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1 Introduction 

Information technology security or cryptography, nowadays, is a well established 
area of computer science. Modern applications of cryptography allow us to transfer 
confidential data over insecure channels, take care of our bank transactions on trans-
fer line using of-the-shelf computers, and sign obligatory contracts over the Internet. 
These applications are based on cryptographic building blocks, so-called primitives 
that provide certain desirable services like encrypting and decrypting messages. 

Unfortunately, often it is not possible to straightforwardly implement crypto-
graphic primitives in RFID systems because tags normally are very restricted in 
available power and, because they have to be cheap, chip area plays a crucial role. 
A demand for new, lightweight cryptographic primitives arises offering security 
services tailored to the requirements of RFID systems while considering their re-
source constraints. 

This paper is structured as follows: Section 2 discusses information technology 
security in general presenting a state-of-the-art overview on cryptography. After 
dealing with desirable security services, common attacks, and security models, 
Section 3 covers cryptographic primitives divided into the three main groups un-
keyed, secret-key and public-key primitives. Finally, a conclusion summarizes the 
main features of the work. 
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2 Information Technology Security 

In the age of information processing, Internet and digital communication obvious-
ly there is a strong need for information technology security. Exchange of confi-
dential messages, online-transfer of money and access to information services are 
just a few examples of procedures that rely on the security of computer systems 
and networks. Therefore, information systems and information processed by infor-
mation systems have to be protected. Cryptography is the science that deals with 
protection of information [1]. In this section we cover the basics about information 
technology security and cryptography, and its appropriateness to RFID systems 
and in particular implementation of cryptographic primitives on an RFID Tag. 
Possible cryptographic solutions may be applied to the anti-counterfeiting 
applications for a secure supply chain. The reader may be adverted to [2] for defi-
nition of terms used in this section. This may be especially helpful if terms are 
used prior to their actual definition which is sometimes unavoidable. 

2.1 Model 

Although cryptography is much more than just encryption, encryption could be 
seen as the primary goal. Thus, to start to describe information technology secur-
ity, the following simple model of Figure 1 is provided. 

Alice and Bob are two parties who, despite or perhaps because of their some-
what pneumatic appearance, trust each other. They want to communicate using the 
channel, in their case a river, which they know to be insecure. In more real appli-
cations they can be human beings equipped with computing equipment, and com-
municating with electrical signals. In the above example, Alice sends a message 
which holds information designated for Bob. Eve is an unknown third party who 
also has access to the channel. The model could be interpreted in two different 
ways, either as transmission in space, where Alice and Bob sit at different places, 
or as transmission in time, where e.g. Alice stores a message onto the hard disk of 
a computer and Bob recalls it at a later time. Given this model, there are a number 
of concerns. Can Alice be sure that Bob is the only one who can read her mes-
sage? Can Bob be sure that the message was sent by Alice and if it was, can he be 

 

Fig. 1 Encryption model. 
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sure that it wasn’t altered? Isn’t Bob able to deny that he has received the message 
and isn’t Alice able to deny that she has sent the message? These questions lead us 
to the services that are required for information technology security. 

2.2 Security Services 

As described in the preceding section, there are a number of security concerns 
when thinking about computer systems and digital communication. Therefore,  
a number of services have to be provided in order to enhance information technol-
ogy security. The following paragraphs are dedicated to the most important of 
them [3], [4]. 

− Confidentiality ensures that only authorized parties are able to understand 
information. 

− Authentication refers to the ability for a party to be sure the received 
information is from the source it claims to be from. 

− Integrity assures that a message was not altered on the way to its recipient. 
Hence, it provides the recipient with the certainty to know what it has received 
is what was sent by the trusted origin of the message. 

− Non-repudiation ensures that neither the sender is able to deny that it has sent 
the message nor the receiver is able to deny that it has received it. Therefore, it 
provides a proof of transmission and reception of a message. 

− Access Control refers to the ability to restrict and control access to a system. 
− Availability provides means to ensure that a system is available whenever 

needed. Thus, availability services guard systems from attacks against loss or 
reduction in availability. 

Most of these services might be achieved by applying an appropriate 
cryptographic tool, like an encryption algorithm or a cryptographic hash function, 
or a series of those. If a series of tools has to be applied in a well-defined way, this 
way is referred to as a cryptographic protocol. Before we will discuss the main 
types of cryptographic tools we would like to spend a few words about attacks and 
security models. 

2.3 Attacks 

Modern cryptography tools (primitives) face a variety of attacks they have to 
withstand. Before classifying these attacks a basic principle of state-of-the-art 
cryptography has to be explained. According to Kerckhoffs’ principle, stated in 
the nineteenth century by Auguste Kerckhoffs, the security of a cryptosystem must 
not depend on the secrecy of data independent details about the system [3]. Data 
independent details of a cryptographic system are the algorithm and its implemen-
tation. Therefore, attacks on modern primitives often aim at the recovery of 
plaintexts from ciphertexts or even worse on the recovery of secret keys [5]. 
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Attacks may be classified into passive and active attacks [4]. Passive attacks 
denote monitoring of channels or side channels, but not alteration of messages. 
Obviously monitoring of a channel includes directly listening to data being trans-
ferred. Monitoring of side channels, is listening to effects that come along with the 
activities on the channel like electromagnetic emanation or current consumption 
[6]. Passive attacks on encryption schemes may be further subdivided into the 
following kinds of attacks [4]: 

− Ciphertext-only attack: The attacker tries to recover plaintext or the secret key 
just by analysing the corresponding ciphertext. 

