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Preface

The ICANNGA series of conferences has been organized since 1993 and has a
long history of promoting the principles and understanding of computational
intelligence paradigms within the scientific community. Starting in Innsbruck, in
Austria (1993), then Ales in France (1995), Norwich in England (1997), Portoroz
in Slovenia (1999), Prague in Czech Republic (2001), Roanne in France (2003)
and finally Coimbra in Portugal (2005), the ICANNGA series has established
itself as a reference for scientists and practitioners in this area. The series has
also been of value to young researchers wishing both to extend their knowledge
and experience and to meet experienced professionals in their fields.

In a rapidly advancing world, where technology and engineering change dra-
matically, new challenges in computer science compel us to broaden the con-
ference scope in order to take into account new developments. Nevertheless,
we have kept the acronym ICANNGA which, since the Coimbra conference in
2005, stands for International Conference on Adaptive and Natural Computing
Algorithms.

The 2007 conference, the eighth in the ICANNGA series, took place at the
Warsaw University of Technology in Poland, drawing on the experience of previ-
ous events and following the same general model, combining technical sessions,
including plenary lectures by renowned scientists, with tutorials and workshop
panels.

The Warsaw edition of ICANNGA attracted many scientists from all over the
world. We received 474 mostly high-quality submissions from 40 countries. After
rigorous review involving more than 160 experts in their fields, 178 papers were
accepted and included in the proceedings. The acceptance rate was only 38%,
enforcing a high standard of papers. The conference proceedings are published
in two volumes of Springer’s Lecture Notes in Computer Science.

The first volume of the proceedings is primarily concerned with issues re-
lated to various concepts and methods of optimization, evolutionary computa-
tions, genetic algorithms, particle swarm optimization, fuzzy and rough systems.
Additionally there is also a set of papers devoted to clustering and classifica-
tion. The second volume is mainly concerned with neural networks theory and
applications, support vector machines, biomedical and biometrics applications,
computer vision, control and robotics.

ICANNGA 2007 enjoyed plenary lectures presented by distinguished scien-
tists: Shun-ichi Amari from Japan, Ryszard Tadeusiewicz and Janusz Kacprzyk
from Poland, Kevin Warwick and Rafal Zbikowski from England.

We would like to thank the International Advisory Committee for their guid-
ance, advice and discussions. Our special gratitude is devoted to the Program
Committee and reviewers. They have done a wonderful job of shaping the con-
ference image.



VI Preface

Camera-ready version of the papers were carefully examined and verified
by Wiktor Malesza, Konrad Markowski, Tomasz Toczyski and Maciej Twardy.
A number of people from our Electrical Engineering Faculty, the Control Division
Staff members and the PhD students were involved in various conference tasks,
supporting the conference secretariat and maintaining multimedia equipment.
We greatly appreciate all they have done.

We also wish to thank our publisher, especially Alfred Hofmann the Editor-
in-Chief of LNCS and Anna Kramer for their support and collaboration.

Finally, the conference was made up of papers and presentations prepared by
our contributors and participants. Most of our gratitude is directed to them.

April 2007 Bartlomiej Beliczynski
Andrzej Dzielinski
Marcin Iwanowski

Bernardete Ribeiro
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Daniel Rivero, Juan Rabuñal, Julián Dorado, and Alejandro Pazos

FPGA Implementation of Evolvable Characters Recognizer with
Self-adaptive Mutation Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Jin Wang, Chang Hao Piao, and Chong Ho Lee

A Multi-gene-Feature-Based Genetic Algorithm for Prediction of
Operon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Shuqin Wang, Yan Wang, Wei Du, Fangxun Sun, Xiumei Wang,
Yanchun Liang, and Chunguang Zhou

Application of Micro-GA for an Optimal Direct Design Method of Steel
Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Se-Hyu Choi

Multi-objective Optimal Public Investment: An Extended Model and
Genetic Algorithm-Based Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Lei Tian, Liyan Han, and Hai Huang

Particle Swarm Optimization

Many-Objective Particle Swarm Optimization by Gradual Leader
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
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Agent-Based Approach to Solving the Resource Constrained Project
Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Piotr Jedrzejowicz and Ewa Ratajczak-Ropel

A Model of Non-elemental Associative Learning in the Mushroom Body
Neuropil of the Insect Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Jan Wessnitzer, Barbara Webb, and Darren Smith

Performance-Based Bayesian Learning for Resource Collaboration
Optimization in Manufacturing Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Jian Zhou, Qing Li, Jim Browne, Qing Wang, Paul Folan, and
TianYuan Xiao

A Hybrid Simulated-Annealing Algorithm for Two-Dimensional Strip
Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Türkay Dereli and Gülesin Sena Daş
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Dariusz Lipiński and Wojciech Kacalak

A Dynamic Resource Broker and Fuzzy Logic Based Scheduling
Algorithm in Grid Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Jiayi Zhou, Kun-Ming Yu, Chih-Hsun Chou, Li-An Yang, and
Zhi-Jie Luo

Improving Business Failure Predication Using Rough Sets with
Non-financial Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Jao-Hong Cheng, Chung-Hsing Yeh, and Yuh-Wen Chiu

Optimization of Fuzzy Model Driven to IG and HFC-Based GAs . . . . . . . 622
Jeoung-Nae Choi, Sung-Kwun Oh, and Hyung-Soo Hwang

Potential Assessment of an Ellipsoidal Neural Fuzzy Time Series Model
for Freeway Traffic Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

Ping-Feng Pai, Kuo-Ping Lin, and Ping-Teng Chang

Digital Model of Series Resonant Converter with Piezoelectric Ceramic
Transducers and Fuzzy Logic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
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Abstract. In the paper, a new method of decision tree learning for cost-
sensitive classification is presented. In contrast to the traditional greedy
top-down inducer in the proposed approach optimal trees are searched in
a global manner by using an evolutionary algorithm (EA). Specialized ge-
netic operators are applied to modify both the tree structure and tests in
non-terminal nodes. A suitably defined fitness function enables the algo-
rithm to minimize the misclassification cost instead of the number of clas-
sification errors. The performance of the EA-based method is compared
to three well-recognized algorithms on real-life problems with known and
randomly generated cost-matrices. Obtained results show that the pro-
posed approach is competitive both in terms of misclassification cost and
compactness of the classifier at least for some datasets.

1 Introduction

Nowadays computer-aided decision support systems become more and more pop-
ular in solving complex decision-making problems in marketing, finance and
medicine. Based on gathered datasets of examples they enable training various
types of classifiers in form of neural networks, decision trees and rules. However,
in most cases only the number of classification errors is taken into account during
the induction process. In many practical applications this classical approach is
not suitable because there are other factors, such as costs, which may influence
final decisions. In [24] Turney discussed different types of costs associated with
inductive learning (e.g., the cost of tests, the cost of objects and the misclassi-
fication cost). The term cost-sensitive classification encompasses all these types
of costs.

There are two main groups of methods for making a classifier cost-sensitive. In
the first group, individual error-based systems are converted into cost-sensitive
ones. One of the first attempts to incorporate misclassification costs into decision
tree learning was made in the CART system [4]. The method consists in the
modification of the class prior probabilities used in the splitting criterion and
in the application of the cost-based measure to a tree pruning. Another cost-
sensitive methods for pruning decision trees are proposed in [10,3]. However, it
should be emphasized that stand-alone pruning procedures have only a limited
capability to change the tree structure created by an error-based inducer. In [22]
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c© Springer-Verlag Berlin Heidelberg 2007
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the C4.5 system [21] was modified using instance-weighting, but the method
requires converting of a cost matrix into a cost vector, which can result in poor
performance in multi-class problems. Recently, Ling et al. [17,26] proposed an
algorithm that minimizes the sum of the misclassification and test costs. This
approach is based on a new splitting criterion (total cost) for nominal attributes
and two-class problems.

The second group includes general methods for making an arbitrary clas-
sifier cost-sensitive. MetaCost [7] is based on wrapping a meta-learning stage
around the error-based classifier. Another method proposed by Zadrozny et
al. [25] uses cost-proportionate rejection sampling and ensemble aggregation.
Iterative weighting and gradient boosting are investigated by Abe et al. [1] in
multi-class problems.

The proposed approach consists in developing a specialized evolutionary algo-
rithm for global induction of cost-sensitive decision tree classifiers. Several EA-
based systems which learn decision trees in the top-down manner (e.g. BTGA
[6], OC1-ES [5], DDT-EA [12]) have been proposed so far. Generally, they apply
evolutionary approach to the search of splitting hyper-planes in non-terminal
nodes of oblique decision trees.

In this paper, a global approach to decision tree induction is advocated. In
contrast to a step-wise construction, the whole tree is being searched at the time.
It means the simultaneous search for an optimal structure of the tree and for all
tests in non-terminal nodes. The global approach was initially proposed by Koza
in [11], where genetic programming was used for evolving LISP S-expressions
that correspond to simple decision trees. A similar idea was investigated in the
GATree system [20] which directly evolves classification trees with nominal tests.
In our previous papers, we showed that EA-based global inducer can efficiently
generate univariate [13], linear [14] and mixed [15] decision trees.

Concerning applications of evolutionary techniques to cost-sensitive learning
of decision trees, according to our knowledge, only one attempt can be men-
tioned. In [23] Turney proposed the ICET system, which uses the standard ge-
netic algorithm to evolve a population of biases for the modified C4.5. Both
feature and misclassification costs are taken into account.

The rest of the paper is organized as follows. In the next section, the proposed
evolutionary algorithm is described in details. Section 3 contains experimental
validation of the approach on the benchmark classification problems with known
and randomly generated cost-matrices. In the last section conclusions and pos-
sible directions of the future work are presented.

2 Evolutionary Algorithm for Global Induction

The structure of the proposed evolutionary algorithm follows the typical frame-
work [18] and only application-specific issues (the fitness function, specialized
genetic operators, ...) are described in more detail in this section.



Evolution of Decision Trees for Misclassification Cost Minimization 3

2.1 Preliminaries

We assume that a learning set E = {e1, e2, . . . , eM} consists of M examples.
Each example e ∈ E is described by N attributes (features) A1, A2, . . . , AN and
labeled by a class c(e) ∈ C. The set of all examples from the class ck ∈ C is
denoted by Ck = {e ∈ E : c(e) = ck} and the class assigned (predicted) by the
tree T to the example e is denoted by T (e).

Let Cost(ci, cj) ≥ 0 be the cost of misclassifying an object from the class cj

as belonging to the class ci. We assume that the cost of the correct decision is
equal zero i.e., Cost(ci, ci) = 0 for all ci.

2.2 Representation, Initialization and Termination Condition

In our system, decision trees are represented in their actual form as classical uni-
variate trees where each test in a non-terminal node concerns only one attribute.
Additionally, in every node information about learning vectors associated with
the node is stored and it enables the algorithm to perform efficiently local struc-
ture and tests modifications during applications of genetic operators.

In case of a nominal attribute at least one value is associated with each
branch. It means that an inner disjunction is built-in into the induction al-
gorithm. For a continuous-valued feature typical inequality tests with boundary
thresholds1 [8] as potential splits are considered. All boundary thresholds for
each continuous-valued attribute are calculated before starting the evolutionary
induction [13]. It significantly limits the number of possible splits and focuses
the search process.

In standard error-based decision trees class labels are associated with leaves
by using the majority rule based on training objects which reached a leaf-node.
In cost-sensitive case class labels for leaves are chosen to minimize the misclas-
sification cost in each leaf.

Individuals in the initial population are generated as follows. The classical top-
down algorithm is applied, but tests are chosen in a dipolar way [12]. Among
feature vectors located in the considered node two objects from different classes
(so called mixed dipole) are randomly chosen. An effective test, which separates
two objects into sub-trees, is created randomly by taking into account only
attributes with different feature values. Recursive divisions are repeated until
the stopping condition (based on the minimal number of learning vectors in a
node or homogeneity of a node) is met. Finally, the resulting tree is post-pruned
according to the fitness function.

The algorithm terminates if the fitness of the best individual in the population
does not improve during the fixed number of generations (default value is equal
200). Additionally, the maximum number of generations is specified which limits
the computation time in case of a very slow convergence (default value: 1000).

1 A boundary threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples belong to two different classes.
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2.3 Fitness Function

The properly defined fitness function is a crucial element for every evolutionary
algorithm. In case of induction of decision structures it is obvious that there is
no possibility to directly optimize accuracy of the classifier on unseen examples.
Instead, the system performance on the training data is usually used to guide
the search process and additional factors are introduced to prevent the over-
fitting and to increase the generalization power of the classifier (e.g. [13,16]). An
analogous approach is applied in our system.

The misclassification cost MC(T ) of the tree T is estimated on the training
data:

MC(T ) =
1
M

·
∑

e∈E

Cost(T (e), c(e)). (1)

The values of the misclassification cost do not fit into range [0, 1] like classifica-
tion errors, however, it is easy to calculate the maximal cost for a given dataset
and a cost matrix:

MaxMC =
1
M

·
∑

ck∈C

|Ck| · max
i�=k

Cost(ci, ck). (2)

Hence, by dividing MC(T ) by MaxMC one can obtain the normalized misclas-
sification cost, which is equal 0 for the perfect prediction and 1 in the worst case.
Finally, the fitness function, which is maximized, is defined as follows:

Fitness(T ) =
(

1 − MC(T )
MaxMC

)
· 1
1 + α · S(T )

, (3)

where S(T ) is the size of the tree T expressed as a number of nodes and α is a
user supplied parameter (default value is 0.001).

It should be expected that there is no one optimal value of α for all possible
datasets and cost matrices. When the certain problem is analyzed, tuning this
parameter may lead to the improvement of the results (in terms of the misclas-
sification cost or classifier complexity).

2.4 Genetic Operators

There are two specialized genetic operators called CrossTrees and MutateNode
which fulfill the role of crossover and mutation operators from the classic frame-
work.

CrossTrees alike the standard crossover operator modifies two chromosomes
(i.e. trees) by swapping their certain parts. There are three types of crossover-like
modifications that can be performed on trees: two of them concern sub-trees and
one only tests. Firstly, one random node is drawn from each tree. Then the type
of modification is chosen. By default all types of these operations are equally
probable, but the user can specify his own proportions. First one exchanges sub-
trees rooted in chosen nodes. This variant is analogous to the typical crossover
operator introduced in genetic programming. Second operator replaces only tests
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between chosen nodes. This type of modification is possible solely when tests have
the same number of outcomes. Third operator is the most radical. It replaces in
random order all branches of chosen nodes. It is evident that the same effect can
be achieved by combining two or more exchanges of the first type.

MutateNode, like the standard mutation operator, takes one argument (i.e. a
single node of the tree). This operator can be applied to each node with a given
probability (default value 0.05). The result of this operator depends on what
kind of a node is considered (i.e. a leaf or an internal node). When modifying
an internal node the following possibilities are by default equally probable (this
probabilities are again user specified):

– a test in the current node can be replaced by a completely new test chosen
in a dipolar way,

– a less drastic possibility in reference to the previous one consists in changing
the threshold of a test on a real attribute or modifying groups of nominal
values (i.e. two branches of the current node can be merged into one branch
or a group can be split creating an additional branch) according to the
application of an inner disjunction to tests on nominal attributes,

– a test in the current node and a test from one of node’s sons can be ex-
changed, it concerns nodes which have non-leaf descendants

– one of the branches of the current node can be multiplied and replace another
branch which is to be dropped,

– each node, even the root, can be transformed into a leaf; this operator allows
reducing in a straight way the tree size.

A leaf node can be modified on condition that it contains feature vectors
belonging to different classes. Such a leaf can be replaced by:

– a non-terminal node with a randomly chosen test,
– a sub-tree generated according to the dipolar algorithm which is also applied

during initialization.

After application of some of the described operators it may be necessary to
alter locations of some of the learning vectors. It can lead to such a situation
where there are nodes or even whole sub-trees without any training examples.
For this reason empty parts of the tree have to be removed. It is done by using
either simple algorithm which does it directly or by specialized operator called
MaximizeFitness. This operator not only drops empty parts of the tree but also
performs more sophisticated modifications. It visits all nodes of a tree in bottom-
up order. It tries to replace each not-terminal node by a leaf while taking into
account potential gain in the fitness. MaximizeFitness is by default applied to
all trees from initial population and to sub-trees which appear after replacing
leaves.

As a selection mechanism the ranking linear selection [18] is applied. Addi-
tionally, the chromosome with the highest value of the fitness function in the
iteration is copied to the next population (the elitist strategy).
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3 Experimental Results

In this section experimental validation is presented. The proposed approach (de-
noted in tables as GDT-MC) is compared with the commercial cost-sensitive
classifier C5.0 which is enhanced version of C4.5 [21]. Our global inducer is also
compared with MetaCost [7] and CostSensitiveClassifier (denoted as CSJ48) of
the Weka system [9]. Both MetaCost and CSJ48 are based on wrapping an error-
based classifier (J48 which is Weka’s implementation of C4.5 was used in the
experiments).

Performance of all presented systems is assessed on a subset of the well-known
datasets publicly available from the UCI Machine Learning Repository [2]. More
complex datasets with continuous-valued features and no missing values were
chosen. All results presented in the tables correspond to averages of 10 runs and
were obtained by using test sets (when available) or by the 10-fold stratified
crossvalidation. The average number of leaves is given as a complexity measure
of classifiers.

3.1 Known Cost-Matrices

Only for two datasets (namely german and heart) misclassification costs are
provided. The cost matrix in both cases is the same and non-zero costs are as
follows: Cost(c2, c1) = 1 and Cost(c1, c2) = 5.

Table 1. Misclassification costs and tree sizes obtained for datasets with known cost
matrix

MetaCost CSJ48 C5.0 GDT-MC
Dataset Cost Size Cost Size Cost Size Cost Size

german 1.26 31.61 0.69 67.31 0.71 81.37 0.58 11.69

heart 1.01 18.05 0.52 10.87 0.56 16.49 0.61 25.07

average 1.14 24.83 0.61 39.09 0.64 48.93 0.6 18.38

The results obtained with the default value of α are collected in Table 1. It
should be noted that in case of the german dataset EA-based system performs
better (both in terms of the misclassification cost and the classifier size) than
all remaining algorithms. As for the second dataset GDT-MC is slightly worse
than C5.0 and CSJ48 but still much better than MetaCost.

In order to verify the impact of the α parameter on the results, a series
of experiments with varying α was prepared (see Fig. 1 and Fig. 2). As it
could be expected, along with a decrease of α an increase of trees complex-
ity can be observed. Concerning the misclassification cost, after initial small
decrease global minimum is reached and the cost quickly rises for larger trees.
It can be also observed that for both datasets the default setting of this para-
meter (denoted by vertical dotted line) is not really optimal. For the german
dataset, where GDT−MC obtained the best result (0.58) among all competitors,
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Fig. 1. The impact of α parameter on the misclassification cost and the tree complexity
for heart dataset
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Fig. 2. The impact of α parameter on the misclassification cost and the tree complexity
for german dataset
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a further decrease of the misclassification cost to 0.54 is possible. Concerning the
heart dataset it is also possible to achieve the misclassification cost lower than
these obtained by C5.0 or CSJ48.

3.2 Simulated Cost-Matrices

For the remaining datasets, for which cost matrices are not provided, a different
but typical experimental setup is applied (see e.g. [22,19,16]). In each run of the
10-fold crossvalidation a cost matrix was generated randomly. The off-diagonal
elements of the cost matrix were drawn from the uniform distribution over the
range [1, 10]. The diagonal elements were always zero. The standard deviations
are not presented because if they had been calculated they would have expressed
the effects of varying cost matrices [7]. For each single crossvalidation run the
same random cost matrix and the same training data splits were used for all
tested algorithms.

Table 2. The average misclassification cost and the tree size for datasets with randomly
generated cost matrices

MetaCost CSJ48 C5.0 GDT-MC
Dataset Cost Size Cost Size Cost Size Cost Size

breast − w 0.29 10.02 0.24 9.81 0.24 11.15 0.22 5.6

australian 0.63 7.0 0.40 8.0 0.60 12.50 0.64 12.0

balance − scale 1.33 34.0 1.40 19.0 1.27 29.80 1.16 22.4

bupa 2.44 22.57 1.61 14.94 1.59 17.02 1.70 43.76

cars 0.21 31.0 0.07 31.0 0.05 25.60 0.05 30.0

cmc 3.08 148.6 2.46 129.0 2.36 166.3 2.04 9.87

glass 2.40 14.0 2.40 14.0 1.64 20.70 1.69 33.1

page − blocks 0.19 41.09 0.17 36.57 0.17 34.57 0.24 4.33

pima 1.64 28.19 0.93 11.82 0.93 15.61 0.91 8.92

wine 1.08 5.0 1.08 5.0 0.88 5.10 0.78 6.40

vehicle 1.96 70.88 1.53 57.21 1.53 68.98 1.54 16.69

average 1.39 37.49 1.12 30.58 1.02 37.03 1.0 17.55

As it could be observed in Table 2, for 5 out of 11 datasets, misclassification
costs of the classifiers generated by the proposed method are lower than costs
of the competitors. It is an indicative achievement while taking into account the
fact that it was compared with so many renowned and efficient counterparts.
On the other hand it is worth mentioning that there is only one dataset - page
blocks - on which GDT-MC is slightly worse than all remaining algorithms. But
it was verified that tuning the parameter α leads to the real improvement: 0.11
(α = 0.00005) which gives GDT-MC the best score.

Finally, it was confirmed one more time that global induction generally results
in less complex decision structures than obtained by top-down inducers. Only
for bupa dataset the resulting decision tree was overgrown.
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It should be mentioned that the global induction requires more processing time
compared to traditional top-down algorithms. Nevertheless, the learning time
required by GDT-MC is acceptable. For instance the system needs 2 minutes
and 20 second (on average) of CPU time on a PC workstation (PIV 3GHz, 1GB
RAM) to generate classifier for the largest dataset (page blocks - 5473 examples,
10 features and 5 classes).

4 Conclusions

In the paper, a new method of univariate decision tree induction for misclas-
sification cost minimization is presented. The proposed approach consists in
developing specialized evolutionary algorithm which globally searches for opti-
mal decision tree. Results of the experimental validation show that our system
is able to generate competitive classifiers both in terms of the misclassification
cost and the decision tree size. It should be also noted that by tuning the α
parameter which corresponds to the importance of the complexity term in the
fitness function, even better results for the given dataset can be obtained.

Furthermore, many possibilities for improvement still exist (e.g. better fitness
function, new genetic operators, ...). One direction of current research is an
extension of the cost model by incorporating costs of features (tests). It can be
done mainly by modifying the fitness function.

