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Preface

The ICANNGA series of conferences has been organized since 1993 and has a
long history of promoting the principles and understanding of computational
intelligence paradigms within the scientific community. Starting in Innsbruck, in
Austria (1993), then Ales in France (1995), Norwich in England (1997), Portoroz
in Slovenia (1999), Prague in Czech Republic (2001), Roanne in France (2003)
and finally Coimbra in Portugal (2005), the ICANNGA series has established
itself as a reference for scientists and practitioners in this area. The series has
also been of value to young researchers wishing both to extend their knowledge
and experience and to meet experienced professionals in their fields.

In a rapidly advancing world, where technology and engineering change dra-
matically, new challenges in computer science compel us to broaden the con-
ference scope in order to take into account new developments. Nevertheless,
we have kept the acronym ICANNGA which, since the Coimbra conference in
2005, stands for International Conference on Adaptive and Natural Computing
Algorithms.

The 2007 conference, the eighth in the ICANNGA series, took place at the
Warsaw University of Technology in Poland, drawing on the experience of previ-
ous events and following the same general model, combining technical sessions,
including plenary lectures by renowned scientists, with tutorials and workshop
panels.

The Warsaw edition of ICANNGA attracted many scientists from all over the
world. We received 474 mostly high-quality submissions from 40 countries. After
rigorous review involving more than 160 experts in their fields, 178 papers were
accepted and included in the proceedings. The acceptance rate was only 38%,
enforcing a high standard of papers. The conference proceedings are published
in two volumes of Springer’s Lecture Notes in Computer Science.

The first volume of the proceedings is primarily concerned with issues re-
lated to various concepts and methods of optimization, evolutionary computa-
tions, genetic algorithms, particle swarm optimization, fuzzy and rough systems.
Additionally there is also a set of papers devoted to clustering and classifica-
tion. The second volume is mainly concerned with neural networks theory and
applications, support vector machines, biomedical and biometrics applications,
computer vision, control and robotics.

ICANNGA 2007 enjoyed plenary lectures presented by distinguished scien-
tists: Shun-ichi Amari from Japan, Ryszard Tadeusiewicz and Janusz Kacprzyk
from Poland, Kevin Warwick and Rafal Zbikowski from England.

We would like to thank the International Advisory Committee for their guid-
ance, advice and discussions. Our special gratitude is devoted to the Program
Committee and reviewers. They have done a wonderful job of shaping the con-
ference image.



VI Preface

Camera-ready version of the papers were carefully examined and verified
by Wiktor Malesza, Konrad Markowski, Tomasz Toczyski and Maciej Twardy.
A number of people from our Electrical Engineering Faculty, the Control Division
Staff members and the PhD students were involved in various conference tasks,
supporting the conference secretariat and maintaining multimedia equipment.
We greatly appreciate all they have done.

We also wish to thank our publisher, especially Alfred Hofmann the Editor-
in-Chief of LNCS and Anna Kramer for their support and collaboration.

Finally, the conference was made up of papers and presentations prepared by
our contributors and participants. Most of our gratitude is directed to them.

April 2007 Bartlomiej Beliczynski
Andrzej Dzielinski

Marcin Iwanowski

Bernardete Ribeiro



Organization

Advisory Committee

Rudolf Albrecht, University of Innsbruck, Austria
Andrej Dobnikar, University of Ljubljana, Slovenia

Vera Kurkova, Academy of Sciences of the Czech Republic, Czech Republic

David Pearson, University Jean Monnet, France
Bernardete Ribeiro, University of Coimbra, Portugal

Nigel Steele, Coventry University, UK

Program Committee

Bartlomiej Beliczynski, Poland (Chair)

Rudolf Albrecht, Austria
Gabriela Andrejkova, Slovakia
Paulo de Carvalho, Portugal
Ernesto Costa, Portugal
Andrej Dobnikar, Slovenia
Marco Dorigo, Belgium
Antonio Dourado, Portugal
Gerard Dray, France
Andrzej Dzielinski, Poland
Jorge Henriques, Portugal,
Katerina Hlavackova-Schindler,
Austria
Osamu Hoshino, Japan
Janusz Kacprzyk, Poland
Tadeusz Kaczorek, Poland
Paul C. Kainen, USA
Helen Karatza, Greece
Miroslav Karny, Czech Republic
Marian P.Kazmierkowski Poland
Mario Koeppen, Germany
Jozef Korbicz, Poland

Vera Kurkova, Czech Republic
Pedro Larranaga, Spain
Francesco Masulli, Italy

Leila Mokhnache, Algeria
Roman Neruda, Czech Republic
Stanislaw Osowski, Poland
Nikola Pavesic, Slovenia
David Pearson, France

Maria Pietrzak-David, France
Colin Reeves, UK

Bernardete Ribeiro, Portugal
Henrik Saxen, Finland
Marcello Sanguineti, Italy

Jiri Sima, Czech Republic
Catarina Silva, Portugal
Nigel Steele, UK

Miroslaw Swiercz, Poland
Ryszard Tadeusiewicz, Poland
Tatiana Tambouratzis, Greece
Kevin Warwick, UK
Stanislaw H. Zak, USA



VIII Organization

Organizing Committee

Bartlomiej Beliczynski (Chair)

Bernardete Ribeiro (Past Chair)

Witold Czajewski (Technical Support, Conference Events)
Andrzej Dzielinski (Reviewing Process)

Waldemar Graniszewski (Social Program)

Marcin Iwanowski (Conference Coordinator; Proceedings, WWW)
Grazyna Rabij (Finances)

Reviewers
Rudolf Albrecht Soowhan Han
Krzysztof Amborski Zenon Hendzel

Gabriela Andrejkova
Jaroslaw Arabas

Piotr Arabas
Prasanna Balaprakash
Bartlomiej Beliczynski
Conrad Bielski

Fatih Mehmet Botsali
Cyril Brom

Pawel Buczynski
Paulo de Carvalho
Hasan Huseyin Celik
Leszek Chmielewski
YoungSik Choi
Michal Choras
Ryszard Choras
Gyo-Bum Chung
Andrzej Cichocki
Ernesto Costa

David Coufal
Boguslaw Cyganek
Witold Czajewski
Wlodzimierz Dabrowski
Dariusz Krol

Guy De Tre

Andrej Dobnikar
Antonio Dourado
Gerard Dray

Andrzej Dzielinski
Mehmet Onder Efe
Maria Ganzha
Waldemar Graniszewski

Jorge Henriques
Mika Hirvensalo
Katarina Hlavackova-Schindler
Osamu Hoshino
Yanhai Hu

Ben Hutt

Naohiro Ishii
Marcin Iwanowski
Wojciech Jedruch
Tatiana Jaworska
Piotr Jedrzejowicz
Sangbae Jeong
Marcel Jirina
Tomasz Kacprzak
Janusz Kacprzyk
Tadeusz Kaczorek
Paul C. Kainen
Helen Karatza
Andrzej Karbowski
Ali Karci

Miroslav Karny
Wlodzimierz Kasprzak
Marian P. Kazmierkowski
Adnan Khashman
Chang-Soo Kim
II-Hwan Kim
Kwang-Baek Kim
Mi-Young Kim
Mario Koeppen
Jozef Korbicz
Anna Korzynska



Jacek Kozak
Wojciech Kozinski
Marek Kowal

Petra Kudova

Piotr Kulezycki
Vera Kurkova
Halina Kwasnicka
Bogdan Kwolek
Pedro Larranaga
Inbok Lee

Kidong Lee
Jun-Seok Lim
Hong-Dar Lin
Rafal Lopatka
Jacek Mandziuk
Mariusz Mlynarczuk
Mariusz Malinowski
Marcin Mrugalski
Konrad Markowski
Francesco Masulli
Yuri Merkuryev
Zbigniew Mikrut
Leila Mokhanche
Marco Montes de Oca
Jose Moreno

Nadia Nedjah
Roman Neruda
Mariusz Nieniewski
Joanna Nowak
Piotr Nowak

Marek Ogiela
Wilodzimierz Ogryczak
Stanislaw Osowski
Andrzej Pacut
Henryk Palus
Marcin Paprzycki
Byung Joo Park
JungYong Park
Kiejin Park
Miroslaw Parol
Krzysztof Patan
Nikola Pavesic
David W. Pearson
Daniel Prusa

Artur Przelaskowski

Organization

Jochen Radmer
Remigiusz Rak
Sarunas Raudys

Kiril Ribarov
Bernardete Ribeiro
Martin Rimnac
Claudio M. Rocco S.
Miguel Rocha
Przemyslaw Rokita
Maciej Romaniuk
Maciej Slawinski
Stanislav Saic
Marcello Sanguineti
José Santos Reyes
Henrik Saxen
Franciszek Seredynski
Dongmin Shin
Barbara Siemiatkowska
Dominik Sierociuk
Catarina Silva

Jiri Sima

Slawomir Skoneczny
Andrzej Sluzek
Czeslaw Smutnicki
Pierre Soille
Oleksandr Sokolov
Nigel Steele

Barbara Strug

Pawel Strumillo
Bartlomiej Sulikowski
Miroslaw Swiercz
Krzysztof Szczypiorski
Jarosaw Szostakowski
Wojciech Szynkiewicz
Ryszard Tadeusiewicz
Tatiana Tambouratzis
Jorge Tavares
Tomasz Toczyski
Krzysztof Trojanowski
George A. Tsihrintzis
Pavel Vacha
Armando Vieira
Wen-Pai Wang
Slawomir Wierzchon
Anna Wilbik

IX



X Organization

Marcin Witczak Cezary Zielinski
Maciej Wygralak Stanislaw H. Zak
Mykhaylo Yatsymirskyy

Slawomir Zadrozny

Organizers

ICANNGA 2007 was organized by the Control Division of the Institute of Control
and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University
of Technology, Poland.



Table of Contents — Part 11

Neural Networks

Evolution of Multi-class Single Layer Perceptron .....................

Sarunas Raudys

Estimates of Approximation Rates by Gaussian Radial-Basis

FUunctions . ...

Paul C. Kainen, Véra Kurkovd, and Marcello Sanguineti

Least Mean Square vs. Outer Bounding Ellipsoid Algorithm in

Confidence Estimation of the GMDH Neural Networks................

Marcin Mrugalski and Jozef Korbicz
On Feature Extraction Capabilities of Fast Orthogonal Neural

NetwWorKs .. e

Barttomiej Stasiak and Mykhaylo Yatsymirskyy

Neural Computations by Asymmetric Networks with Nonlinearities. . . . .

Naohiro Ishii, Toshinori Deguchi, and Masashi Kawaguchi

Properties of the Hermite Activation Functions in a Neural

Approximation Scheme ............. .. ..

Bartlomiej Beliczynski

Study of the Influence of Noise in the Values of a Median Associative

MemoOry ..ot

Humberto Sossa, Ricardo Barron, and Roberto A. Vdzquez

Impact of Learning on the Structural Properties of Neural Networks. . ..

Branko Ster, Ivan Gabrijel, and Andrej Dobnikar

Learning Using a Self-building Associative Frequent Network .........

Jin-Guk Jung, Mohammed Nazim Uddin, and Geun-Sik Jo

Proposal of a New Conception of an Elastic Neural Network and Its
Application to the Solution of a Two-Dimensional Travelling Salesman

Problem . ...

Tomasz Szatkiewicz

Robust Stability Analysis for Delayed BAM Neural Networks..........

Yijing Wang and Zhigiang Zuo
A Study into the Improvement of Binary Hopfield Networks for Map

COoloTIng . . oot

Gloria Galan-Marin, Enrique Mérida-Casermeiro,
Domingo Lopez-Rodriguez, and
Juan M. Ortiz-de-Lazcano-Lobato

11

19

27

37

46

55

63

71

80

88

98



XII Table of Contents — Part I

Automatic Diagnosis of the Footprint Pathologies Based on Neural
Networks . ..o 107
Marco Mora, Mary Carmen Jarur, and Daniel Sbarbaro

Mining Data from a Metallurgical Process by a Novel Neural Network
Pruning Method ... ... . 115
Henrik Saxén, Frank Pettersson, and Matias Waller

Dynamic Ridge Polynomial Neural Networks in Exchange Rates Time

Series Forecasting ... ......... i 123
Rozaida Ghazali, Abir Jaafar Hussain, Dhiya Al-Jumeily, and
Madjid Merabti

Neural Systems for Short-Term Forecasting of Electric Power Load . . ... 133
Michat Bgk and Andrzej Bielecki

Jet Engine Turbine and Compressor Characteristics Approximation by
Means of Artificial Neural Networks . ............ ... ... ... ... .. .... 143
Maciej Lawryniczuk

Speech Enhancement System Based on Auditory System and

Time-Delay Neural Network .. ... . ... .. i 153
Jae-Seung Choi and Seung-Jin Park
Recognition of Patterns Without Feature Extraction by GRNN ........ 161

Owiing Polat and Tiilay Yildurum
Real-Time String Filtering of Large Databases Implemented Via a

Combination of Artificial Neural Networks ........ ... ... ... ... ...... 169
Tatiana Tambouratzis
Parallel Realizations of the SAMANN Algorithm..................... 179

Sergejus Ivanikovas, Viktor Medvedev, and Gintautas Dzemyda

A POD-Based Center Selection for RBF Neural Network in Time Series
Prediction Problems . ... .. 189
Wenbo Zhang, Xinchen Guo, Chaoyong Wang, and Chunguo Wu

Support Vector Machines

Support, Relevance and Spectral Learning for Time Series............. 199
Bernardete Ribeiro

Support Vector Machine Detection of Peer-to-Peer Traffic in
High-Performance Routers with Packet Sampling .................... 208
Francisco J. Gonzilez-Castano, Pedro S. Rodriguez-Herndndez,
Rafael P. Martinez-Alvarez, and Andrés Gémez-Tato

Improving SVM Performance Using a Linear Combination of Kernels ... 218
Laura Diosan, Mihai Oltean, Alexandrina Rogozan, and
Jean-Pierre Pecuchet

Boosting RVM Classifiers for Large Data Sets ....................... 228
Catarina Silva, Bernardete Ribeiro, and Andrew H. Sung



Table of Contents — Part 11 XIII

Multi-class Support Vector Machines Based on Arranged Decision

Graphs and Particle Swarm Optimization for Model Selection ......... 238
Javier Acevedo, Saturnino Maldonado, Philip Siegmann,
Sergio Lafuente, and Pedro Gil

Applying Dynamic Fuzzy Model in Combination with Support Vector
Machine to Explore Stock Market Dynamism ........................ 246
Deng-Yiv Chiu and Ping-Jie Chen

Predicting Mechanical Properties of Rubber Compounds with Neural
Networks and Support Vector Machines............................. 254
Mara Trebar and Uro$ Lotri¢

An Evolutionary Programming Based SVM Ensemble Model for
Corporate Failure Prediction ........ ... ... ... .. . i i 262
Lean Yu, Kin Keung Lai, and Shouyang Wang

Biomedical Signal and Image Processing

Novel Multi-layer Non-negative Tensor Factorization with Sparsity
Constraints .. ... 271
Andrzej Clichocki, Rafal Zdunek, Seungjin Choi,
Robert Plemmons, and Shun-ichi Amari

A Real-Time Adaptive Wavelet Transform-Based QRS Complex
Detector . ..o e 281
Marek Rudnicki and Pawel Strumitto

Nucleus Classification and Recognition of Uterine Cervical Pap-Smears
Using FCM Clustering Algorithm ........... ... .. ... ... ......... 290
Kwang-Baek Kim, Sungshin Kim, and Gwang-Ha Kim

Rib Suppression for Enhancing Frontal Chest Radiographs Using

Independent Component Analysis ........... ... ... 300
Bilal Ahmed, Tahir Rasheed, Mohammed A.U. Khan, Seong Jin Cho,
Sungyoung Lee, and Tae-Seong Kim

A Novel Hand-Based Personal Identification Approach................ 309
Miao Qi, Yinghua Lu, Hongzhi Li, Rujuan Wang, and Jun Kong

White Blood Cell Automatic Counting System Based on Support
Vector Machine . ... ... 318
Tomasz Markiewicz, Stanistaw Osowski, and Bozena Mariariska

Kernels for Chemical Compounds in Biological Screening ............. 327
Karol Kozak, Marta Kozak, and Katarzyna Stapor

A Hybrid Automated Detection System Based on Least Square Support

Vector Machine Classifier and &~NN Based Weighted Pre-processing for

Diagnosing of Macular Disease. .. ... .. 338
Kemal Polat, Sadik Kara, Aysegil Giiven, and Salih Giines



XIV Table of Contents — Part 1T

Analysis of Microscopic Mast Cell Images Based on Network of

Synchronised Oscillators ........... .. i i 346
Michal Strzelecki, Hyongsuk Kim, Pawel Liberski, and
Anna Zalewska

Detection of Gene Expressions in Microarrays by Applying Iteratively
Elastic Neural Net .. ... i 355
Mdzx Chacén, Marcos Lévano, Héctor Allende, and Hans Nowak

A New Feature Selection Method for Improving the Precision of

Diagnosing Abnormal Protein Sequences by Support Vector Machine

and Vectorization Method . ........ .. .. . .. . 364
Eun-Mi Kim, Jong-Cheol Jeong, Ho-Young Pae, and Bae-Ho Lee

Epileptic Seizure Prediction Using Lyapunov Exponents and Support

Vector Machine . ... ... . 373
Bartosz Swiderski, Stanistaw Osowski, Andrzej Cichocki, and
Andrzej Rysz

