there are a number of earlier proposals on indexing and querying
XML data distributed over a P2P network [3,1], there is no work reported on
complex XML query processing with full-text search on P2P networks that uses
data synopses to selectively route queries to peers. The key contributions of our
work can be summarized as follows:

1. We develop a framework for indexing XML documents based on summa-
rized data (structural summaries and data synopses) and for mapping XML
queries with full-text search into distributed programs that migrate from
peer to peer, collecting relevant document references along the way.

2. We introduce novel data synopsis structures that have low data placement
and maintenance overheads, and a high query routing precision. Our syn-
opses correlate content with positional information, which results to a more
accurate evaluation of textual and containment constraints in a query, when
compared to regular Bloom filters. To the best of our knowledge, they are
the first synopses to effectively address containment relationships between
predicates in a query.

3. We introduce novel methods to handle network updates, such as node ar-
rivals, departures, and failures.

4. Finally, we report on a prototype implementation to analyze the various
costs involved in indexing XML documents and answering queries, and to
validate our accuracy and scalability claims.

2 System Functionality

Although our framework is independent of the underlying DHT-based P2P ar-
chitecture, our system is implemented on top of Pastry [9,7]. A peer in our
framework can make any number of its local XML documents public to the
other peers through the process of publishing. Once published, an XML docu-
ment is available to any peer for querying, until is removed by the document
owner through the process of unpublishing. Our P2P network serves as a dis-
tributed index for routing queries to the peers who own the documents that
can answer the queries. Document updates are done by unpublishing the entire
document and publishing it again (as is done in most IR systems), rather than
updating the distributed index to reflect the document updates.

Our main addition to the XPath syntax is the full-text search predicate e ∼ S,
where e is an arbitrary XPath expression, that returns true if at least one element

276 L. Fegaras et al.

from the sequence returned by e matches the search specification, S. A search
specification is an IR-style boolean keyword query that takes the form

“term” | S1 and S2 | S1 or S2 | (S)

where S, S1, and S2 are search specifications. A term is a keyword that must be
present in the text of an element returned by the expression e. For example, the
XPath query, QUERY:

//biblio//book[author/lastname ~ "Smith"][title ~ "XML" and "SAX"]/price

searches for books in biblio documents authored by Smith that contain the words
“XML” and “SAX” in their titles and returns their prices. The result of the query
is the set of addresses of all peers who own documents that satisfy the query.

3 Document Indexing

When published by a peer, the data of an XML document are indexed over the
DHT of the P2P network on both the structural summary and the data syn-
opses of the textual content of the document. A label path of an XML document
is a simple path expression that contains child/attribute steps only and can dis-
tinguish a non-empty set of data nodes in the document. Each label path of a
document is associated with a single node in the document’s structural sum-
mary and with a single data synopsis. For example, using XML representation
for convenience, one possible structural summary related to the bibliography
documents searched by QUERY is shown at the left of Figure 1. In this figure,
node 8 is associated with the label path /biblio/book/title. We use two types
of data synopses: The structural summary nodes that contain text are associ-
ated with bit matrices, called content synopses, across the domains of text terms

<biblio id="1">
<book id="2">

<abstract id="3"/>
<author id="4">

<firstname id="5"/>
<lastname id="6"/>

</author>
<price id="7"/>
<title id="8"/>

</book>
<publisher id="9">

<address id="10"/>
<name id="11"/>

</publisher>
</biblio>

title
XML SAXSmith

A Blastname
book

Fig. 1. A Structural Summary, and Testing QUERY Using Data Synopses

XML Query Routing in Structured P2P Systems 277

(keywords) and their positions in the document, while the internal structural
summary nodes are associated with bit vectors, called positional filters, across
document positions. Both structural summary information and data synopses
are distributed over the P2P network in a way that facilitates query evaluation,
involving a small number of peers while achieving a good load balance. The
DHT keys used for indexing a structural summary in a P2P network are the
different tagnames in the summary, while the DHT key of a data synopsis is its
label path. Given an XPath query, our framework is able to find all the plausible
structural summaries applicable to the query using only one DHT lookup. In
a typical DHT-based P2P system, this DHT lookup takes a number of routing
hops logarithmic to the network size. A plausible structural summary is one
that matches the structural footprint of the query, which is a path expression
that captures all structural restrictions in the query.

The problem that we examine first is, given an XML document and an XPath
query that contains search specifications, is the document likely to match the
query? Since we are using synopses, our goal is to find an approximation method
that reduces the likelihood of false positives, does not miss a solution, and does
not require high placement and maintenance overheads. Since we are interested
in evaluating IR-style search specifications, the document content is broken into
simple terms (keywords), followed by stemming and stop word elimination. The
resulting terms, called the indexed terms, are summarized in content synopses.
More specifically, for each unique label path in a document that directly reaches
text, we create one content synopsis that summarizes the indexed terms in this
text along with their positions. The positional information is derived from the
document order of the begin/end tags of the XML elements in the document.
That is, the position of an element tag is the number of the begin and end
tags that precede this tag in the document. The positional range of an XML
element, on the other hand, consists of the positions of the begin/end tags of the
element, while the positional range of an indexed term is the positional range of
the enclosing element. That is, terms that belong to the same XML element have
the same positional range. All positions in a document are scaled and mapped
into a bit vector of size L, called a positional bit vector, so that the last position
in the document is mapped to that last bit in the vector.

The positional dimension of the synopses is necessary due to the containment
restrictions inherent in the search specifications of a query. For example, the
search specification e ∼ “t1” and“t2” for two terms t1 and t2 becomes true if
and only if there is at least one document node returned by e that contains both
terms. Using one-dimensional term bitmaps alone, such as Bloom filters, and
checking whether both the t1 and t2 bits are on, will give us a prohibitive number
of false positives (as is shown in our experimental evaluation). For instance,
using Bloom filters, our QUERY might have returned all documents that have
one book whose author last name is Smith, a second book whose title contains
XML, and a third book whose title contains SAX. Therefore, term position is
crucial in increasing search precision and reducing false positives.

278 L. Fegaras et al.

Given a document, the content synopsis Hp associated with a label path p is
a mapping from an indexed term t to a positional bit vector. In our implemen-
tation, a content synopsis is summarized into a bit matrix of fixed size W · L,
where W is the number of term buckets and L is the size of bit vectors. Then,
Hp[t] is the matrix column associated with the hash code of term t. If there
are instances of two terms t1 and t2 in the document that have the same po-
sitional ranges (ie, they are contained in the same element), then the Hp[t1]
and Hp[t2] bit vectors should intersect (ie, their bitwise anding should not be
all-zeros). For example, we can test if a document matches the search specifi-
cation title ∼ ”XML” and ”SAX” by bitwise anding the vectors H8[“XML”] and
H8[“SAX”], which correspond to the node 8 (the book title) in Figure 1. If the
result of the bitwise anding is all zeros, then the document does not satisfy the
query (the opposite of course is not always true).

But given the bit vectors H8[“XML”], H8[“SAX”], and H6[“Smith”], how
can we enforce the containment constraint in the QUERY that the book whose
author last name is Smith must be the same book whose title contains XML and
SAX? We cannot just use bitwise anding or oring. A first attempt is to use a
positional filter Fp of size L associated with a label path p, so that for each XML
element in the document reachable by the label path p, the bits in the bit vector
that correspond to the element’s positional range are all on. Unfortunately, this
may result into bit overlaps of consecutive elements in the document, when their
mapped positional ranges intersect. We address this problem by using M bit
vectors Fp so that the positional range of the ith book goes to the i mod M bit
vector. That way, two consecutive books in the document, the i and i+1 books,
are placed to different bit vectors, thus reducing the likelihood of overlapping,
which may in turn result to false positives. M should be at least 2, since it is
very common to have a situation similar to that of consecutive books.

The basic operation in our framework to test element containment is called
Containment Filtering, CF (F, V), that takes a positional filter F and a bit
vector V as input and returns a new positional filter F ′. Function CF copies
a continuous range of one-bits from F to F ′ if there is at least one position
within this range in which the corresponding bit in V is one. For example,
the right of Figure 1 shows how the data synopses of a document are used to
determine whether this document is likely to satisfy QUERY (assuming M = 2).
This is the case when at least one bit vector of B is not all zeros, where A
is CF (F2, H6[“Smith”]), B is CF (A, and(H8[“XML”], H8[“SAX”])), F2 is the
positional filter for node 2 (of books), and ‘and’ is bitwise anding.

4 Data Placement and Query Processing

Our data synopses are used to route queries to peers who are likely to own docu-
ments that satisfy a query. To accomplish this, we introduce methods for placing
and indexing data synopses over a P2P network and for locating documents rel-
evant to a query based on these indexes. Our placement strategy for structural
summaries is very simple: they are routed to peers using every distinct tagname

XML Query Routing in Structured P2P Systems 279

from the structural summary as a routing key. Thus, locating all structural sum-
maries that match the structural footprint of a query is accomplished by a single
DHT lookup by choosing a tagname uniformly at random from the query foot-
print as the routing key. A data synopsis is placed on the P2P network using its
label path as the routing key. Since a label path may belong to multiple docu-
ments, all the relevant synopses from all these documents are placed at a single
peer, the one whose Node Id is numerically closest to the Id of the label path.
Thus, locating all document locations that satisfy the simple query p ∼ “term”,
for a label path p, is accomplished by a single DHT lookup by using the label
path p as the routing key. Then, the document locations that satisfy this simple
query are those whose content synopses, projected over “term”, give a non-zero
positional filter. To handle more complicated XPath queries, all the structural
summaries that match the query footprint are extracted and all the distinct label
paths that participate in the query’s search specifications are collected and used
as routing keys. Thus, the query is routed to the peers that contain the relevant
data synopses, collecting and filtering document locations along the way. This
is done over multiple documents at once. That is, the unit of communication
between peers is a list of triples (peer,document,positional-filter), containing the
owner and the id of a matching document along with the document positions
that satisfy the query at the current point of query evaluation. This list is shorten
at each visited peer by removing documents whose positional filters are all zeros.
At the end, the query client collects all document locations that match the query
and routes the query to the document owners for evaluation.

5 Handling Network Updates

There are three types of network updates that need to be handled by any P2P
system: arrival, departure, and failure of nodes. While it is very important to
maintain the integrity of the routing indexes, the integrity of data, which in our
case are document references, is of secondary importance, as is apparent in web
search engines that may return outdated links to documents. Both arrivals and
departures can be handled without disrupting the query routing process. When
a new node joins the overlay network and is ready to send and receive messages,
it invokes the Pastry method notifyReady(). Our implementation of this method
includes code that sends a message to the new node’s successor to transport
parts of its database to the new node. The node successor is derived from the
node’s Leaf set and is basically the immediate neighbor in the Id space with
a larger Id. When the successor receives the message, it moves all structural
summaries and data synopses whose routing Ids are less than or equal to the
new node’s Id to the new node. Therefore, the arrival of a new node requires two
additional messages to transport data to the new node. When a node willingly
leaves the overlay network, it routes all structural summaries and data synopses
to its successor using one message only. The departing peer leaves the references
to the local documents dangling and let the system remove them lazily.

280 L. Fegaras et al.

A node failure is the most difficult network update to handle. When a peer P1

receives a search request based on a tagname tag1 to find all structural summaries
that match a query footprint and does not find one, there are two possibilities:
either there was really no matching structural summary indexed in the DHT, or
the predecessor node, who was closest to tag1, had failed. Given that P1 knows
when its predecessor in the Id space fails (since, when this happens, it will receive
a special message from Pastry), it can always distinguish the two cases: if the
tagname Id is smaller than the failed predecessor Id, then it is the latter case.
In that case, P1 will choose another tagname tag2 uniformly at random from
the query footprint and relay the search request to another peer P2 under the
new key tag2. In addition to the message relay, P1 sends another message to P2

asking to return all structural summaries associated with tag1 to be published
in P1 (since P1 now gets the requests for tag1 keys). That way, the structural
summaries of the failed peer are republished one-by-one lazily and on demand.
Similarly, when a peer gets a request for a data synopsis based on the label path
p and does not find one, and its predecessor had failed, it will check whether
the Id from p is less than the Id of the failed predecessor. If so, it will abort
the query and will scan the list of document publishers from the hit list routed
along with query and will send a message to each publisher to publish the data
synopses for path p again. Therefore, the restoring of data synopses associated
with a failed peer in the P2P network is done lazily and on demand, and each
time only one query has to be aborted.

6 Related Work

The closest work to ours is by Galanis et al [3] on XPath query routing in large
P2P systems. Like our framework, the target of their distributed indexing is
the location of data sources that contain the answer, rather than the actual
XML fragments of the answer. Their structural summaries are similar to ours,
since, for each tagname in an indexed document, they index all possible distinct
paths that lead to this tagname in the document. This mapping is distributed
in a DHT-based system using the tagname as the search key. Similarly, for each
XML element that contains text, they store the text in the DHT index using the
tagname of the XML element as the search key. This is contrary to our approach
in which text is broken into terms before is indexed and label paths are used as
keys. Unfortunately, the authors do not address the indexing cost, since their
design is based on the assumption that querying is far more frequent than data
placement. We believe that their framework is more suitable for data-centric
XML data rather than to document-centric ones, since the latter may include
large text portions inside specific tagnames, which results to the routing of large
parts of a document to the same nodes. In their system, XPath queries are routed
to peers based on the last tagname in the query, which serves as the DHT lookup
key. Contrary to our approach, their evaluation of our example query will re-
turn even those nodes who own documents that have one book written by Smith

XML Query Routing in Structured P2P Systems 281

and another with XML and SAX in their titles. That is, their method does not
address containment relationships between predicates.

Another related framework is XP2P [1], which indexes XML data fragments
in a P2P system based on their concrete paths that unambiguously identify the
fragments in the document (by using positional filters in the paths). The search
key used for fragment indexing is the hash value of its path. Thus, XP2P can
answer simple, but complete XPath queries (without predicates or descendant-of
steps) very quickly, in one peer hop, using the actual query as the search key.
The main drawback of this method is that retrieving a complete data fragment
with all its descendants would require additional hops among peers by extending
the query with the child tagnames of each retrieved fragment recursively, until
all descendants are fetched. The descendant-of step requires even more searching
by considering the parts of the query that do not have descendant-of steps and
appending to them the child tagnames of the retrieved fragments (which makes
it impossible to answer queries that start with a descendant-of step). More im-
portantly, this technique has not been extended to include XPath predicates.

Although there are other proposed synopses and value distribution summaries
for XML data, such as XSketch [8], their main use is in selectivity estimation,
rather than in query routing in a P2P network. In [2], the structural summary
(called Repository Guide) is served as a global schema that indicates how XML
data are fragmented and distributed over the network. DBGlobe [6] exploits
multi-level Bloom filters based on the structural summary of XML documents to
route path queries to peers but they are based on structure information only. To
the best of our knowledge, none of the synopses proposed by others summarizes
both content with positional information in the same structure.

7 Performance Evaluation

We have built a prototype system to test our framework. It is built on top of Pas-
try [7] and uses Berkeley DB Java Edition as a lightweight storage manager. It is
available at http://lambda.uta.edu/xqp/. The platform used for our experiments
was a 3GHz Pentium 4 processor with 1GB memory on a PC running Linux. The
simulation was done using Java (J2RE 1.5.0) with a 768MBs maximum memory
allocation pool, from which 60% was allocated to the Berkeley DB cache. The ex-
periments were performed over a cluster of 100, 1000, and 2000 peers in a simulated
network on a single CPU. We used four datasets for our experiments, which were
synthetically generated by the XMark and XMach benchmarks (see Figure 2).

Our query workload consisted of 1000 random XPath queries generated from
50 files selected uniformly at random from each dataset. More specifically, each
selected file was read using a DOM parser and was traversed using a random
walk, generating an XPath step at each node. When a text node was reached
and a search specification was selected, search terms were picked from the text
uniformly at random. That is, each generated query was constructed in such
a way that it satisfied at least one document (the parsed document). Based
on these four datasets and query workload, we derived the measurements in

282 L. Fegaras et al.

files size file size tags paths msg/file syn/file syn size msg/qry

XMark1 230 1.7 MBs 7.6 KBs 83 341 41.7 17.9 161 bytes 3.93

XMark2 2300 17 MBs 7.6 KBs 83 424 41.3 17.6 166 bytes 3.63

XMark3 11500 82 MBs 7.3 KBs 83 436 41.4 17.6 165 bytes 3.87

XMach 5000 87 MBs 17.8 KBs 1616 9206 28.9 17.7 547 bytes 3.52

Fig. 2. Benchmark Measurements

Figure 2, where msg/file is the average number of messages needed to publish one
file from the dataset, syn/file is the average number of data synopses produced by
each file in the dataset, syn size is the average size of an uncompressed synopsis,
and msg/qry is the average number of messages needed to evaluate one query
from the query workload. Note that these measurements are independent of
the number of peers; they simply indicate the number of messages/synopses
generated, rather than the number of distinct peers that receive these messages.

Note that the work by Galanis et al [3] does not capture positional information
and does not address containment relationships between predicates, which, as
we will see in our measurements, can considerably reduce the number of false
positives. Furthermore, our indexing scheme is based on label paths (tagname
sequences), which results to better load balancing than their scheme, which is
based on single tagnames (the endpoints of a query). Nevertheless, we evaluated
their system based on our datasets and query workload in terms of numbers
of messages. Since their system was not available at the time of writing, we
calculated the number of messages based on the analysis given in their paper.
For XMark, they needed 17.6 msg/file, were each message had size 442 bytes, and
4.58 msg/qry. For XMach, these numbers were 17.7 msg/file, 1030 bytes, and 3.39
msg/qry. We can see that their system requires fewer messages for publishing
than ours, although each publishing message is a little bit larger than ours on
the average (since they have to publish the entire text). With our approach, in
return, we gain better accuracy (as shown below) and better load balancing.

Based on the XMark datasets and query workload (1000 random queries), we
measured the load distribution in our system for a network of 100, 1000, and
2000 peers. The results are shown in Figure 3. More specifically, for each one
of the 3 XMark datasets, we grouped and counted the peers based on 1) the
distribution of the number of messages needed to publish all the documents in
a dataset; 2) the distribution of the number of content synopses after all the
documents in a dataset have been published; 3) the distribution of the number
of messages needed to evaluate 1000 randomly generated queries. These results
can be easily explained given that the documents generated by XMark match
a single DTD, resulting to a very small number of distinct tagnames and text
label paths. For instance, from a network of 2000 peers, at most 436 peers are
expected to receive all data synopsis placement/search requests, while the rest
get none. For a network of 100 peers, though, the load is more evenly distributed.
This load balancing skew, however, is not likely to happen with a heterogeneous
dataset, when the number of distinct label paths is comparable to the network

XML Query Routing in Structured P2P Systems 283

Fig. 3. Load Distribution based on the XMark Datasets (y Axis is % of Involved Peers)

size. For example, the XMach dataset, which uses multiple DTDs, gives a better
load distribution in processing 1000 randomly generated queries, as shown in
Figure 4. More specifically, out of 2000 peers, 52.2% receive between 1 and 15
messages and 47.1% receive no messages (while for XMark3, 98% receive no
messages, leaving the burden of query processing to 2%).

The second set of experiments was designed to measure the accuracy of data
synopses. It was based on the XMark1 dataset on a single peer (since precision is
not affected by the network size). The results are shown in Figure 4. For the first
precision experiments, we used queries that match only one document from the
dataset. The plot at the top right of Figure 4 shows the average number of false
positives for various sizes of data synopses. Given a label path and a document,
the width of its content synopsis is the number of document elements reachable
by this path multiplied by the width factor. The height factor, when multiplied
by the document size, gives the content synopsis heights. When the height factor
was set to zero, then Bloom filters were used instead of content synopses (zero
height). The size M is the height of positional filters. When M = 0, then no
positional filters were used. We can see that, for random queries, the width
factor affects precision more than the height factor (ideally, the number of false
positives should be zero.) The plot at the bottom right of Figure 4 indicates that
using Bloom filters (height factor = 0) yields twice as many false positives as
when the height factor is ≥ 0.1.

284 L. Fegaras et al.

Fig. 4. Query Load Distribution for XMach and Data Synopsis Accuracy

8 Conclusion

We have presented a scalable architecture for indexing and querying XML data
distributed over a DHT-based P2P system. The main contribution of our work is
the development of a framework for indexing XML data based on the structural
summary and data synopses of data, and for mapping an XML query with full-
text search into a distributed program that migrates from peer to peer, collecting
relevant data and evaluating parts of the query along the way. As a future work,
we are planning to develop relevance ranking functions based on content synopses
and use one of the known top-k threshold algorithms to reduce network traffic
during querying.

References

1. A. Bonifati, et al. XPath Lookup Queries in P2P Networks. WIDM 2004.
2. J.-M. Bremer and M. Gertz. On Distributing XML Repositories. WebDB 2003.
3. L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating Data Sources in

Large Distributed Systems. VLDB 2003.
4. A.Y. Halevy, Z.G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The

Piazza Peer Data Management System. IEEE Trans. Knowl. Data Eng. 16(7): 787-
798 (2004).

5. R. Huebsch, et al. The Architecture of PIER: an Internet-Scale Query Processor.
CIDR 2005.

6. G. Koloniari and E. Pitoura. Content-Based Routing of Path Queries in Peer-to-Peer
Systems. EDBT 2004.

7. Pastry. http://freepastry.rice.edu/.
8. N. Polyzotis and M. Garofalakis. Structure and Value Synopses for XML Data

Graphs. VLDB 2002.
9. A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and

Routing for Large-Scale Peer-to-Peer Systems. International Conference on Dis-
tributed Systems Platforms 2001.

Reusing Classical Query Rewriting in P2P Databases�

Verena Kantere and Timos Sellis

School of Electr. and Comp. Engineering, National Technical University of Athens
{vkante,timos}@dbnet.ece.ntua.gr

Abstract. Sharing of structured data in P2P overlays is a challenging problem,
especially in the absence of a global schema. The nature of structured data stored
in the overlay enforces strict methods of querying. However, the intention of the
user is usually to obtain information that is semantically relevant to the posed
query and not information that strictly complies to structural constraints. The
rewriting mechanisms for structured data were initially developed for tasks such
as data integration and mediation, which by nature dictate strict consistency. In
this work we propose ways of preprocessing a query in order to produce a version
that can be rewritten in the classical way. We propose preprocessing guidelines
that produce a new query that is most similar to the initially posed query. Accord-
ingly, we discuss thoroughly query similarity aspects from a structural point of
view. Finally, we present an algorithm that selects the most appropriate mappings
in order to perform query rewriting.

1 Introduction

In contrast to data integration architectures, P2P data sharing systems do not assume a
mediated schema to which all sources of the system should conform in order to share
data. In such a system, where peers share (semi)-structured data, each is an autonomous
source that has a local schema. Sources store and manage their data locally, revealing
only part of their schemas to the rest of the peers. Due to the lack of global schema, they
express and answer queries based on their local schema. In order to be able to exchange
queries, during the acquaintance procedure the two peers exchange information about
their local schema and create a mediating mapping semi-automatically [9].

We are interested in data exchange issues in pure (i.e. without super-nodes) P2P
database systems. We assume that each peer owns a relational peer schema (i.e., the
only internal mappings are foreign key constraints) that it thoroughly exports to its im-
mediate neighbors, hereafter acquaintees. Each pair of acquaintees holds peer mappings
between their schemas. Peer mappings are considered to be of the well-known GAV-
LAV-GLAV (i.e. Global, Local, Global and Local As View) form (we limit our study to
mappings that can be expressed as SPJ queries). Hence, a peer mapping is a view with
the head of it belonging to the global schema and the body to the local one (GAV) or
the opposite (LAV). For clarity reasons, we remind that in GAV/LAV definitions for the
P2P setting, the global schema is the schema of the peer on which the query is initially

� This research has been partly supported by the European Union - European Social Fund and
National Resources under the PENED/EPAn program (Greek Secretariat of Research and
Technology).

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 285–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

286 V. Kantere and T. Sellis

posed and the local schema is the schema of the peer on which the query is rewritten. In
order to provide answers to a query, peers express queries on their local schema, answer
the query and at the same time propagate the query to its acquaintees in the P2P system.
At each step, a query is successively reformulated through mappings.

For LAV mappings we assume that the query reformulation is performed by a query
rewriting mechanism based on the well known algorithms for answering queries using
views [12], [13] and [1]. For GAV mappings, we assume the straightforward substitu-
tion of the view head with the body as it is done in Piazza [8]. GLAV mappings use a
combination of LAV and GAV query rewriting techniques [8].

The goal of the reformulation mechanism is to transform a query so that it can be
answered partly or completely by an acquaintee, i.e. an one-hop neighbor in the overlay.
The available query rewriting algorithms restrict their usage to queries that can be com-
pletely rewritten under a set of mappings, meaning that these algorithms can rewrite
queries only if all ‘select’ attributes and ‘where’ conditions of the original query can
be rewritten through the available mappings. Yet, this is not suitable for a P2P environ-
ment. In many common P2P applications, peers are satisfied with retrieved information
with characteristics similar to those of their query and not necessarily with exactly the
same characteristics (as is the case with search engines, popular P2P file-sharing ap-
plications, etc.) Therefore, it is reasonable to assume that it is preferable for our P2P
database system to operate in the same manner as [15] does, and as a result we would
like peer queries to be reformulated and propagated even if they can be only partly
satisfied.

Moreover, existing rewriting algorithms have been created to serve the problem of
data and schema integration and thus do not allow partial query rewriting. These al-
gorithms are driven by the assumption that the correct rewriting of a query is the
maximally-contained version of it [11]. In P2P database environments, peers are not
interested in answers from other peers that are contained in the answers they can re-
trieve locally; peers are interested in answers that would be semantically relevant to the
originally posed query.

Motivating Example
Envision a P2P system where the participating peers are databases of private doctors of
various specialties, diagnostic laboratories and databases of hospitals. Figure 1 depicts a
small part of this system, where nodes are: DavisDB - the database of the private doctor
Dr. Davis, LuDB - the database of pediatrician Dr Lu and StuartDB - the database of the
pharmacist, Mr Stuart. On top of each database sits a P2P layer, which is responsible
for all data exchange of this peer with its acquaintees. Among others, the P2P layer
is responsible for the creation and maintenance of mappings of local schemas during
the establishment of acquaintances towards the line of [9]. Moreover, each peer owns
a query rewriting mechanism. The schemas of the databases are shown on Figure 1.

Suppose that Dr Davis would like to collect from the system general information
about patients that have had diseases. He expresses the following query on his database:
Qorig:

SELECT V.Pid, D.DisDescr, D.Ache, T.Drug, T.Dosology
FROM Disease D, Treatment T, Visits V
WHERE V.Did = D.Did AND D.Did = T.Did

Reusing Classical Query Rewriting in P2P Databases 287

P2P Layer

DavisDB

StuartDB

LuDB

P2P Layer

P2P Layer

DavisDB :
Visits(Pid, Date, Did)
Disease (Did, DisDescr, Ache)
Treatment (Did, Drug, Dosology)

LuDB :
Disease(Did, AvgFever, Drug)
Patients(Insurance#, Did, Age, Ache)

StuartDB :
Treatment(Pid, Did, Date, Symptom,

TreatDescr, DisDescr)

Fig. 1. Part of a P2P system with peer-databases from the health environment

Having only one acquaintance, the pharmacist’s database, Dr. Davis’s database propa-
gates Qorig to it. We assume the following LAV mapping between DavisDB and Stu-
artDB databases:
MStuartDB DavisDB:

Treatment(Pid, , , Symptom, TreatDescr, DisDescr):-Visits(Pid, , Did),Disease(Did,
DisDescr, Ache), Treatment(Did, Drug,),

where correspondences Symptom = Ache, TreatDescr = Drug are implied. 1 Thus, the
rewritten query on StuartDB is the following:
QStuartDB sr:

SELECT T.Pid, T.DisDescr, T.Symptom, T.TreatDescr
FROM Treatment T

Obviously the new query has lost the attribute referring to information about drug dosol-
ogy, since it cannot be mapped in StuartDB. However, if classical query rewriting were
used, the query could not be rewritten at all. Thus, Dr Davis would not be able to get
any information at all from Mr Stuart.

The node of Mr Stuart passes the rewritten version QStuartDB sr to Dr Lu with whom
he has the following GAV mapping:
MStuartDB LuDB:
Treatment(Pid, , , Symptom, ,):- Disease(Did, AvgFever,), Patients(Insurance�,
Did, ,), Age < 13
where correspondences Pid = Insurance�, Symptom = AvgFever are implied. Thus, the
rewritten query on LuDB is the following:
QLuDB sr:

SELECT P.Insurance#, D.AvgFever
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

1 The mapping is actually a view defined on StuartDB.Treatment, which is matched with a join
on DavisDB relations such as:
View1(Pid, Symptom, TreatDescr, DisDescr):-Treatment(Pid,Did, Date, Symptom, TreatDe-
scr, DisDescr)
View1(Pid, Ache, Drug, DisDescr):- Visits(Pid, Date, Did),Disease(Did, DisDescr, Ache),
Treatment(Did, Drug, Dosology)
Due to lack of space we summarize mappings by omitting view definitions and introducing ’ ’
for attributes that are not needed.

288 V. Kantere and T. Sellis

Obviously the new query has lost more attributes, which refer to the description of the
disease and the respective treatment. Moreover, the new query is more restrictive than
the original, since it has an additional condition on ‘Age’. Yet, Dr Davis has the chance
to retrieve some information relevant to his initial query. In case of classical query
rewriting, Dr Davis would not get any information at all from the overlay, even though
his intention was to learn as much as he can about patients and their diseases.

Contributions
The presented situation points out that a major problem in unstructured P2P DBMSs
is that, even though peers may need general information (i.e. it is loosely coupled with
some constraints), the nature of structured data stored in the overlay enforces strict
methods of querying. Moreover, the rewriting mechanisms for structured data were
initially developed for tasks such as data integration and mediation, which by nature
dictate strict consistency. Thus, the use of the classical query rewriting algorithms in
P2P database settings deviates from the initial purpose of the users; the result is that
queries cannot be propagated in the overlay if there is not a chain of mappings that
matches them thoroughly to other peer schemas. Since such a requirement is too strict
for a P2P environment, classical rewriting algorithms cannot be used. Given that these
algorithms encapsulate a huge experience on reformulation of queries on structured
data, it would be naive to ignore all this work and ’reinvent the wheel’. Thus, we have
to adapt the experience on classical rewriting in the context of P2P databases.

This paper makes a contribution towards this step. Specifically, we propose the pre-
processing of the queries posed on P2P databases in order to produce versions that can
be classically rewritten to other peer schemas. In this context, we investigate the notion
of query similarity based more on structural features rather than semantics itself. We
propose criteria that can be used to form a query similarity function, i.e. a metric to
judge how much a query is (semantically) close to the original query . In the same spirit
we discuss guidelines for the preprocessing of queries and we present an algorithm that
considers GLAV, GAV and LAV mappings in order to select those mappings that can
rewrite the query in the best way.

2 Query Similarity

In order for a peer to answer an incoming query, it has to translate it with respect to its
local schema. Usually, the resulting query is not a complete translation of the original
one, but is somehow ‘similar’ to it. In the literature [11], the similarity between rewritten
queries is measured according to the containment of the results of the rewritten query to
the results of the original one. However, this kind of query similarity cannot be effective
in the context of this work. The reason is that the queries we want to compare are written
on different schemas: Qorig (the original query) is written on the schema of the initiator
and the rewritten version Qrewr on the schema of a remote peer. Moreover, our goal is not
to answer the queries in order to measure their similarity, but to measure their similarity
in order to decide which one to answer. Thus, we have to rely on query characteristics
rather than the answer to the query in order to determine similarity.

Query similarity has been explored in several works in the recent past. Due to lack of
space we cannot make a thorough discussion. Some of these works deal with

Reusing Classical Query Rewriting in P2P Databases 289

keyword matching in the database environment [2, 5] or with the processing of impre-
cise queries [14, 6, 10]. The work in [3] talks about attribute similarity but focuses on
numeric data and on conclusions about similarity that can be deduced from the work-
load. Furthermore, in [7] queries are classified according to their structural similarity;
yet, the authors focus on features that differentiate queries with respect to optimization
plans. The only work relevant to ours is that of [4], where overall semantic similarity of
queries is explored. Yet, our focus is on query versions that are produced through the
use of mappings, and we are interested on the effect of the mappings in query similarity.

In order to measure the similarity of two queries, Qorig and Qrewr there is a need
for a function that quantifies their semantic relativeness, Msim(Qorig,Qrewr). Next, we
discuss the guidelines along which such similarity functions should be constructed and
the factors that affect it.

2.1 Aspects of Query Similarity

The similarity of two queries each on a distinct schema is not only a matter of different
query characteristics, but also of why these different characteristics exist. Specifically,
since we are interested in incomplete rewritings of queries, query similarity has to take
into consideration under which data exchange conditions new elements in the rewritten
version are inserted or old elements are missing.

(1) ’select’ attributes
For example, remember the query on StuartDB, QStuartDB sr, and the successively rewrit-
ten version on LuDB, QLuDB sr; First, two of the ’select’ attributes of QStuartDB sr,
T.DisDescr and T.TreatDescr are missing in the ’select’ clause of QLuDB sr. It is obvious
that the lack of rewriting of these two attributes is due to either the lack of corresponding
attributes in the schema of LuDB, or the lack of mappings between StuartDB and LuDB
that encapsulate the correspondence of these attributes. Nevertheless, the rewritten ver-
sion has never additional ’select’ attributes, compared with the original one.

Observation: In any case, it is clear that ’select’ attributes missing in the rewritten
query version influence negatively the overall similarity of the queries.

(2) ’where’ conditions
Yet, things are more vague with the query conditions. There are several situations and
we consider each separetely.
(2a) additional value constraints: In our example QLuDB sr has the additional condi-
tion P.Age < 13. Is this condition an additional constraint to the query compared with
the non-conditional QStuartDB sr? In order to find out, we have to consider the circum-
stances under which the mapping that contributed this condition, MStuartDB LuDB, was
created. In our case, Dr Lu is a pediatrician, and, thus, he stores in his database infor-
mation about kids, i.e. P.Age < 13 for all data in LuDB. Therefore, the corresponding
additional condition in QLuDB sr is not actually an additional constraint, since the set
of returned tuples is the same if the posed query includes or not this condition. How-
ever, if Dr Lu is a family doctor, but for some reason his database maintais the mapping
MStuartDB LuDB with StuartDB, the condition on P.Age is an actual additional constraint,
since QLuDB sr returns less tuples than if the condition is eliminated. In general, addi-
tional value conditions in rewritten queries either restrict or do not influence the result

290 V. Kantere and T. Sellis

of the query. This depends on the reasoning that created the mappings used for the query
rewriting.

ObservationSince we are not able to know the logic beneath mapping creation, we
consider additional value conditions as restrictive, and, therefore, that they decrease
the similarity of the queries.

(2b) additional joins on non-key attributes: Beyond value conditions, SPJ queries
have joins either on relation keys or just plain attributes. As far as additional joins
on plain attributes are concerned, we can follow the same rationale as in the previous
paragraph. We can conclude that, in the same way as with additional value conditions,
additional joins on plain attributes can be considered as more restrictive, in the general
case.

Observation:Hence, additional joins on non-key attributes decrease query similarity.

(2c) additional joins on key attributes: However, is this the case for joins on relation
keys? Consider again the successive rewritings QStuartDB sr and QLuDB sr of the motivat-
ing example. The second query has a join on relation keys, D.Did = P.Did, whereas the
first does not have any. Easily, we can see that this join is necessary in order to ’select’
both attributes P.Insurance� and D.AvgFever; thus, it does not restrict the query answer.

Yet, a minor objection to this reasoning is that two relations joined by their keys do
not coincide with one relation that contains all their attributes: the first contains only
the tuples of the two joined relations that have common key values, whereas the second
can contain even the tuples of the two relations that have non-matching key values 2.

Furthrmore, a join on keys restricts the query answer, if the rewritten version does
not contain ’select’ attributes from both parts of the join. For example, suppose that
QStuartDB sr does not contain in the ’select’ clause the attribute P.Insurance�. However,
the only way to rewrite it is through the available mapping MStuartDB LuDB. Hence, the
rewritten version on LuDB will be:
Q′

LuDB sr:

SELECT D.AvgFever
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

In this case, even though the additional join is on relation keys, it does not serve as an
associative action and it does restrict the query answer: in absence of it the query would
return additionaly the tuples of relation Disease that do not have a matching Did with a
the Pid of a tuple in relation Patients.

Observation: Based on the above, we consider additional joins on relation keys as
neutral to query similarity, if the existense of ’select’ attributes is based on the exis-
tense of the join; otherwise, we consider additional joins on relation keys as a negative
influence to query similarity.

(2d) absent joins on key attributes: Finally, let us consider joins on relation keys that
exist in the source query, but are absent in the rewritten version. For example, this is

2 Assume that there are two relations R1(x,y) and R2(x,z) with the same key, x, and a relation
that contains all attributes of R1, R2: R(x,y,z) with key x. The tuples of each one of R1/R2 that
cannot be joined with a tuple of R2/R1, would have a corresponding tuple in R, for which the
attributes corresponding to R2/R1 would be null (outer join).

Reusing Classical Query Rewriting in P2P Databases 291

the case of Qorig and QStuartDB sr. The two joins on relation keys in the former are not
present in the latter. Should this element absence in the rewritten version be considered
as a reformulation failure? The answer is no, obviously: since the query rewriting is per-
formed using the mapping MStuartDB DavisDB that combines the relations Visits, Disease
and Treatment from DavisDB in a correspondence to the Treatments relation in Stu-
artDB, the two joins of Qorig are ”consumed”, in a way, during the complete rewriting
through the discussed mapping. Thus, the absence of the two joins in the rewritten version
does not mean that the mechanism failed to rewrite them, but that they are encapsulated
in the mappings used for the rewriting, and they are not needed in the new query.

But, what if the the joins of Qorig were not present in the mapping MStuartDB DavisDB?
For example suppose that StuartDB uses for the rewriting Qorig the mappings:
M1′

StuartDB DavisDB:

Treatment(Pid, , , Symptom, , DisDescr):- Visits(Pid, , Did),Disease(Did, DisDescr,
Ache)
and M2′

StuartDB DavisDB:

Treatment(, , , , TreatDescr,):- Treatment(, Drug,)3,
The rewritten query on StuartDB would be:
Q′

StuartDB sr:

SELECT T1.Pid, T1.DisDescr, T1.Symptom, T2.TreatDescr
FROM Treatment T1, Treatment T2

The second join of Qorig, ’D.Did = T.Did’, is not encapsulated in the above mappings.
It is obvious that the lack of this join in the mappings and the rewritten version results
in a cartesian product in the relation StuartDB.Treatment; thus, the lack of the key join
affects really bad the reformulation of Qorig.

Observation: Led by the aforementioned discussion, we consider that joins on rela-
tion keys are satisfied, i.e. explicitly or implicitly present in a query rewriting, if they
are present either in the mappings used for the reformulation or in the rewritten ver-
sion itself. If joins on keys are not satisfied, we consider that their lack in the rewritten
version affects negatively the similarity with the source query.

In addition to the above, any other missing constraints (i.e. value constraints or joins
on non-key attributes) are considered to have a bad impact on query similarity.

(3) corresponding ’select’ attributes and ’where’ conditions:
Suppose that the only available mapping in order to rewrite Qorig is M1′

StuartDB DavisDB.
Then the rewriting procedure would produce the query version:
Q′′

StuartDB sr:

SELECT T.Pid, T.DisDescr, T.Symptom
FROM Treatment T

Again, neither the rewritten query nor the used mapping contain any form of the join
’D.Did = T.Did’ of Qorig. Moreover, in this case the ’select’ attribute Treatment.Drug of

3 The reader can observe that the mapping M2′
StuartDB DavisDB does not map tuples 1-1; yet,

this is a possible mapping and its meaning is: ”tuples in DavisDB.Treatment correspond to
tuples in StuartDB.Treatment where the respective attributes Drug and TreatDescr have the
same value ”.

292 V. Kantere and T. Sellis

Qorig is not mapped in StuartDB, and, thus, it is not present in Q′′
StuartDB sr. So, the lack

of both the aforementioned join and attribute should influence negatively the similarity
of the source and the rewritten query. However, the attribute Drug is not really worth of
rewriting, even if this is possible, (e.g. if the mapping M2′

StuartDB DavisDB is available), if
the join ’D.Did = T.Did’ cannot be rewritten: as we have discussed previously, the result
would be a cartesian product, which in general cannot be considered a good rewriting.

The question that arises from this situation is whether the lack of these two elements
should affect the query similarity in a correlated or separate way. Again, the answer to
this question depends on how users think in order to form an originally posed query.
If users use joins on relation keys only as an associative means for retrieving attributes
from distinct relations, then the role of these joins is supportive to ’select’ attributes and
the impotence of their reformulation leads to the impotence of retrieving the supported
attributes from the target database; these joins cannot be present alone, i.e. without the
attribute(s) they support. Therefore, as far as query similarity is concerned, the lack
of such rewritten joins should be correlated with the lack of the supported rewritten
attributes. Nevertheless, in case we assume that users create queries without any specific
logic, key joins cannot be thought of as associative to retrieved attributes, in general.
Hence, their lack should be considered as not affecting query similarity.