The proposed approach is not the fastest one now, but hopefully it is well-
known that evolutionary algorithms are well-suited for parallel architecture. We
plan to speed up our system by re-implementing it in the distributed environment.
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Abstract. In a paper [1] presented to BICS 2006, a basic methodology for 
microprocessor design automation using DNA sequences was proposed. A 
refined methodology with new schemes for traversal, encoding, recombination, 
and processor evaluation are proposed in this paper. Moreover concepts such as 
mutation, graphical decoding and environment simulation are introduced and a 
new technique for creating DNA based algorithms used in the mutation process 
is also presented. The proposed methodology is then generalized to extend its 
application to other domains. This paper presents a conceptual framework 
whose implementation aspects are still under investigation. 

1   Introduction  

Conventional microprocessor design automation involves optimization at various 
phases to minimize gate count, power, chip area and to maximize performance. 
Many tools are available to automate these processes. Evolutionary algorithms are 
applied towards these optimization processes. This is due to the fact that evolution is 
an optimization process by which the phenotype of a population gets optimized over 
successive generations. However, the functional level architectural design is not a 
part of the automation. Rather the architecture is created by a team of architects 
using their prior experience of designing various microprocessors. The fact that 
evolution has produced complex organisms such as humans stands testimony to its 
success as an optimization process. Natural evolution involves DNA based 
processes. But modeling this natural evolution at the DNA level with realistic 
encoding and recombination processes has not been attempted to automate 
microprocessor design [2]. In fact, microprocessors, which are less complex than 
humans, can be evolved naturally without human intervention if their characteristics 
(phenotype) can be mapped onto the DNA domain through a biologically realistic 
encoding process. Then automating microprocessor design process would reduce to 
combining different microprocessor DNAs to produce an offspring and simulating 
their working environment thereby incorporating random variation and selection 
which form the two major steps in natural evolution. This paper proposes such a 
DNA based approach for automating microprocessor design (for both general 
purpose as well as ASIC) which involves automation at all levels from the functional 
level to the layout level. 
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2   The Methodology 

Fig. 1 shows the proposed 
methodology. Specifications of 
the desired processor (User 
Specifications) are obtained 
from the user. The user can 
mention the power and 
performance ratings required 
from the processor and also its 
functionalities. A typical spec 
could be: 32 bit ALU based 
General Purpose processor rated 
at 3 Gigaflops at 80 Watts. An 
example of an ASIC spec could 
be: 32 bit processor with high 
fault tolerance, for image 
processing applications 
performing at 2 Gigaflops at 20 
Watts. A Database of Existing 
Processors is built up 
beforehand. If an appropriate 
match is found, then that design 
is given to the user. Else, 
processors having similar 
characteristics are chosen and 
their Parameter Trees are built.  

 

‘Characteristics’ of a processor refer to those parameters which completely and 
uniquely describe a processor. These parameters, such as clock speed, netlist density, 
threshold voltage, on chip memory etc., play a vital role in the design and working of 
the processor. The DNA sequences of the processors are then obtained using a 
specific, nature inspired Encoding scheme. Recombinations between various 
sequences are driven by certain heuristics. Certain components of a processor like 
Carry Save Adder, Baugh-Wooley Multiplier etc are pre-encoded and stored in the 
Gene Pool. These components can then be added to the offspring processor based on 
the user specifications. Moreover, processors evolved in previous iterations are also 
stored in the gene pool. Mutation or Post Processing Stage I involves the extraction 
of the overall netlist of the processor. Graphical Decoding is done to fix the layout 
level map of the processor and incorporates Embryogenesis. Next, the processor is 
evaluated using a Processor Simulator that runs a Benchmarking Suite on it. Minor 
deviations from the user specifications are corrected in Environment Simulation or 
Post Processing Stage II. Here, environment refers to a set of applications that are to 
be run on the processor. Finally, after the processor is tested and evaluated, the 
goodness of each heuristic used in its creation is updated. If a satisfactory processor is 
found, then the gene pool is also updated with that processor. The following sections 
elaborate on these processes. 

Fig. 1. The Proposed Methodology 



 DNA Based Evolutionary Approach for Microprocessor Design Automation 13 

3   Tree Creation and Traversal 

The first step in the methodology involves mapping the characteristics of a processor 
onto a Directed Acyclic Graph (parameter tree) where each node represents a 
characteristic and the edge weight between two nodes quantifies the dependency 
between the nodes. 

 
Fig. 2 shows a part of the 
parameter tree of a cache 
structure. According to this tree, 
the power consumed by the cache 
depends on 4 parameters. Of 
these, No. Of Levels has 2 
children. This is a direct 
consequence of the fact that the 
values of the parameter Level 1 
Size and Level 2 Size is not 0. 
The edges in the figure have 
weights Wa, Wb … Wf. 
 
 
 

These weights signify the level of dependence between two nodes: higher the 
weight, higher the dependence. For example, Cache Power is most affected by 
Voltage. Hence Wb will be greater than Wa, Wc and Wd. These weights play a vital 
role while traversing the tree.  

To build the parameter tree, various characteristics that define a processor must be 
obtained. Then various relationships among these characteristics must be studied. 
This can be done by collecting a large number of processor specifications and 
observing the trend among various parameters. For example, if most of the processors 
show that increasing the cache levels increases the power consumption tremendously, 
a high edge weight can be associated between these two parameters. A simple data 
mining algorithm can automate this process.  

The Node Function of a particular node is a mathematical relation connecting the 
Node Data of the node to the Node Data of its parents and children.  Fig. 3 shows a 
simple functional dependence. The parameter MNIPC (Maximum Number of 
Instruction Per Clock-cycle) is dependent on 3 of its parents: the No. of Cores, the 
NDP (Number of Data Paths) per core and the Number of Processors. MNIPC is just 
the direct product of these values. The node function is very important because it 
defines the actual mathematical relations between nodes. Thus node values can be 
fixed up and validated during recombination. For example, if the user specifies a 
MNIPC of 6, then we can fix the No. of Cores, No. of Processors and NDP as any 
combination of 1, 2, 3 (1x2x3=6). This could be one of the heuristics during 
recombination. 

 

Fig. 2. Example: Part of a Cache Parameter Tree 
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Fig. 4. Traversal Example 

Fig. 3. The Node Function 

Fixing these functions can be quite 
difficult as complete knowledge of 
processor architecture is required to 
manually find the functions. But it is 
possible to automate this process of finding 
the node function using supervised 
learning algorithms. For this, large number 
of processors must be analyzed and their 
trees must be created. 

 
 

 

By applying this process to non connected nodes, inferences can be drawn about 
the way they interact indirectly. For example, instruction size and type of full adder 
used in the ALU don’t have any obvious relationship. But if hidden relations do exist 
between them, then they could be found out using this method. The node function can 
be stored in standard formats like post-fix notations with variables as pointers to other 
nodes. The node function is mostly architecture independent. But, sometimes, certain 
architectures may change the function to an extent. For example, the inclusion of 
Hyper-threading may change the equation governing Level 1 Cache Size.  

A Depth First Traversal (DFT) is performed on the parameter tree to build a linear 
sequence of nodes such that related nodes are placed as close to each other as 
possible. In natural DNA sequences, related genes are placed close to each other. 
Since DFT visits a node that is most strongly related to the node being processed, it 
provides a list where related nodes are placed together. By specifying directions on 
the edges, the DFT is restricted in exploring only the children of the node being 
processed. When a node has multiple parents and has a stronger connection to one of 
its unexplored parents than any of its children (like node G in Fig. 4), it would be 
obviously better to place that parent node next to the node being processed. 

 
To facilitate this, the Adjacency Matrix 

of the parameter tree is symmetrized. This 
allows the DFT to move to any node 
connected to the node being processed. This 
technique is called Bi-Directional Depth 
First Traversal (BDFT).  Finally, a Depth 
Limited Traversal would ensure that a 
single branch does not monopolize the 
optimal placement condition. 

 
 
 

 

Thus the path taken by the DFT algorithm on this graph is A  C  G  D  H 
 K  J  B  F  I  E while path taken by BDFT is  A  C  G  F  B 
 D  H  K  J  E  I. To estimate the placement in the list, a metric known 

as Placement Factor is computed. The placement factor gives a measure of how well 
a node is placed in the list with respect to its distance from related nodes. Obviously, 
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a uniform placement factor for all nodes is desirable. This would mean that every 
node is equally well placed in the list. 

The equation of placement factor of Node i is given by: 

Placement Factor (Node i) = ∑ (Wij x Dij ) / ∑ (Wij) . (1) 

with summation over j and where Wij is the weight between Node i and Node j and Dij 
is the distance between Node i and Node j in the list. 

Smaller values of the placement factor indicate that the placement of that particular 
node is good. Initially the average placement factor is computed. Then all nodes 
having values greater than the average are arranged so as to reduce their placement 
factor value. This arrangement is done one node at a time starting from the worst 
placed node. When the placement factor of that node is reduced below the average, 
the placement factors for all nodes are recomputed and the entire process repeated. To 
avoid oscillations, a history of changes is kept. Any recurring pattern is identified and 
the responsible nodes are blacklisted. Thus the overall effectiveness of placement of 
the nodes in the list is improved.  

4   Encoding 

The process of creation of the actual DNA strands is carried out in the encoding 
phase. A DNA sequence that totally describes a processor on decoding is bound to be 
complicated. Such complicated sequences will be difficult to work with during 
recombinations unless they are well formed and ordered. Thus a good encoding 
scheme must be biologically realistic, yet well ordered. By placing related nodes near 
each other, we allow Localization of Reactions wherein related characteristics are 
changed simultaneously. This bio inspired node placement scheme provides a good 
platform to build simple recombination rules. The encoding process transforms 
information to a base 4 domain. The base 4 system allows us to define nature inspired 
recombination rules. Moreover, if characteristics of a species can be related to each 
parameter of the processor, then the DNA strands defining those traits can be used. 
By using this trait based encoding and natural DNA recombination rules, evolution 
can be completely realistic.  

The entire DNA strand for a particular processor is split into 2 parts. The Active 
Component participates in the recombination. This component represents the 
architectural details as well as the Instruction Set details. It is created in the encoding 
stage and expanded in the recombination stage i.e., the basic architectural details such 
as 32 bit instruction length is added to the DNA string in the encoding stage while 
finer aspects such as the usage of a Carry Save Adder (CSA) is added to the string 
during recombination stage. The Passive Component is formed in the mutation stage. 
It consists of the Finite State Machine (FSM) description, the Netlist and basic 
Placement details of the processor. The netlist defines the connectivity across various 
components of an electronic design while placement is the process of assigning exact 
locations to various components in the chip’s core area. The active components of 
various processors react with each other during recombination while the passive 
components are formed during mutation. They do not take part actively during 
recombination. But, the FSM details of the two processors are inherited by the 
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Fig. 5. Table of Delimiters 

Fig. 6. Number Format 

offspring based on its instruction set. These inherited FSMs are then used as 
guidelines to form the actual FSM of the offspring. 

Variable Length Delimiter Based Encoding (VLDBE) system is used for 
encoding. A delimiter is a special sequence which serves as a flag that represents the 
beginning of a node, a field, a number, a character, a symbol or any other data entity.  
The delimiter is set as ATCG** where * is a wild card that can be substituted by any 
of the symbols. Each substitution signifies a different delimiter. In particular, AA 
signifies No Delimiter. This is very important to identify a data sequence which 
contains a substring ‘ATCG’. For example if a data contains the string 
GAGCTATCGCGA, then this sequence would be transformed and encoded as 
GAGCTATCGAACGA. The ‘AA’ string signifies that the ATCG sequence was a 
data element rather than a part of a delimiter sequence. The ‘AA’ string is ignored 
when the sequence is decoded. Each symbol in a DNA sequence is known as a Dit, 
which is an acronym for a DNA digit. Fig. 5 lists various delimiters and their 
associated sequences. 
 

As an example, a 
straight forward 
encoding scheme for 
number is discussed 
here. This encoding 
scheme for numbers 
involves a straight 
forward conversion to 
base 4 system. 
 
 

The mapping of A, T, C and G is A  0 T 1 C 2 G 3. The numbers 
themselves are represented in the format shown in Fig. 6. The first field, the Number 
Delimiter is used to identify the sequence as a number bearing entity. 
 

The next field is the Exponent 
Position Marker (EPM) which a 2 
dit field. It shows where the 
Mantissa field ends and where the 
Exponent begins. The first dit of the 
mantissa decides its sign. If the first 
dit is A, then the mantissa is positive 
while if the first dit is G then the 
mantissa is negative. 

 
If the dit is T or C, then the string has no meaning. Similarly, the first dit of the 

exponent decides its sign. The mantissa can have a maximum size of 16 (EPM = 
GG).The exponent on the other hand can be of any size. It ends when the next 
delimiter is encountered. Thus numbers of any magnitude can be represented with a 
precision of up to16 decimal places. 
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5   The Gene Pools 

There are two different gene pools: the Processor Gene Pool (PGP) and the Heuristic 
Gene Pool (HGP). The processor gene pool stores the complete design of various 
processors as well as several different functional units while the heuristic gene pool 
stores various heuristics used in the recombination and their respective effectiveness 
value. Architectural details, instruction set and FSM design of a microprocessor are 
stored as DNA sequences in the PGP. The processor strings are stored in an indexed 
array format for ease of retrieval.  Each processor has an associated Potency Factor. 
The potency factor is a measure of a processor’s capability in producing an offspring 
with a specific characteristic (metrics). This is not a simple numerical value, rather it 
is a vector. The vector (of n metrics) stores the potency of the processor to produce 
various types of processors. The n metrics are decided by the user based on his 
opinion of a processor’s goodness. For example, a user might want to use power and 
performance as two important metrics while another user may use chip area, which 
ultimately decides cost of a processor, as an important metric.  

Apart from this, various components of a processor such as different types of 
adders, multipliers, cache structures, micro control units etc. are stored in the gene 
pool. These are pre-encoded by the user i.e., the exact modular structure of these units 
and other details are stored as DNA sequences by manually forming these strings 
before starting the methodology. The details that are mentioned include dependency 
of the module with other components, modular placement and routing details, power 
and performance characteristics etc.  These components can be chosen from the pool 
based on user specification. New modules can be added to the gene pool in the 
specific format as and when they are created. The heuristic gene pool on the other 
hand stores the various heuristics employed during recombination along with their 
Degree of Belief. The degree of belief is the amount of trust the methodology has on 
that particular heuristic. The heuristics are of two categories: Recombination 
heuristics and Mutation heuristics. The recombination heuristics are operations that 
can be done on the two reacting sequences during recombination. These may be 
natural operations such as splicing or arithmetic and Boolean operations. Mutation 
heuristics are algorithms to optimize the given architecture and also to generate the 
netlist along with the FSM.  

6   Recombination 

The microprocessor DNA sequences are combined to form an offspring. The 
recombination algorithm relies on the principle of Localization of Reaction according 
to which the probability of a node participating in recombination is determined by its 
proximity to a reacting node. In simpler terms, nodes react in bunches. This nature 
inspired scheme makes sense as adjacent nodes are strongly related. To achieve this, a 
function known as Spread of Recombination (SoR) is defined. The SoR can be any 
strictly decreasing function. It gives the Probability of Recombination of each node 
based its distance from the currently reacting node.  

DNA strings can combine in many ways. In this methodology, two types of 
combinations are discussed. The Dit-Wise Recombination involves two strings 
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reacting dit by dit. Moreover, heuristics mentioned in the next section are applied to a 
bunch of adjacent dits. There is no sense of demarcation of nodes, fields etc. This 
technique is biologically realistic and very random. The biggest advantage of this 
method is the evolution of radical offspring. On the other hand this technique may 
produce large number of invalid strings before providing the required architecture. 

The Node Recombination involves 2 strings which react node by node. The nodes 
can be identified using their delimiters. Nodes adjacent to the node currently 
undergoing recombination also react (with a probability). Two distinct types of field 
recombinations are possible. Homogeneous Recombination takes places between 2 
similar nodes. Since these nodes represent the same characteristic of the processor, 
only the values of these nodes are affected. Heterogeneous Recombination takes 
place between 2 dissimilar nodes. Since the nodes do not represent the same 
characteristic of the processor, the recombination between them results in either the 
loss of information of a node or the formation of a new node. In the former case, the 
node that is lost is reformed afterwards in the mutation stage and in the latter case  
the newly created node is stored as a special sequence. During the decoding phase, the 
user is informed about this new node. The user can then either discard this new node 
and revert back to the 2 nodes which combined to create them or incorporate this new 
node in the design of the machine.  

Thus, in this manner, yet to be discovered architectural features can be evolved. 
For example, suppose 2 cache-less processors react with each other and the Latch 
Size node of the first processor combines with the Main Memory Size node of the 
second processor, the resultant node can be interpreted as a node bearing the 
information about size of the cache. Thus the concept called cache is evolved from 
processors which did not posses them in the first place. Thus the methodology can 
discover new architectural paradigms through simple combinations of existing 
concepts. The heterogeneous recombinations occur with a slightly smaller probability 
when compared to homogeneous recombinations. Moreover, even in the event of 
heterogeneous recombination, the probability of discarding a node and reforming it at 
a later stage is higher than the probability of formation of a new node. The former 
probability is termed as RFactor1 and the latter is termed as RFactor2.These 
parameters can be modified by the user. By default, these are set to 0.33 and 0.66. 
RFactor1 x (1 - RFactor2) gives the overall probability of a new node evolving. By 
default this value is 0.15, which means that 3 in every 20 combinations will result in a 
new node. Nodes formed after recombinations are immediately validated. For 
example, the Number of Cache Levels can only be a natural numbers. 

7   Heuristics Update Strategies 

The basic heuristics involved during recombination vary from natural splicing to 
Boolean and binary operations. These are stored in the Heuristic Gene Pool (HGP) 
along with their associated Degree of Belief (DoB). The heuristics are selected as per 
their degree of belief; higher the DoB, greater is the probability for that heuristic 
being used for recombination.  

 
 



 DNA Based Evolutionary Approach for Microprocessor Design Automation 19 

Fig. 7. Heuristic Life Cycle 

Initially, all DoB are set 
to a default value of 0.66. 
The DoBs are updated once 
every H design cycles.  
Fig. 7 shows the heuristic 
life cycle. The basic 
heuristics are created 
beforehand. Also, user 
defined heuristics can be 
added to the HGP. Apart 
from these, Automatic 
Heuristic Creation in the 
Learning Cycle adds new 
heuristics to the HGP. 

The learning cycle slightly modifies a heuristics present in the HGP and uses that 
for recombination. Over several iterations, various modifications of the heuristics are 
evaluated.  If a modification yields better results consistently, then this new heuristic 
is added to the HGP. It is to be noted that the original heuristic is not modified; its 
modified version is added the HGP.  In the normal cycle, each heuristic involved to 
evolve that offspring is noted. Once the Processor Evaluation is complete in the 
Environment Simulation stage, the responsible heuristics are collected in a set. Thus 
each iteration yields a specific set.  

The Heuristic Update Rate (H) is a parameter which decides the number of 
iterations before which the heuristics are updated. The DoB for each heuristic is 
obtained.  The DoB value of a set is a global DoB value assigned to all elements of 
the set. All DoB values are relative. The most successful processor’s set gets a DoB  
of 1. The other sets get a relative DoB value. Next, the intersection of H sets (Sinter) is 
taken and the DoB values of each heuristic present in Sinter is computed by averaging 
the DoB values of each set in which they were originally present. At this stage various 
heuristics have relative DoBs ranging from 0 to 1. Next, each relative DoB is reduced 
by 0.5 making their range from -0.5 to 0.5. Finally, these Reduced DoBs are 
normalized by dividing it by the Normalizing Factor (N) which is by default set to 
10. These normalized DoB values are then added to the DoB values of the respective 
heuristics in the HGP. Normalization is done to ensure that the DoB values do not 
oscillate wildly. 

8   Creating DNA Mutation Algorithms 

Mutation in this methodology refers to the formation of DNA strings that represent 
the netlist and FSM information. Once the architectural details of a processor are 
formed, the required functional units are fetched from the PGP. Once all the 
functional units are assembled, their interconnections are determined and a logical 
connectivity matrix is formed. Netlist generation and initial placement is carried out 
in the DNA domain. For this effect DNA based algorithms need to be devised. 
Conventional CAD algorithms for placement and routing can not be directly applied 
without decoding the processor string. Instead, if the DNA counter parts of these 
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algorithms are devised, then these processes can be carried out in the DNA domain 
itself. Apart from perfectly suiting a DNA computational model, aspects of 
developmental biology can be incorporated in the interconnect development during 
the decoding phase. The following section describes a novel methodology for creating 
such DNA algorithms from conventional algorithms. Fig. 8 illustrates this 
methodology. 

 

Fig. 8. Technique for Creating DNA Based Algorithms 

The problem parameters at each of each step of a Conventional Algorithm is tracked 
and converted into a DNA string using an Encoder. Thus, for every step, a set of 
DNA sequences are obtained. A Machine Learning Algorithm draws inferences from 
the changes in the problem parameters after each step and creates a corresponding 
DNA action step. These action steps constitute the DNA algorithm. Several examples 
are given to the system to enable it to learn. 

9   Decoding, Optimization and Environment Simulation 

The offspring DNA obtained after the mutation process contains information about 
the connectivity of the modules, the netlist and the FSM of the offspring processor. 
Though the netlist is generated during the mutation phase, its placement is not 
optimized completely. This phase involves decoding the offspring DNA sequence to 
the conventional domain and optimizing the placement of the modules and the netlist. 

The offspring DNA sequence is read till a delimiter is encountered. The sequence 
between two node delimiters is interpreted as a node and is added to the parameter 
tree. The sequence inside the node is further decoded with the help of the delimiters to 
obtain its dependencies. In this manner the parameter tree is constructed. When an 
unknown node is encountered (if the node name does not match with a stored list of 
node names), the node is stored separately for further investigation. The details of the 
connectivity of the modules are also extracted from the offspring DNA sequence. The 
main advantage of evolution is that it is need based. The environment of a species 
plays a major role in the selection process and also may cause mutation of the DNA to 
make the species better suited to their environment. In the context of microprocessor 
design automation, environment simulation involves simulating the working 
environment of the microprocessor. The working environment of a processor is 
defined as the set of applications that are to be run on it. A generalized benchmark, 
for both ASIC as well as General Purpose Processor, is under development. 

The algorithms that are to be executed on the processor must be converted to the 
processor’s instruction set. A Generic Compiler that takes in the processor’s 
instruction set as an input and translates the Benchmarking Algorithms in terms of 
the processor’s instructions is designed for this purpose. Based on the processor’s 
architecture, the delay and the power consumed by each instruction are computed. 
Processor Simulator simulates the working of the processor by simulating the 
execution time and the power consumed by each instruction. The benchmark 
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Fig. 9. The Correlation Graph 

algorithms are virtually executed on the processor. Based on certain pre-defined 
heuristics, the processor characteristics are slightly varied to suit the algorithm’s need. 
A simple example would be increasing the cache size if the algorithm involves large 
number of repeating instructions. 