Classification of Pathological and Normal Voice Based on Linear
Discriminant Analysis . ... ... 382
Ji- Yeoun Lee, SangBae Jeong, and Minsoo Hahn

Efficient 1D and 2D Daubechies Wavelet Transforms with Application
to Signal Processing ........ ... 391
Piotr Lipinski and Mykhaylo Yatsymirskyy

A Branch and Bound Algorithm for Matching Protein Structures . ..... 399
Janez Konc and DuSanka Janezic

Biometrics

Multimodal Hand-Palm Biometrics.......... ... ... ... .. 407
Ryszard S. Chora$ and Michat Choras

A Study on Iris Feature Watermarking on Face Data ................. 415
Kang Ryoung Park, Dae Sik Jeong, Byung Jun Kang, and
Eui Chul Lee

Keystroke Dynamics for Biometrics Identification .................... 424
Michat Choras and Piotr Mroczkowski

Protecting Secret Keys with Fuzzy Fingerprint Vault Based on a 3D
Geometric Hash Table . ......... .. .. i 432
Sungju Lee, Daesung Moon, Seunghwan Jung, and Yongwha Chung

Face Recognition Based on Near-Infrared Light Using Mobile Phone.... 440
Song-yi Han, Hyun-Ae Park, Dal-ho Cho, Kang Ryoung Park, and
Sangyoun Lee

NEU-FACES: A Neural Network-Based Face Image Analysis System ... 449
Toanna-Ourania Stathopoulou and George A. Tsihrintzis



Table of Contents — Part 11 XV

GA-Based Iris/Sclera Boundary Detection for Biometric Iris
Identification . .. ... 457
Tatiana Tambouratzis and Michael Masouris

Neural Network Based Recognition by Using Genetic Algorithm for
Feature Selection of Enhanced Fingerprints............ ... ... ... .... 467
Adem Alpaslan Altun and Novruz Allahverdi

Computer Vision

Why Automatic Understanding? ........ ... ... .. ... 477
Ryszard Tadeusiewicz and Marek R. Ogiela

Automatic Target Recognition in SAR Images Based on a SVM
Classification Scheme . . ... ... . . 492
Wolfgang Middelmann, Alfons Ebert, and Ulrich Thoennessen

Adaptive Mosaicing: Principle and Application to the Mosaicing of
Large Image Data Sets ....... .. ... i 500
Conrad Bielski and Pierre Soille

Circular Road Signs Recognition with Affine Moment Invariants and
the Probabilistic Neural Classifier ........... ... ... .. .. ... ... .... 508
Bogustaw Cyganek

A Context-Driven Bayesian Classification Method for Eye Location .... 517
Eun Jin Koh, Mi Young Nam, and Phill Kyu Rhee

Computer-Aided Vision System for Surface Blemish Detection of LED

CRiPS oot 525
Hong-Dar Lin, Chung-Yu Chung, and Singa Wang Chiu
Detection of Various Defects in TFT-LCD Polarizing Film ............ 534

Sang- Wook Sohn, Dae-Young Lee, Hun Choi, Jae-Won Suh, and
Hyeon-Deok Bae

Dimensionality Problem in the Visualization of Correlation-Based
Data . 544

Gintautas Dzemyda and Olga Kurasova

A Segmentation Method for Digital Images Based on Cluster
Analysis ..o 554
Héctor Allende, Carlos Becerra, and Jorge Galbiati

Active Shape Models and Evolution Strategies to Automatic Face
Morphing . . ..o 564
Vittorio Zanella, Héctor Vargas, and Lorna V. Rosas

Recognition of Shipping Container Identifiers Using ART2-Based
Quantization and a Refined RBF Network .......................... 572
Kwang-Baek Kim, Minhwan Kim, and Young Woon Woo



XVI Table of Contents — Part 11

A Local-Information-Based Blind Image Restoration Algorithm Using
a ML P L
Hui Wang, Nian Cai, Ming Li, and Jie Yang

Reflective Symmetry Detection Based on Parallel Projection...........
Ju-Whan Song and Ou-Bong Gwun

Detail-Preserving Regularization Based Removal of Impulse Noise from
Highly Corrupted Images .. ....... .. .. i,
Bogdan Kwolek

Fast Algorithm for Order Independent Binary Homotopic Thinning . ...
Marcin Twanowski and Pierre Soille

A Perturbation Suppressing Segmentation Technique Based on
Adaptive Diffusion . ....... ... .
Wolfgang Middelmann, Alfons Ebert, Tobias DeifSler, and
Ulrich Thoennessen

Weighted Order Statistic Filters for Pattern Detection . ...............
Slawomir Skoneczny and Dominik Cieslik

Real-Time Image Segmentation for Visual Servoing...................
Witold Czajewski and Maciej Staniak

Control and Robotics

A Neural Framework for Robot Motor Learning Based on Memory
Consolidation .. ....... ... i e
Heni Ben Amor, Shuhei Ikemoto, Takashi Minato,
Bernhard Jung, and Hiroshi Ishiguro

Progressive Optimisation of Organised Colonies of Ants for Robot
Navigation: An Inspiration from Nature.............................
Tatiana Tambouratzis

An Algorithm for Selecting a Group Leader in Mobile Robots Realized
by Mobile Ad Hoc Networks and Object Entropy ....................
Sang-Chul Kim

Robot Path Planning in Kernel Space ..............................
José Ali Moreno and Cristina Garcia

A Path Finding Via VRML and VISION Overlay for Autonomous
Robot ..o
Kil To Chong, Fun-Ho Son, Jong-Ho Park, and Young-Chul Kim

Neural Network Control for Visual Guidance System of Mobile
Robot ..o
Young-Jae Ryoo

Cone-Realizations of Discrete-Time Systems with Delays..............
Tadeusz Kaczorek



Table of Contents — Part 11

Global Stability of Neural Networks with Time-Varying Delays ........
Yijing Wang and Zhiqiang Zuo

A Sensorless Initial Rotor Position Sensing Using Neural Network

for Direct Torque Controlled Permanent Magnet Synchronous Motor

Drive . o
Mehmet Zeki Bilgin

Postural Control of Two-Stage Inverted Pendulum Using Reinforcement

Learning and Self-organizing Map .......... ... .. ..o ..
Jae-kang Lee, Tae-seok Oh, Yun-su Shin, Tae-jun Yoon, and
1l-hwan Kim

Neural Network Mapping of Magnet Based Position Sensing System for
Autonomous Robotic Vehicle ....... .. .. ... o i
Dae—Yeong Im, Young-Jae Ryoo, Jang-Hyun Park,
Hyong-Yeol Yang, and Ju-Sang Lee

Application of Fuzzy Integral Control for Output Regulation of
Asymmetric Half-Bridge DC/DC Converter ................c.cooooo...
Gyo-Bum Chung

Obtaining an Optimum PID Controller Via Adaptive Tabu Search ... ..
Deacha Puangdownreong and Sarawut Sugitjorn

Author Index . ... .



Evolution of Multi-class Single Layer Perceptron

Sarunas Raudys

Vilnius Gediminas Technical University
Sauletekio 11, Vilnius, LT-10223, Lithuania
raudys@ktl.mii.lt

Abstract. While training single layer perceptron (SLP) in two-class situation,
one may obtain seven types of statistical classifiers including minimum empiri-
cal error and support vector (SV) classifiers. Unfortunately, both classifiers
cannot be obtained automatically in multi-category case. We suggest designing
K(K-1)/2 pair-wise SLPs and combine them in a special way. Experiments us-
ing K=24 class chromosome and K=10 class yeast infection data illustrate effec-
tiveness of new multi-class network of the single layer perceptrons.

1 Introduction

Among dozens of linear classification algorithms, the SLPs together with SV ma-
chines are considered to be among the most effective ones [1], [2], [3], [4], [5] in two
pattern class (category) situations. While training two-category nonlinear SLP based
classifier in a special way, one may obtain seven different types of classification algo-
rithms [5], [6]. If training sample sizes in two pattern classes N,= N;=N/2, a mean
vector of training set is moved to a centre of coordinates and we start total gradient
training form a weight vector with zero components, then after the first iteration we
obtain Euclidean distance classifier (EDC) based on mean vectors of the pattern
classes. Afterwards, we move towards linear regularized discriminant analysis, stan-
dard linear Fisher classifier or the Fisher classifier with pseudo-inverse of the covari-
ance matrix (for an introduction into statistical pattern recognition see e.g. [2,], [5]).
With a progress of iterative adaptation procedure, one has robust discriminant analy-
sis. At the end, when the perceptron weights become large, one may approach the
minimum empirical error or maximal margin (support vector) classifiers.

Evolution is a superb peculiarity of total gradient single layer perceptron training
procedure enabling us to obtain a sequence of diverse classifiers of increasing com-
plexity. Unfortunately, we cannot profit from this distinctiveness of nonlinear single
layer perceptron in multi-category case since: 1) mean vectors of each pair of the
pattern classes are different and 2) around decision boundaries between each pair of
the pattern classes we have diverse subsets of training vectors. So, after training proc-
ess terminates, optimal decision boundaries between each pair of pattern classes
disagree with that of minimum empirical error or support vector classifiers.

In preceding paper [7], an attention was paid to starting evolution of the K-class
SLPs: an improved initialization of the weights was proposed. It was recommended to
start training from correctly scaled weights of EDC or regularized Fisher classifier. In
order to avoid “training shock” (enormous gradient of the cost function after the

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part II, LNCS 4432, pp. 1 — 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 S. Raudys

weights initialization), statistically determined initial weight vector was multiplied by
iteratively calculated positive constant. Prior to training we suggested performing
whitening data transformation on a basis of regularized estimate of covariance matrix
supposed to be common for all K pattern classes. This approach gave a definite gain
in small sample size situations. In large sample size situations, more complex decision
making rules such as robust, minimum empirical error or support vector classifiers are
preferable. Correct initialization of the network becomes less important. So, in present
paper, a main attention is focused on the classifiers obtained in final evolution stage
of the SLPs. Both SLPs and SV classifiers were originally designed for binary classi-
fication. Hsu and Lin [8] found that K(K-1)/2 classifications “one-against-one,” out-
perform a “one-against-all strategy. Following their recommendations we investigate
the one-against-one approach. Instead of SV classifiers we examine optimally stopped
SLPs and compare diverse lines of attack to fuse pair-wise decisions.

2 Minimum Empirical Error and SV Classifiers in SLP Training

While training SLP with sigmoid activation function in K-category case, one mini-
mizes a sum of squares cost

K K N,

1
Cost=———————2.> 3 [1; —1/(1+exp(x; w,+wi)l (1)
Ny+Ny+..+Ny I=li=l j=1

where N; is a number of training vectors of i-th class, IT;, #; is desired output, w; is
p-dimensional weight vector and wy, is a bias term, both corresponding to /-th cate-

gory (output), and xT = [X1, X2 oy Xp] "is transposed j-th p-dimensional vector.
Y

In to category case, if targets tj,l) =1, tj,z) =0, and the weights grow to be very large
with a progress of training procedure, outputs, 1/(1+ (x; w; + wy)), turn out to be close

either to 0 or 1. Then cost function (1) starts expressing a fraction of training vectors
misclassified: we have a minimum empirical error classifier. Let in two category case
we have no training errors and the weights are already large. Then only vectors closest
to hyperplane, xTw(,) + won =0, are contributing to cost (1). E.g., let wy= 0, wi=[1 1].

Then distances of training vectors xj; =[1 1] and xé: [1.01 1.01] from hyperplane

x'w+ wo = 0 will be\/g =1.4142 and 1.4284, correspondingly. If the vectors A and B
are classified correctly, their contribution to the sum in cost function (1) are approxi-
mately the same, 0.0142 and 0.0132. If the weights would be 17.5 times larger (i.e.
wo=0, wi=[17.7 17.7]), the contribution of vector A would be 4.5x10>! and the contribu-
tion of vector’s B would be ten times smaller. So, vector B will affect decision bound-
ary much more weakly. Consequently, while training the SLP based classifier, we may
approach maximal margin classifier (SV machine). In multi-category case, however,
one ought to remember that around each decision boundary separating any of two pairs
of the classes, we have different subsets of training vectors from each category. For that rea-
son, while considering the K-category classification problem from a point of view of
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the criteria of maximal margin, the classifier obtained will be not more optimal for
each pair of the classes.

Two-dimensional example. To demonstrate particularities arising while training the
network of SLPs in multi-category situations we present an example with real world
data. While solving K=24 class chromosome classification problem (see Sect. 4) we
selected three categories (1%, 10" and 11" ), normalized 30-dimensional (30D) input
data by moving a mean vector of training data into centre of coordinates and scaling
all input variables to have variance of each feature equal to 1. A half of the data, 250
vectors of each category, were used for training. We trained the set of three SLPs at
first. After 300 total gradient iterations, empirical classification error stopped to de-
crease. Outputs of three SLP, oy, 0,, 03, were used to form two-dimensional space,
new features y; = 0| - 03, y,= 0, — 03. In Fig. 1, we see 750 2D training vectors of three
pattern classes (class IT; - red pluses, I1, - blue crosses and Il; - green circles) in
space yj, y», obtained after shifting data centre, into coordinates centre.

Later on, a set of three SLPs was trained in 2D space starting from initial weights
with zero valued components. In this experiment, training was controlled by a test set
composed of 750 vectors. Magenta lines show decision boundaries between pairs of
the classes I1;-I1,, I1;-IT; and I1,-T1; after training the network of three SLPs 10000 of
iterations (Pygjidation = 0.0227). Blue lines show the boundaries when minimal valida-
tion error was obtained (P, j;qaion = 0.02, after 2200 iterations).

In order to obtain best separation of training sets we trained three distinct single
layer perceptrons with vectors of I1;-I1,, I'1;-I15 or I1,-I1; categories. One of our aims
is to demonstrate that SPL could assist in obtaining three different SV classifiers to
discriminate the pairs of the pattern classes. The SV classifier could be obtained when
the perceptron weights are large enough. Then only the vectors closed to decision
boundary contribute to the cost function and determine the perceptron weights.

When the weights are large, the gradient is small and training becomes slow. In
order to ensure training process, we increased learning step gradually: after each itera-
tion, the learning step was increased by factor y>1. For pair of the classes I1,-I1; we
succeeded obtaining errorless classification. For this pair we fixed y= 1.001 and
trained the perceptron 13,000 of iterations. Then learning step, Mgy, became 1301.3.
Further increase in the number of iterations caused a divergence of total gradient
training algorithm. For pairs I1;-I1, and I1,-I1; we have non-zero empirical classifica-
tion error. Therefore, we were more prudent and had chosen smaller factor y (Y=
1.0001). Training process was performed almost up to divergence: 50,000 of iterations
for pair IT;-IT, (then, Mgny = 5000.5) and 805,000 iterations for pair ITi-TT; (Mgpy =
80508). We see the control of learning step is vital in obtaining SV classifier.

Support vectors A, B of class I1; and vector C of class I, determine SV decision
boundary SV, between classes I1; and IT,. Support vectors D, E of class I1; (green
circles) and vector F of class I, (red plus) determine SV decision boundary SV; be-
tween classes I1; and I13. Support vectors E, G of class I15 and vector H of class I,
determine SV decision boundary between classes’ I1, and I13. Two vectors of class IT;
and one vector of IT, (all three marked by bold magenta circles) are misclassified by
decision boundary SV,, however, do not affect the position of this boundary. The
same could be said about vector B (also marked by bold magenta circle) which is
misclassified by SV 3.
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Fig. 1. Demonstration that near decision boundaries of any of two pairs of pattern classes we
have different subsets of training vectors from each of the classes. Training set composed of
250 vectors of each class (class I1; red pluses , I, — blue crosses and Tls - green circles),
decision boundaries of three class net of SLPs (magenta and blue) and decision boundaries
of three pair-wise SV classifiers (bold black dotted lines).

“Soft margins” is a positive feature of non-linear SLP prudently trained by total
gradient. The decision boundaries of the net of SLPs meet at unique points. The pair-
wise decision boundaries, however, intersect at diverse points and form a region
where classification is ambiguous. In Fig. 1 we see a small triangle where all three
pair-wise decision boundaries allocate vectors to three different classes. What to do?
If the region of the ambiguous decision is small, we need to have some other high-
quality decision making rule which would make final decision.

3 Practical Aspects of Training the K-Class Network of SLPs

Training pair-wise single layer perceptrons. In order to profit from evolution of the
SLP during development of training procedure, we suggest performing classification
by means of K(K-1)/2 pair-wise linear discriminant functions generated after training
of the perceptron and fuse the pair-wise decisions in order to allocate unknown vector
x to one of the pattern classes. To solve this task perfectly, for each pair of the classes
we have to train individual perceptron in the best possible way, i.e. we train it in a
special manner and stop training on a right moment.

The main two requirements to profit from evolution of non-linear SLP classifier is

to move training data mean, ﬁij , of the pair of classes, I; and II;, into the centre of
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coordinates, and start training from the weight vector with zero components. If a ratio
of training set size to dimensionality is small, the covariance matrix of the data could
become nearly singular. Eigen-values of the covariance matrix could differ in billions
of times. For that reason, training of the perceptron becomes very slow. To speed up
training process and to reduce the generalization error for each pair of the classes it is
worth to perform whitening data transformation [5], [9], [10]

y=G;(x—f;), )

where G; = A" ®", and A, ®" are eigen-values and eigenvectors of pooled sample
covariance matrix, S = XN;Sy/XN,, and S, is sample covariance matrices of class, IT,.