The second assumption is more conservative than the first, because it considers that
two independent query features are missing from the rewritten version. Moreover, the
second assumption does not affect the query rewriting procedure, since query features
can be considered separately for rewriting (Section 3); yet, in agreement with the first
assumption, combinations of ’select’ attributes / ’where’ conditions should be spotted.

Observation: Based on the above, we consider that the presence of each query fea-
ture is independent from the presence of the rest and they affect query similarity in a
separate way.

In the same spirit, we have to consider whether the retrieval of an attribute should be
correlated with value conditions on the same attribute. For example, suppose a query
similar to QLuDB sr, where Patient.Age is a ’select’ attribute:
Q′′

LuDB sr:

SELECT P.Insurance#, D.AvgFever, P.Age
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

Should the lack of Patient.Age in a rewriting of Q′′
LuDB sr be correlated with the lack

of the condition ’Patient.Age < 13’ in the same rewriting? As in the case of joins on
keys discussed previously, the answer to this question can be either ’yes’ or ’no’. On
one hand, the presence of the value condition in the rewritten query depends on the
presence of the respective ’select’ attribute, for if the second is not mapped in the target
database, both of them cannot be rewritten. On the other hand, a user may create the
original query with or without the value condition, meaning that in general the presence
of the ’select’ attribute in the original query does not depend on the presence of the
respective value condition or vice versa.

Observation: Hence, we follow the second reasoning and do not correlate ’select’
attributes with respective value conditions in the calculation of query similarity.

Reusing Classical Query Rewriting in P2P Databases 293

2.2 Query Similarity Criteria

Based on the above observations, we want to form the criteria for the assessment of
query similarity. The rough outcome of the earlier discussion is that missing or addi-
tional query features, i.e. ’select’ attributes or ’where’ conditions should be considered
decreasingly in query similarity, from a conservative point of view. We choose a con-
servative point of view in order to determine a correct estimation of query similarity in
any context of P2P database applications.

We have to refine our observations by ordering the importance of the role of the
various missing or additional query features. First, we reckon that key attributes are
highly important in a relational schema since their values uniquely prescribe the values
of other attributes. We think that the role of keys in queries is as important as in the
schema itself, no matter if such an attribute appears in a ’select’ or ’where’ clause. Thus,
deficient rewritings of key attributes may result in severe semantic deviations from the
original query. Second, ’select’ attributes represent what information the user requires
actually. Thus, their lack in the rewritten query is decisively irreparable. Third, even
though the lack of join conditions is a negative factor for query similarity, it results in a
query version that retrieves a superset of the data that would be retrieved by a query with
the rewritten joins. Furthermore, the lack of value constraints has the same effect in the
query as the lack of joins. However, the lack of joins probably results in much bigger
supersets of retrieved data than the lack of value constraints. Finally, the introduction of
new value constraints and joins on non-key attributes is considered a deficiency 4. Yet,
new conditions produce a rewrittint that is classically contained in the source query;
thus, we think of the introduction of new conditions as the weakest criterion of all.

Thus, we form the following criteria for the definition of the similarity of two query
versions. The criteria are ordered according to their importance in query similarity.

1. Key attributes are rewritten, no matter what their position in the query is
2. ’select’ attributes are rewritten
3. Join attributes are rewritten
4. Constrained attributes (beyond join ones) are rewritten
5. There are no new value constraints and joins on non-key attributes.

3 Query Reformulation

Having discussed how similarity should be defined on queries propagated through a P2P
environment, we move next to discuss an algorithm that performs query reformulation.

We assume that peers own a query reformulation mechanism based on existing query
rewriting algorithms, which enables the production of a rewritten version Qrewr from the
original query Qorig, using the following rules:

– Qrewr maintains in the ‘select’ clause all the ‘select’ attributes of Qorig that can be
rewritten through the available mappings. Thus, in conjunctive form, the head of
Qrewr is a projection of the head of Qorig.

4 This last criterion can be broken down in more criteria depending on the several observations
for additional query features. Due to lack of space we summurize all of them in one.

294 V. Kantere and T. Sellis

– all the ‘where’ conditions of Qorig that cannot be rewritten through the available
mappings are ignored. The rest are rewritten and included in Qrewr. In conjunc-
tive form, Qorig and Qrewr have mappings between attributes of predicates even if
predicates themselves cannot be mapped.

As an example of the first rule above, remember the original query posed by Dr
Davis, Qorig; it is not possible to rewrite it to the schema of StuartDB, because the
’select’ attribute Treatment.Dosology of Qorig is not mapped in StuartDB. Thus, this
attribute is ignored in the classical query rewriting procedure.

As an example for the second rule above, consider the original query, Qorig, aug-
mented with a value condition:
Qorig changed:

SELECT V.Pid, D.DisDescr, D.Ache, T.Drug, T.Dosology
FROM Disease D, Treatment T, Visits V
WHERE V.Did = D.Did AND D.Did = T.Did AND T.Dosology = 5mg

Since the attribute Treatment.Dosology is not mapped in StuartDB, there cannot be a
classically contained rewritting of Qorig changed , because the condition ’T.Dosology =
5mg’ cannot be rewritten. Thus, this condition is ignored.

In order to achieve the above reformulation, we propose the preprocessing of the
incoming query Qorig and the production of the version Q′

orig that contains the part of
Qorig that can be best rewritten through the available mappings. Then, Q′

orig is rewritten
with the aforementioned classical query rewriting algorithms.

Query Preprocessing Guidelines. In order to preprocess a query and produce the in-
put for the rewriting algorithm, we choose the mapping(s) with respect to which we will
perform the preprocessing. As aforementioned, we want to choose the mappings that
best rewrite the query. The best rewritten version is valuated with respect to the simi-
larity criteria defined in the previous section. The mappings used for the rewriting are
actually the exclusive means that provide the rewritten query features thus, the struc-
ture of the mappings reflects the rewritten query. Also, mappings are actually queries
(or pairs of queries) themselves. Thereupon, we base our decision for the selection of
mappings on the query similarity criteria defined in Section 2.

There is a variety of query-mapping combinations that we can come across during
the mappings selection procedure. We discuss the combinations that do not match
completely. The following is a categorization of the main query-mapping combinations
that we can come across, where attributes of relations involved in the query are missing
from the mapping. Other combinations actually fall into one or more of these categories.
The categorization follows the lines of query similarity aspects.

Case A: Considering GAV mappings
1. For attributes that are not present in the ’select’ clause:

(a) The query is Q(x,y) : −P(x,y,z) and the mapping is P(x,y,) : −P′(x,y)
(b) The query is Q(x,y) : −P(x,y,z),z =′ c′ and the mapping is P(x,y,) : −P′(x,y)
(c) The query is Q(x,y) : −P(x,y,z)R(z,w) and the mapping is R(,w) : −R′(w)
(d) The query is Q(x,y) : −P(x,y,z)R(z,w) and the mapping is R(z,) : −R′(z)
(e) The query is Q(x,y) : −P(x,y,z), the mapping is P(x,y,z) : −P′(x,y,z),z =′ c′

(f) The query is Q(x,y) : −P(x,y,z) and the mapping is P(x,y,z) : −P′(x,y,z)R′(z)

Reusing Classical Query Rewriting in P2P Databases 295

2. For attributes that are present in the ’select’ clause:
(a) The query is Q(x,y) : −P(x,y,z) and the mapping is P(x, ,z) : −P′(x,z)

Cases 1(b) and 1(c) denote missing value constraints and joins, respectively. Cases
1(a,d) denote missing attributes from relations of the query; yet these attributes do not
appear in the query itself. Cases 1(e,f) denote additional ’where’ conditions.

Case B: Considering LAV mappings

1. ’select’ attributes of the query are missing from the mapping.
(a) The query is Q(x,y) : −P(x,y,z) and the mapping is Q′(x) : −P(x,y,z) or

Q′(x,z) : −P(x,y,z)
2. ’where’conditions of the query are not mapped through the mapping:

(a) The query is Q(x,y) : −P(x,y,z),z =′ c′ and the mapping is Q′(x,y) : −P(x,y,z)
(b) The query is Q(x,y) : −P(x,y,z)R(z) and the considered mapping is Q′(x,y) :

−P(x,y,z) and there is no mapping for R(z)

Case 2(a) denotes a missing value constraint, whereas case 2(b) denotes a missing join.
Note that both cases can refer to mappings with additional ’where’ conditions

Case C: Considering GLAV mappings5

1. ’select’ attributes of the query are missing from the mapping.
(a) The query is Q(x,y,z) and the mapping is Q(x,y,z) : −Q′(x,y)

2. The mapped query has additional ’select’ attributes:
(a) The query is Q(x,y) and the mapping is Q(x,y) : −Q′(x,y,z)

We select mappings according to the criteria of Section 2.2. The lack of attributes
of relations involved in the query that do not appear either in the ’select’ or the ’where’
clause, such as in Case A 1(a,d), is not taken into consideration: based on the mappings
themselves denote that the predicates match, even if not all their attributes match.

In order to impose the above criteria we construct an associative similarity func-
tion. Specifically, for a query subgoal g and a mapping M, the associative function Mas

quantifies the lack of non-matched attributes.

Mas(g,M) = ∑|g|
i=1 wi ·ai, wi ∈ {wk,ws,wj,wc}, ai ∈ {0,1}

where |g| denotes the arity of g, i.e. the total number of attributes in g involved in the
query. Also, each subgoal attribute, i, has a weight, wi that denotes if it is a key, a
’select’, a join or a constrained attribute. If it has more than two such characteristics, it
keeps the one that is higher in the hierarchy of the criteria. Accordingly, the weights for
a key, a ’select’, a join or a constrained attribute is wk, ws, wj and wc, respectively. We
require that wk > ws > wj > wc. Finally, ai denotes if the respective attribute is matched
in the mapping (ai = 0) or not (ai = 1).

We use the following form that estimates the matching ability of the selected
mappings:

Simg(Q,M) = 1 − ∑ j Simg j .Mas+∑k wa

∑ j ∑
|g j |
i=1 w ji

wi ∈ {wk,ws,wj,wc}, ai ∈ {0,1}

5 We only consider the the head of queries in GLAV mappings. Refining our categorization for
the bodies of these queries is future work.

296 V. Kantere and T. Sellis

Input: the query to be rewritten Q
Output: A set of mappings M

– Step 1 Consider GLAV mappings:
For each mapping M represented as Q′ : −Q′′ compute Msim(Q,Q′)*. Make the set SimGLAV = {M,Msim(Q,Q′)}

– Step 2 Consider GAV mappings:
For each subgoal gj of Q:

• Make a set Simg j = {M,Mas} and initiate M = null6 and Mas = 0

• For each mapping M that matches the predicate of gj compute Mas(gj,M); if Simg j .Mas < Mas(gj ,M) replace

Simg j .M with M and Simg j .Mas with Mas(gj ,M)

Make the set SimGAV = {MGAV , Simg}, where Simg(Q,M) = 1−
∑ j Simg j .Mas+∑k wa

∑ j ∑
|g j |
i=1 w ji

– Step 3 Consider LAV mappings and produce in the same way as in Step 2 SimLAV = {MLAV , Simg}
– Step 4 Compare SimGLAV .Msim, SimGAV .Simg and SimLAV .Simg ; depending on the highest value of the three, replace M

with one of the sets SimGLAV .M, SimGAV .M , SimLAV .M

*Msim(Q,Q′) is a function that quantifies the semantic similarity of two queries Q and Q′ based on the proposed criteria. Due

to lack of space we do not present an implementation of Msim in this work.

Fig. 2. Algorithm for the selection of mappings for the query rewriting

M is the set of selected mappings and Simg j .Mas is the Mas value for the g j subgoal.
The weight for an additional conditions is wa (wc > wa) and ∑wa represents the total
weight of all the additional conditions in the selected mappings.

The algorithm that chooses which mappings will be used in the query rewriting pro-
cedure is shown in Figure 2. Briefly, the algorithm considers three sets of mappings:
GLAV, GAV and LAV. It produces one subset of each set. Each such subset contains the
mappings that are most similar to the corresponding query subgoals according to the
aforementioned criteria. Finally, the algorithm chooses the subset of the three which
has the highest Simg value for the query.

4 Conclusions and Future Work

In this paper we propose the preprocessing of the query in order to reuse classical rewrit-
ing algorithms in P2P databases. We discuss query similarity aspects from a structural
point of view and we propose criteria along which we can form a similarity function. We
present an algorithm that selects the best mappings in order to perform query rewriting.
We are currently implementing the proposed rewriting mechanism. We intend to per-
form exhaustive experiments on the similarity aspects and the preprocessing guidelines
discussed in this paper, in order to determine their effect in realistic situations.

References

[1] F. Afrati, C. Li, and P. Mitra. Answering Queries Using Views with Arithmentic Compar-
isons. In 21th ACM PODS, 2002.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-Based Search
over Relational Databases. In ICDE, 2002.

[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated Ranking of Database Query
Results. In CIDR, 2003.

Reusing Classical Query Rewriting in P2P Databases 297

[4] W. W. Chu and G. Zhang. Associative Query Answering via Query Feature Similarity. In
IIS, 1997.

[5] W. Cohen. Integration of Heterogeneous Databases Without Common Domains Using
Queries Based on Textual Similarity. In SIGMOD, 1998.

[6] N. Fuhr. A Probabilistic Framework for Vague Queries and Imprecise Information in
Databases. In VLDB, 1990.

[7] A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa. Plan Selection based on Query Clus-
tering. In VLDB, 2002.

[8] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The Piazza Peer Data
Management System. In IEEE Transactions on Knowledge and Data Engineering, 2003.

[9] V. Kantere, I. Kiringa, J. Mylopoulos, A. Kementsientidis, and M. Arenas. Coordinating
P2P Databases Using ECA Rules. In DBISP2P, 2003.

[10] W. Kießling and G. Kostner. Preference SQL - Design, Implementation, Experiences . In
VLDB, 2002.

[11] A. Y. Levy. Answering Queries Using Views: A Survey. In VLDB Journal, 2001.
[12] A. Y. Levy, A. Rajaraman, and J. O. Ordille. Query-answering Algorithms for Information

Agents. In 13th International Conference on Artificila Intelligence, 1996.
[13] P. Mitra. An Algorithm for Answering Queries Efficiently Using Views. In Australesian

Database Conference, 2001.
[14] A. Motro. VAGUE: A User Interface to Relational Databases that Permis Vague Queries.

In TOIS 6(3), 187-214, 1988.
[15] B. Ooi, Y. Shu, K. Tan, and A. Zhou. PeerDB: A P2P-based System for Distributed Data

Sharing. In ICDE, 2003.

Efficient Searching and Retrieval of Documents

in PROSA

Vincenza Carchiolo, Michele Malgeri, Giuseppe Mangioni,
and Vincenzo Nicosia

Università degli Studi di Catania
Facoltà di Ingegneria

V.le A. Doria 6
95100 – Catania

Abstract. Retrieving resources in a distributed environment is more
difficult than finding data in centralised databases. In the last decade
P2P system arise as new and effective distributed architectures for re-
source sharing, but searching in such environments could be difficult and
time–consuming. In this paper we discuss efficiency of resource discov-
ery in PROSA, a self–organising P2P system heavily inspired by social
networks. All routing choices in PROSA are made locally, looking only
at the relevance of the next peer to each query. We show that PROSA
is able to effectively answer queries for rare documents, forwarding them
through the most convenient path to nodes that much probably share
matching resources. This result is heavily related to the small–world
structure that naturally emerges in PROSA.

1 Introduction

Organisation of electronic resources and documents is of the most importance for
efficient searching and retrieval. Nowadays the WWW is a (negative) example
of how searching and obtaining informations from an unstructured knowledge
base could really become difficult and frustrating. In the case of the World
Wide Web, this problem is faced and partially resolved by centralised searching
engines, such as Google, MSN–Search, Yahoo and so on, which can help users in
pruning away unuseful resources during searches. But searching strategies used
by web indexing engines cannot be easily adopted in a P2P environment, mainly
because nodes of such a distributed system cannot be compared to web–servers.
Each peer shares a small amount of resources, can join and leave the network
many times in a week and usually searches and retrieve resources belonging to a
small number of different topics. In the last few years many P2P structures have
been proposed, in order to build a valuable and efficient distributed environment
for resource sharing.

The problem is that existing P2P systems usually ask the user to choose be-
tween efficiency and usability. In fact, while DHT systems allow fast resource
searching [1] [2] [3] introducing unnatural indexing models, unstructured and
weakly structured P2P systems [4][5][6] usually allow users to easily express

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 298–309, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Searching and Retrieval of Documents in PROSA 299

queries but have poor performance with respect to bandwidth and time con-
sumption.

In this work we analyse retrieving performance of PROSA (P2P Resource
Organisation by Social Acquaintances), a P2P system heavily inspired by so-
cial networks: joining, searching resources and building links among peers in
PROSA are performed in a social way. Each peer gains a certain amount of
strong links to peers which share similar resources and also maintains weak links
to far away peers.

The linking phase is similar to a birth: each peer is given just a couple of
weak links which can be used for query forwarding. Queries for resources are
forwarded through outgoing links to other peers, in accordance with a defined
“similarity” between the query and shared resources. New relationships in real
social networks arise because people have similar interests, culture and knowl-
edge. In a similar way, new links among peers in PROSA are established when
a query is forwarded and successful answered, so that peers which share similar
resources finally get connected together.

In this paper we focus on the ability of PROSA in answering queries with a
sufficient number of results, even if a small amount of existing documents match
them. Matching documents are retrieved in an efficient way, forwarding queries
to a small amount of nodes using just a few “right” links, thanks to small–world
structure that naturally emerges in a PROSA network.

In section 2 we give a brief formal description of involved algorithms ; section
3 reports simulation results, focused on retrieval of rare resources; in section 4
the efficiency of the query routing algorithm is discussed, while section 5 propose
guidelines for future work.

2 PROSA: A Brief Description

As stated above, PROSA is a P2P network based on social relationships. More
formally, we can model PROSA as a directed graph:

PROSA = (P , L, Pr, Label) (1)

P denotes the set of peers (i.e. vertices), L is the set of links l = (s, t) (i.e.
edges), where t is a neighbour of s. For link l = (s, t), s is the source peer and t
is the target peer. All links are directed.

In P2P networks the knowledge of a peer is represented by resources it shares
with other peers. In PROSA the mapping Pr : P → 2R, associates peers
with resources. For a given peer s ∈ P , Pr(s) is the set of resources hosted
by peer s. Given a set of resources, we define a function Rc : 2R → C that
provides a sort of compact description of all resources. We also define a function
Pk : P → C, such that, for a given peer s, Pk(s) is a compact description of the
peer knowledge (PK - Peer Knowledge). It can also be obtained combining Pr

and Rc: Pk(s) = Rc(Pr(s)).
Relationships among people in real social networks are usually based on sim-

ilarities in interests, culture, hobbies, knowledge and so on [7][8][9]. Usually

300 V. Carchiolo et al.

these kind of links evolve from simple “acquaintance–links” to what we called
“semantic–links”. To implement this behaviour three types of links have been
introduced: Acquaintance–Link (AL), Temporary Semantic–Link (TSL) and Full
Semantic–Link (FSL). TSLs represent relationships based on a partial knowl-
edge of a peer. They are usually stronger than ALs and weaker than FSLs.

In PROSA, if a given link is a simple AL, then the source peer does not know
anything about the target peer. If the link is a FSL, the source peer is aware of
the kind of knowledge owned by the target peer (i.e. it knows Pk(t), where t ∈ P
is the target peer). Finally, if the link is a TSL, the peer does not know the full
Pk(t) of the linked peer; it instead has a Temporary Peer Knowledge (TPk) which
is based on previously received queries from the source peer. Different meanings
of links are modelled by means of a labelling function Label: for a given link
l = (s, t) ∈ L, Label(l) is a vector of two elements [e, w]: the former is the link
label and the latter is a weight used to model what the source peer knows about
the target peer; this is computed as follows:

– if e = AL ⇒ w = ∅
– if e = TSL ⇒ w = TPk

– if e = FSL ⇒ w = Pk(t)

In the next two sections, we give a brief description of how PROSA works.
A detailed description of PROSA can be found in [10].

2.1 Peer Joining PROSA

The case of a node that wants to join an existing network is similar to the birth
of a child. At the beginning of his life a child “knows” just a couple of people
(his parents). A new peer which wants to join, just looks for n peers at random
and establishes ALs to them. These links are ALs because a new peer doesn’t
know anything about its neighbours until he doesn’t ask them for resources. This
behaviour is quite easy to understand: when a baby comes to life he doesn’t know
anything about his parents and relatives. The PROSA peer joining procedure
is described by algorithm 1.

Algorithm 1 JOIN: Peer s joining to PROSA(P ,L, Pr, Label)

Require: PROSA(P , L, Pr, Label), P eer s
1: RP ← rnd(P, n) {Randomly selects n peers of PROSA }
2: P ← P ∪ s {Adds s to set of peers}
3: L ← L ∪ {(s, t), ∀t ∈ RP} {Links s with the randomly selected peers}
4: ∀t ∈ RP ⇒ Label(p, q) ← [AL, ∅] {Sets the added links as AL}

2.2 PROSA Dynamics

In order to show how does PROSA work, we need to define the structure of a
query message. Each query message is a quadruple:

QM = (qid, q, s, nr) (2)

Efficient Searching and Retrieval of Documents in PROSA 301

where qid is a unique query identifier to ensure that a peer does not respond to a
query more then once; q is the query, expressed according to the used knowledge
model1; s ∈ P is the source peer and nr is the number of required results.
PROSA dynamic behaviour is modelled by algorithm 2 and is strictly related
to queries. When a user of PROSA asks for a resource on a peer s, the inquired
peer s builds up a query q and specify a certain number of results he wants to
obtain nr. This is equivalent to call ExecQuery(PROSA, s, (qid, q, s, nr)).

Algorithm 2 ExecQuery: query q originating from peer s executed on peer cur

Require: PROSA(P , L, Pr, Label), cur ∈ P , q ∈ QM
1: Result ← ∅
2: if cur �= s then
3: UpdateLink(PROSA, cur, s, q)
4: end if
5: (Result, numRes) ← ResourcesRelevance(PROSA, q, cur, nr)
6: if numRes = 0 then
7: f → SelectNextPeer(PROSA, cur, q)
8: if f �= null then
9: ExecQuery(PROSA, f, qm)

10: end if
11: else
12: SendMessage(s, cur, Result)
13: L ← L ∪ (s, cur)
14: Label(s, cur) ← [FSL, Pk(cur)]
15: if numRes < nr then
16: {– Semantic Flooding –}
17: for all t ∈ Neighborhood(cur) do
18: rel → PeerRelevance(Pk(t), q)
19: if rel > Threshold then
20: qm ← (qid, q, s, nr − numRes)
21: ExecQuery(PROSA, t, qm)
22: end if
23: end for
24: end if
25: end if

The first time ExecQuery is called, cur is equal to s and this avoids the
execution of instruction # 3. Following calls of ExecQuery, i.e. when a peer
receives a query forwarded by another peer, use function UpdateLink, which
updates the link between current peer cur and the forwarding peer prev, if
necessary. If the requesting peer is an unknown peer, a new TSL link to that
peer is added having as weight a Temporary Peer Knowledge(TPk) based on
the received query message. Note that a TPk can be considered as a “good

1 If knowledge is modelled by Vector Space Model, for example, q is a state vector of
stemmed terms. If knowledge is modelled by ontologies, q is an ontological query,
and so on.

302 V. Carchiolo et al.

hint” for the current peer, in order to gain links to other remote peers. It is
really probable that the query would be finally answered by some other peer
and that the requesting peer will eventually download some of the resources
that matched it. It would be useful to record a link to that peer, just in case
that kind of resources would be requested in the future by other peers. If the
requesting peer is a TSL for the peer that receives the query, the corresponding
TPk is updated. If the requesting peer is a FSL, no updates are necessary.

The relevance of a query with respect to the resources hosted by a peer is
evaluated calling function ResourcesRelevance. Two possible cases can hold:

– If none of the hosted resources has a sufficient relevance, the query has to be
forwarded to another peer f , called “forwarder”. This peer is selected among
s neighbours by SelectForwarder, using the following procedure:

- Peer s computes the relevance between query q and the weight of each
links connecting itself to his neighbourhood.

- It selects the link with the highest relevance, if any, and forward the
query message to it.

- If the peer has neither FSLs nor TSLs, i.e. it has just ALs, the query
message is forwarded to one link at random.

This procedure is described in algorithm 2, where subsequent forwards are
performed by means of recursive calls to ExecQuery.

– If the peer hosts resources with sufficient relevance with respect to q, two
sub-cases are possible:

- The peer has sufficient relevant documents to full-fill the request. In this
case a result message is sent to the requesting peer and the query is no
more forwarded.

- The peer has a certain number of relevant documents, but they are not
enough to full-fill the request (i.e. they are < nr). In this case a re-
sponse message is sent to the requester peer, specifying the number of
matching documents. The message query is forwarded to all the links
in the neighbourhood whose relevance with the query is higher than a
given threshold (semantic flooding). The number of matched resources
is subtracted from the number of total requested documents before each
forward step.

When the requesting peer receives a response message it build a new FSL to
the answering peer and then presents results to the user. If the user decides to
download a certain resource from another peer, the requesting peer directly con-
tacts the peer owning that resource asking for download. If download is accepted,
the resource is sent to the requesting peer.

3 Information Retrieval in PROSA

Other studies about PROSA [10] [11] revealed that it naturally evolves to a
small–world network, with a really high clustering coefficient and a relatively
small average path length between peers.

Efficient Searching and Retrieval of Documents in PROSA 303

The main target of this work is to show that PROSA does not only has de-
sirable topological properties, but also that resource searching can be massively
improved exploiting those characteristics. The fact that all peers in PROSA
are connected by a small number of hops does not guarantees anything about
searching efficiency. In this section we show that searching resources in PROSA
is really fast and successful, mainly because peers that share resources in the
same topic usually results to be strongly connected with similar peers.

3.1 Two Words About Simulations

In order to show that PROSA can be used to efficiently share resources in
a P2P environment, we developed a event-driven functional simulator written
in Python. The knowledge base used for simulations is composed by scientific
articles in the field of math and philosophy. Articles about math come from
“Journal of American Mathematical Society”[12], “Transactions of the Ameri-
can Mathematical Society”[13] and “Proceedings of the American Mathematical
Society”[14], for a total amount of 740 articles. On the other hand, articles in
the field of philosophy come from “Journal of Social Philosophy” [15], “Jour-
nal of Political Philosophy” [16], “Philosophical Issues” [17] and “Philosophical
Perspectives” [18], for a total amount of 750 articles.

The simulator uses a Vector Space [19] knowledge model for resources. Each
document is represented by a state vector which contains the highest 100 TF–
IDF [20] weights of terms contained into the document.

Each peer contains, on average, 20±5 articles in the same topic. Nodes perform
80% of queries in the same topic of the hosted resources and the remaining 20% in
the other topic. We choose to do so after some studies about queries distribution
in a Gnutella P2P system [4] and with real social communities in mind, where
the most part of requests for resources are focused on a really small amount of
topics.

3.2 Number of Retrieved Documents

One of the most relevant quality measure of a resource searching algorithm is
the number of documents retrieved by each query. In this paragraph we examine
results obtained with PROSA, using the query mechanism described in section
2. We also compare PROSA to other searching strategies, such as random walk
and flooding.

Figure 1(a) shows a comparison of average number of retrieved documents in
a PROSA network for different number of nodes, when each node performs 15
queries on average.

As showed in figure 1(a), the best performance is obtained by flooding, since
the average number of retrieved documents per query is about 10, that is the
number of documents required by each query (nr)2. Nevertheless, PROSA is

2 A query is no more forwarded if a sufficient number of documents has been retrieved,
as explained in 2.

304 V. Carchiolo et al.

able to retrieve about 4 documents per query, on average, and this result is still
better than that obtained with a random walk, which usually retrieves only 2.8
documents per query.

This suggests that the query routing algorithm, based on local link ranking,
is really efficient and usually let queries “flow” in the direction of nodes that can
probably answer them. We note that PROSA is able to retrieve a relatively high
number of documents also if compared with a simple flooding. This is a good
result, since flooding is known as being the optimal searching strategy: queries
are actually forwarded to all nodes, so all existing and matching documents are
retrieved, until the number of required documents has not been obtained.

In figure 1(b) the average number of retrieved documents per successful query
is reported. The best performance is once again obtained by flooding, while
PROSA retrieves an average of 4.2 documents for each successful query over
10 documents required. Random walk has, once again, the worst performance.

200 300 400 500 600 700 800

Network size (nodes)

2

4

6

8

10

A
ve

ra
ge

 #
 o

f
re

tr
ie

ve
d

do
cu

m
en

ts

PROSA
Flooding
Random

(a) Average # of retrieved documents
per query

200 300 400 500 600 700 800

Network Size (nodes)

5

10

A
ve

ra
ge

 #
 o

f
re

tr
ie

ve
d

do
cu

m
en

ts

PROSA
Flooding
Random

(b) Average # of retrieved document per
successful query

200 300 400 500 600 700 800

Network Size (nodes)

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
an

sw
er

ed
 q

ue
ri

es

PROSA
Flooding

(c) Percentage of answered queries

Fig. 1.

Looking only at the number of retrieved documents could be misleading: it is
not important to have a small amount of queries answered with a high number
of documents. It is desirable having almost all feasible queries3 answered by a
3 A query is feasible if there exist matching documents to answer it. Otherwise it is

considered unfeasible.

Efficient Searching and Retrieval of Documents in PROSA 305

sufficient number of documents. Figure 1(c) shows the percentage of retrieved
documents for PROSA, flooding and random walk, on the same PROSA net-
work with different network sizes. Note that in every case the average amount
of unfeasible queries is around 6%.

The highest percentage of answered queries is obtained by flooding the net-
work, since about 94% of queries have an answer. This means that practically all
the queries are answered, if we except those that have no matching documents.
A valuable result is obtained also by PROSA: 84% to 92% of all queries are
answered, while random walk usually returns result for less than 80% of issued
queries 4. The percentage of answered queries increases with network size, for
all searching strategies, because all nodes have an average number of 20 docu-
ments: more nodes means more documents, i.e. an higher probability of finding
matching documents.

3.3 Query Recall

Either if it is an important parameter for a resource searching and retrieving
strategy, the number of retrieved documents is not the best measure of how
much documents a searching algorithm is able to retrieve. Since not all queries
match the same number of documents, it is better to measure the percentage
of retrieved documents over all matching documents. A valuable measure is the
so–called “recall”, i.e. the percentage of distinct retrieved documents over the
total amount of distinct existing documents that match a query. In figure 2(a)
we show the recall distribution for PROSA, flooding and random walk when
each node performs 15 queries on average.

The best performance is obtained, once again, flooding the network: about
60% of queries have a recall of 100%, and about 80% of queries have a recall of
50%. Searching by flooding could not return all documents because PROSA is a
directed graph, and unconnected components could still exist. Also PROSA has
high recall: about 20% of queries obtain all matching documents, while 45% of
queries are answered with one half of the total amount of matching documents.
Random walk is the worst case: about 80% of queries has a recall of less than
50% and only 8% of queries obtain all matching documents.

Recall measured as the simple percentage of retrieved document over the to-
tal amount of matching documents does not take into account the fact that
in PROSA queries are requested to retrieve nr documents and no more. This
fact could practically influence the recall measure for PROSA networks, since
queries are no more forwarded if a sufficient number of documents has been re-
trieved. On the other hand, it is important to analyse the recall in the case of
“rare” queries. Note that we consider a query as being “rare” when the total
number of matching documents is lower than the number of requested docu-
ments; similarly a query is considered “common” if it matches more than nr

5.

4 If a query eventually enters an unconnected component, it cannot be further
forwarded.

5 Reported results are relative to nr = 10.

306 V. Carchiolo et al.

0 0.2 0.4 0.6 0.8 1

Query recall

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

no
rm

al
is

ed
 d

is
tr

ib
ut

io
n

PROSA
Floofing
Random

(a) Query Recall distribution

0 0.2 0.4 0.6 0.8 1

Query recall

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

no
rm

al
is

ed
 d

is
tr

ib
ut

io
n

PROSA
Floofing
Random

(b) Recall distribution for rare queries

0 5 10 15 20 25 30

Query Recall

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

PROSA
Flooding
Random

(c) Recall distribution for common
queries

200 300 400 500 600 700 800

Network Size (nodes)

1

10

100
Q

ue
ry

 d
ee

pn
es

s

PROSA
Flooding
Random

(d) Average query deepness

Fig. 2.

Figure 2(b) shows the cumulative normalised distribution of recall for rare
queries, while figure 2(c) reports the cumulative distribution for common queries.

Results reported in figure 2(b) are really interesting: PROSA answers 35% of
rare queries by retrieving all matching documents, while 75% of queries retrieve
at least 50% of the total amount of matching documents; less than 10% of queries
obtain less than 30% of matching documents. Performance of a random walk is
worse than that obtained by PROSA: only 20% of queries obtain all matching
documents, while more than 30% of them obtain less than 30% of matching
results.

The situation is slightly different for common queries. As reported in figure
2(c), PROSA is able to retrieve at least 10 documents for 20% of issued queries
and, in every case, at least one document is found for 99% of queries, and at least
3 documents for 85% of queries. We think that this behaviour is also affected by
the chosen value of nr.

In order to better understand benefits of using PROSA, it is interesting to
look also at other measures that could clarify some PROSA characteristics.
For instance, recall results are of poor relevance without a measure of how fast
answers are obtained. A feasible measure of speed could be the average query
deepness, defined as the average number of “levels” a query is forwarded far
away from the source node.

Efficient Searching and Retrieval of Documents in PROSA 307

In figure 2(d) we show average deepness of successful queries for PROSA,
flooding and random walk on the same PROSA network for different number
of peers.

Query deepness for PROSA is around 3 and is not heavily affected from the
network size, while that of flooding and random walk is much higher (from 30
to 60 and from 120 to 600, respectively). Better results obtained by PROSA
cannot be simply explained by network clustering coefficient, since all simulation
are performed on the same network. We suppose that it is mainly due to the
searching algorithm implemented by PROSA itself: it is able to find a convenient
and efficient route to forward queries along, avoiding a large number of forwards
to non–relevant nodes.

4 Energetical Considerations

An important parameter to take in account in order to quantify the efficiency of
a searching strategy is the “energy” needed to forward and answer each query.
In a theoretical model it is probably of no great importance how much power
is needed in order to answer a query. But for real systems this is a crucial
parameter. One of the main issues with unstructured P2P networks such as
Gnutella [4] is that queries waste a lot of bandwidth, since a large fraction of the
network is flooded and a great amount of nodes are involved in answering each
query. It is possible to roughly define the average “energy” required for each
query using equation 3, where Nq is the number of nodes to which the query has
been forwarded and Lq is the number of links used during query routing. b and
c are dimensional scaling factors.

Eq = b · Lq + c · Nq (3)

The definition given here for query energy is quite simple: it takes into account
the required bandwidth, represented by the factor b · Lq, and the computational
power needed by nodes in order to process queries, represented by c · Nq.

To estimate the amount of energy required to answer queries, we could look
at the average number of nodes and the average number of links involved in each
query. Note that Nq and Lq are usually different, since a node can be reached
using many paths: either if it processes the query only once6, the bandwidth
wasted to forward the query to it cannot be saved.

Figure 3(a) and 3(b) show, respectively. the average number of nodes involved
and the average number of links used by successful queries, both for PROSA
and a simple random walk search.

Since random walk uses a higher number of nodes and a higher number of
links in order to answer the same queries, it is clear that PROSA requires less
energy. On the other hand, since PROSA is able to retrieve more matching
documents than a random walk (as shown in section 3.2), we can state that
PROSA is really efficient with respect to average “energy” required to answer
queries.
6 Requests with the same query id are ignored.

308 V. Carchiolo et al.

10 15 20 25

of queries per node

4

5

6

7

A
ve

ra
ge

 #
 o

f
vi

si
te

d
no

de
s

pe
r

qu
er

y

PROSA
Random Walk

(a) Average number of visited nodes per
query

10 15 20 25

of queries per node

2.5

3

3.5

4

4.5

of

 u
se

d
lin

ks
 p

er
 q

ue
ry

200 Nodes
400 Nodes

(b) Average number of used links per
query

Fig. 3.

5 Conclusions and Future Work

This work presented a formal description of PROSA, a self–organising system
for P2P resource sharing heavily inspired by social networks. Simulations show
that resource searching and retrieving in PROSA is really efficient, because of
the ability of peers in making good local choices that result in fast and successful
global query routing. Interesting results are obtained for query recall measured
on rare documents: PROSA is able to route queries for those documents directly
to nodes that probably can successfully answer them. Since PROSA results to
be a small–world, all nodes are reached in a few steps, avoiding to waste band-
width and processing power. Future works include further studying PROSA in
order to discover emerging structures, such as semantic groups and communities
of similar peers.

References

1. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. Lecture Notes in Computer Science 2009
(2001) 46

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. Technical Report TR-00-010, Berkeley, CA (2000)

3. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

4. Loo, B., Huebsch, R., Stoica, I., Hellerstein, J.: The case for a hybrid p2p search
infrastructure. In: Proceedings of the 3rd Internationa Workshop on Peer–to–Peer
Systems (IPTPS). (2004)

5. Zhu, Y., Yang, X., Hu, Y.: Making search efficient on gnutella-like p2p systems.
In: Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International, IEEE Computer Society (2005) 56a– 56a

Efficient Searching and Retrieval of Documents in PROSA 309

6. Bawa, M., Manku, G.S., Raghavan, P.: Sets: search enhanced by topic segmen-
tation. In: SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, New York, NY,
USA, ACM Press (2003) 306–313

7. Newman, M.E.J.: The structure of scientific collaboration networks.
PROC.NATL.ACAD.SCI.USA 98 (2001) 404

8. J., S.: Social Networks Analysis: A Handbook. Sage Pubblications, London (2000)
9. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of

Modern Physics 74 (2002) 47
10. Mangioni, V.C.M.M.G., Nicosia, V.: Social behaviours applied to p2p systems:

an efficent algorithm for resources organisation. 2nd International Workshop on
Collaborative P2P Information Systems, COPS 2006, Manchester (2006)

11. V. Carchiolo, M. Malgeri, G.M., Nicosia, V.: Self-organisation of resources in prosa
p2p network. In: Self–Managed Networks, Systems, and Services – Proceedings
of Second IEEE International Workshop, SelfMan 2006, Dublin. Number 3996 in
LNCS (2006) 172–174

12. Society, A.M., ed.: Journal of the American Mathemetical Society. WWW (1998-
2006)

13. Society, A.M., ed.: Tnansactions of the American Mathemetical Society. WWW
(1998-2006)

14. Society, A.M., ed.: Proceedings of the American Mathemetical Society. WWW
(1998-2006)

15. Publishing, B., ed.: Journal of Social Philosophy. WWW (1998-2006)
16. Publishing, B., ed.: Journal of Political Philosophy. WWW (1998-2006)
17. Publishing, B., ed.: Philosophical Issues. WWW (1998-2006)
18. Publishing, B., ed.: Philosophical Perspectives. WWW (1998-2006)
19. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval.

Technical report, Ithaca, NY, USA (1987)
20. Schutze, H., Silverstein, C.: A comparison of projections for efficient document

clustering. In: Prooceedings of ACM SIGIR, Philadelphia, PA (1997) 74–81

P2P Query Reformulation over

Both-As-View Data Transformation Rules

Peter Mc.Brien1 and Alexandra Poulovassilis2

1 Department of Computing, Imperial College London
pjm@doc.ic.ac.uk

2 School of Computer Science and Information Systems, Birkbeck College,
Univ. of London
ap@dcs.bbk.ac.uk

Abstract. The both-as-view (BAV) approach to data integration has
the advantage of specifying mappings between schemas in a bidirectional
manner, so that once a BAV mapping has been established between
two schemas, queries may be exchanged in either direction between the
schemas. In this paper we discuss the reformulation of queries over BAV
transformation pathways, and demonstrate the use of this reformulation
in two modes of query processing. In the first mode, public schemas are
shared between peers and queries posed on the public schema can be
reformulated into queries over any data sources that have been mapped
to the public schema. In the second, queries are posed on the schema of
a data source, and are reformulated into queries on another data source
via any public schema to which both data sources have been mapped.

1 Introduction

In [1] we presented the both-as-view (BAV) approach to data integration,
and compared it with global-as-view (GAV) and local-as-view (LAV) [2].
In BAV, schemas are mapped to each other using a sequence of schema trans-
formations which we term a transformation pathway. These pathways are re-
versible, in that a pathway Sx → Sy from a schema Sx to a schema Sy may be
used to automatically derive the pathway Sy → Sx. Also, from BAV pathways
it is possible to extract GAV, LAV and GLAV mapping rules [3]. The BAV ap-
proach has been implemented as part of the AutoMed data integration system
(see http://www.doc.ic.ac.uk/automed).