10   Simulations and Results 

To test the methodology, a simple simulation was carried out. For this purpose 38 
characteristics of 3 Intel processors (8085, Pentium, Pentium 4) were collected. Then 
their respective parameter trees were built and their DNA sequences were created 
using the VLDBE system. Then 8085 and Pentium 4 were recombined using the node 
recombination heuristics. The offsprings produced were validated. The parameter tree 
of valid offsprings were then correlated with the parameter tree of Pentium. The best 
correlation obtained every 5 trails was plotted. The maximum correlation was found 
to 0.97 (37 out of 38 parameters had the same value).  These results are shown in Fig. 
9. The simulation showed that some of the offspring of 8085 and Pentium 4 was 
similar to the Pentium processor. 

 
The significance of this result is 

that it proves that it is possible to 
evolve the architectural design of a 
microprocessor using the 
methodology. 
 
 

11   Generalization to Other Domains 

Based on the microprocessor design methodology, a general scheme to use DNA 
based evolution for solving design automation problems is evolved. In The Problem 
Domain, the problem’s data is represented as such. For example, consider the design 
automation of an aircraft. The various parameters of an aircraft can be represented by 
the tree structure. These would include wingspan, no. of tail rudders, service ceiling, 
wing loading etc. Relationships between these parameters are found and suitable node 
functions are created. Arbitrary/ Existing Solution Creation would involve creating 
the tree for existing aircrafts. The data structure can then be encoded into DNA 
sequences in a biologically realistic way. After Encoding, the solutions are now 
present in the DNA Domain where they undergo biologically realistic recombination 
and mutation. These reactions can be stochastic in nature guided by a few domain 
specific heuristics. For example the output of the homogenous combination of 2 wing 
structures will depend on the type of fuselage. Mutation heuristics can be learnt and 
these, along with recombination heuristics, can be refined using heuristic update 
strategies. DNA based Post-Processing is carried out to rectify minor flaws in what is 
otherwise a good solution. For example, if a cargo aircraft is evolved with 4 wheel 
landing gear, then the number of wheels can be increased based on its capacity. 
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Solution evaluation involves environment (physical) simulations. The metrics for 
aircraft design evaluation could be Rate of Climb, Thrust to Weight Ratio etc. Post 
processing might employ conventional optimization techniques like simulated 
annealing, game theory, genetic algorithms etc. For example, simulated annealing can 
be employed to optimize the wing area. Good solutions are selectively added the 
Gene Pool. These genes are used during the recombination phase. Moreover, the 
heuristics employed to obtain the current solution is also found out. The values for the 
goodness of the heuristics are then updated in the Heuristic Gene Pool. Over several 
iterations, the gene pool is enriched. Both the heuristics used as well as the quality of 
solutions obtained is improved. After many such iterations, the final desired solution 
can be obtained. 

12   Conclusion 

This paper presented a novel methodology for naturally evolving microprocessors as 
per user specifications. This is only the beginning of a new vista in design 
automation. The encoding process can be made more biologically realistic using trait 
mapping techniques or amino acid based encoding schemes. Control logic synthesis 
can incorporated as a part of the DNA domain design automation process. Once the 
DNA based design automation for microprocessor stabilizes, the turn-around time 
would reduce drastically. Further, this methodology can be extended to other domains 
such as aircraft and automobile design. 
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Abstract. Anewevolutionary-progressivemethod forMultiple Sequence
Alignment problem is proposed. The method efficiently combines flexibil-
ity of evolutionary approach with speed and accuracy of progressive tech-
nique.The results show that the hybridmethod is an interesting alternative
for purely genetic or purely progressive approaches.

1 Introduction

Multiple sequence alignment (MSA) is one of the most important tasks in com-
putational biology. The problem is NP-Hard [1] and consequently high compu-
tational complexity and memory requirements make it hard to be approached
by the exact, dynamic programming methods (e.g. [2]). In practice dynamic
programming methods could be accepted as an effective tool only for pairwise
sequence alignment (PSA). In the true MSA case (i.e. for n � 2, where n denotes
the number of sequences to be aligned) their computational load is prohibitive
and instead alternative approaches are usually exploited at the cost, however, of
loosing the guarantee of finding the optimal solution.

The main alternative to dynamic programming methods is progressive method
[3,4], which relies on a series of pairwise alignments in order to build up a final
alignment. Closely related sequences are aligned first and subsequently more dis-
tant ones. Progressive methods differ in the way the pairwise sequence distance
matrix is calculated which has immediate impact on the order according to which
sequences are added to the partial solution maintained by the method. In the
most renown progressive approach - Clustal W [3] (and its various refinements
e.g. [5]) the alignment order is determined by the phylogenetic tree, which de-
fines evolutionary distance between sequences. Despite the greedy nature (which
can be partly alleviated [6]) the method, due to its high speed and reasonable
accuracy, remains one of the most popular tools for solving MSA problem.

In this paper, following [7], we present a hybrid evolutionary-progressive (E–P)
method for simultaneous aligning of several amino acid sequences. Due to the
space limit several introductory notions concerning MSA as well as foundations
of genetic algorithms (GA) / evolutionary programming (EP) are omitted in the
paper. For examples of GA/EP-based approaches to MSA please refer e.g. to
[8,9,10,11].
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2 Evolutionary-Progressive Method

In the straightforward EP-based approach to MSA each individual in a popula-
tion represents an alignment. Despite its simplicity, such representation suffers
from a very large search space and consequently dramatically increases the exe-
cution time. Alternative idea is to apply EP to obtain initial, partial alignment
in the restricted search space and subsequently use another method to achieve
the final solution.

One of the promising examples of such hybrid approach was presented by
Zhang and Wong in [7]. In the first step evolutionary algorithm is used to find
the first approximation of the final alignment (called pre-alignment) and then the
aligned columns are fixed. In the next step the elements between the pre-aligned
columns are aligned by a greedy algorithm using pairwise alignment. The method
looks promising, but since several relevant implementation details are missing in
[7] it is not possible to exactly follow the idea. In particular the question about
how to build the initial population in the pre-alignment space (which is crucial
for the quality of obtained result) is not addressed. Another question that can
be raised concerns the usefulness of genetic operators proposed in [7]. Our claim
is that mutation operator of the form presented in [7] is inefficient. Additionally
some refinements are proposed to the definition of a crossover operator. Finally,
in the second phase of the algorithm we propose to use the progressive method.

In the next two subsections our modified hybrid method is presented in more
detail followed by experimental results (Section 3) and conclusions (Section 4).

2.1 The Evolutionary Stage

A definition of pre-alignment uses the notions of identical column and columns
block. Column of alignment is called identical if its elements (symbols in each
row) are all the same. Identical columns form a block if they are neighbors
in alignment. An example presented below shows three sequences, all possible
identical columns that can be defined and possible formed blocks. Numbers in
columns are indices of respective sequences.

MAAFCP
MACFMCP
MACMFCP

1 1 1 1 2 3 4 5 5 5 5 6
1 1 5 5 2 2 4 3 3 6 6 7
1 4 1 4 2 2 5 3 6 3 6 7

1 2 5 6
1 2 6 7
1 2 6 7

Pre–alignment is defined as a series of identical column blocks which fulfils the
following conditions:

– in each row, each number (index) can appear only once,
– in each row numbers are in ascending order.

Each single column is treated as a block of length one. The above conditions
guarantee that the final alignment can be build on the basis of pre-alignment.

In our approach, similarly to Zhang and Wong method, an individual in evolu-
tionary algorithm represents a pre-alignment as defined above. The search space
is restricted to all correct pre-alignments of a given set of sequences. The first
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problem to solve is generating the first population of individuals (i.e. the initial
set of pre-alignments). Clearly, identification of all possible identical columns is
inefficient, since the complexity of this task equals the complexity of the whole
MSA problem. Moreover, a number of columns found would be too big to gen-
erate efficient population. For generating the first population and for the whole
evolutionary process the notion of harmful block is considered. A formal defin-
ition of a harmful block and measure of its harmfulness can be found in [7]1.
Intuitively a harmful block can be described as the one connecting two too dis-
tant parts of sequences (see Fig. 1). The method of identifying possible identical

Fig. 1. Schematic example of harmful a block

columns should not prefer such harmful columns, but on the other hand it ought
to utilize all symbols in sequences to build a representative subset of identical
columns. At last upper limit of the columns found and execution time should
be restricted to reasonable limits. After several preliminary trials the following
method, depicted in Fig. 2, has been developed. The method is characterized

Fig. 2. The idea of search windows

by two parameters - cmax is the upper limit of the columns that compose the
pre-alignments and w% defines the size of a search window (which equals w% of
the sequence length).

At first, one of the sequences, denoted by S, is chosen (in our implementa-
tion it is always the shortest one) and then the following procedure is repeated
some predefined number of times: a symbol s ∈ S is selected and its relative
position (denoted by rp) with respect to the beginning and the length of S is
determined. Next, for each sequence other than S a window of width w% of the
length of sequence is defined and its midpoint is positioned at rp. Then, in each
1 Please note, that in [7] a harmful block is used for finding the sub-optimal mutation

points during the EP, and not for generating the initial population. Here we suggest
to include its notion already in the process of defining the initial population, and to
skip the mutation operator.
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sequence one symbol within window’s range is randomly selected. If all selected
symbols are pairwise equal to s, then their indices create a new identical column.
Assuming the uniform distribution of identical columns in S, the above proce-
dure is repeated � cmax

|S| � times for each symbol s ∈ S. Symbols in S are selected
in ascending order of their indices. The created identical columns are stored in
order of creation. Finally, the initial population of pre-alignments is generated
using the following procedure (cp is the population size, A is an ordered set of
identical columns found with the above described method and P is a set of pre-
alignments; initially P is empty)

foreach(a in A) {
foreach(p in P) {

if(a could be added at the end of P) {
join a to P;
if possible

join together a and the last block in P;
goto next a;

}
}
create new p using a;
join p to P;

}
sort P by fitness function value;
choose no more than cp best individuals;

The above procedure gathers information about identical columns in restricted
number of individuals. It does not guarantee optimal usage of the columns found,
but if the order of columns is preserved from the search operation, results are
acceptable against execution time. The default values used in our method are
cmax = 4 000, w% = 0.04 (4%) and cp = ma×n

10 , where ma is the mean sequence
length and n is the number of sequences. cp is additionally restricted to the in-
terval < 100, 400 >. Please note, that even if the initial population size is smaller
than cp it will be enlarged to cp by the first selection operation.

Once the first population is generated the evolutionary process begins. The
method uses traditional selection operator - fitness proportionate selection, also
known as roulette-wheel selection with one modification - the best individual is
extra promoted. Originally mutation operator was planned to be implement as
described in [7], but preliminary tests revealed that it was very hard to set the
threshold in order to eliminate harmful blocks automatically. Since the major
function of mutation is to prevent formation of too long alignments it was decided
to control this by appropriate fitness function instead. Consequently mutation
operator is not used in the proposed method. The proposed function is defined
as follows (p is an individual):

fitness(p) = 100 × col(p)
(lenmin(p))α

(1)

where col(p) returns the number of columns in p and lenmin(p) returns the
minimal possible length of alignment constructed on the basis of pre-alignment
represented by individual p. More precisely, let the i-th block of pre-alignment
p be denoted by bi:



MSA with Evolutionary-Progressive Method 27

bi1,1 bi2,1 · · · biwi,1

bi1,2 bi2,2 · · · biwi,2

...
...

. . .
...

bi1,n bi2,n . . . biwi,n

where wi is the width of bi and let m denotes the number of blocks in pre-
alignment p and sr the length of the r-th sequence, then:

lenmin(p) = max
1≤j≤n

(b11,j ) +
m∑

k=2

max
1≤j≤n

(bk1,j − bk−11,j ) + max
1≤j≤n

(sj − bm1,j ) (2)

Exponent α in (1) specifies the significance of length penalty (α = 20 by default).
In the crossover operation a random cutting point for each of the two chosen

pre-alignments is independently selected and subsequently individuals exchange
information. A cutting point never splits existing blocks. Additionally, crossover
operator merges blocks in the offsprings if possible (it is not a costly operation,
since only blocks neighboring the cutting points have to be checked). Another
modification is adding a condition that preserves the best individual in the popu-
lation, i.e. at least one of the children has to be better than both of the parents in
order to allow children replace their parents. Also incorrect pre-alignment never
replaces its parents. Cutting point before the first or after the last block causes
empty pre-alignment, that alignment also never replaces its parents. Crossover
probability was set to 0.4. Evolutionary process can be stopped due to one of
the following reasons:

– fitness of the best individual did not change in the last 40 generations,
– the limit of 1 000 generations was exceeded.

After termination of the evolutionary algorithm the best individual is selected
and the evolutionary method is recurrently called for substrings located between
its blocks. Recursion is stopped if at least one of the following conditions is ful-
filled:

– the maximum distance between neighboring blocks in less than 20,
– the algorithm found no identical columns between neighboring blocks.

In that case the progressive method (Section 2.2) is called for the remaining
substrings.

2.2 The Progressive Stage

In the second stage a typical progressive algorithm is used. In our implementa-
tion it is Clustal W [3] like method. A phylogenetic tree is built with the use of
neighbor-joining and mid-point rooting methods. For pairwise alignment Myers-
Miller method [12] is applied enhanced to use position-specific gap penalties and
other improvements described in [3], in particular:

– sequence weighting,
– gap opening penalty (GOP) modification depending on existing gaps,
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– gap extension penalty (GEP) modification depending on existing gaps,
– GEP modification depending on difference in the lengths of the sequences.

Please note that implementation of the progressive part of the whole MSA
method must also be very efficient because in some cases only a few or even
no identical columns could be found.

3 Results

We compared our implementation of evolutionary-progressive method with ones
of the most popular programs in both evolutionary and progressive category. We
chose SAGA 0.95 [13] and Clustal W 1.83 [14] as representatives of evolutionary
method and progressive one, resp.

Two different measures were used to compare quality of the produced align-
ments. The first one is the sum-of-pairs score (SPS) and the second one is the
column score (CS). Pairwise alignment score for SPS is calculated exactly the
in same way as in dynamic programming method and includes substitution ma-
trix usage and affine gap penalty. Two SPS are calculated for the following two
parameter sets and finally the mean value is calculated:

– Set 1 – GOP: 10, GEP: 0.2, BLOSUM 62 matrix,
– Set 2 – GOP: 10, GEP: 0.2, 250 PAM matrix.

SPS represents the cost of alignment, which means that the lower SPS, the higher
quality of alignment. CS is calculated in a standard way defined in [15]. On the
contrary to SPS for the CS measure the higher its value the better the align-
ment result. Both measures are defined to have nonnegative values. Quality of
alignment produced by any of the programs is measured in relation to quality of
the reference alignment. Thus, values truly used in comparisons are related to
measures value for reference alignments and expressed in percentage.

Test cases were taken from the reference database - BAliBASE, which is the
most widely used multiple alignment benchmark, providing high quality, man-
ually refined, reference alignments. We used version 2.01 of that database and
also the latest release 3.0. Version 3.0 of BAliBASE [16] includes new, more
challenging test cases, representing the real problems encountered when aligning
large sets of complex sequences.

All tests were executed on desktop PC (AMD Athlon XP 2000+ 1.70 GHz with
1.00 GB memory). Clustal W 1.83 and our method were run under the control of
MS Windows Server 2003, SAGA 0.95 worked under Fedora Core 3 Linux. E–P
method was implemented in C# 2.0. Default parameter settings were used in all
programs. SAGA used MSA objective function. A single test case was marked as
successfully completed if execution time was no longer than 1 hour and memory
consumption did not exceed 1 GB. First, test cases from the version 2.01 were
taken. The results are presented in Table 1, where it is shown that only SAGA did
not complete successfully all test cases. In almost 10% of test cases at least one of
test limits was exceeded. Also, it can be seen that our E–P method is a little faster
than Clustal W and significantly faster than its evolutionary competitor SAGA.
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Table 1. Results obtained for BAliBASE ver. 2.01 test cases

the average
SPS

the average
CS

summary
execution time

the length
of alignment

successfully
completed
test cases

SAGA 101.9 77.1 51503 94.6 90.8

Clustal W 101.2 89.7 90 96.6 100

E–P 105.5 92.7 38 102.0 100

The SPS values comparison shows that SAGA and Clustal W obtained very
similar results. The cost of alignments produced by E–P method was a bit higher.
As follows from comparison of the CS values the E–P method obtained topmost
result in this category. Again the scores of SAGA and Clustal W are comparable.

Based on the above results it was decided to use test cases from the newer
version of the database only with programs which successfully completed all
tests from version 2.01. The results obtained for BAliBASE 3.0 are presented in
Table 2 (all tests were successfully completed). The general conclusion from

Table 2. Results obtained for BAliBASE ver. 3.0 test cases

the average
SPS

the average
CS

summary
execution time

the length
of alignment

Clustal W 103.6 64.9 2902 94.3

E–P 104.6 74.2 1492 97.3

E–P (w% = 0.08) 104.0 95.0 902 98.9

E–P (w% = 0.12) 102.6 105.6 825 101.2

E–P (w% = 0.16) 101.8 119.8 795 103.1

E–P (w% = 0.20) 100.5 123.1 768 104.8

E–P (w% = 0.24) 99.6 126.5 757 107.7

E–P (w% = 0.28) 98.7 134.2 777 108.7

Table 2 is that E–P method is comparable in both time and quality with
Clustal W. Actually, by adjusting the window’s width w% in the evolution-
ary process one can easily establish the balance between the quality measures
(SPS, CS) and the execution time or alignment’s length. For example E–P ex-
cels Clustal W in the SPS category for w% ≥ 0.12. Also for all tested window’s
lengths the proposed method outperforms its competitor in the CS measure and
the execution time. On the other hand, regardless the choice of w% the length
of alignment output by E–P method exceeds the one yielded by Clustal W.

4 Conclusions

The efficient MSA method can be build using evolutionary techniques, but the
representation of individuals and definition of the search space have to be suit-
ably mated. Traditional way of representation is impractical. The evolutionary-
progressive method described in this paper is a compromise between flexibility
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of evolutionary approach and advantages of progressive method, which are speed
and quality. The new concept of search space definition makes evolutionary part
of the algorithm easier to implement and faster. Progressive part is used for
subtasks with reduced problem dimension. Combination of these two ideas cre-
ates the method which is an interesting alternative for progressive methods and
which is competitive to purely evolutionary approaches.
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Abstract. In many situations a robust design could be expensive and decision-
makers need to evaluate a design that is not robust, that is, a design with a prob-
ability of satisfying the design specifications (or yield) less than 100 %. In this 
paper we propose a procedure for centring a design that maximises the yield, 
given predefined component tolerances. The hybrid approach is based on the 
use of Evolutionary Algorithms, Interval Arithmetic and procedures to estimate 
the yield percentage. The effectiveness of the method is tested on a literature 
case. We compare the special evolutionary strategy (1+1) with a genetic algo-
rithm and deterministic, statistical and interval-based procedures for yield  
estimation. 

1   Introduction 

The robustness of a design is defined as the maximum size of the deviation from this 
design that can be tolerated whereby the product still meets all requirements [1]. As 
an example, consider the temperature controller circuit [2] shown in Fig. 1. The per-
formance function is: 
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We can evaluate, for example, what are the maximum possible deviations for each 
component in the Fig. 1 consistent with 2.90 kΩ ≤ onTR − ≤ 3.10 kΩ? That is, the 
goal is to assess the input parameters uncertainty, which maintains the output per-
formance function within specified bounds. 

Suppose the area shown in Fig. 2a is the feasible zone F for a generic design with 
variables R and Ra. Within the feasible zone any pair (R, Ra) satisfies the specifica-
tions. However an exact description of the Feasible Solution Set (FSS) (Fig. 2a) is in 
general not simple and approximate descriptions are often looked for, e.g.: the Maxi-
mum Outer Box (Fig. 2b) or the Minimum Internal Box (MIB) (Figs. 2c and 2d).  

Several authors have studied the robust design problems under the perspective of 
Evolutionary Strategies [3]-[7]. In particular, in [7] the authors propose an indirect 
approach to obtain the MIB based on the optimisation of the MIB volume instead of a 
direct method based on mapping from the output into the input space. The approach 
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uses an Evolution Strategy technique to maximise the volume, while Interval Arith-
metic is used as a checking technique that guarantees the complete feasibility of the 
design, i.e. a 100 % yield.  

E2

R1

Rt

R3

R2

R4

Relay

E1

 

Fig. 1. Temperature Controller Circuit [2] 

However there are situations in which design constraints (for example, predefined 
component tolerance) do not allow obtaining the MIB. So the decision-maker (DM) 
needs to propose a design with a probability of satisfying the design specifications (or 
yield) less than 100 %. 

In this paper we propose a design approach that maximises the probability of satis-
fying the design specifications, given component tolerances predefined by a DM. The 
proposed approach combines an evolutionary approach during the optimisation phase, 
along with different procedures to estimate the yield percentage. 

Section 2 contains an overview of Interval Arithmetic. The Evolutionary approach 
is presented in Sect. 3. Section 4 presents the general approach used to solve the yield 
 

a)  Feasible Solution Set b)  Minimum Volume Outer Box

c)  Maximum volume Inner Box
     (fixed centre) 

d) Maximum volume Inner Box
     (variable centre)

R

R a  

p 

 

Fig. 2. Feasible Solution Set and approximate descriptions [3] 
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maximisation design. A real design evaluation is considered in Sect. 5, and finally 
Sect. 6 presents the conclusions. 

2   Interval Arithmetic 

Interval "numbers" are an ordered pair of real numbers representing the lower and up-
per bound of the parameter range. If we have two interval numbers T=[a,b] and 
W=[c,d] with a ≤ b and c ≤ d then T+W=[a+c,b+d]. Similar expressions can be de-
fined for the other basic operations and for transcendental functions [8]-[10]. 

Only some of the algebraic laws valid for real numbers remain valid for intervals. 
An important property referred to as sub-distributivity does hold. It is given mathe-
matically by the set inclusion relationship: T(W+Z)⊆TW+TZ. The failure of the dis-
tributive law often causes overestimation. In general when a variable occurs more 
than once in an interval computation it is treated as a different variable in each occur-
rence. This effect is called the "dependency problem".  

Consider a real valued function f of real variables t1, t2,..,tn and an interval func-

tion F of interval variables T1,T2,..,Tn. The interval function F is said to be an inter-

val extension of f, if F(t1, t2,..,tn)=f(t1, t2,..., tn). The range of a function f of real 

variables over an interval can be calculated from the interval extension F, changing ti 

by Ti. Note that: f(t1, t2,.., tn) ⊆ F(T1, T2,..., Tn),  for all ti ∈Ti (i=1,.., n) [8].  

3   Evolutionary Algorithms 

Among the many heuristics from different fields that can be used to efficiently solve 
an optimisation problem we are interested in those that rely on analogies to natural 
evolution, the so-called Evolution Algorithms (EA). Genetic Algorithms (GA) and 
Evolution Strategies (ES) are among the most widely used EA and both have been 
successfully applied to a wide range of problems [11]-[13].  