In small training sample situations, one can make use of a variety of statistical
methods to improve sample estimate of covariance matrix. The simplest way is to use
regularized estimate of the matrix [2], [5], Sicquiarizea = S + A I, where I stands for pxp
identity matrix, and A is a regularization constant to be selected in an experimental
way. If certain prior information about a structure of the covariance matrix exists, it
could be utilized by constraining the sample estimate of covariance matrix. As a re-
sult, the matrix is determined by smaller number of parameters [11], [12]. In this way,
we improve sample size / dimensionality ratio (for more details about integration of
statistical methods into SLP training see Chap. 5 in [5]).

Important phase in SLP training is determination of optimal number of iterations.
While training, the classification algorithms move gradually from simplest statistical
methods to more sophisticated ones. Therefore, determination of stopping moment in
fact is determination of optimal complexity of the classifier. Very often conditional
distributions densities of the input pattern vectors are very complex and cannot be
approximated by some theoretical model. For that reason, instead of using exact ana-
lytical formulae or error bounds, one is obliged to use validation set in order to deter-
mine correct stopping moment. The designer has no problems if she/he may take apart
a portion of design set vectors in order to form validation set. If the design set is
small, the designer faces a problem which proportion of design data to use as training
set and which proportion one is obliged to allocate to validation set.

Use of a noise injection in order to determine stopping moment. One of possible
solutions is to use all design set vectors as training set and form validation set from
training vectors by means of a noise injection. A noise injection actually introduces
additional information that declares that a space between nearest vectors of a single
pattern class is not empty, but instead is filled up with vectors of the same category.
Colored k-NN noise injection was suggested to reduce data distortion [13]. To gener-
ate such noise, for each single training vector, x;, one finds its k nearest neighbors of

the same pattern class and adds a noise only in a subspace formed by vector x; and k

2

neighboring training vectors, X1, X, ..., X Random Gaussian, N(0, o ...

), noise

is added ni,, times along k lines connecting x,; and Xy, X, ..., Xs. Three parameters
are required to realize the noise injection procedure: 1) k, the number of neighbors, 2)

niy, the number of new, artificial vectors generated around each single training vec-

2

tor, X, and 3) Opise, the noise standard deviation. The noise variance, o, . , has to

be selected as a trade-off between the complexity of the decision boundary and the
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learning set size. When working with unknown data, one has to test several values of
Cuoise and select the most suitable one [14], [15]. To speed up calculations in our
experiments, we used “default” values: k=2; Gpoie=1.0, niy,=25.

Making final decision. After obtaining K(K-1)/2 pair-wise classifications made by
K(K-1)/2 single layer perceptrons, for each unknown vector, x, we need to make a
final categorization. Popular methods to combine outputs of pair-wise classifications
are voting and a method suggested by Hastie and Tibshirani [8], [16], [17]. Blow we
suggest using two new alternative fusion methods. In both of them, we allocate vector
x to class I1,, if K-1 pair-wise classifiers out of K(K-1)/2 ones are allocating this vec-
tor to single pattern class, I1,. Otherwise, we perform a second stage of decision mak-
ing. In first fusion algorithm, we perform final categorization by the K-class net of
SLPs. Here, both the pair-wise decisions and the fusion are performed by the hyper-
planes. It could become a weakness of the method. In order to increase diversity of
decision making procedure in initial and final classifications, in the second version of
decision making algorithm, final allocation of vactor x is performed by local classifi-
cation rule, the kernel discriminant analysis (KDA). The latter procedure is similar to
fusion rule of Giacinto et al. [18] suggested in Multiple classifier systems (MCS)
framework (for recent review of fusion rules see e.g. [19]).

The K-class set of SLPs was already considered above. In the KDA we perform
classification according to nonparametric local estimates of conditional probability
density functions of input vectors, fxpa(x! I1;), and g;, prior probabilities of the classes
i=1,2,..., K In the experiments reported below, we used Gaussian kernel and per-
formed classification according to the maximum of products

q; Vi _ _ .
q; X fxpa (x 1 I1;) =F1§16Xp(_h Yx _xij)TSRli(x_xij))’ (i=12,...,K), 3)

1

where £ is a smoothing parameter, Sg; is sample estimate of the i class covariance
matrix. Index “R” symbolizes that the matrix estimate could be constrained or regular-
ized to go with small learning set size requirements. To have fair comparison of the
KDA based algorithm with other ones, we used default value, 4 = 1.0.

4 Real World Pattern Recognition Tasks

Data. In order to look into usefulness of new strategy to design the network of single
layer perceptrons to solve multi-class pattern recognition problems, two hot real world
biomedical problems were investigated. The first data set were the chromosome 30-
dimensional band profiles [20], consisting of 24 classes, 500 vectors in each of them.
The second problem was 1500-dimensional spectral yeast infection data. The identifi-
cation and analysis of closely related species of yeast infections is problematic [21].
For analysis we had 1001 data vectors from ten different infections (K=10): 113, 84,
116, 83, 120, 56, 90, 97, 113 and 129 vectors in each of them.

Experiments. In evaluation of different variants of learning procedures we used two-
fold cross validation technique. Every second vector of each pattern class was selected
for training. Remaining vectors were used for testing of the classification algorithms.
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In order to obtain more reliable results, the cross validation procedures were repeated 25
times after preceding reshuffling of the data vectors in each category.

Focus of present paper is final evolution of the network of the pair-wise percep-
trons in the situation where in final stage of learning process the minimum empirical
error or support vector classifiers are obtained. One may argue that these classifica-
tion algorithms are most complex in the sequence of methods that could be obtained
while training nonlinear SLP.

Dimensionality p=1500 for 50 vectors from each category allocated for training in
the experiments with yeast data, is too high to obtain reliable SV or minimum empiri-
cal error classifiers. So, for dimensionality reduction we used slightly regularized
(A =0.01) K-class Fisher classifier. Ten outputs of the Fisher classifiers were mapped
into 9D space. Next, a mean of the 9D training set was moved into a centre of coordi-
nates and all features were scaled to equalize standard deviations.

To determine optimal number of training epochs of K class SLP (KSLP) and two
variants of pair-wise SLPs (pwSLP+KSLP and pwSLP+KDA) we used artificially
generated pseudo-validation set. This set was generated by means of colored noise
injection as described in Sect. 3. Thus, in the experiments with yeast data we used
~12,500 9D vectors for validation. We used 150,000 30D artificially generated valida-
tion vectors in the experiments with chromosome data.

Results. Average values of generalization errors evaluated in 2x25=50 cross-
validation runs of the experiments with randomly permuted data are presented in
Table 1. In column “KSLP/amb/PW” we present: 1) average generalization error of K
class net of SLPs, 2) a fraction of ambiguous vectors where K-1 perceptrons allocated
the test vectors to more than to one pattern class, 3) average generalization error of
KDA. In subsequent four columns we present averages of generalization errors where
pair-wise decisions of K(K-1)/2 single layer preceptrons (on the left side of each col-
umn) or SV classifiers (on the right side) were fused by four different techniques:
Voting, Hastie-Tibshirani method, K class net of SLP or KDA as described above.
To obtain the pair-wise SV classifiers we used Chang and Lin software [22]. Standard
deviations of the averages were ~0.2% (for chromosome data) and ~0.07% (for yeast
data). The best strategies are printed in bold.

Experimental investigations advocate that on average all four combinations of pair-
wise classifications represented as MCSs outperform single stage classification algo-
rithms, the K class net of SLPs and Kernel discriminant analysis. In all four pair-wise
decision fusion methods, optimally stopped single layer perceptrons as adaptive and
more flexible method, outperformed MCS composed of maximal margin (support
vector) classifiers. In all experiments, local fusion (KDA) of the pair-wise decisions
outperformed the global fusion algorithms realized by the hyperplanes (K class net of
SLPs, majority voting or H-T method).

Table 1. Average generalization errors (in %) in 50 experimental runs with real world data

Data set, dimensionality |KSLP/amb/KDA | + Voting | + H-T + KSLP |+ KDA

Yeast, K=10, p =1500—»9 |13.5/ YoN3.1 [13.3/159 [13.3/15.0 |11.7/11.4 [10.6/11.1
Chromosomes, K=24, p=30 [26.6/', /269 [19.8/21.9 [19.6/21.4 [17.4/18.4 |14.2/15.9
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In all 50 experiments with chromosome data, pair-wise SLP with KDA outper-
formed other methods. In experiments with yeast data, this method was the best on
average: in certain experiments out of 50, it was outperformed by other methods
(see Fig. 2).
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Fig. 2. Distributions of generalization errors in the 50 experiments with yeast data: K(K-1)/2
pair-wise SLPs with KDA as fusion rule (y axis) versus K(K-1)/2 pair-wise SV classifiers with
the KDA as fusion rule (on the left) and pair-wise SLPs with fusion rule formed of K class net
of single layer perceptrons (on the right)

We stress once more that all algorithms were compared in identical conditions: the
artificially generated validation sets were used to determine stopping moments, single
a priori fixed smoothing parameter value (h=1) was used in KDA.

5 Concluding Remarks

Previous theoretical analysis has shown that, in principle, one may obtain seven dif-
ferent types of the classification algorithms while training two-category non-linear
single layer perceptron by total gradient algorithm in a special way. At the beginning
of training procedure, we may obtain a sequence of four statistical classifiers based on
model of multivariate Gaussian density with common covariance matrix. After that,
normality assumptions are “released” gradually: we move closer to robust linear clas-
sifier that ignores training vectors distant from decision hyperplane. At the end, we
may approach the minimum empirical error and support vector classifiers which take
into account only training vectors closest to decision hyperplane. The latter fact be-
comes very important in the multi-category case, where at closest neighborhood of the
hyperplanes discriminating each pair of the pattern classes, we have diverse subsets of
training vectors. For that reason, we cannot profit from this magnificent peculiarity of
evolution of nonlinear single layer perceptron: decision boundaries between each pair
of pattern classes differ form that of minimum empirical error and support vector
classifiers.
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In order to profit from evolution of the single layer perceptron during development
of training procedure, like in MCSs we suggest performing decision making in two
stages. At first, we classify unknown vector, x, by means of K(K-1)/2 single layer
perceptrons optimally stopped for each pair of the pattern classes. Thus, for each pair
of the classes we have the classifier of optimal complexity. We assign unknown vec-
tor to i-th class if K-1 pair-wise dicriminant functions are classifying this vector to
single class, I1;. If the first stage classifiers disagree, for final allocation of vector x
we suggest using local classification method, the kernel discriminant analysis.

The experiments performed with two real world data sets and multiple splits of
data into training and test sets do not generalize, however, supported by strong theo-
retical considerations about optimality of pair-wise decisions and diversity of base
(pair-wise) classifiers and the KDA fusion rule give heavy arguments that two stage
decision making strategy described above is promising and worth practical applica-
tion and further theoretical investigation. In future we suggest investigating of more
flexible fusion rules. Such rules could be: a) the KDA with adaptive smoothing pa-
rameter, &, b) radial basis function neural networks, ¢) reduction of the number of
categories in final decision makings. No doubt, the experiments with larger number of
real world data sets should be conducted. Possibly, the main problem, however,
should be a complexity analysis of the pair-wise classifiers and the fusion rules in
relation to input dimensionality and the design set size [15].

Acknowledgements. The author is thankful to Prof. R.P.W. Duin from Delft Univer-
sity of Technology and Prof. R. Somorjai from Institute of Biodiagnostics, Winnipeg
for useful discussions and biomedical data provided for the experiments.
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Abstract. Rates of approximation by networks with Gaussian RBF's
with varying widths are investigated. For certain smooth functions, upper
bounds are derived in terms of a Sobolev-equivalent norm. Coefficients
involved are exponentially decreasing in the dimension. The estimates
are proven using Bessel potentials as auxiliary approximating functions.

1 Introduction

Gaussian radial-basis functions (RBF) are known to be able to approximate with
an arbitrary accuracy all continuous and all £2-functions on compact subsets of
R? (see, e.g., [7], [16], [I7], [18], [19]). In such approximations, the number of
RBF units plays the role of a measure of model complexity, which determines the
feasibility of network implementation. For Gaussian RBFs with a fixed width,
rates of decrease of approximation error with increasing number of units were
investigated in [B], [6], [11], [10].

In this paper, we investigate rates of approximation by Gaussian RBF net-
works with varying widths. As the set of linear combinations of scaled Gaussians
is the same as the set of linear combinations of their Fourier transforms, by
Plancherel’s equality the £2-errors in approximation of a function and its Fourier
transform are the same. We exploit the possibility of alternating between func-
tion and Fourier transform to obtain upper bounds on rates of approximation.
Our bounds are obtained by composing two approximations. As auxiliary ap-
proximating functions we use certain special functions called Bessel potentials.
These potentials characterize functions belonging to Sobolev spaces.

The paper is organized as follows. In Sect. [2, some concepts, notations and
auxiliary results for investigation of approximation by Gaussian RBF networks
are introduced. Using an integral representation of the Bessel potential and its
Fourier transform in terms of scaled Gaussians, in Sect. 3l we derive upper bounds
on rates of approximation of Bessel potentials by linear combinations of scaled

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part II, LNCS 4432, pp. 11-fi8] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Gaussians. In Sect. [ where Bessel potentials are used as approximators, up-
per bounds are derived for functions from certain subsets of Sobolev spaces. In
Sect. B, estimates from the previous two sections are combined to obtain a bound
for approximation of certain smooth functions by Gaussian RBF's. Due to space
limitations, we have excluded proofs; they are given in [9].

2 Approximation by Gaussian RBF Networks

In this paper, we consider approximation error measured by £2-norm with re-
spect to Lebesgue measure . Let £2(£2) and L£(f2) denote, respectively, the
space of square-integrable and absolutely integrable functions on 2 C R? and
I-llz2(2) [|-lz1(2) the corresponding norms. When 2 = R, we write merely £
and L.

For nonzero f in £2, f° = f/|fllz2 is the normalization of f. For F C L2,
F|g denotes the set of functions from F restricted to §2, F' is the set of Fourier
transforms of functions in F', and F° the set of normalizations. For n > 1, we
define span, F := {}" , w;fi | fi € F,w; € R}.

In a normed linear space (X, ||.||x), for f € X and A C X, we shall write
lf —Allx =infgea || f = gl|x- Two norms || - || and |- | on the same linear space
are equivalent if there exists k > 0 such that k71| - || < |- | < &| - ||

A Gaussian radial-basis-function unit with d inputs computes all scaled and
translated Gaussian functions on R?. For b > 0, let 3, : R? — R be the scaled
Gaussian defined by

(@) = exp(~bllz]?) = 711",
Then a simple calculation shows that
el 22 = (/2b) 4. (1)

Let
G={rmlye R%, b > 0} where (7, f)(z) = f(x —y)

denote the set of translations of scaled Gaussians and

Go={mw|beR;}

the set of scaled Gaussians centered at 0.

We investigate rates of approximation by networks with n Gaussian RBF units
and one linear output unit, which compute functions from the set span,,G.

The d-dimensional Fourier transform is the operator F on £2 N L! given by

FD@ =)= g [ e 1@ s, )

where - denotes the Euclidean inner product on R?. The Fourier transform be-
haves nicely on Gq: for every b > 0,

To(x) = (2b) Y2 4 (2) (3)
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(cf.[22] p. 43]). Thus
span, Gy = span,, Go. (4)

Calculation shows that
19bllc2 = (26) =% (2bm)H* = [yl 2 (5)

and Plancherel’s identity [22} p. 31] asserts that Fourier transform is an isometry
on L2 for all f € L?

1£le2 =112 - (6)
By (@) and (@) we get the following equality.

Proposition 1. For all positive integers d,n and all f € L2, R
If —span, Gol|z2 = ||f —span,Gol|z2 = [|f — span,, Gol|z2 = || f — span,, Go| z2.

So in estimating rates of approximation by linear combinations of scaled Gaus-
sians, one can switch between a function and its Fourier transform.

To derive our estimates, we use a result on approximation by convex combi-
nations of n elements of a bounded subset of a Hilbert space derived by Maurey
[20], Jones [§] and Barron [2I3]. Let F' be a bounded subset of a Hilbert space
(H,|lIln), sF = supsep || fll3, and uconv, FF = {377 Lfi| fi € F} denote the set
of n-fold convex combinations of elements of F' with all coefficients equal. By
Maurey-Jones-Barron’s result [3, p. 934], for every function h in clconv (FU—F),
i.e., from the closure of the symmetric convex hull of F', we have

[lh —uconv, F||x < j/f; . (7)

The bound () implies an estimate of the distance from span,, F' holding for

any function from H. The estimate is formulated in terms of a norm tailored to

F, called F-variation and denoted by ||.||r. It is defined for any bounded subset

F of any normed linear space (X, .|| x) as the Minkowski functional of the closed
convex symmetric hull of F' (closure with respect to the norm ||.||x), i.e.,

|h||p =inf{c>0|c 'h € cleconv (FU—F)}. (8)

Note that F-variation can be infinite (when the set on the right-hand side is
empty) and that it depends on the ambient space norm. In the next sections, we
only consider variation with respect to the £2-norm. The concept of F-variation
was introduced in [12] as an extension of “variation with respect to half-spaces”
defined in [2], see also [13].