One advantage of BAV is that it readily supports the evolution of global and
local schemas, including the addition or removal of local schemas. An evolution
of a schema Sx to S′x is expressed as a pathway Sx → S′x, and then pathways of
the form Sx → Sy may be ‘redirected’ to S′x by prefixing the reverse of Sx → S′x
to derive a pathway S′x → Sx → Sy. As we discussed in [4], this feature makes
BAV well-suited to the needs of peer-to-peer (P2P) data integration, where
peers may join or leave the network at any time, or may change their schemas
or pathways between schemas.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 310–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

P2P Query Reformulation over Both-As-View Data Transformation Rules 311

Standard centralised data integration of data sources S1, S2, . . . into a global
schema Sp is specified by a set of pathways S1 → Sp, S2 → Sp, . . . managed
centrally by the data integration system. In the AutoMed P2P data integration
system, each peer Px manages the integration of a data source Sx as a pathway
Sx → Sp, and there is a directory service and P2P protocol that allows the peers
to interact. The shared global schema is called a public schema, emphasising
that no single peer controls the global schema but, by contrast, it is simply a
publicly available schema definition that any peers may use. Note that the same
BAV pathway specification is used to map Sx → Sp in both the centralised and
the P2P systems. The directory service allows a peer to discover what public
schemas Sp exist, and which peers support pathways to that public schema [5].

One contribution of this paper is that we specify how, given a pathway Sx →
Sy and a query q posed on Sy, q can be reformulated using a combination of
LAV and GAV techniques into a query q′ posed on Sx. This is an advance on our
previous work which only showed how GAV or LAV views individually could be
derived from BAV pathways. A second contribution of this paper is that the P2P
protocol combined with the reversibility of BAV pathways allows us to support
two types of query processing:

– In public schema querying we simulate centralised data integration within
a P2P environment: a user at a peer Px poses a query on a public schema
Sp, and Px asks each other peer Py supporting Sp to either (1) process the
query and return the result back to Px, or (2) send its pathway to Sp to Px

so that Px can construct the centralised data integration model and process
the query itself.

– In data source querying a user at a peer Px poses a query q on data source
Sx and wishes it to be reformulated into a query q′ on some other data source
Sy. This is achieved by using the pathway Sx → Sp to reformulate q into
a query on Sp. Then Px is able to interact with other peers supporting
the public schema Sp, using the public schema querying techniques already
described.

Previous work on P2P data integration in the Piazza system has used combi-
nations of LAV and GAV rules between schemas, and a combination of GAV and
LAV query processing techniques [6]. Piazza differs from our approach in that
mappings must be specified directly between peers. Whilst our approach does
not preclude this, we also allow mappings to be specified to a public schema,
making our approach more scalable.

Other related work is [7] which uses a superpeer based network topology to pro-
vide better scalability than pure peer-to-peer networks. Routing indexes at super-
peers store information about the data reachable from the peers directly connected
to them, and aid in the forwarding of query requests only to relevant peers.

The need for a superpeer is avoided in the local relational model [8], where
peers are directly related by a combination of a domain relation that specifies
how the data types of the peers are related, together with coordination formulae
that specify that if one predicate is true in one peer, then another predicate is
true in another peer.

312 P. Mc.Brien and A. Poulovassilis

Our approach combines the respective advantages of these systems by having
virtual public schemas — allowing peers to reuse the existing integration of other
peers with public schemas — but having no physical superpeer nodes that may
act as a bottleneck in the system — in particular, any peer can combine the
integrations of other peers with public schemas in order to form direct pathways
between peers for query and update processing.

In [9] global-local-as-view (GLAV) rules [10] are used to specify the constructs
of each schema in terms of the constructs of some set of other peer schemas.
There is no distinction between source and global schemas, and any number of
GLAV rules may be specified between schemas. However, unlike BAV, [9] does
not differentiate between sound, complete and exact rules, as the GLAV rules
are always sound. CoDB [11] generalises this to allow sound and complete GLAV
rules to be specified.

The remainder of the paper begins with a review of the BAV data integration
approach in Section 2 together with details of a data integration example. We then
describe in Section 3 the process of query reformulation over BAV pathways, and
illustrate how it supports public schema querying. In Section 4 we discuss how to
improve support for data source schema querying, where a certain degree of path-
way repair may be needed in order to fully support data source schema querying.

2 Overview of BAV Data Integration

The basis of the BAV approach to data integration is a low-level hypergraph-
based data model (HDM). Higher-level modelling languages are specified
in terms of this lower-level HDM. An HDM schema consists of a set of nodes,
edges and constraints, and each modelling construct of a higher-level modelling
language is specified as some combination of HDM nodes, edges and constraints.
For each type of modelling construct of a modelling language (e.g. Table, Col-
umn, Primary Key and Foreign Key in the relational model) there are available a
set of primitive schema transformations for adding such a construct to a schema,
removing such a construct from a schema and, in the case of constructs with tex-
tual names, renaming such a construct. Schemas are incrementally transformed
by applying to them a sequence of primitive schema transformations, each prim-
itive transformation adding, deleting or renaming just one schema construct.

In general, schema constructs may be extensional i.e. have a data extent
associated with them (e.g. Table and Column in the relational model) or may
be constraints (e.g. Primary Key and Foreign Key in the relational model). In
this paper we will restrict our discussion to the relational model, and hence
extensional schema constructs consist of sets of values. The general form of a
primitive transformation that adds an extensional construct c of type T to a
schema S in order to generate new schema S′ is addT (c, qS), where qS is a query
over S specifying the extent of c in terms of the existing constructs of S. The
semantics of this transformation are that ∀x . x ∈ c ↔ x ∈ qS . In the AutoMed
implementation of BAV, qS is expressed in a functional intermediate query
language (IQL) (see Section 2.1).

P2P Query Reformulation over Both-As-View Data Transformation Rules 313

When it is not possible to specify the exact extent of the new construct c being
added in terms of the existing schema constructs, the primitive transformation
extendT (c, Range ql qu) must be used instead of add. This adds a new construct
c of type T to a schema S, generating a new schema S′. The query ql over S
states what is the minimum extent of c in S′; ql may be the constant Void if no
lower bound on the extent can be specified. The query qu over S states what is
the maximal extent of c in S′, and may be the constant Any if no upper bound
on the extent can be specified. For non-Void ql therefore, ∀x.x ∈ c ← x ∈ ql; and
for non-Any qu, ∀x . x ∈ c → x ∈ qu. Also, addT (c, qS) is equivalent to extendT
(c, Range qS qS).

In a similar fashion, the transformation deleteT (c, qs) when applied to schema
S′ generates a new schema S with the construct c of type T removed. The extent
of c may be recovered using the query qS on S, and ∀x . x ∈ c ↔ x ∈ qS . Note
therefore that from a transformation deleteT (c,qS) used to transform schema
S′ to schema S we can automatically infer that addT (c,qS) transforms S to
S′, and vice versa. When it is not possible to specify the exact extent of the
construct c being deleted from S′ in terms of the remaining schema constructs,
the transformation contractT (c, Range ql qu) must be used instead of delete. This
removes a construct c of type T from schema S′ to form a new schema S. The
query ql over S states what is the minimum extent of c in S′, while the query qu

over S states what is the maximal extent of c in S′. Again, q1 may be Void and
qu may be Any. deleteT (c, qS) is equivalent to contractT (c, Range qS qS). Also,
from contractT (c, Range ql qu) used to transform schema S′ to schema S we can
infer that extendT (c, Range ql qu) transforms S to S′, and vice versa.

Finally, the transformation renameT (c, c′) causes a construct c of type T in a
schema S to be renamed to c′ in a new schema S′, where ∀x.x ∈ c ↔ x ∈ c′. Thus,
from renameT (c, c′) used to transform S to S′ we can infer that renameT (c′, c)
transforms S′ to S.

2.1 AutoMed’s IQL Query Language

IQL is a comprehensions-based functional query language [12], and such lan-
guages subsume query languages such as SQL-92 and OQL in expressiveness
[13]. It supports strings e.g. ’Computer Science’, booleans True and False, real
numbers, integers, tuples e.g. {1,2,3}, and sets, bags and lists. There are several
polymorphic primitive operators for manipulating sets, bags and lists. The op-
erator ++ concatenates two lists, and performs bag union and set union on bags
and sets, respectively. The operator flatmap applies a collection-valued function
f to each element of a collection and applies ++ to the resulting collections.
For sets, it is defined recursively as follows, where [] denotes the empty set and
(SCons x xs) denotes a set containing an element x with xs being the rest of the
set (which may be empty):

flatmap f [] = []
flatmap f (SCons x xs) =(f x) ++(flatmap f xs)

Henceforth in this paper, we confine our discussion to collections that are sets.

314 P. Mc.Brien and A. Poulovassilis

The operator flatmap can be used to specify comprehensions over sets.
These are of the form [h | q1; . . . ; qn] where h is an expression termed the
head and q1, . . . , qn are qualifiers, with n ≥ 0. Each qualifier is either a fil-
ter or a generator. A generator has syntax p <− e where e is a set-valued
expression and p is a pattern i.e. an expression involving variables and tuple
constructors only. The variables of p are successively bound by iterating through
e. Any variables appearing in the head, h, inherit these bindings. A filter is a
boolean-valued expression, which must be satisfied by the values generated by
the generators in order for these values to contribute to the final result of the
comprehension. Comprehensions are a convenient high-level syntax and add no
extra expressiveness to languages such as IQL since they translate into applica-
tions of flatmap. We give the translation below for a set comprehension, where
Q denotes a sequence of qualifiers and [h] a set comprising a single element h:

[h | p <− e; Q] ≡ flatmap (lambda p.[h | Q]) e
[h | e; Q] ≡ if e = True then [h | Q] else []
[h |] ≡ [h]

IQL supports unification of variables appearing in the patterns of genera-
tors within the same comprehension. For example, [{a, b, c, d, e} | {a, b, c} <−
r; {d, c, e}<−s] is equivalent to [{a, b, c, d, e} | {a, b, c}<−r; {d, c2, e}<−s; c = c2]

Several equivalences hold for these IQL operators [14], which follow from their
definition and from the interpretation assigned to the Void and Any constants.

2.2 An Example

Figure 1 shows four schemas S1, S2, S3, Sp. S1, S2, S3 are data source schemas
while Sp is what in a centralised data integration system would be called a global
schema and in our P2P system is called a public schema. The semantics of
the application domain are that a student with name sname may repeatedly sit
the exam for a course (identified by ccode, and each having a title) over any
number of semesters, and achieve an exam mark on each exam sitting. However,
for all attempts of the course, the student will have the same tutor (tutors having
been introduced at the start of 1994, along with a coursework mark cwmark that
students can attempt only once per course). Each student studies for one degree.
Each degree is identified by a dcode, has a title dname and has an associated
qualification.

Schema Sp is a virtual schema modelling the application domain, omitting the
information about tutors and about the qualification associated with degrees.
The cwmark is shown as optional (by a ‘?’ suffix) since it was only awarded from
1994 onwards. Schema S1 represents a data source that holds information about
courses with a ccode greater or equal to 500, and holds data in first normal form
(since dname is dependent on just sname and title is dependent on just ccode).
Schema S2 represents a data source that holds information about courses with
a ccode less than 500, and is also in first normal form, since it holds in tname
the tutor’s name (an optional attribute), which is dependent on just sname and
ccode. Schema S3 represents a data source that details students’ tutors, the

P2P Query Reformulation over Both-As-View Data Transformation Rules 315

S1 studies(sname,ccode,sem,mark,title,dname)

S2 teach(sname,ccode,sem,mark,tname?)

S3 degree(dcode,dname,qual)
ug(sname,dcode)
reg(sname,ccode,cwmark,tutor)

Sp degree(dcode,dname)
student(sname,dcode)
course(ccode,title)
sit(sname,ccode,sem,mark,cwmark?)

Fig. 1. Three data sources S1, S2, S3, and a public schema Sp

degrees students studied, and the coursework mark students gained for courses,
and is held in third normal formal.

We consider below fragments of the pathways S1 → Sp and S2 → Sp in order
to illustrate the BAV approach and the use of IQL queries within transforma-
tions. Within S1 → Sp it is necessary to decompose the studies table in S1 in
order to produce the separate course table that is present in Sp. Here is the
fragment of that pathway:

1 extendTable(〈〈course〉〉, Range ([{c} | {s, c, t} <− 〈〈studies〉〉]) Any)
2 extendColumn(〈〈course,ccode〉〉, Range [{c, c} | {c} <− 〈〈course〉〉] Any)
3 extendColumn(〈〈course,title〉〉, Range ([{c, ti} | {{s, c, t}, ti} <− 〈〈studies,title〉〉]) Any)
4 contractColumn(〈〈studies,title〉〉,

Range Void [{{s, c, t}, ti} | {s, c, t} <− 〈〈studies〉〉; {c, ti} <− 〈〈course,title〉〉])

Transformation 1 states that the course table in Sp contains as its set of keys
at least those ccode attributes of studies in S1 (the first argument of the Range
constructor). We note here that the AutoMed representation of a relational table
models the table itself by its set of primary key values, and models each attribute
a of the table by the projection of the table onto the primary key attributes plus
a (see [1]).

Transformations 2 and 3 add the ccode and title columns to course. Again
these are extend transformations with upper bound Any. The final transformation
4 removes the title attribute of the studies table and specifies the upper bound

that the title attribute in Sp places on the extent of the title attribute in S1.
The pathway S2 → Sp needs to specify that the tutor tname has no repre-

sentation in Sp, using transformation 5 below. The remainder of the pathway
is not required for the examples that follow, and is therefore omitted from our
discussion.
5 contractColumn(〈〈teach,tname〉〉, Range Void Any)

3 Query Reformulation over BAV Pathways

In this section, we discuss how query reformulation can be undertaken over BAV
pathways. We first illustrate how BAV pathways can be used for GAV and LAV
query reformulation, and hence can support GAV and LAV query processing.
We then present a BAV-specific query reformulation algorithm which subsumes
as special cases GAV and LAV query reformulation.

316 P. Mc.Brien and A. Poulovassilis

GAV query reformulation is based on query unfolding. For example, to
evaluate a query q on Sp with respect to S1, we traverse the pathway Sp → S1

(i.e. the reverse of the pathway S1 → Sp described earlier) replacing each scheme
in q that appears in an delete or contract transformation with the corresponding
query of that transformation.

Example Query 1: To reformulate the query
q1 = [{ti} | {c, ti} <− 〈〈course, title〉〉; c = 500]

first 4 is ignored (since its reverse is an extend transformation), and then 3
unfolds 〈〈course,title〉〉 giving:

[{ti} | {c, ti} <− Range([{c, ti} | {s, c, t, ti} <− 〈〈studies, title〉〉]) Any; c = 500]
Using equivalence rules for IQL [14], this simplifies to

Range[{ti} | {c, ti} <− [{c, ti} | {s, c, t, ti} <− 〈〈studies, title〉〉]; c = 500] Any
and then to:

Range[{ti} | {s, c, t, ti} <− 〈〈studies, title〉〉; c = 500] Any
Transformations 2 and 1 have no further effect on this query, and thus this
is the transformed query that can execute on data source S1.

As another example, consider table reg in S3 that has sname and ccode as its key
attributes. In the pathway S3 → Sp, reg is mapped to table sit ofSp that has sname,
ccode and sem as its key attributes since students may (re)sit the examination part
of any course once in any semester. Recall that the tutors for courses were only
introduced from sem 1 of 1994.Below is the relevant fragment of the pathway S3 →
Sp.Wenote that transformation 6 contains the expressionConst1s c in the head of
the comprehension. Here, Const1 is an IQL constructor (Skolem function), used
because it is not possible to derive the sem attribute of 〈〈sit〉〉 from 〈〈reg〉〉.
6 extendTable(〈〈sit〉〉,

Range [{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉] Any)
7 extendColumn(〈〈sit,sname〉〉, Range [{{s, c, t}, s} | {s, c, t} <− 〈〈sit〉〉] Any)
8 extendColumn(〈〈sit,ccode〉〉, Range [{{s, c, t}, c} | {s, c, t} <− 〈〈sit〉〉] Any)
9 addColumn(〈〈sit,cwmark〉〉,

[{{s, c, t}, cw} | {s, c, t} <− 〈〈sit〉〉; {{s, c}, cw} <− 〈〈reg,cwmark〉〉])
10 extendColumn(〈〈sit,sem〉〉, Range [{{s, c, t}, t} | {s, c, t} <− 〈〈sit〉〉] Any)
11 deleteColumn(〈〈reg,sname〉〉, [{{s, c}, s} | {s, c} <− 〈〈reg〉〉])
12 deleteColumn(〈〈reg,ccode〉〉, [{{s, c}, c} | {s, c} <− 〈〈reg〉〉])
13 deleteColumn(〈〈reg,cwmark〉〉, [{{s, c}, cw} | {{s, c, t}, cw} <− 〈〈sit,cwmark〉〉])
14 contractTable(〈〈reg〉〉, RangeVoid [{s, c} | {s, c, t} <− 〈〈sit〉〉; t >= ‘1994-1’])

There are a family of constructors Const1, Const2, . . . Any expression of the
form Consti e1 . . . en is only comparable with an expression constructed using
the same constructor i.e. with an expression of the form Consti e′1 . . . e′n. Thus,
an expression of the form Consti e1 . . . en = Consti e′1 . . . e′n evaluates to
True if ej = e′j evaluates to True for all j otherwise it evaluates to False, and
similarly for the other comparison operators. Any other kind of comparison of
Consti returns the value Null, denoting “unknown”. If Null is the value of a filter
in a comprehension, then the result will be a Range expression i.e. the second
rule of comprehension translation in Section 2.1 becomes:

[h | e; Q] ≡ if e = True then [h | Q] elseif e = False then []
else (RangeVoid [h | Q])

P2P Query Reformulation over Both-As-View Data Transformation Rules 317

Example Query 2: Consider the following query posed on Sp:
q2 = [{s, c, cw} | {{s, c, t}, cw} <− 〈〈sit,cwmark〉〉; t >= ‘1997-1’]

Unfolding 〈〈sit,cwmark〉〉 using 9 we obtain:
[{s, c, cw} | {s, c, t, cw} <− [{s, c, t, cw} | {s, c, t} <− 〈〈sit〉〉;

{{s, c}, cw} <− 〈〈reg, cwmark〉〉]; t >= ’1997-1’]
which using IQL equivalences [14] simplifies to

[{s, c, cw} | {s, c, t} <− 〈〈sit〉〉; {{s, c}, cw} <− 〈〈reg, cwmark〉〉; t >= ’1997-1’]
Unfolding 〈〈sit〉〉 using 6 we obtain:

[{s, c, cw} | {s, c, t} <− Range[{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉] Any;
{{s, c}, cw} <− 〈〈reg, cwmark〉〉; t >= ’1997-1’]

Using IQL equivalences [14] this simplifies to
Range[{s, c, cw} | {s, c, t} <− [{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉];

{{s, c}, cw} <− 〈〈reg, cwmark〉〉; t >= ’1997-1’] Any
Swapping the last two qualifiers of the outer comprehension, and moving t >=
’1997-1’ into the inner comprehension gives:

Range[{s, c, cw} | {s, c, t} <− [{s, c, Const1 s c} |
{s, c} <− 〈〈reg〉〉; (Const1 s c) >= ’1997-1’];

{{s, c}, cw} <− 〈〈reg, cwmark〉〉] Any
At run time this gives the same result as the following query, since Const1 s c >=
’1997-1’ evaluates to Null:

Range Void [{s, c, cw} | {s, c, t} <− [{s, c, Const1 s c} |
{s, c} <− 〈〈reg〉〉]; {{s, c}, cw} <− 〈〈reg, cwmark〉〉]

i.e. it returns as an upper bound the student names, courses they have taken
and coursework marks obtained from S3.

Consider now the 〈〈studies,dname〉〉 attribute of S1, which corresponds in Sp to
some instances of the join between 〈〈student,dcode〉〉 and 〈〈degree,dname〉〉. This
is expressed in BAV by the following fragment of the pathway S1 → Sp:
15 extendTable(〈〈student〉〉, Range [{s} | {s, c, t} <− 〈〈studies〉〉] Any)
16 addColumn(〈〈student,sname〉〉, [{s, s} | {s} <− 〈〈student〉〉])
17 extendColumn(〈〈student,dcode〉〉, RangeVoid Any)
18 extendTable(〈〈degree〉〉, Range [{d} | {s, d} <− 〈〈student,dcode〉〉] Any)
19 addColumn(〈〈degree,dcode〉〉, [{d, d} | {d} <− 〈〈degree〉〉])
20 extendColumn(〈〈degree,dname〉〉, Range [{d, dn} | {s, d} <− 〈〈student,dcode〉〉;

{{s, c, t}, dn} <− 〈〈studies,dname〉〉] Any)
21 contractColumn(〈〈studies,dname〉〉, RangeVoid[{{s, c, t}, dn} | {s, c, t} <− 〈〈sit〉〉;

{s, d} <− 〈〈student,dcode〉〉; {d, dn} <− 〈〈degree,dname〉〉])
Example Query 3: Consider the following query on Sp:

q3 =[{s} | {s, d} <− 〈〈student,dcode〉〉; {d, dn} <− 〈〈degree,dname〉〉;
dn = ‘CS’]

Using GAV, 〈〈degree,dname〉〉 would unfold using 20 and 〈〈student,dcode〉〉
would then unfold using 17 , obtaining:

[{s} | {s, d} <− Range Void Any;
{d, dn} <− Range[{d, dn} | {s, d} <− Range Void Any;
{{s, c, t}, dn} <− 〈〈studies, dname〉〉] Any; dn = ’CS’]

which simplifies to just RangeVoid Any, i.e. giving no answers.

318 P. Mc.Brien and A. Poulovassilis

However the query q3 on Sp can yield answers using LAV query processing.
There are two main techniques for this, the inverse rule algorithm [15,16] and
the bucket algorithm [17]. For simplicity we focus here on the former. Using
the inverse rule approach, the definition of a construct c by a query of the form
[h | Q] is inverted in a two-step process. First, replace each variable in Q that
does not appear in h by a distinct Consti with arguments the variable(s) in h. For
example, 15 has two such variables, c and t which are replaced by Const2 s and
Const3 s respectively; while in 21 , there is one such variable d, which is replaced
by Const8 s dn (see below). Next, for each generator p<−cs in Q, generate a
query defining cs in terms of [p | h <− c; Q′] where Q′ consists of all the filters
from Q. To illustrate, we list below all the inverse rules derived from the fragment
15–21 of the BAV pathway S1 → Sp.
15.1 〈〈studies〉〉 =RangeVoid [{s, Const2 s, Const3 s} | {s} <− 〈〈student〉〉]
16.1 〈〈student〉〉 = [{s} | {s, s} <− 〈〈student,sname〉〉]
18.1 〈〈student,dcode〉〉 =RangeVoid [{Const4 d, d} | {d, d} <− 〈〈degree,dcode〉〉]
19.1 〈〈degree〉〉 = [{d} | {d, d} <− 〈〈degree,dcode〉〉]
20.1 〈〈student,dcode〉〉 =RangeVoid [{Const5 d dn, d} | {d, dn} <− 〈〈degree,dname〉〉]
20.2 〈〈studies,dname〉〉 =RangeVoid [{{Const5 d dn, Const6 d dn, Const7 d dn}, dn} |

{d, dn} <− 〈〈degree,dname〉〉]
21.1 〈〈student,dcode〉〉 =Range [{s, Const8 s c t dn} | {{s, c, t}, dn}<−

〈〈studies,dname〉〉] Any
21.2 〈〈degree,dname〉〉 =Range [{Const8 s c t dn, dn} | {{s, c, t}, dn}<−

〈〈studies,dname〉〉] Any
21.3 〈〈sit〉〉 =Range [{s, c, t} | {{s, c, t}, dn} <− 〈〈studies,dname〉〉] Any

Query processing that requires to use a particular construct can now combine
the direct definition of the construct within the BAV pathway with all the inverse
rules for that construct derived from the BAV pathway. These definitions can
be combined using a merge function defined as follows, where union and intersect
are set union and set intersection:

merge (Range e1 e2) (Range e1′ e2′) =Range (union e1 e1′) (intersect e2 e2′)
Returning to our example, when a query is submitted to Sp and answers

are required from S1, the rules 15 ,16 , 17 ,18 ,19 ,20 , 21.1 , 21.2 , 21.3 , can be used. In
particular, for processing query q3 above, we have:

〈〈student,dcode〉〉 =merge 17 21.1 = 21.1 and
〈〈degree,dname〉〉 =merge 20 21.2 = 21.2

Substitution now for 〈〈student,dcode〉〉 and 〈〈degree,dname〉〉 in q3 gives:
[{s} | {s, d} <− Range[{s, Const8 s c t dn} |

{{s, c, t}, dn} <− 〈〈studies, dname〉〉] Any;
{d, dn} <− Range[{Const8 s c t dn, dn} | {{s, c, t}, dn} <−
〈〈studies, dname〉〉] Any; dn = ’CS’]

which simplifies to:
Range[{s} | {s, d} <− [{s, Const8 s c t dn} | {{s, c, t}, dn} <− 〈〈studies, dname〉〉];

{d, dn} <− [{Const8 s c t dn, dn} | {{s, c, t}, dn} <− 〈〈studies, dname〉〉];
dn = ’CS’] Any

which when evaluated would give the same set of answers as:
Range[{s} | {{s, c, t}, dn} <− 〈〈studies, dname〉〉; dn = ’CS’] Any

P2P Query Reformulation over Both-As-View Data Transformation Rules 319

3.1 BAV Query Reformulation

Following the examples presented above, we now summarise how combined GAV
and LAV query reformulation can be carried out over a BAV pathway Sx → Sy,
with the aim of obtaining the maximal information that would be derivable from
the BAV pathway by means of GAV and LAV query processing techniques.

Suppose we wish to reformulate a query q posed on Sx to be posed with respect
to Sy. (We note that, due to the reversibility of BAV pathways, from a pathway
Sx → Sy it is also possible to reformulate a query q posed on Sy to be posed
with respect to Sx. The process is exactly as described below except that now it
is with respect to the, automatically derivable, reverse pathway Sy → Sx. This
was the scenario illustrated in the examples above, where pathways Sx → Sp

were used to reformulate queries on Sp so that they could be evaluated on Sx.)
The first step is to construct a set of view definitions, V , defining constructs

in Sx in terms of constructs in Sy. This is undertaken by traversing the pathway
Sx → Sy, and at each transformation step t taking one of the following actions:

– if t is of the form rename(c, c′) the rule c = c′ is added to V ;
– if t is of the form delete(c, q) or contract(c, q), the rule c = q is added to V ;
– if t is of the form add(c, q), where q is a comprehension referencing schema

constructs c1, . . . , cn in its generators, then invert the rule c = q (as described
above) to obtain a set of rules of the form ci = qi for 1 ≤ i ≤ n such that
the only scheme referenced in each qi is c; add these rules to V ;

– if t is of the form extend(c, RangeVoid qu), where qu is a comprehension as in
the case of add(c, q), then invert the rule c =RangeVoid qu to obtain a set of
rules of the form ci =Range qi Any; add these rules to V ;

– if t is of the form extend(c, Range ql Any), where ql is a comprehension as in
the case of add(c, q), then invert the rule c =Range ql Any to obtain a set of
rules of the form cj =RangeVoid qj ; add these rules to V ;

– if t is of the form extend(c, Range ql qu), where ql and qu are comprehensions
as in the case of add(c, q), then invert the rule c =Range ql qu by inverting
separately qu and ql, as in the previous two cases, to obtain from qu a set
of rules of the form ci =Range qi Any and from ql a set of rules of the form
cj =RangeVoid qj ; add these rules to V ;

We note that the worst-case complexity of constructing V is O(N×M) where N is
the number of primitive transformations in the pathway and M is the maximum
number of schema constructs appearing in comprehension expressions.

Once constructed, V can be used to reformulate a query q posed on Sx with
respect to Sy. We term a schema construct c which appears in Sy final otherwise it
is non-final. The query reformulation algorithm is as follows, where the function
NF (q) returns the set of non-final schemes occurring in an IQL query q:

while NF (q) �= ∅
for each c ∈ NF (q)

e := Range Void Any
for each rule r ∈ V such that head(r) = c

320 P. Mc.Brien and A. Poulovassilis

e := merge e body(r)
q := [c/e]q

In other words, non-final constructs in q are successively replaced by their
definition in V until there are no non-final constructs left. It is easy to see
that this process terminates: Let G be the graph obtained from V by creating
a node in G for each schema construct in the head of a rule in V and an arc
c → c′ in G if c′ appears in a rule defining c. The acyclicity of G follows from
the syntactic properties of BAV transformation sequences: an add or extend
transformation can only add a construct that does not exist in the input schema,
and the query within the transformation can only refer to constructs existing in
the input schema; a delete or contract transformation can only delete a scheme
that exists in the input schema and the query within the transformation can
only refer to schemes existing in the output schema. By the acyclicity of G the
query reformulation algorithm must terminate. The complexity of the query
reformulation algorithm is again O(N × M).

4 Data Source Schema Query Processing

BAV pathways can in principle be used to map directly between peer schemas
in a P2P data integration scenario, and the techniques we have described above
can be used to reformulate queries with respect to a BAV pathway between two
peer data source schemas. However, in AutoMed we also support P2P BAV data
integration via public schemas, as already described in the Introduction. A
desirable property in data integration is that the mapping between a pair of
schemas Sx and Sy should form a complete mapping, in the sense that it
identifies all possible mappings between schema objects in Sx and Sy. In our
P2P framework, we can construct mappings between Sx and Sy by finding some
shared or public schema Sz for which we already know the pathways Sx →
Sz and Sz → Sy, and form a concatenation of these two pathways to form
a pathway Sx → Sy. However, this pathway may not in general represent a
complete mapping, since Sz might not contain a schema object to represent
data associated with schema objects that appear in Sx and Sy and for which a
mapping could be specified in a direct pathway from Sx to Sy. Suppose that SOx

is a schema object in Sx and SOy is a schema object in Sy for which a mapping
between SOx to SOy could be established, but that it is currently absent due to
the absence of a corresponding schema object in Sz . Then the pathway Sx → Sz

must contain a transformation of the form
a contractObjx(SOx, Range Void Any)

expressing the fact that SOx cannot be derived or represented in Sz, and simi-
larly Sz → Sy must contain a transformation of the form
b extendObjy(SOy, Range Void Any)

expressing the fact that SOy cannot be derived or represented in Sz.
Hence, we can use the presence of pairs of transformations of the form of a

and b to extract pairs of schema objects that might be mappable between Sx

P2P Query Reformulation over Both-As-View Data Transformation Rules 321

and Sy, and feed such pairs into a schema matching process [18] in order to
derive any mappings that exist between objects as yet unmapped in Sx and Sy.
AutoMed supports a suitable schema matching tool [19], which automatically
derives possible matchings between pairs of schema objects, and the transforma-
tions representing their mapping; the user is then asked to confirm or manually
modify the matchings and generated transformations.

Thus, to construct a complete mapping Sx → Sy from two complete mappings
Sx → Sz and Sz → Sy, we can: (i) Form the setUx of schema objects that appear in
contract transformations in Sx → Sz, and the set Uy of schema objects that appear
in extend transformations in Sz → Sy. (ii) Perform a pairwise match of objects in
Ux against objects in Uy; for each positive match found, remove the transforma-
tion steps that contract/extend the matched pair of objects, and replace with the
transformations that represent the match found. To illustrate, we return to our
running example. Within the pathway S3 → Sp there are two transformations:

22 contractColumn(〈〈degree,qual〉〉, RangeVoid Any)
23 contractColumn(〈〈reg,tutor〉〉, RangeVoid Any)

When deriving the pathway S2 → S3 from S2 → Sp (which will include trans-
formation 5) and the reverse of S3 → Sp, a schema match table as follows is first
formed (the filled in circles indicate that the reverse of a transformation is being
used):

Data Source S2 Data Source S3

Transformation Schema Object Transformation Schema Object
5 〈〈teach,tname〉〉 22 〈〈degree,qual〉〉

23 〈〈reg,tutor〉〉
The schema matching process should then discover that 〈〈teach,tname〉〉 and
〈〈reg,tutor〉〉 match (specifically, that they are equivalent, with the exception of
the key used). Hence transformations 5 and 23 can be removed and the fol-
lowing transformations added to the end of S2 → S3:

24 addColumn(〈〈reg,tutor〉〉, [{{s, c}, tu} | {{s, c, t}, tu} <− 〈〈teach,tname〉〉])
25 deleteColumn(〈〈teach,tname〉〉, [{{s, c, Const1 s c}, tu} | {{s, c}, tu} <− 〈〈reg〉〉])

5 Concluding Remarks

The BAV approach has the advantage in a P2P data integration setting of al-
lowing bidirectional logical mappings to be specified between peers. We have
discussed how these mappings can be used to support two types of query pro-
cessing in a P2P data integration system, where either queries are posed on the
schema of a data source at a peer or on a virtual public schema. We have shown
how GAV and LAV query reformulation can be combined over BAV pathways
— specifically, for a comprehensions-based query language — thus obtaining the
maximal information from BAV pathways that would be derivable by means of
GAV and LAV query processing techniques.

We have focused here on query processing along a single BAV pathway, which
cannot generate cyclic relationships between schema objects and hence for which

322 P. Mc.Brien and A. Poulovassilis

query answering is decidable c.f. [20]. The extension of P2P query processing
along a network of arbitrary BAV pathways is an area of ongoing work, and
in particular we wish to investigate the applicability of the epistemic semantics
approach of [9,21] to BAV.

References

1. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transfor-
mation rules. In: Proc. ICDE’03, IEEE (2003) 227–238

2. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS’02,
ACM (2002) 233–246

3. Jasper, E., Tong, N., McBrien, P., Poulovassilis, A.: View generation and opti-
misation in the AutoMed data integration framework. In: Proc. Baltic DB&IS04.
Volume 672 of Scientific Papers., Univ. Latvia (2004) 13–30

4. McBrien, P., Poulovassilis, A.: Defining peer-to-peer data integration using both
as view rules. In: Proc. DBISP2P, at VLDB’03. (2003) 91–107

5. Bellahsène, Z., Lanzanitis, C., McBrien, P., Rizopoulos, N.: Querying distributed
data in a super-peer based architecture. In: Proc. IWI2006 (in conjunction with
WWW06). (2006)

6. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: Data management infras-
tructure for semantic web applications. In: Proc. WWW’03. (2003)

7. Loser, A., Nejdl, W., Wolpers, M., Siberski, W.: Information integration in schema-
based peer-to-peer networks. In: Proc. CAiSE’03. LNCS, Springer (2003)

8. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing: a vision. In: Proc.
WebDB’02. (2002) 89–94

9. Calvanese, D., Damagio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic
data integration in P2P systems. In: Proc. DBISP2P, at VLDB’03. (2003)

10. Friedman, M., Levy, A., Millstein, T.: Navigational plans for data integration. In:
Proc. 16th National Conference on Artificial Intelligence, AAAI (1999) 67–73

11. Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I.: Queries and updates in the
coDB peer-to-peer database system. In: Proc. VLDB. (2004) 1277–1280

12. Jasper, E., Poulovassilis, A., Zamboulis, L.: Processing IQL queries and migrating
data in the AutoMed toolkit. Technical Report No. 20, AutoMed (2003)

13. Buneman et al., P.: Comprehension syntax. SIGMOD Record 23(1) (1994) 87–96
14. McBrien, P., Poulovassilis, A.: P2P query reformulation in AutoMed. Technical

Report No. 33, AutoMed (2006)
15. Qian, X.: Query unfolding. In: Proc. ICDE, IEEE (1996) 48–55
16. Duschka, O., Genesereth, M.: Answering recursive queries using views. In: Proc.

PODS, ACM (1997) 109–116
17. Levy, A., Rajamaran, A., Ordille, J.: Querying heterogeneous information sources

using source description. In: Proc 22nd VLDB. (1996) 252–262
18. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.

VLDB Journal 10 (2001) 334–350
19. Rizopoulos, N.: Automatic discovery of semantic relationships between schema

elements. In: Proc. of 6th ICEIS. (2004)
20. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema mediation in peer data

management systems. In: Proc. ICDE’03, IEEE (2003)
21. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of

peer-to-peer data integration. In: Proc. PODS. (2004) 241–251

RDFCube: A P2P-Based Three-Dimensional

Index for Structural Joins
on Distributed Triple Stores

Akiyoshi Matono, Said Mirza Pahlevi, and Isao Kojima

Grid Technology Research Center,
National Institute of Advanced Industrial Science and Technology(AIST)

{matono,mirza,kojima}@ni.aist.go.jp

Abstract. Today, RDF data/triples are scattered everywhere and their
total size is rapidly increasing. Centralized RDF triple stores have lim-
itations on both their failure tolerance and scalability. Therefore, RDF
query processing in a P2P environment is an important issue. So far,
several conventional P2P-based RDF triple stores have been proposed.
They, however, are designed merely for triple retrieval rather than for
triple join query processing. Consequently, they suffer from an unneces-
sary data transfer problem. This paper presents an RDF query process-
ing technique based on a three-dimensional hash index. The triples are
mapped into the index; then bit information that represents the presence
or absence of triples in the index is introduced. We implemented our ap-
proach on the top of an emulated P2P environment. Evaluation results
show that our approach can achieve good performance and scalability.

1 Introduction

Today, Resource Description Framework (RDF) [1] is anticipated as a foundation
for representing metadata. Metadata formatted according to RDF (RDF data)
are rapidly increasing and dispersing: RDF is therefore anticipated to be widely
used in many fields. As a consequence, it is essential to provide efficient and
scalable RDF query processing in a distributed environment.

An infrastructure for RDF-based metadata using P2P, Edutella [2], uses a
Gnutella-like [3] unstructured P2P network. However, Edutella broadcasts RDF
queries to the whole network. Furthermore, because each node that receives the
queries must process them, an unnecessary burden is placed on the unrelated
nodes.

RDFPeers [4, 5] is a distributed RDF repository to efficiently search RDF
triples using Multi-Attribute Addressable Network (MAAN) [6], which extends
Chord [7] to answer multi-attribute and range queries. It stores a triple by spec-
ifying the triple’s subject, predicate, or object as a key. Therefore, the storage
process requires three lookups. On receiving a query triple, RDFPeers uses one
constant in the query triple as a key to identify a node that stores triples re-
lated to the query. In other words, RDFPeers can obtain a set of triples that are
matched for a constant and bind answers to its variables.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 323–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

324 A. Matono, S.M. Pahlevi, and I. Kojima

The RDF is used to describe semantic relationships among scattered data.
Therefore, efficient processing is necessary for structural join queries that join
data that are located on different sites. Because RDFPeers is designed for RDF
triple retrieval and because it is based on a DHT that supports only exact-match
queries, it cannot efficiently handle a join operation. To perform a join operation
RDFPeers must gather all candidate answers into a node. Consequently, the
amount of unnecessary data transferred among nodes increases considerably.

Our aim is to provide an RDF query processing mechanism that can efficiently
process structural join queries to deal with this issue. To this end, we propose
an indexing scheme for RDFPeers that removes unrelated triples from candidate
answers so that the amount of unnecessarily transferred data can be reduced.

Our scheme uses a three-dimensional hash index called RDFCube that is de-
signed based on the structure of an RDF triple. This RDFCube scheme consists
of a set of cubes of the same size called cells, each of which contains a bit called
an existence flag (e-flag) that indicates the presence or absence of triples mapped
into the cell. The existence flag of the cell is set to on when an RDF triple is
mapped into a cell. By checking the existence flags of cells into which candidate
answer triples are mapped, we can know of the existence of the triples before
actually accessing remote nodes where the candidate answer triples are stored.
This information is useful for processing a join query because we can narrow
down the candidate triples by AND-ing the e-flags bits and transfer only the ac-
tual present candidate triples. As a consequence, this scheme markedly reduces
the amount of data that is transferred among nodes.

2 Our Proposed Approach

2.1 RDFCube: A Three-Dimensional Hash Space

To provide efficient join operations in a distributed environment, we propose a
three-dimensional hash space named RDFCube, whose model is shown in Fig. 1.
The axes in RDFCube respectively represent hash spaces for subject, predicate
and object.

We assume that the range of the hash function is [0, 2m) and divide every
space by 2c. The three-dimensional space that is surrounded by the ranges

su
bje

ct

predicate

object 39
13

54

Triple (13, 54, 39)

Cell [0, 3, 2]

Cell sequence [0, 2, *]

Cell matrix [*, *, 0]

Fig. 1. A three-dimensional hash space (RDFCube)

RDFCube: A P2P-Based Three-Dimensional Index 325

[2m−ci, 2m−c(i+1)), [2m−cj, 2m−c(j+1)), [2m−ck, 2m−c(k+1)) is called cell (0 ≤
i < 2c, 0 ≤ j < 2c, 0 ≤ k < 2c) and is identified by cell id [i, j, k].

We call a set of consecutive cells on a line parallel to an axis a cell sequence. A
cell sequence parallel to the subject axis is identified as [{0, . . . , 2c − 1}, j, k]; its
abbreviation is [∗, j, k]. Cell sequences to the other axes are similar. Similarly, all
cells on a plane perpendicular to an axis form a cell matrix. A cell matrix that is
perpendicular to the object axis is identified as [{0, . . . , 2c −1}, {0, . . . , 2c −1}, k],
and its abbreviation is [∗, ∗, k]. The other axes are similar. As examples, the cell
[0, 3, 2], the cell sequence [0, 2, ∗], and the cell matrix [∗, ∗, 0] are shown in Fig. 1.

An RDF triple is mapped into a point of coordinates in RDFCube based on
the hash values of the three elements in the triple. Every cell has a bit called
an existence flag, which indicates the presence or absence of the triples that are
mapped into the cell. We define the function that represents the bit values of
the set of cells C as flag(C). If C is a cell sequence, then we call the value of
the function a bit sequence. If C is a cell matrix, then we call it a bit matrix.
Furthermore, we define the ratio of the number of cells whose bits are set to 1
to the number of a set of cells as 1-bit ratio for the set of cells.