In this paper we compare the evolution strategy called (1+1) and GA. The choice of 
(1+1) has to do basically with the simplicity, noise tolerance and small population size 
it manages. The latter condition is of paramount importance for the problem at hand, 
since it reduces the number of quality evaluations of the solutions. As explained later, 
the quality of a solution requires the estimation of a time-consuming fitness function.  

In the (1+1) technique each individual is represented by a couple (X, σ), where X 
is a vector that identifies a point in the search space and σ is a vector of perturbations 
used to evolve the matching component of X. In the next iteration an offspring is gen-
erated by the expression: Xt+1 = Xt + N(0, σ2). In this way the solution at iteration t is 
perturbed and a new descendent for the following iteration t+1 is obtained. The off-
spring generated will be accepted as the new member of the population, only if it has 
a better quality that its parent. To improve the convergence rate of the (1+1), the “1/5 
success rule” proposed in [13] is used.  

On the other hand, GA are based on an initial populations of chromosomes (pro-
posed solutions), with n individuals, that are combined to generate hopefully a new 
better population (i.e., with an increased mean fitness). This sequence continues until 
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a termination criterion is reached. As for the natural selection, the new population is 
generated by repeatedly performing the four fundamental operations of reproduction, 
crossover, replacement and mutation, all based on random sampling. [13]. 

For the GA implemented in this paper, we used: 
A real-valued encoding, with constant population; Random initialisation; Linear 
Renormalisation; Standard Roulette wheel selection rule; Reproduction based on 
mutation and crossover operators; Linear interpolation for crossover and mutation 
probabilities; Uniform crossover; Partial substitution without duplicates. 
Parameters: Population size =100, Crossover probability = 0.9, Mutation probabil-
ity = 0.1, Gap = 5 %, Generations=100. 

4   Centring Design Methodology 

Given the tolerance of each component, the optimal centring design to be considered 
consists on selecting the co-ordinates of centre of the hyper-box that maximises the 
yield that is the probability of satisfying the design specifications. 

Let B be the box defined by: B:= {x, C ∈ ℜn⏐xi ∈[Ci-Δxi, Ci+Δxi]}, where C is the 
unknown centre co-ordinates vector, and  Δxi is the known tolerance for each variable. 

The designer formulates target values on the quality of the product by setting lower 
and upper bounds on the property yi(x). We define the following slack function gi(x): 

gi(x)=UBi - yi(x) when there is an upper bound requirement or 
gi(x)= yi(x)-LBi when there is an lower  bound requirement 

Let F be the set defined as F={x ∈ℜn⏐ gi(x) ≥ 0,i=1,....,m}. The idea is to obtain C 
in such a way that the hyper-volume of F∩B is maximal, that is: 

C

BF ofvolumen hypermax ∩−   

s.t. C ∈ F∩B 
Since the optimization problem is solved using an EA, a proper fitness function must 
be defined. In our case, the quality of a solution is measured by the objective function, 
i.e. the hyper-volume of F∩B. 

4.1   General Approach 

Given r constraint functions gi(x1,x2,...,xn), lower and upper bounds (LBi, UBi), an ini-

tial random centroid C0={C1o,C2o,..,Cn0}, tolerance Δx and a stopping criterion, such 
as the maximum number of iterations, the proposed approach consist of: 

While the stopping criterion is not satisfied, do: 
  { 

Using EA, generate a new centroid C={C1,C2,..,Cn}  

Using tolerance Δx, generate the hyper-box C ± Δx. 
Evaluate all constraint functions on the hyper-box, as interval functions.  
If the generated hyper-box does not belong to the feasible region then  
       Evaluate the yield as the (estimated) hyper-volume of F∩B and 

        Fitness (C)= hyper-volume of F∩B 
 Else Fitness (C)= 100 % and STOP 

} 
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Fig. 3. The proposed approach: Box location is evolved by EA from position 1 to position n 

Note that two situations can arise if the hyper-box is not included into the feasible 
region F: 1) The interval evaluation has produced an overestimation but the hyper-box 
is really contained in the feasible region, or 2) The generated hyper-box is really not 
contained in the feasible region. 

In the first case the evaluation of the hyper-volume will produce a yield of 100 %. 
In the second case, the evaluation will produce the estimated yield for C. 

Figure 3 shows the proposed approach for the case of two variables. The region in-

side the star is the feasible region F. Given Δx = [1,1.25]t, box 1 is randomly located. 
Note that part of the area of this box is outside F. Next, using EA, box 2 (dashed line) 
is located. Again part of the box area is outside the feasible region. Finally the loca-
tion of the box is evolved until box n (dotted line) is reached: its area is almost all in-
side the feasible region.  

4.2   Hyper-Volume Evaluation  

To calculate the hyper-volume three approaches can be used. The first one is based on 
a deterministic exploration [14]: A regular grid is laid over the tolerance region and 
the evaluation of constraints is performed at each point. The second approach is based 
on a statistical exploration based on a Monte Carlo procedure [14]: a point in B is 
generated and it is evaluated if it also belongs to F. The sample can be selected using 
a random or an importance procedure [15]. The process is repeated N times. 

The third approach is based on guaranteed numerical methods for approximating 
sets, such as the one suggested by Jaulin et al [16]. In this approach the region F∩B is 
approximated by covering it with simple non-overlapping subsets of ℜn, such as hy-
per-boxes. The procedure suggested in [16], called SIVIA (Set Inverter Via Interval 
Analysis), is able to determine two sets Xmin and Xmax such that Xmin ⊂ F∩B ⊂Xmax. 

The two covering subsets Xmin and Xmax are obtained by starting with an initial 
large hyperbox Xo, which is then iteratively reduced until the pair Xmin and Xmax de-
fines a neighbourhood of F∩B with a diameter that can be chosen arbitrarily small.  

Even if SIVIA is a guaranteed method, a trade-off could be required since interval 
procedures are more time consuming than deterministic or statistical procedures.  

Figure 4 shows how the three procedures are used to evaluate the area of the region 
inside the star. For case a) to c), the area is estimated as the percentage of total points 
inside the region. For case d), the area is estimated as the sum of the area of each of 
the rectangles. 
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a b

c d  

Fig. 4. Area Approximation: a) Deterministic Approach, b) Random sampling, c) Importance 
sampling, d) SIVIA  

5   Computational Example  

The temperature controller circuit [2] shown in Figure 1 is analysed. Assume that the 
design requires that RT-on belongs to the interval [2.9, 3.1] kΩ. Table 1 shows the final 
interval result for the MIB approach obtained in [7]. These variable ranges produce an 
output RT-on belonging to: [2.90573, 3.09999] kΩ. However note that the average tol-
erance of each physical element for this robust design is less than 1 %, which means 
that the design could be expensive. For this reason, we investigate possible alternative 
designs with different predefined component tolerance.  

In the first yield evaluation, the starting tolerances shown in Table 1 are selected, 
with 3000 samples for the hyper-volume evaluation. The average yield is only 7.95 
%, which indicates that the use of such tolerances is not recommended. Although the 
evaluations of the hyper-volume are almost equal, the computational time for the 
SIVIA procedure is near 4000 % higher than the other approaches. 

To analyse how the component tolerance influences the design quality, five  
centring cases were analysed with tolerances of 1, 2.5, 5, 10 and 25 %, for each com-
ponent. Figure 5 shows the behaviour of the average yield for the selected tolerances 
(after 20 trials). Even if both EA produce similar results, the (1+1) strategy shows an 
 

Table 1. MIB Robust design for the temperature controller circuit [7] 

VARIABLE Starting 
Interval 

Mid 
point 

Starting  
Tolerance (%)

Final 
 Interval 

Final  
Tolerance (%) 

R1 (kΩ) [0.5,1.5] 1.0 50.00 [0.994,1.005] 0.500 
R2 (kΩ) [6,12] 9 33.33 [8.956,9.044]  0.489 
R3 (kΩ) [2,6] 4 50.00 [3.973,4.027]  0.675 
R4 (kΩ) [16,48] 32 50.00 [31.428,32.572] 1.788 
E1 (Volt) [7.5,9.5] 8.5 11.76 [8.427,8.573] 0.859 
E2 (Volt) [4.5,7.5] 6.0 25.00 [5.946,6.0535] 0.892 
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Fig. 5. Average yield as a function of component tolerance 
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Fig. 6. ES(1+1) and GA convergence for case 1: Component tolerance of 1% 

initial faster convergence than GA. For example figure 6 shows the behaviour for case 
1 (1 % tolerance). Similar results were observed for the other cases. 

From Fig. 5, for example, if the DM is looking for a design with a yield greater that 
80 %, then component tolerances must be less than 2.5 %. 

6   Conclusions  

This paper proposes a promising approach based on the use of Evolutionary Algo-
rithms, Interval Arithmetic and procedures to estimate the yield design as an alterna-
tive technique to obtain optimal centring design. The approach is direct and intuitive. 

The excellent results obtained suggest that the proposed approach has great poten-
tial in dealing with difficult system design problems. 

The use of a guaranteed method based on Interval Arithmetic such as SIVIA needs 
more time than deterministic or statistical approaches. However, even if a determinis-
tic or statistical sampling procedure could not guarantee the results, the differences in 
evaluating the hyper-volume are small. Both ES (1+1) and GA produces similar re-
sults, but ES (1+1) shows an initial faster convergence than GA. 

The problem can be easily extended to consider the situation where DM defines a 
minimum yield, say 95 %. In this case, the problem can be solved looking for C and 
tolerances Δx, which produces at least, the required yield. 



38 L. Pierluissi and C.M. Rocco S. 

References 

1. E.M. Hendrix, C.J. Mecking and Th.H.B. Hendriks: “Finding Robust Solutions for Product 
Design Problems”, European Journal of Operational Research”, 92, 1996, pp. 28-36 

2. S. Hadjihassan, E. Walter, L. Pronzato, Quality Improvement via Optimisation of Toler-
ance Intervals During the Design Stage, in Applications of Interval Computations, Ed. 
Kearfott R.B., Kreinovich V., Kluwer Publishers, Dordrecht, 1996 

3. M. Li et al., A multi-objective genetic algorithm for robust design optimization, GECCO 
Proceedings, pp.771-778, 2005 

4. Y. Jin, J. Branke, Evolutionary Optimization in Uncertain Environments - A Survey,  
IEEE Transactions on Evo. Comp. vol.9, no. 3, June 2005  

5. Tsutsui S., Ghosh A., “Genetic Algorithms with a Robust Solution Searching Scheme”, 
IEEE Transaction on Evolutionary Computation, Vol. 1, No. 3, pp. 201-208, 1997 

6. D.H. Loughlin, S. Ranjithan, The Neighborhood constraint method: A Genetic Algorithm-
Based Multiobjective Optimization Technique. In Thomas Bäck, editor, Proceedings of 
the Seventh International Conference on Genetic Algorithms, pages 666–673, San Mateo, 
California, July 1997, Michigan State University, Morgan Kaufmann Publishers. 

7. C. Rocco, A Hybrid Approach based on Cellular Evolutionary Strategies and Interval 
Arithmetic to perform Robust Designs", 2nd European Workshop on Evolutionary Algo-
rithms in Stochastic and Dynamic Environments, Lausanne, Switzerland, Lecture Notes in 
Computer Science LNCS 3449, pp. 623-628, Springer-Verlag 

8. R. Moore: Methods and Applications of Interval Analysis, SIAM Studies in Applied 
Mathematics, Philadelphia, 1979 

9. A. Neumaier: Interval Methods for Systems of Equations, Cambridge Univ. Press, 1990 
10. E. Hansen: "Global Optimization Using Interval Analysis", Marcel Dekker Inc., New 

York, 1992 
11. H.P Schwefel, Th. Back: “Evolution Strategies I: Variants and their computational imple-

mentation”, in J. Periaux and G. Winter (Eds.), Genetic Algorithm in Engineering and 
Computer Science, John Wiley & Sons, 1995. 

12. F. Kursawe: “Towards Self-Adapting Evolution Strategies”, Proc. Of the Tenth Interna-
tional Conference on Multiple Criteria Decision Making, G Tzeng and P. Yu (Eds.), Taipei 
1992 

13. Z. Michalewicz, Genetic Algorithms + Structures Dates = Evolution Programs, Second 
Edition, Springer-Verlag, 1994. 

14. R. Spence, R. Singh S.:Tolerance Design of Electronic Circuits, Addison-Wesley Pub. 
Co., Wokingham, England, 1988 

15. Saltelli, K. Chang, M. Scott.: Sensitivity Analysis,  John Wiley & Sons, Chichester, 2000  
16. L. Jaulin, M. Kieffer, O. Didrit, E. Walter: Applied Interval Analysis, Springer, London 

2001 



A New Self-adaptative Crossover Operator for

Real-Coded Evolutionary Algorithms

Manuel E. Gegúndez1, Pablo Palacios2, and José L. Álvarez2
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Abstract. In this paper we propose a new self-adaptative crossover op-
erator for real coded evolutionary algorithms. This operator has the ca-
pacity to simulate other real-coded crossover operators dynamically and,
therefore, it has the capacity to achieve exploration and exploitation
dynamically during the evolutionary process according to the best indi-
viduals. In other words, the proposed crossover operator may handle the
generational diversity of the population in such a way that it may either
generate additional population diversity from the current one, allowing
exploration to take effect, or use the diversity previously generated to
exploit the better solutions.

In order to test the performance of this crossover, we have used a set
of test functions and have made a comparative study of the proposed
crossover against other classic crossover operators. The analysis of the
results allows us to affirm that the proposed operator has a very suitable
behavior; although, it should be noted that it offers a better behavior
applied to complex search spaces than simple ones.

1 Introduction

Evolutionary Algorithms are general purpose search algorithms which are in-
spired by natural evolution to evolve solutions to complex problems [1][2]. These
algorithms maintain a population of individuals (coded candidate solutions to
the concrete problem) which are manipulated by three operators: selection,
crossover and mutation. In brief, the selection process drives the searching to-
wards the regions of the best individuals, the crossover operator combines indi-
viduals to generate better offspring and the mutation operator randomly alters
part of one individual increasing the structural diversity of the population.

Although in the origins of the Evolutionary Algorithms, the individuals were
coded using the binary alphabet, over the past few years, however, there have
been a surge of studies related to real-parameter genetic algorithms due to an in-
creasing interest in solving real-world optimization problems, for example chemo-
metric problems [3], neural networks [4], aerospace design [5], biotechnology [6],

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 39–48, 2007.
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control [7], economic [8], signal processing [9], microware [10], industrial elec-
tronics [11], industrial engineering [12], tomography [13], water resources man-
agement [14] and constrained parameter optimization problems [15].

This new representation requires adaptation changes in the traditional genetic
operators. In this sense, the crossover operator has required bigger adaptation
due to the necessity of procedures for the recombination of real values. However,
in our opinion, the current real-coded crossover operators only work appropri-
ately for some domains, since they are not adapted to the domain of the problem.

Fig. 1. Geometric representation of the effect of the crossover operator

Generally, the crossover operator combines two individuals (parents) to gener-
ate two new individuals (offspring). Thus, let be two individuals a = (a1, a2, . . .
, an) and b = (b1, b2, . . . , bn), the offspring y = (y1, y2, . . . , yn) are generated such
that yi = f(ai, bi). Geometrically, the effect of the crossover operator is shown
in the Fig. 1, where the interval [ai, bi] is the exploitation area and the intervals
[ãi, ai] and [bi, b̃i] are the exploration areas.

In this work, we present a new self-adaptative real-coded crossover operator
which has the capacity of adaptation to the domain of the problem to solve. In
summary, this operator can establish the areas of exploitation and exploration
in an appropriate way to the problem for a better adaptation of the individuals.

The rest of the paper is organized as follows. In Sect. 2, we present the more
relevant related works. In Sect. 3, we enunciate the principal features of the new
crossover operator. In Sect. 4, we describe a genetic algorithm which use the
proposed crossover operator. In Sect. 5, we compare the performance of new
operator against other crossover operators by means of several fitness functions.
Finally, Sect. 6 states the conclusions and the future research lines related to
this work.

2 Related Works

Among numerous studies on development of different recombination operators,
Uniform crossover (UX), Blend crossover (BLX) and Simulated Binary crossover
(SBX) are commonly used. A number of other recombination operators, such
as Arithmetic crossover, Geometric crossover, extended crossover are similar to
BLX operator. A detailed study of many such operators can be found else-
where [16].
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In this section, we define principal real-coded crossover operator that appear in
the literature about Evolutionary Algorithm. Thus, let A and B be the two indi-
viduals selected to crossover, with A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn),
the offsprings are generated according to the next crossover operator:

Uniform crossover (UX). [19] Two offspring X and Y are generated, so that
the genes of the parents (ai and bi) are transferred randomly for each off-
spring. Equation 1 shows this process.

xi =
{

ai if c = 1
bi if c = 0 yi =

{
bi if c = 1
ai if c = 0 (1)

Arithmetical crossover (AX). [15] Two offspring X and Y are generated,
whose genes xi and yi are obtained from the genes of the parents (ai and bi)
by equation 2, where λ is a constant.

xi = λ · ai + (1 − λ) · bi

yi = λ · bi + (1 − λ) · ai
(2)

item[Geometric crossover (GX).] [19] Two offspring X and Y are generated,
whose genes xi and yi are obtained from the genes of the parents (ai and bi)
by equation 3, where ω is defined in the interval [0, 1].

xi = ai
ω · bi

(1−ω)

yi = bi
ω · ai

(1−ω) (3)

Blend crossover (BLX-α). [20] One offspring X is generated, whose genes
xi are obtained randomly from the genes of the parents (ai and bi) from
the interval [Min − I · α, Max + I · α], where Min = min(ai, bi), Max =
max(ai, bi), I = Max − Min and α is defined in the interval [0, 1].

Simulated Binary crossover (SBX-α). [21] Two offspring X and Y are gen-
erated, whose genes xi and yi are obtained by equation 4, where α is a value
within of the interval [0, ∞).

xi = 1
2 · [(1 − α) · ai + (1 + α) · bi]

yi = 1
2 · [(1 + α) · ai + (1 − α) · bi]

(4)

3 GPAX Crossover Operator

In this section, we deal with the main aspects of the new crossover operator,
called GPAX , describing the general mechanism and their principal features.

Let us assume that A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) are two
individuals that have been selected to apply the crossover operator to them and
that i ∈ {1, . . . , n} is the position of the real gene xi in the offspring X =
(x1, x2, . . . , xn) to be determined by the GPAX crossover operator.

Thus, the GPAX parabolic adaptative crossover function is based on parabolic
probability density function which is defined starting from two parent solutions
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ai and bi, with ai < bi, in the interval [ai − bi−ai

2 , bi + bi−ai

2 ] (denoted [ãi, b̃i]).
This density function depends on two real parameters α and β, both defined in
the interval (0, 1). Equation 5 shows the GPAX parabolic adaptative crossover
function. The probability density function fai,bi(x, α, β) generates a cumulative
distribution function Fai,bi(x, α, β) which also depends of α and β parameters, as
is shown in equation 6. The cumulative distribution function is used to determine
randomly the genes of the offspring by means of the function F−1

ai,bi
(y, α, β).

fai,bi(x, α, β) : [ãi, b̃i] × (0, 1) × (0, 1) → R (5)

Fai,bi(x, α, β) : [ãi, b̃i] × (0, 1) × (0, 1) → [0, 1] (6)

xi = GPAXα,β(ai, bi) = F−1
ai,bi

(ν, α, β) (7)

The procedure of creating an offspring X from two parent A and B is described
as follows. Given the α and β parameters, for each children solution, a random
number ν is uniformly chosen in the interval [0, 1]. Thereafter, from the inverse of
the specified probability distribution function Fai,bi(x, α, β), the gen xi is found
so that the area under the probability density function from ãi to xi is equal to
the chosen random number ν (i.e. ν = Fai,bi(xi, α, β)). So xi is calculated by
means of the equation 7, where ν is a value random which is uniformly selected
in the interval [0, 1].

Table 1. Some equivalences between GPAX and other crossover operators according
to the values of alpha and beta parameters

α β Crossover Operators

≈ 0.0 ≈ 0.67 ≈ BLX
≈ 0.9 ≈ 0.40 ≈ SBX
≈ 1.0 ≈ 1.00 ≈ UX

Thus, GPAX crossover operator is able to produce exploration or exploitation
(at different degrees) depending on the values of the parameters α (the explo-
ration parameter) and β (the exploitation parameter). The exploration parame-
ter α determines the external zones in the [ãi, b̃i] interval, subintervals [ãi, ai]
and [bi, b̃i], modeling the probability density function in both subintervals. The
exploitation parameter β determines the intermediate zone central in the [ãi, b̃i],
subinterval [ai, bi], the probability density function in this subinterval.

Initially, as suggest blend crossover BLX–α (see [20]), GPAX randomly picks
a solution in the range [ãi, b̃i]. Generally, it should be noted that GPAX proce-
dure has the capacity to simulate the real-coded crossover operators according to
the α and β parameters. Table 1 shows some equivalences between GPAX and
others crossover operators. Fig. 2 and 3 show some examples of the probability
density functions and the cumulative distribution functions, f−1,1(x, α, β) and
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Fig. 2. Examples of the Probability Density Functions according to the values of alpha
and beta parameters for F(x, 0.9, 0.4), F(x, 0.01, 0.67) and F(x, 0.99, 0.9) (dashdot,
dash and solid, respectively)
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Fig. 3. Examples of the Cumulative Distribution Functions according to the values of
alpha and beta parameters for F(x, 0.9, 0.4), F(x, 0.01, 0.67) and F(x, 0.99, 0.9) (dash-
dot, dash and solid, respectively)

F−1,1(x, α, β), where α and β have different values. These figures show, graph-
ically, as GPAX simulate other crossover operator according to the α and β
parameters.

Although GPAX has the capacity to simulate some real-coded crossover op-
erators; however, it should be noted that the principal feature of GPAX is the
possibility to exchange from a model to another by changing the exploitation
and exploration parameters during the evolutionary process. In other words,
GPAX may handle the generational diversity of the population in such a way
that it may either generate additional diversity population from the current one,
therefore exploration takes effect, or use the diversity previously generated to
exploit the better solutions.

This self-adaptive feature of GPAX allows to develop a new dynamic model
of crossover which adapts to the current problem according to the evolution and
the population in each generation.

4 Evolutionary Algorithm

Besides the recombination operator, researchers have also realized the impor-
tance of a different genetic algorithm model. In this section, we explain the
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Evolutionary Algorithm
1. t ← 0
2. Initialize Population Pt

3. Initialize α and β parameters
4. Evaluate Initial Population Pt

5. While (numGenerations < MAXGENERATIONS)
6. t ← t + 1
7. Select Pt from Pt−1

8. Crossover Pt using GPAX
9. Mutate Pt

10. Evaluate Pt

11. α=α′ and β=β′, where α′ and β′ are the parameters of the best individual
12. End
End

Fig. 4. Evolutionary Algorithm

properties of the developed Evolutionary Algorithm in order to study the behav-
ior of the GPAX crossover operator. In our study we have taken a traditional
Evolutionary Algorithm model which, obviously, incorporates a mechanism of
adaptation of the parameters α and β of the new crossover operator from one
generation to the next.