− Known-plaintext attack: By analysing a given block of plaintext and the 
corresponding ciphertext the attacker tries to extract useful information for the 
recovery of plaintext encrypted in different ciphertexts or the secret key. 

− Chosen-plaintext attack: Given the attacker is able to choose plaintexts and 
generate corresponding ciphertexts it tries to extract useful information in order 
to recover new plaintexts from new ciphertexts or even may try to extract the 
secret key. 

− Adaptive chosen-plaintext attack: The attacker tries to recover plaintext or 
the secret key by subsequently applying chosen-plaintext attacks where the 
choice of the plaintext for later attacks depends on the outcome of prior attacks. 

− Chosen-ciphertext attack: This attack is based on the assumption that the 
attacker, for a limited amount of time, is able to access means to decrypt ci-
phertexts. Therefore, we assume the means to be a black box which is able to 
decrypt a limited number of ciphertexts. The attacker chooses ciphertexts and 
analyses the corresponding plaintexts in order to gain useful information for the 
later purpose of recovering plaintexts from ciphertexts or of recovering the 
secret key without the availability of the black box. 

− Adaptive chosen-ciphertext attack: As with the adaptive chosen-plaintext 
attack the attacker subsequently applies chosen-ciphertext attacks, with 
ciphertexts for later attacks depending on the outcome of prior attacks. 

Although we mentioned the attacks above are aimed at encryption schemes, 
most of them are also applicable for other primitives like cryptographic hash func-
tions or digital signature schemes. 

Active attacks as opposed to passive attacks are based on alteration of data 
transmitted over a channel or alteration of computation in a device. The later is 
also referred to as fault attack [6]. Note that fault attacks and side-channel attacks 
are sometimes denoted as implementation attacks since they do not aim at the 
cryptographic algorithm but its specific implementation. 

As mentioned above, security services might be based on primitives or on 
cryptographic protocols. Cryptographic protocols face yet another type of attack – 
so-called protocol attacks. The following list names the most important of them [4]: 

− Known-key attack: Based on the knowledge of prior keys the attacker might 
try to obtain new keys. 

− Replay attack: The attacker who is able to record a series of messages 
exchanged by the trusted parties replays part of it or the complete series at  
a later time. 
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− Impersonation attack: In this case, the attacker somehow assumes the identity 
of one of the trusted parties. 

− Dictionary attack: This is a well known attack usually applied on password 
schemes. The adversary somehow manages to test a very large number of 
probable passwords with the intention guessing the right one. 

2.4 Security Models 

In order to describe the security of cryptographic primitives there are so-called se-
curity models. The following paragraphs describe the most important of them [1]. 

− Unconditional security also known as perfect secrecy is the non-plus-ultra 
security model. It assumes unrestricted computational power of the adversary. 
Therefore, for a cryptographic primitive to fall into this category there must not 
be an algorithm for breaking it, irrespective of the computational power avail-
able. An example of a simple primitive offering unconditional security is the 
one-time pad. In order to generate the ciphertext a plaintext is XOR-ed with  
a unique secret key of the same length as the plaintext. Because of the possible 
large key sizes such systems are impractical for conventional message encryp-
tion. However, there may be applications in systems with small information 
sizes like RFID. 

− Computational security assumes polynomial computational power of the ad-
versary. Therefore, a cryptographic primitive is assumed to be computationally 
secure if there is no algorithm known to break it within polynomial time. Mod-
ern primitives are supposed to fall into this category. 

− Practical security also refers to the computational power of the adversary. 
However, as opposed to computational security there are no relative bounds. 
Instead, for a primitive falling into this category there must not be a breaking 
algorithm which requires less than N operations. The number of operations N is 
chosen sufficiently high. Modern cryptographic primitives typically offer 
practical security. 

− Provable security means that it is possible to show that the complexity of 
breaking a primitive is equivalent to solving a well known supposedly hard 
mathematical problem like the integer factorization problem. Typical crypto-
graphic primitives based on public keys fall into this category. 

3 Cryptographic Primitives 

So far, we discussed why information technology security is important, what 
potential threats are and how the security of cryptographic tools can be classified. 
What was not covered yet are cryptographic tools themselves, the primitives that 
provide us with the required services discussed above. 
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Cryptographic primitives may be separated into three large groups: un-keyed 
primitives, secret-key primitives and public-key primitives. Each of these groups 
may further be subdivided into primitives that serve different purposes. Table 1 
shows a classification of some useful cryptographic primitives [4]. Each of these 
groups is further discussed the following sections. 

Important differences between cryptographic primitives include the level of se-
curity, basic functionality, methods of operation, performance and the ease of im-
plementation. Basic functionality deals with the objectives discussed in Sec-
tion 2.2 whereas the methods of operation regard to specific ways primitives can 
be used, e.g. for encryption or decryption. Ease of implementation refers to both 
software and hardware environments [4]. 

3.1 Un-keyed Primitives 

Un-keyed primitives, as the name betrays, are cryptographic tools that are not 
based on any keys at all. Examples for un-keyed primitives are cryptographic hash 
functions, one-way functions and random number generators. Taking into account 
Kerckhoffs’ principle, because they are not based on keys, they do not fulfil secur-
ity objectives on their own but often are part of a security system or a crypto-
graphic protocol. 

