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Abstract. Evolutionary algorithms have been adequately applied in
solving single and multi-objective optimization problems. In the single-
objective case various studies have shown the usefulness of combining
gradient based classical search principles with evolutionary algorithms.
However there seems to be a dearth of such studies for the multi-objective
case. In this paper, we take two classical search operators and discuss
their use as a local search operator in a state-of-the-art evolutionary al-
gorithm. These operators require gradient information which is obtained
using a stochastic perturbation technique requiring only two function
evaluations. Computational studies on a number of test problems of vary-
ing complexity demonstrate the efficiency of hybrid algorithms in solving
a large class of complex multi-objective optimization problems.

1 Introduction

Multi-objective optimization is a rapidly growing area of research and applica-
tion in modern-day optimization. There exist a plethora of non-classical methods
which follow some natural or physical principles for solving multi-objective op-
timization problems, see for example the book by [4]. On the other hand a large
amount of studies have been devoted to develop classical methods for solving
multi-objective optimization problems.

Evolutionary algorithms use stochastic transition rules using crossover and
mutation search operators to move from one solution to another. In this way
global structure of search space is exploited. Classical methods, on the other
hand, usually use deterministic (usually gradient based) transition rules to move
from one solution to another. Classical methods effectively use local information
thus ensuring fast convergence. This however comes up at the cost of requir-
ing gradient or Hessian information which requires a large number of function
evaluations. Hence one sees that there is a trade-off between fast convergence
and number of function evaluations. Hybrid implementations thus continue to
be developed and tested (see for example [1,8,9,2,3]).

This study is motivated by the an earlier comparative study [14]. In this con-
tribution we take two classical gradient based Pareto front generating methods
and use their search principles as mutation operators in a state-of-the-art multi-
objective evolutionary algorithm to create a powerful hybrid multi-objective
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metaheuristics algorithm. We demonstrate their efficiency in solving real val-
ued problems of varying complexity.

This paper is structured as follows. The next section present an overview
of various classical generating methods and the gradient estimation technique,
while the third section presents the simulation results. Conclusions as well as
extensions which emanated from this study are presented in the end of this
contribution.

2 Classical Search Principles

For the present study we take two classical algorithms and use their search
operators as mutation operators in the elitist non-dominated sorting GA or
NSGA-II developed by [5]. The gradients of objective functions are obtained by
a stochastic method described later in this section. These classical algorithms
and their search operators are described next.

2.1 Schäffler’s Stochastic Method (SSM)

This method [13], is based on the solution of a set of stochastic differential
equations. It method requires the objective functions to be twice continuously-
differentiable. In each iteration, a trace of non-dominated points is constructed
by calculating at each point x a direction (−q(x)) in the decision space which
is a direction of descent for all objective functions (note that we consider m to
be the number of objective functions denoted by fi for all i = 1, 2, · · · , m). The
direction of descent is obtained by solving a quadratic subproblem. Let α̂ be
the minimizer. Then q(x) =

∑m
i=1 α̂i∇fi(x). A set of non-dominated solution is

obtained by perturbing the solution (minimum along the direction of descent)
using a Brownian motion concept. The following stochastic differential equation
(SDE) is employed for this purpose:

dXt = −q(Xt)d(t) + εdBt, X0 = x0, (1)

where ε > 0 and Bt is a n-dimensional Brownian motion. As the first search
operator we use Equation 1 to create a child instead of the mutation operator.
The gradients are obtained using a stochastic perturbation method described
later. We name the hybrid algorithm with new mutation operator as S-NSGA-
II. In all simulations here, to solve the above equation numerically, we employ
the Euler’s method with a step size σ. The approach needs two parameters to
be set properly: (i) the parameter ε which controls the amount of global search
and (ii) the step size σ used in the Euler’s approach which controls the accuracy
of the integration procedure.