Concretely, besides the traditional parameters, two new parameters (α and
β) are used. Next, the crossover procedure is detailed:

1. From the current population, select two parents A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn).

2. Generate two offspring X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) from
the chosen 2 parents using a GPAX crossover
(a) Calculate xi = GPAXα,β(ai, bi) = F−1

ai,bi
(ν, α, β), where ν is a random

value which is uniformly selected in the interval [0, 1]
(b) Produce α‘ = α ± 0.1 and β‘ = β ± 0.1
(c) Calculate yi = GPAXα‘,β‘(ai, bi) = F−1

ai,bi
(ν‘, α‘, β‘), where ν‘ is a ran-

dom value which is uniformly selected in the interval [0, 1]

Besides, once the entire population have been evaluated the α and β para-
meters of the best individual will be the new α and β parameters for the next
generation.

In addition to this new procedure, the evolutionary process applies an elitist
strategy, the roulette-wheel selection operator and the non-uniform mutation
operator. Fig. 4 offers the outline of the traditional Evolutionary Algorithm.

5 Experiments

The objective of this section is to make a comparison between GPAX crossover
and other crossover operators. We have chosen some classic crossovers operators,
like Uniform crossover (UX), BLX–α and SBX–α with different α values.
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Fig. 5. Test Fitness Functions

This comparative study shows the performance the proposed crossover against
other operators using a set of functions. We have considered five frequently
used test functions [22]: Sphere model (fSph) [23], Generalized Rosenbrock’s
function (fRos) [23], Schwefel’s Problem (fSch) [24], Generalized Rastringin’s
function (fRas) [25], Griewangk’s function (fGri) ([26], where the dimension of
the search space (n) is 25. Fig. 5 shows their formulation. These functions are:
fSph, a continuous, strictly convex, and unimodal function; fRos, a continuous
and unimodal function, with the optimum located in a steep parabolic valley
with a flat bottom. fSch, a continuous and unimodal function. Its difficulty
concerns the fact that searching along the coordinate axes only gives a poor
rate of convergence, since the gradient of fSch is not oriented along the axes;
fRas, a scalable, continuous, and multimodal function, which is made from fSph

by modulating it with a ∗ cos(ω ∗ xi) and fGri, a continuous and multimodal
function. This function is difficult to optimize because it is non-separable and
the search algorithm has to climb a hill to reach the next valley.

We carried out our experiments using the following parameters: the population
size is 60 individuals, the crossover probability 0.6, the probability of mutation
0.125, elitist selection and the sampling model was roulette-wheel selection oper-
ator. We executed all the algorithms 30 times, each one with 100.000 evaluations.

The results are presented in Tables 2 and 3. For each function, the average
values and the best one are shown. Next, we comment about the results of GPAX
for each functions: for fSph function, GPAX does not show a good behavior, the
average and the best solution are worse than for the other operators.; for fSch

function, it obtains the best average and the best solution; for fRas function, it
obtains the sixth average and the best solution; for fGri function, it obtains the
best average and the third best solution; and for fRos function, it show a good
behavior, it obtains the best average and the best solution.
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Table 2. Results for Sphere model (fSph) and Schwefel’s Problem (fSch)

fSph fSch

Crossover Average Best Average Best

UX 1.06E-08 1.73E-09 7.21E+02 2.64E+02
BLX-0 1.28E-08 2.54E-09 4.00E+01 9.86E+00
BLX-0.3 7.51E-11 1.27E-11 3.37E+01 8.04E+00
BLX-0.5 6.31E-06 6.12E-07 1.36E+03 5.76E+02
SBX-2 1.97E-09 4.38E-10 7.56E+00 7.09E-01
SBX-5 2.76E-10 6.00E-11 9.54E+01 1.14E+01
GPAX 4.00E-02 3.92E-06 7.98E-02 5.90E-10

Table 3. Results for Generalized Rastringin’s function (fRas), Griewangk’s function
(fGri) and Generalized Rosenbrock’s function (fRos)

fRas fGri fRos

Crossover Average Best Average Best Average Best

UX 6.96E-01 9.94E-01 2.22E+02 2.15E-06 5.10E+01 1.60E+00
BLX-0 4.47E+00 9.94E-01 1.55E-02 2.26E-06 2.22E+01 2.05E+01
BLX-0.3 7.86E+00 4.97E+00 1.54E-02 1.10E-08 2.18E+01 1.92E+01
BLX-0.5 8.72E+01 6.08E+01 5.29E-01 5.06E-03 2.61E+01 2.09E+01
SBX-2 6.96E+00 1.36E+01 1.91E-02 3.22E-07 2.99E+01 1.74E+01
SBX-5 7.13E+00 2.98E+00 2.32E+02 8.69E-08 3.90E+01 1.64E+00
GPAX 2.31E+01 2.94E-03 3.53E-03 8.49E-07 1.60E+01 4.00E-02

6 Conclusions

This paper presented a real-coded adaptative crossover operator, called GPAX
(Genetic Parabolic Adaptative crossover operator). The GPAX crossover oper-
ator is able to produce exploration or exploitation (at different degrees) depend-
ing on the values of the parameters α (the exploration parameter) and β (the
exploitation parameter). Although GPAX has the capacity to simulate some
real-coded crossover operators; however, it should be noted that the principal
feature of GPAX is the possibility to switch from one model to another by
changing the exploitation and exploration parameters during the evolutionary
process.

Looking back over the results, we may observe that GPAX shows a good
behavior, except with fSph function. As it is expected, GPAX does not show an
efficient progress on simple fitness functions; however, it works better on com-
plex search spaces, where it achieves the best average and/or the best solution.
Concretely, the best results are obtained for fSch and fRos. These promising
results motivate the deep study about this new adaptative crossover opera-
tor, focusing in the α and β parameters and their tuning in the Evolutionary
Algorithm.
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Abstract. This paper provides two methodologies for forecasting time
series. One of them is based on the Wavelet Analysis and the other one on
the Genetic Programming. Two examples from finance domain are used
to illustrate how given methodologies perform in real-life applications.
Additionally application to specific classes of time series, seasonal, is
discussed.

1 Introduction

For many years numerous attempts have been made to solve a number of complex
problems existing in finance domain. Different computational techniques have
been applied, including Artificial Intelligence (AI) methods and nature inspired
computing (e.g. [2], [3]). This paper will focus on one of these problems, namely
forecasting of Time Series (TS). One of the first attempts to forecasting was made
in Japan in the 14th century [13]. In the 19th century Charles Dow presented
some of his thoughts in a series of publications which constitute a knowledge
called the Dow Theory nowadays [16]. This theory provided a background for
thoroughly explored Technical Analysis.

Wavelet Analysis (WA), which is the first methodology applied in here, ap-
peared in the beginning of the 20th century in the discussion on orthogonal
systems of functions [7]. Alfred Haar introduced a function which modified ver-
sion is considered today as a first basic wavelet function. WA started to develop
rapidly in the nineties of the 20th century. Wavelet-based methods were found
to be useful for solving many problems including: analysis and synthesis of TS
[14] (e.g. for TS denoising [5], [10]), image processing [15] (e.g. compression) and
data mining [11].

Evolutionary Algorithms (EA) [6], [12] have recently become one of the most
popular nature inspired approaches to solving complex real-life optimization
problems (e.g. [4]). EA is a computational methodology used for search and
optimization which is based on principles of Darwinian natural selection and
genetics. In this paper Genetic Programming (GP) will be used. GP is one of
main streams of EA and was proposed by Koza [8]. GP has been successfully
applied in solving a number of problems in various domains.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 49–57, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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This paper is organized as follows. The next section gives a basic view on the
TS forecasting problem. In section 3 two forecasting algorithms based on using
WA and GP are described. It also provides a seasonal TS model applied in the
second experimental case. Section 4 presents and compares results of case studies
obtained with the use of previously presented forecasting algorithms. The last
section concludes this paper.

2 Time Series Forecasting Problem

The idea of forecasting is to assume what will be the state of the phenomenon in
the future based on the knowledge of its “behavior” in the past. If one possesses
good knowledge of this phenomenon he/she may apply various model-based or
rule-based forecasting approaches. However, if one does not, most commonly ex-
trapolation methods are used. Nevertheless, it is often practicable to mix the
model-based and the extrapolation methodologies. Also a number of widely ap-
plied forecasting approaches are based on statistical observations [1].

In this paper an overview of two methodologies from the extrapolation area
and a mixed approach is provided. It is assumed that a phenomenon is described
by a set X of observations X (TS X). The TS forecasting problem is solved in
two steps. In the first step function A is found which approximates the TS X.
In the second step this function is extrapolated to find the subsequent, future
values of the TS X.

3 Methodologies

3.1 Analytical Approach with Wavelet Analysis

About Wavelets. Wavelet Transform (WT) provides a representation of a
TS in a different domain. This domain may be considered as a set of series of
observation points (wavelet coefficients) derived from the original TS-based on
a special single (but scaled and modified) function. Each point in each of these
series may be interpreted as a difference of weighted averages in neighboring
intervals. A very important (although not necessarily always used) feature of
this transform is its inversability, which means that having wavelet coefficients
one may derive original data. As WT splits TS into short and long term trends
and allows to perform a multiresolutional insight into the TS, it is natural to
assume that the results enforced with wavelet analysis may outperform standard
analysis approaches. Most of the wavelet-based methodologies practically applied
utilize an analysis schema presented in Fig. 1.

After initial analysis of the TS it is transformed with WT. Subsequently an
analysis is performed on the resulting wavelet coefficients. Then, optionally,
wavelet coefficients are inversely transformed into the original TS space and
a closing analysis is performed.
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Fig. 1. Schema of the wavelet-based analysis flow

WA-Based Forecasting Algorithm. The essence of wavelet-based forecasting
is that approximation and extrapolation of TS are applied repeatedly (for each
level) in a wavelet space. Inversely transforming wavelet coefficients together
with their forecasts back to the TS space provides a forecast of the original TS.
This is organized by Algorithm 3.1.

Algorithm 3.1. waveletForecast(X, J)

W̃ ← nonorthonormal DWT of X
for each W̃j ⊂ W̃, j ∈ J

do

⎧
⎪⎨

⎪⎩

Ẽj ← extrapolation of W̃j

W̃′
j ← W̃j ∪

{
Ẽj

}

Wj ← an orthonormal (for level j) subset of W̃′
j (containing Ẽj)

X′ ← Inverse DWT from all Wj

E ← X′ − X
return (E)

In order to forecast the wavelet space coefficients, similar methods to those
used in direct TS forecasting have to be applied. Because these methods are
applied many times, it is important that one should be aware of the order of
their computational complexity.

3.2 Evolutionary Approach with Genetic Programming

About Genetic Programming. GP is an attempt to built a general use
system which would build for us computer programs to solve different problems.
GP uses evolutionary, genetic mechanisms to suit the given goal. In case of GP
an individual, a program (Fig. 2), a single result is represented as a tree.

Nodes are selected from a set of available functions and leaves are filled from a
set of given terminals. An initial population in GP consists of a given number of
randomly generated trees. Two individuals are crossed by exchanging subtrees in
randomly selected nodes. Mutation is accomplished by replacing a randomly se-
lected subtree with a new one generated especially for this purpose. For selection
standard Genetic Algorithms’ procedures may be applied.

GP-Based Forecasting Algorithm. Forecasting with GP gets down to find-
ing the formula for approximation function A of the TS X. After finding the
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Fig. 2. Parse tree of a program which calculates a Δ of a quadratic equation

approximation function, TS is forecasted by extrapolation with a found func-
tion. This is enclosed in Algorithm 3.2.

Algorithm 3.2. gpForecast(X)

A ← GP approximation function of X
E ← a value of A in the new time moment u following X
return (E)

A set of GP terminals consists of original TS observation points. Functions’
set may include a variety of functions. Fitness function is formulated as

∑
u

|X(u)

−A(u)|, where X(u) is a value of the original TS in u and A(u) is a value of
approximated TS in u. In the evolutionary process GP needs to find the approx-
imation function A(u) which minimizes the value of the error. This function is
used in the next step of algorithm to extrapolate forecasted value E.

3.3 Seasonal Time Series Model

Let us consider a TS X and suppose that it is split into several M disjunctive
sub TS Xm (m = 1...M) of an equal length L in a specific manner. Let also TS
X be equal to a sum of two TS F and G, where G is responsible for long term
changes in X and F corresponds to short term changes. Usually changes in F
are much faster compared to G, therefore more difficult for proper forecasting.
A special case of F is a situation where F is a seasonal TS.

Definition 1. If for each two sub TS Fm1 and Fm2 every pair of points Fm1
l

Fm2
l , l = 1, ..., L differs less than assumed ε, then with accuracy of ε TS F is

seasonal and has seasons Fm.

Suppose that a subset K of last K time moments of X is not known. After
splitting X into seasons Xm one knows all sub TS Xm, m = 1...M − 1 and TS
XM without last K observations. A forecast of XM on K last time moments is
equivalent to a forecast of X.

By defining H in locations l = 1, ..., L − K as Hm = Xm − XM one gets
Gm − GM , therefore a slowly changing process easier for forecasting. By using
WT one may forecast Hm on k ∈ K points. Now, m-th forecast (XMm) of XM

may be found by XMm = Xm − Hm. Also the final forecast may be calculated
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by Xm
k = 1

M−1�

m=1
wm

M−1∑
m=1

wmXMm

k , k ∈ K, where wm is a weight of m-th season,

equal to e.g.
√

m.
A more detailed description of forecasting seasonal TS with wavelets may be

found in [9]. It is also possible to identify seasonality and its length of a season
with wavelet methodology.

4 Sample Experiments – Case Studies

4.1 Overview

In this section an experiment performed on two case studies (Fig. 3) is written up.
In both cases TS is forecasted using two methodologies, one of them is GP and
the second one is wavelet-based. In the second case study wavelet forecasts are
enforced with information about the presence of seasonality in the original TS.

(a) (b)

Fig. 3. Original TS – (a) supermarket sales and (b) IBM shares

The set of accepted functions for GP is F = {+, −, ∗, /, Exp, Sin, Cos, Log,
Sqrt, Pow}. The set of terminals T consists of the TS historical data and natural
numbers. Fitness function is defined as described in “GP-based forecasting algo-
rithm” section. An initial population of individuals, i.e. parse trees, was created
using minimal and maximal values of tree depth equal to 1 and 6, respectively.
The purpose of the first set of experiments (not presented in here) was to de-
fine initial settings for GP. Finally, GP approximation algorithm was run with
following parameters: a size of population - 1000, number of generations - 800,
probability of crossover - 0.95, and mutation probability was set to 0.05.

For each experiment a series of one step forward forecasts was performed
basing only on historical information. Algorithms were not fed back with results
established in previous step. The experiments were performed according to the
diagram presented in Fig. 4.

For experiments with market shares a total number of experiments was equal
to 110 and in case of sales emax = 23. For each experiment (numbered by
e) a time window of the same length was selected, meaning that for the next
experiment (number e + 1) data was extended by one (younger) observation
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Fig. 4. Diagram describing how experiments were performed

point and truncated by one (the oldest) observation point. Then a forecast was
performed and the result was stored in the data store. When there were no
more experiments scheduled (e ≥ emax) the process left the loop. In the end all
results were evaluated and analyzed according to four indicators of their quality,
namely: standard deviation, maximal error (the biggest of differences between
a real-life values and the corresponding forecasted values), minimal error and
average error.

4.2 Sales

This case considers the TS of sales in a supermarket chain (Fig. 3a). This TS
indicates obvious seasonality, therefore as the second method to describe the
wavelet methodology which takes an advantage of this information have been
chosen.

The results of forecasts using WA are shown in Fig. 5a and results established
with GP in Fig. 5b.

4.3 Market Shares

In this case a TS of prices of IBM’s market shares is forecasted. This is a TS with
no obvious regularities. GP discovers a solution in the form of a LISP expression
which is not presented here due to space limitation. The results of WA forecasts
are shown in Fig. 6a and GP forecasts are shown in Fig. 6b.
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(a) (b)

Fig. 5. Results of forecasts of sales using (a) WA and (b) GP

(a) (b)

Fig. 6. Results of forecasts of shares using (a) WA and (b) GP

4.4 Results

Both methodologies provide good results (Tab. 1) in general view for both case
studies.

In case of sales the GP forecasts provide worse results than wavelet-based
approach, what may be observed in Tab. 1b. WA enforced with seasonal approach
outperforms GP by over an order of magnitude, as it comes to the average error
gauge.

Results of GP forecasts for shares’ prices are better than WA forecasts for all
gauges. One can see that only maximal error is relatively close in both methods.
In all other cases the results of WA forecast quality tests are at least two times
worse than in case of GP forecasts.

Table 1. Quality comparison of (a) market shares forecasts and (b) sales forecasts

(a) (b)

Gauge GP WA GP WA

std. dev. 2,742609834 5,815448996 73758246,89 37675615,83
max. error 0,152457101 0,183306337 0,180935966 0,172322659
min. error 2,85179E-05 0,000310097 0,006018841 0,004556636
avg. error 0,018114803 0,036521327 0,071833853 0,056000513
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5 Conclusions

In this study it has occurred that GP provides better results than the method
based on WA when both applied directly. Nevertheless, WA method has an
advantage in a form of its very low computational complexity. While GP re-
quires time and relatively big amount of computational resources, wavelet-based
methodologies’ calculations are performed almost on-the-fly. In case when WA-
based method, enforced with additional information about seasonality, is applied
it provides better results than GP. Therefore, one may conclude that GP should
be used on TS which are very hard to model, highly irregular, for which it is diffi-
cult to extract any information and when constraints for time and computational
resources are not critical.

Also a natural succeeding step is to use well performing GP within WA-
based forecasting algorithm. Using GP for extrapolating each wavelet level could
improve the final result compared to both typical WA and pure GP approach.
Additionally, there should be no dramatic extension to time of calculations as,
due to the properties of wavelets, calculations of each wavelet level could be
processed separately, on different machines. However, this parallelization does
not reduce the total cost of calculations, it only reduces the time in which those
could be performed. This approach is currently being examined and preliminary
results reveal it as a promising direction for further research.
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Abstract. Evolutionary algorithms have been adequately applied in
solving single and multi-objective optimization problems. In the single-
objective case various studies have shown the usefulness of combining
gradient based classical search principles with evolutionary algorithms.
However there seems to be a dearth of such studies for the multi-objective
case. In this paper, we take two classical search operators and discuss
their use as a local search operator in a state-of-the-art evolutionary al-
gorithm. These operators require gradient information which is obtained
using a stochastic perturbation technique requiring only two function
evaluations. Computational studies on a number of test problems of vary-
ing complexity demonstrate the efficiency of hybrid algorithms in solving
a large class of complex multi-objective optimization problems.

1 Introduction

Multi-objective optimization is a rapidly growing area of research and applica-
tion in modern-day optimization. There exist a plethora of non-classical methods
which follow some natural or physical principles for solving multi-objective op-
timization problems, see for example the book by [4]. On the other hand a large
amount of studies have been devoted to develop classical methods for solving
multi-objective optimization problems.

Evolutionary algorithms use stochastic transition rules using crossover and
mutation search operators to move from one solution to another. In this way
global structure of search space is exploited. Classical methods, on the other
hand, usually use deterministic (usually gradient based) transition rules to move
from one solution to another. Classical methods effectively use local information
thus ensuring fast convergence. This however comes up at the cost of requir-
ing gradient or Hessian information which requires a large number of function
evaluations. Hence one sees that there is a trade-off between fast convergence
and number of function evaluations. Hybrid implementations thus continue to
be developed and tested (see for example [1,8,9,2,3]).

This study is motivated by the an earlier comparative study [14]. In this con-
tribution we take two classical gradient based Pareto front generating methods
and use their search principles as mutation operators in a state-of-the-art multi-
objective evolutionary algorithm to create a powerful hybrid multi-objective
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metaheuristics algorithm. We demonstrate their efficiency in solving real val-
ued problems of varying complexity.

This paper is structured as follows. The next section present an overview
of various classical generating methods and the gradient estimation technique,
while the third section presents the simulation results. Conclusions as well as
extensions which emanated from this study are presented in the end of this
contribution.

2 Classical Search Principles

For the present study we take two classical algorithms and use their search
operators as mutation operators in the elitist non-dominated sorting GA or
NSGA-II developed by [5]. The gradients of objective functions are obtained by
a stochastic method described later in this section. These classical algorithms
and their search operators are described next.

2.1 Schäffler’s Stochastic Method (SSM)

This method [13], is based on the solution of a set of stochastic differential
equations. It method requires the objective functions to be twice continuously-
differentiable. In each iteration, a trace of non-dominated points is constructed
by calculating at each point x a direction (−q(x)) in the decision space which
is a direction of descent for all objective functions (note that we consider m to
be the number of objective functions denoted by fi for all i = 1, 2, · · · , m). The
direction of descent is obtained by solving a quadratic subproblem. Let α̂ be
the minimizer. Then q(x) =

∑m
i=1 α̂i∇fi(x). A set of non-dominated solution is

obtained by perturbing the solution (minimum along the direction of descent)
using a Brownian motion concept. The following stochastic differential equation
(SDE) is employed for this purpose:

dXt = −q(Xt)d(t) + εdBt, X0 = x0, (1)

where ε > 0 and Bt is a n-dimensional Brownian motion. As the first search
operator we use Equation 1 to create a child instead of the mutation operator.
The gradients are obtained using a stochastic perturbation method described
later. We name the hybrid algorithm with new mutation operator as S-NSGA-
II. In all simulations here, to solve the above equation numerically, we employ
the Euler’s method with a step size σ. The approach needs two parameters to
be set properly: (i) the parameter ε which controls the amount of global search
and (ii) the step size σ used in the Euler’s approach which controls the accuracy
of the integration procedure.

2.2 Timmel’s Population Based Method (TPM)

As early as in 1980, [16,17] proposed a population-based stochastic approach for
finding multiple Pareto-optimal solutions of a differentiable multi-objective



60 P.K. Shukla

optimization problem. In this method, first, a feasible solution set (we call it a pop-
ulation) is randomly created. The non-dominated solutions (X0={x0

1,x
0
2, . . . ,x

0
s})

are identified and they serve as the first approximation to the Pareto-optimal
set. Thereafter, from each solution x0

k, a child solution is created in the following
manner:

x1
k = −

M∑

i=1

t1ui∇fi(x0
k), (2)

where ui is the realization of a uniformly distributed random number (between
0 and 1) and t1 is step-length in the first generation. It is a simple exercise to
show that the above formulation ensures that not all functions can be worsened
simultaneously. The variation of the step-length over iterations must be made
carefully to ensure convergence to the efficient frontier. The original study sug-
gested the following strategy for varying the step-length tj with generation j:
tj = C/j (where C is a positive constant). As the second search operator we use
Equation 2 to create a child instead of the mutation operator. As in S-NSGA-
II the gradients are obtained using a stochastic perturbation method described
later. We name the hybrid algorithm with new mutation operator as T-NSGA-II.