An RDF query triple is also mapped into a line or plane in RDFCube based
on hash values of its constants in the query triples. We call the set of cells
including the line or plane where a query triple is mapped as candidate answer
cells; CA-cells; their bits are candidate answer bits; CA-bits.

2.2 RDFCube Construction

We build a distributed hash table called RDFCube DHT to store existence flags
in a distributed environment. The RDFCube DHT uses a cell matrix id as a
key. It stores the associated bit matrix as a value (on the left side in Fig. 2),
whereas RDFPeers DHT stores triples using each element of each triple as a key
(on the right side in Fig. 2). Since RDFCube does not store triples, but stores
bit information of e-flags, RDFCube DHT is used as an index for RDFPeers.

To set an existence flag on, we must update three bits on three bit matrixes on
RDFCube DHT to 1. If the given triple is mapped into the cell [i, j, k], We have
to set flag([i, j, k]) to 1 by, at most, three lookups to RDFCube DHT. Using the
cell matrix id [i, ∗, ∗], [∗, j, ∗] and [∗, ∗, k] as keys, and update the bit on each of
the three cell matrixes to 1. If the existence flag has already been set to 1, we
do perform one lookup, because the first lookup is performed to not only set a
bit to but also check the value. Therefore, Given t triples for an n-node DHT,
the number of hops to construct RDFCube is, at most, 3t log n.

2.3 Query Processing with Join Operations

On receiving an RDF query containing join conditions, to perform it efficiently,
we use RDFCube DHT to find the existence of the candidate answer triples
before actually accessing the remote nodes where the triples are stored.

Query processing for the join operation shown in Algorithm 1 is as follows: i)
In lines 3–6, we first get e-flags; and then ii) in line 7 perform AND operations

326 A. Matono, S.M. Pahlevi, and I. Kojima

N8N55

N41

N4

N21

RDFPeers DHT

N1

N15N47

N28

N21

N51

RDFCube DHT
By subject:

aist:rdfcube dc:creator aist:matono
By predicate:

aist:matono foaf:name "Matono"

By predicate:
aist:rdfcube dc:creator aist:matono

By object:
aist:matono foaf:name "Matono"

By object:
aist:matono foaf:age "28"

By subject:
aist:matono foaf:age "28"
aist:matono foaf:name "Matono"

By object:
aist:rdfcube dc:creator aist:matono

()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

0001

0110

1000

0000

[1,*,*]bits

()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

0000

1100

1000

1000

[*,*,0]bits

()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

0000

0101

0110

0000

[*,2,*]bits

()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

0101

0101

0100

0000

[2,*,*]bits()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

0010

1110

0100

1000

[*,*,2]bits

()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

0000

0101

0001

0101

[*,3,*]bits

N63

By predicate:
aist:matono foaf:age "28"

Fig. 2. Two distributed hash tables

Algorithm 1: Query Processing
Input: set of query triples Q
Output: set of triples T

set of triples T ← ∅1
a set of bits using a query triple as a key is stored into map M ← ∅2

/* i) Getting e-flags from RDFCube DHT. */
foreach qt ∈ Q do3

cells ← get a set of cells where qt is mapped into4
bits ← get a set of bits of cells by lookup to RDFCube DHT5
store bits into M using qt as key6

/* ii) Construction of filters by performing AND operations. */
M ← constructFilter(M, Q)7

/* iii) Reducing the number of CA-triples using a filtering process. */
foreach qt ∈ Q do8

bits ← get a set of bits from M using qt as keys9
T ← T ∪ get triples that are matched by qt and that are filtered based on bits10

T ← apply T to RDFPeers query processing using Q11
return T12

among the e-flags; and finally iii) in lines 8–10,we access to the remote nodes where
the CA-triples are stored on RDFPeers DHT, and then we filter the CA-triples
using the results of the AND operations on the remote nodes. This filtering process
reduces the number of CA-triples transferred among nodes. Fig. 3 illustrates an
example of join operation.

i) In line 5, if cells is a cell matrix, by performing a lookup to RDFCube DHT
using the id of the cell matrix as a key, the associated bit matrix is obtained. On
the other hand, if cells is a cell sequence, to reduce the data that are transferred
among nodes, the associated bit matrix is not returned, but the associated bit
sequence that is extracted from the bit matrix is returned from RDFCube DHT.

ii) In line 7 the constructFilter function is called for construction of bit
sequcences and/or matrixes for filtering CA-triples by performing bit operations
among sets of the given CA-bits. Fig. 4 depicts an example of constructFilter

RDFCube: A P2P-Based Three-Dimensional Index 327

0

0

1

0

0

1

0

0

1

0

1

1

1

1

0

0

s1 o1p1

s2 o2p2

sn onpn

... 1

F
ilt

e
r
in

g

si oipi

...AND

su
bje

ct

predicate

object

G
e
t
t
in

g
 b

it
s

Original CA-triples

Filtered CA-triples

Result of
AND operation

Result of
AND operation

Reducing
of CA-triples

Fig. 3. An example of a join operation

0

0

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0 1 0 1

1

1

1

0

0 0 1 0

0 0 1 1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0 1 0 1

0

0

1

0

1 1 1 0

0 0 1 1

(b) AND operation (c) back projection(a) projection

A

B

B.y

B.x B.x

A

O B.x'

B.y

B'

Original e-flags that are
obtained from RDFCube.

A, B:

B.y:B.x, 2 bit sequences that are
extracted by projection.

O: Results of AND operation
between A and B.x

E-flags that is copied from O. A', B.x':
0 0 1 0

0 0 1 0

A'

B.x'

0 0 1 0A'

B': Results of back projection
between B.x' and B.y

Fig. 4. Projection, AND operation, and back projection

function using a bit sequence A and a bit matrix B. This process performs the
following processes: (a)Projection; for each e-flags A and B that are obtained
from RDFCube DHT, we do nothing if the e-flags is a bit sequence, whereas, if
the e-flags is a bit matrix, we extract two bit sequences B.x and B, y from the
matrix by AND-ing among all bits in its columns and rows. (b)AND operation;
we do an AND operation between the bit sequences A and B.x for the same
variable in different query triples. And then, we copy the e-flags O as the result
to A′ and B.x′. (c)Back projection; for each query triple, we do nothing if the
original e-flags A is a bit sequence, whereas, if the original e-flags B is a bit
matrix, we reconstructs a bit matrix B′ from the two bit sequences B.x′ and
B.y by AND-ing between each bits of its columns and rows.

Because the 1-bit ratios of A′ and B′ became less than those of A and B,
respectively, in Fig. 4, you can see that this process can reduce the number of
CA-cells.

iii) In line 10, we access remote nodes where CA-triples are stored by per-
forming lookups to RDFPeers DHT. For each CA-triple, we check whether the
existence flag of the cell where the CA-triple is mapped is equal to 1 on remote
nodes, and finally return CA-triples that satisfy the condition. This filtering
process can narrow down the number of CA-triples.

The number of hops to obtain a set of triples for n-node RDFPeers DHT
is, at most, log n, as well as getting a set of bits from n-node RDFCube DHT.
Thus, the number of hops to perform RDF query composed of m query triples
is 2m log n.

328 A. Matono, S.M. Pahlevi, and I. Kojima

3 Performance Evaluation

3.1 Experiment Setup

We next evaluate the performance of our approach through a series of exper-
iments. In our experiments, we compare the native RDFPeers with RDFPeers
using RDFCube, called PEERS and CUBE, respectively.

For our experimental dataset, we transform XML documents distributed by
DBLP1 into RDF data. We choose triples randomly from the original RDF data
to create four data sets. The numbers of triples of the data sets are 13761, 26413,
52926, and 103076.

We use the three queries below in the experiments.
Query 1 requires a join operation among four bit sequences.

?x rdf :type dblp :Article. ?x dblp :author ”Jim Gray”.
?x dblp :year ”1998”. ?x dblp :journal ”CoRR”.

Query 2 requires a join between a bit matrix and a sequence.
?x dblp :series ?y. ?y dblp :title ”LNCS”.

Query 3 requires 2 joins among 2 matrixes and a sequence.
?y dblp :crossref ?x. ?x dblp :title ”VLDB2004”. ?y dblp :title ?z.

We use an overlay construction toolkit, Overlay Weaver2 , and emulate RD-
FCube and RDFPeers on top of the system. In our experiments, we use Chord [7]
as a DHT protocol. All finger tables are constructed before the evaluation. The
number of nodes is fixed as 100.

3.2 Experiment Results

Fig. 5 and Fig. 6 respectively shows the storing and retrieval performance of
CUBE and PEERS. The horizontal axes show the numbers of triples; the vertical
axes show the performance ratios of CUBE to PEERS.

In Fig. 5, when the ratio is 2, the cost for storing triples is equal to that for
index construction. Index construction is costless when the ratio is 1. Therefore,
we can see that the ratio of the hops is smaller than two. This means that the
cost for RDFCube DHT construction is smaller than that for storing triples into
RDFPeers. The reason for this is that one or three lookup(s) is/are required
to set an e-flag to 1, whereas three lookups are required to store a triple into
RDFPeers DHT as described in Section 2.2. For this reason, as the number of
triples increases, the 1-bit ratio increases and the ratio of the number of hops
decreases.

For the amount of data transferred among nodes, the ratio is very close to one,
meaning that the amount of data transferred for RDFCube DHT construction
is much smaller than that for storing triples into RDFPeers DHT because data

1 http://dblp.uni-trier.de/xml/
2 http://overlayweaver.sourceforge.net/

http://dblp.uni-trier.de/xml/
http://overlayweaver.sourceforge.net/

RDFCube: A P2P-Based Three-Dimensional Index 329

1

1.2

1.4

1.6

1.8

2

13761 (0.57%) 26413 (1.01%) 52926 (1.81%) 103076 (3.00%)
Number of triples (1-bit ratio)

R
a
t
io

 (
C

U
B

E
 /

 P
E
E
R

S
)

#hops

Transfer size

Fig. 5. The ratio of storing performance
while the growth of #triples (#divisions
is 128)

0

0.5

1

1.5

2

2.5

13761 (0.57%) 26413 (1.01%) 52926 (1.81%) 103076 (3.00%)

Number of triples (1-bit ratio)

R
a
t
io

 (
C

U
B

E
 /

 P
E
E
R

S
)

Query1(#hops) Query2(#hops) Query3(#hops)

Query1(transfer) Query2(transfer) Query3(transfer)

Fig. 6. The ratio of retrieval performance
while the growth of #triples (#divisions
is 128)

0

0.5

1

13761& 64 26413 & 128 52926 & 256 103076 & 512

#Triples & #Divisions

T
r
a
n
s
fe

r
 s

iz
e
 r

a
t
io

 (
C

U
B

E
 /

 P
E
E
R

S
)

Query1

Query2

Query3

Fig. 7. Scalability results while both of #triples and #divisions increases

that are transferred for index construction (i.e. cell matrix id) are much smaller
than that for storing triples (i.e. triple).

From Fig. 6, it is apparent that the number of hops on CUBE is twice as
large as that on PEERS, which means that the number of hops to get triples is
equal to that of to get e-flags. However, it can be said that the performance of
RDFCube is not bad. That is true because the number of lookups on PEERS is
small; it is less than the number of the query triples.

Regarding the amount of data transferred among nodes, we can reduce it to as
little as 1/50. In Query 1, because the variable ?x occurs four times, the quality
of filtering is very good. That for Query 2-3 is poorer than that for Query 1
because in Query 2 the variable ?y occurs two times and in Query 3 both of the
variables ?x and ?y occur two times. From this, we can see that, as the number
of query triples containing the same variables increases, the performance for
executing the query is good.

Fig. 7 shows the ratio of the amount of data transferred among nodes of
CUBE to PEERS while the numbers of both triples and divisions increase. From
Fig. 7, it is apparent that the ratio of CUBE to PEERS remains approximately
constant in all queries because the 1-bit ratio for a bit sequence associated with
each variable obtained by projection remains constant. From this, we can see
the scalability with respect to the ratio of transfer size reduction, when, as the
number of triples increases, the number of divisions increases proportionately.

330 A. Matono, S.M. Pahlevi, and I. Kojima

4 Conclusions

In this paper, we proposed an indexing scheme for a distributed triple stores
so that it can efficiently perform structural join operations for RDF data. The
scheme filters unnecessary candidate answers before actually accessing remote
nodes where the answers are stored, thereby greatly reducing the number of
triples transferred among nodes. The evaluation results demonstrate the scal-
ability of our scheme. Especially, good scalability is obtainable when the 1-bit
ratio is small and the query contains many variables.

Using DHT suffer from some problems; such as freshness of data and security.
We should therefore consider an approach without DHT in future studies. We
also think that an indexing scheme for/using RDF schema information in a
distributed environment is an important issue. In addition, we shall consider
triple deletion and dynamic division of RDFCube.

References

1. World Wide Web Consortium: Resource Description Framework (RDF).
http://www.w3.org/RDF/ (2004) W3C Recommendation 10 February 2004.

2. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: EDUTELLA: a P2P networking infrastructure based on RDF. In:
WWW. (2002) 604–615

3. Ripeanu, M., Iamnitchi, A., Foster, I.T.: Mapping the Gnutella Network. IEEE
Internet Computing 6 (2002) 50–57

4. Cai, M., Frank, M.R.: RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In Feldman, S.I., Uretsky, M., Najork, M., Wills,
C.E., eds.: WWW, ACM (2004) 650–657

5. Cai, M., Frank, M.R., Yan, B., MacGregor, R.M.: A subscribable peer-to-peer RDF
repository for distributed metadata management. J. Web Sem. 2 (2004) 109–130

6. Cai, M., Frank, M.R., Chen, J., Szekely, P.A.: MAAN: A Multi-Attribute Address-
able Network for Grid Information Services. In Stockinger, H., ed.: GRID, IEEE
Computer Society (2003) 184–191

7. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM. (2001)
149–160

http://www.w3.org/RDF/

Optimal Caching for First-Order Query

Load-Balancing in Decentralized Index
Structures

Anwitaman Datta1, Wolfgang Nejdl2, and Karl Aberer3

1 Nanyang Technological University (NTU), Singapore
anwitaman@ntu.edu.sg

2 University of Hannover, Germany
nejdl@kbs.uni-hannover.de

3 Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
karl.aberer@epfl.ch

Abstract. Balancing query-load in structured overlays is an important
and mostly unattended problem, apart from heuristics to deal with hot-
spots. We determine the optimal caching strategy - how many caches
(dependent on relative frequency of queries) to reduce search latency
and where to place these caches? Our query-adaptive replication scheme
provides first-order balancing of query-load. We also elaborate the limi-
tations of first-order balancing (ignored by all existing heuristics) though
it should have been obvious given the experiences of the P2P community
with storage-load balancing.This work lays the ground for our ongoing
work on load-aware routing in structured overlays as a mechanism com-
plementing caching to achieve query-load balancing.

1 Introduction

Structured overlay networks are decentralized large-scale index-structures main-
tained among peers for resource discovery in wide-area networks and is a funda-
mental building block used by peer-to-peer (P2P) applications. The basic idea is
to associate the resources to unique keys, and maintain an index of these keys.
Each peer is responsible for a partition of the key-space - i.e., stores the key-value
pairs for the corresponding keys. The value may be the resource itself, or more
generally a set of pointers to the resources.

As in any distributed system, load-balancing is very important for such de-
centralized index structures. If there is a centralized resource allocator with
global information - on workload and resources, policies and enforcement of
load-balancing would be relatively straight forward. In absence of such central
coordination randomized techniques are resorted to.

Before delving into the specific problem of query-load balancing, we’ll like to
explain what we mean by a first-order load-balancing, and what a second order
load-balancing would mean in that context. Consider that M balls are to be
placed in N bins. If these balls are thrown into bins sequentially at uniformly

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 331–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 A. Datta, W. Nejdl, and K. Aberer

randomly chosen bins, one would expect that the balls will be uniformly dis-
tributed among the bins. The uniform random bin choices essentially achieves a
first-order load-balancing. It has been seen that the variance of the number of
balls per bin is quite high using the uniformly random bin choices [1]. A second-
order load-balancing would involve reduction of this statistical noise (variance).
A simple and popular way of achieving such a second order load-balancing uses
multiple choices. Thus multiple bins (say k) are chosen at random, and the least
filled bin among these k bins is assigned the next ball. Power of two choices [2]
is a special case of using such multiple choices.

In the context of structured overlay networks, there are many facets of load-
balancing. The most extensively studied one is to balance the number of keys
assigned to each peer. The resources may have skewed load-distribution in the
name-space (e.g., distribution of filenames). In order to achieve first-order bal-
ancing under such load-skew, early overlay networks used uniform hashing to
generate the keys to be indexed, and these networks came to be known as Dis-
tributed Hash Tables (DHTs) [3,4,5]. Second-order load balancing to reduce
the variance of number of keys per peer was achieved in DHTs using power-
of-two choices [6]. Ever since, load-balancing techniques for range-partitioned
networks (with skewed distribution of keys over the key-space) have also been
developed [7,8,9,10].

Dealing with skewed access load on keys has not yet been dealt with system-
atically. This paper takes a more objective look at the issue of balancing skewed
query-load in structured overlays.

The result leads us also to interesting general observations on structured over-
lay networks - load balancing for query load in structured overlay networks (i.e.,
if replication is proportional to query frequency) is also optimal with respect to
reduction of expected search latency. This result appears at a first glance obvious,
but for the expert it is surprising, since for other problems of query frequency
dependent replication, both for unstructured overlay networks [11] and for mo-
bile broadcast environments [12], it has been shown that following a square-root
rule for replication is optimal for latency reduction under memory constraint,
and has thus often been used generally as a rule of thumb. The square-root rule
is that different objects are replicated proportional to the square-root of the
frequency with which they are accessed/queried.

From this we can also conclude that for structured overlay networks acciden-
tally replication can be simultaneously optimized with respect to availability and
non-uniform query loads. But more fundamentally, we answer how good is even
the best possible solution relying solely on caching?

Concretely, this paper makes the following contributions:

(i) Provides a taxonomy of replication placement strategies for structured overlays.
(ii) Determines the optimal replication strategy - (a) How many replicas need to
be maintained, in order to meet the design goals of availability and load balancing
with respect to arbitrary skews in query-load?; (b) Where in the network should
these replicas be placed, in order to best utilize the resources?

Optimal Caching for First-Order Query Load-Balancing 333

(iii) In various environments - internet, content distribution networks, unstruc-
tured as well as structured overlays - caching is expected to improve performance
in terms of search latency as well as handling hot-spots. We expose the limitations
of caching techniques. (a) There is enormous storage consumption for marginal
gains in latency, even for skewed access rates (like Zipf). (b) Caching proportional
to access load in itself is not good enough because of statistical noise.

This raises important concerns also about the effectiveness of existing heuris-
tics found in the structured overlay literature with respect to alleviating query-
load, and highlights the need to use sophisticated load-balancing techniques.

This work makes the following assumptions: (i) The number of keys a peer is
responsible for is already balanced, which is more or less achieved under various
settings - range-partitioned or DHTs - by [7,6,10]. (ii) All peers have same1 and
limited storage, part of which is dedicated to store the keys it is responsible for
based on its role in the index, and the rest is used in order to dynamically cache
some keys in order to alleviate load imbalance and improve search latency. (iii)
The routing network itself does not lead to any systematic hot-spots because of
large variations in degree distribution at each peer.

2 A Taxonomy of Replication

We can distinguish six general replication strategies found in the literature on
structured overlays:

Structural replication: In this replication scheme, multiple peers can be re-
sponsible for the same key space partition. This strategy can be seen as exploiting
multiple identical non-replicated overlay networks superimposed on each other,
where the routing choices are made randomly (or based on other considera-
tions like proximity) from several choices of peers belonging to the same key
space partitions. Such replication is called zone overloading in CAN [4] or sim-
ply replication of the tree leaves in P-Grid [7].

Constrained replication at peers with closest ID: In this scheme, keys are
replicated at a globally fixed number of immediate successors of the peer respon-
sible for a key for fault tolerance. This is the strategy that has typically been
used in Chord based CFS [13] and the Chord variant DKS(n,f,k) [14]. All queries
are typically routed to the primary replica, i.e., the one peer originally respon-
sible for the key being queried, while other peers act purely as back up for fault
tolerance. Because of this routing behavior, the search process does not exploit
the wider availability of the resource for reducing the search cost or distribute
query load. On the other hand, an advantage of this replica placement strategy
is that updates are easy to perform, since all replicas can be deterministically
located and there is a natural choice of a primary replica.2

1 Homogeneity can be achieved by using multiple virtual peers for resource rich peers.
2 Even if pointers instead of actual content is stored and replicated, these pointers may

need to be updated, possibly with information on new copies of the actual content.

334 A. Datta, W. Nejdl, and K. Aberer

Replication along the query path: Replication can be done along the path
used by a previous query. This strategy, apart from yielding increased redun-
dancy, fault tolerance and adaptivity to queries, has the additional benefit that
future queries can potentially be answered based on the cached information
resulting in improved search performance.This is the strategy used in semi-
structured networks like Freenet [15]. The drawbacks of this scheme are that, it
does not completely exploit the structure of the network, so while the query per-
formance improves, it is not necessarily optimal. Additionally, since the scheme
is inherently heuristic and non-deterministic, the replicas can not be located in
the network efficiently and exhaustively, and hence replication along query path
conflicts with effective updates of replicas.

Caching at querying peers: This strategy neither exploits the structure of
the overlay at all to reduce search cost or distribute load, nor are replicas easily
locatable for updates.

Replication at least loaded peers: A recent load adaptive replication pro-
posal (LAR [16]) places replicas purely based on peer load information gathered
using sampling mechanisms, and can potentially create replicas at any nodes
in the system. This requires modification of original DHT routing, leading to
a different and more complex routing mechanism, based on disseminated infor-
mation about replicas. This replication scheme fails to exploit the properties
of the original structure of the network to reduce search cost and also loses the
deterministic nature of the replica location in the network, which makes updates
difficult. That apart, such a load-balancing strategy does not have a separation
of concern between routing structure and query-load balancing and loses the
simplicity and efficiency of routing in structured overlays.

Optimal placement strategy: Different topologies may require different place-
ment strategies in order to satisfy the optimality criterion. An interesting observa-
tion is that structural replication is an optimal placement strategy independent of
the topology involved, provided every item is equally replicated. However, query-
adaptive replication implies different items are replicated differently, needing dif-
ferent placement strategies. Later we’ll explore optimal query-adaptive replica
placement strategies for some important classes of overlay networks like generic
tree structured overlay network [17] which subsumes Hypercubes and de Bruijn
networks, tree abstracted networks like P-Grid, Pastry and XOR topology based
Kademlia, as well as other topologies like CAN and Chord.

3 Replication and Search Cost

In many real life applications queries are non-uniformly distributed. The stan-
dard solution approach both in an internet setting as well as in overlay networks
is to cache (replicate) the queried objects in a query-adaptive manner to provide
good load-balancing as well as to reduce search latency. There is a huge litera-
ture on caching in standard networks and also some work done in the context of
P2P overlays. Rest of this paper will provide a generic theoretical framework for

Optimal Caching for First-Order Query Load-Balancing 335

optimal replication in structured overlays, along with simulation based evalua-
tion of its discernable nonetheless limited effectiveness.

Definition 1. Let σ(N, r) be the expected cost to search a key in a structured over-
lay network (using any particular topology/routing mechanism) with N peers, and
r replicas of the key.

Consider that we form clusters of r peers such that there are N/r logical units,
with one of these clusters consisting of the r peers storing the replicas of the
concerned data item. These clusters may be considered to be connected using
the same topology, as the original network of N peers. Then exploiting the self-
similarity of the structured overlay networks, the expected cost of locating the
particular cluster is σ(N/r, 1), independent of the topology. Stated otherwise,
we can assume r parallel networks of network population of N/r to achieve a
search cost of σ(N/r, 1) for a key replicated r times in a network of N peers.

Observation 1. In a structured overlay network of N peers, if a data item is
replicated r times, then there exists (for a wide range of structured overlays) a
policy to place these replicas so that at least any one of the r replicas can be
located with an expected search cost σ(N, r) of σ(N/r, 1).

Of the various existing replication strategies (summarized in Section 2) for di-
verse overlay topologies, none is known to have better search performance, and
most even do not match up with the above mentioned potential search cost re-
duction. In the following we use this known best achievable search cost reduction
criterion to define optimality for replica placement strategies. Whether even fur-
ther search cost reduction is possible in an overlay by cleverly placing the replicas
and possibly even changing the routing strategy (subject to the same topology)
is an interesting open question.

Definition 2. The optimal replication placement strategy from the search cost
perspective in an overlay network is the one which guarantees that σ(N, r) =
σ(N/r, 1) for a data item replicated r times.

Note that when different data items need to be replicated with different fre-
quency, for example, for query-load balancing; it may not even be possible to
exactly form such clusters (or juxtaposed networks) in practice. In such cases we
can only aim to determine the best replica placement in the network in order to
be as close to this optimal as possible.

4 Optimal Query-Adaptivity

For the rest of this paper we consider the family of DHTs which have logarithmic
search cost, i.e., σ(N, r) = c log(N) for a peer population of N , where c is a
routing topology dependent constant. This is typical in many structured overlays
including Chord, Pastry, P-Grid and Kademlia among others. Additionally, we
assume for the time being, that it is indeed possible to optimally place replicas in
the network, such that for a data item di with ri replicas, σ(N, ri) = c log(N/ri).

336 A. Datta, W. Nejdl, and K. Aberer

Theorem 1. Replication of objects proportional to frequency they are queried
minimizes the expected search cost in a structured overlay with limited storage
capacity, assuming replicas are placed optimally. (Placement strategy optimality
as defined in Definition 2.)

Proof: Consider that peers have the possibility to replicate a data item such that
replica placement is optimal with respect to the search cost. Thus to say, search
cost for any one instance of a data item replicated r times in a network of N
peers is c log(N/r).

Assume also that there are M distinct data items in total, and the access
(query) probability for data item di, i = 1, . . . , M equals qi and di has ri replicas.

The total storage used in the system is then (with R being the average repli-
cation factor in the system)

M∑

i=1

ri = RM

The expected access time (in terms of messages) to access any data item is

T = c
M∑

i=1

qilog(
N

ri
)

In order to determine the optimal allocation of replicas for a given global
average replication factor R (essentially determined by the total storage capacity
of the system, and the total number of distinct data items in the system) we
have to solve the system of partial differential equations

∂T

∂ri
= 0, i = 1, . . . , M

Substituting rM = RM −
∑M−1

i=1 ri and differentiating we obtain

∂T

∂ri
= −qi

1
ri

+ qM
1

rM
= 0

from which we conclude that qi

ri
must be constant ∀i = 1, . . . , M .

Note that there are thus two dimensions of optimality for replication:

(a) Query-adaptivity determines how many replicas to maintain for individual
data items to minimize expected search cost. Unlike in unstructured overlays [11],
it so happens that for a large family of (logarithmic search-cost) structured
overlays, this simultaneously provides a first-order query-load balancing.

(b) The placement strategy determines, for r replicas of a data item to be
placed in the network, where exactly these replicas are to be placed in order to
reduce search latency.

Next we explore specific placement strategy for some important groups of
DHTs, particularly determining the optimal placement strategy for P-Grid.

Optimal Caching for First-Order Query Load-Balancing 337

5 Optimal Replica Placement

In recent years, many routing network topologies have been proposed. There
have been recent attempts to derive abstracted, generalized models [17,18] for
these diverse topologies. However, none of these models are exhaustive, and
in absence of any universal abstraction, we limit the discussion to some spe-
cific, well-researched DHTs, and try to generalize our proposal when possible. In
particular, we concentrate on some important classes of DHTs, and informally
describe the optimal replica placement policy.

Let us first focus on tree-like abstractions [17], particularly on P-Grid [7]
and XOR topology based Kademlia [19] - the generalization to other PRR [20]
variants like Pastry [5] is straightforward.

In these virtual tree based access structures, a peer is responsible for all data
items in its leaf node. Data items may be assigned to the leaf node based on
various association mechanism, for instance prefix matching. This peer then acts
as the primary replica for the data items. When a particular data item needs to
be replicated, the optimal replication strategy places the replicas at the other
leaf nodes which share common intermediate nodes in the tree. In effect, this is
like replicating in the tree at a higher level (or reducing the depth of the search
tree), since the data item will then be found at any of all the peers which split
the intermediate (imaginary) node. This process can be repeated, successively
propagating the replication to larger number of peers, which all share the same
internal nodes in the tree abstraction. Such a placement strategy effectively leads
to logically coalescing of the key space partitions. In terms of the generic overlay
network scheme [17], essentially, the search space can be seen as being split
among peers recursively (when joining). So a peer should replicate the content
at other peers with whom it had conducted the splitting operation, such that
effectively the data is available in the logically coalesced search space.

The basic idea of such a replication scheme is intuitive. Coalescing r partitions
which are topologically closest (based on incoming links), effectively leads to a
logical network of N/r partitions. Lookups from different clients for the same
data item tend to converge to the same set of peers, such that a replica is
located earlier, hence speeding up the lookup process. The N/r partitions are
connected with the same topology as the original N partitions, that is to say
- these networks are self-similar, hence the speeding up matches the optimality
criterion in the ideal case.

Chord does not have a direct tree-mapping nor is modeled by the generic
abstraction [17]. Still the routing network resembles a tree-like access structure
from the perspective of individual peers. If a peer p1 is the primary responsible
peer for a data item, p1 should replicate this data item at the closest preceding
peers from which p1 has incoming links. This information is locally available to
p1 (from the route maintenance operations). This replication scheme is a small
variation of caching along query downstream which CFS already uses, and has
marginal influence in terms of search cost improvement. However, by choosing
the closest incoming links at a peer (network maintenance protocols require these
peers to communicate periodically in any case), instead of necessarily choosing

338 A. Datta, W. Nejdl, and K. Aberer

the peers from the direction the last query arrived, the replicas are placed in a
deterministic manner, based purely on locally available information. This place-
ment strategy can also be used to improve fault tolerance in CFS [13], thus
amortizing the costs of fault-tolerance and load-balancing.

6 Query Adaptive Replication

6.1 Numerical Evaluation

Replication proportional to the square-root of the query frequency has been
shown to minimize expected search cost for unstructured P2P systems [11]. We
choose this strategy as the baseline to compare with our proposal of replicating
directly proportional to the query frequency. We consider a Zipf-distribution
(parameter 0.8614) of queries. We consider that there are M = 4096 unique keys
di that are queried with relative frequencies qi which vary between 1 and 256.
We further assume an overlay with 1024 partitions of equal size (e.g., for a tree-
structured overlay, a balanced tree). That is, ignoring any structural replication,
its a network of N = 1024 peers. We additionally assume that the keys are
distributed over these partitions in such a manner that it would be possible to
optimally place the replicas by exploiting only the available storage in the correct
peers (determined by optimal placement criterion). So to say, this numerical
analysis makes several idealizing assumptions.

Consider that there is storage capacity for an average replication factor of
R ≥ 1 in the system. Note that R = 1 actually means there is no replication,
but only the original copy is stored. For the proportional replication case, there
are thus ri = Max(1, α1qi) replicas and for the square-root replication strategy,
there are ri = Max(1, α2q

0.5
i) replicas for data item di, where α1 and α2 are

determined under the constraint of limited available storage in the system, i.e,∑M
i=1 ri = RM .
We numerically evaluate and show in the y-axis of Figure 1(a) the expected

search cost 0.5
∑M

i=1 qilog2(N
ri

) for various values of overall storage capacities
shown in the x-axis.

This demonstrates that for the same average storage capacity R, in structured
overlay networks with logarithmic search cost (in terms of network size), propor-
tional replication outperforms the square-root replication strategy of unstructured
networks, thus highlighting a fundamental difference of the effect of replication in
these two broad classes of P2P systems - structured and unstructured.

We also observe that search cost reduction consumes storage exponentially,
which further shows the fundamental limitation of replication/caching to im-
prove search latency in DHTs. Beehive [21] tries to achieve O(1) lookup using
replication. While it may work for small network sizes and some specific work-
loads, replication based latency reduction approaches in general have limited
practical use in structured overlays (even for heavily skewed distributions like
Zipf) because of the exponential increase in storage requirement.

Optimal Caching for First-Order Query Load-Balancing 339

50 100 150 200 250
R

1

2

3

4

5

Search cost
Cost �overlay hops� vs. storage requirement for a network of 2^10 peers

Square�root replication

Proportional replication

replicas determined by

(a)

2.5 5 7.5 10 12.5 15
R

2.5

3

3.5

4

Hops # of overlay hops in a network of 2^8 peers

No replication

Thoretical �replication�

Observed �replication�

(b)

Fig. 1. (a) Numerical evaluation: Proportional (linear) vs. Square-root replication
for Zipf (parameter 0.8614) distributed queries for various storage capacities; (b) Sim-
ulation: Storage space vs. search latency trade-off under Zipf-distributed (parameter
0.8614) queries

6.2 Simulations

Setup and workload: We simulated a randomized tree-structured network
of 28 peers (specifically using the P-Grid routing topology), with the routes
chosen either (i) randomly or (ii) using the power-of-two-choices to balance the
in-degree.

Each peer initially held 5 unique data items, thus there were 1280 unique keys.
Each peer had a capacity for Rpot data items (including the original), where Rpot

was varied between 1.2 to 20. Queries with relative frequencies Zipf-distributed
(parameter 0.8614) were originated at random peers chosen uniformly. Approx-
imately 16700 queries were issued. Queried objects were replicated according
to the optimal placement strategy described earlier, with one additional replica
created for each query received by any current replica. In case of lack of storage
space, least recently queried object (locally perceived at individual peers) was
removed in order to replicate a newly queried object.

Experiment results: In Figure 1(b) we show the average number of hops
required to answer the queries for different values of average replications R.
First thing we noticed in the experiments was that the value of R stayed smaller
than available storage space Rpot since replication placement is constrained by
the placement optimality criterion and thus any arbitrary available space can
not be used. For example, in our experiments, with Rpot = 20, only R ≈ 16 was
used. We also notice that for the storage space used, the average search cost is
slightly higher than as expected from theory, even though it follows the same
trend. This is because before enough replication is done, the queries can not
leverage the advantage of replication and hence require more hops. The analysis
in Section 4 assumed the replicas were already in place.

We show cumulative distribution functions in Figure 2 to summarize the load-
balancing results, where two different measures of load are used: (i) the number
of query messages forwarded by peers, as well as the (ii) the number of queries

340 A. Datta, W. Nejdl, and K. Aberer

actually answered by peers (possible when the peer has the corresponding key
stored locally). The cumulative distribution plots are to be interpreted as follows:
The x-axis represents the load and the y-axis the percentage of the peer pop-
ulation which has a load less than or equal to this specific (x-axis) load. Thus
steeper ascent of the curve represent smaller variation of load among peers,
while gradual ascent results from greater variation (poorer load-balance). Two
sets of experiments were conducted, once with queries with relative frequency
Zipf-distributed, another where all keys were queried exactly the same number
of times. Queries were issued at random peers.

The fact that the curve for adaptive replication based search (in Figure 2(b)
& 2(d)) is above the one without replication implies, that the adaptive replication
based strategy requires fewer number of messages per peer for search. A steeper
slope in Figure 2(a) shows that the deviation in the number of queries answered
using the replication based strategy is lower than without replication, i.e, replica-
tion leads to better query-answering load-balance. We also notice that balancing
the in-degree based on power-of-two choices (Po2C) leads to improvement in
load-balance. The improvements are discernable, but limited. We attribute it
to the statistical noise. The huge effect of statistical noise becomes apparent
in Figure 2(d) for the experiment where all keys are queried the same number
of times. In this case, the query-answering load is balanced if no replication is
done, since each peer receives queries for its own keys and all keys are queried
equally. However, with adaptive replication, as keys are replicated - the effect of
statistical noise kicks in, thus in fact leading to load-imbalance.

This experiment where keys were queried equally was more to put in context
the effect of statistical noise. Under realistic work-loads, we’ll need the query-
adaptive replication as a means to achieve first-order load-balancing. However,
a first-order load-balancing is in itself inadequate unless complemented with a
second order mechanism to reduce the variance.

7 Conclusion and Future Work

There is a sense of déjà-vu in what we observe from an objective look at first-order
query-load balancing. Initial research in overlay design [3,4,5] hoped to achieve
good balancing of key-distributions among peers by using uniform distribution.
The effect of statistical noise [1] was recognized only later, and had to be fixed
using second-order load-balancing mechanisms [6]. Still, one can find in literature
that in order to deal with hot-spots, caching is proposed (which is necessary!), and
presumed sufficient, which is not the case. In some sense, it is unfortunate that
despite dealing with the effect of randomization for storage load balancing, the
same effects of randomization for more critical resources - bandwidth and peer’s
answering capacity under hot-spot conditions, were totally ignored, presuming
caching itself will solve the problem. One may speculate several reasons for over-
looking such an important thing: (i) Initial work based on simulations could ob-
serve the imbalance of key distribution, since it accumulates over time. Bandwidth
consumption is however temporary, and if only the average is measured (as has

Optimal Caching for First-Order Query Load-Balancing 341

20 40 60 80 100
Qur. Ans. � X

20

40

60

80

100

% peers

Po2C � Adaptive repl.

Randomized � Adaptive

Po2C route topology

Randomized DHT

(a)

100 200 300
Msgs � X

20

40

60

80

100

% peers

Po2C � Adaptive repl.

Randomized � Adaptive

Po2C route topology

Randomized DHT

(b)

20 40 60 80
Qur. Ans. � X

20

40

60

80

100

% peers

No replication

Adaptive repl.

(c)

50 100 150 200 250 300
Msgs � X

20

40

60

80

100

% peers

No replication

Adaptive repl.

(d)

Fig. 2. Cumulative distribution of query forwarding and query answering loads at
peers. (a) Queries answered by peers (Zipf distributed queries). (b) Messages forwarded
by peers (Zipf distributed queries). (c) Queries answered by peers (Same number of
queries per key). (d) Messages forwarded by peers (Same number of queries per key).

often been reported in most results), the imbalance goes unnoticed. (ii) It is only
recently that some structured overlay implementations have matured enough to
be deployed and is dealing with moderate query loads, and hence the effect of im-
balance has not been observed. But as the volume of traffic in structured overlays
increase, second-order balancing of query-load will become critical, since other-
wise it’ll cause congestion (and IP layer congestion control mechanisms won’t be
useful if the overlay systematically causes the congestion at end-nodes) even while
other peers would have their resources under-utilized.

In that context, our work rediscovers the ghost of statistical noise. We are
currently modifying greedy routing strategy as used in overlays to a load-aware
routing mechanism to further improve query load balancing.

References

1. Raab, M., Steger, A.: ”balls into bins” - a simple and tight analysis. In: RANDOM
’98: Proceedings of the Second International Workshop on Randomization and Ap-
proximation Techniques in Computer Science, London, UK, Springer-Verlag (1998)
159–170

2. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Trans. Parallel Distrib. Syst. 12 (2001) 1094–1104

342 A. Datta, W. Nejdl, and K. Aberer

3. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proceedings of the
ACM SIGCOMM. (2001)

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings of the ACM SIGCOMM. (2001)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001)

6. Byers, J., Considine, J., Mitzenmacher, M.: Simple load balancing for distributed
hash tables. In: IPTPS. (2003)

7. Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing data-oriented overlay
networks. VLDB (2005)

8. Aspnes, J., Shah, G.: Skip graphs. In: SODA. (2003)
9. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-

attribute range queries. SIGCOMM Comput. Commun. Rev. 34 (2004) 353–366
10. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online Balancing of Range-Partitioned

Data with Applications to Peer-to-Peer Systems. In: VLDB. (2004)
11. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstruc-

tured Peer-to-peer Networks. In: International Conference on Supercomputing.
(2002)

12. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: Data man-
agement for asymmetric communication environments. In: SIGMOD Conference.
(1995)

13. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative
storage with CFS. In: SOSP. (2001)

14. Alima, L., El-Ansary, S., Brand, P., Haridi, S.: DKS (n, k, f): A family of low
communication, scalable and fault-tolerant infrastructures for p2p applications.
In: CCGrid. (2003)

15. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anony-
mous information storage and retrieval sy stem. In: Designing Privacy Enhancing
Technologies: International Workshop on Design Issues in Anonymity and Unob-
servability. Number 2009 in LNCS (2001)

16. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive replica-
tion in peer-to-peer systems. In: ICDCS. (2004)

17. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A generic
scheme for building overlay networks in adversarial scenarios. In: IDPDS. (2003)

18. Ratajczak, D., Hellerstein, J.: Deconstructing DHTs. In: IBM-TR-03-042. (2003)
19. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based

on the XOR metric. In: IPTPS. (2002)
20. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated

objects in a distributed environment. Theory of Computing Systems 32 (1999)
21. Ramasubramanian, V., Sirer, E.: Beehive: O(1) Lookup Performance for Power-

Law Query Distributions in Peer-to-Peer Overlays. In: NSDI. (2004)

On Triple Dissemination, Forward-Chaining, and

Load Balancing in DHT Based RDF Stores

Dominic Battré, Felix Heine, André Höing, and Odej Kao

University of Paderborn
Paderborn Center for Parallel Computing

Fürstenallee 11, 33102 Paderborn, Germany
{battre,fh,andrehoe,okao}@uni-paderborn.de

Abstract. The Resource Description Framework provides a powerful
model for structured knowledge representation that allows the inference
of new knowledge. Because of the anticipated scope of semantic informa-
tion available in the future, centralized databases will become incapable
of handling the load. Peer-to-Peer based distributed databases offer bet-
ter scalability and integration of many different data sources. In this
paper we present a detailed data management strategy for a DHT based
RDF store that provides reasoning, robustness, and load-balancing.