Tt follows from (@) that for all h € H and all positive integers n,

12| o
vn o

It is easy to see that if ¢ is any linear isometry of (X,].||x), then for any
feX, [[fllr=lv(f)lly)- In particular,

1fleg = IIflleg (10)

||h‘ - SpannF”H <

9)
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To combine estimates of variations with respect to two sets, we use the
following lemma. Its proof follows easily from the definition of variation.

Lemma 1. Let F, H be nonempty, nonzero subsets of a normed linear space X .
Then for every f € X, |[fllr < (suppep |hl|lr)] fll&-

For ¢ : 2 xY — R, let F, = {¢(.,y) : 2 — R|y € Y}. The next theorem is
an extension of [14], Theorem 2.2]. Functions on subsets of Euclidean spaces are
continuous almost everywhere if they are continuous except on a set of Lebesgue
measure zero.

Theorem 1. Let R CRY, Y CRP, w:Y — R, ¢: 2 xY — R be continuous
almost everywhere such that for all y € Y, ||¢(.,y)| z2(2) = 1, and f € L1(2) N
L2(£2) be such that for all z € 2, f(z) = [, w(y) d(x,y)dy. Then ||f|F, <

”w”Ll(Y)-

3 Approximation of Bessel Potentials by Gaussian RBF's

In this section, we estimate rates of approximation by span,,G for certain special
functions, called Bessel potentials, which are defined by means of their Fourier
transforms. For r > 0, the Bessel potential of order r, denoted by (3., is the
function on R? with Fourier transform

Br(s) = (L4 slI*) /2.

To estimate G§-variations of /3, and ﬁr, we use Theorem [I] with representations
of these two functions as integrals of scaled Guassians.

For r > 0, it is known ([2I} p. 132]) that (3, is non-negative, radial, exponen-
tially decreasing at infinity, analytic except at the origin, and a member of £'.
It can be expressed as an integral

Br(x) = er(r, d) /OOO exp(—t/4x) t~V* 2 exp(—(n/t)||=|*) dt, (1)

where c¢;(r,d) = (2r)%2(47)~"/2/T(r/2) (see [I5, p. 296] or [21]). The factor
(2m)4/? occurs since we use Fourier transform (@) which includes the factor
(277)_d/ 2. Rearranging () slightly, we get a representation of the Bessel po-
tential as an integral of normalized scaled Gaussians.

Proposition 2. For every r > 0, d a positive integer, and x € R?

“+oo
B, (x) = / 0 (B2 ()

where v (t) = c1(r,d)||Vr ¢l o2 exp(—t/47) t=d/24r/2=1 >,
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Let I'(z) = [,° t*"*e~'dt be the Gamma function (defined for z > 0) and put

(m/2)Y40(r/2 — d/4)

k(r,d) := r(/2)

By calculating the £'-norm of the weighting function v, and applying Theo-
rem [I we get an estimate of G§-variation of ;.

Proposition 3. For d a positive integer and r > d/2,

/ vp(t)dt = k(r,d) and ||Br]lge < ||ﬂT||G3 < k(r,d).
0

Also the Fourier transform of the Bessel potential can be expressed as an integral
of normalized scaled Gaussians.

Proposition 4. For every r > 0, d a positive integer, and s € R?
o0
B = [l ar,
0

where w, (t) = ||7|| c2t7/2 et /T(r/2).

A straightforward calculation shows that the £!-norm of the weighting function
w, is the same as the £'-norm of the weighting function v, and thus by Theorem
[ we get the same upper bound on G§-variation of (3.

Proposition 5. For d a positive integer and r > d/2,
| wtde = k) and [illor < 16lgp < k().
0

Combining Propositions Bl and Bl with ([@) we get the next upper bound on rates
of approximation of Bessel potentials and their Fourier transforms by Gaussian
RBFs.

Theorem 2. For d a positive integer, r > d/2, and n > 1

18 = span, G|l > = ||, — span,, Gollz2 = || B, — span,, Gollz2 < k(r,d)n="/2.

So for r > d/2 both the Bessel potential of the order r and its Fourier trans-
form can be approximated by span,Gy with rates bounded from above by
k(r,d)yn=1/2. If for some fixed ¢ > 0, 74 = d/2 + ¢, then with increasing d,
k(ra,d) = (7/2)¥*I(c/2)/I(d/2+ ¢/2) converges to zero exponentially fast. So
for a sufficiently large d, 3,, and Br , can be approximated quite well by Gaussian
RBF networks with a small number of hidden units.
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4 Rates of Approximation by Bessel Potentials

In this section we investigate rates of approximation by linear combinations of
translated Bessel potentials.
For 7, the translation operator (7. f)(y) = f(y — ) and r > 0, let

Gg, ={mfr |z € Rd}

denote the set of translates of the Bessel potential of the order r. For r > d/2,
Gp, C L? since translation does not change the £%-norm.
Let r > d/2. By a mostly straightforward argument (see [4]), we get

) . 1/2
Il = Ay =m0 (102 ) (12)

The convolution h x g of two functions h and g is defined by (h * g)(x) =
Jga M(y)g(z — y)dy. For functions which are convolutions with 3., the integral
representation f(z) = [w(y)B,(z — y)dy combined with Theorem [ gives the
following upper bound on Gg, -variation.

Proposition 6. For d a positive integer and r > d/2, let f = w x (3, where
w € LY and w is continuous a.e.. Then

1fllcs, < Iflles, < Gl

For d a positive integer and r > d/2, consider the Bessel potential space (with
respect to R?)
2:{f|f:w*ﬂr7 we£2}7

where ||f||prz = ||w||£z for f = w * B,. The function w has Fourier transform
equal to (27)~%2f /[, since the transform of a convolution is (27)%?2 times the
product of the transforms, so w = (27)~%?( f / ﬂr) . In particular, w is uniquely
determined by f and so the Bessel potential norm is well-defined. The Bessel
potential norm is equivalent to the corresponding Sobolev norm (see [1I, p. 252]);
let k = k(d) be the constant of equivalence.

For a function h : U — R on a topological space U, the support of h is the set
supph = cl{u € U |h(u) # 0}. It is a well-known consequence of the Cauchy-
Schwartz inequality that ||w||z1 < a'/?||w| z2, where a = A(supp w). Hence by
Theorem [1l and ([I2)), we have the following estimate.

Proposition 7. Let d be a positive integer, r > d/2, and f € L™2. If w =
(2m)~42(f/B,) is bounded, almost everywhere continuous, and compactly sup-
ported on R? and a = A(suppw), then 1fllay, < a'X(r, d)|| f]l L2

Combining this estimate of Gg, -variation with Maurey-Jones-Barron’s bound
@) gives an upper bound on rates of approximation by linear combinations of n
translates of the Bessel potential ;.
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Theorem 3. Let d be a positive integer, v > d/2, and f € L™. If w =
(2m)=2(f/B,) is bounded, almost everywhere continuous, and compactly sup-
ported on R? and a = \(suppw), then forn > 1

If = span, G, llez < (/22 )| g2 ) ™2,

5 Bound on Rates of Approximation by Gaussian RBF's

The results given in previous sections imply an upper bound on rates of approx-
imation by networks with n Gaussian RBF units for certain functions in the
Bessel potential space.

Theorem 4. Let d be a positive integer, v > d/2, and f € L™. If w =
(2m)=42(f/B,) is bounded, almost everywhere continuous, and compactly sup-
ported on R and a = A(suppw), then

1 = span, Gllez < (a'2A(, )l fllpeck(rd)) 2,

1/2
where k(r,d) = (W/Q)d/;g;(/g/)bd/@ and A(r,d) = /4 (F(TFZ:{)/Q)> :

The exponential decrease of k(r4, d) mentioned following Theorem 2 with r4 =
d/2 + ¢, applies also to A(r4, d). Thus unless the constant of equivalence of the
Sobolev and Bessel norms x(d) is growing very fast with d, even functions with
large Sobolev norms will be well approximated for sufficiently large d. Note that
our estimates might be conservative as we used composition of two approximations.
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Abstract. The paper deals with the problem of determination of the model un-
certainty during the system identification with the application of the Group
Method of Data Handling (GMDH) neural network. The main objective is to
show how to employ the Least Mean Square (LMS) and the Outer Bounding
Ellipsoid (OBE) algorithm to obtain the corresponding model uncertainty.

1 Introduction

The scope of applications of mathematical models in the industrial systems is very
broad and includes the design of the systems, the control and the system diagnosis
[LLI2USI8]. As the most of industrial systems exhibit a non-linear behaviour, this has been
the main reason for further development of non-linear system identification theory such
as the Artificial Neural Networks (ANNSs) [3]. They enable to model the behaviour of
complex systems without a priori information about the system structure or parameters.
On the other hand, there are no efficient algorithms for selecting structures of classi-
cal ANNs and hence many experiments should be carried out to obtain an appropriate
configuration. To tackle this problem the GMDH approach can be employed [4]. The
synthesis process of GMDH model is based on the iterative processing of a sequence of
operations. This process leads to the evolution of the resulting model structure in such a
way so as to obtain the best quality approximation of the identified system. The applica-
tion of the GMDH approach to the model structure selection can improve the quality of
the model but it can not eliminate the model uncertainty at all. It follows that the uncer-
tainty of the neural model obtained via system identification can appear during model
structure selection and also parameters estimation [9]. In this situation it is necessary
to obtain a mathematical description of the neural model uncertainty. The solution to
this problem can be application of the Outer Bounding Ellipsoid (OBE) algorithm [6].
In the paper it is shown, how to use the LMS and OBE algorithms to the estimation of
the GMDH network parameters in the form of the admissible parameter set called also
a parameters uncertainty. This result allows to define the model uncertainty in the form
of the confidence interval of the model output.

The paper is organized as follows. Section 2 presents the synthesis of the GMDH
network. Section 3 describes the algorithms using during parameters estimation of the

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part II, LNCS 4432, pp. 19-28 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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GMDH network. Sections 4 and 5 deal with the problem of the confidence estimation
of the neurons via application the LMS and OBE methods, while section 6 presents an
example comparing both methods. The final part of this work presents the method of
confidence estimation of the whole GMDH network.

2 Synthesis of the GMDH Neural Network

The idea of the GMDH approach rely on the replacing of the complex neural model by
the set of the hierarchically connected neurons:

100 = € (D )TPY) M
where g,(f) (k) stands for the neuron output ( is the layer number, n is the neuron number
in the [-th layer), corresponding to the k-th measurement of the input u(k) € R™ of the
system, whilst £(-) denotes a non-linear invertible activation function, i.e. there exists

£71(-). The model is obtained as a result of the network structure synthesis with the
application of the GMDH algorithm [4)7]:

1) Based on the available inputs u(k) € R™, the GMDH network grows its first
layer of the neurons. It is assumed that all the possible couples of inputs from sig-

nals u(ll) k), ..., ugi (k), belong to the training data set 7, constitute the stimulation
which results in the formation of the neurons outputs g (k):

g0 (k) = f(w) = f@P k), ..., uld) (k)), ®)

where [ is the layer number of the GMDH network and n is the neuron number
in the [-th layer. In order to estimate the unknown parameters of the neurons p
the techniques for the parameter estimation of linear-in-parameter models can be
used, e.g. LMS. After the estimation, the parameters are “frozen” during the further
network synthesis.

2) Using a validation data set 1V, not employed during the parameter estimation phase,
calculate a processing error of the each neuron in the current /-th network layer. The
processing error is calculated with the application of the evaluation criterion. Based
on the defined evaluation criterion it is possible to select the best-fitted neurons
in the layer. The selection methods in the GMDH neural networks plays a role
of a mechanism of the structural optimization at the stage of construing a new
layer of neurons. During the selection, neurons which have too large value of the
evaluation criterion Q(g}g )) are rejected. After the selection procedure, the outputs
of the selected neurons become the inputs to other neurons in the next layer.

3) If the termination condition is fulfilled (the network fits the data with desired ac-
curacy or the introduction of new neurons did not induce a significant increase in
the approximation abilities of the neural network), then STOP, otherwise use the
outputs of the best-fitted neurons (selected in step 2) to form the input vector for
the next layer, and then go to step /. To obtain the final structure of the network,
all unnecessary neurons are removed, leaving only those which are relevant to the
computation of the model output. The procedure of removing unnecessary neurons
is the last stage of the synthesis of the GMDH neural network.
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3 Parameters Estimation of the GMDH Neural Network

The main feature of the GMDH algorithm is that the techniques for the parameter esti-
mation of linear-in-parameter models e.g. LMS [4]]. can be used during the realisation
of step /. It follows from the facts, that the parameters of the each neurons are estimates
separately and the neuron’s activation function £(-) is invertible, i.e. there exists £ ()
The estimation algorithms of linear-in-parameters models requires the system output to
be described in the following form:

T
yDk) = (rPm) Pl + D), )

and the output error in the case of these algorithms can be defined as:
e(k) (k) = D (k) — 90 (k). @

Unfortunately, the application of the LMS to the parameter estimation of neurons
(@ is limited by a set of restrictive assumptions. One of them concern the properties of
the noise € which affect on the system output y (k). In order to obtain the unbiased and
minimum variance parameter estimate for (1) it have to be assumed:

£ {e;”] —0, (5)
and )
cov {sg)} = (USLI)) I. (6)

The assumption (3) means that there are no deterministic disturbances, which unfor-
tunately usually are caused by the structural errors. However the condition (@) means
that the model uncertainty is described in a purely stochastic way. The assumptions (3)
and (6) are not usually fulfill in practice, which cause increasing of the model uncer-
tainty. Opposite to LMS in the more realistic approach is to assume that the errors (@)
lie between given prior bounds. This leads directly to the bounded error set estima-
tion class of algorithms, and one of them namely the Outer Bounding Ellipsoid (OBE)
algorithm [6] can be employed to obtain the parameter estimate pEf ) (k), as well as an

associated parameter uncertainty in the form of the admissible parameter set [E. In order

to simplify the notation the index ) is omitted. Let’s assume that (k) is bounded as:

e™(k) < e(k) <eM(k), 7

where €™ (k) and eM (k) (™ (k) # M (k)) are known a priori. The expressions (@)
and (7) associated with k-th measurement can be put into the standard form:

-1 <y(k) —g(k) <1, €))
where:
(k) —eM(k) — e™(k
YR (k) = (equ)y_(e);n(k)y( ), a0 = ey(k)ie;”(k)ym(k)' ©)
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Let S be a strip in parameters space [E, bounded by two parallel hyperplanes defined
as:
S(k) = {p e R™ : =1 < y(k) — (k) < 1} (10)
In a recursive OBE algorithm, the data are taken into account one after the other
to construct a succession of ellipsoids containing all values of p consistent with all
previous measurements. After the first £ observations the set of feasible parameters is
characterized by the ellipsoid:

E(p(K). P(k)) = {p € " : (p— p(k) P (P —p(k) <1}, (1D

where p(k) is the center of the ellipsoid constituting k-th parameter estimate, and P (k)
is a positive-definite matrix which specifies its size and orientation. By means of an
intersection of the strip (I0) and the ellipsoid (1)), a region of possible parameter esti-
mates is obtained. This region is outerbouned by a new E(k + 1) ellipsoid. The OBE
algorithm provides rules for computing p(k) and P(k) in such a way that the volume
of E(p(k + 1), P(k + 1)) is minimized. The center of the last nz-th ellipsoid consti-
tutes the resulting parameter estimate while the ellipsoid itself represents the feasible
parameter set, thus any parameter vector p contained in E(ny) is a valid estimate of p.

4 Confidence Estimation of the Neuron Via LMS

In order to obtain the GMDH neural model uncertainty it is necessary to obtain the
confidence region of the model output for each neuron (I) in the GMDH network. In
the case of the LMS, the knowledge regarding the parameter estimates of the neuron:

—1
p=|R"R| Ry, (12)
allows obtaining the confidence region of p with the confidence level of (1 — «):

ﬁi - ta,npfnpfl \/&QCii <p; < ﬁi + ta,npfnpfl \/&201’1'; 1= ]-v sy Np,y (13)

where c¢;; represents i-th diagonal element of the matrix C' = (RTR)_l, taynp—np,—1
represents (1 — «) -th order quantel of a random variable which has a T-Student distri-
bution with (np — n, — 1) degrees of freedom, 62 represent a variance of the random
variable defined as a difference of the system output and its estimate y(k) — g(k):

1 - y'y—p Ry
o —9(k)* = . 14
7= 1 20 o= Y (1)

Finally, the confidence region of the parameters p with the confidence level of (1 —c«)
can be defined as follows:

(- p)TR'R(B —p) < (n, + 1)a2F, " (15)

a,np—ny—17

where Fgﬁ; 1_%_1 is (1 — «)-th order quantel of a random variable which has a

Snedecor’s F-Distribution with (np — n, — 1) and (n, + 1) degrees of freedom. In
order to obtain the (1 — ) confidence interval for the neuron output (I it is necessary
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to assume that (k) is a random variable, which has a Gaussian distribution. Then ex-
pected value has the following form:

Elyk)] =& [T (k)p] = 7" (K)E [B] = r" (k)p, (16)
and the variance is:

var [y(k)] = r* (k)€ [(D —p)(® — )" ] r (k). (17)

-1
Taking into consideration, that: £ [(p — p)(p — p)T] = (RTR) o2, the (T7) has
the following form:

var [y (k)] = v (k) (RTR) e (k)o?. (18)

Finally, the (1 — «) confidence interval for the neuron output (I has the following
form:

g(k) — ta,nanl\/“QrT(k) (RTR)_1 r(k) <rT(k)p< (19)
g(k) + ta,npnpl\/ 5207 (k) (RTR)_l (k).