2.2 Timmel’s Population Based Method (TPM)

As early as in 1980, [16,17] proposed a population-based stochastic approach for
finding multiple Pareto-optimal solutions of a differentiable multi-objective
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optimization problem. In this method, first, a feasible solution set (we call it a pop-
ulation) is randomly created. The non-dominated solutions (X0={x0

1,x
0
2, . . . ,x

0
s})

are identified and they serve as the first approximation to the Pareto-optimal
set. Thereafter, from each solution x0

k, a child solution is created in the following
manner:

x1
k = −

M∑

i=1

t1ui∇fi(x0
k), (2)

where ui is the realization of a uniformly distributed random number (between
0 and 1) and t1 is step-length in the first generation. It is a simple exercise to
show that the above formulation ensures that not all functions can be worsened
simultaneously. The variation of the step-length over iterations must be made
carefully to ensure convergence to the efficient frontier. The original study sug-
gested the following strategy for varying the step-length tj with generation j:
tj = C/j (where C is a positive constant). As the second search operator we use
Equation 2 to create a child instead of the mutation operator. As in S-NSGA-
II the gradients are obtained using a stochastic perturbation method described
later. We name the hybrid algorithm with new mutation operator as T-NSGA-II.

2.3 Gradient Estimation: Simultaneous Perturbation Method

In almost all classical algorithms (for both single and multi-objective problems)
the gradient of a function (say in general h) are required. The standard approach
for estimating the gradient is the Finite Difference (FD) method. For variable
(say x) of dimension n this method of gradient estimation requires 2n function
evaluations. This is costly in terms of function evaluations (of the order O(n)).
The Simultaneous Perturbation (SP) method [15] on the other hand requires
only two function evaluation independently of n (computational complexity is
thus O(1)) as follows

gi(x) =
f(x + cΔ) − f(x − cΔ)

2cΔi
,

where the ith component of the gradient is denoted by gi(x), Δ is a n dimensional
vector of random perturbations satisfying certain statistical conditions ([15]). A
simple (and theoretically valid) choice for each component of Δ is to use a
Bernoulli distribution ±1 with probability of 0.5 for each ±1 outcome. The step
size c at each iteration (denoted by ck) is given as ck = c0/(k + 1)γ . Practically
effective (and theoretically valid [15]) values of c0, γ are 0.001 and 1/6 which are
used here.

3 Simulation Results

In this section, we compare the above two hybrid methods with the elitist non-
dominated sorting GA or NSGA-II [5] on a number of test problems. The test
problems are chosen in such a way so as to systematically investigate various
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aspects of an algorithm. For S-NSGA-II the parameters σ = 1.0 along with
ε = 0.1 is used for all the test problems. For T-NSGA-II the parameter C = 10.0
is used (unless otherwise stated). For the NSGA-II, we use a standard real-
parameter SBX and polynomial mutation operator with ηc = 10 and ηm =
10, respectively [4] (unless otherwise stated). For all problems solved, we use a
population of size 100. We set the number of function evaluations as 5000 for
each problems and 15000 for difficult ones.

Convergence and diversity are two distinct goals in multi-objective optimiza-
tion. In order to evaluate convergence we use the Generational Distance (GD)
metric [4]. Diversity of solutions is evaluated using the Spread (denoted by S)
metric [4]. These unary metrices for convergence and diversity are used together
with a binary metric which can detect whether an approximation set is better
than another. We use the multiplicative binary ε indicator discussed by Zit-
zler [18] to assess the performance of the algorithms. Also for statistical eval-
uation we use attaintment surface based statistical metric ([7]) for one hard
problem. We consider two-objective ZDT test problems discussed in [4]. The
test problems are slightly modified so that they become unconstrained multi-
objective optimization problems, as the SSM method is only able to tackle un-
constrained problems in its present form. Table 1 present these test problems.
Also the box constraints are slightly modified so that the functions are twice
continuously differentiable in the entire feasible region (required as per SSM).

Table 1. Test problems

Name Objectives g Domain

ZDT1 f1(x) = x1, f2(x) = g(x)
“
2 −

q
x1

g(x)

”
g(x) = 1 + 9

n−1

Pn

i=2 x2
i [0.01, 1]×

[−1, 1]29

ZDT2 f1(x) = x1, f2(x) = g(x)
“
2 − ( x1

g(x)
)2

”
g(x) = 1 + 9

n−1

Pn

i=2 x2
i [0.01, 1]×

[−1, 1]29

ZDT3 f1(x) = x1, f2(x) =
g(x)

“
2 −

q
x1

g(x)
−

x1

g(x)
sin(10πx1)