1 Introduction

The combination of the Resource Description Framework (RDF) [1] and RDF
Schema [2] provides a powerful model for storing information and inferring new
knowledge from this information. Using RDF/S to describe resources or services
allows to discover these even in case the description does not exactly match a
query because a query is formulated more generally than the resource or service
description.

In RDF everything is represented by triples of the form (S, P, O). Triples can be
read as sentences, and the triple components represent subject, predicate, and ob-
ject respectively. Taking the example of resource description, the CPU of a cluster
node can be described by a triple (Identifier for CPU, rdf:hasType, Identifier for
Itanium processor). Identifiers are represented by URIs. The object component
can contain not only URIs but literals (like strings or numbers) as well.

The real power of RDF stems from the possibility to derive new knowledge
from explicit knowledge and background knowledge. Background knowledge like
the fact that an Itanium processor belongs to the class of 64 bit processors allows
to query all 64 bit machines and to find this particular cluster even though it is
not described as a 64 bit machine explicitly.

The capacities of centralized RDF databases like Sesame [3] and Jena [4] are
limited by the hardware of a single server and therefore do not scale very well.
Thus, we argue that efficient distributed databases are a necessary precondition
for the acceptance of the Semantic Web. Peer-to-Peer networks offer a foundation
layer for such distributed databases. Current attempts are based on structured

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 343–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

344 D. Battré et al.

and super-peer Peer-to-Peer networks. BabelPeers [5,6], RDFPeers [7] and Atlas
[8] are representatives of the first category. Edutella [9] is a representative of the
latter category.

For distributed databases it is crucial to not only distribute data among the
peers but also to provide data integration. A set of many independent databases
does not compensate for one integrated database because the inference of know-
ledge and processing of queries that span multiple databases requires to connect
different information sources.

In this paper we address some of the challenges encountered in designing RDF
stores based on distributed hash tables (DHTs). We first contrast structured and
super-peer Peer-to-Peer approaches for RDF stores in section 2. Then, we show
in section 3 how reasoning and data-integration can be done even though data are
distributed over the network. There we also address the issue of node-failure and
churn. Section 4 presents load-balancing issues that arise in DHT based Peer-
to-Peer networks and describes a strategy to address these issues with overlay
trees. This strategy is compatible with thoughts on robustness and reasoning
from the preceeding section. Finally, section 5 concludes the paper.

2 Related Work

Edutella [9] retains the structure of many independent RDF databases and con-
nects these by a super-peer Peer-to-Peer network. Data remain at their original
position and queries are routed to peers who may store relevant information.
This has the advantage that content providers stay in possession of their data
and decide whether to answer queries or to reject them. Furthermore, local
databases enable easy updates of data and allow to query data sources which do
not provide native RDF data. The disadvantage of this approach is that queries
might need to be flooded into large parts of the network if many peers may
contain relevant data. Imagine, for example, that persons and companies have
local calendars stored as RDF data. Queries, which can be routed only based on
the fact that a database knows a certain schema, have to be flooded through the
entire network because each calendar might contain appointments of the person
of interest. No hints on where to look for data are available and efficient lookups
are not possible. This creates scalability issues. Furthermore, reasoning beyond
the borders of local databases is very difficult to achieve. The same holds for
the integration of data that span many databases. Therefore, queries cannot be
evaluated just by querying local data stores.

BabelPeers [5,6], RDFPeers [7] and Atlas [8] follow a different approach based
on structured Peer-to-Peer networks, in particular ring-shaped distributed hash
tables (DHTs). The basic idea is to store each triple at three locations on the
DHT ring determined by calculating the hash value of the subject, predicate,
and object. Insert and lookup operations can be conducted in O(log N) message
routing steps, where N represents the number of participants in the Peer-to-Peer
network. The major advantage of this approach is that all triples with common
subjects (or predicates/objects) can be looked up at one node and do not need

On Triple Dissemination, Forward-Chaining, and Load Balancing 345

to be collected from all data sources spread over the network that may possibly
contain triples of interest. Bloom filters and lookups for result-set sizes can reduce
the search space and the number of triples transmitted over the network during
query processing. Details can be found in [5]. BabelPeers is based on FreePastry
an open source implementation of Pastry [10].

In the following section we present a strategy to store and disseminate triples in
a way that allows (a) soft-state updates, (b) replication for node departure and ex-
ploitation of data-locality, and (c) reasoning and data integration. The last point
in particular is a major advantage of DHT based approaches as data from different
sources are gathered into a virtual global database. Information about individu-
als can be distributed arbitrarily over various databases. To our knowledge, this
is the first paper to address the issue of reasoning in DHT based RDF stores.

3 RDF Storage

In our architecture, each node hosts multiple RDF databases that serve different
purposes. The first of these RDF databases to be mentioned is the local triples
database. It stores those RDF triples that originate from the particular node and
is therefore comparable to the local databases of Edutella. A triple should be
accessible in the network for the whole time its owner is member of the network.
If several nodes contribute identical triples, a triple should be accessible as long
as any node contributing this triple is member of the network.

All local triples are regularly disseminated to the nodes in the network by
calculating the hash function of the subjects, predicates, and objects and sending
the triples to the nodes responsible for the corresponding parts of the DHT
space. These nodes store the triples in their received triples set. Owners may
occasionally be the responsible nodes for some of the triples, so perhaps some
of the triples in the local triples set are duplicated in the received triples set.
However, the larger the network grows, the more unlikely is this to happen. Thus,
we do not take special care of duplicates and neglect the memory consumption
caused by a triple stored twice on a single node.

Unless a triple has two or even three identical components, it is disseminated
to three distinct positions in the DHT. The larger the network grows, the higher
is the probability that these positions are actually located on different nodes.
Thus, for large networks our distribution procedure results in a tripling of the
number of triples.

A third kind of triple store is responsible for a replica database. Pastry [10]
provides means to store replica of data to the k whose IDs that are nearest to the
target hash value determined by the hash function. The purpose of these replica
is to support the network when nodes depart or crash and to allow queries to
be routed to a replica near the query issuer. In Pastry it is likely that a lookup
operation that is routed to a position in the DHT passes a replica of this position.
The replica node is often closer to the query issuer than the actual target of the
query and can thus intercept the message and answer the query. This exploits
locality information.

346 D. Battré et al.

The node with an ID closest to the hash value of a triple becomes root node
of the replica set. This node is responsible for sending all triples in its received
database to the replica nodes. In pastry these nodes are simply defined by the
leaf set. The replica, ordered by their distance to the target hash-value, are said
to have rank 1 through k.

Finally, each node hosts a database for generated triples that originate from
forward chaining. The forward chaining rules are applied to the received triples
databases and all generated triples are stored into the generated triples database.
They are then disseminated like local triples to the respective nodes and repli-
cated from there on.

Figure 1 illustrates the triples stores hosted by peers and the flow of triples.
The following sections elaborate further on this topic.

Generated Triples

Replica

Received Triples

Local Triples

Generated Triples

Replica

Received Triples

Local Triples

Generated Triples

Replica

Received Triples

Local Triples

Generated Triples

Replica

Received Triples

Local Triples

Fig. 1. Triple dissemination in DHT

3.1 Life-Cycle of Triples

The life-cycle of triples is influenced by various events. As each node contributes
its local triples to the network, nodes joining and departing from the network
change the knowledge base. Furthermore, nodes can of course acquire new infor-
mation that needs to be distributed within the network, and delete or update
triples.

Owing to the very dynamic nature of Peer-to-Peer networks and the auton-
omy of peers, it is not possible to guarantee that nodes depart gracefully and
unregister all triples contributed by them to the network. In order to delete
these obsolete triples from the received triples databases eventually it is either
necessary for nodes to poll the triple sources whether their triples are still up
to date, or to add an expiration date to triples. We have decided to follow the
latter approach. Each triple has an expiration date and the owner is in charge of
continuously sending update messages. This approach is known as “soft-state”
in literature. The information source has to decide whether it considers itself as

On Triple Dissemination, Forward-Chaining, and Load Balancing 347

stable, such that triples have rather long life-times and few refreshes, or whether
it considers itself as volatile.

The life-time of triples that were generated in the reasoning process is set to
be the minimum remaining life-time of the triples that fulfilled the precondition
of the RDFS rule (see section 3.4). An update of triples triggers an update of
the inferred triples as well.

3.2 Node Departure

A node departing or crashing does not only cause the expiry of triples but makes
it also necessary that other nodes cover the area and data of the DHT that was
previously occupied by the departing nodes. The DHT layer repairs the routing
tables of the peers and thereby ensures that the Peer-to-Peer network remains
connected. But besides correct message routing it is important that one or more
nodes take over the responsibilities of the departing node. As the node storing
the first replica of a triple is located in the immediate vicinity of the departing
node on the DHT space (closest to the respective hash value of the triple),
this node receives all following queries for the respective triple. As it stores the
relevant data due to being rank 1 replica, we do not have to take special provision
for failing nodes. Owing to the DHT schema used, the data from replication is
automatically available to queries.

As a replica node became root node for a triple, the number of replica has
decreased. The new root node is notified by the DHT layer that its leaf-set (set of
nodes in the vicinity of the node regarding DHT space) has changed and sends
triples to a new replica node. It is important to start this update procedure
immediately as more nodes can fail until the next update of triples is issued.

3.3 Node Arrival

A new node disseminates all its local triples. But while the departure of nodes is
handled almost automatically, the arrival of a new node is more complicated. At
the moment a node joins the DHT, it receives queries for the covered ID space
but lacks the data to answer these queries correctly. As the owner of a triple (the
node having the triple in the local triples database) cannot notice the arrival of
the new node and because it sends update messages at a low frequency, it is task
of the replica nodes of the new node to provide it with all necessary data. These
observe the new node as a new member in their leaf set and instantly send all
triples to the new node for which it is to be considered a root node.

This strategy reduces the period of time during which a new node sends empty
results enormously. If the amount of data that needs to be transferred is large,
however, the transfer creates a rather long period during which the new node
sends incomplete results. Because of that, the new node forwards queries to one
of the replica picked at random during the transition period. The transition
period ends when the new node does not receive any new triples from its replica
for a certain time.

348 D. Battré et al.

3.4 RDFS Rules

The RDF semantics document [11] describes how RDFS entailment can be seen
as a set of rules which generate new RDF triples from existing ones. Several rules
map a single triple to the creation of a new triple. An example for such a rule is
rdfs4a where a triple (u, a, x) creates a new triple (u, rdf:type, rdfs:Resource).
These rules are easy to evaluate with the local knowledge of peers.

Rule Name Precondition Generated Triple

rdfs2 a, rdfs:domain, x u, rdf:type, x
u, a, v

rdfs3 a, rdfs:range, x v, rdf:type, x
u, a, v

rdfs5 u, rdfs:subPropertyOf, v u, rdfs:subPropertyOf, x
v, rdfs:subPropertyOf, x

rdfs7 a, rdfs:subPropertyOf, b u, b, y
u, a, y

rdfs9 u, rdfs:subClassOf, x v, rdf:type, x
v, rdf:type, u

rdfs11 u, rdfs:subClassOf, v u, rdfs:subClassOf, x
v, rdfs:subClassOf, x

Fig. 2. RDF Schema rules

Figure 2 contains a list of those RDF Schema rules that contain two triples in
the precondition. The underscored variables show that all 6 RDF Schema rules
can be evaluated on nodes with only local knowledge. As triples are hashed by
subject, predicate, and object, all triples contributing to the precondition of a
rule can be found on the root node. At the example of rdfs7, we see that all
triples with common subject a and predicate a are mapped to the same ID in
the DHT space and are, therefore, stored at the same node.

4 Load Balancing

A major criticism against DHT based RDF stores is the issue of load-balancing.
Owing to the nature of RDF triples, many collisions are unavoidable. It is for
example obvious that the DHT will store many triples with predicate rdf:type
as each individual has at least one type (see rule rdfs4a in [11]). As triples are
hashed by subject, predicate, and object, a node responsible for the hash-value
of rdf:type is subjected to a very high storage load. Reasoning aggravates this
problem because transitive relations like rdfs:subClassOf can create many ad-
ditional triples with predicate rdf:type for example. While the majority of
URIs and literals will occur very rarely we expect that a few of them make up
for a large proportion of all data. Figure 3 shows a figurative histogram of the
occurrences of hash-values with a large peak for rdf:type predicates. Our goal

On Triple Dissemination, Forward-Chaining, and Load Balancing 349

ID
fr

eq
ue

nc
y

h(rdf:type)

Fig. 3. Frequency distribution of hash values

is to distribute primarily the load of these peaks as we expect the IDs of small
frequency to be sufficiently randomly distributed due to the hash function.

Several publications have addressed the issue of load-balancing in DHT net-
works already (see e.g. [12,13,14,15]). Neither of these strategies is however ca-
pable of solving the load-balancing issue in RDF stores. The first three strategies
do not address the RDF specific problem of large discrete peaks due to collisions.
The last strategy distributes the triples of a peak to n nodes. As n is an a priori
defined constant we do not believe this to scale well enough. Furthermore, it
creates an unnecessary overhead for rarely occurring values.

Cai et al. [7] address the issue of load-balancing in RDFPeers by not storing
overly popular triples. This comes of course at the cost of possibly losing the
correctness of the algorithm.

4.1 Overlay Tree

Load-balancing can be implemented by constructing an overlay tree over the
DHT when nodes detect that they are overloaded. As the DHT range assigned
to a node can change at runtime it is very difficult to store and maintain this
range in an overlay tree. Instead, we build overlay trees only for discrete DHT
positions like, for example, the one that stores triples with rdf:type predicate.
In case a node detects that it is overloaded, it initiates the split of its most
frequent hash-value.

While all triples colliding at a DHT position have the same hash value they
can still be put into a total order by comparing the components that were not
involved in the calculation of a hash value. This allows to determine a split
element that divides the triples of the peak into those lexicographically smaller
and those larger than the split element. One half of the triples is relocated to
another node which has had little load during the overload detection phase. The
other half remains on the current node. Subsequent queries are either processed
by both nodes or, in case the split element allows to determine that a query
regards only one half it, only by the respective node. Each half of the triples can
be split again in case the respective node is still overloaded.

To understand the details of this load-balancing, one should first note, that
the replica database is merged into the received triples database because their
entries can be distinguished by the DHT at runtime. At the same time, we

350 D. Battré et al.

Generated Triples

Local Triples

Generated Triples

Received Triples

Local Triples

local

external

local

external

local

external

Remote Triples

Generated Triples

Received Triples

Local Triples

local

Remote Triples

<<references>>

Generated Triples

Received Triples

Local Triples

local

Remote Triples

local

external

Remote Triples

<<references>>

<
<

re
fe

re
nc

es
>

>

Received Triples

Remote Triples

<
<

re
fe

re
nc

es
>

>

<<references>>

Node 1 Node 2 Node 3 Node 4

Fig. 4. Load-balancing with remote triples databases

introduce a new remote triples database type which is responsible for storing
triples in the overlay tree structure. I. e. these databases store triples they are
not necessarily responsible for according to their position in the DHT. Each node
can have several of these remote triples databases as it can offer its capacity to
several overloaded nodes.

Figure 4 illustrates a possible overlay tree. Let the four pillars represent peers 1
through 4, then the setup could be established by this history for example: First,
node 1 recognized a load imbalance and replaced a frequent collision from its
“normal” in-memory or persistent received triples database to a remote triples
database. Half of the triples remained in the local part of the remote triples
database and half of them were moved to node 2. The external database of node
1 was linked to the respective new remote triples database on node 2. At this
point, node 2 had a remote triples database with a local part and no external
part. Node 2 recognized that is was overloaded as well, and recursively split its
data and moved half of the triples to node 3. At this point, node 1 recognized
that it was still overloaded. Therefore, it split the local part of the received triples
by creating a remote triples database that stores only half of the triples and links
to another remote triples database on another node that stores the remaining
triples. This effectively reduced the load of node 1 to a fourth of the initial load.

On Triple Dissemination, Forward-Chaining, and Load Balancing 351

If node 1 receives a query for the ID that is stored in the remote triple
database, it is possible that this query can be routed directly into either of
the two branches. Otherwise, the query is forwarded into all branches and ex-
ecuted on each local part on the path to the leaves. The query module on the
node who submitted the initial query assembles the results such that it is han-
dled completely transparently for the upper layers. For this to work, each local
part of a remote triples database that processes a query includes a field in the
result set that indicates whether the query has been forwarded to an external
remote triples database and in this case to which one. This allows the initial
query submitter to delay further processing until all result sets have arrived.

This approach reduces the storage and query load of nodes by shifting some
of the triples to other nodes and thereby distributing the load. As references
can be stored as IP addresses of the target nodes, forwarding queries within
the tree does not consume expensive DHT routing but can be done via direct
communication. A query reaches its destination in O(log N + d) steps, where N
denotes the number of nodes in the DHT network and d denotes the depth of
the tree.

4.2 Compensation of Node Failure

If a node in the overlay tree crashes, a whole branch of the tree vanishes. This
makes load-balancing with the kind of overlay tree described rather fragile. For
that reason, we need to do further modifications to the replication strategy and
introduce a replicated overlay tree as depicted in figure 5. All nodes of the tree
are of course members of the DHT ring but are connected at the same time to
form a virtual tree.

We see that each node (represented by a white circle) in the depicted overlay
tree is replicated twice (represented by gray circles). A parent knows its children
and their replica, as well as its replica. Hence, if a node fails, a replica node can
take its position and replicate data for a new backup node.

A difficult question is to decide whether a split of a node shall be initiated
because this decision involves the current load of a root node and its replica
if either of them being overloaded can create a bottle neck. For this reason we
change the query routing strategy such that the first replica to receive a query
does not intercept and process the query any more. Instead, a query is routed to
the root node which then performs load-balancing among itself and the replica.
Only if all of them are overloaded, a split is initiated. Figure 6 depicts this query
routing with load-balancing. The very first root node decides not to process the
query itself but to forward it to its rank 2 replica. This realizes that both of its
children cover triples that are important to the result of the query and sends
each of them a copy of the request message (solid arrow). At the same time it
processes the query on local data and sends a result message to the node issuing
the query (dashed arrow). The same happens recursively in the children.

As replica have to contain identical remote triples databases they share com-
mon split elements. If a split is initiated by a root node (whether it is the one
at the root or at another position in the tree), it propagates a split element to

352 D. Battré et al.

root

rank 1

rank 2

Fig. 5. Replicated overlay tree

the replica. Root node and replica look for possible children and communicate
the children’s addresses to each other. Then, they move triples to the children.
Triples are not deleted until their arrival has been confirmed. That guarantees
that queries can always be answered correctly.

4.3 Soft-State Updates

This overlay tree requires little modifications to soft-state updates and RDFS
reasoning. Soft-state updates are rather easy to implement. An update message
can be compared to the split element of a remote triples database and executed
either on its local part or forwarded to the external part. If an update message
addresses the local part it gets propagated to the replica nodes.

4.4 RDFS Rules

The necessary modifications for RDFS reasoning are not that obvious. While
RDFS rules based on a single triple in the precondition remain trivial we have
to pay attention to those rules with two precondition triples because the current
strategy does not guarantee that two triples with common value (e.g. u in rdfs9)
are located on the same node in the overlay tree. We see however, that each
rule of figure 2 contains at least one rule with an RDFS URI in the predicate.
These triples describe schema knowledge. As we anticipate that nodes store much
less schema knowledge than actual data, it is possible to propagate the schema
knowledge to all nodes of the overlay tree (i.e. flood the tree with the schema
knowledge), while each actual triple remains to be stored on exactly one node
(and its replica). Note that the propagated schema knowledge does not comprise
the schema knowledge of the entire network but only that fraction which has

On Triple Dissemination, Forward-Chaining, and Load Balancing 353

root

rank 1

rank 2

Query

Result

Fig. 6. Query routing in an overlay tree

a subject or object whose hash-value falls into the range of the root node of
the overlay tree. With the strategy described, it is possible to combine correct
RDFS reasoning, on the one hand, with the necessary load-balancing, on the
other hand.

5 Conclusion

In order to address RDF Schema reasoning, which we consider necessary to ex-
ploit the real power of RDF, we have presented a data management strategy for
forward-chaining. We furthermore addressed the problem of robustness to node
failure and churn and presented a strategy to handle load imbalances that neces-
sarily arise from the data distribution schema. While these are different dimen-
sions of Peer-to-Peer based RDF stores, we have shown that our strategy allows
to integrate them into a single system. Thereby, this paper complements our work
published in [5] that focuses on intelligent and efficient query evaluation. It dis-
cusses technical issues such as reasoning and load balancing in detail that have
not been addressed by other Peer-to-Peer based RDF stores so far (see [7,8]).

References

1. Manola, F., Miller, E.: RDF Primer. http://www.w3.org/TR/rdf-primer (2004)
2. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF

Schema. http://www.w3.org/TR/rdf-schema (2004)

354 D. Battré et al.

3. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: ISWC ’02: Proceedings of
the First International Semantic Web Conference on The Semantic Web, London,
UK, Springer-Verlag (2002) 54–68

4. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In: Proceedings of SWDB’03, The first International Workshop
on Semantic Web and Databases. (2003) 131–150

5. Heine, F.: Scalable P2P based RDF Querying. In: InfoScale ’06: Proceedings of
the 1st international conference on Scalable information systems, New York, NY,
USA, ACM Press (2006) 17

6. Battré, D., Heine, F., Kao, O.: Top k RDF Query Evaluation in Structured P2P
Networks. In Nagel, W., Walter, W., Lehner, W., eds.: Euro-Par 2006 Paral-
lel Processing: 12th International Euro-Par Co nference. Volume 4128 of LNCS.,
Springer-Verlag (2006) 995–1004

7. Cai, M., Frank, M., Pan, B., MacGregor, R.: A Subscribable Peer-to-Peer RDF
Repository for Distributed Metadata Management. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web 2 (2004) 109–130

8. Koubarakis, M., Miliaraki, I., Kaoudi, Z., Magiridou, M., Papadakis-Pesaresi, A.:
Semantic Grid Resource Discovery using DHTs in Atlas. In: 3rd GGF Semantic
Grid Workshop. (2006)

9. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: EDUTELLA: a P2P networking infrastructure based on RDF. In:
WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA. (2002) 604–615

10. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science
2218 (2001) 329+

11. Hayes, P.: RDF Semantics. http://www.w3.org/TR/rdf-mt (2004)
12. Zhu, Y., Hu, Y.: Efficient, Proximity-Aware Load Balancing for DHT-Based P2P

Systems. IEEE Transactions on Parallel and Distributed Systems 16 (2005) 349–
361

13. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load Balancing
in Structured P2P Systems. In: Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS 03), Springer (2003)

14. Karger, D.R., Ruhl, M.: Simple Efficient Load Balancing Algorithms for Peer-to-
Peer Systems. In: SPAA ’04: Proceedings of the sixteenth annual ACM Symposium
on Parallelism in Algorithms and Architectures, New York, NY, USA, ACM Press
(2004) 36–43

15. Byers, J., Considine, J., Mitzenmacher, M.: Simple Load Balancing for Distributed
Hash Tables. In: 2nd International Workshop on Peer-to-Peer Systems (IPTPS 03),
Springer (2003) 31–35

Priority Based Load Balancing in a

Self-interested P2P Network

Xuan Zhou and Wolfgang Nejdl

L3S Research Center
Expo Plaza 1, 30539 Hanover, Germany

{zhou,nejdl}@l3s.de

Abstract. A fundamental issue in P2P networks is that of distributing
workload in a balanced way to optimize performance. Unfortunately, op-
timal load balance is difficult to realize, although it is easy to compute,
because participants of P2P networks are usually self-interested and seek
to maximize their individual utility without considering system-wide util-
ity. In this paper, we study the influence of selfish behaviors on the load
balance in P2P networks, and propose a priority based load balancing
scheme to help a P2P network achieve better performance. The scheme
is simple and effective, and can be easily used in a P2P environment.
Besides presenting the theoretical foundation of our scheme, we also ad-
dress its major implementation issues and conduct extensive experiments
to verify its effectiveness and practicality.

1 Introduction

A peer-to-peer network is a network that relies on the collaboration of its par-
ticipants, who pool their resources to benefit everyone. A fundamental issue in a
P2P network is that of distributing workload in a balanced way to optimize its
performance. In particular, given a number of peers who are offering the same
services, the network needs to find an assignment of jobs to these peers such that
the expected response time to these jobs is minimized. While a balanced work-
load distribution can always be found in principle, it is difficult to be realized in
a P2P network where each participant is self-interested and rational, and seeks
to minimize the response time to its own jobs without considering the efficiency
of the whole network.

An example of the load balancing problem in a self-interested P2P network
is illustrated in figure 1. Suppose peers A and B are providing the same service
in a P2P network, and a number of peers wish to send n jobs to A or B to
be processed. Suppose the response time for A to finish a job is always one
minute, no matter how many jobs are arriving at A simultaneously. This can be
represented by a function of response time, i.e. R(x) = 1, where x denotes the
job arrival rate to A. In contrast, the response time for B to finish a job increases
linearly with its job arrival rate, and its function of response time is R(x) = x

n .
If the other peers are selfish and rational, they will choose to send their jobs to
B, as it should minimize the response time to their own jobs. In the end, all

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 355–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

356 X. Zhou and W. Nejdl

B

A

R(x) = 1

R(x) = x/n

Fig. 1. An Example of Load Unbalance

n jobs are jammed at B, and the average response time to these jobs ends up
at one minute. From the system-wide perspective, this is surely not the optimal
solution: if n

2 jobs are submitted to A and the other n
2 jobs are submitted to B,

the average response time could be as small as 3
4 minute. Unfortunately, no peer

is willing to sacrifice by sending his jobs to A. In economics, this phenomenon is
known as “social dilemma”, which describes the situation where all participants
seek to maximize their individual utilities, but as a result get utilities which are
worse than what they could achieve by cooperation.

Selfish behavior in large-scale computer networks has been extensively stud-
ied in recent years. Investigated areas include network routing [1,2,3], resource
allocation [4], quality of service [5] and others [6]. Most of this work reveals
that the cost of selfish behavior is usually not ignorable. Therefore, a number of
strategies, such as pricing [7] and Stackelberg routing [8], have been proposed to
cope with selfish behavior and help a network achieve better performance. How-
ever, none of these strategies can be directly applied to a P2P network, where
centralized control is very difficult to establish. The investigation on uncoordi-
nated load balancing by Subhash Suri et al [9,10] is the only work addressing
the influence of selfish behavior on load balance in P2P networks. In their work
they theoretically analyze the influence of selfish behaviors on load balance and
give a worst-case bound to the performance loss caused by selfish behavior. How-
ever, no proposal is given for controlling selfish behavior to help a P2P network
achieve better load balance.

In this paper, we introduce a priority based load balancing scheme for a self-
interested P2P network. In this scheme, each peer divides its jobs into two classes,
and assigns one class a higher priority than the other. By adjusting the propor-
tion between the two classes of jobs, the network can optimize its workload dis-
tribution. The scheme is simple, effective, and suitable for P2P environments. We
theoretically prove that this scheme can help a P2P network achieve optimal load
balance. We also address the various issues of implementing this scheme to a real
P2P network, and conduct extensive experiments to demonstrate its effectiveness.

The remainder of this paper is organized as follows. Section 2 defines the prob-
lem of load balancing in a self-interested P2P network, and discuss the possible
solutions. Section 3 introduces our priority based load balancing scheme, and ad-
dresses the issues of implementing the scheme in real P2P networks. Section 4

Priority Based Load Balancing in a Self-interested P2P Network 357

experimentally evaluates the effectiveness and practicality of our scheme. Finally,
we conclude this paper in section 5.

2 Problem Definition

We will use the term “uncoordinated load balancing” from [9] to describe the
problem of balancing workload among selfish peers. This section presents a model
of uncoordinated load balancing and discusses the possible approaches to achieve
load balance in a self-interested P2P network.

2.1 The Model

Consider a P2P network, where n peers are providing the same kind of service,
and the other peers periodically request and receive services from the n peers.
We call these n peers servers, and denote them by S0, S1, ..., Sn−1. We call all
the other peers in the network clients. Each server Si would display different
efficiency in processing its received jobs. This efficiency can be expressed by a
load-dependent function of response time, which is denoted by Ri(x), where x
is the job arrival rate (load) on the server. In this paper, we assume that Ri(x)
is always nondecreasing and convex, as it is regarded true in common real-world
systems [3]. Suppose the total job arrival rate to the n servers is λ. Then, the
triple (n, R, λ) forms an instance of the uncoordinated load balancing problem.
A solution to this problem is an assignment of the total job arrival rate (load)
over the n servers, which is denoted by a = (λ0, λ1, ..., λn−1), where λi is the job
arrival rate to Si and λ0 + λ1 + ... + λn−1 = λ. The cost C(a) of a solution a is
the total response time of processing the λ jobs. That is,

C(a) =
n−1∑

i=0

Ri(λi)λi

When the clients in the P2P network are all selfish, they seek to minimize
the response time to their own jobs, without regard to the overall cost of the
network. As a result, each job will be sent to the peer that would incur the
shortest response time. In the end, the assignment of the job arrival rate λ
will end in a Nash equilibrium, where no job can improve its response time
by switching to a different server. In this Nash equilibrium, the servers that
are assigned a positive workload will display equal response time. This can be
formally presented as follows.

Lemma 1. A load assignment a = (λ0, λ1, ..., λn−1) for instance (n, R, λ) is at
Nash equilibrium if and only if for every λi > 0, Ri(λi) ≤ Rj(λj). �
According to Roughgarden’s results on selfish routing [3], if Ri(.) is nondecreas-
ing, there is a unique Nash equilibrium of load assignment for every instance
(n, R, λ).

358 X. Zhou and W. Nejdl

The solution at the Nash equilibrium is not necessarily the optimal solution
that has the minimal cost C(a). The optimal solution is indeed the solution to
the following nonlinear program (NLP) [11].

min : C(a) =
∑n−1

i=0 Ri(λi)λi

subject to:
∑n−1

i=0 λi = λ,
λi > 0

It can be deduced (see [3]) that, given an instance (n, R, λ), where R(.) is
convex, the optimal solution should satisfy the following conditions.

Lemma 2. Suppose R∗i (x)= d
dx(Ri(x)x). A load assignment a=(λ0, λ1, ..., λn−1)

is optimal if and only if for every λi > 0, R∗i (λi) ≤ R∗j (λj). �

In other words, C(a) reaches its minimum when the marginal benefit (R∗i (λi))
of decreasing the load on server Si is at most the marginal cost (R∗j (λj)) of
increasing the load on any other peer Sj .

We can apply the model to the example in figure 1. (Suppose n denotes the
total job arrival rate instead of the number of arriving jobs.) Through Lemma
1, we find that the load assignment on Servers A and B at the Nash equilibrium
is (λA = 0, λB = n), and the resulting cost is C(a) = n. Through Lemma 2,
we find that the optimal load assignment is (λA = n

2 , λB = n
2), and its cost is

C(a) = 3
4n.

The maximal ratio between the cost of Nash equilibrium solution and the cost
of the optimal solution is called the price of anarchy. Some earlier work [3] has
shown that selfish behavior can have significant influence on the system-wide
performance.

If we consider the optimal load assignment as the balanced one, then the
load assignment at the Nash equilibrium would be unbalanced. The objective
of our research is to design a mechanism for the P2P network that could affect
the clients’ selfish behaviors, so that the resulting load assignment will be more
balanced.

2.2 Possible Solutions

To achieve load balance in a P2P network, obviously we cannot count on the
selfish clients to collaboratively distribute their workload in a balanced way.
However, we can resort to the cooperativeness of servers. First, the servers have
no incentive to disturb the workload distribution, as they benefit nothing from
it. Second, as users of a P2P network, they can have improved utility if the
network works more efficiently. Therefore, we regard that the servers of a P2P
network are usually benign and willing to take action to balance the workload.

Under this assumption, a possible approach to load balance is to calculate
the proportion of workload on each server in the optimal load assignment, and
restrict each server from taking more workload than that proportion. However,
as the workload in a P2P network is changing frequently, it is impractical to

Priority Based Load Balancing in a Self-interested P2P Network 359

estimate the optimal load assignment in real time. If the workload is overesti-
mated, the approach will not work. If it is underestimated, some jobs would be
starved severely. Therefore, this approach is not an appropriate solution.

In this paper, we propose a priority based load balancing approach, which
achieves optimal load balance by assigning priorities to workload.

3 Priority Based Load Balancing

Section 3.1 introduces the priority based load balancing scheme. Sections 3.2 and
3.3 give its theoretical foundation. Section 3.4 presents implementation issues.

3.1 The Scheme

In our scheme, each server divides the received jobs into two classes – 1st class
and 2nd class. The jobs in the 1st class have strictly higher priority than the
jobs in the 2nd class, in the sense that a server will always first process the 1st
class jobs prior to 2nd class jobs. To differentiate between the two classes of jobs,
a server selects a number of clients in the network and assigns each of them a
1st class quota, which specifies the number of 1st class jobs it can submit to the
server per time unit. Later on, the jobs arriving from these clients within their
1st class quotas will be regarded by the server as the 1st class jobs, and the other
jobs will fall into the 2nd class.

Applying this priority based approach to our model, the job arrival rate λi

on each server Si becomes the sum of the arrival rates of the two classes of jobs,
which can be represented by λi = λ1

i + λ2
i , where λ1

i denotes the arrival rate of
the 1st class jobs and λ2

i denotes the arrival rate of the 2nd class jobs. As we
will show subsequently, by setting appropriate 1st class quotas on each server,
we can guarantee that, for all the servers, the response time of any 1st class
jobs is always shorter than that of 2nd class jobs. Therefore, whenever a client is
issuing jobs, it will first use up its 1st class quota, so as to minimize the response
time. Hence, λ1

i is directly determined by the amount of the 1st class quota Si

assigns to its clients. At the same time, each client will also seek to minimize the
response time to its 2nd class jobs. As a result, the assignment of λ2

i will end
in a Nash equilibrium, where no 2nd class job can improve its response time by
switching to a different server. In this scheme, the final load assignment λ1

i + λ2
i

on each server can be adjusted by adjusting the 1st class quotas. The basic idea
of our priority based load balancing is to appropriately set the 1st class quotas
on each server to optimize the load distribution. In the next section, we prove
that we can achieve the optimal load balance through this scheme.

3.2 Finding Optimal Solution

Suppose the original function of response time on server Si is Ri(λi), where λi

is the job arrival rate to the server, i.e. λi = λ1
i + λ2

i . As the 1st class jobs have
strictly higher priority than the 2nd class jobs, the response time for the 1st class

360 X. Zhou and W. Nejdl

jobs will not be affected by the 2nd class jobs present. Therefore, the response
time for the 1st class jobs on server Si will be Ri(λ1

i) no matter what λ2
i is. At

the same time, the 2nd class jobs will bear all additional overhead incurred by
the co-existence of the 1st and 2nd classes of jobs. Suppose the response time
for the 2nd class jobs is R2

i , this can be represented by the following equation.

Ri(λ1
i + λ2

i) × (λ1
i + λ2

i) = Ri(λ1
i)λ

1
i + R2

i λ
2
i

Solving this equation, we get the response time function for the 2nd class jobs as

R2
i (λ

1
i , λ

2
i) =

Ri(λ1
i + λ2

i) × (λ1
i + λ2

i) − Ri(λ1
i)λ

1
i

λ2
i

.

As we have stated earlier, the arrival rates of the 1st class jobs (λ1
0, λ

1
1, ..., λ

1
n−1)

are determined by the 1st class quotas issued by the servers. Meanwhile, each
server will seek to minimize the response time to their 2nd class jobs, so that the
arrival rates of the 2nd class jobs (λ2

0, λ
2
1, ..., λ

2
n−1) will end in a Nash Equilibrium,

which satisfies the following criterion.

Lemma 3. Given an instance (n, R, λ) and the distribution of the 1st class jobs
(λ1

0, λ
1
1, ..., λ

1
n−1), a assignment of the 2nd class jobs (λ2

0, λ
2
1, ..., λ

2
n−1) is at Nash

equilibrium if and only if for every λ2
i > 0, R2

i (λ
1
i , λ

2
i) ≤ R2

j (λ
1
j , λ

2
j). �

The optimal load assignment is the assignment that incurs the smallest overall
cost C(a) =

∑n−1
i=0 Ri(λ1

i + λ2
i)(λ

1
i + λ2

i). Following the spirit of Lemma 2, the
criterion of the optimal solution is:

Lemma 4. Suppose R∗i (x) = d
dx(Ri(x)x). A load assignment a = (λ1

0 + λ2
0, λ

1
1 +

λ2
0, ..., λ

1
n−1 + λ2

0) is optimal if and only if for every λ1
i + λ2

i > 0, R∗i (λ
1
i + λ2

i) ≤
R∗j (λ

1
j + λ2

j). �

The objective of our scheme is to find a assignment of the 1st class jobs
(λ1

0, λ
1
1, ..., λ

1
n−1), such that the load assignment at the Nash Equilibrium is ex-

actly the optimal load assignment. The objective can be formally represented as
the following problem:

find λ1
0, λ

1
1, ..., λ

1
n−1

that satisfy 1.
∑n−1

i=0 (λ1
i + λ2

i) = λ
2. λ1

i ≥ 0 and λ2
i ≥ 0

3. R2
i (λ

1
i , λ

2
i) ≤ R2

j (λ
1
j , λ

2
j) if λ2

i > 0
4. R∗i (λ

1
i + λ2

i) ≤ R∗j (λ
1
j + λ2

j) if λ1
i + λ2

i > 0

(1)

Figure 2 plots the curves of the two functions Ri(x)x and Rj(x)x, where Ri(x)
and Rj(x) are the response time functions of Si and Sj respectively. Four angles,
which are determined by the job arrival rates λ1

i , λ2
i , λ1

j and λ2
j , are drawn out

in figure 2. ∠ai is the slope angle of the line connecting
(
λ1

i , Ri(λ1
i) × λ1

i

)
and(

λ1
i + λ2

i , Ri(λ1
i + λ2

i) × (λ1
i + λ2

i)
)
. ∠aj is the slope angle of the line connecting(

λ1
j , Rj(λ1

j) × λ1
j

)
and

(
λ1

j + λ2
j , Ri(λ1

j + λ2
j) × (λ1

j + λ2
j)

)
. ∠bi is the slope angle

Priority Based Load Balancing in a Self-interested P2P Network 361

j

j

aj

ai

b i

i
1

i
2

j
1

j
2

Load

y R (x)xi R (x)x

b

Fig. 2. Problem Interpretation

of Ri(x)x’s tangent at point
(
λ1

i + λ2
i , Ri(λ1

i + λ2
i) × (λ1

i + λ2
i)

)
. ∠bj is the slope

angle of Rj(x)x’s tangent at point
(
λ1

j +λ2
j , Ri(λ1

j +λ2
j)×(λ1

j +λ2
j)

)
. As tan(ai) =

R2
i (λ

1
i , λ

2
i) and tan(aj) = R2

j (λ
1
j , λ

2
j), condition 3 could be represented as ∠ai ≤

∠aj . As tan(bi) = R∗i (λ
1
i + λ2

i) and tan(bj) = R∗j (λ
1
j + λ2

j), condition 4 could be
represented as ∠bi ≤ ∠bj . Then, the above problem could be interpreted as:

find λ1
0, λ

1
1, ..., λ

1
n−1

that satisfy 1.
∑n−1

i=0 (λ1
i + λ2

i) = λ
2. λ1

i ≥ 0 and λ2
i ≥ 0

3. ∠ai ≤ ∠aj if λ2
i > 0

4. ∠bi ≤ ∠bj if λ1
i + λ2

i > 0

(2)

To solve this problem, we proceed as follows:

1. Determine λi = λ1
i + λ2

i : Find a load assignment a = (λ0, λ1, ..., λn−1) that
satisfies: (a)

∑n−1
0 λi = λ; (b) λi ≥ 0 for all i; (c) ∠bi ≤ ∠bj if λi > 0.

2. Determine ∠ai: Select the minimum ∠a that satisfies: (a) ∠a < ∠bi for all
i, (This guarantees that λ2

i > 0); (b) If λi > 0, then tana > Ri(λi). Then,
set ∠ai = ∠a for all λi > 0.

3. Determine λ1
i : If λi > 0, λ1

i is uniquely determined by ∠ai and λi; if λi = 0,
set λ1

i = 0.

As function Ri(x) is nondecreasing and convex, function Ri(x)x must be non-
decreasing and convex too. Then, we can prove that the above three steps can
always find a solution to Problem (2), as well as Problem (1). With the resulting
λ1

0, λ
1
1, ..., λ

1
n−1, we can ensure that the load assignment at the Nash Equilibrium

is exactly the optimal load assignment. Then the 1st class quotas on each server
can be set accordingly to enforce the λ1

0, λ
1
1, ..., λ

1
n−1, so that the P2P network

can achieve optimal load balance.