2.3 Gradient Estimation: Simultaneous Perturbation Method

In almost all classical algorithms (for both single and multi-objective problems)
the gradient of a function (say in general h) are required. The standard approach
for estimating the gradient is the Finite Difference (FD) method. For variable
(say x) of dimension n this method of gradient estimation requires 2n function
evaluations. This is costly in terms of function evaluations (of the order O(n)).
The Simultaneous Perturbation (SP) method [15] on the other hand requires
only two function evaluation independently of n (computational complexity is
thus O(1)) as follows

gi(x) =
f(x + cΔ) − f(x − cΔ)

2cΔi
,

where the ith component of the gradient is denoted by gi(x), Δ is a n dimensional
vector of random perturbations satisfying certain statistical conditions ([15]). A
simple (and theoretically valid) choice for each component of Δ is to use a
Bernoulli distribution ±1 with probability of 0.5 for each ±1 outcome. The step
size c at each iteration (denoted by ck) is given as ck = c0/(k + 1)γ . Practically
effective (and theoretically valid [15]) values of c0, γ are 0.001 and 1/6 which are
used here.

3 Simulation Results

In this section, we compare the above two hybrid methods with the elitist non-
dominated sorting GA or NSGA-II [5] on a number of test problems. The test
problems are chosen in such a way so as to systematically investigate various
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aspects of an algorithm. For S-NSGA-II the parameters σ = 1.0 along with
ε = 0.1 is used for all the test problems. For T-NSGA-II the parameter C = 10.0
is used (unless otherwise stated). For the NSGA-II, we use a standard real-
parameter SBX and polynomial mutation operator with ηc = 10 and ηm =
10, respectively [4] (unless otherwise stated). For all problems solved, we use a
population of size 100. We set the number of function evaluations as 5000 for
each problems and 15000 for difficult ones.

Convergence and diversity are two distinct goals in multi-objective optimiza-
tion. In order to evaluate convergence we use the Generational Distance (GD)
metric [4]. Diversity of solutions is evaluated using the Spread (denoted by S)
metric [4]. These unary metrices for convergence and diversity are used together
with a binary metric which can detect whether an approximation set is better
than another. We use the multiplicative binary ε indicator discussed by Zit-
zler [18] to assess the performance of the algorithms. Also for statistical eval-
uation we use attaintment surface based statistical metric ([7]) for one hard
problem. We consider two-objective ZDT test problems discussed in [4]. The
test problems are slightly modified so that they become unconstrained multi-
objective optimization problems, as the SSM method is only able to tackle un-
constrained problems in its present form. Table 1 present these test problems.
Also the box constraints are slightly modified so that the functions are twice
continuously differentiable in the entire feasible region (required as per SSM).

Table 1. Test problems

Name Objectives g Domain

ZDT1 f1(x) = x1, f2(x) = g(x)
“
2 −

q
x1

g(x)

”
g(x) = 1 + 9

n−1

Pn

i=2 x2
i [0.01, 1]×

[−1, 1]29

ZDT2 f1(x) = x1, f2(x) = g(x)
“
2 − ( x1

g(x) )
2
”

g(x) = 1 + 9
n−1

Pn

i=2 x2
i [0.01, 1]×

[−1, 1]29

ZDT3 f1(x) = x1, f2(x) =

g(x)
“
2 −

q
x1

g(x) −
x1

g(x) sin(10πx1)
” g(x) = 1 + 9

n−1

Pn

i=2 x2
i [0.01, 1]×

[−1, 1]29

ZDT4 f1(x) = x1, f2(x) = g(x)
“
2 −

q
x1

g(x)

”
g(x) = 1 + 10(n − 1) +Pn

i=2(x
2
i − 10 cos(4πxi))

[0.01, 1]×
[−5, 5]9

ZDT6 f1(x) = 1 − exp(−4x1) sin6(4πx1), f2(x) =

g(x)

„
2 −

“
f1(x)
g(x)

”2
« g(x) = 1 +

9( 1
n−1

Pn

i=2 x2
i )

0.25
[0.01, 1]×
[−1, 1]9

The modified ZDT1 problem has a convex Pareto-optimal front for which so-
lutions correspond to 0.01 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 30. Figure 1
shows the performance of all the algorithms after 5000 function evaluations. Ta-
ble 2 shows the binary ε indicator values of all the algorithms on this problem.
An element (i, j) in this table represents Iε(algorithm j, algorithm i). Given
two outcomes A and B, of different algorithms, the binary ε indicator Iε(A, B)
gives the factor by which an approximation set is worse than another with respect
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to all objectives. If Iε(A, B) ≤ 1 and Iε(B, A) > 1 occurs then we an conclude
that Algorithm A better than Algorithm B. These conditions are quite difficult
to satisfy using binary ε indicator values. We will use the binary ε indicator
values to conclude partial results: we will say that Algorithm A is relatively
better than Algorithm B if Iε(A, B) ≤ 1.05 and Iε(B, A) > 1.05. If Iε(A, B) ≤ 1
and Iε(B, A) > 1 occurs the we say that Algorithm A is definitively better than
Algorithm B. From Table 2 we obtain that with respect to binary ε metric all
the three algorithms are incomparable. However, with respect to diversity S-
NSGA-II performs the best (Table 4) while T-NSGA-II performs best in terms
of convergence (Table 5).
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Fig. 2. Performance of the three algo-
rithms on ZDT2

The modified ZDT2 problem has a non-convex Pareto-optimal front for which
solutions correspond to 0.01 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 30. In the case
of TPM algorithm (using a limited parametric study) we choose C = 4.0 Figure
2 shows the performance of all the algorithms after 5000 function evaluations.
It can be seen both T-NSGA-II and S-NSGA-II find much more non-dominated
solutions close to efficient front than NSGA-II. Although from Table 3 we observe
that NSGA-II is relatively better than other two algorithms, however this happens
since NSGA-II find one solution close to efficient front (while S-NSGA-II and
T-NSGA-II find 38 and 37 solutions respectively). As can be seen from tables 4
and 5 that spread of both S-NSGA-II and T-NSGA-II is better than NSGA-II
while convergence of T-NSGA-II is best. Next we consider ZDT3, this problem

Table 2. Binary ε indicator values
on ZDT1

SSM TPM NSGA

S-NSGA-II 1.0000 1.0124 1.0558

T-NSGA-II 1.0374 1.0600 1.0494

NSGA-II 1.0160 1.0056 1.0000

Table 3. Binary ε indicator values
on ZDT2

SSM TPM NSGA

S-NSGA-II 1.0000 1.0854 1.7517

T-NSGA-II 1.0512 1.0000 1.6139

NSGA-II 1.0353 1.0027 1.0000
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has a convex discontinuous efficient frontier. Figure 3 shows the performance of
all the algorithms after 5000 function evaluations. It can be seen that all the
algorithms find non-dominated solutions close to efficient front in its all the 5
disconnected parts. From Table 6 one infers that S-NSGA-II performs relatively
better than original NSGA-II, while T-NSGA-II and NSGA-II are incomparable.
As can be seen from tables 4 and 5 diversity of T-NSGA-II is the best, while
convergence of S-NSGA-II is best.
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Table 4. Spread metric values. Best values are shown in bold.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

S-NSGA-II 0.4992 0.7299 0.8419 0.8900 0.5084
T-NSGA-II 0.6002 0.8018 0.7914 1.0000 0.3799
NSGA-II 0.7196 1.000 0.7998 1.0817 0.6267

The problem ZDT4 has a total of 100 distinct local efficient fronts in the
objective space. The global Pareto-optimal solutions correspond to 0.01 ≤ x∗1 ≤ 1
and x∗i = 0 for i = 2, 3, . . . , 10. Since ZDT4 is a complex multi-modal problem in
this problem all the algorithms are run till 15000 function evaluations. Figure 4
shows the performance of all the algorithms. It can be seen that only NSGA-II
is able to overcome many local Pareto optimal fronts and also performs best in
terms of convergence (Table 5).

Next we consider another difficult problem, ZDT6. This problem has a non-
convex and non-uniformly spaced Pareto-optimal solutions. The Pareto-optimal
solutions correspond to 0.01 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 10. In case of
NSGA-II we use ηc = 1 and ηm = 1 as these are more efficient for such difficult
problems. Similarly, in the case of T-NSGA-II algorithm we choose c = 0.5 while
in case of S-NSGA-II we use the same parameters. ZDT6 is a hard multi-objective
problems and thus we run the simulations for a total of 15000 generations for
each algorithm. Figure 5 shows the performance of all the algorithms after 15000
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Table 5. Generational distance metric values. Best values are shown in bold.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

S-NSGA-II 0.0521 0.0825 0.0267 4.1118 0.0354

T-NSGA-II 0.0342 0.0407 0.0388 4.5287 0.0214
NSGA-II 0.0584 0.0562 0.0283 0.1673 0.1864

Table 6. Binary ε indicator values
on ZDT3

SSM TPM NSGA

S-NSGA-II 1.0000 1.0454 1.02810

T-NSGA-II 1.0160 1.0000 1.0113

NSGA-II 1.0620 1.0452 1.0000

Table 7. Binary ε indicator values
on ZDT6

SSM TPM NSGA

S-NSGA-II 1.0000 1.0028 1.2412

T-NSGA-II 1.0310 1.0000 1.2797

NSGA-II 1.0000 1.0000 1.0000
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function evaluations. It can be easily seen that both S-NSGA-II and T-NSGA-II
perform better than NSGA-II. Also from Table 8 it can be inferred that perfor-
mance of both S-NSGA-II and T-NSGA-II is definitively better than NSGA-II.
The algorithms S-NSGA-II and T-NSGA-II are also better than NSGA-II in
terms of diversity (Table 4) and convergence (Table 5). In order to address the
issue of stochasticity on this hard problem we perform 21 different runs of all
the algorithms and plot the best, median and worst attainment surface plot.
Figure 6 shows the plots. One observes that even the worst attaintment surfaces
of both S-NSGA-II and T-NSGA-II are much better than that of NSGA-II.

4 Conclusions

On a number of test problems of varying complexity, it has been observed that
using the TPM and SSM as mutation search operators in NSGA-II performs
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better than the standard NSGA-II approach for a wide class of problems. How-
ever, for problems having multi-modal efficient front the above classical search
techniques have not performed well. However this does not mean that they are
not suited for solving multi-modal problems. Take for example, TPM in this the
parameter C is crucial to get to the global efficient front. Once TPM gets stuck
one strategy could be to restart the series by taking some larger value of C. SSM
on the hand has a global search operator built in that and thus better numer-
ical methods of solving the stochastic differential equation should be taken to
see its performance. S-NSGA-II and T-NSGA-II perform substantially well over
the evolutionary method in case of hard problems having a non-uniform density
of solutions in the objective space. On the other hand, on all other problems
considered here, the S-NSGA-II, has performed well in achieving both conver-
gence and diversity of solutions with the same parameter values in all the test
problems.

As an extension to this study one could use classical techniques for box-
constrained [12], nonlinear inequality constrained [11,6], and non-differentiable
[10] problems and try to combine with evolutionary optimization to create pow-
erful hybrid algorithms.
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Abstract. Co-evolutionary techniques for evolutionary algorithms allow for the
application of such algorithms to problems for which it is difficult or even im-
possible to formulate explicit fitness function. These techniques also maintain
population diversity, allows for speciation and help overcoming limited adaptive
capabilities of evolutionary algorithms. In this paper the idea of co-evolutionary
multi-agent system with predator-prey mechanism for multi-objective optimiza-
tion is introduced. In presented system the Pareto frontier is located by the pop-
ulation of agents as a result of co-evolutionary interactions between two species:
predators and prey. Results from runs of presented system against test problem
and comparison to classical multi-objective evolutionary algorithms conclude the
paper.

1 Introduction

Co-evolution is the biological process responsible for speciation, maintaining popu-
lation diversity, introducing arms races and open-ended evolution. In co-evolutionary
algorithms (CoEAs) the fitness of each individual depends not only on the quality of so-
lution to the given problem (like in evolutionary algorithms (EAs)) but also (or solely)
on other individuals’ fitness [7]. This makes such techniques applicable in the cases
where the fitness function formulation is difficult (or even impossible). Co-evolutionary
techniques for EAs are also aimed at improving adaptive capabilities in dynamic envi-
ronments and introducing open-ended evolution and speciation into EAs by maintaining
population diversity. As the result of ongoing research quite many co-evolutionary tech-
niques have been proposed. Generally, each of these techniques belongs to one of two
classes: competitive or cooperative.

Optimization problems in which multiple criteria have to be taken into account
are called multi-objective (or multi-criteria) problems [2,10]. Most real-life decision
processes are such problems—decision maker must deal with multiple criteria (objec-
tives). A solution in the Pareto sense of the multi-objective optimization problem means
determination of all non-dominated (in the sense of weak domination relation [10]) al-
ternatives from the set of all possible (feasible) decision alternatives. The set of all
non-dominated alternatives is sometimes called a Pareto-optimal set. These locally or
globally non-dominated solutions create (in the criteria space) so-called local or global
Pareto frontiers [2].
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In the recent years evolutionary approach to multi-objective problems is the sub-
ject of intensive research. As a result of this research a variety of evolutionary multi-
objective optimization techniques have been proposed. Evolutionary multi-objective
algorithms (EMOAs) can be generally classified as elitist (in which best individuals
can be directly carried over to the next generation) and non-elitist ones [2].

In the case of multi-objective optimization—high quality approximation of Pareto
frontier should fulfill at least three distinguishing features: first of all it should be “lo-
cated” as close to the ideal Pareto frontier as possible, secondly it should include as
many alternatives as possible, and all proposed non-dominated alternatives should be
evenly distributed over the whole ideal Pareto set.

In the case of multi-objective optimization premature loss of population diversity can
result not only in lack of drifting to the ideal Pareto frontier but also in obtaining approx-
imation of Pareto set that is focused around its selected area(s)—what of course is very
undesirable assuming that preference-based multi-objective optimization is not consid-
ered in this place. Additionally, in the case of multi-objective problems with many local
Pareto frontiers (so called multi-modal multi-objective problems defined by Deb in [2])
the loss of population diversity may result in locating only local Pareto frontier instead
of a global one.

The basic idea of evolutionary multi-agent systems (EMAS) is the realization of evo-
lutionary processes within the confines of multi-agent system. EMAS systems have
already been applied successfully to discrete, continuous, combinatorial and non-com-
binatorial multi-objective optimization problems ([8]). It has been also shown that on
the basis of the EMAS further research and more sophisticated approaches, models and
mechanisms can be proposed [9].

The model of co-evolutionary multi-agent system (CoEMAS), as opposed to the basic
evolutionary multi-agent system (EMAS) model, allows for the co-existence of several
species and sexes which can interact with each other and co-evolve. Co-evolutionary
mechanisms can serve as the basis for niching and speciation techniques for EMAS
systems [3]. CoEMAS systems can also be applied to multi-objective optimization,
especially when there is need for maintaining population diversity and speciation [4,5].

In the following sections the formal model of co-evolutionary multi-agent system
with predator-prey mechanism is presented. Such system is applied to multi-objective
optimization Kursawe problem and compared to other selected classical evolutionary
techniques.

2 Co-evolutionary Multi-agent System with Predator-Prey
Mechanism for Multi-objective Optimization

The system presented in this paper is the CoEMAS with predator-prey mechanism (see
fig. 1). There are two species: predators and prey in this system. Prey represent solutions
of the multi-objective problem. The main goal of predators is to eliminate “weak” (i.e.
dominated) prey.

The CoEMAS is described as 4-tuple: CoEMAS = 〈E,S ,Γ,Ω〉 where E is the envi-
ronment of the CoEMAS , S is the set of species (s ∈ S ) that co-evolve in CoEMAS , Γ
is the set of resource types that exist in the system, the amount of type γ resource will be
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Fig. 1. CoEMAS with predator-prey mechanism

denoted by rγ, Ω is the set of information types that exist in the system, the information
of typeω will be denoted by iω. There are two information types (Ω = {ω1,ω2}) and one
resource type (Γ = {γ}) in CoEMAS. Informations of type ω1 contain nodes to which
agent can migrate, when it is located in particular node of the graph. Informations of
type ω2 contain agents-prey which are located in the particular node in time t. There
is one resource type (Γ = {γ}) in CoEMAS, and there is closed circulation of resource
within the system.

The environment of CoEMAS is defined as 3-tuple: E=
〈
T E ,ΓE = Γ,ΩE = Ω

〉
, where

T E is the topography of environment E, ΓE is the set of resource types that exist in the
environment,ΩE is the set of information types that exist in the environment. The topog-
raphy of the environment T E = 〈H, l〉 where H is directed graph with the cost function
c defined (H = 〈V,B,c〉, V is the set of vertices, B is the set of arches). The distance
between two nodes is defined as the length of the shortest path between them in graph
H. The l : A→ V (A is the set of agents, that exist in CoEMAS ) function makes it
possible to locate particular agent in the environment space.

Vertice v is given by: v =
〈
Av,Γv = ΓE ,Ωv = ΩE ,ϕ

〉
, where Av is the set of agents

that are located in the vertice v. Agents can collect two types of informations from the
vertice. The first one includes all vertices that are connected with the vertice v and the
second one includes all agents of species prey that are located in the vertice v.

The set of species is given by: S = {prey, pred}. The prey species is defined as fol-
lows: prey = 〈Aprey,S X prey = {sx} ,Zprey,Cprey〉, where Aprey is the set of agents of
prey species, S X prey is the set of sexes which exist within the prey species, Zprey

is the set of actions that agents of species prey can perform, and Cprey is the set
of relations of species prey with other species that exist in the CoEMAS . There is
only one sex sx (sx ≡ sxprey) within the prey species, which is defined as follows:
sx = 〈Asx = Aprey,Zsx = Zprey,Csx = ∅〉.

The set of actions Zprey = {die,get,give,accept, seek,clone,rec,mut,migr}, where die
is the action of death (prey dies when it is out of resources), get action gets some re-
source from another aprey agent located in the same node (this agent is dominated by the
agent that performs get action or is too close to him in the criteria space — such agent
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is found with the use of seek action), give actions gives some resource to another agent
(which performs get action), accept action accepts partner for reproduction (partner is
accepted when the amount of resource possessed by the prey agent is above the given
level), seek action seeks for another prey agent that is dominated by the prey perform-
ing this action (or too close to it in criteria space) or seeks for partner for reproduction
(prey starts seeking partner for reproduction when the amount of resource is above the
given level), clone is the action of cloning prey (new agent with the same genotype as
parent’s one is created), rec is the recombination operator (intermediate recombination
is used [1]), mut is the mutation operator (mutation with self-adaptation is used [1]),
migr action allows prey to migrate between nodes of graph H (migrating agent loses
some resource).

The set of relations of prey species with other species that exist within the system

is defined as follows: Cprey =

{
prey,get−−−−−−−−→= {〈prey, prey〉} , pred,give+−−−−−−−−→= {〈prey, pred〉}

}
.

The first relation models intra species competition for limited resources (as a result of
performing get action the fitness of another prey is decreased — “-”). The second one
models predator-prey interactions (prey gives all the resource it owns to predator and
dies — predator fitness is increased: “+”).

The predator species (pred) is defined analogically as prey species with the follow-
ing differences. The set of actions Zpred = {seek,get,migr}, where seek action seeks for
the “worst” (according to the criteria associated with the given predator) prey located
in the same node as predator performing this action, get action gets all resource from
chosen prey, migr action allows predator to migrate between nodes of graph H (migrat-
ing agent loses some resource — if it can not afford the migration it stays at the same
node).

The set of relations of pred species with other species that exist within the system is

defined as follows: Cpred =

{
prey,get−−−−−−−−→= {〈pred, prey〉}

}
. The relation models predator-

prey interactions (predator gets all resources from selected prey, decreases its fitness
and prey dies).

Agent a of species prey is given by: a=〈gna,Za = Zprey,Γa = Γ,Ωa = Ω,PRa〉. Geno-
type of agent a is consisted of two vectors (chromosomes): x of real-coded decision pa-
rameters’ values and σ of standard deviations’ values, which are used during mutation.
Za = Zprey is the set of actions which agent a can perform. Γa is the set of resource
types, and Ω is the set of information types.

The set of profiles PRa includes resource profile (pr1), reproduction profile (pr2),
interaction profile (pr3), and migration profile (pr4). Each time step prey tries to realize
goals of the profiles (taking into account the priorities of the profiles: pr1 � pr2 � pr3 �
pr4 — here pr1 has the highest priority). In order to realize goals of the given profile
agent uses strategies which can be realized within this profile.

Within pr1 profile all strategies connected with type γ resource are realized (〈die〉,
〈seek,get〉). This profile uses informations of type ω2. Within pr2 profile strategy of
reproduction (〈seek,clone,rec,mut〉) is realized (informations of type ω2 are used and
reproducing prey give some resource to child with the use of give action). Within pr3

profile the interactions with predators are realized (strategy 〈give〉). Within pr4 profile
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Table 1. Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to the HV and HVR metrics obtained during solving Kursawe problem

HV / HVR
Step CoEMAS PPES NPGA

1 541.21 / 0.874 530.76 / 0.857 489.34 / 0.790
10 588.38 / 0.950 530.76 / 0.867 563.55 / 0.910
20 594.09 / 0.959 531.41 / 0.858 401.79 / 0.648
30 601.66 / 0.971 531.41 / 0.858 378.78 / 0.611
40 602.55 / 0.973 531.41 / 0.858 378.73 / 0.611
50 594.09 / 0.959 531.41 / 0.858 378.77 / 0.611
100 603.04 / 0.974 531.42 / 0.858 378.80 / 0.6117
600 603.79 / 0.975 577.44 / 0.932 378.80 / 0.611
200 611.43 / 0.987 609.47 / 0.984 378.80 / 0.611
4000 611.44 / 0.987 555.53 / 0.897 378.80 / 0.611
6000 613.10 / 0.990 547.73 / 0.884 378.80 / 0.611

the migration strategy (
〈
migr
〉
), which uses information iω1 , is realized—as a result of

performing this strategy prey loses some resource.
Agent a of species pred is defined analogically to prey agent. The main differences

are genotype and the set of profiles. Genotype of agent a is consisted of the information
about the criterion associated with this agent. The set of profiles PRa includes resource
profile (pr1), and migration profile (pr2). Within pr1 profile all strategies connected
with type γ resource are realized (〈seek,get〉). This profile uses informations of type
ω2. Within pr2 profile the migration strategy (

〈
migr
〉
), which uses information iω1 , is

realized. As a result of performing this strategy predator loses some resource.