3.1.1 Hash Functions 

“A hash function is a computationally efficient function mapping binary strings of 
arbitrary length to binary strings of some fixed length, called hash-values.”[4] 

The above definition is very basic. For hash functions used as cryptographic tools 
a set of requirements has to be fulfilled. First of all, it has to be a one-way function, 
which means, given a message m it should be easy to calculate the hash-value h(m) 
but it should be computationally infeasible to do the inverse operation namely to find 
a message m given the hash value h(m) so that m = h(m). Second, good hash functions 
should be collision resistant. Theoretically this would mean that there are no two 
messages m1 and m2 so that h(m1) = (m2). However, since there are an infinite num-
ber of inputs but a finite number of outputs collisions are unavoidable. Therefore, in 

Table. 1. Some useful cryptographic primitives. 

 Some useful cryptographic primitives 

Hash functions 
One-way functions 

 
 
Un-keyed primitives Random sequences 

Secret-key ciphers 
Message identification codes 

 
 
Secret-key primitives 
 

Identification primitives 

Public-key ciphers  

Public-key primitives Digital signatures 
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practice collision resistance means it should be computationally infeasible to find 
collisions. The third important requirement says that the hash-function should be a 
random mapping which in practice means it should be computationally infeasible to 
distinguish a hash-function from a random mapping [7]. 

Basically there are two types of attacks on hash functions, collision and pre-
image attacks. Collision attacks in parallel try to find two different messages m1 
and m2 that lead to the same hash value h(m1) = h(m2). If we consider digital sig-
natures (see Section 3.4.2) where normally hash values of messages are signed for 
efficiency reasons this leads to a serious security threat. By deliberately designing 
two messages with the same hash value a digital signature for one message 
automatically is valid for the second message. Pre-image attacks try to construct  
a message m that leads to a given hash value h(m). 

Hash functions are very important primitives in practice. They are used when-
ever fixed length values are required instead of arbitrary length messages. They 
may also be used to generate various pseudorandom keys from a single input. 

Un-keyed hash functions are often called modification detection codes (MDC) 
because of their ability to detect whether a message has been altered. Well known 
MDCs used in practice are MD5 and SHA-1. MD5 has an output length of 
128 bits. The best known attack recently was described by Vlastimil Klima and is 
able to find MD5 collisions in about one minute using a state-of-the-art notebook 
computer (Intel Pentium 1.6 GHz) [8]. SHA-1 has an output length of 160 bits. 
The best known attack, illustrated on Bruce Schneier’s Weblog on behalf of the 
author Xiaoyun Wang, shows a time complexity of 263 which is even better than  
a brute force attack which would lead to a time complexity of 280 for an output 
length of 160 bits [9]. Although, so far only collision attacks but no pre-image 
attacks are known, MD5 and SHA-1 cannot be seen as practically secure any 
longer. Hence there is a need for new hash functions. The US government 
standards agency NIST (National Institute of Standards and Technology) in 2001 
published a new group of SHA algorithms collectively known as SHA-2. This 
group includes algorithms with output lengths of 256, 384 and 512 bits. [7]. So far 
no practical attacks are known for SHA-2. 

3.1.2 One-Way Functions 

As already mentioned with hash functions, one-way functions are mappings 
f: X  Y which are easy to compute but hard to invert. Expressed in a more formal 
way this means a polynomial time algorithm exists for computation but no prob-
abilistic polynomial time algorithm for inversion succeeds with better than negli-
gible probability [10]. 

There are special one-way functions called trapdoor functions with the 
additional property that given special information, called the trapdoor information, 
it is possible to calculate the inversion. 

One-way functions and trapdoor functions are very important primitives in 
cryptography and a lot of other primitives are based on them. Examples would be 
hash functions which are based on one-way functions or public-key cryptography 
which is based on trapdoor functions. 
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In more detail, a trapdoor function is defined as a function that is easy to com-
pute in one direction, yet believed to be difficult to compute in the opposite direc-
tion (i.e. finding the inverse) without special information, called the “trapdoor”. 
We define “difficult” or “infeasible” in this section to mean computationally in-
tractable, i.e. not possible to perform in a reasonable amount of time, e.g. one 
year, based on current state of technology. Trapdoor functions are widely used in 
cryptography. 

To provide an illustration of a trapdoor function we will use as a context the 
RSA encryption system. 

In RSA [4] the encryption operation performed is c = me mod (n) (were n is the 
product of two large primes p and q) with the encryption key e and the modulus n 
(and the encryption formula) being disclosed, (and the primes p and q not being 
disclosed). We observe here for use in the discussion below that finding the 
primes p and q from their publicly disclosed product is believed to be infeasible 
when the primes are large. Here the ciphertext c is regarded as a function of the 
plaintext m. 

The RSA problem, i.e. finding the inverse, is defined as taking the eth roots 
modulo a composite number n. It is regarded as infeasible to solve except in the 
circumstances described below. 

The inverse of the encryption, i.e. finding the plaintext m from the ciphertext c, 
can be performed if we have some additional information called trapdoor informa-
tion. It is done in practice in the RSA system by using a decryption key d and the 
formula m = cd (mod n), but finding the decryption key d from the publicly dis-
closed e and n is believed to be difficult to the point of being infeasible. 