5 Confidence Estimation of the Neuron Via OBE

In the case of the OBE algorithm the range of the confidence interval of the neuron out-
put depends on the size and the orientation of the elipsoid which define the admissible
parameter set E (cf. Fig[I). Taking the minimal and maximal values of the admissible

T (k)p = rT (k)p + /rT (k) Pr(k)

VT (k) Pr(k)

rT(k,)p = TT(k’)f) — \/rT(k:)Pr(k) p1

»
»

Fig. 1. Relation between the size of the ellipsoid and the neuron output uncertainty

parameter set [ into consideration it is possible to determine the minimal and maximal
values of confidence interval of the neuron output:

v (R)p — \/rT (R)Pr(k) < v (k)p < 7 () +/rT(R)Pr(k).  (20)
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6 An Illustrative Example

The purpose of the present section is to show the effectiveness of the proposed
approaches based on the LMS and OBE in the task of parameters estimation of the
neurons in the GMDH network. Let us consider the following static system:

y(k) = p1 sin(ui(k)) + paus (k) +e(k), 1)

where the nominal values of parameters are p = [0.5, —0.2]7, the input data u(k) and
the noise e(k), k = 1,...,ny are generated according to the uniform distribution, i.e.
u(k) € U(0,2) and e(k) € U(—0.05,0.1). Note that the noise does not satisfy ().
The problem is to obtain the parameter estimate p and the corresponding neuron uncer-
tainty using the set of input-output measurements { (u(k),y(k))}7>° . To tackle this
task, the approaches described in Sections were employed. In the case of the LMS
the parameters uncertainty was obtained with the confidence level of 95%, whereas the
application of the OBE allowed to calculate the parameters uncertainty with the confi-
dence level of 100%. The minimal and maximal values of the parameter estimates for
the both methods are presented in the table[ll The results show that the parameters es-

Table 1. Parameters and their uncertainty obtained with the application ot the LMS and OBE

OBE OBE LMS LMS
p ﬁ [pxnu]ypxnax] ﬁ [pmln’ pmax}
p1 0.4918 [0.4692, 0.5144 ] 0.5224 [ 0.4617,0.5831]

p2  -0.1985 [-0.2039, -0.1931] -0.1768 [-0.1969, -0.1567]

timates obtained with the application of the OBE are similar to the nominal parameters
p = [0.5,—0.2]T, opposite to parameters estimates calculated with the LMS. It fol-
lows from the fact that the condition (@) concerning noise is not fulfilled. The achieved
regions of possible parameter estimate allow to obtain the neuron uncertainty in the
form of the confidence interval of the model output. For both methods the intervals are
calculated for the following common validation signal:

ui(k) = —0.1sin(0.027(k)) + 0.2sin(0.057(k)) +0.8 for k=1,...,160,

u2(k) = 0.25sin(27(k/100)) 4+ 0.1sin(w(k/20)) + 1.0 for k=1,...,160.

In the case of the LMS the confidence interval of the model output (Fig.2)) was calcu-
lated with the application of expression (19). Figure[Blshows the confidence interval of
the model output obtained with the application of the OBE based on the expression (20).
The results obtained with the LMS indicate that the neuron output uncertainty inter-
val does not contain the system output calculated based on the nominal parameters
p. Therefore, only the application of the OBE allows to obtain unbiased parameters
estimates and neuron uncertainty.
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Fig. 3. The confidence interval of the neuron output (- - - ) and the system output (—)

7 Confidence Estimation of the Whole GMDH Network Via OBE

By using the already proposed the OBE approach, it is possible to obtain only the
bounds of the confidence interval of the neuron output in the first layer of the GMDH
network. It follows from the fact that the outputs of the selected neurons become the
inputs to other neurons in the next layer. So, the output bounds became the bounds of
the regressor error in the next layer. From this reason, an error in the regressor should
be taken into account during the design procedure of the neurons from the subsequent
layers. Let us denote an unknown “true” value of the regressor r,, (k) by a difference
between a measured value of the regressor r(k) and the error in the regressor e(k):

(k) = 7(k) — e(k), (22)
where the regressor error e(k) is bounded as follows:

g <elk)<ea i=1,....mp (23)
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Substituting 22)) into (20) it can be show that the partial models output uncertainty
interval have following form:

y™ (k) (D) < 7" (k)p < yM (k) (D), (24)

where:
Y (k) D) = T (R)p + €T ()P — \/(ra (k) + e(k)TP(ra(k) + e(k)),  (25)

yM (k) (D) = (k)b + e (k)p + \/(m(k) +e(k)" P(ra(k) +e(k)).  (26)

In order to obtain the final form of the expression (24) it is necessary to take into
consideration the bounds of the regresor error (23)) in the expressions 23)) and (26):

V) = rERp+ Y sm(ppies — FIRPRLG), @D
PIRG) =T D+ Y sepope - \FERPR®E),  C8)

where 7, ; (k) = 7y, i (k) + sgn (ry,:(k)) €.

8 Conclusions

The objective of this paper was to obtain GMDH models and calculate their uncertainty
with the application of the LMS and OBE. It was shown how to estimate parameters and
the corresponding uncertainty of the particular neuron and the whole GMDH network.
The comparison of both methods was done on the illustrative example.
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Abstract. The paper investigates capabilities of fast orthogonal neural
networks in a feature extraction task for classification problems. Neu-
ral networks with an architecture based on the fast cosine transform,
type II and IV are built and applied for extraction of features used as
a classification base for a multilayer perceptron. The results of the tests
show that adaptation of the neural network allows to obtain a better
transform in the feature extraction sense as compared to the fast cosine
transform. The neural implementation of both the feature extractor and
the classifier enables integration and joint learning of both blocks.

1 Introduction

One of the most crucial stages in pattern recognition and classification tasks is
feature extraction. The risk and challenge involved here is the necessity of sub-
stantial data reduction, minimizing noise and within-class pattern variability,
while retaining the data essential from the classification point of view. Hav-
ing insight into the nature of the analysed data we can develop some well suited
methods, effective but applicable to a strictly confined group of problems, like e.g.
human fingerprint matching. A different approach involves using general tools
known for their optimal properties in the data-packing sense, such as principal
component analysis (PCA), discrete cosine transform (DCT), wavelet or Fourier
descriptors [TJ213]. These tools are also often adapted for a specific type of tasks
which usually leads to lowering their generality. For example, shape-adaptive
DCT (SA-DCT) [4] performs well in image coding but its results depend signif-
icantly on the preceding segmentation stage.

The general disadvantage of problem-specific methods is that they often need
substantial human intelligence contribution to the feature extraction process.
The statistical methods, such as PCA, usually offer more automatic operation
at the cost of greater computational complexity. The existence of fast orthogo-
nal transforms algorithms, such as fast cosine transform (FCT) or fast Fourier
transform (FFT) allows, however, to lower the complexity necessary to obtain a
relatively small amount of information-rich features.

The question is if the most important data from the compression point of view
is actually best suited for classification purposes. It is a common approach to use

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part 11, LNCS 4432, pp. 27-36] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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low-frequency spectral coefficients minimizing the mean square reconstruction
error [2/5]. However, the class-relevant information may be also scattered over a
wider spectrum range and more features are then needed for proper classifica-
tion. Replacing the Fourier or cosine feature extractor with a different transform,
better suited for the specific problem, would help reduce the input passed to the
classifier module or enhance the recognition results for the same input size. Ide-
ally, such a transform should easily adapt itself to the given training dataset and
it should offer a fast computational procedure in both adaptation and forward
processing stages.

In the previous papers a concept of linear neural networks with sparse archi-
tecture based on fast orthogonal transforms algorithms has been introduced [6].
The networks of this type combine the weights adaptation and learning capabil-
ities with fast computational scheme and data compression property specific to
the underlying orthogonal transforms. The orthogonality itself was used in [7] to
substantially reduce the number of adapted weights by means of basic operation
orthogonal neuron (BOON) introduction.

In this paper we consider application of a fast orthogonal neural network pro-
posed in [7] as a feature extractor for a nonlinear multilayer perceptron perform-
ing the data classification task. We take advantage of the structural homogeneity
of both networks allowing seamless data processing, gradient computation and
error backpropagation. The classification results are compared to those obtained
with a standard, non-adaptable fast cosine transform block.

2 Classification Framework

Let us consider a dataset A={xs}, _, ¢ ;, where x5 € RN, Each of the
vectors xs belongs to one of the L classes and the membership function
f:A— C={c, .., cr} is known. The dataset is divided into two disjoint
subsets A= Atrqin U Atest. Our goal is to discover f|g4,.., assuming the knowl-
edge of f|Am~ain'

The general classification system comprises three basic blocks performing nor-
malization, feature extraction and classification. As we consider two different
approaches to the construction of the second block, two variants of the general
system have been set up (Fig. [[). The first one performs a standard discrete
cosine transform of the normalized data (DCT'), being a comparison base for the
second one which uses an adaptable fast orthogonal neural network (FONN).

%I Normalization Iﬁ{ DCT %

Input dataset Feature selection Classification

%I Normalization Iﬁ[ FONN I% MLP

Fig. 1. Two variants of processing. DCT feature extractor (top) and adaptable feature
extractor (bottom).
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Both variants were implemented twice and two independent experiments were
made: the first one with discrete cosine transform, type II (DCT2) and the
second one with discrete cosine transform, type IV (DCT4).

2.1 Normalization

As we do not impose any additional constraints on the nature of the analysed
data, the only operations involved here consist of the constant component sub-
traction and vector length normalization performed for every z;€A.

2.2 Feature Extraction

Each normalized input vector z is subjected to discrete cosine transforms given

as [§:

N-—1
S eyttt (1)

LY (k) = DCTY {a (n)} = 3 = (n) Gy VY (2)
where n,k =0,1,..., N — 1, C}, = cos (2nr/K).
The actual computations are performed using homogeneous two-stage algo-

rithms of fast cosine transform, type II and IV with tangent multipliers (mFCT2,
mFCT4) [9/10] depicted in the form of directed graphs in Fig. 2 Bl

Ly (k) = DCTY {z (n)}

3
Il
o

2

Il
o

x(0) L{ (0)
x(1) L{ (1)
x(2) L{(2)
x(3) L{ (3)
x(4) Ly (4)
x(5) L (%)
x(6) L{ (6)

x(7) L{ (7)

Fig. 2. Directed graph of the mFCT?2 algorithm for N = 8

The basic operations are shown in Fig. dl and the values of Uﬁ, are defined
recursively for mFCT2:

U =1,U8"% =v2/2
K/2—k K/2—k
Ui = \/2/2'011& Ulk( = Ufk(/zcz]fl(v UK/2 = Ufk(/2041(/2 ) 3)
k=1,2,.. K/4A—1, UL = v2/2.CR/* K =8,16,...N |
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x(0) Lg'(0)
x(1) L5
x(2) L3'(2)
x(3) Lg'(3)
x(4) L(4)
x(5) L)
x(6) Lg'(6)
x(7) L (7
Fig. 3. Directed graph of the mFCT4 algorithm for N = 8
a a+b 5 a~ Tk ~a+bT, kN
s ¢ a0 b —aTé‘N8+b

Fig. 4. Basic operations of the mFCT2 algorithm

and for mFCT4 accordingly:
Uk = Uk O,
U3 = Cie; Uflg/zilik = Ulk{/zcé{Ki%ilv (4)
k=0,1,.,K/4—1,K=4,8,...,N.

The mFCT2 algorithm (Fig. 2]) is used in two ways. Firstly, it is directly
applied to compute the DCT2 coefficients of the normalized input vectors. Some
of the coefficients are then selected and passed on to the classifier block. This
constitutes the first processing variant (Fig.[I)). In the second variant the mFCT2

block is implemented as a fast orthogonal neural network. Exactly the same
procedure for both variants is then applied with the mFCT4 algorithm (Fig. B]).

2.3 Fast Orthogonal Neural Network Construction

The diagrams in Fig. Pl Blserve as a starting point for the fast orthogonal neural
networks design. They contain nodes with two inputs and two outputs, grouped
into several layers, representing basic arithmetic operations on the processed
data. Each basic operation may be presented in the form of multiplication:

i) _p. | (5)
Y2 vy |’
where the elements of the matrix P depend on the type of the operation.

Taking the orthogonality of the nodes into account leads to the definition of
two basic forms of the matrix P:

TR
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The matrices P», P; offer a two-fold and a four-fold free coefficients reduction,
accordingly, as compared to an unconstrained, possibly non-orthogonal 2x2 ma-
trix. In both the presented mFCT algorithms with tangent multipliers the most
efficient P, matrix may be applied in the second stage of the transform. The
first stage may be constructed with either of the matrices P;, P, or it may be
implemented directly.

Constructing the neural network architecture, the operations P are converted
into neurons. On account of their specificity, expressed in the presence of two in-
terconnected outputs, a notion of a basic operation orthogonal neuron (BOON)
was proposed in [7] along with formulas for weights adaptation and error back-

propagation:
OFE (n)
ou _ U1 V2 € (7)
oF v —vr ] fe{ |’

(n—1) (n)
61 o T 61
Lén—n =Pp - eén)l ) (8)
% = [, ] [egm] (9)
- 2, —U1|" n )
ot 6(2 )
(n—1) (n)
61 T 61
=P , 10
legnl) 1 egn)] ( )

where vy and vy are the inputs of the basic operation, the vector [egn)7 6(2") T
refers to error values propagated back from the next layer and the vector
[35”71), 35”71)]1“ defines the error values to propagate back to the previous
one. We use the formulas ([d) - (I0) to compute gradient values for every basic
operation of the orthogonal network. In this way we apply a sparse approach
to the learning process as opposed to operations on full matrices known from

classical multilayer networks [IITT].

2.4 Feature Selection and Classification

One of the consequences of the architectural design of a fast orthogonal network
is that one can preset its weights so that it initially performs accurately the
underlying transform. As we assume that the most important information is
contained in the first K DCT coeflicients (not including the constant component
in the case of the DCT2), we can similarly consider the first K outputs of the
orthogonal network as the feature selection strategy. Their values are actually
equal at the beginning for both processing variants. The difference lies in their
adaptation during the learning process in the second variant.

The classification block consists of a multilayer perceptron with one hidden
non-linear layer with unipolar sigmoid activation function. The size of the hidden
layer is chosen experimentally. The number of inputs and outputs is dependent
on the number of the selected DCT coefficients and the number of classes in the
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dataset, respectively. Each output corresponds to one of the classes ¢y, ...cy, and
the winner-takes-all strategy is used for the resulting class determination [IJIT].
The classifier is the only adaptable part in the first variant of the system. The
conjugate gradient method is used for weights adaptation and the gradient is
determined by means of error backpropagation [IITI]. The error is defined as:

1 S—1 L
E= o 3D () —da()’, (11)
s=0 I=1
where
)= {5 Do 12

In the second variant of the system the error signal is propagated back also
from the hidden layer, just as if there were one hidden layer more before the
existing one. This signal is sent back to the orthogonal network so that it can
adapt its weights. In this way both networks actually constitute one hybrid neu-
ral network with two different architectures. Moreover, the conjugate gradient
algorithm is basically unaware of any differences as it operates on vectors con-
taining the gradient and weights values of both parts.

3 Testing Material and Simulation Results

The Synthetic Control Chart Time Series dataset [I2] has been selected as the
test base. It contains 600 time series of 60 real numbers each, divided into six
classes varied by the character of the random process used for generating the
given sequence (normal, cyclic, increasing trend, decreasing trend, upward shift,
downward shift).

We split the whole datasets in two subsets Ayrqin containing 420 sequences
and Aes¢ containing 180 sequences. Each sequence was extended from 60 to 64
elements by adding four zero elements to the end.

3.1 Testing Procedure

All the tests were performed with the same neural network parameters, chosen
experimentally after some preliminary tests. The number of epochs was set to 200
and 8 hidden neurons were used in the MLP block. The only varying parameter
was the number of the classifier inputs.

Since the main purpose of the tests was to determine the fitness of the fast
orthogonal network for feature extraction enhancement, we employed a special
teaching procedure consisting of two phases. In the first phase (epochs 1-100)
only the MLP part was adapted in both processing variants. The weights of the
orthogonal network were fixed to such values that it realized the DCT transform.
In the second phase (epochs 101-200) the classifier alone continued to adapt its
weights in the first processing variant, while in the second one the adaptation of
the orthogonal network was also turned on. The weights of the MLP part were
initialized with random values from the range [—1, 1] in both variants.
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3.2 Tests Results and Analysis
The classification results for both processing variants are presented in Tables[T],

respectively. The teaching was repeated 30 times for every table row, i.e. for every
number of features K, and the averaged values are displayed.