” g(x) = 1 + 9
n−1

Pn

i=2 x2
i [0.01, 1]×

[−1, 1]29

ZDT4 f1(x) = x1, f2(x) = g(x)
“
2 −

q
x1

g(x)

”
g(x) = 1 + 10(n − 1) +Pn

i=2(x
2
i − 10 cos(4πxi))

[0.01, 1]×
[−5, 5]9

ZDT6 f1(x) = 1 − exp(−4x1) sin6(4πx1), f2(x) =

g(x)
„

2 −

“
f1(x)
g(x)

”2
« g(x) = 1 +

9( 1
n−1

Pn

i=2 x2
i )0.25

[0.01, 1]×
[−1, 1]9

The modified ZDT1 problem has a convex Pareto-optimal front for which so-
lutions correspond to 0.01 ≤ x∗

1 ≤ 1 and x∗
i = 0 for i = 2, 3, . . . , 30. Figure 1

shows the performance of all the algorithms after 5000 function evaluations. Ta-
ble 2 shows the binary ε indicator values of all the algorithms on this problem.
An element (i, j) in this table represents Iε(algorithm j, algorithm i). Given
two outcomes A and B, of different algorithms, the binary ε indicator Iε(A, B)
gives the factor by which an approximation set is worse than another with respect
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to all objectives. If Iε(A, B) ≤ 1 and Iε(B, A) > 1 occurs then we an conclude
that Algorithm A better than Algorithm B. These conditions are quite difficult
to satisfy using binary ε indicator values. We will use the binary ε indicator
values to conclude partial results: we will say that Algorithm A is relatively
better than Algorithm B if Iε(A, B) ≤ 1.05 and Iε(B, A) > 1.05. If Iε(A, B) ≤ 1
and Iε(B, A) > 1 occurs the we say that Algorithm A is definitively better than
Algorithm B. From Table 2 we obtain that with respect to binary ε metric all
the three algorithms are incomparable. However, with respect to diversity S-
NSGA-II performs the best (Table 4) while T-NSGA-II performs best in terms
of convergence (Table 5).
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Fig. 1. Performance of the three algo-
rithms on ZDT1
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Fig. 2. Performance of the three algo-
rithms on ZDT2

The modified ZDT2 problem has a non-convex Pareto-optimal front for which
solutions correspond to 0.01 ≤ x∗

1 ≤ 1 and x∗
i = 0 for i = 2, 3, . . . , 30. In the case

of TPM algorithm (using a limited parametric study) we choose C = 4.0 Figure
2 shows the performance of all the algorithms after 5000 function evaluations.
It can be seen both T-NSGA-II and S-NSGA-II find much more non-dominated
solutions close to efficient front than NSGA-II. Although from Table 3 we observe
that NSGA-II is relatively better than other two algorithms, however this happens
since NSGA-II find one solution close to efficient front (while S-NSGA-II and
T-NSGA-II find 38 and 37 solutions respectively). As can be seen from tables 4
and 5 that spread of both S-NSGA-II and T-NSGA-II is better than NSGA-II
while convergence of T-NSGA-II is best. Next we consider ZDT3, this problem

Table 2. Binary ε indicator values
on ZDT1

SSM TPM NSGA

S-NSGA-II 1.0000 1.0124 1.0558

T-NSGA-II 1.0374 1.0600 1.0494

NSGA-II 1.0160 1.0056 1.0000

Table 3. Binary ε indicator values
on ZDT2

SSM TPM NSGA

S-NSGA-II 1.0000 1.0854 1.7517

T-NSGA-II 1.0512 1.0000 1.6139

NSGA-II 1.0353 1.0027 1.0000
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has a convex discontinuous efficient frontier. Figure 3 shows the performance of
all the algorithms after 5000 function evaluations. It can be seen that all the
algorithms find non-dominated solutions close to efficient front in its all the 5
disconnected parts. From Table 6 one infers that S-NSGA-II performs relatively
better than original NSGA-II, while T-NSGA-II and NSGA-II are incomparable.
As can be seen from tables 4 and 5 diversity of T-NSGA-II is the best, while
convergence of S-NSGA-II is best.
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Fig. 3. Performance of the three algo-
rithms on ZDT3
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Fig. 4. Performance of the three algo-
rithms on ZDT4