3 Test Problem and Experimental Results

Presented in the course of this paper agent-based co-evolutionary approach for multi-
objective optimization has been tested using a lot of benchmark problems such as Kur-
sawe problem, Laumanns problem, set of Zitzler’s problems etc. Because of space lim-
itations it is possible to present in this paper only selected results. Authors decided to
discuss obtained results on the basis of Kursawe problem. Its definition is as follows:

Kursawe =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1(x) =
∑n−1

i=0

(
−10exp

(
−0.2

√
x2

i + x2
i+1

))

f2(x) =
∑n

i=1 |xi|0.8 +5sin x3
i

n = 3 −5 ≤ x1, x2, x3 ≤ 5

In the case of Kursawe problem optimization algorithm has to deal with disconnected
two-dimensional Pareto frontier and disconnected three dimensional Pareto set. Addi-
tionally, a specific definition of f1 and f2 functions causes that even very small changes
in the space of decision variables can cause big differences in the space of objec-
tives. These very features cause that Kursawe problem is quite difficult for solving in
general—and for solving using evolutionary techniques in particular.
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Fig. 2. Pareto frontier approximations obtained by CoEMAS, PPES and NPGA after 1, 10, 20,
and 30 steps

For the sake of clarity, “model” Pareto set and frontier will be omitted in further
figures presenting their approximations obtained by algorithms that are being analyzed.

As it was mentioned above—Kursawe problem is a quite demanding multi-objective
problem with disconnected both Pareto set and Pareto frontier as well. In this section
both some qualitative and quantitative characteristics obtained during solving this prob-
lem are discussed. To give a kind of reference point, results obtained by CoEMAS are
compared with results obtained by “classical” (i.e. non agent-based) predator-prey evo-
lutionary strategy (PPES) [6] and another classical evolutionary algorithm for multi-
objective optimization: niched pareto genetic algorithm (NPGA) [10].

In fig. 2 and fig. 3 there are presented approximations of Pareto frontier obtained by
all three algorithms that are being analyzed after 1, 10, 20, 30, 50, 100, 600 and 2000
time steps. As one may notice initially, i.e. after 1, 10 and partially after 20 (see fig. 2a,
2b and 2c) steps, Pareto frontiers obtained by all three algorithms are—in fact—quite
similar if the number of found non-dominated individuals, their distance to the model
Pareto frontier and their dispersing over the whole Pareto frontier are considered. Af-
terwards yet, definitely higher quality of CoEMAS-based Pareto frontier approximation
is more and more distinct. It is enough to mention that NPGA-based Pareto frontier al-
most completely disappears after about 30 steps, and PPES-based Pareto frontier is—as
the matter of fact—better and better but this improving process is quite slow and not so
clear as in the case of CoEMAS-based solution.
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Fig. 3. Pareto frontier approximations obtained by CoEMAS, PPES and NPGA after 50, 100,
600, and 2000 steps
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Fig. 4. Pareto frontier approximations obtained by CoEMAS, PPES and NPGA after 2000 steps
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Fig. 5. Pareto frontier approximations obtained by CoEMAS, PPES and NPGA after 4000 steps
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Fig. 6. Pareto frontier approximations obtained by CoEMAS, PPES and NPGA after 6000 steps
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Because solutions presented in fig. 2 and in fig. 3 (especially in fig. 3d) partially over-
lap, in fig. 4, fig. 5 and fig. 6 there are presented Pareto frontiers obtained by analyzed
algorithms after 2000, 4000 and 6000 time steps separately. There is no doubt that—
what can be especially seen in fig. 4a, fig. 5a, and in fig. 6a—CoEMAS is definitely the
best alternative since it is able to obtain Pareto frontier that is located very close to the
model solution, that is very well dispersed and what is also very important—it is more
numerous than PPES and NPGA-based solutions.

It is of course quite difficult to compare algorithms only on the basis of qualitative
results, so in Table 1 there are presented values of HV and HVR metrics (which are
described in [2]) measured after 1, 10, 20, 30, 40, 50, 100, 600, 2000, 4000 and 6000
steps. The results presented in this table confirm that in the case of Kursawe problem
CoEMAS is much better alternative than “classical” PPES or NPGA.

4 Concluding Remarks

Co-evolutionary techniques for evolutionary algorithms makes it possible to apply such
algorithms to solving problems for which it is difficult or even impossible to formulate
explicit fitness function. Co-evolutionary techniques are rather rarely used as mech-
anisms of maintaining useful population diversity or as speciation and niching tech-
niques. However, there has been recently growing interest in co-evolutionary algorithms
and in the application of such algorithms to multi-objective optimization problems.

The model of co-evolutionary multi-agent system allows co-evolution of several
species and sexes. This results in maintaining population diversity and improves adap-
tive capabilities of systems based on CoEMAS model. In this paper the co-evolutionary
multi-agent system with predator-prey mechanism for multi-objective optimization has
been presented. The system was run against commonly used test problem and compared
to classical PPES and NPGA algorithms.

Presented results of experiments with Kursawe problem (as another not presented
here results obtained with another mentioned above benchmark problems) clearly show
that CoEMAS not only properly located Pareto frontier of this test problem but also the
results of this system was better than in the case of two other “classical” algorithms.
CoEMAS was able to obtain solutions that were located very close to the “ideal” Pareto
frontier, that were very well dispersed and more numerous than PPES and NPGA-based
solutions. This was the result of the tendency to maintain high population diversity what
could be especially very useful in the case of hard dynamic and multi-modal multi-
objective problems (as defined by Deb [2]).

Future work will include more detailed comparison to other classical algorithms with
the use of hard multi-modal multi-objective test problems. Also the application of other
co-evolutionary mechanisms like symbiosis (co-operative co-evolution) are included in
future plans.
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76 R. Dreżewski and L. Siwik
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Abstract. Significant improvement over a patented lens design is achieved  
using multi-objective evolutionary optimization. A comparison of the results 
obtained from NSGA2 and ε-MOEA is done.  In our current study, ε-MOEA 
converged to essentially the same Pareto-optimal solutions as the one with 
NSGA2, but ε-MOEA proved to be better in providing reasonably good solu-
tions, comparable to the patented design, with lower number of lens evalua-
tions. ε-MOEA is shown to be computationally more efficient and practical than 
NSGA2 to obtain the required initial insight into the objective function trade-
offs while optimizing large and complex optical systems. 

1   Introduction 

Optical systems consist of a lens system and supporting opto-mechanical instrumenta-
tion. They are used in a variety of imaging applications such as telescopes, cameras, 
projectors, micro-lithography, reconnaissance etc. Lens system design is the most 
important aspect of optical system design. The quality of imaging is judged by its 
deviation between the image of an object and the object itself, which can be classified 
in terms of various ray aberrations. Ray aberrations can be calculated through ray 
tracing as the distance between the ideal image point and the actual image point on 
the chosen image plane. The objective of the optimization during lens design is to 
reduce the aberrations to an acceptable level. An optical system [1] will have a num-
ber of constructional parameters (design variables for optimization) to specify the 
system. These parameters include the radii of curvatures of the lens, the distance be-
tween various surfaces etc. Figure 1 illustrates the design variables (curvatures, thick-
nesses) of a patented Petzval lens design (USA PATENT 2,744,445), whose values 
are given in Table 1. Petzval lens is very well known, used in the projection of 16mm 
and 8mm movie films and aerial reconnaissance. Only spherical surfaces are used in 
the construction of Petzval lens. The apparently simple geometry, wide usage and 
familiarity are the reasons for selecting Petzval lens system for this study. Also, the 
results obtained can be easily understood and interpreted. 

Lens design is a complex problem since the image quality objective function is a 
highly non-linear function of the constructional parameters of the system, and the 
objective function exhibits a large number of local minima. The success of the gradi-
ent based, local optimization program depends on the selection of suitable starting 
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Fig. 1. Petzval Reference Solution from Patent Database is shown, with the following conven-
tion. The object is placed on the left side of the system, with the surfaces numbered consecu-
tively from 1 to 8. The radius of curvature, which is the inverse of curvature, is positive only if 
the center of curvature lies to the right of a surface. The thickness of surface j is the distance 
between surface j and j+1 measured along the axis of rotational symmetry, called optical axis.  

Table 1. Surface Data Listing for the reference lens, with the design variables highlighted. The 
8-th thickness is not a design variable as it is adjusted (indicated by PIM) to obtain the desired 
imaging plane. The glass codes, following the optics convention, identify the lens material. 

 

point. Hence, optimization is often repeated from many different starting points se-
lected on the basis of designer insight. Even if we choose different starting points, we 
may end up at the same local optimum, and hence may not obtain competing Pareto-
optimal designs. Global optimization methods such as genetic algorithms have been 
applied [2] to avoid the local minima. The recent developments in lens design are 
automatic addition and deletion of elements during optimization based on power and 
symmetry distribution [3] among the component elements; genetic programming 
based automated invention [4], and saddle-point-detection-based approach [5] to-
wards navigating to the global minima. They are all concerned with single objective 
optimization. However, the image quality expressed as a single number is an ap-
proximation for image quality multi-objective functions. Strong domain knowledge 
and prior knowledge of trade-offs among the objectives are required in accurately 
formulating this equivalent objective function. Pareto-Optimal solutions in the saddle 
point regions of equivalent (weighted sum) single-objective optimizations are bound 
to be undetected [6] in gradient-based optimization. For larger lens systems, the trade-
offs available among the objectives in the feasible space are difficult to obtain prior to 
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optimization. Multi-objective approach, on the other hand, allows the objectives to be 
loosely articulated. For a chosen layout, optimization results will indicate the trade-
offs involved. These factors demand a multi-objective evolutionary approach for large 
optical system optimization. 

In this paper, a Petzval lens is sought to be optimized for image quality in a multi-
objective framework using ε-Dominated Multi-Objective Evolutionary Algorithm (ε-
MOEA) [7], [12]. Earlier results on multi-objective evolutionary approach to lens 
design by Ono [8] lacked diversity on Pareto-Optimal front. Our previous studies [9]-
[10] based on hybrid coded NSGA2 [11], [12] have been successful in obtaining a 
well distributed diverse set of Pareto-optimal solutions that were comparable to or 
better than the patented design. We had also investigated the Pareto-optima in the 
saddle point regions of a Petzval lens, and demonstrated that all the positive attributes 
of the previously mentioned single objective approaches can be integrated in a multi-
objective framework [9] to yield enhanced functionality. However convergence of 
NSGA2 is slow. Multi-objective evolutionary approach, when applied to optimize 
large optical systems, needs faster convergence to be effective. Theoretical studies 
using test problems [7] have indicated that ε-MOEA converges to Pareto-optima 
quicker than NSGA2 at the expense of diversity and uniformity of distribution. How-
ever, here we have a dominant objective function and two ancillary objective func-
tions [9], [10]. This renders the diversity and uniformity of distribution in objective 
space subordinate to achieving convergence to Pareto-optimal front with least amount 
of computation. The reasons for selecting Petzval lens system for this study are its 
wide usage and familiarity that enable clear interpretation of the results. The results 
are compared against that obtained for NSGA2 and known patented (Fig.1) designs. 

1.1   Problem Definition 

The objective of this optimization is to obtain Pareto-optimal solutions for a Petzval 
lens with effective focal length (EFL) of 100 mm and F# (F-number) of 1.5953 over 
an object field angle of 8 degrees. The wavelengths under consideration are 656.3 nm, 
587.6 nm, and 486.1 nm where 587.6 nm is used as the reference wavelength. The 
optical design program CODE V® is employed as a ray tracer that calculates the ob-
jective functions. A Petzval lens is sought to be optimized for its image quality. The 
Petzval lens from CODE V® patent database (USA   PATENT 2,744,445) was em-
ployed as a reference solution (see Fig.1). The design variables are curvatures and 
thicknesses. We have 8 radii of curvatures, in the domain [-0.03 /mm, 0.03 /mm]. The 
fourth thickness varies in [0 mm, 200 mm] whereas the remaining 6 thicknesses vary 
in the domain [0 mm, 20 mm]. All variables are real coded. However, the last thick-
ness is adjusted such that the image is formed on Paraxial Image Plane and hence it is 
not a variable for optimization. The three objectives (Sect. 1.2) to be minimized are 
absolute values of spherical aberration and distortion and the CODE V® default objec-
tive function, which is the dominant objective. 

1.2   Objective Functions Definition 

Let the system have M aberrations defined over a space of N constructional parame-
ters. The objective function Φ for single objective optimization is usually defined by: 
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where fi are the aberrations and X is a vector of constructional parameters. With multi-
objective optimization, the merit function shown above is split into component objec-
tive functions. In our study, the objective functions to be minimized are:  

1 ( )f SA= , 2 ( )f DST= , and 3 ( )f ERR= , (2) 

where (SA) and (DST) stand for Spherical Aberration and Distortion. Here (ERR) is 
the CODE V® default objective function computed over a large number of rays (12 
rays from each field). This is a nonlinear weighted sum of aberrations of many rays 
over different fields and wavelengths. Construction of the default objective function 
takes into account every type of aberrations and provides the most reliable single 
indicator of image quality. Spherical aberration depends only on the curvatures of lens 
surfaces whereas distortion is maximally dependent on the field angle of incident light 
and least dependent on the curvature. This particular dependence of chosen ancillary 
objective functions on design variables helps us maintain a diverse set of relevant 
phenotypes and genotypes in a multi-objective framework. In almost all useful optical 
systems, minimization of this dominant objective function results in the minimization 
of the ancillary objective functions as well. 

2   Methodology 

There are various multi-objective algorithms available. In all of them, there is a trade-
off [7] between achieving a well-converged, and well-distributed Pareto-optimal solu-
tions and reducing the computation. Here we apply NSGA2 and ε-MOEA [7], both 
developed by Deb, to optimize a Petzval lens. Both algorithms proceed through cycles 
of selection, cross-over, mutation, and objective function evaluation over generations. 
ε-MOEA achieves a compromise among the above objectives as to obtain reasonably 
well-distributed Pareto-optimal solutions quickly. Here we have two co-evolving 
populations. One is an archive of non-dominated solutions, with a varying size, which 
gets updated after every generation according to the ε-domination concept. The con-
cept of ε-non-domination means that no two Pareto-optimal solutions are allowed 
which differ by less than εi for the ith objective. The other is a population of fixed size, 
which gets updated every generation according to the usual domination concept. The 
selection process for cross-over is such that one parent is chosen from the archive at 
random. The other parent is selected from the co-evolving population based on a 
binary-tournament between two randomly selected solutions. This is a steady state, 
diversity preserving and elitist multi-objective algorithm, which additionally allows 
us to choose the desired resolutions for every objective. NSGA2, on the other hand, 
provides well-converged and well-distributed Pareto-optimal solutions at a greater 
computational cost. NSGA2 maintains a population of fixed size throughout genera-
tions. The selection mechanism explicitly maintains elitism and diversity among par-
ents, achieved through non-dominated and crowded distance sorting.  
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ε-MOEA maintains a population size of 200. Every generation evaluates 2 off-
spring solutions. For the random creation of the initial population and the first 500 
generations, we allow only scaling. For the next 500 generations, we allow 1 step of 
local optimization for the dominant objective function. For the subsequent genera-
tions, we allow 2 steps of local optimization. NSGA2 needs to have a very large 
population size to start with, during the random initialization. Otherwise, we may not 
obtain diverse initial feasible solutions. For example, when 1000 solutions were ran-
domly created and subsequently, another 1000 was created through cross-over and 
mutation, only 5 solutions were feasible after the first generation, whereas the initial 
random creation of 600 solutions in a separate trial gave only 1 solution after the first 
generation.  

The cross-over probability was selected as 1 whereas the mutation probability was 
1/15.  The distribution index for cross-over and mutations were chosen as 15 and 20 
respectively for ε-MOEA. The chosen resolution ε = [0.01, 0.01, 10]. The cross-over 
distribution index was selected as 200 for NSGA2. The source code from Deb [12] 
was used with the required modifications. 

Whenever a new solution is generated, we scale [10] the lens design variables to 
achieve an EFL of exactly 100mm. The new scaled solution can be accepted only if it 
falls within the designated domain of design variables (Sect. 1.1). However, scaling 
often takes a solution outside of the designated domain. It also worsens the aberra-
tions [10]. Hence, following scaling, limited steps of local, gradient based, single 
objective optimization for the dominant objective function is done subject to all the 
constraints mentioned above, except the curvatures. If the resultant solution falls 
within the accepted domain for curvatures, the new solution is accepted for checking 
Pareto-optimality. Otherwise, the original solution before scaling is retained, with all 
objective vectors and constraint violations assigned a very high value, representing 
the nadir objective vector. 

3   Results 

NSGA2 requires a very large population size during the random initialization. Other-
wise, we do not get sufficient number of diverse feasible solutions to start the evolu-
tionary optimization. This is illustrated while comparing fit 2 and 3 in (Fig.2). ε-
MOEA results are shown in fit 1. Evolution starting at 500th generation (1200th solu-
tion evaluation) is shown. Fit 2 and fit 3 show the NSGA2 starting at 1400th and 
2200th solution evaluations respectively. The following observations can be made. 

With the evaluation of 1200 solutions in the first generation of NSGA2, we ob-
tained only 1 feasible solution. For reducing the computational effort, NSGA2 was 
restarted with this 1 feasible solution obtained above as seed, apart from another 19 
infeasible dummy solutions making up a population size of 20. The minima obtained 
had a value of 3583 (Fig. 5(b)) after 3500 evaluations, as opposed to 3095, obtained 
for the patented design. The evolution is shown in fit 2 of Fig. 2. Between 3600-4200 
evaluations, the minima reached and remained at 3454 indicating convergence 

With the evaluation of 2000 solutions in the first generation of NSGA2, we ob-
tained 5 distinct feasible solutions. In order to reduce the computational effort, 
NSGA2 was restarted with the 5 feasible solutions obtained above as seed, apart from 
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Fig. 2. The dominant objective function (ERR) as it evolves over generations for 1 trial of ε-
MOEA and 2 trials of NSGA2 are shown 

another 15 infeasible dummy solutions making up a population size of 20. The final 
solutions obtained have beaten the patented solution and gave the value of the domi-
nant objective function as 395 as opposed to 3095, obtained for the patented design. 
The evolution is shown in fit 3 of Fig.2. 

ε-MOEA converges to the optima faster. The population required is moderate. It is 
200 as opposed to 1000, initially required for NSGA2. The final solutions obtained 
have beaten the patented solution, and gave the dominant objective function as 384 
(Fig. 5(a)) after 3500 evaluations, as opposed to 3095, obtained for the patented de-
signs. The evolution is shown in fit 1 of Fig. 2. Another 700 evaluations (totaling 
4200) gave a marginal improvement in objective function, at 379, indicating  
convergence. 

Figures 3-5 show the solutions at 3 distinct ranges of lens evaluations (1400, 2100-
2200, 3500-3520) of Fig.2. When we do not have any restrictions on the computa-
tional resources NSGA2 and ε-MOEA performed equally well for the given problem. 
However, ε-MOEA is better suited to provide reasonably good solutions, comparable 
to the patented reference solution, with lower number of lens evaluations. 

 ε-MOEA Evaluation #1400 NASG2 (fit2) Evaluation 
#1400 

 
 
 

US Patent 2,744,445 A. Werfeli FULL SCALE      08-Sep-06 

25.00   MM    
(a) 

US Patent 2,744,445 A. Werfeli Scale: 1.30      07-Sep-06 

19.23   MM    
(b) 

SA 0.056 0.385 
DST 0.720 0.026 
ERR 6241 25419 

Fig. 3. Comparison of algorithms after 1400 lens evaluations 
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 ε-MOEA Evalua-
tion #2120 

NASG2 (fit2) Evalua-
tion #2180 

NASG2 (fit3) 
Evaluation #2120 
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ERR 4066 25049 11038 

Fig. 4. Comparison of algorithms after 2100-2200 lens evaluations 

 
 ε-MOEA Evalua-

tion #3500 
NASG2 (fit2) 

Evaluation #3500 
NASG2 (fit3) 

Evaluation #3520 
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SA 0.107 0.021 0.106 
DST 0.672 0.440 0.663 
ERR 384 3583 395 

Fig. 5. Comparison of algorithms after 3500-3520 lens evaluations 

4   Conclusions 

A Petzval lens is optimized for image quality in a classical-evolutionary hybrid 
framework. The results obtained from NSGA2 and ε-MOEA is compared. Typically, 
ε-MOEA converges to Pareto-optima quicker than NSGA2 at the expense of diversity 
and uniformity of distribution. However, for the problem at hand, we have a dominant 
objective function and two ancillary objective functions. The particular dependence of 
chosen ancillary objective functions on design variables helps us maintain a diverse 
set of relevant phenotypes and genotypes in a multi-objective frame work. In almost 
all useful optical systems, minimization of this dominant objective function results in 
the minimization of the chosen ancillary objective functions as well. In our current 
study, ε-MOEA converged to essentially the same Pareto-optimal solutions as the one 
with NSGA2, but ε-MOEA proved better to provide reasonably good solutions, com-
parable to the patented design, with lower number of lens evaluations. ε-MOEA has 
an added advantage of specifying desired resolution of the Pareto-optimal front for 
the individual objectives. ε-MOEA is better suited than NSGA2 to obtain the required 
initial insight into the objective function trade-offs while optimizing large and com-
plex optical systems. 
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Abstract. Radial Basis Function Neural Networks (RBFNNs) have
been widely used to solve classification and regression tasks providing
satisfactory results. The main issue when working with RBFNNs is how
to design them because this task requires the optimization of several pa-
rameters such as the number of RBFs, the position of their centers, and
their radii. The problem of setting all the previous values presents many
local minima so Evolutionary Algorithms (EAs) are a common solution
because of their capability of finding global minima. Two of the most im-
portant elements in an EAs are the crossover and the mutation operators.
This paper presents a comparison between a non distributed multiobjec-
tive algorithm against several parallel approaches that are obtained by
the specialisation of the crossover and mutation operators in different
islands. The results show how the creation of specialised islands that use
different combinations of crossover and mutation operators could lead to
a better performance of the algorithm by obtaining better solutions.

1 Introduction

Designing an RBFNN to approximate a function from a set of input-output data
pairs, is a common solution since this kind of networks are able to approximate
any function [1]. Formally, a function approximation problem can be formulated
as, given a set of observations {(xk; yk); k = 1, ..., n} with yk = F (xk) ∈ IR and
xk ∈ IRd, it is desired to obtain a function G so yk = G (xk) ∈ IR with xk ∈ IRd.
Once this function is learned, it will be possible to generate new outputs from
input data that were not specified in the original data set.