The decryption key d (and the decryption formula) could be regarded as the 
trapdoor. The two large primes p and q could alternatively be regarded as the trap-
door. The path to find d from them is tortuous, and will not be described here, but 
is feasible to traverse. 

It should be mentioned that a rigorous justification of the existence of one-way 
functions is an open problem in theoretical computer science. 

3.1.3 Random Number Generators 

The third important un-keyed primitive in cryptography are random numbers or 
random number generators respectively. Many keyed primitives or even crypto-
graphic protocols are based on random number sequences. Examples of use are 
keys used in public-key cryptography, session keys often used in secret-key crypt-
ography or random sequences (called nonces) in cryptographic protocols. 

Before looking at sources of random numbers we should discuss what is ran-
domness? In general, in order to be able to talk about randomness a context has to 
be defined [4]. For example, we cannot talk about a random number 7 in general 
but 7 could be a number randomly selected or generated out of a container holding 
the numbers 1 to 10 which is the context in this case. Furthermore randomness is 
based on uniform distribution and independence [3]. Uniform distribution means 
that there is equal probability for each of the numbers in our container to be se-
lected, i.e. the probability to randomly select or generate 7 out of the container 1 to 
10 is assumed to be 1/10. Independence refers to sequences of random numbers. 
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In order to talk about a sequence of random numbers there must not be any coher-
ence in the sequence of these numbers, i.e. in the example with a container hold-
ing the numbers from 1 to 10, after randomly selecting 7, probabilities of selecting 
any of the numbers 1 to 10 should be the same. 

The sources of ideal random numbers as discussed above, if there are ideal 
random numbers at all, are based on physical means. Examples could be gas dis-
charge tubes or leaky capacitors. However, often they tend to be costly or slow in 
the generation of random numbers. Another interesting source are so-called phys-
ical unclonable functions (PUF). Based on manufacturing variations of ICs they 
might be used for secret key generation in electronic devices [11]. However, 
nowadays most of the random number generators used for cryptography are based 
on software algorithms. Since pure software algorithms are deterministic the se-
quences generated are not really statistically random. Therefore, algorithms based 
random number generators are called pseudo-random number generators and the 
sequences generated are called pseudo-random number sequences. The sequences 
generated are based on short random sequences called seeds. Most of the time, the 
generation algorithms are known but the seed is unknown. Sequences generated 
by good pseudo-random number generators will pass many tests of randomness 
and therefore they are applicable for cryptographic purposes. 

3.2 Secret-Key Primitives 

Secret-key cryptography denotes information technology security systems that are 
based on keys secretly shared between trusted parties. In the literature also the 
word symmetric-key cryptography can be found meaning the same systems. As 
Figure 2 shows, there are various applications of secret-key cryptography. The 
following sections will highlight the most important of them. 

3.2.1 Secret-Key Ciphers 

Ciphers deal with encryption and decryption of information. In the world of se-
cret-key cryptography basically there are two types of ciphers in use today, block 
ciphers and stream ciphers. Both are based on the same model which we will ex-
plain first with the aid of Figure 2. 

Assuming the basic encryption model already described in Section 2.1 (Figure 1) 
of this work, Alice wants to send a message m to Bob secretly, i.e. Eve should not be 
able to understand what she sees on the channel. Therefore, Alice and Bob agree on 
a secret key-pair (only known to them) for encryption and decryption before the 

 

Fig. 2 Secret-key encryption. 
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actual start of the transmission. An important property of secret-key primitives is 
that the encryption key can be easily derived from the decryption key and the other 
way round. However, in nearly all modern secret-key encryption primitives the en-
cryption and decryption key are the same and therefore are denoted as key K. Before 
sending the message m, Alice encrypts it applying an encryption function E and 
using the secret key K. The result of this operation is called ciphertext c which is 
transmitted over the channel. Therefore, c = E(K, m). The size of the ciphertext is at 
least the size of the plaintext. This follows from the Pigeonhole Principle [12] 
which, converted to this scenario, states that if the output size of an encryption is 
smaller than its input size there must be necessarily 2 various inputs that lead to the 
same output which is not acceptable with encryption. On the other side, the size of 
ciphertexts could be bigger than the size of plaintexts if the plaintexts are padded 
before encryption for whatever reason. Bob, by applying the appropriate decryption 
function D and using the secret key K, recovers the original message m. Therefore, 
m = D(K, c). Eve, who also received the ciphertext, is unable to understand it 
because she is missing the secret information, i.e. the key, to decrypt it. Assuming a 
good secret-key encryption primitive, it is computationally infeasible to recover the 
message from the ciphertext without knowing the key. What Bob will be able make 
of any bogus information that Eve may insert into the channel cannot be stated. A 
further question that is not covered in this scenario is how to exchange the key 
secretly. Unless Alice and Bob are unable to meet personally and need to exchange 
the key over a communication channel this may lead to a “Chicken and Egg 
problem” well known as the key distribution problem. However, there are smart 
solutions to this problem which may be gleaned in [4]. 

Note that although both concepts, encryption based on blocks and streams, also 
appear in public-key cryptography, the literature uses the names block cipher and 
stream cipher to denote secret-key encryption concepts. 