Table 1. Recognition results for DCT feature extractor

Error Recognition rate (Atrain) Recognition rate (Atest)
K DCT2 DCT4 DCT2 DCT4 DCT2 DCT4
1 0.265 0.317 0.6442856 0.5157144 0.6551851 0.4957407
2 0.182 0.195 0.8576984 0.8430161 0.8164814 0.8533333
3 0.114 0.121 0.9453969 0.9484127 0.9318518 0.9370371
4  0.050 0.081 0.9903119 0.9731526 0.9777777 0.9557472

Table 2. Recognition results for orthogonal neural network

Error Recognition rate (Atrain) Recognition rate (Atest)
K DCT2 DCT4 DCT2 DCT4 DCT2 DCT4
1 0.217 0.268 0.8042064 0.7347619 0.7574074 0.6564815
2 0.126 0.139 0.9396032 0.9383334 0.8796297 0.9057408
3 0.037 0.072 0.9970634 0.9765079 0.9616667 0.9429631
4  0.010 0.051 0.9993651 0.9804762 0.9840740 0.9444444

The first conclusion is that for the presented dataset the DCT2 transform
performs better than DCT4, both in the fixed variant (Tab.[I]) and in the adapted
one (Tab. 2]), which is reflected in the lower error values and higher recognition
rates. For both transforms we can observe that four DCT coeflicients contain
enough information to enable successful recognition of almost all the investigated
samples (recognition rate over 95%). The most interesting observation, however,
is the substantial increase in the recognition rate for the orthogonal network in
case of insufficient number of features (K =1, 2, 3).

It is clear that adapting the weights of the orthogonal network enhances the
classification potential of its output values with respect to the DCT coefficients.
This may also be observed during the second phase of the learning process when,
after teaching the classifier, the FONN block adaptation is turned on. The error,
which usually reaches a plateau at the end of the first phase, starts decreasing
again in the second one. The typical error curves are shown in Fig. [l

Figures [6] [ further illustrate the capabilities of the fast orthogonal network.
All the data vectors from A..in are presented in the feature space of the two
lowest DCT2 components. It may be seen (Fig.[6]) that however the DCT2 clearly
distinguishes three subsets comprising two classes each, it fails to perform proper
class separation within the subsets. Adapting the transform (Fig. [1) leads to
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obtaining more separated distributions of data points (two of them bimodal) at
the expense of reducing the distance between the three subsets.

Considering practical applications there are two questions that must be taken
into account. Firstly, the orthogonal network may be more prone to increase
the generalization error as it does not confine its outputs strictly to the low-
frequency spectral components. It is particularly clear in the DCT4 A;cs result
for K = 4 which is even worse in the adapted case, although for the A;;qin it
is still better than in the fixed one. A validation mechanism should be therefore
included in the learning process.

The second issue concerns the necessity of processing the data by the FONN
block during the learning process. In the first variant the DCT coefficients may
be computed once and then used for classifier training. Using the neural feature
extractor means that the data must be processed during every epoch to allow
its weights adaptation.
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Fig. 7. Data points in the 2-dimensional feature space for FONN+MLP. The separating
hyperplanes have been marked manually.

There are many factors potentially influencing the overall efficiency, such as
the type and implementation of the orthogonal transform or the dataset char-
acteristics. Obviously, we would not achieve much on small and medium sized
datasets as the presented one. However, in high dimensional computer vision
and image recognition problems where the number and location of the crucial
spectral components is difficult to determine, the possibility of fine-tuning the
feature extractor or even reducing the feature space would be desirable.

4 Conclusion

The presented results show the superiority of the adaptable fast orthogonal neu-
ral networks over the fast cosine transform, type II and IV in the feature ex-
traction task. The analysed networks proved to be able to concentrate more
classification-relevant information in the same number of coefficients. It seems
justified to state that neural networks of this type may help reduce the dimen-
sionality of the feature space in complex classification problems.

The properties of the presented networks, i.a. the classification capabilities,
the recursive character of the neural connections architecture and easy inte-
gration with other neural systems based on gradient adaptation techniques are
opening interesting possibilities of further research. Future works will explore
the applications of fast orthogonal neural networks to real problems in the field
of signal classification.
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Abstract. Nonlinearity is an important factor in the biological visual
neural networks. Among prominent features of the visual networks, move-
ment detections are carried out in the visual cortex. The visual cortex for
the movement detection, consist of two layered networks, called the pri-
mary visual cortex (V1),followed by the middle temporal area (MT), in
which nonlinear functions will play important roles in the visual systems.
These networks will be decomposed to asymmetric sub-networks with
nonlinearities. In this paper, the fundamental characteristics in asym-
metric neural networks with nonlinearities, are discussed for the detec-
tion of the changing stimulus or the movement detection in these neural
networks. By the optimization of the asymmetric networks, movement
detection equations are derived. Then, it was clarified that the even-odd
nonlinearity combined asymmetric networks, has the ability in the stim-
ulus change detection and the direction of movement or stimulus, while
symmetric networks need the time memory to have the same ability.
These facts are applied to two layered networks, V1 and MT.

1 Introduction

Visual information is processed firstly in the retinal network. Horizontal and
bipolar cell responses are linearly related to the input modulation of stimulus
light, while amacrine cells work linearly and nonlinearly in their responses [3],
[10], [I2]. Naka et al presented a simplified, but essential network of catfish inner
retina [9]. Among prominent features of the visual networks, movement detec-
tions are carried out in the visual cortex. The visual cortex for the movement
detection, consist of two layered networks, called the primary visual cortex (V1),
followed by the middle temporal area (MT). The computational model of net-
works in visual cortex V1 and MT, was developed by Simoncelli and Heeger [16].
The model networks in V1 and MT, are identical in their structure. The com-
putation is performed in two stages of the identical architecture, corresponding
to networks in cortical areas V1 and MT.
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In this paper, first, we analyze the asymmetric network with second order
nonlinearity, which is based on the catfish retina for the detection of the chang-
ing and movement stimulus. We show the asymmetric network has the powerful
ability in the detection of the changing stimulus and movement. Next, we present
the network model developed by Simoncelli and Heeger [16], which shows first
a linear receptive field, followed by half-squaring rectification and normalization
in V1 and next V1 afferents, followed by half-squaring rectification and nor-
malization. The half-squaring nonlinearity and normalization is analyzed by the
approximation of Taylor series. Thus, the model is transformed in the parallel
network structures, decomposed into asymmetric sub-networks.

2 Asymmetric Neural Network in the Retina

First, we present the asymmetric neural network in the catfish retina, which was
studied by Naka, et al [3], [7], [9], [12] as shown in Fig.[Il A biological network of
catfish retina shown in Fig. [Il, might process the spatial interactive information
between bipolar cells By and Bs. The bipolar B cell response is linearly related
to the input modulation of light. The C cell shows an amacrine cell, which plays
an important roll in the nonlinear function as squaring of the output of the
bipolar cell Bs.

X(t) X' (%)

@ro @)

Linear

Pathway | yi(t) .
@ Squaring

O™
Nonlinear Pathway

Fig. 1. Asymmetric neural network with linear and squaring nonlinear pathways

The N amacrine cell was clarified to be time-varying and differential with
band-pass characteristics in the function. It is shown that N cell response is
realized by a linear filter, which is composed of a differentiation filter followed
by a low-pass filter. Thus the asymmetric network in Fig. B is composed of a
linear pathway and a nonlinear pathway.
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3 Asymmetric Neural Network with Quadratic
Nonlinearity

Stimulus and movement perception are carried out firstly in the retinal neural
network. Asymmetric neural network in the catfish retina, has characteristic
asymmetric structure with a quadratic nonlinearity as shown in Fig.[Il Figure
shows a schematic diagram of changing stimulus or motion problem in front of
the asymmetric network in Fig. [l

B cell

Fig. 2. Schematic diagram of motion problem for spatial interaction

The slashed light is assumed to move from the left side to the right side,
gradually. For the simplification of the analysis of the spatial interaction, we
assume here the input functions x(t) and z’(t) to be Gaussian white noise,
whose mean values are zero, but their deviations are different in their values. In
Fig. 2 moving stimulus shows that z(t) merges into z”(t), thus z”(¢) is mixed
with x(¢). Then, we indicate the right stimulus by z’(¢). By introducing a mixed
ratio, «, the input function of the right stimulus, is described in the following
equation, where 0 < a < 1 and 8 = 1 — « hold. Then, Fig. 2 shows that the
moving stimulus is described in the following equation,

7' (t) = ax(t) + B2" (t) . (1)

Let the power spectrums of z(t) and z”(t), be p and p’, respectively and an
equation p = kp” holds for the coefficient k, because we assumed here that the
deviations of the input functions are different in their values. Figure 2l shows
that the slashed light is moving from the receptive field of B; cell to the field of
the By cell. The mixed ratio of the input x(t), a is shown in the receptive field
of Bg cell. First, on the linear pathway of the asymmetrical network in Fig. [T,
the input function is z(¢) and the output function is y(t), which is an output
after the linear filter of cell N.

y(t) = / B ()t — 7) + ya(t — ))dr + e, @)

where y1(t) shows the linear information on the linear pathway, yo(t) shows
the nonlinear information on the nonlinear pathway and e shows error value.
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The y1(t) and ya(¢) are given, respectively as follows,
o0
() = / W' (F)e(t — T)dr 3)
0

yg(t) = /ODO/ODO hlﬁ(’ﬁ)h/{(Tg)wl(t — Tl)xl(t — ta’u,g)dTldTQ . (4)

We assume here the linear filter N to have only summation operation without
in the analysis. Thus the impulse response function h;"’(¢) is assumed to be
value 1 without loss of generality.

3.1 Optimization of Asymmetric Neural Network

Under the assumption that the impulse response functions, hy’(t) of the cell By,
hi"(t) of the cell By and moving stimulus ratio « in the right to be unknown,
the optimization of the network is carried out. By the minimization of the mean
squared value ¢ of € in (), the following necessary equations for the optimization
of (B) and (@), are derived,

o0& 3 0¢
=0, =0 d =0. 5
oy (1) Oy (t) M da 5)
Then, the following three equations are derived from the conditions for the
optimization of (Bl

Elyt)z(t —A)] = hi'(Mp
E[(y(t) — Co)z(t — An)z(t — A2)] = 2p°a®hy" (A1) h1" (A2) (6)
E[(y(t) — Co)a'(t — A)a’(t — A2)] = 2p"*h1" (A1) b1 " (A2),

where Cj is the mean value of y(t), which is shown in the following. Here, (@)
can be rewritten by applying Wiener kernels, which are related with input and
out put correlations by Lee and Schetzen [19]. First, we can compute the 0-
th order Wiener kernel Cp, the 1-st order one Ci1(\), and the 2-nd order one
C21(A1, A2) on the linear pathway by the cross-correlations between z(t) and
y(t). The suffix ¢, j of the kernel Cj;(-), shows that ¢ is the order of the kernel
and j = 1 means the linear pathway, while j = 2 means the nonlinear pathway.
Then, the 0-th order kernel under the condition of the spatial interaction of cell’s
impulse response functions hy'(t) and hi”(t), are derived as follows.

The 1-st order kernel is defined by the correlation between y(¢) and z(t) as on
the linear pathway, and the correlation value is derived from the optimization
condition of (@). Then, the following 1-st order kernel is shown

Cun(¥) = | Ely(t)alt = A = h'(A) (7)

The 2-nd order kernel is defined and it becomes from the optimization condi-
tion of (@), in the following,

021 ()\17 )\2) = Ckzhl“()q)hl//()\g) . (8)
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From (@), () and (®), the ratio « is a mixed coefficient of z(t) to 2/(t), is shown
by a? as the amplitude of the second order Wiener kernel. On the nonlinear
pathway, the 1-st order kernel Ci2(\) and the 2-nd order kernel Cag (A1, A2) is
defined by the cross-correlations between x(t) and y(¢) as shown in the following.
Here, C22(\1,A2) is computed from the optimization condition of (H]), while
Ci2(A) is derived as an additional condition from Ci;())

(67

Crz2(}) = a2+ k(1 —a)?

hi'(A) 9)
and
Caa(M1, A2) = k" (A1)hi" (A2) . (10)

The motion problem is how to detect the movement in the increase of the
ratio  in Fig. 2l This implies that for the motion of the light from the left side
circle to the right one, the ratio a can be derived from the kernels described in
the above, in which the second order kernels C3; and Cy, are abbreviated in the
representation of (§) and (I0J),

(021/022) =a? (11)

holds. Then, from ([II]) the ratio « is shown as follows

Co
= . 12
“ \/022 (12)

Equation (I2)) is called here a-equation, which implies the change of the move-
ment stimulus on the network and shows the detection of the movement change
by the a. Equation (I2]) does not show the direction of the movement. Any mea-
sure to show the direction of the movement, is needed. We will discuss how to
detect the direction of the movement.

From the first order kernels C1; and C12, and the second order kernels which
are abbreviated in the time function, the following movement equation is derived

Co
Ch2 C
= 2 2 (13)
C C
2, (12 \/ 21
Cao Caa
where k in the equation shows the difference of the power of the stimulus between
the receptive fields of the left and the right cells B; and By. Here, we have a
problem whether (I3)) is different from the equation derived, under the condition
that the movement of the stimulus from the right to the left. If (I3]) from the
left to the right, is different from the equation from the right to the left, these
equations will suggest different movement directions, as the vectors.
In the opposite direction from the right to left side stimulus, the schematic
diagram of the stimulus movement, is shown in Fig.
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(14)
Co1(A1,A2) = k26" hi"” (A1)h1" (N2) (15)
21(A1, A2 (a2+kﬂ2)21 1)h1 (A2) .
Similarly, the following equations are derived on the nonlinear pathway,
Ci2(\) = Bhi'(N)
Ca2(A1, A2) = hi" (A1) (A2) . (16)

From ([4) and (@), the ratio § is derived, which is abbreviated in the notation

p= (17)

and the following equation is derived

i \/ Co
Cll _ 022
= 9 5 - (18)
Chz <1 _ 021) Tk (012)
Cn Cn
It is important to show that (I3) and (I8)) are different, that is, (I3]) implies the
stimulus movement from left to right, while (I8) implies the stimulus movement
from right to left. We prove this proposition in the following.
Let (012/011) = X and \/021/022 = Y be set on (B) and (m Then,
equations are described as follows, respectively
kX Y
Y = d X = .
1-Xx)2+kx2 ™ Y2 4 k(1 —Y)2
By combining the above equations described in X and Y, the following equa-
tion holds,

{1 =X+ EX?H(X - 12+ k(X% —2X -~ 1)} +2k°X% =0 . (19)
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Equation holds only in case of X = 1, that is 8 = 1 from (). This case
implies the end of the stimulus movement in (I8]) and ([I3)). During the stimulus
movement, (I9) shows positive values. Thus, ([I3]) shows the directional move-
ment from left to right according to the increase of «, while (I8) shows the
directional movement from left to right according to the increase of (.

We call here an asymmetric network with odd-even nonlinearities in case of
Fig. [l Here we have questions, what is the behavior of another asymmetric
networks with odd-odd nonlinearities or even-even nonlinearities. It is shown
that the asymmetric network with the odd (even) nonlinearity on the left and
another odd (even) nonlinearity on the right, cannot detect the direction of
movement or stimulus. Thus, the asymmetric network with the combination of
the odd and the even nonlinearities, has the powerful ability to detect both the
change and the direction of the movement or stimulus, while symmetric networks
need the time memory to have the same ability.

4 Layered Cortex Network by Asymmetric Networks

Based on the above analysis in the asymmetric nonlinear networks, the parallel
processing in the brain cortex network, is discussed as follows. The visual cortex
areas, V1 and MT, are studied to have the role of the tracking of the moving
stimulus [I4], [15], [I6]. The nonlinearity in the visual system, has a problem
of the it’s order [I3]. Heeger and Simoncelli presented a parallelization network
model with half-wave squaring rectification nonlinearity in V1 and MT cortex
areas in the brain [I4], [15], [I6]. In this paper, this parallel processing model
is interpreted analytically to have the tracking function of the moving stimulus,
which is based on the asymmetrical nonlinear networks described in the above.

Figure [ shows a layered network model of cortex areas V1 followed by MT,
which is suggested by Heeger and Simoncelli [16]. The nonlinear operation of the
half-squaring nonlinearity and the normalization (saturation), is approximated
by a sigmoid function. Then, the sigmoid function is represented by Taylor se-
ries, which includes the 1-st, the 2-nd, the 3-rd, the 4-th ... and higher orders
nonlinearity terms. Thus, the network model in Fig. @ is transformed to that
of layered decomposed asymmetric model as shown in Fig. Bl The function of
the layered decomposed networks in Fig. [ is based on the asymmetric network
with nonlinearities in Sect.[3l In V1 decomposed network in Fig. Bl the left side
linear pathway (1-st order nonlinearity) and the right side nonlinear pathway,
computes the a-equation (detection of stimulus) and the movement equation
(detection of the moving direction). When we pick up two parallel pathways
with half-wave rectification, the combination of the odd order nonlinearity on
the left side pathway and the even order nonlinearity on the right side pathway,
can detect the movement and the direction of the stimulus and vice versa in the
nonlinearities on the pathways.

The combination of the 1-st order on the left pathway and the even order non-
linearities (2-nd, 4-th, 6-th ... orders) on the right pathway in the first layer V1 in
Fig. Bl has both abilities of detection of stimulus and the direction of
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Fig. 4. Layered model of V1 followed Fig. 5. Layered decomposed networks
by MT of Fig. @

stimulus, while that of the 1-st order left pathway and the odd order nonlinearities
(1-st, 3-rd, 5-th ... orders) in the right pathway in the first layer V1 in Fig.Hdl can
not detect the direction of the stimulus. This shows that only the first layer V1,
is weak in the detection of the stimulus compared to the second layer MT, since
these odd order nonlinearities in V1, has transformed to the even order nonlin-
earities (2-nd, 6-th, 10-th ... orders) in the second layer MT in Fig.[5l This shows
that the second layer MT, has both strong abilities of the detection of the stim-
ulus and the direction of the stimulus. It is proved that the a-equation and the
movement equation are not derived in the symmetric network with the even order
nonlinearity on the pathway and the other even nonlinearity on the another path-
way. Both the even (or odd) nonlinearities on the parallel pathways, do not have
strong works on the correlation processing. The even and the odd nonlinearities
together, play an important role in the movement correlation processing.