362 X. Zhou and W. Nejdl

a

i
1
a i

2
a

i
2
bi

1
b

Load

y

L

L

R (x)xi

b

Fig. 3. Tuning Strategy

In addition, step 2 guarantees that if λ1
i > 0 then λ2

i > 0. That is to say, if a
server receives 1st class jobs, it will certainly also receive 2nd class jobs. As all
the 2nd class jobs have the same response time at the Nash equilibrium, we can
guarantee that the response time of any 1st class job is shorter than that of the
2nd class jobs. This justifies our previous assumption that a client would always
first use up its 1st class quota in order to minimize the received response time.

3.3 Tuning Method

While we have theoretically proved that our scheme can achieve optimal load
balance, it is still difficult to realize the scheme in a practical P2P system. On
the one hand, it is infeasible to accurately estimate the workload in a P2P
network in real time. On the other hand, it is very costly to obtain the response
time functions of all peers. Both make it difficult to compute the optimal load
assignment. Thus, a more practical strategy of load balancing can be composed
of two steps. First, when a P2P network starts or when a new server joins the
network, the server contacts some other servers to initialize its 1st class quota.
Second, at running time each server continually observes the network and tunes
its workload, to draw the system-wide load assignment closer to the optimal one.

During the tuning step, each peer can increase or decrease its workload by
decreasing or increasing the 1st class quota assigned to its clients. This is il-
lustrated in figure 3, which plots the curve of function Ri(x)x, where Ri(x) is
the response time function of Si. (Ri(x)x is always nondecreasing and convex.)
The two points (λ1

i , Ri(λ1
i) × λ1

i) and (λ1
i + λ2

i , Ri(λ1
i + λ2

i) × (λ1
i + λ2

i)) on the
curve are connected by a line L. The slope angle of L is actually ∠ai in figure 2.
According to the condition of the Nash equilibrium in Lemma 3, the slope of
L should be the same for every Ri(x)x, as long as λ2

i > 0. For this reason, if
we decrease the arrival rate of the 1st class jobs on Si from λ1

ia to λ1
ib, line L

will move parallel from La to Lb. Then, the total job arrival rate will be increased

Priority Based Load Balancing in a Self-interested P2P Network 363

Statistics

1st Class
Load Manager 1st Class Queue

2nd Class QueueRouterJobs
Processor

Quota

Fig. 4. Architecture

from λ1
ia + λ2

ia to λ1
ib + λ1

ib. This reveals the following intuitive principles of load
assignment tuning:

1. When a server decreases its 1st class quota, it shortens the response time of
its 2nd class jobs R2

i (λ
1
i , λ

2
i), so that the server will attract more workload

λ1
i + λ2

i ;
2. When a server increases its 1st class quota, it enlarges the response time of

its 2nd class jobs R2
i (λ

1
i , λ

2
i), so that the server will get less workload λ1

i +λ2
i .

Such tuning is limited by an upper bound and a lower bound. Namely, when
λ1

i = 0, the server will receive the maximum workload; when λ1
i = λi, the server

will receive the minimum workload. In practice, a server can probe the status
of some other peers in the network to assess whether itself is overloaded or
under-loaded, and tune its workload accordingly.

3.4 Implementation Issues

Figure 4 shows the architecture of a server in a P2P network. When a job is
sent to the server, a router decides whether the job is in the 1st class or in the
2nd class, and routes the job to the corresponding queue. The processor always
first processes the jobs in the 1st class queue. Only when the 1st class queue is
empty, it turns to process the jobs in the 2nd class queue. To prevent starvation,
some 2nd class jobs will be upgraded to the 1st class if their waiting time exceed
a certain threshold. However, the system should ensure that the efficiency of
processing the 1st class of jobs is least affected by the 2nd class jobs.

The load manager is the key component responsible for monitoring and ad-
justing the workload of the server. It continuously collects statistic information
to learn the workload distribution in the network, and correspondingly adjusts
the workload of its host server to help improve the load balance of the net-
work. Meanwhile, it also monitors the status of its host server, and reports the
information to the network.

In order to achieve load balance, a server needs to assign a proper amount of
1st class quota to its clients. During the quota assignment, the server issues quota
certificates to some randomly selected clients. Each quota certificate contains the
identity of the target client, the time of expiration, and the quota indicating the

364 X. Zhou and W. Nejdl

number of 1st class jobs the client can submit in a unit time. To protect its
integrity, each certificate is signed by the server’s private key. When a client
submits a 1st class job to the server, it attaches the quota certificate to the job,
so that the router can classify it into the 1st class. If the 1st class jobs from a
client exceed its quota, the extra jobs will be classified into the 2nd class.

Initializing 1st Class Quota: When a P2P network is started or when a
new server joins the network, the server needs to correctly initialize its 1st class
quota, so as to attract an appropriate amount of workload. As it is infeasible to
accurately compute the optimal load assignment of a P2P network, the initial
1st class quota is estimated through sampling, which can performed through the
following steps:
1. Choose a set of sample servers, and compute the optimal load assignment

over the sample servers through the process introduced in Section 3.2.
2. Estimate the optimal workload on the new server based on the load assign-

ment over the sample servers.
3. The initial 1st class quota of the new server can be estimated through its

optimal workload and the load distribution over the sample servers.

Starting from this initial quota, the server can later tune its workload to
further improve the load balance of the network.

Load Assignment Tuning: In load assignment tuning, a server probes the
status of other servers to learn whether itself is overloaded or under-loaded, and
increases or decreases its 1st class quota correspondingly. The information ob-
tained in each probe will include the response time function and the current
workload of each visited server. A server can conduct tuning through the follow-
ing steps.

1. Calculate the local optimal load assignment over the group of servers that
comprise all the probed servers and itself.

2. Compare its current workload against the optimal one obtained in step 1.
3. Tune its 1st class quota through the method introduced in section 3.3, such

that its workload reaches the optimal workload.

Intuitively, when each server keeps tuning their 1st class quotas, the load
assignment in the P2P network will gradually converge to the optimal solution.
This will be experimentally verified in the next section.

4 Experimental Evaluation

We evaluate the proposed load balancing scheme through simulation. We simu-
late a P2P network that is composed by millions of participants, in which 1000
participants are offering the same service and are considered as servers. The
other participants can select any server to submit their jobs. The response time
function on each server follows that of M/M/1 queueing system. Namely, it is

Priority Based Load Balancing in a Self-interested P2P Network 365

 0

 0.5

 1

 1.5

 2

80604020

re
sp

on
se

 ti
m

e
(s

)

load (%)

No Balancing
With Balancing

Cooperative (optimal)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

160804020105

re
sp

on
se

 ti
m

e
(s

)

sample size

No Balancing
With Balancing

Cooperative (optimal)

(a) varying load (b) varying sample size

Fig. 5. Effectiveness of Initial Load Assignment

in the form 1
μ−λ , where μ denotes the service rate of a server and λ denotes the

job arrival rate to the server. The distribution of the service rates μ on the 1000
servers follows the Pareto distribution [12]. Due to limited space, only a part of
the experiment results are reported.

4.1 Initial Load Assignment

The goal of the first set of experiments is to study how much the initial load
assignment of our load balancing scheme could improve the performance of the
selfish P2P network. The process of initialization follows that in section 3.4.

In the first experiment, we fix the sample size at 20 servers. We vary the
workload on the whole network from 20% to 80%, and measure the average
response time resulted by the initial load assignment. We also compare this
response time against that of the selfish network without using our scheme and
that of the cooperative network where optimal load assignment is achieved. The
results are shown in figure 5 (a). As expected, the initial load assignment by our
load balancing scheme could remarkably improve the performance of the selfish
P2P network (by 10% to 30%).

In the second experiment, we fix the workload of the network at 50%, and
vary the sample size from 5 servers to 160 servers. Then we measure the average
response time resulting from the initial load assignment. Figure 5 (b) shows the
results. As expected, a larger sample could enable the servers to obtain a more
complete overview of the P2P network, so that the servers could estimate their
1st class quotas more accurately and achieve better load balance. When the
sample increases to 100 servers, the initial load assignment almost reaches the
optimal load assignment.

4.2 Load Assignment Tuning

This set of experiments is intended to study how the load assignment tuning
of our scheme could improve the load balance of the simulated P2P network.

366 X. Zhou and W. Nejdl

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

re
sp

on
se

 ti
m

e
(s

)

number of rounds

No Balancing
Cooperative (optimal)

probe size = 2
probe size = 4
probe size = 8

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6

re
sp

on
se

 ti
m

e
(s

)

number of rounds

No Balancing
Cooperative (optimal)

No initial
initial size = 5

initial size = 20
initial size = 100

(a) Without Initialization (b) With Initialization

Fig. 6. Effectiveness of Load Assignment Tuning

When conducting tuning, a server periodically probes some other servers to
assess whether itself is overloaded or under-loaded, and tunes its 1st class quota
correspondingly.

In the first experiment, we do not use the initial load assignment, but set
all the 1st class quotas to 0. Then, we conduct load assignment tuning on each
server by repeating the process in section 3.4. The tuning is performed round
after round. In each round, each server tunes its workload once. After each round,
we set the load assignment to the Nash equilibrium defined by Lemma 3, and
measure the average response time to accomplish a job. The probe size of the
tuning varies from 2 servers to 8 servers. Figure 6 (a) plots the varying of average
response time when the tuning proceeds. We can see that the load assignment
obviously converges to the optimal one as the tuning going on. In addition, a
larger probe size amplifies the effects of tuning – with the probe size of 8 servers,
the convergence could be twice as fast as with probe size of 2 servers.

In the second experiment, we study the effects of combining initial load as-
signment and tuning. We fix the probe size of tuning at 2 servers, and vary the
sample size of the initial load assignment from 5 servers to 100 servers. Then,
we measure the average response time after each round of tuning. The results
are shown in figure 6 (b). As expected, when the initial load assignment is used,
the load assignment could converge much faster to the optimal load assignment.
The improvement could be further magnified by using a larger sample size for
initial load assignment.

5 Conclusion

In this paper, we proposed a priority based load balancing scheme for a self-
interested P2P network, in which each participant is selfish and seeks to min-
imize its individual response time without considering the system-wide perfor-
mance. We theoretically proved the correctness of our scheme, and conducted
experiments to show that our scheme helps P2P networks to achieve better load
balance in an efficient way.

Priority Based Load Balancing in a Self-interested P2P Network 367

References

1. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: 16th STACS. (1999)
404–413

2. Czumaj, A., Vocking, B.: Tight bounds for worstcase equilibria. In: 13th SODA.
(2002) 413–420

3. Roughgarden, T., Tardos, E.: How bad is selfish routing. Journal of ACM 49
(2002) 235–259

4. Lazar, A., Orda, A., Pendarakis, D.: Virtual path bandwidth allocation in multi-
user networks. IEEE/ACM Transactions on Networking 5 (1997) 861–871

5. Yaiche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for band-
width allocation and pricing of elastic connections in broadband networks: theory
and algorithms. IEEE/ACM Transactions on Networking 8 (2000) 667–678

6. Altman, E., Boulogne, T., Azouzi, R., Jimenez, T.: A survey on networking games
in telecommunications. Computers and Operations Research 33 (2006) 286–311

7. Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous
selfish user. In: 35th STOC. (2003) 521–530

8. Roughgarden, T.: Stackelberg scheduling strategies. SIAM Journal of Computing
33 (2003) 332–350

9. Suri, S., Toth, C., Zhou, Y.: Uncoordinated load balancing and congestion games
in p2p systems. In: 3rd IPTPS. (2004) 123–130

10. Suri, S., Toth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games.
In: SPAA ’04: Proceedings of the sixteenth annual ACM symposium on Parallelism
in algorithms and architectures. (2004) 188–195

11. Peressini, A.L., Sullivan, F.E., J. J. Uhl, J.: The Mathematics of Nonlinear Pro-
gramming. Springer-Verlag (1993)

12. Adamic, L.A.: (Zipf, power-laws, and pareto - a ranking tutorial) http://
www.hpl.hp.com/research/idl/papers/ranking/ranking.html.

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

A Self-organized P2P Network for an Efficient

and Secure Content Location and Download

J.P. Muñoz-Gea, J. Malgosa-Sanahuja, P. Manzanares-Lopez,
J.C. Sanchez-Aarnoutse, and J. Garcia-Haro

Department of Information Technologies and Communications
Polytechnic University of Cartagena

Campus Muralla del Mar s/n, E-30202, Cartagena, Spain
{juanp.gea, josem.malgosa, pilar.manzanares, juanc.sanchez,

joang.haro}@upct.es

Abstract. In this paper, we propose a hybrid and self-organized P2P
overlay network. Unstructured networks have easy mechanisms (human
readable form) to search for a content, but the location process does not
take advantage of the distributed system nature. Conversely, structured
networks can efficiently (completely distributed system) locate items,
but the searching process is not user friendly. We suggest the usage of
a structured network for managing a hierarchical unstructured network,
where some peers take the role of SuperPeers periodically. Therefore,
although the users perform the search in an unstructured way, the loca-
tion process is performed in a structured way. Moreover, the network is
self-organized dynamically. This self-organized nature gives the network
the necessary reliability in front external attacks. Some aspects of the
proposed system are evaluated analytically and with simulations.

1 Introduction

There are two types of P2P overlay networks: structured and unstructured. The
technical meaning of structured is that the P2P overlay network topology is
tightly controlled. Such structured P2P systems have a property that consis-
tently assigns uniform random NodeIds to the set of peers into a large space
of identifiers. With this identifier, the overlay network places the terminal in a
specific position into a graph. Typical representatives of this approach are Chord
[1] and Pastry [2]. In contrast, unstructured P2P overlay networks are ad-hoc
in nature, and do not have the possibility of being unified under a common
platform. Gnutella [3] for instance offers a non-hierarchical P2P approach. How-
ever, the most popular unstructured networks organize peers in a random graph
in a hierarchical manner, by means of special nodes called rendezvous points,
with network management functions. As typical representatives of this design
direction the architectures of eDonkey [4] and KaZaa [5] can be considered.

In structured networks every content has an identifier, called data Key. This
identifier is mapped to a peer, and its associated content is placed at this specified
location. This structured graph enables efficient discovery of data items, using

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 368–375, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Self-organized P2P Network 369

the given Keys, and is much easier to reorganize when changes occur (terminals
registering and leaving). Consequently, the overlay network is more scalable and
robust. However, in this simple form, this class of systems does not support
complex queries. They only support exact-match lookups: one needs to know the
exact Key of a data item to locate the node responsible for storing that item.
On the other hand, unstructured non-hierarchical architectures support complex
queries, but the flooding mechanism used for querying makes these networks
unscalables. In unstructured hierarchical architectures rendezvous nodes store
the content list of the nodes placed around them. The search requests are sent to
the rendezvous node, and this evaluates the query locally on its own knowledge.
If the content is not located in the rendezvous, most of the available networks
also use flooding search on the rendezvous nodes to query content stored by
overlay peers.

In this work we have designed a hybrid P2P system that shares the advan-
tages of both types of networks. The searching process uses an unstructured
hierarchical architecture in order to support complex queries, but the nodes of
the system are organized in a structured network that makes the system more
scalable and robust. The structured organization of the network enables the dy-
namical definition of the SuperPeers. Moreover, when a content is located, the
downloading process can be performed hop-by-hop or peer-to-peer, giving the
user an extra security (anonymity) issue.

The remainder of the paper is organized as follows: Section 2 describes the
system proposed in this paper in detail. Section 3 shows the simulation and
analytical results. Section 4 presents several related works and finally, Section 5
concludes the paper.

2 System Description

Our proposal tries to define a hybrid P2P system able to search in an unstruc-
tured way (supporting complex queries) while all the nodes are immersed in a
structured overlay network. All the nodes are assigned automatically into differ-
ent sub-groups. Every sub-group is managed by a level-1 SuperPeer, which is the
node with the best performances in terms of CPU, bandwidth and reliability,
among the sub-group’s members. The level-1 SuperPeers are also grouped into
higher level sub-groups, managed by level-2 SuperPeers. This process recursively
continues up to the highest level sub-group.

All the level-1 SuperPeers maintain a database that registers the content list
of all the nodes in their sub-groups. The rest of the SuperPeers do not need to
maintain this information, since they can request it to their sub-group’s members
when needed. In order to search for content, the user’s node will send the search
parameters to its level-1 SuperPeer, and this one will return information about
who has the content in its sub-group. If the search fails, the level-1 SuperPeer
will send the request to its associated higher level SuperPeer. If it is necessary,
this process will continue up to the highest level SuperPeer.

370 J.P. Muñoz-Gea et al.

2.1 Initializing and Joining the Network

Every node obtains its NodeId applying a well-known hash function (MD5 or
SHA-1) to its MAC or IP address. In order to join the structured overlay network,
every node uses an underlying service capable of obtaining the IP address of an
existing node in the same network. The new node contacts the existing node
in order to link the structured network, and also obtains its SubgroupId that
identifies the sub-group to which this node belongs. The new node will use this
identifier to try to join that sub-group.

2.2 Joining a Sub-group

Next, the node must look for its corresponding SuperPeer. It uses the structured
network to locate the node whose NodeId fits with the SubgroupId previously
obtained. This node knows the IP address of the sub-group’s SuperPeer (see
Section 2.3). The new node contacts that SuperPeer, and request to join its sub-
group. Each sub-group has a maximum number of nodes. If there is room, the
node sends its content list to it.

2.3 SuperPeer Assignment

The previous process fails when the node tries to join a full sub-group. In this
case, a new (randomly generated) SubgroupId is assigned to the node by the
SuperPeer, and it becomes the SuperPeer of the new sub-group. In order to be
reachable by the rest of the community, the new SuperPeer uses the structured
network to insert its own IP address in the node whose NodeId fits whit the
new SubgroupId. If this node has already one value, the generated SubgroupId is
repeated. In this case, the node tries to join that sub-group as a regular node.

Every SuperPeer can only generate an additional SubgroupId, and they must
keep this identifier in order to answer all future requests. Therefore, any joining
request will be retransmitted from one sub-group to another until a sub-group
with room (or without any additional sub-group identifier) is reached.

Just when the second level-1 sub-group is created, it also becomes necessary
to create a new level-2 sub-group. The SuperPeer responsible for creating this
second level-1 sub-group becomes the SuperPeer in the new level-2 sub-group.
The level-2 sub-groups also have a maximum number of nodes, and therefore
the sub-group creation process continues in a similar way up to the highest level
of hierarchy. With this algorithm, only the set of level-1 SuperPeer is candidate
for being SuperPeer in the rest of levels.

2.4 SuperPeers Maintenance

When a new node finds its SuperPeer, it notifies its available resources of band-
width, memory and CPU. The SuperPeer controls the nodes that are linked to
its sub-group and it forms and ordered list of future SuperPeer candidates. In
order to supply more security to our system against centralized attacks, every
SuperPeer node will play this role only for a fixed period of time, and then it
will become a regular node.

A Self-organized P2P Network 371

2.5 Registering the Shared Files

As it was mentioned previously, all the level-1 SuperPeers maintain a database
that registers the content list of all the nodes in their sub-groups. This database
associates every content with the NodeId of the owner node. In this way, an
intruder with access to one of the system databases cannot obtain the IP ad-
dresses of the nodes that are using the system. Every time a node downloads
content, the NodeIds of both source and destination nodes are notified to the
level-1 SuperPeer. In file-sharing applications, this feature may be used to reduce
the downloading time by enabling chunking techniques.

2.6 Searching for a Content

As it was mentioned previously, in order to search for content, the user’s node
will send the search parameters to its level-1 SuperPeer, and this one will return
information about who has the content in its sub-group. If the search fails, the
level-1 SuperPeer will send the request to its associated higher level SuperPeer.
If it is necessary, this process will continue up to the highest level SuperPeer.
The higher level SuperPeers do not maintain content databases, they request
information to their subgroup’s members when needed. The search requests sent
by the higher level SuperPeers to their associated lower level SuperPeers have a
similar effect to a request sent by a regular node to its level-1 SuperPeer.

To provide some degree of anonymity, the level-1 SuperPeers can be configured
to provide not only the NodeId of the owner node, but also an additional set
of NodeId. This feature can be used to enable hop-by-hop download, instead of
peer-to-peer. In this way, a spy never knows who the owner of the content is.

2.7 Additional Reliability

The system proposed in this work offers two additional kinds of reliability: reli-
ability in front of unexpected nodes shutdown (fails) and reliability in front of
internal attacks. If a node unsuccessfully tries to connect with its SuperPeer,
maybe it was turned-off. In this case, the node looks for the node whose NodeId
fits with its SubgroupId and checks the registered IP address. If the IP address
still corresponds to the IP address of the failed SuperPeer, the node inserts its
own IP address in this register and becomes the new SuperPeer of the corre-
sponding sub-group. This way, when the rest of nodes detect that the previous
SuperPeer is off, they will be able to obtain the IP address of the new SuperPeer.

In order to provide reliability in front of internal attacks, the system offers a
reputation mechanism able to locate and knockout the malicious nodes. When
a user downloads a corrupt content from a node, he informs its corresponding
level-1 SuperPeer of this fact, sending a special message (vote) that contains the
NodeId of the node. Every level-1 SuperPeer keeps a database that registers every
NodeId and the corresponding number of votes associated. When the number of
votes exceeds a predefined threshold, the level-1 SuperPeer registers that NodeId
as malicious in the previous database. Our proposal manage this database in the
same way that content databases.

372 J.P. Muñoz-Gea et al.

3 Performance Analysis

In this section, we evaluate our proposed system by simulation. We have assumed
that the number of available contents is finite. Given an initial content distribu-
tion among all the nodes, in each simulation step all the nodes issue a request to
find and download a new content. This assumption strongly reduces the simula-
tion time without distorting the system evaluation. Furthermore, when testing
the figures of merit, the downloading process is completely irrelevant.

In order to give a better insight into the system inertia, the contents are
sometimes classified into three types based on their degree of interest from the
user point of view: very interesting, interesting and of little interest. In any case,
in every simulation the contents are uniformly distributed among all the nodes.

Our simulation shows three interesting parameters. The first parameter is the
time evolution of the probability of locating a content in the same requester’s
sub-group. The second is the time evolution of the average number of SuperPeers
consulted until content location. Finally, to evaluate the system performances
it is also interesting to represent the time evolution of the number of contents
known by SuperPeers.

The simulation scenario is formed by 12,500 different contents uniformly dis-
tributed among 6,250 nodes. The sub-group sizes are set to 50 and 5 nodes for
the first and the rest of the hierarchy respectively. Therefore, there are 125 level-1
SuperPeers, 25 level-2, 5 level-3 and one level-4.

Fig. 1 shows the time evolution of the probability that a content is in the same
requester’s sub-group. Fig. 1.(a) shows this probability for any kind of content
and 1.(b) for classified contents. The probability is calculated as the ratio be-
tween the number of requests successfully answered at the same sub-group and
the total number of requests. It can be observed that this probability grows and
converges to a value of one. In order to explain this result, note that each time a
search request is resolved by the intervention of another sub-group, at the end of
the download process the content is also registered in the requester’s SuperPeer,
increasing the value of this probability. This behavior indicates that in our archi-
tecture, the more a popular content is downloaded, the more equally distributed
it is among all the sub-groups. This is also the reason why the probability con-
verges to unit more quickly for the most interesting contents (see Fig. 1.(b)).
With this behavior, the risk that a higher level SuperPeer becomes overload in
steady state is minimal.

Fig. 2.(a) shows the time evolution of the average number of SuperPeers con-
sulted until a content is located. This parameter is calculated averaging the
numbers of SuperPeer consulted for each node. It is observed that the number
of consulted SuperPeers quickly decreases, converging to unit in a short period
of time (indicating that the content is in the same requester’s sub-group).

Obviously, the two previous variables are strongly related. We have developed
an analytical study that establishes the relation between this pair of parameters.
We define p as the probability that a content is in the same requester’s sub-
group. We suppose that the network has L different levels. We also suppose
that, irrespective of the number of nodes at the first level, there are exactly

A Self-organized P2P Network 373

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

P
(c

on
te

nt
 in

 le
ve

l−
1

S
up

er
P

ee
r)

Time Slots

Any Content

(a) Any content

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

P
(c

on
te

nt
 in

 le
ve

l−
1

S
up

er
P

ee
r)

Time Slots

Content of Little Interest
Interesting Content

Very Interesting Content

(b) Classified contents

Fig. 1. Time evolution of the probability of locating a content in the same requester’s
sub-group

N nodes per sub-group in the rest of the levels. If we define S as the average
numbers of consulted SuperPeers until a content is located, then

S =
L∑

n=1

nP (n) (1)

where P(n) is the probability of consulting n SuperPeers. It can be defined as,

P (n = 1) = p P (n = L) = (1 − p)x (2)

P (n) = (1 − p)x

y∑

j=1

(
y

j

)
pj(1 − p)y−j 1 < n < L (3)

where x and y are defined as

x = Nn−2 y = (N − 1)x (4)

Note that Equation 3 can be simplified using the binomial theorem, and
therefore,

P (n) = (1 − p)x[1 − (1 − p)y] 1 < n < L (5)

This analytical study has been verified by means of simulation. It is important
to see that when p tends to unit (which is the expected value for popular con-
tents), the number of SuperPeer involved in the searching process (S) also tends
to unit. This result analytically demonstrates that the most popular contents
are -sooner or later- widely spread around the network.

Finally, Fig. 2.(b) shows the time evolution of the amount of contents known
by SuperPeers at different levels. As can be seen, the level-4 SuperPeer is the

374 J.P. Muñoz-Gea et al.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 S

up
er

P
ee

rs
 c

on
su

lte
d

Time Slots

Any Content

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 C

on
te

nt
s

K
no

w
n

by
 S

up
er

P
ee

rs
Time Slots

Level−1 SuperPeer
Level−2 SuperPeer
Level−3 SuperPeer
Level−4 SuperPeer

(b)

Fig. 2. (a) Time evolution of the average number of SuperPeers consulted until content
location. (b) Time evolution of the number of contents known by SuperPeers.

only node with a global knowledge. The rest of the SuperPeers quickly reach
the maximum value (12,500), which means that, in this system, the content
distribution procedures spread around all the sub-groups the most popular files.
Let us recall that, in fact, only the level-1 databases are really needed.

4 Related Works

In this section it is briefly summarized other contributions related with this work.
The first one is JXTA [6]. In JXTA peers are self-organized into groups, and every
group has associated a rendezvous node. The queries are propagated only among
rendezvous, which are organized into a hybrid network that combines the use of
a loosely-consistent DHT with a limited-range rendezvous walker. Compared
with our proposal, JXTA has a high flooding load since the rendezvous are not
organized into hierarchical levels.

In SHARK [7], each node is assigned to a Group of Interest according to the
objects it stores. When a node initiates a query, a SuperPeer is responsible of
address this query to the corresponding Group of Interest. Then the query is
flooded towards all the members of the group. This hybrid solution allows some
degree of human readable form lookups, but does not report any issue about
reliability in front of external attacks.

OceanStore [8] is a P2P storage system built on top of Tapestry. It also em-
ploys an additional probabilistic mechanism based on attenuated Bloom Filters,
resulting in a hybrid solution. When the fast probabilistic algorithm fails to pro-
vide the requested results, OceanStore activates Tapestry routing mechanism to
forward the request to the final destination. The system replicates the objects

A Self-organized P2P Network 375

to provide durability against attacks. However, in our opinion, our solution guar-
antees a great level of reliability.

5 Conclusions

In this paper a hybrid and self-organized P2P overlay network is presented.
From the user point of view, the hybrid nature of the system (structured and
unstructured) allows the searching process to be written in human readable form,
without losing the distributed nature of the P2P systems. The network is also
self-organized because the SuperPeers are automatically selected.

Nodes which are responsible for being SuperPeers change their role periodically.
Morevoer, our proposal is prone to distribute the most popular contents around
the network. Finally, to improve the system performances, some additional fea-
tures like hop-by-hop download and chunking can be easily implemented.

Acknowledgements

This work has been supported by the Spanish Researh Council under project
ARPaq (TEC2004-05622-C04-02/TCM) and with funds of DG Technological
Innovation and Information Society of Industry and Environment Council of the
Regional Government of Murcia and with funds ERDF of the European Union.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H. Chord: A
Scalable peer-to-peer lookup service for internet applications. In Proceedings of the
2001 SIGCOMM Conference. (2001) 149 - 160

2. Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware). (2001)
329 - 350

3. Gnutella. http://www.gnutella.com. (2006)
4. eDonkey2000. http://www.edonkey2000.com. (2006)
5. Leibowitz, N., Ripeanu, M., and Wierzbicki, A. Deconstructing the KaZaa Net-

work. In Proceedings of the 3rd IEEE Workshop on Internet Applications. (2003)
112 - 119

6. Traversat, B., Arora, A., Abdelaziz, A., Duigou, A., Haywood, C., Hugly, J.-C.,
Pouyoul, E., and Yeager, B. Project JXTA 2.0 Super-Peer Virtual Network.
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf. (2003)

7. Mischke, J., and Stiller, B. Rich and Scalable Peer-to-Peer Search with SHARK.
In Proceedings of the 5th International Workshop on Active Middleware Services.
(2003) 112 - 122

8. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-
madi, R., Rhea, S., and Weatherspoon, H. OceanStore: an Architecture for Global-
scale Persistent Storage. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems. (2000)
190 - 201

Query Coordination for Distributed Data

Sharing in P2P Networks

Maybin Muyeba and M. Sulaiman Khan

School of Computing, Liverpool Hope University, UK
muyebam@hope.ac.uk, m sulaiman78@hyahoo.com

Abstract. Organisations often store information about the same entity
objects or features in different formats. Accessing and integrating this
distributed information can be a difficult task because of schema differ-
ences and database platform issues. In this paper, a discussion on query
coordination in schema conflicting databases of Peer-to-Peer (P2P) sys-
tems is presented. The coordination mechanism with a global query to
resolve the issue is proposed. The coordination mechanism is done with-
out peers knowing each others schemas by translating the global query
into the local query according to the under lying database schema while
a wrapper is used to deal with database platform issues. The paper simu-
lates a real-life application and shows that schema resolution by a query
coordination mechanism in P2P systems is effective and minimises most
of the complexities encountered by schema integration systems.

1 Introduction

Organisations often store information about the same entity objects or features
in different formats. It is usually the case in distributed databases that data inte-
gration of such systems is bottlenecked, among other things, by varying schemas
and platform issues. Thus accessing and integrating the distributed data, besides
analyzing it, is a challenge. Schema integration [1] by a global schema is possible
but not so desirable. A coordination mechanism to deal with the above mentioned
issues for large scale distributed, heterogeneous and autonomous systems (P2P)
is presented, characterized by a query system using JXTA technology. JXTA is a
java technology that has desirable peer functionalities such as provision of inde-
pendent IP naming space address, platform independence and handles firewalls
etc. To query or even analyse data without knowing typical peer schemas and
database platforms requires an intelligent coordination strategy. A query is first
sent to the nodes of relevant domains where it is translated into the local query
according to the under lying database schema using metadata schema descrip-
tions. Domain here refers to any database application in the system and relevant
domains refer to groups or classes of sub-domains with similar schematic data,
to be defined later. Analysis of such systems is not an easy task and leads to
two major issues:

For different platforms, its not easy to access it by simple traditional database
techniques used in central processing,

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 376–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Query Coordination for Distributed Data Sharing in P2P Networks 377

For schematically inconsistent databases, sometimes it is usually not feasible
to integrate the data for further analysis or reporting.

Thus data must be processed by distributed algorithms suitable to this kind
of computing environment.

Considering issue two above, for example, an insurance company may want to
access the medical history of their customers from a GPs (General Practitioners)
clinic database stored with different names and types. Thus, a query coordina-
tion mechanism in a P2P setting with model-theoretic semantics is introduced
with examples. We assume the terms “node” and “peer” mean the same thing.

Data management issues are important in P2P systems and later, their solu-
tion useful in overall data analysis [2] . In [3], a local relational model (LRM)
replaces the concept of a global schema in the conceptual view thus allowing
semantic interoperability without a global schema by using coordination formu-
las. Another Local Relational Model (LRM) is described in [4], the coDB system
which uses JXTA. Each node is queried via a coordination rule from its neigh-
bours for data migration purposes. This means neighbouring nodes need to be
aware and maintain up-to-date rule coordination information, which includes
cyclic rules used to synchronise between database data. Piazza [5] uses “seman-
tic mediation” between peers and allow expressing both GAV (Global as View)
and LAV (Local as View) styles to map between peer schemas. Other systems
[6] use coordination rules and rule bases respectively. This motivates our study
in this paper i.e. an easy to use query mechanism to coordinate global queries
to relevant peer groups without the complexity of a rule-base and knowledge
sharing between peers, as in related works.

The paper is organised as follows: section 2 gives the problem definition; sec-
tion 3 shows a coordination engine architecture, section 4 presents an example
application; section 5 gives experimental results and section 6 concludes the
paper.

2 Problem Definition

In this section, we present a problem definition and the theoretic-model seman-
tics of our approach.

We organise peers in peer groups and denote each query between peers as
a relevant criteria for determining peer equivalence as follows: number of peers
P, databases D for each peer, a set S of similar attribute names (or keys, to
be defined later) from all databases and a general descriptor g for mapping all
attribute values to their similar terms S. For given attributes, we can express
the set S as

S = {A1, A2, .., Ak} (1)

where S ⊆ {A1, A2, .., Am for some k > 0. Note that S ⊆ g as g may con-
tain metadata of the attribute values in S, stored in a property file F . This
file consists, in simple terms, a series of (key, value) pairs, where key can be any

378 M. Muyeba and M.S. Khan

value from set g. P2P global queries are locally evaluated according to these
local schema mappings. Thus F has mappings g onto S as:

S → g (2)

The P2P network is in fact a graphing problem G =< V, E >, where V is a vertex
and E is the edge. Each peer P i has database Di, where a query Qi is undirected
to any node (i.e. a broadcast) can form the edge of the query graph G, so G is
redefined as G =< P, D, Q >, where P is the set of peers, Q is a family of queries
and subset of P ×D between nodes. A graph relation ∼ formed is, by deduction,
reflexive, symmetric and transitive and equivalence classes C′is are formed from
peer relations of similar domains. A set of nodes P i will be “coordination active”
if they belong to an equivalent class . This is useful and reduces the costly global
communication. In our case, we use the term “neighbour” relatively to mean
those nodes that can answer a given query either transitively or symmetrically,
where reflexity is an intuitive case. The approach also avoids returning many
empty results from non-equivalent peers. An optimal way to generate equivalence
classes C = {C1, .., Cs} is to implement an intelligent dynamic algorithm that
forms such classes, which is our approach. We are aware that in a large network
with a large number of attributes, the number of property files grow large linearly.
This is still scalable to within reasonable size for most applications. Our P2P
framework based on the problem definition above is illustrated as follows:

Definition 1 (P2P system). A peer-to-peer (P2P) system is a graph G =<
P, D, Q >, where P is a set of nodes P ⊆ {P 1, P 2, .., Pn with a local property
file,F i, 1 ≤ i ≤ n, D is the set of corresponding databases D = {D1, .., Dn} and
Q is a set of queries Q = {Q1, .., Qk} ⊆ D × P , for some n and k > 0.

Definition 2 (Peer Node). A peer P i is a self-contained node with local
schema LSi derived from Di and local property file F i, LSi ⊆ F i. Due to
security restrictions of the local schema, F i ⊂ LSi , if peer attribute information
is not shareable.

Definition 3 (General Query). A general query qi is an undirected broadcast
query among m nodes, m =| P |, qi ⊂ P×D . Nodes may not be partitioned into
equivalent classes or relevant domains or that the translation of query attributes
into their local schemas has not yet occurred, so the equivalence relation defined
above still holds. However, note that for peers belonging to relevant domains,
which are part of the whole P2P system generally, this also holds under general
terms of this definition. The difference is the number of nodes that respond and
the type of returned acknowledgement information and query results. This leads
to definition 4.

Definition 4 (Domain Query). A domain relevant query qj is an undirected
query among m nodes,m ≤| P |, qi ⊂ P×D where these nodes satisfy equivalence
relations. It is easy to see that qj ⊆ qiD and that qi translates to qj using a
query interpreter of the prototype system. Queries in definition 4 only apply to
peers belonging to equivalent domain classes.

Query Coordination for Distributed Data Sharing in P2P Networks 379

Definition 5 (Peer Class Relations). A peer class relation is a collection of
peers {⋃ P i} that belong to a particular domain or peer group and exhibit an
equivalence relation amongst them.

Definition 6 (Property Schema File). A property schema file F i consists of a
collection of (key, value) pairs per peer, where “value” is a schema attribute and
“key” can assume different global (general) or metadata names for that attribute
value. Therefore each local property schema file can use any chosen “key” name(s)
but the attribute value remains the same for that local schema. These property files
(Database Schema-DBS) in our system are directly accessible to the peer manager.

Definition 7 (Naming and Key differences). An attribute value has a nam-
ing difference if there exists another similar attribute e.g. phone, telephone, con-
tactNo. According to definition 6 above, possible (key, value) pairs could be
(contact, telephone), (phone, telephone) etc. Note also that these pair defini-
tioins could be cyclic across the P2P system. Key differences are trivial. Other
differences like attribute types are dealt with implicitly e.g. age and DOB are
integer and string types.

3 Coordination Engine Architecture

One aspect of P2P networks is their varied platforms and in this case their dy-
namic variation in schemas. The JXTA technology provides a set of protocols to
develop P2P applications such as peer discovering each other and self-organizing
into peer groups (definition 5), advertising and discovering network services, peer
communication and monitoring. Overall, it offers interoperability enabling peers
providing various P2P services to locate and communicate with each other, plat-
form independence and is ubiquitous.

In the node architecture, a wrapper approach is used to handle database plat-
form varieties and in case of schema evolution, there will be no need to make any
change in the wrapper or program to update the obsolete schema. This technique
also minimizes the amount of processing the peer manager and the wrapper do.
The nodes communicate by passing messages through pipes containing all the
relevant information regarding the peer that generated it and its domain. The
session ends after the sending node gets all replies.

Table 1 shows a node domain directory maintained by each peer to keep track
of all peers in the network.

The architecture and process of coordination as shown in figure 1 is abstracted
by a few components. A query received by a node is immediately sent to the
query detector to determine its type and then the query interpreter translates to
a local query according to the query type and the nodes DBMS using a wrapper.
The Peer Manager checks whether a query can be forwarded to other nodes by
determining equivalence classes, and if so, propagates it to other nodes and the
recipients nodes information are sent back to the originating node.

The system optimally deals with global queries by using equivalence classes
of particular domains, which keep track of peers and their domains. Our system

380 M. Muyeba and M.S. Khan

Fig. 1. P2P Coordination Architecture

Table 1. Node Domain Directory

Node Domain
Clinic 1 Medical

Hospital 1 Medical

Insurance 1 Insurance

Clinic 2 Medical

Hospital 2 Medical

Insurance 2 Insurance

......

monitors newer peers and subscribe them to appropriate classes or domains dy-
namically by analyzing their schemas and eventually their appropriate domains.

4 Application Example

Assume the following schemas in some domains:

Database Hospital (H)
Patient (HospitalID, PatientName, Sex, DOB, HIN, Telephone, PatientRecord)
Treatment (TreatmentID, HospitalID, Date, Disease, TreatmentDesc, Physi-
cianID, HIN)
Medication (HospitalID, DrugID, Dosage, StartDate, EndDate)
Database GP Clinic (C)
Patient (HIN, FName, MName, LName, Phone, Gender, DOB, PatientRecord)
Visit (HIN, Date, Purpose, Outcome)
Prescription (HIN, Disease, MedicineID, Dose, Quantity, Date)
Database Insurance Company (I)
Customer (CustID, FName, LName, PhoneNum, Sex, DOB, RegistrationDate)
Policy (PolicyID, CustID, StartDate, EndDate, PolicyType, Premium)
Claims (ClaimNo, CustID, PolicyID, ClaimType, ClaimDescription)

Query Coordination for Distributed Data Sharing in P2P Networks 381

A global query is translated on each node according to its underlying database
schema to overcome schema conflicts as follows:

“SELECT name from medical” is translated on hospital peer as:
“SELECT p.PatientName as Name from patient p” and on clinic peer as:
“SELECT(p.FName+“”+p.MName+“”+p.LName)asNamefrompatientp”.

The general descriptor “name” in the global query is translated to similar val-
ues described in property files as “p.PatientName”,“p. Name”, “p.MName”,
“p.LName” according to the database schema etc. This is referred to as naming
differences (definition 7). For example

PatientName, Name, FName+MName+LName ← Full Name
Sex, Gender ← Sex
Telephone, Phone, Mobile ← Contact
Age, DOB ← Age

where full name can be any metadata or attribute in the query etc. Again note
that attribute names and keys could be defined cyclically i.e. one could mean
the other and viceversa. Similarly, the same entity object (customer or insurer
or patient etc) has different identities such as:

CustID, HIN, PatientID, HID← Unique Identifiers
Let us consider, for example, a data mining problem where an insurance com-
pany wants to access its customers medical records and cluster them w.r.t their
age whilst suffering from a certain disease in order to readjust their premiums.