Block ciphers form a special subset of secret-key ciphers where the message to 
be encrypted is divided into fixed length blocks. Each of these blocks, which are 
elements of the set of plaintexts, is transformed into an element of the set of 
ciphertexts. This happens under the influence of the secret key [1]. There is no 
change of size of the blocks during the transformation, i.e. ciphertext-blocks are of 
the same size as plaintext-blocks. The encryption is reversible, which means given 
the secret key it is also possible to recover plaintext blocks from ciphertext blocks. 
Block ciphers may be applied directly to messages with lengths equal to the size 
of a single block. If the size of the message is smaller than the block size padding 
is applied, i.e. additional symbols are added at the end of the message to fit the 
block size. Several padding techniques exist that allow distinguishing between 
message and padding. There are so-called modes of operation for messages longer 
than the block size [7]. 

Examples for block ciphers in use today are DES (data encryption standard), 
Triple DES (3DES) and AES (advanced encryption standard) [5]. DES was invent-
ed nearly 30 years ago and was one of the most widely used secret-key encryption 
algorithms. However, it is based on very short 64 bit blocks and 56 bit keys which, 
because of the increasing computational power available, seem not to be 
appropriate any more. There have been successful exhaustive key search attacks on 
DES already. Therefore, Triple DES (3DES) has been invented where DES is 
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applied three times with different keys. Therefore, it has a key size of 168 bits but 
inherits the disadvantages of DES like the small block size of 64 bits [7]. Triple 
DES is sometimes used because it offers more security compared with DES and for 
legacy reasons (Triple DES can be executed on DES hardware). However, in the 
meantime AES was invented to replace DES and 3DES. It is based on a block size 
of 128 bits and a selectable key size of 128, 192 or 256 bits. So far, there have been 
no successful attacks to the AES algorithm apart from side channel attacks which 
are implementation attacks rather than attacks on the algorithm [13]. 

Stream ciphers can be understood as block ciphers with block size one and the 
additional feature that the encryption transformation changes with every symbol 
processed. An advantage of stream ciphers is that they may have limited or no 
error propagation which means they may be able to deal with flipped bits or even 
with missing or inserted bits depending on their specific implementation. There-
fore, often they are a good choice if errors are highly probable in transmissions. 

A very simple example should clarify the operation of stream ciphers. The so-
called Vernam Cipher is a stream cipher for binary streams [4]. The inputs are  
a binary message stream m1m2m3…mt and a so-called binary key stream 
k1k2k3…kt. The binary key stream is a random binary sequence of the appropriate 
length, that is the length of the message stream. For encryption each binary sym-
bol of the message stream is XOR-ed with the corresponding binary symbol of the 
key stream, that is ci = mi XOR ki. Obviously, to decrypt the ciphertext, the process 
has to be repeated, i.e. mi = ci XOR ki. The Vernam Cipher is exactly what we 
called one-time pad in Section 3.2.3 provides unconditional security (assumed the 
key stream is a truly random sequence with the same length as the message) but is 
hardly used in practice because of the large key size. However, stream ciphers 
used in practice are based on the one-time pad with the difference that the key 
stream is generated from a short random sequence by a deterministic algorithm. 
Thus, only the short random sequence has to be exchanged by the trusted parties. 

As discussed above, practical stream ciphers require generators to create 
pseudo-random key-streams based on keys short enough to be exchanged conveni-
ently. Often so-called linear feedback shift registers (LFSR) are used for this pur-
pose. They exist of a series of delay blocks which are most often initialized with 
the secret key. Triggered by a clock signal the contents of the delay blocks are 
shifted. The input of the first delay block is a XOR of a subset of the delay blocks. 
Figure 3 shows an example of an LFSR. 

Advantages of LFSRs are that they are easy to implement in hardware and soft-
ware and they can produce sequences of large periods with reasonably good statis-
tical properties [4]. The longest unique sequences are generated by so-called max-
imum length LFSRs. The period length of such LFSRs equals the maximum 
number of states that can be represented by a certain number of bits minus the zero 

 

Fig. 3 Linear Feedback Shift Register (LFSR) [14]. 



90 Manfred Jantscher et al. 

state. Hence, a 3 bit maximum length LFSR has an output period length of  
23 – 1 = 7 unless it is initialized with 3 zeros. 

However, with time mathematical methods have been developed to analyse 
LFSRs and they are not considered secure any longer [14]. Nevertheless, they 
form the building blocks of more secure key-stream generators in use today called 
nonlinear feedback shift registers (NLFSR). 

NLFSRs generally consist of LFSRs as building blocks used in combination 
with methodologies that destroy the linearity of the output of simple LFSRs. In [4] 
three methods are discussed. So-called nonlinear combination generators apply 
a nonlinear function that combines the outputs of two or more LFSRs. An example 
for a nonlinear combination generator is the “Geffe generator” consisting of three 
maximum length LFSRs of pairwise relatively prime period lengths that are 
combined applying the function x1x2 XOR x2x3 XOR x3. Nonlinear filter 
generators consist of just one maximum length LFSR which output is generated 
by a nonlinear combination of several stages of the LFSR. The generators 
discussed so far are clocked regularly, i.e. at each time step each LFSR is clocked. 
So-called clock-controlled generators introduce nonlinearity by clocking down-
stream LFSRs based on the state of upstream LFSRs. An example is the “alternat-
ing step generator” which consists of three LFSRs. The output of this generator is 
the XOR result of the output of two LFSRs which are clocked depending on the 
output of the third LFSR. If the output of the third LFSR is 1, one of the other two 
LFSRs is clocked, if it is 0 the other one is clocked. 