5 Conclusion

It is important to study the biological neural networks from the view point of
their structures and functions. In this paper, the neural networks in the biological
retina and the cortical areas V1 and MT, are discussed to make clear the function
of their stimulus changing or movement detection ability. Then, the networks are
decomposed to the asymmetric networks with nonlinear higher order terms. The
asymmetric network is fundamental in the biological neural network of the catfish
retina. First, it is shown that the asymmetric networks with nonlinear quadratic
characteristic, has the ability to detect moving stimulus. Then, the ability is
described by the moving detection equation (a-equation) and the movement
direction equation. It was clarified that the asymmetric network with the even
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and the odd nonlinearities, has efficient ability in the movement detection. Based
on the asymmetric network principle, it is shown that the parallel-symmetric
network with half-wave rectification of V1 and MT, has efficient ability in the
movement detection.
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Abstract. The main advantage to use Hermite functions as activation
functions is that they offer a chance to control high frequency compo-
nents in the approximation scheme. We prove that each subsequent Her-
mite function extends frequency bandwidth of the approximator within
limited range of well concentrated energy. By introducing a scalling
parameter we may control that bandwidth.

1 Introduction

In the end of eighties and beginning of nineties of the last century, neural net-
work universal approximation properties were established [2], [4], [6], [1T]. Since
that it was clear that one-hidden-layer neural architecture with an appropriate
activation function could approximate any function from a class with any degree
of accuracy, provided that number of hidden units was sufficiently large. It was
usually assumed that every single hidden unit had the same activation function.
The most general case was presented in [IT], where activation functions were
taken from a wide class of functions i.e. non-polynomial.

A problem with contemporary computer implementation of neural schemes is
that the activation function is usually implemented as its expansion in Taylor
series i.e. by means of polynomials. So it is exactly what one wants to avoid. The
finite number of hidden units and the polynomial type of activation functions
limit accuracy. More hidden units and higher degree of polynomials may improve
achievable accuracy.

It is well known that a particular type of activation function can determine
certain properties of the network. Long running discussions about superiority of
sigmoidal networks over radial bases networks or vice versa are good examples
of that. In various observations it was established that one can simplify the
network, achieving also a good generalization properties if various types of units
are used. But the way to choose the most appropriate types of units remained
unknown. Only a special incremental architecture suggested in [3] was suitable
to handle this problem. But in fact it was only a trial and error method applied
in every incremental approximation step.

Recently in several publications (see for instance [12], [14]) it was suggested
to use Hermite functions as activation functions, but for every hidden unit a
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different function. By using this method in [12] very good properties of EKG
signals classification was presented. In [I4] so called ”constructive” approxima-
tion scheme was used which is a type of incremental approximation developed
in [9], [10].

In this paper we analyse Hermite functions properties from function approx-
imation perspective. We prove that each subsequent Hermite function extends
frequency bandwidth of the approximator within a limited range of well concen-
trated energy. By introducing a scaling parameter one may control this band-
width influencing at the same time the input argument dynamic range. Apart
from formal statements and proves the paper is also focused on qualitative judge-
ment and interpretations.

This paper is organised as follows. In Sect. 2 and 3 respectively a short
description of a regularised approach to function approximation and the Hermite
functions concept are recalled. In Sect. 4, some properties of the Hermite func-
tions important from approximation point of view are formulated and proved.
The main result of the paper is there. Sect. 5 contains a simple but practically
useful generalisation of the result of Sect. 4 . Finally conclusions are drawn in
Sect. 6.

2 The Function Approximation Framework

One of very typical neural network problem is a function approximation problem,
which could be stated as follows. Let an unknown function be represented by a

finite set of pairs
N

S = {(mz,yz) S IRd X ]R};l
Find such function f € F, where F is a function space, which minimises the
following functional J(f) = e(f,S) + Ap(f) -

The component €(f, S) represents an error function calculated on S, ¢(f) is a
stabilizer which reinforces smoothness of the solution. Its values do not depend

on S. Quite often used stabilizer is

(Jls‘{(s)|2

A= e ™ o)

9

where f denotes Fourier transform of f, g is a positive function and

lim g(s)=0 .
llsll—o0

Thus 1/g is a high pass filter. The stabilizer reinforces that in the minimisation
process, f(s) become a low pass filter ensuring that the stabilizer integral con-
verges. In fact this function approximation formulation ensures that in a solution
of the problem the high frequency components are well balanced by the param-
eter A with error of approximation on a given data set. There exist a solution
to the regularised problem see for instance [5] and many special interpretations
see for example [g].
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The property of controlling high frequency components in the approximation
scheme may be achieved in the following linear combinations of the Hermite
functions

falz) =) wiei(lin(x, a;) (1)
i=0

where e; denotes i — th Hermite function, lin(z,a;) = a0 + 22:1 ik Tr, T =
0,...,n and a; € R™' is a d + 1 element vector a; = [ai0, a1, - -, aiq)t and
zr € R, k =1,...,d. Each of e; function is characterised by an easily deter-
mined limited bandwidth of well concentrated energy of function, what will be
demonstrated in the rest of the paper.

3 Hermite Functions

In this section several concepts related to Hermite polynomials and Hermite
functions will be recalled.
Let consider a space of great practical interest L?(—oo, +00) with the inner

+oo

product defined (z,y) = [ x(t)y(t)dt. In such space a sequence of linearly
—00

independent functions could be created as follows 1,¢,...,t™,... Another se-

quence ensuring that every element of it is bounded is ho(t) = w(t) = e~t’/2,
hi(t) = tw(t), ..., hn(t) = t"w(t),. ..

The last sequence forms an useful basis for function approximation in the
space L?(—o00,+00). This basis could be orthonormalised by using well known
and efficient Gram-Schmidt process (see for instance [7]). Finally one obtains a
new, now orthonormal basis spanning the same space

eo(t),ei(t),...,en(t),. .. (2)
where

1

2 d"
@atymyz &

dtm

en(t) = cne™ 2 Ho(t):  Ho(t) = (=1 © (), en =

The polynomials H,,(t) are called Hermite polynomials and the functions e,, ()
Hermite functions. Some standard mathematical properties of the Hermite poly-
nomials are listed in the Appendix.

4 Properties of the Hermite Activation Functions

According to (@) the first several Hermite functions could be calculated

1t ot
eo(t) = i€ 2, 61(t):\/27r1/4e 2 2t,

2 2
ea(t) = 2\/2;1/4 e 2 (4t — 2), e3(t) = 4\/3;1/4 e 2 (8t3 —12t).
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One can determine next e, (t) functions by using recursive formulae. Its certain
properties further useful are listed in Proposition [l

Proposition 1. The following hold

ensi(t) = \/nilten(t) _ \/nilen_l(t); n=123, . ()
Cien(t) = —te,(t) +V2nen,_1(t); n=1,2,3,... (5)
d2 2 . _
Cpen(®) = en(d)( — 2n+ 1) n=0,1,23,.. (6)

2
Proof. Simply from @) e,+1(t) = cpr1e” P n+1(t). Using formulae of the Ap-
pendix and a simple algebraic manipulations one obtains
c 2 c 2
ens1(t) =t(2 " ene 2 Hy(t) —n(27" ™ Yen_1e™ 2 Hyo1(t)
Cp, Cn
and finally (). The equation (] proof is a straightforward and the derivation
of (@) requires of using properties listed in the Appendix.

In quantum mechanics (@) is known as a harmonic oscillator (Schrodinger
equation).

Remark 1. One can noticed from (@) that the only inflection points which are
not zeros of the Hermite functions are located at £t,, t, = v/2n + 1.
Proposition 2. For everyt >t, =/2n+1, e,(t) > 0 and tliinoo en(t) =0.
The range [—v/2n + 1, v/2n + 1] can be treated as an admissible input argument
dynamic range. Outside of this range e,,(t) is smoothly decaying.

Several functions of the Hermite basis are shown in Fig. [[l There are marked
there positive inflection points which are not zeros of the function.

It is well known that Hermite functions are eigenfunctions of the Fourier
transform. However we will put that fact into Proposition [} and simply prove
itin few lines. In many publications (see for instance [I]) the eigenvalue of this
transformation is different than the one presented here.

Let €, (jw) denotes a Fourier transform of e, (¢) defined as follows

& (jw) = \/1% / en(t)e ¥t dt .

Proposition 3. Let e, (t) be as in {3), then

en(jw) = e 75 (w) (7)
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Fig. 1. Several Hermite functions with marked positive inflection points ¢,

Proof. For n = 0 and n = 1 one can calculate €p(jw) and €;(jw) obtaining
Lae” 2 and —j \/2711/4 2we™ 2 what satisfy (7). Let assume that (7)) is fullfilled

for n = k — 1 and n = k. Now calculating Fourier transform of the formula (@)
one obtains

i) =, 2 ) L @) -, E ate)

E+1

d
d
2 d k
ERCIC R, \/k n 16’“‘1(”)>
2
+

(—wep(w) + V2kep_1(w)) + \/ F ek_l(w)>

1 kE+1

and taking ()

ket — oI5 (kFD)

ehr1(jw) = (=) ert1(w) er1(w) -

The eigenvalue of Fourier transform of e,, is e 772", In engineering interpretation
one would say that the magnitude of a Hermite function and its Fourier transform
are the same. This transform however introduces a constant phase shift equal
to multiplicity of 7. This feature of Hermite functions being eigenfunctions of

Fourier transform is exploited in [13].
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So |€,(jw)| is the same as |e,(t)| and the spectrum of magnitude |e,, (w)| will
have inflection points at +w,, w, = v/2n + 1. Those inflection points could be
treated as markers for frequency bandwidth definition.

Lemma 1. (technical) Let I,,(v) = [ e?(w)dw then

I,(v)=1,-1(v) — \/Zenl(y)en(u) .

Proof. Requires only simple but lengthily algebraic manipulations using results
of Proposition [l and is omitted here.

By a straightforward calculation we come to I, (v) = Iy (v Z \/ ei—1(v)e;(v).
=1

Proposition 4. The following hold:

1. if vy > 1y then I,,(v2) > I, (11)
2. if v > w,, then I,(v) < I,—1(v)
3. In(v+ Av) > I,_1(v), Av >0

Proof. ad 1) Tt comes directly from definition in Prop. @ ad 2) if v > w,, then
from Prop. Rl e,—1(v) > 0, e,(v) > 0 and the result is obtained from Prop[IL
ad 3) Let denote d(v) = I,(v + Av) — I,_1(v). By using Lemma [I] we calcu-
late the integral change along the following path I,,_1(v) — I,_1(v + Av) —

Li(v + Av). Tt is d(v) = 2f”+Av 2 (w)dw — \/Zenq(l/)en(u). Calculating

Cn— 1

ddv (d(v)) we obtain ddv (d( ) =2¢e2_,(v) —\/TQL(—2U€n_1(l/)6n(l/)+\/2n€%71(’U)+
V2= Den2(en)) = (1) +2¢/2en1(0)en(v) =20/ " ena(v)en V).

Now using (@) \/";1en_2(v)en(y) = \/Zven_l(zz en(v) — €2 (v), and after sim-
)

ple manipulations one obtains ( (d(v)) = e2_;(v) + 2¢2(v) > 0, so d(v) is an

n
increasing function.
Remark 2. From 3. of Proposition [l it is clear that I,(wy) > In—1(wp—1)-

By using LemmalI], one can calculate I, (wy,) for various n starting from Iy(wg) =
\}ﬂ f_ll e dw = \/Qﬂ fol e dw = erf(1) = 0.843, I1(w1) = 0.889, Ir(ws) =
0.907, I3(w3) = 0.915 and Ig(wg) = 0.938. One might say that for the Hermite
function e, at least 84,3% of its energy is concentrated within the frequency
range w € [—v/2n+ 1, v/2n + 1]. For larger n even more function energy is
concentrated in there. The range [—v/2n+ 1, v/2n + 1] we name the ap-
proximate bandwidth of e,. In Fig.[2l only positive parts of the approximate
bandwidths are shown.



52 B. Beliczynski

N w » &) (2] ~ oo © o
I

omega

Fig. 2. The approximate bandwidths of e, (w) for various n

5 Scaling Parameter and the Bandwidth

From engineering point of view an important generalisation of the basis (2))
comes when scaling of ¢ variable by using a o € (0,00) parameter. So if one
substitutes ¢ := }; into (B) and modifies ¢, to ensure orhonormality, then

1

_ 2 t
en(t,0) = e 202 Hy, (a> where ¢, 5 = (o27nly/T)1/2 (8)

and

en(t, o) = \/lgen (;) and &, (w, o) = /oo (0w) )

Thus by introducing scaling parameter o into (8) one may adjust the input
argument dynamic range of e, (¢,0) and its frequency bandwidth

1 1
te[-ovV2n+1l,0V/2n+1]; wel[- V2n+1, V2n+1]
o o
Moreover it is possible of course to select different scaling parameters for each

Hermite function like e,, (¢, ;) but in such a case the set of such functions is not
orthonormal any more.

6 Conclusions

Despite the fact that Hermite functions are orthogonal, in the considered
approximation scheme of the multivariable function approximation, the basis is
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not orthogonal. The main advantages however to use Hermite functions is that
they offer a chance to control high frequency components in the approximation
scheme. Every ¢;(t), i = 1,...,n is well bounded and for large ¢ approaches zero.
We proved that each subsequent Hermite function extends frequency bandwidth
of the approximator within limited range of well concentrated energy. By intro-
ducing scaling parameters one may control the input dynamic range and at the
same time frequency bandwidth of the Hermite functions.

For a traditional fixed activation function architecture, if one selects the same
parameters for all hidden units, then the only one contributes to decrease of the
approximation error. In the considered scheme in such a case all the units are
still useful giving an orthonormal basis for approximation.
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Appendix

Definition of Hermite polynomials might be provided in various ways. We will
adopt Rodrigues’ formula
nozdh g

H,(t)=(-1)"e g€ , where n =0,1,2,3,...

Standard properties of the Hermite polynomials can be found in many mathe-
matical textbooks or Web pages see for example [7], [1]. We restrict our attention
to such formulas which are useful for this paper. These are the following.

Hp(=t) = (=1)"Hn(t) ,

H,(0) _{ 0 for n odd
B )

525 [[/'i for n even
Hy(t)=1,

Hyy1(t) = 2tH, (t) — 2nH,_1(t) |,

S H,(t) =2nH, () ,

2 2
(e Hy(t) = —e " Hya (1)

H, x H, 0
Hy(t)dt = S = S

eV H,(t)dt = H,_1(0) — e~ Hp_1 () |

Ct—y P—xs

4 Hy(t) — 2t L Hy(t) + 2nH, () =0 .

dt2 n
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Abstract. In this paper we study how the performance of a median associative
memory is influenced when the values of its elements are altered by noise. To
our knowledge this kind of research has not been reported until know. We give
formal conditions under which the memory is still able to correctly recall a
pattern of the fundamental set of patterns either from a non-altered or a noisy
version of it. Experiments are also given to show the efficiency of the proposal.

1 Introduction

An associative memory is a device designed to recall patterns. An associative memory
(AM) M can be viewed as an input-output system as follows: x—M—>y, with x and y,
respectively the input and output patterns vectors. Each input vector forms an
association with a corresponding output vector. The AM M is represented by a matrix
whose ij-th component is m;. M is generated from a finite a priori set of known
associations, known as the fundamental set of associations, or simply the fundamental
set (FS).

If £is an index, the fundamental set is represented as: {(xéz yf) I £e {1,2,...,p}}
with p the cardinality of the set. The patterns that form the fundamental set are called
fundamental patterns. If it holds that X° = yé vV £e {1,2,..p}, then M is auto-
associative, otherwise it is hetero-associative. A distorted version of a pattern x to be
restored will be denoted as X . If when feeding a distorted version of x"” with
we{l,2,....,p} to an associative memory M, then it happens that the output
corresponds exactly to the associated pattern y”, we say that recalling is robust. If x"
is not altered with noise, then recall is perfect. Several models for associative
memories have emerged in the last 40 years. Refer for example to [1]-[10].

2 Basics of Median Associative Memories

Two associative memories are fully described in [5]. Due to space limitations, only
hetero-associative memories are described. Auto-associative memories can be
obtained simple by doing xt = yf vV &e {1,2,...p}. Let us designate hetero-
associative median memories as HAM-memories. Let xe R” and ye R" two vectors.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part II, LNCS 4432, pp. 55-162] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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To operate HAM memories two phases are required, one for memory construction
and one for pattern recall.

2.1 Memory Construction
Two steps are required to build the HAM-memory:

Step 1: For each &=1,2,...,p, from each couple (xf, yf) build matrix: M¢ as:

A(yl’xl) A(Yl’xz) A(yl’xn)
M = A()’z’xl) A(yz,xz) A()’z’xn)

A(ym’xl) A(ym’XZ) A(ym’xn)

with A(x;y;) = x;- y; as proposed in [4].
Step 2: Apply the median operator to the matrices obtained in Step 1 to get matrix M
as follows:

mxn

P
M= ng;ed[Mf] : )
=1
The ij-th component M is thus given as follows:

my; =n£:1d A(yif,x];). 3)

2.2 Pattern Recall

We have two cases:

Case 1: Recall of a fundamental pattern. A pattern x*, with we {1,2,...,p} is
presented to the memory M and the following operation is done:

MOgx" . )

The result is a column vector of dimension n, with i-th component given as:

(Mo x") = n}réldB(mu ), (5)

/A

with B(x,y;) = x;+ y; as proposed in [4].