The insurance company needs to access medical domain nodes (medical equiv-
alence class) that contain the required information, here nodes H and C. To get
the desired results, node I first generates a general but domain specific query
using simple basic notations, which in this particular case would be:

Q1: Select Name, Age, HIN, Sex from medical where Illness= “diabetes”;

Q1 is a general but medical domain specific query and not built on actual fields
and table names, and so unable to execute on clinic and hospital databases in its
form. Node H converts Q1 into the naming format understandable by the hospi-
tal database and any platform differences are resolved by a wrapper algorithm.
This is done as follows:

Q1onH:Selectp.PatientName,p.(dateddiff(month,p.DOB,GETDATE())/12)
as Age, p.HIN, p.Sex from Patient p,Treatment t where p.HIN=t.HIN
and t.Disease=“diabetes′′;

Node H will execute Q1, prepare the results and send back to node I. If there is
some node present to which query is not forwarded yet, it will forward it to that
node and add extra information about that node with the results sent to node
I. The same process will be repeated on node C. Node I then determines the
type of information received. If its a result then the data is extracted and sent
to the data repository where it will be used later for possibly further analysis or
even application of a data mining algorithm. The node domain directory is then
updated if the message contains any information to be added or updated and
the query session is then terminated.

382 M. Muyeba and M.S. Khan

5 Experimental Results

The experimental P2P network set up consisted of 15 desktop computers with
Intel Pentium 4, 1.6 MHz processor and 256MB of RAM, and all the machines
running Windows XP on a network transfer rate of 100Mbps.

Table 2. Statistical Attribute Information

Normal Attributes Naming Differences
Name 4

Gender 2

Age 2

Contact 3

Medical 2

Illness 2

Prescription 2

PatientRecord 2

Key Attributes Key Differences
HIN 2

PID 3

Domain ID 3

Table 2 shows, in our case, similar term groupings of normal schema names
(Nor. Attrs) and differences in naming the attributes (Nam. Diff.) and their
primary keys (Key Diff.) in local schemas.

The physical P2P network layout, with up to 15 nodes, is shown in Figure 2.
Synthetic data used for implementation purpose is generated through a synthetic
random data generator. Each peer consist a database with three tables containing
10000 records in each table (30K in total) with different schemas as shown in
section 5. Three database engines, MS Access, MySQL and MSSQL Server, have
been used for platform heterogeneity purposes.

For experimental purpose all themachines and the networkwere fully dedicated.
Figure 3 show an exponential increase in time as the number of nodes in-

crease. The result indicate the complexity involved in converting global broad-
cast queries to local queries as the number of nodes and attributes increase.
There are minor differences when increasing the number of attributes with a
constant node number. It is apparent that query translation into similar terms
of the local schema affects execution time by some factor given constant node
sizes. The system shows reasonable scalability for the few nodes with varying
attribute schemas. For queries with many such variations under the same condi-
tions, exponential time is expected. Similarly, figure 4 shows query completion
time against data size with increasing node results and consequently raising com-
munication overheads. Notice also that huge attribute naming differences and
the number of attributes in a query can degrade performance.

Query Coordination for Distributed Data Sharing in P2P Networks 383

Fig. 2. Query Completion Time Fig. 3. Completion time (Results)

Analysis algorithms in practice, could benefit from our overall approach, for
example if an insurance company wanted to re-evaluate customer premiums by
clustering customer data based on age groups prone to particular diseases. Our
proposed approach is therefore extensible to other domains where data sharing
is inevitable.

6 Conclusion

The paper proposes a mechanism for query coordination in P2P systems that
share data on different platforms with varying schemas. Issues relating to resolv-
ing schema conflicts were presented and benefits of such an approach include
schema independence for global queries among peers, capability of directing
queries to specific peer groups and dynamic schema updates in P2P environ-
ments. The system shows fair scalability given the limited number of nodes,
attributes and peer databases with different schemas used in our experiments.
The system works well in a distributed and heterogeneous DBMS environment
and does not need global synchronisation or schema integration.

Further work will investigate developing further ontological frameworks for
naming schema differences and also similarity relations between entity objects.

References

1. Batini, C., Lenzerini, M., Navathe, S. B.: A comprehensive analysis of methodologies
for database schema integration. ACM Computing Surveys, (1986),18(4), 322-364

2. Wolff, R., Schuster, A.: Association Rule Mining in Peer-to-Peer Systems. IEEE
Transactions Systems, Man and Cybernetics, (2004) 34(6) 2426-2438

3. Bernstein, P. A., Giunchiglia, F., Kementsietsidis, Mylopoulos, J., Serafini, L., Za-
ihrayeu, I.: Data management for peer-to-peer computing: A Vision. International
Workshop on the Web and Databases, WebDB, (2002)

384 M. Muyeba and M.S. Khan

4. Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I.: Queries and updates in the
coDB peer-to-peer database system. Proceedings of the 31st VLDB Conference,
Toronto, Canada, (2004) 1291-1294

5. Halevy, A. Y., Ives, Z., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The
Piazza Peer Data Management System. IEEE Transactions on Knowledge and Data
Engineering, 16(7), (2004) 787-798

6. Roshelova, A.: Building Database Coordination in P2P system using ECA rules.
Technical Report DIT, Informatics and Telecommunication, (2004) University of
Trento

A Comparative Study of Pub/Sub Methods in

Structured P2P Networks

Matthias Bender, Sebastian Michel, Sebastian Parkitny, and Gerhard Weikum

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken
{mbender,smichel,parkitny,weikum}@mpi-inf.mpg.de

Abstract. Methods for publish/subscribe applications over P2P net-
works have been a research issue for a long time. Many approaches have
been developed and evaluated, but typically each based on different as-
sumptions, which makes their mutual comparison very difficult if not
impossible. We identify two design patterns that can be used to imple-
ment publish/subscribe applications over structured P2P networks and
provide an analytical analysis of their complexity. Based on a character-
ization of different real-world usage scenarios we present evidence as to
which approach is preferable for certain application classes. Finally, we
present simulation results that support our analysis.

1 Introduction

Peer-to-Peer system have been a hot research topic for years now, but only
recently there have been some success stories of actually deploying legal P2P-
based applications on a large-scale basis, such as BitTorrent or Skype. We feel
that this is partly due to the fact that the P2P paradigm has been applied to all
kinds of popular (web) application scenarios, even though they mostly did not
necessarily expose any natural P2P-like usage scenario in practice.

One of the few applications that naturally fit with a fully decentralized set-
ting are publish/subscribe (pub/sub) applications. We bring forward the follow-
ing two archetypical pub/sub scenarios that we will characterize and refer to
throughout the paper. Consider a User-to-user scenario in which users want to
share community knowledge, e.g., on computer troubleshooting, or discuss re-
cent events in Blogs or Wikis. In this scenario, all users are interested in (i.e.,
subscribe to) a certain subset of new content, and become publishers themselves
at a low rate, publishing a new article or adding a comment to an existing Blog
entry. For example, imagine a publish/subscribe application where subscribers
want to be notified when any participating Blog publishes a new article that
contains the term P2P. In the Publisher-to-user scenario, a smaller set of pub-
lishers (e.g., news agencies like Reuters or AP) publish new content at a much
higher rate, and a large number of users (typically distinct from the set of pub-
lishers) is interested in monitoring a developing news story, staying up-to-date

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 385–396, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 M. Bender et al.

on a competing business, or getting the latest tabs on a celebrity of the favorite
sports team.

In spite of exposing some very distinctive characteristics, both sample sce-
narios expose a system model of fully distributed and autonomous informa-
tion providers and information consumers, which is well-suited for a P2P-style
organization. Indeed, numerous approaches on how to efficiently design pub-
lish/subscribe in a fully distributed manner have independently emerged from
the P2P research community. Unfortunately, the sheer number of proposals
and their often hard-to-compare assumptions regarding the underlying network
structure and usage patterns render the comparison a troublesome task. Typi-
cally, the approaches are only evaluated for a very specific set of system param-
eters, and not compared to other existing approaches for different settings.

This paper’s contribution is threefold. First, it identifies and introduces two
design patterns that can be used to implement pub/sub applications over struc-
tured P2P networks. Second, the paper provides an analytical characterization
of the complexity of both approaches and provides guidelines regarding which
approach might be preferable for which usage patterns. Third, we present mea-
surements that back up both our analytical results and our suggestions for design
guidelines, also in the presence of network dynamics. We explicitly model net-
work dynamics, as peers constantly enter and leave the system. Note that this
paper does not compare any concrete prototypes, but instead focuses on evalu-
ating the design approaches for various system parameters.

2 Related Work

Distributed hash tables, DHTs, (such as Chord [15], CAN [12], Pastry [13], or
P-Grid [1]) have emerged as the preferred family of structured architectures for
overlay P2P networks. The main advantage of DHTs compared to unstructured
P2P networks stems from the performance guarantees that they can offer regard-
ing the routing efficiency and ultimately the network scalability, even in the pres-
ence of high network dynamics (such as high rates of node arrivals/departures
and failures/recoveries). P2P data networks over structured and/or unstructured
networks has been a hot research topic for years [6,9,4,17,11,10].

More recently there have been numerous proposals for distributed pub/sub
systems [19,2,7,16,14,18,8]. Most of them can be classified into three categories:
topic based systems, content based systems, and hybrid solutions. Topic based
systems usually consider that users subscribe to a publisher that regularly pub-
lishes documents of a certain topic (e.g. mailing lists), whereas in content based
systems users subscribe to publishers that do not have a particular topic but
employ a, usually, term based filtering to distinguish between relevant and non-
relevant documents w.r.t. the users’ interests. Hybrid systems basically consider
subscriptions to topics but allow for a term based filtering. The first step reduces
the communication overhead compared to the term-subscriptions case whereas
the second design choice drastically reduces the number of actually shipped doc-
uments, i.e. preventing the delivery of irrelevant documents to the end user. [3]

A Comparative Study of Pub/Sub Methods in Structured P2P Networks 387

reasons on the difference between information filtering and information retrieval
that can be interpreted as P2P pub/sub versus P2P retrieval.

3 System Model

We consider a network of nodes N = {n1, ..., nk}. Each node can take one or
both of the following roles: Subscribers S = {s1, ..., sm} express their interest in
selected newly-published content, Publishers P = {p1, ..., pl} regularly generate
new content. Subscribers issue subscriptions. subi,j denotes the j-th subscription
of si, i.e., each subscriber can have more than one subscription. The average
number of subscriptions per subscriber is denoted subavg. Each subi,j is a set
of terms t from a domain T , i.e., subi,j ⊂ T . sub denotes the average number
of terms per subscription. Publishers generate content in form of documents
d ∈ D ⊂ 2T , i.e., documents are a set of terms t ∈ T . Publishers issue their
new content at a certain publishing rate r, measured in new documents per time
interval. The notation is summarized in Table 1.

Table 1. Notation

si ∈ S, si Subscriber from set of all subscribers

pi ∈ P Publisher from set of all publishers

ni ∈ N Node in the network

t ∈ T Term from term domain

subi,j j-th subscription of si

subavg average number of subscriptions per subscriber

sub average number of terms per subscription

d, |d| document, length of document

3.1 Discussion

For this work, we assume subscribers to express their interests in form of terms,
i.e., they are interested in all new content that contains all subscription terms.
We feel that more sophisticated means of subscriptions are a high burden for non-
expert users, which make up a large fraction of users in a large-scale real-world
network. Note that the ratio between publishers and subscribers and also the
average number of subscriptions per subscriber highly depends on the targeted
application scenario. While in the User-to-user scenario, typically all subscribing
users also play the role of publishers (typically at low rates), the Publisher-to-
user scenario with a limited set of news agencies as publishers exposes a small
number of publishers that publish at high rates. The ratio between subscribers
and publishers highly influences the optimal design pattern of the system; an
extreme ratio could render either approach infeasible.

This work focuses on structured P2P architectures, such as distributed hash
tables (DHTs), as a network overlay. Not limiting ourselves to a particular DHT
implementation, we only assume a basic nodeID ← lookup(k) functionality that

388 M. Bender et al.

maps a key k to the node identified by nodeID currently responsible for that key.
DHTs can straightforwardly be used to construct conceptually global, but physi-
cally distributed directories. This paper focuses on structured overlays because we
strongly believe that gossiping in unstructured networks inevitably leads to scal-
ability and performance issues, in particular for application classes which aim at
efficiently locating specific information such as publish/subscribe. Our study does
not include publish/subscribe approaches that let publishers circulate their doc-
uments through the whole network and that make subscribers “pick” all content
that they are actually interested in, as we feel that distributing content to all peers
even though they might not be interested in it exposes scalability issues already
for medium-sized networks. In this context, we also point out that our analytical
model and our measurements do not consider the actual document dissemination,
but only the matchmaking between the subscriptions in the network and newly-
published content. While we will sketch possible ways of efficiently disseminating
the documents at a later stage for both design patterns, our evaluation ends as
soon as the set of all matching subscribers for a new content is identified.

4 Design Patterns

The common basis for the following two design patterns to implement pub/sub
functionality is the presence of a conceptually global, but physically distributed
directory, built on top of all nodes in the network, i.e., subscribers and publishers
alike. We use the term directory peer to refer to a node, stressing its participation
in the distributed directory. The directory maps keys in form of features (e.g.,
terms or topics) to appropriate values describing the key value, e.g., in form of
statistical aggregations. Such a directory can straight-forwardly be implemented
on top of any DHT, offering a basic nodeID ← lookup(key) method, as follows:
Each node that wants to learn (or add to) the statistics for a certain key issues
the corresponding lookup(key) request to retrieve the peer that is currently re-
sponsible for maintaining the value for that key. In a point-to-point fashion (not
stressing the directory), the user can subsequently contact that peer to retrieve
or add the desired information.

We strongly believe that storing (pointers to) individual documents in the
distributed directory is not feasible, as (e.g., for Blogs in the Publisher-to-user
scenario) the number of publications increases rapidly. We think it is unavoidable
to abstract and aggregate the information, yielding a light-weight system that
offers scalability to support an a-priori unlimited number of nodes. The following
subsections describe two design patterns to implement pub/sub functionality,
storing different metadata in the distributed directory.

4.1 Store-Sub

Most of the existing approaches of implementing a publish/subscribe infrastruc-
ture over structured P2P networks follow the general paradigm that we sub-
sequently refer to as Store-Sub: The subscribers store their subscriptions in
a conceptually global, but physically distributed directory implemented on top

A Comparative Study of Pub/Sub Methods in Structured P2P Networks 389

of the DHT. When publishers publish new content, they retrieve all applicable
subscriptions from the directory, which is feasible because publishers can inverse
the subscription process to find all subscriptions that match their new content.
Perhaps the most obvious way to actually implement this for each subi,j is to let
each si send a message for each term t occurring in at least one of its subscription
to the directory peer identified by lookup(t) and to attach subi,j completely. A
publisher that wants to publish new content has to retrieve these lists from the
appropriate directory peers for each term t of its new content in order to identify
all subscribers that have issued a subscription that is matched by the content.

The bottlenecks of this approach are obvious: Publishers need to retrieve
a large number of potentially huge lists of subscribers to find all appropriate
subscribers when they publish new content, because they have to retrieve the
subscriptions for all terms that occur in the content, in order to make sure not
to miss any matching subscribers. One typical way to tackle this issue is to
reduce the number of features that a publisher needs to check in order to find
all appropriate subscribers. For example, this can be achieved by mapping all
terms to a much smaller number of topics1. Subscribers send their subscription
to the directory peer responsible for the appropriate topic and attach a more
expressive subscription (e.g., the complete set of subscription terms or XQuery
expressions). In this case, publishers only need to check for potential subscribers
at a much smaller subset of directory peers. While the most obvious way of
eventually matching all such attached subscriptions might be for the publisher
to retrieve the list of all subscribers for the appropriate topic(s) of a new content
item and to perform the matchmaking locally, this may require to transfer an
excessive number of (eventually non-matching) subscriptions from the directory
peer(s) back to the publishers. Another possibility is, thus, for the publisher to
transfer the actual document to the applicable directory peer(s) and let them
perform the matchmaking locally, without transferring the lists of subscriptions.
Subsequently, the directory peer can either start the document dissemination
itself immediately or return the (much smaller) list of matching subscribers back
to the publisher. Figure 1 illustrates an example of the Store-Sub infrastructure
on top of a DHT. N17, N45, and N76 are directory nodes responsible for topics
sports, politics, comedy, and music. The mapping from topics to directory nodes
is given by the DHT’s lookup() method that, e.g., maps the topic “sport” to
the directory node with nodeID 17. N17, for example, has already received
subscriptions from S42 regarding the combination of terms (worldcup, 2006,
germany, opening) and is currently receiving another subscription from S14.
Directory peers store incoming subscriptions in a subscriber list. All publishers
that generate content about the topic “sport” will turn to N17 to identify all
matching subscribers, either by retrieving the complete lists of subscribers for all
relevant topics (and subsequent local filtering) or by sending the document itself
to the directory node, which will return an appropriately prefiltered subscriber
list (or start the document dissemination itself).

1 Building such a topic hierarchy is a well-addressed research problem and out of scope
for this paper.

390 M. Bender et al.

Fig. 1. Store-Sub Architecture

4.2 Store-Pub

Another approach towards implementing a publish/subscribe infrastructure over
structured P2P networks is a design pattern which we will subsequently refer
to as Store-Pub: Each publisher pi announces its existence together with some
statistical profile profi in the distributed directory. profi describes the content
that Pi has previously published (or, potentially the expected and forecasted be-
havior in the near future). The distributed directory again partitions the feature
(term, topic, ...) space, so that subscribers can access this (regularly updated)
data to find potentially promising publishers for their information needs, and
register directly with selected publisher(s).

To our knowledge, this approach has not been used so far to actually imple-
ment a publish/subscribe infrastructure. When comparing it to the Store-Sub
approach, the following advantages (+) and disadvantages (-) can be identified:

+ Subscribers have full control over which publishers to contact and, e.g., prefer
reputable publishers.

+ Subscribers can finetune the amount of content they receive by adapting the
number of publishers they register with.

+ Subscribers do not expose information to the public that may be used for
social reengineering.

+ Subscribers can subscribe to particular publishers, not being overwhelmed
by content from all publishers.

- Publishers need to announce profiles. Depending on the number of publish-
ers, that may lead to extensive network resource consumption.

- Subscribers base their decision on publishers’ profiles describing the past.
Subscribers may miss prospective publishers if they have not published rel-
evant content before. If a new story arises, they cannot find any matching
publishers until publishers have refreshed their profiles.

A Comparative Study of Pub/Sub Methods in Structured P2P Networks 391

In other words, Store-Sub is an exact approach to pub/sub, i.e., a subscriber
will in principle not miss any content that matches its subscriptions. On the
other hand, Store-Pub is an approximate approach, there is no guarantee that a
subscriber actually receives all content that matches its subscriptions, because
he may not have selected the appropriate publisher based on its profile or the
publisher did not yet have an appropriate profile at the time of subscription
(e.g., for a developing news story). To overcome the last issue, we assume that
subscribers revisit the directory on a regular basis to check whether other or
better publishers have arisen to match their subscriptions, i.e., they conceptually
repeat their subscription process regularly.

Fig. 2. Store-Pub Architecture

Figure 2 illustrates an example of the Store-Pub infrastructure on top of a DHT.
N17, N45, and N76 are again directory nodes responsible for topics sports, pol-
itics, comedy and music. This time, they maintain profile information describing
publishers P . The mapping from features to directory nodes is given by the DHT’s
lookup() method that, e.g., maps “sport” to the directory node with nodeID 172.
Subscribers interested in the soccer worldcup can turn to N17 and identify pub-
lishers at their discretion. Registering their subscriptions is a point-to-point com-
munication with publishers, which store the subscriptions locally.

5 Complexity Analysis

For the upcoming complexity analysis, we assume a distributed directory on
top of a DHT network. As messages to an arbitrary remote node of an |N |-node
network require an expected log2(|N |) message hops in most popular DHT archi-
tectures, we use this factor for each message sent to actually reach its destination.
Regarding the notation, readers might want to refer back to Table 1.
2 Note that it is due to the random assignment of topics/terms to peers that the statis-

tics for “comedy” and “politics” are stored on the same peers. This does not reflect
the authors’ opinion ...

392 M. Bender et al.

5.1 Store-Sub

The messaging complexity of Store-Sub consists of two ingredients. First, sub-
scribers joining the network need to issue their subscriptions to the distributed
directory Second, when publishing new content, a publisher needs to retrieve
candidate subscriptions from the directory. Note again that we do not model the
actual document dissemination, which is an orthogonal task as soon as all match-
ing subscriptions are identified. The number of messages necessary to dispatch
all subscriptions of new subscribers Snew depends on the size of the network N ,
the average number of subscriptions subavg, and the number of directory nodes
fs that each subscription has to be sent to. Depending on the actual implementa-
tion, fs can be as high as sub if the subscription needs to be sent to the directory
nodes for each subscription term, or as low as 1, if the subscription only needs to
be sent to a single topic directory peer (cf. Section 4.1). The number of messages
caused by publishers publishing new content depends on the number of publish-
ers |P |, the rate at which they publish new content, the number of directory
peers fp that they need to retrieve subscriptions from (which, analogously, can
be as high as the number of terms in a new document or as low as 1, if each
document can be mapped to exactly one topic) and the total size of the network
|N |. Table 2 summarizes the complexity of Store-Sub.

Table 2. Complexity Store-Sub

Complexity

Send subscriptions (subscribers) O (|Snew| ∗ subavg ∗ fs ∗ log(N))

Retrieve subscriptions (publishers) O (|P | ∗ rate ∗ fp ∗ log(N))

5.2 Store-Pub

The messaging complexity of Store-Pub again consists of two ingredients. First,
publishers need to announce their profiles. Second, subscribers need to retrieve the
profiles from the directory to identify promising publishers. As the publisher’s pro-
files can only describe previous behavior of the publishers (or, at best, forecast the
future based on this previous behavior), we assume that not only new publishers
Pnew entering the system have to distribute their profiles, but also existing pub-
lishers |P | have to update their profiles at regular intervals. Since the profiles are
feature-(i.e., term- or topic-)specific (i.e., publishers may want to issue their pro-
file w.r.t. each available feature), the number of messages necessary to distribute
the profiles depends on the size of the feature space |F |, and the size of the network
|N |. Analogously, we expect subscribers to regularly re-check whether new pub-
lishers have become promising sources for their subscriptions, so they regularly
retrieve the appropriate profiles from the directory. The messages necessary for
this purpose depend on the number of subscribers, Snew and S, respectively, the
average number of subscriptions per subscriber subavg, the number of directory
nodes fs that carry profiles relevant to a subscription, and the size of the network
|N |. Table 3 summarizes the complexity of Store-Pub.

A Comparative Study of Pub/Sub Methods in Structured P2P Networks 393

Table 3. Complexity Store-Pub

Complexity

Send profiles (publishers) O
(
(|Pnew | + |P |

interval
) ∗ F ∗ log(N)

)

Retrieve profiles (subscribers) O
(
(|Snew | + |S|

interval
) ∗ subavg ∗ fs ∗ log(N)

)

5.3 Discussion

For Store-Sub, which of the two contributing message types is responsible for the
majority of the traffic highly depends on the system parameters. If the network
volatility is high, i.e., many new subscribers Snew enter the system per time
interval, the messages necessary to announce their subscriptions may exceed the
traffic caused by the publishers generating content at low rates. Analogously,
which of the two contributing message types is responsible for the majority of
the traffic in Store-Pub also highly depends on the system parameters, in par-
ticular the degree of network dynamics and the average number of subscriptions
per subscriber. This dependency is illustrated in Figures 3 and 4. The number
of messages necessary to retrieve the subscriptions by the publishers in Store-
Sub clearly dominates the messages necessary to store the subscriptions in the
directory as the publishing rate increases. The number of messages to retrieve
the profiles in Store-Pub dominates the number of messages to actually store
the profiles if the average number of subscriptions per subscriber increases (or,
analogously, if the average length of subscription increases).

Fig. 3. Store-Sub message types Fig. 4. Store-Pub message types

6 Experiments

Our experimental contribution is threefold. First, we support our analytical
model of the previous section with actual simulations to verify the validity of our
cost formulas. The simulation results almost exactly match the numbers fore-
casted by our analysis; we do not show the corresponding figures as they do not
offer any insights. Second, we provide evidence based on our analytical results
that, depending on the usage scenario, either one of Store-Sub or Store-Pub is

394 M. Bender et al.

the method of choice for efficiently implementing a scalable pub/sub application,
as they are sensitive to different system parameters. Third, we conducted more
elaborate simulations with user and document models in order to measure the
actual message and traffic counts for concrete usage scenarios. The numbers back
up our analysis that the resource consumption is well below reasonable limits if
the implementation method of choice is in line with the expected usage pattern.

6.1 Analytical Results

For the upcoming analytical results we fix the following system parameters (cf.
Table 1): |P | = 100, |S| = 100, 000, subavg = 3, sub = 5, |T | = 100, 000,
Snew = 10, |d| = log(|T |) ∼ 16.

Figure 5 shows the sensitivity of both Store-Sub and Store-Pub to changes
in the publishing rate, i.e., the amount of new content that each publisher pub-
lishes per time interval. While Store-Pub is not sensitive to this parameter, the
number of messages in the Store-Sub approach increase as the publishing rate
increases, as the publishers have to retrieve data from the distributed directory
more often. Figures 7 and 8 show the total number of messages that were gener-
ated per round, where one round corresponds to one time interval (as explained
for Store-Pub). It can be seen that Store-Sub generally has a larger variation
in the number of messages, as the randomness introduced by new subscribers
entering the system with a varying number of subscriptions is larger than for
Store-Pub, where most of the traffic is introduced by the publishers refreshing
their profiles (which is constant over time). Additionally, Store-Sub, as expected
performs well at a lower publishing rate, while Store-Pub is immune against
changes in the publishing rate.

Fig. 5. Sensitivity to Publishing Rate Fig. 6. Sensitivity to refresh time interval

6.2 Simulations

We have implemented a discrete event simulator mimicking the behavior of
Store-Sub and Store-Pub. For this purpose, 10 publishers synthetically gener-
ate 100,000 documents using a Zipf-distribution over 100,000 terms. To achieve
thematically distinct peers, we shift the terms by 20, i.e., pi starts at ti∗20 as

A Comparative Study of Pub/Sub Methods in Structured P2P Networks 395

its most frequent term to generate its documents. For each publisher, the first
50,000 documents were used as “seeds” to generate the publisher’s profiles; the
remaining 50,000 were used sequentially whenever a publisher publishes new
content. The simulation starts at 5.000 subscribers (subavg = 3; sub = 5); the
average number of subscribers does not change, as expected in the Publisher-to-
user scenario. At each round, a random set of 1-10 subscribers leave the system
(without any notice to the system), while another 1-10 new subscribers join the
system. Figures 7 and 8 show the total number of messages that were generated
per round, where one round corresponds to one time interval (as explained for
Store-Pub). It can be seen that Store-Sub generally has a larger variation in the
number of messages, as the randomness introduced by new subscribers entering
the system with a varying number of subscriptions is larger than for Store-Pub,
where most of the traffic is introduced by the publishers refreshing their profiles
(which is constant over time). Additionally, Store-Sub, as expected performs well
at a lower publishing rate, while Store-Pub is immune against changes in the
publishing rate.

Fig. 7. Publishing rate 1 per round Fig. 8. Publishing rate 100 per round

7 Conclusion and Future Work

We have introduced two general design patterns, Store-Sub and Store-Pub, to
implement pub/sub functionality on top of a structured P2P network. While
Store-Sub has frequently been the basis for P2P pub/sub prototype system,
we are not aware of any prototype implementing the principles of Store-Pub.
One key insight of this work is that there is no “one-fits-all” pub/sub approach,
but that the optimal design pattern highly depends on a large number of system
parameters, such as the expected ratio between subscribers and publishers or the
rate at which publishers generate new content. While Store-Sub seems well-suited
for a User-to-user scenario where publishers generate content at lower rates,
Store-Pub seems attractive for a Publisher-to-user scenario where a small number
of publishers generates content at high rates. We will implement both design
patterns on top of our Minerva [5] architecture. For Store-Pub, one particularly
interesting field of research is how to forecast the future behavior of a publisher
based on its previously published content.

396 M. Bender et al.

References

1. K. Aberer. P-grid: A self-organizing access structure for p2p information systems.
In CoopIS, 2001.

2. I. Aekaterinidis and P. Triantafillou. Internet scale string attribute pub-
lish/subscribe data networks. In CIKM, 2005.

3. N. J. Belkin and W. B. Croft. Information filtering and information retrieval: Two
sides of the same coin? Commun. ACM, 35(12), 1992.

4. M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improving
collection selection with overlap awareness in p2p search engines. In SIGIR, 2005.

5. M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Minerva:
Collaborative p2p search. In VLDB, 2005.

6. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. Planetp: Using
gossiping to build content addressable peer-to-peer information sharing communi-
ties. In HPDC, 2003.

7. A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: Content-based
publish/subscribe over p2p networks. In Middleware, 2004.

8. S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2p-diet: An extensible p2p
service that unifies ad-hoc and continuous querying in super-peer networks. In
SIGMOD Conference, 2004.

9. G. Koloniari and E. Pitoura. Content-based routing of path queries in peer-to-peer
systems. In EDBT, 2004.

10. J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical
peer-to-peer networks. In ECIR, 2005.

11. I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Beyond term indexing:
A p2p framework for web information retrieval. In Informatica, Special Issue on
Specialised Web Search., 2006.

12. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In SIGCOMM 2001. 2001.

13. A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware, 2001.

14. A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The
design of a large-scale event notification infrastructure. In NGC, 2001.

15. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM 2001.

16. D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-based publish/subscribe
systems with distributed hash tables. In DBISP2P, 2003.

17. C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient peer-to-peer
information retrieval. In NSDI, 2004.

18. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A peer-to-
peer approach to content-based publish/subscribe. In DEBS, 2003.

19. C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/subscribe functionality
in ir environments using structured overlay networks. In SIGIR, 2005.

Answering Constrained k-NN Queries in

Unstructured P2P Systems

Bin Wang1, Xiaochun Yang1,�, Guoren Wang1,��, Lei Chen2, Sean X. Wang3,
Xuemin Lin4, and Ge Yu1

1 School of Information Sciences and Engineering, Northeastern University, China
{binwang,yangxc,wanggr,yuge}@mail.neu.edu.cn

2 Department of Computer Science, Hong Kong University of Science and Technology
leichen@cs.ust.hk

3 Department of Computer Science, University of Vermont, USA
xywang@cs.uvm.edu

4 School of Computer Sci. and Eng., The University of New South Wales, Australia
lxue@cse.unsw.edu.au

Abstract. The processing of k-NN queries has been studied extensively
both in a centralized computing environment and in a structured P2P
environment. However, the problem over an unstructured P2P system
is not well studied despite of their popularity. Communication-efficient
processing of k-NN queries in such an environment is a unique challenge
due to the distribution, dynamics and large scale of the system. In this
paper, we investigate the problem of efficiently computing k-NN queries
over unstructured P2P systems. We first propose a location-based domi-
nation model to determine a search space. We then present two types of
probing strategies, radius-convergence and radius-expanding. A compre-
hensive performance study demonstrates that our techniques are efficient
and scalable.

1 Introduction

Due to their importance in many applications in a variety of domains, k-NN
queries have been extensively studied [8,13]. An often used mechanism that pro-
vides much needed retrieval efficiency is a centralized index. However, for k-NN
queries in a distributed environment, especially unstructured P2P environments,
centralized indexing is not a practical solution. The following example shows the
reason that new techniques are needed and hence motivate the work of this
paper.

Consider a tsunami alarm system for a certain area, e.g., the bay area of
Indonesia. Detection of a tsunami in many cases need data from areas that
go across multiple nations. Assume the nations establish a logical cooperative

� Supported by National Natural Science Foundation of China No. 60503036 and Fok
YingTong Education Foundation No. 104027.

�� Supported by National Natural Science Foundation of China No. 60473074.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 397–405, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

398 B. Wang et al.

network, where for any two nations, they have either direct cooperative rela-
tionship, represented as logical neighbors in the network, or indirect cooperative
relationship if their logical neighbors can cooperate. Each nation autonomously
maintains a set of sensors to monitor her own sea area and can request data from
her cooperative nations. Note that it is not necessary that two logical neighbors
are geographically bordered. Therefore, those autonomous nations need to coop-
erate to answer a distributed k-NN query efficiently. In this application, global
indexing is not available for the k-NN query, either, since data values may change
dynamically. Furthermore, it is often not possible for all the nations to follow
some organization rules (hashing functions) to arrange or store the data as re-
quired by a structured P2P system.

Compared to the distributed k-NN problems on P2P [6,7], a constrained k-
NN search with value predicates in unstructured P2P systems has posed the
following unique challenges: (i) Topology mismatch between the P2P logical
overlay network and physical underlying network; and (ii) Data in each peer is
maintained autonomously in unstructured P2P systems.

We address the above problems and make the following contributions. (i) We
propose a new framework for processing k-NN queries in unstructured P2P sys-
tems, (ii) we give a novel filtering mechanism to reduce the communication cost
and effectively terminate our search, and (iii) we also give detailed complexity
analysis of our algorithms.

The rest of the paper is organized as follows. The formal definition of con-
straint k-NN queries and a proposed filter model, called domination model, to
efficiently prune peers are given in Section 2. Section 3 provides our techniques
searching k-NN queries with least communication cost. Experimental results and
performance studies are discussed in Section 4. In Section 5, we discuss related
work. Finally, we conclude in Section 6.

2 Problem Definition

We assume a set of logically connected, cooperative peers, each covering a spatial
region that does not overlap with the spatial regions covered by all other peers.
We use a non-directed graph G = (P, E) to model the logical connections, where
P is a set of vertices representing the peers and E a set of edges expressing the
logical connections between the peers. For a peer p ∈ P , we use R(p) to denote
the spatial region it covers and D(p) to denote data set maintained by p. We
also assume that each peer has pre-knowledge of spatial regions covered by all
other peers. This assumption is reasonable since it is easy for a peer to collect
data from different peers and derive this knowledge in an incremental manner.

Each item in D(p) maintained by p has two kinds of attributes, namely lo-
cation attributes and non-location attributes. Hence, we denote each data item
d in D(p) as a pair 〈 vl(d), vn(d) 〉, where vl(d) (vn(d), resp.) is a value
vector of the location (non-location resp.) attributes of d. For each d in D(p),

Answering Constrained k-NN Queries in Unstructured P2P Systems 399

vl(d) must be contained in the region R(p). A k-NN query q is composed of
two parts, location value and non-location value predicate, denoted as 〈 vl(q),
qc 〉, respectively. A value predicate returns, when applied to a non-location
value vector, true or false. We define the distance between q and data d as
following:

Definition 1. Given a query q and data d, let the distance between q and d be

dist(q, d) =
{

dist(vl(q), vl(d)) if qc(vn(d)) = true
∞ otherwise

where dist can be any of the Lp-norm.

Given a query q and a peer p, we use minDist(q, p) (maxDist(q, p), resp.) to
express the minimum (maximum, resp.) distance between q and all the points
in R(p).

Formal Problem Statement: Assume we have a set of logically connected
peers p1, . . ., pn, each of which manages a set of data items, denoted D(pi), with
locations of each data item in D(pi) being in the spatial region R(pi). Assume
further that R(pi) ∩ R(pj) = ∅ for all i �= j. Given a continuous query q issued
by a peer pi, continually search k data items {d1, . . . , dk} among the data items
in D(p1) ∪ · · · ∪ D(pn) such that there does not exist any data item d satisfying
the condition dist(q, d) ≤ dist(q, dh) for some 1 ≤ h ≤ k . We aim to minimize
total communication costs.

The intuition of the domination model comes from the following simple facts:
If we know an upperbound ru of the distance from the query point q to the
kth data item in the query results, then a peer p′ does not need further probing
(for possible answers) if ru ≤ minDist(q, p′). Similarly, if we know that a peer
p provides the kth item in the answer set, then a peer p′ does not need further
probing if maxDist(q, p) ≤ minDist(q, p′). These facts form the basis for our
optimized search algorithms, which are described in Section 4.

Definition 2. (Dominate relationship) Given a query q, and two peers p1 and
p2, if maxDist(q, p1) ≤ minDist(q, p2), we then say that p1 dominates p2, de-
noted p1 ≺q p2, or p1 ≺ p2 when q is understood. For two groups of peers P1 and
P2, if for each peer p ∈ P1 and each peer p′ ∈ P2, p ≺ p′, we say P1 dominates
P2, denoted P1 ≺ P2.

3 Pruning Candidate Peers

We propose two probing strategies, namely the radius-convergence strategy and
the radius-expanding strategy. The radius-convergence strategy shrinks the probe
radius gradually until all peers in the probe circle have been probed, while the
radius-expanding strategy gradually expands the probe radius.

400 B. Wang et al.

3.1 The Radius-Convergence Approach

The first strategy that we introduce for direct probing is radius-convergence
strategy, which keeps shrinking the proving radius when more peers are probed
and closer data are found. For each probe, it keeps the new k nearest data and
let the new probe radius rk be the Euclidean distance between q and the new
kth data. This procedure repeats until all peers overlapping the circle with the
(shrinking) rk have been probed.

Ideally, we prefer to find a “better” peer that can get a close probe radius in
the first a few times probe. Seeking “better” peers to start with can be considered
as a rank aggregation (RA) problem [5], which searching top candidates from a
set of sorted rank list. We propose an algorithm to choose best-k peers in the
probe circle and put emphasis on the minimum distance.

Our RA-based approach is shown in Algorithm 1. Line 1, in Algorithm 1, nor-
malizes the attribute values 〈min, max, plen〉 for minimum distance, maximum
distance, and the logical paths of each peer to the range of [0,1], so that they
have the same weight for estimating a peer. Line 2 sorts all peers according to
minimum distance attribute in the ascending order. Lines 3-12 choose the top-
k peers with the smallest grades. Compare it with the random-based approach,
RA-based approach can decrease probe radius quickly, that is, probes peers with
higher probabilities to provide closer answers.

Algorithm 1: RA-based algorithm

Input: P = {p1, ..., ph}, each pi = 〈id, min, max, plen〉, k(≤ h),
geographical weight wg, logical weight wl

Output: a set of top-k peers
1: normalize P to P ′; // p.min, p.max, p.plen ∈ [0, 1]
2: l1=sort P ′ according to min; List result = ∅; count = 0; λ = 0;
3: for i = 1; i ≤ |P |; i++ do
4: λ=wg×((l1+i).min+(l1+i).max)+wl×(l1+i).plen;
5: r = last element in result;
6: if λ ≤ wg× (r.min+r.max)+wl× r.plen then
7: insert {(l1+i).id} to result; count++;
8: if count==k then return result;
9: else insert (l1+i) in candidate in ascending order;

10: end if
11: end if
12: end for
13: return result;

Note that, even some peers can provide k closest data, we are not able to
prune out all the rest peers whose minimal distances to q are less than the new
query radius rk. We then choose another top-k peers, using the same procedure,
in the remaining peers, and probing these peers to get another set of k′-closest
satisfying data (k′ ≤ k). We choose the first k data among these two sets of
returned satisfying data and shrink rk. The above procedure repeats until all
peers in the shrunk probe circle have been probed.

Answering Constrained k-NN Queries in Unstructured P2P Systems 401

3.2 The Radius-Expanding Approach

We propose a partition-based approach (PA in short) to gradually grow the prob-
ing radius. Ideally, we hope to find a small set of peers P1, such that if P1 can
answer the k closest answers, then all other peers can be safety pruned out. For
peers in each group, we build up a steiner tree using the local filtering mecha-
nism. Since messages are forwarded through edges of the constructed tree, we
hope to find and merge groups (such as P1 and P2) such that the summation of
edges of corresponding steiner trees T1 and T2 is minimal. In fact, this property
has been proved and stated in the following Theorem.

Theorem 1. Given an undirected graph G(P, E) and two set of target nodes
P1 ⊆ P and P2 ⊆ P , the summation of edges of the two trees T (P1) and T (P2)
is not less than the edge of T (P1 + P2), i.e. we have the following property

|T (P1)| + |T (P2)| ≥ |T (P1 + P2)|.

The basic task for the PA is the following. Given an undirected graph G =
(P, E), a set of terminal nodes P ′ ⊆ P , and subsets P1 ≺ . . . ≺ Ph, Pi ⊆ P ′

(1 ≤ i ≤ h), find an optimal partition of P ′ = {C1, C2}, such that neither C1

nor C2 is empty, each Pi can only belong to C1 or C2 (but not both), and the
sum of number of edges in steiner trees for {C1, C2} is minimal. PA combines
geographical dominate relationship and logical steiner tree together. We use
Algorithm 2 to greedily approximately build two steiner trees.

Algorithm 2: PA

Input:k, undirected graph G, source node s, and terminal nodes P ′ = {P1, ..., Ph}
Output:two steiner trees T1 and T2

1: for each Pi between P1 and Pk do
2: STi = greedyST(G, {s} ∪ Pi);
3: end for
4: find two minimal trees, assuming they are for Pu and Pv;
5: T1 = STu; RT1 = Pu; T2 = STv; RT2 = Pv;
6: for each peer Pi in P ′ − RT1 − RT2 do
7: pick the a minimal tree STi for Pi;
8: T ′

1 =greedyST(T1 ∪ Ti, {s} ∪ RT1∪ Pi); T ′
2 =greedyST(T2∪ Ti, {s}∪ RT2∪ Pi);

9: if edge(T ′
1) ≤ edge(T ′

2) then T1 = T ′
1; RT1 = RT1 ∪ Pi;

10: else T2 = T ′
2; RT2 = RT2 ∪ Pi;

11: end if
12: end for

PA classifies peers into two groups C1 and C2 corresponding to the two steiner
trees T1 and T1, respectively. Peers in C1 can be probed together. Note that,
groups in C2 = C − C1 may contain a group Pj dominates groups in C1. If the
first round probe gets k′ (≤ k) closest answers, then using the locations of these
k′ answers, we can know k1 (≤ k′) out of k′ answers are returned by P1. Then it
classifies P ′− C1 into two classes and request k − k1 to C1. PA iterative repeats
the above procedures until k closest answers are returned.