Although there is no real standard for stream ciphers so far, RC4 is most widely 
used and can be seen as de-facto standard [15]. As with most stream ciphers, it is 
based on one-time pad with a pseudo-random key-stream generator. Other than 
using LFSRs the key-stream generator is designed to be easily implemented in 
software. RC4 is in very heavy use today. It is the cipher used in WEP and WPA 
and may be optionally selected to be used in SSL (secure socket layer) and SSH 
(secure shell). Nevertheless, there are known attacks with the best of them being 
able to distinguish a random sequence from the pseudo-random sequence 
generated by RC4 given about one gigabyte of output data [16]. 

When comparing stream ciphers with block ciphers, there are clear practical ad-
vantages of stream ciphers. They are much easier to implement in software and hard-
ware, generally they are faster, they do not require large memories to store blocks 
and they can deal with errors in the way that there is no error propagation. However, 
relatively few fully specified stream ciphers are published in the literature, and as 
opposed to block ciphers there are no standardised stream ciphers so far [4], [15]. 

The secret-key primitives described so far ensure that Eve is unable to under-
stand, what is transmitted over the channel. Ciphers do not provide security 
against alteration of messages. 

3.2.2 Message Authentication Codes 

In order to be able to detect changes of messages transmitted over insecure chan-
nels so-called message authentication codes (MAC) or cryptographic checksums 
are used [3]. They can be understood as hash functions on data that includes  
a secret key. 
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Figure 4 shows the principle of MACs. Note that the example does not consider 
encryption of the message. Before sending the message, Alice generates a message 
authentication code mac applying a MAC-function which processes the message m 
and a secret key K. Then, Alice transmits both, the message and the message au-
thentication code. Bob receives them and also generates the message authentication 
code using the same MAC-function which processes the received message and the 
shared secret key. Thereafter, Bob compares the MAC he generated with the MAC 
he received along with the message. If they match, because of the shared secret 
key, Bob knows that the message was not altered and he knows that the message 
was sent by Alice. In the Figure  4, Eve, who also receives the message and the 
MAC, can understand and alter the message but there is no way to change it prior 
to forwarding it to Bob without Bob knowing that something went wrong. 
Additionally, Eve cannot create messages and send them to Bob as if she were 
Alice [7]. Therefore, message authentication codes provide data integrity and data 
origin authentication [4]. 

In practice there exist several types of MAC-functions. They might be based on 
block ciphers, like the DES-CBC MAC, be based on stream ciphers, be construct-
ed from un-keyed hash functions applying a secret key, like the MD5 MAC, or 
they might be based on one-time pad cipher [17]. Construction of MAC-functions 
from un-keyed hash functions means that the original algorithm, like MD5, is 
altered to incorporate a secret key into the compression function [4]. 

In practice there exist several types of MAC-functions. They might be based on 
block ciphers, like the DES-CBC MAC, be based on stream ciphers, be construct-
ed from un-keyed hash functions applying a secret key, like the MD5 MAC, or 
they might be based on one-time pad cipher [17]. Construction of MAC-functions 
from un-keyed hash functions means that the original algorithm, like MD5, is 
altered to incorporate a secret key into the compression function [4]. 

3.2.3 Identification Primitives 

One of the most important classes of primitives in today’s computer systems are 
identification techniques which are sometimes also called entity authentication or 
identity verification techniques [4]. The purpose of entity authentication tech-
niques is to allow one party to gain assurance about the identity of another party. 
Thus, entity authentication tries to prevent impersonation attempts. When com-
pared with message authentication techniques, entity authentication techniques 

 

Fig. 4 Message Authentication Code (MAC). Modified from Figure 3.4 of Ferguson N. and 
Schneier B.: Practical Cryptography. Wiley Publishing, Indianapolis (2003). 
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typically involve no meaningful message but normally they are based on a real-
time process, i.e. both parties are active at the same time). 

Identification techniques may be divided into three categories. They may be 
based on something known by the identifying party, like a password or a secret 
key. They may be based on something possessed by the identifying party, like  
a magnetic stripe card or a smart card. Or, they may be based on something 
inherent to the identifying party, like voice, fingerprints or handwritten signature. 

Typical applications of entity authentication include access control to re-
sources, like information systems, sometimes accompanied with the need to track 
resource usage, e.g. for billing purposes. 

Fixed passwords are a very simply scheme of entity authentication based on 
something known. They are shared secrets between users and an information tech-
nology system. For identification typically the system asks the user for a user-id 
and the appropriate password. If the data entered by the user matches the data stor-
ed in the system the identification was successful and the user is granted access. 
Different fixed password schemes may store the passwords either in plaintext, or 
in encrypted form. A major security problem of fixed passwords is the so-called 
replay attack, when an attacker records the password transmitted over a channel 
and replays it at a later time to be granted access to a system. For that reason fixed 
passwords often are refereed to as weak authentication [4]. Countermeasures 
include encryption of the channel or even better the use of one-time passwords. 

There are different kinds of one-time password schemes. Two parties may 
either share a list of passwords using one after another, or they may sequentially 
update their password, or they may generate one-time passwords with the help of 
one-time functions [4]. 