Case 2: Recall of a pattern from an altered version of it. A pattern X (altered
version of a pattern x" is presented to the hetero-associative memory M and the
following operation is done:

MOpX . (6)
Again, the result is a column vector of dimension n, with i-th component given as:

i

(MO,%) :n}r:e':]dB(m,—j,Xj). (7
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The following three propositions provide the conditions for perfect recall of a
pattern of the FS or from an altered version of it. According to [5]:

Theorem 1 [5]. Let {(x“=y* | = 1,2,...,p} with x%eR", y’ecR" the fundamental
set of an HAM-memory M and let (x”, y") an arbitrary fundamental couple with ye
{1,2,....p}. U"}’éldgij =0, i=1,...m, &;=m; —A(yiy,x;) then (MOBXV)I. =yli=1...m.

Corollary 1 [5]. Let {(x*=y% | ¢ = 1,2,...,p}, x’eR", y%eR". A HAM-median
memory M has correct recall if for all = 1,2,....p, M*=M where M = y§<>A (ng) is

the associated partial matrix to the fundamental couple (x*, y%) and p is the number
of couples.

Theorem 2 [5]. Let {(x®=y% | = 1,2,...,p} with x%eR", y’eR", a FS with perfect
recall. Let 1% R" a pattern of mixed noise. A HAM-median memory M has correct
recall in the presence of mixed noise if this noise is of median zero, this is if

n
med 77;-” =0Ve.
J=1
In [7], the authors present new results concerning median associative memories.

2.3 Case of a General Fundamental Set

In [6] was shown that due to in general a fundamental set (FS) does not satisfy the
restricted conditions imposed by Theorem 1 and its Corollary, in [6] it is proposed the
following procedure to transform a general FS into an auxiliary FS’ satisfying the
desired conditions:

TRAINING PHASE:

Step 1. Transform the FS into an auxiliary fundamental set (FS’) satisfying Theorem 1:
Make D a vector if constant values, D=[d d ... d] T d=constant.

Make (X],Yl)z (x],y]).
For the remaining couples do {
For £=2to p {
X =x 4D 8 =%t —xE y =yt D 9 =yt -yt

Step 2. Build matrix M in terms of set FS’: Apply to FS’ steps 1 and 2 of the training
procedure described at the beginning of this section.

RECALLING PHASE:
We have also two cases, i.e.:

Case 1: Recalling of a fundamental pattern of FS:
Transform x° to x° by applying the following transformation: x° =x% +%°.
Apply equations (4) and (5) to each X° of FS’ to recall 75 .
Recall each y‘f by applying the following inverse transformation: y‘f = 75 - y'f .
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Case 2: Recalling of a pattern yé from an altered version of its key: %

Transform %° to X° by applying the following transformation: x¢ =x%+%°.
Apply equations (6) and (7) to X° to get 75, and

4 4

Anti-transform y° as y® =y° — 9% to get y* .

3 Influence of Noise in Median Associative Memories

Until now all researchers have studied how noise added to patterns can affect the
performance of an associative memory. To our knowledge, nobody has studied how
the presence of noise in the values m; of a memory M, not only in the pattern can
influence the performance of the memory.

The study of the influence of the noise in the components of an associative
memory is important for the following two reasons. In the one hand, the topology of
an space of associative memories seen as a space of operators, and, in the other hand,
the influence that the noise has in the recall of a fundamental pattern without and with
noise.

In this section we formally study this for the case of the median associative
memory (MEDIANMEM). We give a set of formal conditions under which an
MEDIANMEM can still correctly recall a pattern of the FS either form unaltered or
altered version of it.

The following proposition, whose proof is not given here due to space limitation,
provides these conditions:

Proposition 1. Let {(x%, y*) | = 1,2,...,p}, x’eR", y%eR" a FS with perfect recall.
Let n € R™ a pattern of mixed noise to be added to the memory. A HAM-median
memory M has perfect recall in the presence of mixed noise if this noise, per row, is

n
of median zero, this is if med7]; i= 0,i=1m.
PR

In general, noise added to a pattern does not satisfy the restricted conditions imposed
by Proposition 1. The following proposition (in the transformed domain), whose proof
is not given here due to space limitations, states the conditions under which
MEDIANMEMS provide for perfect recall under general mixed noise:

Proposition 2. Let {(x*, y*) | = 1,2,...,p}, x’eR", y%eR" a FS and M its memory.
Without lost of generality suppose that is p odd. Let M,i=1,...,m a row of matrix M
and X a key pattern of the FS. If row M; and pattern X are both of size n, and the
number of elements distorted by mixed noise from row M; and X is less than (n+1)/2-1,

then y‘f =MO,%.
In other words, if when given a row of an associative memory, less than 50% of the

elements of this row and the key pattern taken together are distorted by noise, then
perfectly recall is always obtained.
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Another useful proposition, whose proof is not given here due to space limitation,
is also the following:

Proposition 3. Let {(x*, y) | a=1.2,....,p}, x%R", y’eR" a FS and M its memory.
Without lost of generality suppose that is p odd. Let M;,i=1,m a row of matrix

M (and altered version of M) and X% an altered version of a fundamental key
pattern X Let n be the number of elements of M; and the number of elements of

_ . D-1
X%, Let M, j=Ln the j-th component of row M. If Ml-j+)~cj’-zST, then

yi' =M OpX . If this holds for all i then y* =MOx”.

4 Experiments with Real Patterns

In this section, it is shown the applicability of the results given in section 3.
Experiments were performed on different sets of images. In this paper we show the
results obtained with photos of five famous mathematicians. These are shown in Fig. 1.
The images are 51x51 pixels and 256 gray-levels.

To build the memory, each image fs;xs;(i,j) was first converted to a pattern vector
x° of dimension 2,601 (51x51) elements by means of the standard scan method,
giving as a result the five patterns:

Xézlxlg xg xgﬁollg"':l,...,S.

It is not difficult to see that this set of vectors does not satisfy the conditions
established by Theorem 1 and its Corollary. It is thus transformed into an auxiliary FS
by means of the transformation procedure described in Sect. 2.3, giving as a result the
transformed patterns:

Zf:lzlé sz Z2§601J7§:1""’5'

It is not difficult to see in the transformed domain, each transformed pattern vector
is an additive translation of the preceding one.

(d)

Fig. 1. Images of the five famous people used in the experiments. (a) Descartes. (b) Einstein.
(c) Euler. (d) Galileo, and (e) Newton. All Images are 51x51 pixels and 256 gray levels.



60 H. Sossa, R. Barrén, and R.A. Vazquez

First pattern vector z' was used to build matrix M. Any other pattern could be used
due to according to Corollary 1: M' = M?> = ... = M° = M. To build matrix M,
equations (1), (2) and (3) were used.

4.1 Recalling of the Fundamental Set of Images

Patterns z' to z° were presented to matrix M for recall. Equations (4) and (5) were
used for this purpose. In all cases, as expected, the whole FS of images was perfectly
recalled.

4.2 Recalling of a Pattern from a Distorted Version of it

Two experiments were performed. In the first experiment the effectiveness of
Proposition 2 was verified when less than 50% of the elements of the memory and of
pixels of an image (taken together) were distorted by mixed noise. In the second
experiment the effectiveness of Proposition 3 was verified when all the elements of
the memory and all pixels of an image were distorted with noise but with absolute
magnitude less than D / 2. According to the material presented correct recall should
occur in all cases.

4.2.1 Effectiveness of Proposition 2

In this case, at random, less than 50% of the elements of the memory and of pixels of
an image (taken together) were corrupted with saturated mixed noise. For each photo
several noisy versions with different levels of salt and pepper noisy were generated.
Figure 2(a) shows 5 of these noisy images. Note the level of added distortion. When
applying the recalling procedure described in Sect. 2.3, as specified by Proposition 2
in all cases as shown in Fig. 2(b) the desired image was of course perfectly recalled.

Fig. 2. (a) Noisy images used to verify the effectiveness of Proposition 2 when less than 50% of
the elements of patterns and of the elements of the memory (taken together) are distorted by
noise. (b) Recalled images.
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(b)

Fig. 3. (a) Noisy images used to verify the effectiveness of Proposition 3 when the absolute
magnitude of the noise added to the elements of the matrix and to values of the pixels of the
patterns is less than D /2 . (b) Recalled versions.

4.2.2 Effectiveness of Proposition 3

In this case all elements of the five images shown in Fig. 1 were distorted with mixed
noise but respecting the restriction that the absolute magnitude of the level of noise
added to a pixel is inferior to D / 2. For each image a noisy version was generated.
The five noisy versions are shown in Fig. 3(a). When applying the recalling procedure
described in Sect. 2.3, as expected in all cases the desired image was perfectly
recalled. Figure 3(b) shows the recalled versions.

Fig. 4. (a) Filtered versions of Fig. 3(a) with a one-dimensional median filter of sizes 1x3, 1x5,
1X7 and bi-dimensional median filter of 3x3 and 5x5. (b) Filtered versions of Fig. 3(a) with a
bi-dimensional median filter of size 3x3 applied recursively five times.

4.2.3 Results Obtained with a Linear Median Filter
In this section we present the results obtained when applying a one-dimensional and a
bi-dimensional median filter of different sizes to one of the images of Fig. 2(a), in this
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case to the first image. Figure 4(a) shows the filtered images with a one-dimensional
median filter of sizes 3, 5 and 7, and with a bi-dimensional median filter of sizes 3x3 and
5%5. Figure 4(b) shows the results obtained with a bi-dimensional median filter of size
3x3, applied recursively 5 times to the image. As can be appreciated in neither of the
cases the noise introduced to the image has been completely eliminated. Note also how in
the case of the median filter of size 3x3, applied recursively the result changes very little
as the filter is applied. It can also be appreciated that in general better results are obtained
with a bi-dimensional median filter than with a one-dimensional median filter.

5 Conclusions

In this paper we have studied how the performance of a median associative memory is
affected when the values of its elements are altered by mixed noise. We have
provided with formal conditions under which the memory is still able to correctly
recall a pattern of the fundamental set of patterns either from a non-altered or a noisy
version of it. Experiments with real patterns were also given to show the efficiency of
the proposal. From the experiments it is also shown that the proposal performs better
than the ordinary 1-D and 2-D mean filtering masks, either applied one time or
iteratively to the image.
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Abstract. We research the impact of the learning process of neural
networks (NN) on the structural properties of the derived graphs. A type
of recurrent neural network is used (GARNN). A graph is derived from a
NN by defining a connection between any pair od nodes having weights
in both directions above a certain threshold. We measured structural
properties of graphs such as characteristic path lengths (L), clustering
coefficients (C) and degree distributions (P). We found that well trained
networks differ from badly trained ones in both L and C.

1 Introduction

After the first theoretical studies of random graphs by Erdos and Renyi [I],
complex networks from the real world became a target of numerous investiga-
tions [2I3/4U5)6]. The main question was whether systems such as the World Wide
Web, the Internet, chemical networks and neural networks follow the rules of ran-
dom networks or related graphs. The structural properties of graphs are usually
quantified by characteristic path lengths, clustering coefficients and degree dis-
tributions [3/5]. Various types of graphs are classified based on the values of these
parameters [6]. Besides regular and random graphs with two extreme topologies,
two new topologies and consequently two new types of graphs in between were
identified: Small-World (SW) topology [2], according to the small average length
between the nodes (small-world feature) and Scale-Free (SF) topology [6] due to
the exponential degree distribution. It was further recognized that the evolution
of real networks and their topologies are governed by certain robust organizing
principles [3]. This implies that there is a topological difference between orga-
nized and non-organized (or random) networks. The aim of this paper is to show
the influence of learning on the structural parameters of neural network-related
graphs.

After a short presentation of the background theory of complex systems and
neural networks, the experimental work is described together with results show-
ing how the learning process of neural networks changes the structural properties
of the related graphs.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part 11, LNCS 4432, pp. 63-[70} 2007.
© Springer-Verlag Berlin Heidelberg 2007
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2 Background Theory

2.1 Complex Systems

Complex systems describe a wide range of systems in nature and society [6].
Structurally, they can usually be viewed as networks.

Graphs are usually used to represent a complex connection of units (network),
described by G = (N, E), where N is a set of n nodes (units or cells) and F is
a set of e edges, and where each edge connects two units. There are topological
differences between the graphs that correspond to the regular, random or com-
pletely random connections. To randomize connections, we start from a regular
lattice with n nodes and k edges per vertex and rewire each edge at random
with probability p.

The structural properties of graphs are quantified by characteristic path length
L(p), clustering coefficient C'(p) and degree distribution P (k) [3].

L(p) measures the typical separation between two nodes on the graph, where
the lengths of all edges are 1. Such graphs are relational, and the measure
describes a global property.

C(p) shows the cliquishness of a typical neighbourhood, or average fraction
of existing connections between the nearest neighbours of a vertex, which is a
local property.

P(k) is the probability that a randomly selected node has exactly k edges.

Besides regular networks or graphs (lattices with n vertices and k edges per
vertex), there are three main groups of networks (graphs) that differ in their
structural properties or topologies:

— Random networks
— Small-World networks
— Scale-Free networks

Random Networks (RNs). A random network is obtained from a regular one
by rewiring each edge at random with probability p. This construction allows us
to 'tune’ the graph between regularity (p = 0) and disorder (p = 1).

Random networks have a fixed number of nodes or vertices (n). Two arbi-
trary nodes are connected with probability p. On average, the network therefore
contains e = pn(n — 1)/2 edges. The degree distribution P(k) is a binomial, so
the average degree is: < k >=p(n — 1) ~ pn for large n.

The estimate for an average shortestpath length is obtained from:

<k>t=n, (1)

_ In(n) N In(n)
In(<k>) In(pn)’

L(p)

which is low, typical for the small-world effect. The clustering coefficient is:

(2)

Cp)=p~ "7, 3)

n
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since the edges are distributed randomly. It is much smaller than in a comparable
real world network with the same number of nodes and edges.

Small-World Networks (SWNs). SWNs can be constructed from ordered
lattices by random rewiring of edges (p is typically around 0.1-0.3) or by the
addition of connections between random vertices.

SWNs have small average shortest-path lengths, like RNs, but much greater
clustering coefficients than RNs. SWNs fall between regular and random graphs
and can be treated analytically. The shape of the degree distribution is similar
to that of random graphs. It has a peak at < k£ > and decays exponentially
for large and small k. The topology is relatively homogenous, all nodes having
approximately the same number of edges.

Scale-Free Networks (SFNs). The degree distributions of SFNs have power-
law tails:
P(k) ~ k™. (4)

This sort of distribution occurs if the random network grows with preferential
attachment. This means that a node with m edges is added at every time step
(m < myg, where my is the starting number of nodes) and connected to an existing
node ¢ with probability: p(k;) = k;/ > k;, which implies that it is more probably
connected to a node with more edges than to one with fewer edges. It has been
shown that many large networks in the real world (WWW, Internet, scientific
literature, metabolic networks, etc.) exhibit a power-law degree distribution and
therefore belong to the SF type of networks.

2.2 Generalized Architecture of Recurrent Neural Networks
(GARNN)

There are many types of artificial neural networks with different topologies
of connections between neurons, mathematical models of neurons and learning
algorithms [9]. There are preferential tasks for each type of neural network, each
with advantages over the other types. For example, if one wants to use an artifi-
cial neural network for the classification/identification of an unknown dynamic
system, then a network with feedback connections is needed. For the purpose of
this paper, only fully connected neural networks (each neuron connected to every
other neuron) are relevant. One of them is Hopfield neural network, with a rather
simple learning algorithm (following the rule that the coupling strength equals
the sum of the corresponding component values of the patterns to be stored).
However, it is not efficient for the purpose of classification/identification of a gen-
eral dynamic system. A classical recurrent neural network, on the other hand,
uses a gradient-based learning algorithm RTRL (Real Time Recurrent Learn-
ing), which is not only very time consuming but often does not converge fast
enough if the network is large and the task relatively difficult.

For the purposes of this paper, a GARNN is chosen [7], for the following
reasons: a) it has a general topology (with two layers of neurons, where each
neuron is connected to every other in the network), b) it uses a special learning
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algorithm that demonstrates good convergence characteristics (mostly due to
the modified RTRL, the neuron level of Decoupled Extended Kalman Filter for
updating weights and alpha-projected teacher forcing technique). Unfortunately,
the combination of the GARNN and the learning algorithm doesn’t allow one to
use a large number of neurons expected of a complex system. For the purposes
of the experimental work, we used much larger neural networks than are actu-
ally needed for the selected application. This can be biologically justified by the
way that living organisms also use a huge number of neurons for simple func-
tions performed at a particular moment. What we want to show is that through
the learning process of the GARNN responsible for the organizing evolution of
network weights, the structural parameters of the related graphs change from
the features of a RN to those of SWNs with a different degree distribution. We
see no reasonable argument that this should not be the same in complex neural
networks with a large number of neurons.

The block diagram of the GARNN is shown in Fig. [l There are three layers
in the network: an input layer, a hidden layer and an output layer. The number
of neurons in the output layer is equal to m + r (known as m + r heuristics
[7]), w