402 B. Wang et al.

4 Experimental Study

In this section, we built a peer-to-peer simulator to evaluate the performance
of our proposed system over large-scale networks. To evaluate the cost of query
processing, we tested the network with different number of peers N from 200 to
1800. Each peer contains a set of data from 1K to 200K with two dimensional
location values and one non-location value. We generated two datasets. Dataset 1
conforms to uniform distribution and dataset 2 conforms to normal distribution.
All approaches were implemented in C++ and run on Intel XEON(TM) 3.2GHz
dual-CPU with 2G RAM on Windows 2003 Server. For each setting, we tested
an algorithms by running it 10 times to compute the average result.

Comparison of different k-NN searches. We compared the communica-
tion cost (represented as # of messages) of getting k-NN results using differ-
ent search strategies. We ran 10 different k-NN queries whose locations and
predicate values are randomly specified. Besides flooding search, we tested two
radius-convergence approaches and two radius-expanding approaches. Radius-
convergence approaches include random search and RA-based search, whereas
radius-expanding approaches include exhausted search every dominate groups
(EX in short) and Partition-based search (PA in short). We used two datasets
with uniform and normal distributions, respectively. In addition, we also com-
pared three straightforward approaches according to the ranking of the minimal
and the maximal geographical distances and the shortest path in logical graph,
respectively.

Fig. 1 shows the conveying messages of these algorithms using two datasets
conforming to uniform and normal distributions. We let the number of peers
vary between 500 and 2500, and ran 10 different 100-NN queries. Figs. 1(a) and
(b) compare five approaches using dataset 1. It shows that flooding search costs
the most conveying messages, whereas PA uses the least conveying messages.
Our proposed two approaches RA and PA are all independent on the number of
peers. RA is the second best approach. Fig. 1(c) shows the similar result using
dataset 2. Figs. 1(b) and (d) show the number of conveying messages when fixed
the number of peers to 1000 and varied k from 20 to 100. They all show that
both RA and PA outperform than the other approaches, and PA always use least
messages to get k-NN nearest results.

Comparison of filtering capabilities. We tested the capabilities of filtering
peers using PA and RA approaches on dataset 1. We first changed the number
of k values from 20 to 70. Fig. 1(e) shows the filtering capability decreased when
increasing k values. RA has less filtering capability than PA. The reason is RA
is a radius-convergence approach that gradually shrink query radius. It keeps
probing at least k peers for each iteration until all peers in the shrinking query
radius have been probed. Whereas, PA is a radius-expanding approach that when
k closest data is met, it can stop. Fig. 1(f) shows the filter capabilities when
varying the number of peer groups. It shows that PA has better filter capability
than RA. When the peer group number increased to 16, the capability of PA
climbs to a peak value 52%, whereas RA has no peak value. It proved that the

Answering Constrained k-NN Queries in Unstructured P2P Systems 403

10
8

10
7

10
6

10
5

10
4

10
3

10
2

 500 1000 1500 2000 2500

#
 o

f
m

es
sa

g
es

of peers
(c) Normal distribution

Flooding
RANDOM

EX
RA
PA

10
8

10
7

10
6

10
5

10
4

10
3

10
2

 20 30 40 50 60 70 80 90 100

#
 o

f
m

es
sa

g
es

k value
(d) Normal distribution

Flooding
RANDOM

EX
RA
PA

10
8

10
7

10
6

10
5

10
4

10
3

10
2

 600 800 1000 1200 1400 1600 1800

#
 o

f
m

es
sa

g
es

of peers
(a) Uniform distribution

Flooding
RANDOM

EX
RA
PA

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

 30 50 70 90

#
 o

f
m

es
sa

g
es

k value
(b) Uniform distribution

Flooding
RANDOM

EX
RA
PA

 0

 20

 40

 60

 80

 100

706050403020

F
il

te
r

ra
te

 (
%

)

k value
(e)

PA
RA

 0

 20

 40

 60

2018161412

F
il

te
r

ra
te

 (
%

)

of peer groups
(f)

PA
RA

Fig. 1. Comparison of different k-NN searches

filter capability of PA depends on the chosen number of groups in all dominate
group set, whereas RA does not since RA only considers the first k ranked peers
using geographical distances and logical graphs.

5 Related Work

As far as we aware, there is no similar work has been on the proposed problem
setting. The most closed work to ours fall in to two categories: continuous k-NN
searches over spatial database and k-NN queries over structured P2P systems.
We will review the work in this two directions and explain the difference between
our work and theirs. There are many work have been proposed for continuous k-
NN queries over moving objects in spatial database domain. Most of these works
focus on reducing the number of updates to the indexes. In order to achieve this,
the trajectories of moving objects are modeled by some linear functions, thus a
R-tree can be built use time as a function [12,16]. Compared to these work, our
problem setting is for distrusted environment and we do not assume existence
of a centralized index. Moreover, we have the logical communication cost as a
constraint to the k-NN queries.

k-NN queries over P2P systems can be classified into search over unstructured
P2P and structured P2P. For structured P2P systems, data allocation strategies
are important for k-NN search. Distrusted Hashing Table (DHT) is often used
to allocate data, such as CAN [9], Chord [15], Pastry [11], and Tapestry [17],
which use uniform hash functions and achieve good load balance. However, these
hashing functions destroys data locality (data that are similar should be allocate
near to each other in the space). Complicated queries such as k-NN have to rely

404 B. Wang et al.

on multi-cast or additional indexes. Some locality-preserving data allocation ap-
proach are also proposed, such systems include P-Grid [2], P-Ring [4], Baton [7],
Vbi-tree [6], and Mercury [3]. The basic idea of these approaches is to keep data
locality over the attribute as much as possible. For unstructured P2P systems,
very few work have been done so far. Gnutella [1] using flooding techniques to do
k-NN search. Compared to these work, our work focus on continuous constrained
k-NN search over unstructured P2P system. Besides finding the k-NN, we have
to guarantee that searched value satisfying the value predicate specified in the
query. Furthermore, in contrary to traditional setting of P2P systems that each
peer maintains static data, a peer in our system maintains dynamic data.

6 Conclusion

This paper has investigated the new problem of processing the constrained k-
NN queries over unstructured P2P systems, and proposed two approaches to
efficiently filter peers in the search space. The experimental results on the two
synthetic datasets have shown that (i) the algorithms proposed outperform most
the other heuristic algorithms, (ii) the novel adaptive histogram can save more
communication cost, and (iii) our technique can efficiently process continuous
k-NN queries in a distributed, and large scale environment.

References

1. Gnutella. http://www.gnutella.com/.

2. K. Aberer, P. C. Mauroux, and et al. P-grid: a self-organizing structured p2p
system. SIGMOD Rec., 32(3):29–33, 2003.

3. A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-
attribute range queries. In Proc. of the 2004 ACM SIGCOMM.

4. A. Crainiceanu, P. Linga, and et al. P-ring: an index structure for peer-to-peer
systems. Technical report, TR2004-1946, Cornell University, 2004.

5. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, pages 102–113, 2001.

6. H. V. Jagadish, B. C. Ooi, and et al. Vbi-tree: A peer-to-peer framework for
supporting multi-dimensional indexing schemes. In ICDE, pages 34-45, 2006.

7. H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: a balanced tree structure for
peer-to-peer networks. In VLDB, pages 661–672, 2005.

8. F. Korn, N. Sidiropoulos, and et al. Fast nearest neighbor search in medical image
databases. In VLDB, pages 215–226, 1996.

9. S. Ratnasamy, P. Francis, and et al. A scalable content addressable network. In
In ACM SIGCOMM, pages 161–172, 2001.

10. G. Robinsy and A. Zelikovskyz. Improved steiner tree approximation in graphs.
11. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. In In IFIP/ACM Distributed Systems
Platforms, pages 329–350, 2001.

12. S. Saltenis, C. S. Jensen, and et al. Indexing the positions of continuously moving
objects. In SIGMOD, pages 331-342, 2000.

Answering Constrained k-NN Queries in Unstructured P2P Systems 405

13. T. Seidl and H. Kriegel. Optimal multi-step k-nearest neighbor search. pages
154–165, 1998.

14. A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang. A sampling-based
approach to optimizing top-k queries in sensor networks. In ICDE, 2006.

15. I. Stoica, R. Morris, and et al. Chord: A scalable peer-to-peer lookup service for
internet applications. In ACM SIGCOMM, pages 149–160, 2001.

16. Y. Tao and D. Papadias. MV3R-tree: A spatio-temporal access method for times-
tamp and interval queries. In VLDB, pages 431–440, 2001.

17. B. Y. Zhao and J. Kubiatowicz. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical report, UC Berkeley, 2001.

Scalable IPv4/IPv6 Transition: A Peer-to-Peer

Based Approach

Jun Bi, Xiaoxiang Leng, and Jianping Wu

Network Research Center, Tsinghua University
Beijing 100084, China

junbi@tsinghua.edu.cn

Abstract. This paper presents a scalable and robust IPv4/IPv6 tran-
sition method utilizing Peer-to-peer technology. The gateways of IPvX
(IPv4 or IPv6) islands automatically set up an IPvX P2P network upon
IPvY (IPv6 or IPv4) network to exchange and maintain IPv4/IPv6
transition information. IPvX in IPvY tunnels between IPvX islands
can be established automatically according to the IPv4/IPv6 transition
information.

1 Introduction

IPv6 has been recognized as a protocol for next generation Internet. Due to the
long term transition from IPv4 to IPv6, IPv4/IPv6 transition is an important
research topic and a bunch of transition methods had been proposed. During
the transition period, there will be many IPvX (IPv4 or IPv6) islands in IPvY
(IPv6 or IPv4) could. An IPvX island in IPvY clouds wants to communicate
with other IPvX islands, and also wants to communicate with IPvX backbone
[1]. According to the latest IPv4/IPv6 transition requirements issued by IETF
6trans working group, there is no ideal approach to handle this scenario.

A MP-BGP based mechanism has just been presented by IETF softwire WG
[2] to connect isolated IPvX networks together over IPvY backbone. In this
method, MP-BGP is extended to propagate TEP (Tunnel End Point) informa-
tion inside the IPvY backbone and set up full mesh tunnels between border
routers of isolated IPvX networks. However, this method can only be used on
the border routers (AFBR) of some large area IPvX networks with MP-BGP
support, and can not be widely deployed on the edge gateways of isolated IPvX
islands. Furthermore, the BGP peers for one router are configured manually and
cannot change automatically with the change of network environment.

This paper presents a Peer-to-Peer based IPv4/IPv6 transition method. The
P2P network is set up automatically to handle the control plane information and
flood IPv4/IPv6 address transition table. In the data plane, the IPv6-in-IPv4
or IPv4-in-IPv6 tunnel between the source gateway and destination gateway is
established according to the IPv4/IPv6 transition table. Compared with exist-
ing methods, the proposed method can handle all transition requirements: (1)
Automatic; (2) High performance; (3) Without using specific IPv6 address such

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 406–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach 407

as 6to4 addresses. The method can be implemented in IPv4/IPv6 dual-stack
routers or linux boxes that are used as gateways between IPvY clouds and IPvX
islands.

The mechanism and protocol design of the proposed method will be presented
in Section 2 and Section 3. Section 4 analyzes the reliability P2P network. Sec-
tion 5 introduces the prototype and experiments and Section 6 concludes the
paper.

2 Mechanism

In [3], a DHT-based P2P network is used to forward the IPv6 data packets.
However DHT is not suitable for the longest matching in packet forwarding.
The method proposed in this paper doesn’t rely on structural P2P network.

Fig. 1. The IPv4/IPv6 transition architecture

The architecture of the proposed method is shown in Figure 1. Ra, Rb, etc. are
edge gateways of IPvX islands. A P2P network is maintained by them to share
TEP (Tunnel End Point) information. With the TEP information, shortcut tun-
nels are established on each gateway for transferring data packets between these
islands. The mechanism is described as below:

1. A node of the P2P overlay network is a gateway of IPvX subnet or IPvX
backbone

2. There is a registration server, when a node joins the P2P network, it com-
municate with the register server and receives the node list with Register/Replay
packets.

408 J. Bi, X. Leng, and J. Wu

3. The new node select three neighbor nodes from the node list then set up
adjacencies with 3 neighbors with Hello, Request, Update and Ack packets.

4. The adjacency is kept alive by exchange Hello packets every 1 second.
5. The Update packets that contain local IPv4/IPv6 address transition table

are flooded all over the P2P network, so that every node knows the destination
IPvX network and its gateway’s IPvY address.

6. When an IPvX host in an IPvX island sends an IPvX packet to an IPvX
destination, the source gateway searches the gateway’s IPvY address according
to destination IPvX address form transition table. Then encapsulates the IPvX
packet into IPvY packet and sends our to the destination gateway.

7. When the destination gateway receives the IPvX in IPvY packet, it reads
the IPvX packet and sends it to the destination IPvX host.

8. When a node wants to quit the P2P network, it sends out an Update packet
to remove the IPv4/IPv6 transition table.

9. When a node figures out its neighbor is dead, it selects a new neighbor
from the node list, and keep the total number of its neighbor at least 3.

The registration server is a normal P2P node and is kept update by flooding
mechanism. When a node quits or is dead, the registration server removes this
node form the node list.

Fig. 2. An example of P2P based IPv6 over IPv4 network

Figure 2 shows an example of P2P based IPv6 over IPv4 Network. The pro-
posed method is high performance with lower cost, because: (1) It separates the
data plane and control plane. The control plane only handles flooding of tran-
sition table. (2) The control and data plane mechanism are fully automatic, no

Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach 409

configuration is required after a node is assigned to join the P2P network. (3)
The IPv6 island can be assigned with any IPv6 address (compared with specific
6to4 addresses), therefore after the transition period, it does not need to be
reconfigured to directly connect the IPv6 backbone. (4) The recovery mechanism
is highly reliable (will be discussed in section 4).

3 Protocol Design

We designed six types of control packets: Hello, Request, Update, Ack, Register,
Reply. The control packets are transported using UDP port 2005.

1. The Hello packet is designed for adjacency setup and neighbor keeping-
alive.

2. The Request packet is designed for transition table request.
3. The Update packet is designed for transition table flooding.
4. The Ack packet is designed for acknowledgement of update packets.
5. The Register packet is designed for a new node to request joining the P2P

network.
6. The Reply packet is designed for a registration server to answer the regis-

tration request, by replying IPvY address list of all the current P2P nodes.

The state machine of Registration is shown in Figure 3.

Fig. 3. The state machine of registration

When the node sends out Registration packet, it keeps Init state. After it
receives Reply packet, the node transits to Registered state.

The neighbor state machine is shown in Figure 4.
In the None state:

1. When a type 0 Hello is received, it sends out type 1 Hello and transits to
OneWay state.

2. When a type 1 Hello is received, it sends out Request and transits to
TwoWay state.

410 J. Bi, X. Leng, and J. Wu

Fig. 4. The neighbor state machine

In the OneWay state:

1. When a type 0 Hello is received, it sends out type 1 Hello and keeps OneWay
state.

2. When a type 1 Hello is received, it sends out Request and transits to
TwoWay state.

3. When a Request is received, it sends out Update and transits to TwoWay
state.

In the TwoWay state:

1. When a type 0 Hello is received, it sends out type 1 Hello and keeps OneWay
state.

2. When a type 1 Hello is received, it sends out Request and keeps TwoWay
state.

3. When a Request is received, it sends out Update and keeps TwoWay state.
4. When an Update is received, it sends out Ack and Update, then keeps

TwoWay state.
5. When an Ack is received, it transits to None state.

In the Full state:

1. When a type 0 Hello is received, it sends out type 1 Hello and keeps OneWay
state.

2. When a type 1 Hello is received, it keeps Full state.

Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach 411

3. When a Request is received, it sends out Update and keeps Full state.
4. When an Update is received, it sends out Ack and Update, then keeps Full

state.
5. When an Ack is received, it keeps Full state.

4 Analysis of P2P Network Connectivity

Since there is no special structure maintained with the P2P network used in the
proposed method, the quit or failure of some nodes may cause the P2P network
to split into multiple disconnected subnets. In this section, the connectivity of
the P2P network will be analyzed. It’s hoped to find an effective way to keep
the P2P network connected.

Paul Baran did some research on distributed communication networks which
consist of unreliable nodes and unreliable links. From the viewpoints of Node
Destruction and Link Destruction, his simulation and analysis shows that, with
a certain node degree, the distributed network can provide a reliable communi-
cation service under a given probability of node failure and/or link failure [4].
Afterward, the situation of Link Destruction is proved by the theorem about
sharp threshold in a random graph that: if G is a k-connected graph of n ver-
tices and the edge probability p(n) satisfies p(n)� clog(n/k) for a large enough
absolute constant c > 0, then a.s. the random sub-graph Gp is connected [5].

Furthermore, the reliability analysis of the random multicast protocol Gossip
shows the sharp result that if there are n nodes, and each node gossips to logn+k
other nodes on average, then the probability that everyone gets the message con-
verges to exp(exp(- λ)) [1].

This research gives us inspiration in analyzing the connectivity of the P2P net-
work. The major difference between physical network and P2P overlay network
is that in a P2P network, the neighbor nodes for a node are not fixed. When a
node finds one of its neighbors unreachable, it can establish a new neighborhood
with another live node. Thus the probability of disconnection in a P2P network
may be much lower than physical network.

As described in Section 2, a simple Random Recovery Scheme is used to avoid
the disconnection of the P2P network by setting a minimal degree d for each
node and randomly choosing new neighbors for recovery. The effectiveness of
this recovery scheme will be analyzed by simulation. The feasible scope of the
variable d to keep the P2P network connected will be discussed. When simulat-
ing, the following two kinds of failures are considered:

(1) Single Node Destruction (SND). Each node in the P2P network is de-
stroyed with a certain probability. The probability for each node is independent
of the probabilities for other nodes.

(2) Single Virtual Link Destruction (SVLD). Each virtual link between two
overlay neighbors is destructed with a certain independent probability. An ex-
ample of SVLD would be transport timeout or de-convergence of routing after
some physical failure.

412 J. Bi, X. Leng, and J. Wu

The situation of Single Node Destruction, Single Virtual Link Destruction
and the combination of SND and SVLD will be simulated in the following parts.
The steps of simulation are as follows:

(1) Randomly build a N-node network where the nodes join the network grad-
ually with minimal degree d;

(2) Destroy each node or virtual link independently with a certain probability;
(3) Rebuild the network with the Random Recovery Scheme;
(4) Check the connectivity of the rebuilt network;
(5) Loop step (1) - (4) for 100,000 times to get the probability of disconnection.

4.1 Single Node Destruction (SND)

In this situation, unlike the physical network, along with the increasing probabil-
ity of SND, the probability of disconnection of the P2P network can be restricted
to a low level with the Random Recovery Scheme.

Figure 5(a) shows the simulation result of SND with node number N=10000.
The probability of disconnection stays less than 0.2 when d is 2. And this prob-
ability decreases to less than 10-5 when d � 3, whatever the probability of SND
is. In another word, the probability of disconnection of this P2P network is close
to 1.0 as long as d is equal to or greater than 3.

Fig. 5. Simulation results of SND or SVLD, N=10000: (a) SND (b)SVLD

4.2 Single Virtual Link Destruction (SVLD)

Similar to SND, when the virtual links destructed separately, the Random Re-
covery Scheme also can prevent disconnection of the P2P network effectively. As
shown in Figure 5(b), the probability of connection of the P2P network is close
to 1.0 when d � 3.

4.3 SND+SVLD

As shown in Figure 6(a) and Figure 6(b), in the situation of both SND and
SVLD, similarly, the P2P network can keep connected when d � 3.

Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach 413

Fig. 6. Simulation results of SND + SVLD, N=10000): (a) d=2 (b) d � 3

4.4 Influence of Node Number N

A threshold C is defined to indicate the minimal value of d while the disconnec-
tion probability of the P2P network keeps less than 10-5. In other words, when
dC, the P2P network can keep connected whatever the probability of SND or
SVLD. With node number N from 1 to 10000, the relationship between C and
N is shown in Figure 7. With increasing N, C grows quickly to 3 and stabilizes.

Fig. 7. Relationship between C and N

4.5 Summary

From the analysis above, when the node number is less than 10000, the P2P
network used in the proposed method can keep connected as long as the mini-
mal degree of each node d is equal to or more than 3. For some limitations of
simulation environment, the situation with node number greater than 10000 is

414 J. Bi, X. Leng, and J. Wu

difficult to simulate. From the analysis above, we can infer that when d is equal
to or more than 3, the P2P network can keep connected no matter what the
node number is.

5 Prototype and Experiments

5.1 The Prototype

Up to now, the architecture and protocol details of the proposed method has
been designed already. A Linux-based prototype system has also been developed.
As shown in Figure 8, our implementation on the edge gateways of IPvX islands
has four functional modules:

1. P2P System;
2. RT Control;
3. Tunnel Table;
4. Virtual Interface.

The P2P System module processes configuration commands that define the
information of tunnel end point of local islands edge gateways and gets the TEP
information of other islands from an overlay P2P network.

The RT Control module receives the TEP information from P2P System,
forms the Tunnel Table, and inserts the forwarding information into the Routing
Table of the gateway to assign the direct tunnels with higher route precedence

Fig. 8. The prototype system

Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach 415

than other routes and to make the traffic to the destination islands all forwarded
to the Virtual Interface.

The module Tunnel Table holds the information of direct tunnels between
IPvX islands, and point out the IPvY address of the destination gateway for the
Virtual Interface when packet forwarding.

When the Virtual Interface receives a data packet to a destination IPvX island,
it looks up the Tunnel Table to find out the IPvY address of the remote island
gateway, encapsulates this packet with an IPvY header, and sends it back to the
forwarding scheme of local gateway.

5.2 The Experiments

With this prototype system, the proposed method has already been deployed on
four isolated IPv4 island gateways inside CERNET2 (a nationwide IPv6 back-
bone in China). These four islands all have some inner IPv4 users and services
(i.e., web, ftp, media steaming, etc), and are connected with the same relay
gateway through IPv6-in-IPv4 tunnels to access native IPv4 network. Both the
island and relay gateways each has a 100Mbps Fast Ethernet link with the IPv6
network. We have the following two experiments to validate the effect of the
proposed method from the viewpoint of reducing the burden of relay gateway
and increasing the access performance of isolated islands.

Fig. 9. Experiment results: (a) Effect on reducing the burden of relay (b) Effect on
increasing access performance

In the first experiment, we limit the bandwidth of IPv4 island gateways to
10Mbps. This makes the bottleneck of this system not the relay but the island
edge gateways. That means no matter whether the proposed method is used, the
throughput of island gatewayswill be kept only 10Mbps. In this way, we can clearly
notice the effect of the proposed method on reducing the burden of relay gateway.

We note the throughput of relay gateway with/without the proposed method
used on island gateways for one hour. As shown in Figure 9(a), the result, with an
average bit rate about 40Mbps without the proposed method while only about
15Mbps with the proposed method, shows that the proposed method can greatly
reduce the reliance on the relay. Besides, from this experiment, we can see that
only 37.5% traffic is outside the scope of IPv4 islands.

416 J. Bi, X. Leng, and J. Wu

In the second experiment, we focus on the throughput of IPv4 island gateways
with no limit at all. The bit rate of one island gateway in one hour is shown
in Figure 9(b). From this result, we can see that the throughput changes from
about 16Mbps to 58Mbps in average when the proposed method is in use. In
other words, the proposed method can effectively increase the access performance
of isolated islands.

6 Conclusions

This paper presents a new IPv4/IPv6 transition method based on Peer-to-peer
technology. This method can be used to provide scalable and reliable IPvX (IPv4
or IPv6) service for IPvX islands inside IPvY (IPv6 or IPv4) cloud. The pro-
posed method has the following advantages, compared with current methods:

1. Robustness: Our experience shows that if a node keeps its neighbor num-
ber more than three, then our neighbor recovery mechanism can always keep the
P2P network connectivity.

2. Decentralization: The resignation server is also a member of P2P node, and
being updated by flooding mechanism. Therefore, the P2P network doesn’t has
a potential bottleneck.

3. Scalable: The simulation shows that the number of nodes can be scale from
10 to 10000.

4. High performance: The IPvX in IPvY tunnels are automatically estab-
lished between endpoint gateways and the data are transported and handled
distributed by endpoint gateways.

The current design and implementation depends on IPvX-in-IPvY tunneling
technology. In future, more work will be done to extend the propose method to
support different type of encapsulation, such as GRE, IPvX-in-UDP-in-IPvY,
etc.

References

1. Lind, M., Ksinant, V., Park, S., Baudot, A., Savola, P.: Scenarios and Analysis for
Introducing IPv6 into ISP Networks. Request for Comments 4029. (2005).

2. IETF Softwires Working Group: http://www.ietf.org/html.charters/softwire -
charter.html.

3. Zhou, L., Renesse, R.: P6P: A Peer-to-Peer Approach to Internet Infrastructure.
IPTPS. (2004).

4. Baran P.: On Distributed Communication Networks. IEEE Transactions on Com-
munication Systems. (March 1964).

5. Krivelevich, M., Sudakov, B., Vu., V.: A sharp threshold for network reliability.
Combinatorics, Probability and Computing. (2002).

6. Kermarrec, A., Massoulie L.: Probabilistic reliable dissemination in large-scale sys-
tems. IEEE Transactions on Parallel and Distributed Systems. (March 2003).

Author Index

Aberer, Karl 187, 247, 331
Agrawal, Divyakant 123
Ahlbrecht, Peter 203
Alda, Sascha 195

Baldoni, Roberto 219
Battré, Dominic 343
Behnel, Stefan 211
Bender, Matthias 26, 385
Beneventano, Domenico 13
Bergamaschi, Sonia 13
Bi, Jun 406
Bothe, Andreas 203
Brunkhorst, Ingo 179
Buchmann, Alejandro 211

Carchiolo, Vincenza 298
Chen, Lei 397
Chernov, Sergey 26
Comito, Carmela 163

Das, Gautam 273
Datta, Anwitaman 247, 331
Dhraief, Hadhami 179
Dowling, Jim 86

El Abbadi, Amr 123

Falchi, Fabrizio 98
Fegaras, Leonidas 273
Furtado, Pedro 38

Garcia-Haro, Joan 368
Gennaro, Claudio 98
Ghodsi, Ali 74
Girdzijauskas, Sarunas 247
Guerra, Francesco 13
Guerrini, Giovanna 147

Hand, Steven 259
Haridi, Seif 74
He, Weimin 273
Heine, Felix 343
Höing, André 343
Hose, Katja 171
Hossain, Md. Delwar 227

Idreos, Stratos 135

Kalogeraki, Vana 235
Kantere, Verena 285
Kao, Odej 343
Karnstedt, Marcel 171
Khan, M. Sulaiman 376
Kiringa, Iluju 227
Klemm, Fabius 187
Koch, Anke 171
Kojima, Isao 323
Koubarakis, Manolis 135

Leng, Xiaoxiang 406
Levine, David 273
Lió, Pietro 259
Liarou, Erietta 135
Lin, Xuemin 397
Litwin, Witold 1, 155
Lu, Yu-En 259

Malgeri, Michele 298
Malgosa-Sanahuja, Josemaria 368
Mangioni, Giuseppe 298
Manzanares-Lopez, Pilar 368
Mascardi, Viviana 147
Matono, Akiyoshi 323
McBrien, Peter 310
Mesiti, Marco 147
Michel, Sebastian 26, 385
Mirza Pahlevi, Said 323
Mokadem, Riad 155
Muñoz-Gea, Juan Pedro 368
Muyeba, Maybin 376

Naumann, Felix 50
Nejdl, Wolfgang 331, 355
Nicosia, Vincenzo 298
Ntarmos, Nikos 111

Onana Alima, Luc 74

Parkitny, Sebastian 385
Patarin, Simon 163
Patterson, Stacy 123

418 Author Index

Pitoura, Theoni 111
Poulovassilis, Alexandra 310

Roth, Armin 50

Sacha, Jan 86
Sanchez-Aarnoutse, Juan Carlos 368
Sattler, Kai-Uwe 171
Schwarz, Thomas 155
Sellis, Timos 285
Serdyukov, Pavel 26

Talia, Domenico 163
Tan, Kian-Lee 62
Triantafillou, Peter 111
Tucci Piergiovanni, Sara 219

Vincini, Maurizio 13

Wang, Bin 397
Wang, Guoren 397
Wang, Sean X. 397
Weikum, Gerhard 26, 385
Wu, Jianping 406
Wu, Wei 62

Yang, Xiaochun 397
Yu, Ge 397

Zezula, Pavel 98
Zhou, Xuan 355
Zimmer, Christian 26
Zinn, Daniel 171

	Title
	Preface
	Table of Contents
	Galois Connections, T-CUBES, and P2P Data Mining
	Introduction
	Galois Connections
	Multi-valued Galois Connections
	T-CUBES
	T-CUBE Evaluation
	Database Heritage
	Concept Analysis Heritage

	Conclusion
	References

	Querying a Super-Peer in a Schema-Based Super-Peer Network
	Introduction
	SEWASIE Architecture

	The SEWASIE System
	Query Reformulation in the SEWASIE System
	Query Unfolding
	An Agent-Based Prototype for Query Processing

	Conclusion and Future Work

	Database Selection and Result Merging in P2P Web Search
	Introduction
	Related Work
	P2P Search Platforms
	Database Selection
	Result Merging

	Pseudo-relevance Feedback for Distributed IR
	Database Selection
	Result Merging

	Experiments
	Experimental Setup
	Database Selection Experiments
	Result Merging Experiments

	Conclusion and Future Work

	Multiple Dynamic Overlay Communities and Inter-space Routing
	Introduction
	Related Work
	Multiple DHT-P2P Spaces
	Creating Multiple Spaces
	Linking Multiple Spaces

	Inter-space Routing Policies
	Chord Routing and Broadcasting
	Strategies with No State Overhead
	Strategies with Extensive State Overhead
	Gateway-Based Strategies
	Caching-Based Strategies

	Comparative Analysis
	Conclusions and Future Work

	Benefit and Cost of Query Answering in PDMS
	PDMS and Data Quality
	PDMS and Completeness
	Data Sources and Mappings in PDMS
	Completeness of Data Sets

	Query Planning and Completeness
	PDMS Query Planning
	Completeness of Query Plans

	Pruning Subplans
	Experiments
	Related Work
	Conclusions

	Cooperative Prefetching Strategies for Mobile Peers in a Broadcast Environment
	Introduction
	System Model and Assumptions
	System Model
	PT heuristic and Assumptions

	Announcement-Based Cooperative Prefetching (ACP)
	Deciding Whether to Send Out Announcement
	Making Final Decision
	Answering Queries Cooperatively

	Simulation Model
	Experiments and Results
	Effect of Cache Size
	Effect of Overlap
	Effect of Skewnessθ
	Effect of Transmission Range
	Effect of Move Speed
	Effect of Data Size

	Conclusion

	Symmetric Replication for Structured Peer-to-Peer Systems
	Introduction
	Preliminaries
	Major Existing Replication Schemes
	The Symmetric Replication Scheme
	Exploiting Symmetric Replication
	Evaluation
	Related Work
	Conclusions

	A Gradient Topology for Master-Slave Replication in Peer-to-Peer Environments
	Introduction
	Peer Utility Metrics
	Gradient Topology
	Neighbour Selection Algorithm
	Replication Strategy
	Replica Placement
	Replica Synchronisation
	Master Election
	Replica Discovery

	Evaluation
	Related Work
	Conclusions and Future Work

	A Content–Addressable Network for Similarity Search in Metric Spaces
	Introduction
	Background
	Content--Addressable Network (CAN)
	Metric Spaces
	Pivot-Based Filtering

	MCAN
	Notation
	Construction
	Insertion
	Split
	Range Query

	Performance Evaluation
	Range Query

	Related Work and Conclusions

	Range Query Optimization Leveraging Peer Heterogeneity in DHT Data Networks
	Introduction
	Range Queries over DHTs
	The RangeGuard
	Node Performance Counters and the Node Performance Relation (NPR)
	Joining the RangeGuard
	Leaving the RangeGuard
	Range Query Processing Using RGs
	Modifications to the LP-DHT Overlay

	Load Distribution on the RG Ring
	Performance Evaluation
	Hop Count
	Load Distribution

	Related Work
	Conclusions

	Guaranteeing Correctness of Lock-Free Range Queries over P2P Data
	Introduction
	Background
	System Model
	P-Ring

	Query Correctness
	Correct Query Results
	Incorrect Query Results: Examples

	A Simple Protocol
	Range Ownership
	Correct Range Queries
	Incorrect Query Results Revisited

	Extension to Simple Protocol
	Conclusion

	Publish/Subscribe with RDF Data over Large Structured Overlay Networks
	Introduction
	System Model and Data Model
	A High-Level View of Our Algorithms
	The Single Query Chain Algorithm
	The Multiple Query Chains Algorithm
	Experiments
	Conclusions

	A Semantic Information Retrieval Advertisement and Policy Based System for a P2P Network
	Introduction
	Basic Concepts
	Architecture and Functionalities
	Concluding Remarks
	References

	Cumulative Algebraic Signatures for Fast String Search, Protection Against Incidental Viewing and Corruption of Data in an SDDS
	Introduction
	Record Encoding
	Searches
	Performance
	Protection Against Incidental Corruption
	Protection Against Accidental Viewing
	Related Work
	Conclusions

	PARIS: A Peer-to-Peer Architecture for Large-Scale Semantic Data Integration
	Introduction
	System Model
	Topology
	Functional Architecture
	Network Management
	Query Processing
	Mapping Management

	Conclusion and Future Work

	Processing Rank-Aware Queries in P2P Systems
	Introduction
	Multidimensional Routing Indexes Based on the QTree
	Routing Indexes
	QTree-Based Routing Indexes

	Processing Multidimensional Top-N Queries
	Skyline Queries
	Conclusion

	Semantic Caching in Schema-Based P2P-Networks
	Introduction
	Related Work
	Semantic Caching in Super-Peer Networks
	Answering Queries Using Semantic Caches
	Cache Management Strategies in Edutella
	Answering Queries in Edutella Using MiniCon

	Simulation
	Experimental Setup
	Results

	Summary and Future Work

	Aggregation of a Term Vocabulary for P2P-IR: A DHT Stress Test
	Introduction
	Overview of Structured P2P Systems
	Aggregation of Term Vocabulary
	Usage Scenario
	Blunt Message Handling
	Splitting the Vocabulary into Blocks
	Message Queuing
	Avoiding Flooding

	Experimental Results
	Discussion
	Redistribution of Aggregates
	Fighting Malicious Peers
	Updating Term Frequencies
	Scaling It Up

	Conclusions

	Peer Group-Based Dependency Management in Service-Oriented Peer-to-Peer Architectures
	Introduction
	Related Work
	The DeEvolve Platform
	Dependency Analysis in DeEvolve
	Registration of Consumer Dependencies
	Adaptation Policy
	Prototypical Implementation

	Conclusion

	LEAP-DB: A Mobile-Agent-Based Distributed DBMS Not Only for PDAs
	Introduction
	Databases on Mobile Devices and JADE-LEAP
	LEAP-DB Design
	Aspects of the Implementation
	Conclusion

	Models and Languages for Overlay Networks
	Introduction
	Node Views, the System Model
	OverML, the XML Overlay Modelling Language
	\SLOSLhead, the View Specification Language
	\NALAhead, the Node Attribute Language
	\HIMDELhead, the Hierarchical Message Description Language

	Conclusion, Current and Future Work

	A Peer-to-Peer Membership Notification Service
	Introduction
	System Model
	MNS Specification
	Specification
	Impossibility Results

	A p2p MNS Implementation

	Querying Communities of Interest in Peer Database Networks
	Introduction
	Querying Communities of Interest
	Motivating Example and Preliminary Concepts
	Community-Based Querying Algorithm

	Implementation
	System Architecture
	Implementation and Experiments

	Related Work
	Conclusion and Future Work

	Middleware for Reliable Real-Time Sensor Data Management
	Introduction
	Data Management on Sensor Networks
	Attribute-Based Queries
	Spatial Queries
	Top-K Queries

	Middleware Components
	In-Network Data Storage
	Real-Time Data Dissemination

	Related Work
	Conclusions

	Oscar: Small-World Overlay for Realistic Key Distributions
	Introduction
	Background
	Problems with Existing Solutions
	Network Construction Using Scalable Sampling
	The Insight and the Proposed Method
	The Algorithms for Long-Range Link Construction

	Simulations
	Conclusions

	Keyword Searching in Structured Overlays Via Content Distance Addressing
	Introduction
	A High Level Presentation
	Hashing
	Routing in Hypercube Graphs
	Query Processing
	Dataset Characterisation

	Our Approach
	Query Model
	Summary Hash
	Keyword Query Reduction
	Keyword Edges and Emulation
	Probing the Ball

	Evaluation
	Experimental Setup
	Retrieval Performance and Data Placement
	Performance

	Related Work
	Conclusion and Future Works

	XML Query Routing in Structured P2P Systems
	Introduction
	System Functionality
	Document Indexing
	Data Placement and Query Processing
	Handling Network Updates
	Related Work
	Performance Evaluation
	Conclusion

	Reusing Classical Query Rewriting in P2P Databases
	Introduction
	Query Similarity
	Aspects of Query Similarity
	Query Similarity Criteria

	Query Reformulation
	Conclusions and Future Work

	Efficient Searching and Retrieval of Documents in PROSA
	Introduction
	$PROSA$: A Brief Description
	Peer Joining $PROSA$
	$PROSA$ Dynamics

	Information Retrieval in PROSA
	Two Words About Simulations
	Number of Retrieved Documents
	Query Recall

	Energetical Considerations
	Conclusions and Future Work

	P2P Query Reformulation over Both-As-View Data Transformation Rules
	Introduction
	Overview of BAV Data Integration
	AutoMed's IQL Query Language
	An Example

	Query Reformulation over BAV Pathways
	BAV Query Reformulation

	Data Source Schema Query Processing
	Concluding Remarks

	RDFCube: A P2P-Based Three-Dimensional Index for Structural Joins on Distributed Triple Stores
	Introduction
	Our Proposed Approach
	RDFCube: A Three-Dimensional Hash Space
	RDFCube Construction
	Query Processing with Join Operations

	Performance Evaluation
	Experiment Setup
	Experiment Results

	Conclusions

	Optimal Caching for First-Order Query Load-Balancing in Decentralized Index Structures
	Introduction
	A Taxonomy of Replication
	Replication and Search Cost
	Optimal Query-Adaptivity
	Optimal Replica Placement
	Query Adaptive Replication
	Numerical Evaluation
	Simulations

	Conclusion and Future Work

	On Triple Dissemination, Forward-Chaining, and Load Balancing in DHT Based RDF Stores
	Introduction
	Related Work
	RDF Storage
	Life-Cycle of Triples
	Node Departure
	Node Arrival
	RDFS Rules

	Load Balancing
	Overlay Tree
	Compensation of Node Failure
	Soft-State Updates
	RDFS Rules

	Conclusion

	Priority Based Load Balancing in a Self-interested P2P Network
	Introduction
	Problem Definition
	The Model
	Possible Solutions

	Priority Based Load Balancing
	The Scheme
	Finding Optimal Solution
	Tuning Method
	Implementation Issues

	Experimental Evaluation
	Initial Load Assignment
	Load Assignment Tuning

	Conclusion

	A Self-organized P2P Network for an Efficient and Secure Content Location and Download
	Introduction
	System Description
	Initializing and Joining the Network
	Joining a Sub-group
	$SuperPeer$ Assignment
	$SuperPeers$ Maintenance
	Registering the Shared Files
	Searching for a Content
	Additional Reliability

	Performance Analysis
	Related Works
	Conclusions

	Query Coordination for Distributed Data Sharing in P2P Networks
	Introduction
	Problem Definition
	Coordination Engine Architecture
	Application Example
	Experimental Results
	Conclusion

	A Comparative Study of Pub/Sub Methods in Structured P2P Networks
	Introduction
	Related Work
	System Model
	Discussion

	Design Patterns
	Store-Sub
	Store-Pub

	Complexity Analysis
	Store-Sub
	Store-Pub
	Discussion

	Experiments
	Analytical Results
	Simulations

	Conclusion and Future Work

	Answering Constrained k-NN Queries in Unstructured P2P Systems
	Introduction
	Problem Definition
	Pruning Candidate Peers
	The Radius-Convergence Approach
	The Radius-Expanding Approach

	Experimental Study
	Related Work
	Conclusion

	Scalable IPv4/IPv6 Transition: A Peer-to-Peer Based Approach
	Introduction
	Mechanism
	Protocol Design
	Analysis of P2P Network Connectivity
	Single Node Destruction (SND)
	Single Virtual Link Destruction (SVLD)
	SND+SVLD
	Influence of Node Number N
	Summary

	Prototype and Experiments
	The Prototype
	The Experiments

	Conclusions

	Author Index