The problem with both of the above described password schemes, fixed and 
one-time, is that the actual secrets are released by the party which tries to identify 
itself. Therefore, whenever an active attacker is able to gain access to the secret 
(e.g. the list of passwords in a one-time password scheme) it is subsequently able 
to impersonate the party to which the secret belongs to. Challenge-response 
identification schemes address this vulnerability. Rather than releasing the actual 
secret they generate a response which is based on the secret and a time-variant 
challenge. That is why challenge-response schemes are also known as strong 
authentication mechanisms [4]. The time-variant challenge is provided by the 
verifying party every time an unknown party wants to be identified. A challenge 
includes a so-called nonce being the time-variant parameter. Nonces could be, for 
example, pseudorandom numbers, sequence numbers, or time stamps. The use of 
nonces prevents replay attacks as described with fixed passwords. It should be 
mentioned that although challenge-response schemes often are based on secret-
key cryptography there are also implementations based on public-key primitives. 

3.4 Public-Key Primitives 

In addition to secret-key primitives, so-called public-key primitives form the se-
cond large group of keyed cryptographic tools [4]. Public-key primitives are based 



5 A Security Primer 93 

on key pairs instead of single shared keys. Each key pair is made up of a public 
key and a private key that are linked together mathematically. As their names 
betray, one of the keys has to be kept secret by the owner and the other one is 
shared publicly. Because public-key primitives are based on two different keys, 
they are often called asymmetric-key primitives. The main motivation to have 
public-key primitives is that with secret-key primitives each pair of trusted parties 
has to share one secret key [7]. Since this is very complex, if there is a larger 
number of parties involved, public-key primitives provide an appropriate solution 
because only one key has to be shared publicly for each party. On the other side, 
public-key primitives are less efficient and that is why there is still a need for 
secret-key primitives. The following sections describe the two most important 
applications of public-key cryptographic tools, public-key ciphers and public-key 
signature schemes. 

3.4.1 Public-Key Ciphers 

As already mentioned with secret-key primitives, ciphers deal with the encryption 
and decryption of messages. Figure 5 shows the basic principle of public-key en-
cryption [7]. 

The key pair used in this example is the secret key of Bob (SBob) and the pub-
lic key of Bob (PBob). As already mentioned earlier these keys are linked together 
mathematically in order to be able to use the public key for encryption and the pri-
vate key for decryption. Therefore, a major premise for public-key cryptography is 
that it should be computationally infeasible to derive the secret key given a public 
key. Now, if Alice wants to send a message m to Bob secretly she encrypts it 
using the encryption function E under the influence of Bobs public key PBob. The 
resulting ciphertext c can be transferred over the insecure channel because only 
Bob is in possession of the secret key SBob which is necessary for decryption. 
Hence, in order to be able to read the received encrypted message c Bob decrypts 
it using the decryption function D under the influence of the secret key SBob. The 
example also shows Eve, the passive attacker, who is able to receive the public 
key PBob and the ciphertext c but cannot extract any useful information thereof. 

It may now seem that the problem of secretly exchanging keys in secret-key 
cryptography is solved because public keys can be transferred over insecure chan-
nels. In fact, many practical systems are based on a mixture of secret- and asym-
metric encryption. Often asymmetric-key encryption is used to agree on a shared 

 

Fig. 5 Public-key encryption. 
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secret short term key (session key) which further on is used in secret-key encrypt-
ion to exchange the actual information. The term session key is based on the fact 
that it is used for a limited time (the session) only. This approach combines the ad-
vantages of both, the publicly shared key of public-key cryptography and the effi-
ciency of secret-key cryptography [4]. However, there is a remaining issue with 
public-key cryptography. Since public keys normally are exchanged over insecure 
channels an active attacker would be able to impersonate another party by provid-
ing a public key which seems to belong to this other party but actually is part of a 
key pair of which the attacker is in possession of the private key. Consequently, the 
attacker would be able to decrypt messages which were intended for the imperso-
nated party. For that reason public keys often are exchanged using a so-called 
public key infrastructure (PKI) which solves the impersonation problem by issuing 
certificates. Certificates basically store identities and corresponding public keys. 
Each certificate is digitally signed (see next section) by a trusted third party who 
consequently prevents impersonation attacks as described above. Ferguson and 
Schneier ([7]) provide further information about PKIs for the interested reader. 

Probably the most important public-key technique is the RSA cryptosystem [4], 
[5]. It was invented in 1978 by R. Rivest, A. Shamir and L. Adleman and is based 
on the well known integer factorization problem. The idea is to multiply two 
sufficiently large prime numbers p and q to obtain n = p × q. Since it is believed 
(not proven) to be a hard mathematical problem to factorize n into its factors p and 
q, n is part of the public key and p and q are parts of the private key. 

No practical attacks are known on the RSA cryptosystem provided it is based 
on sufficiently large keys (size of n). In respect to the computational power 
available, current references recommended to have keys of at least 2048 bits 
tending to 4096 or even 8192 bits for future applications. 