Table 4. Spread metric values. Best values are shown in bold.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
S-NSGA-II 0.4992 0.7299 0.8419 0.8900 0.5084
T-NSGA-II 0.6002 0.8018 0.7914 1.0000 0.3799
NSGA-II 0.7196 1.000 0.7998 1.0817 0.6267

The problem ZDT4 has a total of 100 distinct local efficient fronts in the
objective space. The global Pareto-optimal solutions correspond to 0.01 ≤ x∗

1 ≤ 1
and x∗

i = 0 for i = 2, 3, . . . , 10. Since ZDT4 is a complex multi-modal problem in
this problem all the algorithms are run till 15000 function evaluations. Figure 4
shows the performance of all the algorithms. It can be seen that only NSGA-II
is able to overcome many local Pareto optimal fronts and also performs best in
terms of convergence (Table 5).

Next we consider another difficult problem, ZDT6. This problem has a non-
convex and non-uniformly spaced Pareto-optimal solutions. The Pareto-optimal
solutions correspond to 0.01 ≤ x∗

1 ≤ 1 and x∗
i = 0 for i = 2, 3, . . . , 10. In case of

NSGA-II we use ηc = 1 and ηm = 1 as these are more efficient for such difficult
problems. Similarly, in the case of T-NSGA-II algorithm we choose c = 0.5 while
in case of S-NSGA-II we use the same parameters. ZDT6 is a hard multi-objective
problems and thus we run the simulations for a total of 15000 generations for
each algorithm. Figure 5 shows the performance of all the algorithms after 15000
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Table 5. Generational distance metric values. Best values are shown in bold.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
S-NSGA-II 0.0521 0.0825 0.0267 4.1118 0.0354
T-NSGA-II 0.0342 0.0407 0.0388 4.5287 0.0214
NSGA-II 0.0584 0.0562 0.0283 0.1673 0.1864

Table 6. Binary ε indicator values
on ZDT3

SSM TPM NSGA

S-NSGA-II 1.0000 1.0454 1.02810

T-NSGA-II 1.0160 1.0000 1.0113

NSGA-II 1.0620 1.0452 1.0000

Table 7. Binary ε indicator values
on ZDT6

SSM TPM NSGA

S-NSGA-II 1.0000 1.0028 1.2412

T-NSGA-II 1.0310 1.0000 1.2797

NSGA-II 1.0000 1.0000 1.0000
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Fig. 5. Performance of the three algo-
rithms on ZDT6
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function evaluations. It can be easily seen that both S-NSGA-II and T-NSGA-II
perform better than NSGA-II. Also from Table 8 it can be inferred that perfor-
mance of both S-NSGA-II and T-NSGA-II is definitively better than NSGA-II.
The algorithms S-NSGA-II and T-NSGA-II are also better than NSGA-II in
terms of diversity (Table 4) and convergence (Table 5). In order to address the
issue of stochasticity on this hard problem we perform 21 different runs of all
the algorithms and plot the best, median and worst attainment surface plot.
Figure 6 shows the plots. One observes that even the worst attaintment surfaces
of both S-NSGA-II and T-NSGA-II are much better than that of NSGA-II.

4 Conclusions

On a number of test problems of varying complexity, it has been observed that
using the TPM and SSM as mutation search operators in NSGA-II performs
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better than the standard NSGA-II approach for a wide class of problems. How-
ever, for problems having multi-modal efficient front the above classical search
techniques have not performed well. However this does not mean that they are
not suited for solving multi-modal problems. Take for example, TPM in this the
parameter C is crucial to get to the global efficient front. Once TPM gets stuck
one strategy could be to restart the series by taking some larger value of C. SSM
on the hand has a global search operator built in that and thus better numer-
ical methods of solving the stochastic differential equation should be taken to
see its performance. S-NSGA-II and T-NSGA-II perform substantially well over
the evolutionary method in case of hard problems having a non-uniform density
of solutions in the objective space. On the other hand, on all other problems
considered here, the S-NSGA-II, has performed well in achieving both conver-
gence and diversity of solutions with the same parameter values in all the test
problems.

As an extension to this study one could use classical techniques for box-
constrained [12], nonlinear inequality constrained [11,6], and non-differentiable
[10] problems and try to combine with evolutionary optimization to create pow-
erful hybrid algorithms.
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