The security of public-key cryptosystem is based on keys made up of very large 
integers. Usage of large keys, however, leads to less efficient execution of algo-
rithms. Especially when considering mobile devices which are limited in comput-
ing power and energy efficient cryptosystems play an important role. Therefore, 
much attention is paid to elliptic curve cryptography (ECC) which offers public-
key techniques that are much more efficient than traditional algorithms. ECC-cal-
culations are based on points on elliptic curves. Since elliptic curves used in crypt-
ography are defined in terms of modular arithmetic they only contain a limited 
number of points. The main operation used in ECC is called scalar point multipli-
cation which means deriving a point P which satisfies the equation P = kQ for a 
given point Q and a given integer k. This is a one-way function, i.e. the security of 
ECC is based on the so-called elliptic curve discrete logarithm problem (ECDLP), 
namely finding a k in P = kQ for a given P and Q [1]. Solving the ECDLP is con-
sidered to be computationally infeasible if k is sufficiently large. Since the best 
known algorithm for solving the ECDLP shows exponential complexity key sizes 
of more than 224 bits are regarded to be sufficient large taking into account the 
computational power available at the moment [18]. 
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3.4.2 Digital Signatures 

Digital signatures are an essential cryptographic primitive in providing authentica-
tion, authorization and non-repudiation services. Signing primitives used in digital 
signatures provide a method to bind the identity of the signatory entity to the mes-
sage to be transmitted. 

While there are many digital signature algorithms, all of them are based on 
public key algorithms. That is there is some secret information that only the 
signing entity has knowledge of and there is some public information that allows 
any other entity to verify the signature. In this context the process of signing is 
called encrypting with the private key while the process of verification is called 
decrypting with a public key. Unfortunately the usage of terminology in signature 
schemes can be confusing when considered with that of public key ciphers. 

Figure 6 shows the principle of a digital signature scheme [7]. We assume that 
Alice has already generated her key pair, i.e. SAlice, her private key, and PAlice, 
her public key. Whenever Alice wants to sign a message m she applies the signing 
algorithm S under the influence of her private key to this message with the result 
of a signature s. Subsequently, she distributes the message and the corresponding 
signature over the insecure channel. Bob, who wants to verify her message, 
applies the verification algorithm V under the influence of Alice’s public key to 
the received message and the signature. The outcome of the verification could be 
either ‘valid’ or ‘invalid’. ‘Valid’ would mean that the message was signed by 
Alice and it was not altered during its transmission. In our example Eve altered the 
message. Therefore, the result of Bob’s verification is ‘invalid’. Due to the fact 
that public-key techniques generally are less efficient, in practice often hash 
values of messages are signed rather than the actual messages. 

One simple method of implementing a digital signature scheme is by using the 
RSA public key cipher where the encryption and decryption functions are both 
inverse operations of the other. This property is unique to the RSA cipher. Other 
examples are DSS (digital signature standard), ElGamal (named after its inventor 
Elgamal), and algorithms based on elliptic curve techniques. Obviously, a fact that 
all these algorithms share in common is that they are based on trapdoor functions 
with the trapdoor information being the private key [5]. 

The ElGamal digital signature scheme is partly based on the discrete 
exponential function and partly based on the Diffie-Hellman key agreement. The 
discrete exponential function was already covered in Section 3.1.2 of this work. 
Since the description of the ElGamal scheme goes beyond the scope of this work 

 

Fig. 6 Digital signature scheme. 
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the interested reader is adverted to [4] and [5] which provide detailed information 
about this topic and also cover the digital signature standard (DSS) which is 
another public-key technique used for  digital signing and which is very similar to 
the ElGamal scheme. 

3.5 Comparison of Secret-Key Primitives with Public-Key 
Primitives 

Most of the advantages and disadvantages of secret-key primitives and public-key 
primitives were already discussed in the paragraphs above. This section is intend-
ed to summarize them and to provide a few additional notes. 

The main advantages of secret-key primitives are that they are based on 
relatively short keys and that there are often efficient hardware implementations 
for them. Hence, they are applicable for processing large amounts of data. 
However, secret-key primitives come along with the disadvantage that a large 
number of keys have to be managed since each pair of trusted parties has to share 
an individual secret key. Additionally, it is considered as good practice to change 
the secret key regularly. This is to keep the amount of data being processed using 
a single key low in order to minimize the amount of input for potential attacks. 

Public-key primitives, on the other side, have the advantage of easy key 
management. That is, only one key (the own private key) needs to be kept secret 
and public keys can be distributed over insecure channels. But most public-key 
techniques are based on very large key sizes which lead to less efficient execution 
of algorithms. 

Considering the advantages and disadvantages of the large groups of primitives, 
today’s cryptographic systems often are based on a mixture of both. These 
systems apply public-key cryptography to agree on so-called session keys which 
are shared secrets that are used for a limited time (the duration of a session) only. 
Subsequently, session keys are used in secret-key cryptography for processing the 
actual information. Therefore, the advantages of easy key management and 
efficient data processing have been combined in those mixed systems. 

Elliptic curve cryptography, in future, may partially replace mixed systems 
since they combine the advantages of easy key management and fast data 
processing in one public-key scheme [19]. 

4 Conclusions 

This paper provides an overview of state-of-the-art cryptography. Starting with 
information technology security it covers desirable security services, attacks and 
security models in general. Divided into the three groups un-keyed, secret-key and 
public-key, modern cryptographic primitives are presented. 

Although standard cryptographic primitives offer aid to secure low cost RFID 
systems, resource constraints impede us from implementing most of the ordinary 
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cryptographic tools. RFID tags are very restricted in available operating power 
and chip size and unfortunately most of the cryptographic primitives require both. 
Hence, there is a need for new lightweight cryptographic primitives to be used in 
RFID technology. 

Such lightweight primitives should be based on the well established knowledge 
on cryptography but tailor the services to the requirements and constraints of 
RFID. 
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