A RBFNN F with fixed structure to approximate an unknown function F
with n entries and one output starting from a set of values {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to be
optimized:

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 85–92, 2007.
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F (xk; C, R, Ω) =
m∑

j=1

φ(xk; cj , rj) · Ωj (1)

where m is the number of RBFs, C = {c1, ..., cm} is the set of RBF centers,
R = {r1, ..., rm} is the set of values for each RBF radius, Ω = {Ω1, ..., Ωm} is
the set of weights and φ(xk; c j , rj) represents an RBF. The activation function
most commonly used for classification and regression problems is the Gaussian
function because it is continuous, differentiable, it provides a softer output and
improves the interpolation capabilities [2]. The procedure to design an RBFNN
for functional approximation problem is: 1) Set the number of RBFs in the
hidden layer 2)Place RBF centers cj 3) Initialize the radius rj for each RBF 4)
Calculate the optimum value for the weights Ωj .

We want to find both a network with the smallest number of neurons and one
with the smallest error. This is a multiobjective optimisation problem because
for some pairs of networks it is impossible to say which is better (one is better
on one objective, one on the other) making the set of possible solutions partially
sorted.

2 Multiobjective Algorithm for Function Approximation:
MOFA

One of the most popular multiobjective algorithms is the Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) [3] since it presents a good performance in
several applications [4]. Therefore, an adaptation of this algorithm to design
RBFNNs is presented in this section.

2.1 Initial Population

The individuals in the population of the algorithm will contain the position of
the centers and the length of the radii in a vector of real numbers. The storage
of the weights in the chromosome is useless since they can be obtained optimally
by solving a linear equation system, and for each change in a radius or a center
they have to be updated. In order to start from an adequate position in the large
solution space, the individuals are initialized using clustering algorithms [5][6]
to set the positions of the centers and then, the length of the radii is chosen
randomly. The initial population also includes individuals generated randomly
in order keep diversity in the population.

Once half of the population has been initialized, a few iterations of a local
search algorithm [7] are applied to each individual adjusting its centers and radii,
then the results are appended to the population. This procedure increments the
diversity and, as experimentally has been proven, improves the quality of the
results.

The initial size of the population should be small (not more than 5 RBFs)
because we want the clustering algorithms and the local search algorithm to
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execute as fast as possible and, since the algorithm also optimizes the size of the
networks, we save computational time if we avoid dealing with big networks in
the first generations.

2.2 Crossover Operators

The original crossover operator over a binary or real coded chromosome cannot
be performed with the individuals of the proposed algorithm because each gene
represents different elements. Thus, specific crossover operators have been de-
signed considering complete RBFs as genes to be exchanged by the chromosomes
representing RBFNNs.

Crossover operator 1: Neurons exchange. This crossover operator, con-
ceptually, would be the most similar one to a standard crossover because the
individuals represent an RBFNN with several neurons and a crossover between
two individuals would result in a neuron exchange. The operator will exchange
only one neuron, selected randomly, between the two individuals.

This crossover operator exploits the genetic material of each individual in a
simple and efficient way without modifying the structure of the network.

Crossover operator 2: Addition of the neuron with the smallest local
error. This operator consists in the addition into one parent of the neuron
with the smallest local error belonging to the other parent. The local error of
a neuron is defined as the sum of the errors between the real output and the
output generated by the RBFNN for the input vectors that activate that neuron.

To make sure that the offsprings are different of their ancestors, before adding
the neuron with the smallest local error, the crossover will make sure that the
neuron to be added does not exist in the individual, otherwise the second neu-
ron with the smallest local error will be considered and so on. This restriction
combined with the way the NSGA-II proceeds helps to avoid the “competing
convention”problem [8].

Once the offspring are obtained, they go through a refinement process that
consists in the prune of the RBFs which doesn’t influence the output of the
RBFNN, to do this, all the weights that connect the processing units to the
output layer are calculated and the neurons that don’t have a significant weight
will be removed.

2.3 Mutation Operators

The mutation operators add randomness into the process of finding good solu-
tions. These mutations allow the algorithm to explore the solution space avoiding
being trapped in local minima. The modifications can be purely random or can
be performed using problem specific knowledge. The mutation operators are de-
sired to be as much simple as they can so it can be shown clearly, without the
interference of introducing expert knowledge, the effects of the parallelization at
a very basic level. For an RBFNN, two kind of modifications can be performed:
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– Changes in the structure of the RBFNN (Increase and decrease operators):
Addition and Deletion of an RBF. The first one adds an RBF in one random
position over the input vectors space, setting its radius with a random value.
All the random values are taken from an uniform distribution in the interval
[0,1] since the input vectors and their output are normalized. The second
operator is the opposite to the previous one, deleting a random existing
RBF from the network. This mutation is constrained so that is not applied
when the individual has less than two neurons.

– Changes in the elements of the structure (Movement operators): The third
and the fourth operators refer to real coded genetic algorithms as presented
in [9]. The third operator adds to all the coordinates of a center a random
distance chosen in the interval [-0.5,0.5] from a uniform distribution. The
fourth one has exactly the same behavior but changing the value of the
radius of the selected RBF.

3 Island Specialisation

In order to obtain results of maximum quality and take advantage of each type
of operator, several parallel implementations were studied. All these implemen-
tations are based on the island paradigm where there are several islands (in
our parallel implementation these map to processors) that evolve independent
populations and, exchange information or individuals.

The design of an RBFNN, involves two well defined tasks: the design of the
structure and the determination of the value of the parameters that build that
structure. From this point of view many island specialisations were analysed
although in this paper only the more representative ones are commented:

1)Division of the crossover operators (P1). This approach allows specialisation
of the first stage of the evolution process, that is, the reproduction process. The
two crossover operators are separated and executed in different islands. The
mutation process remains the same for both types of islands. The following
algorithms study the possible ways of specialising the mutation stage but always
using the specialised crossover topology. As it will be shown in the experiments,
allowing specialisation of the crossover operators gives significant improvements.

2)Crossover 1 + Movement + Decreasing and Crossover 2 + Movement +
Increasing (P2). This combination of operators aims to boost the exploration
capabilities of the crossover 2 and the exploitation ones of crossover 1. Since
the crossover 2 explore more topologies by increasing the size of the NNs, the
specialisation can be done by letting this island to produce only bigger net-
works. The other island with the crossover 1, will take care of exploitation of the
chromosomes and will decrease the size of the networks.

3)Crossover 1 + Movement + Increasing and Crossover 2 + Movement +
Decreasing (P3). This algorithm is the opposite to the previous one. The aim is
to not allow the crossover 2 to create too big NNs by adding the operator that
removes an RBF. If the NNs in the population become too big, the computational
time would be highly increased. To be able to explore more different topologies,
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the island with the crossover 1 will increase the number of RBFs using the
increasing mutation operator.

4)Crossover 1 + Movement and Crossover 2 + Increasing and Decreasing
(P4). This approach is the one that specialises the most each island on each
task of the design of an RBFNN. The island with the crossover 1 will take
care of changing the parameters of the centers and the radii and at the same
time, will exploit the genetic information contained in one topology through its
crossover operator. The second island will just take care of the modifications on
the structure of the RBFNN by increasing or decreasing its size through both
the crossover and mutation operators.

4 Experiments

This section analyzes the behavior of the algorithms described above to show
that specialisation of islands to use different operators could lead to better re-
sults. The experiments were performed using a two dimensional function that
was generated using a Gaussian RBFNN with randomly chosen parameters
(exp(− ||xk−ci||2

r2
i

)) over a grid of 25x25 points.
Although some metrics have been applied to compare nondominated sets [10],

in [11] it is suggested that: “as long as a derived/known Pareto front can be vi-
sualized, pMOEA1 effectiveness may still best be initially observed and estimated
by the human eye” . Therefore the experimental analysis of the algorithms will
be based on the plots of the resulting Pareto fronts.

The algorithms were executed using the same initial population of the same
size and the same values for all the parameters. The crossover probability was
0.5 and the mutation probability was 0.25, the size of the population 100 and the
number of generations was fixed to 100. The probabilities might seem high but
it’s necessary to have a high mutation probability to allow the network to increase
its size, and the centers and radii to move. The high crossover probability makes
it possible to show the effects of the crossover operators. Several executions were
made changing the migration rate, allowing the algorithms to have 2 (each 40
generations), 4 (each 20 generations), 9 (each 10 generations), and 19 (each 5
generations) migrations through the 100 generations.

4.1 Parallel Approach P1 vs. Non Distributed Approaches

The non distributed algorithms are considered as those that have no communi-
cation. The three different algorithms are determined by the crossover operators
and all of these algorithms will use the four mutation operators at the same
time. The first algorithm uses only the crossover 1, the second algorithm uses the
crossover 2 and the third non distributed algorithm chooses randomly between
the two crossover operators each time it has to be applied. Figure 1 shows that
the parallel model outperforms the three previous non distributed approaches.

1 pMOEA stands for parallel MultiObjective Evolutionary Algorithms.
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Fig. 1. Pareto front obtained performing several migration steps for P1 and the non
distributed approaches

4.2 Comparison Between Parallel Approaches (P1, P2, P3, and P4)

Once it was shown that the parallel approach could lead to better solutions, the
different parallel algorithms were compared. Figure 2 shows the results of the
four parallel algorithms studied using different migration rates.

The results show how the parallel implementation P3 is not a good choice
due to its bad performance. This implementation is the less specialised from all
the other ones because the second type of island that uses the crossover 2 is
able to reduce the number of RBFs, annulling the effect of the crossover 2 that
increases the size of the RBFNNs. For the first island it only increases the size
of the network so it won’t be able to exploit deeply the genetic recombination.

The algorithms P2 and P4 could be considered the most specialised because
their mutation operators are oriented to only one task (P4) or to complement
the features of the crossover operators on each island, not like in P3 where the
mutation operators counteract the effects of the crossovers. For P2, the best
results are obtained for few migrations not like with P4 that achieves the best
results with the maximum number of migrations. If the best results for both
algorithms are compared, P2 obtains slightly better results for smaller networks
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Fig. 2. Pareto front obtained performing several migration steps for P1, P2, P3 and P4

and P4 obtains better results for larger networks and it finds more elements in
the Pareto. The behavior of these two algorithms is logical, P2 is able to exploit
more the solutions since it reduces the size of the networks and recombines the
genes in a more exhaustive way, so it achieves the best results when there are
not many migration steps. P4 explores more topologies than P2, that is why it
obtains a more complete Pareto, the reason of why it gets the best results with
the highest migration rate is because the exploration island must have a fast
feedback about the exploitation of the individuals in its Pareto, although there
is a limit when if the migration rate becomes too frequent, the islands don’t have
the chance to exploit and explore, decreasing the quality of the results.

5 Conclusions

Evolutionary approaches are able to solve successfully the complex task of the de-
sign of RBFNNs. In this framework, several implementations of a multiobjective
genetic algorithm were presented. These approaches emerge as a straight forward
specialisation of the crossover and mutation operators in different islands. These
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specialisations have the purpose of dividing the exploration and the exploitation
tasks between the islands, that share their individuals by migration mechanism.
The sharing of the individuals allows the algorithm to keep the characteristic
of global optimiser. The experiments showed that, if the different islands evolve
specific aspects of the RBFNNs, the results could be improved.
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Abstract. In this paper we propose an immune algorithm (IA) to solve
high dimensional global optimization problems. To evaluate the effec-
tiveness and quality of the IA we performed a large set of unconstrained
numerical optimisation experiments, which is a crucial component of
many real-world problem-solving settings. We extensively compare the
IA against several Differential Evolution (DE) algorithms as these have
been shown to perform better than many other Evolutionary Algorithms
on similar problems. The DE algorithms were implemented using a range
of recombination and mutation operators combinations. The algorithms
were tested on 13 well known benchmark problems. Our results show
that the proposed IA is effective, in terms of accuracy, and capable of
solving large-scale instances of our benchmarks. We also show that the
IA is comparable, and often outperforms, all the DE variants, including
two Memetic algorithms.

1 Introduction

Since in many real-world engineering and technology applications analytical so-
lutions, even for simple problems, are not allways available, numerical continuous
optimisation is often the only viable alternative.

A global minimization problem can be formalized as a pair (S, f), where S ⊆
R

n is a bounded set on R
n and f : S → R is an n-dimensional real-valued

function. The goal is to find a point xmin ∈ S such that f(xmin) is a global
minimum on S, i.e. ∀x ∈ S : f(xmin) ≤ f(x).

The problem of continous optimisation is a difficult one not least because it is
difficult to decide when a global (or local) optimum has been reached but also
because there could be very many local optima that traps the search algorithm.
Furthermore, as the dimensionality of the problem increases the number of local
optima grows dramatically.
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In this work we consider the following numerical minimization problem:
min(f(x)), Bl ≤ x ≤ Bu where x = (x1, x2, . . . , xn) is the variable vector in
R

n, f(x) denotes the objective function to minimize and Bl =(Bl1 , Bl2 , . . . , Bln),
Bu = (Bu1 , Bu2 , . . . , Bun) represent, respectively, the variables’ lower and the
upper bounds, such that xi ∈ [Bli , Bui ] .

We use the above formulation to evaluate our immune algorithm (IA), first
proposed in [1], for high dimensional problems. Moreover, we compare the results
of the IA with several Differential Evolution (DE) variants as those proposed
in [6], [4] and [5]. DE were chosen as they typically show better convergence
behaviour than other well-known EAs [8], [9].

2 Differential Evolution

Differential Evolution (DE) is an effective and efficient method which has been
proposed to solve optimization problems in continuous search spaces [8], [9].
The main advantage of DE is its simple structure, because it has few control
variables, and it uses common concepts of Evolutionary Algorithms (EA). DE1

is based on a population of individuals, generated through a similar operation
to the classical mutation, where, for each individual xt

i, a new individual yt+1
i is

generated as follows: yt+1
i = xt

j + F (xt
k − xt

l), and F is called scaling factor. To
have high diversity into the population, DE uses a crossover operator, between
xt

i and yt+1
i , to generate the offspring xt+1

i . Finally, the offspring is evaluated
and it replaces its parent if its fitness is better than its parent (selection process).

There are several variants of DE, depending on the the selection for mutation
operator, and the crossover scheme used. To distinguish its several variants we
use the notation a/b/c, where ”a” denotes the way an individual is selected to
be mutated (random or best individual); ”b” is the number of pairs of solutions
chosen and ”c” represent the crossover scheme used (binomial or exponential).
Therefore, using this notation we have the following variants [6]: rand/1/bin,
rand/1/exp, best/1/bin and best/1/exp; current-to-rand/1 and current-to-best/1,
which use an arithmetic recombination; current-to-rand/1/bin, which presents
a combined discrete-arithmetic recombination; and rand/2/dir, which includes
fitness function information to the mutation and recombination operators.

3 Immune Algorithms

The immune algorithms are inspired by the human’s clonal selection principle,
which suggests that among all possible cells, B lymphocytes, with different re-
ceptors circulating in the host organism, only those who are actually able to
recognize the antigen will start to proliferate by cloning.

The proposed algorithm is population based, like any typical evolutionary
algorithm and it is based on two entity types: antigens (Ag) and B cells receptor.
The Ag’s represent the problem to tackle, i.e. the function to optimize, whereas
1 for a deeply knowledge on DE see [8], [9].
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the B cells are a population of points of the search space of the given function. At
each time step t the algorithm presents a population P (t) of size d. The initial
population of candidate solutions at time t = 0 is randomly generated using
uniform distribution in the relative domains of each function. The proposed
algorithm generates each gene xi = Bli + β · (Bui − Bli), where β ∈ [0, 1] is a
random value, Bli and Bui are the lower and upper bounds of the real coded
variable xi respectively.

The function Evaluate(P (t)) (see Table 3) computes the fitness function value
of each B cell x ∈ P (t). The evolution cycle ends when the maximum number of
fitness function evaluations, Tmax, is reached.

We used the classical cloning operator, which clones each B cell dup times
producing an intermediate population P (clo), assigning to each clone the same
age of its parent. The age of B cells, determines their life span into the population:
when a B cell reaches the maximum allowed age, it dies, i.e. it is eliminated
from the population. Subsequentely, if a cloned B cell undergoes a successfully
mutation (called constructive mutation), i.e. its fitness value has increased, it
will be considered to have age equal to 0. Such a scheme, as proposed in [2],
intends to give an equal opportunity to each new B cell to effectively explore the
search landscape.

The hypermutation operators act on the B cell receptor of P (clo). We used the
inversely proportional hypermutation operator, which tries to mutate each B cell
receptor M times without the explicit usage of a mutation probability. The feature
of this operator is that the number of mutations is inversely proportional to the
fitness value, i.e. as the fitness function value of the current B cell increases, the
number of mutations performed decreases. The mutation potential used was α =
e(−ρ·f), where α represents the mutation rate and f is the fitness function value
normalized in [0, 1].The perturbation operator choose randomly a variablexi, with
i ∈ {1, . . . , �} (� is the length of B cell) and replace it with xnew

i = ((1 − β) ·
xi) + (β · xrandom), where xrandom �= xi is a randomly chosen variable and β ∈
[0, 1] is a random number obtained with uniform distribution. As proposed in [1],
the proposed algorithm does not use any additional information concerning the
problem. For example the global optima is not considered when normalizing the
fitness function value, but the best current fitness value decreased of a threshold θ.

The aging operator, used by the algorithm, eliminates old B cells, in the pop-
ulations P (t), and P (hyp), maintaining high diversity in the current population,
in order to avoid premature convergence. The maximum number of generations
the B cells are allowed to remain in the population is determined by the τB

parameter: when a B cell is τB + 1 old it is erased from the current population,
independently from its fitness value. The algorithm makes only one exception:
when generating a new population the selection mechanism does not allow the
elimination of the B cell with the best fitness function value (elitist aging). After
the application of the immune operators the best surviving B cells are selected
from the populations P

(t)
a and P

(hyp)
a . In this way, the new population P (t+1),

of d B cells, for the next generation t+1, is obtained. If only d′ < d B cells have
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Table 1. Pseudo-code of the proposed Immune Algorithm

Immune Algorithm(d, dup, ρ, τB , Tmax)
FFE ← 0;
Nc ← d · dup;
t ← 0;

P (t) ← Init Population(d);

Evaluate(P (t));
FFE ← FFE + d;
while (FFE < Tmax)do

P (clo) ← Cloning (P (t), dup);

P (hyp) ← Hypermutation(P (clo), ρ);

Evaluate(P (hyp));
FFE ← FFE + Nc;

(P
(t)
a , P

(hyp)
a ) = Aging(P (t), P (hyp), τB);

P (t+1) ← (μ + λ)-Selection(P
(t)
a , P

(hyp)
a );

t ← t + 1;
end while

survived, the (μ + λ)-Selection operator randomly selects d − d′ “old” B cells
from P

(t)
a � P

(hyp)
a .

In Table 3 is showed the pseudo-code of the proposed immune algorithm.

4 Experimental Results

To better understand the search ability of the proposed IA and its real per-
formances, we used a large set of experiments on two different categories of
functions with different features, using high different dimensional values. More-
over, we compared our algorithm to several DE variants, as proposed in [6], [5],
[4], to evaluate the goodness of the proposed solutions by IA. We used the first
13 well-known benchmark functions from [3]: unimodal functions, that are rel-
atively easy to optimize, but their difficulty increases as the dimensional space
increase, and multimodal functions, with many local minima, that represent the
most difficult class of problems for many optimization algorithms. Last category
is the most important, because the quality of the final results reflects the ability
of the given algorithm to escape from local optima.

For all experiments we used the following values for IA: d = 100, dup = 2,
τB = 15, and θ = 75%, where θ represents the threshold used to decrease the
best fitness function value obtained in each generation to normalize the fitness
in the range [0, 1] [1]. Moreover, we used ρ = 7 for high dimension values, whilst
lower ρ values for smaller dimensions.

Figure 1 shows the mutation number obtained at different fitness function
values, from worst to best. These experiment were obtained using small and high
dimensional values. In the inset plot we give a zoom reducing the normalized
fitness function in the range [0.4, 1].



Immune Algorithm Versus Differential Evolution 97

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.2  0.4  0.6  0.8  1

M
ut

at
io

ns

Fitness

Mutation Rate for the Hypermutation Operator

dim=30, ρ=3.5
dim=50, ρ=4.0

dim=100, ρ=6.0
dim=200, ρ=7.0

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0.4  0.5  0.6  0.7  0.8  0.9  1

Fig. 1. Mutation Potential behavior using different dimension values

At each generation we computed the mean value of the best fit individuals for
all independently runs and the standard deviation, to indicate the consistency of
the algorithm.

In the first experiment, IA is compared with the 8 DE variants, proposed in
[6], where Tmax was fixed to 12 × 104. For each function 100 independent runs
were performed. The dimension of the functions was fixed to 30, and the results
are shown in Table 2. Because in [6] the authors have modified the function f8 to
have its minimum at zero (rather than −12569.5), it is not included into the same
table. The best results obtained by each algorithm are shown in boldface. From
this table, one can see that IA outperforms the majority of the DE variants,
either in unimodal class or multimodal, and it is comparable with the best DE
algorithm.

In Table 3 IA is compared to rand/1/bin variant, using a different experi-
mental protocol, proposed in [5]. For each experiment the maximum number of
fitness function evaluations Tmax was fixed to 5×105, for function dimension 30
or less, whilst using 100 dimension, Tmax was set to 5×106. For each benchmark
function, 30 independent runs were performed. For each function the mean best
function values found in the last generation is shown in the first row, and stan-
dard deviation in the second. The results obtained for both 30 and 100 variables
IA are comparable to the results obtained by rand/1/bin. In this comparison all
results below 10−20 were reported as 0.0.

Recent developments in EAs field, have shown that to tackle complex search
spaces, pure genetic algorithms (GA) need to use local search operators and
specialized crossover [7]. In [4] two memetic versions of DE, which used crossover
based local search (XLS), were proposed. As a last experiment, IA was compared
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Table 2. Immune Algorithm versus DE variants on the unimodal and multimodal
functions, using 30 dimension

Unimodal Functions
f1 f2 f3 f4 f6 f7

IA 0.0 0.0 0.0 0.0 0.0 0.0000489
rand/1/bin 0.0 0.0 0.02 1.9521 0.0 0.0
rand/1/exp 0.0 0.0 0.0 3.7584 0.84 0.0
best/1/bin 0.0 0.0 0.0 0.0017 0.0 0.0
best/1/exp 407.972 3.291 10.6078 1.701872 2737.8458 0.070545
current-to-best/1 0.54148 4.842 0.471730 4.2337 1.394 0.0
current-to-rand/1 0.69966 3.503 0.903563 3.298563 1.767 0.0
current-to-rand/1/bin 0.0 0.0 0.000232 0.149514 0.0 0.0
rand/2/dir 0.0 0.0 30.112881 0.044199 0.0 0.0

Multimodal Functions
f5 f9 f10 f11 f12 f13

IA 11.69 0.0 0.0 0.0 0.0 0.0
rand/1/bin 19.578 0.0 0.0 0.001117 0.0 0.0
rand/1/exp 6.696 97.753938 0.080037 0.000075 0.0 0.0
best/1/bin 30.39087 0.0 0.0 0.000722 0.0 0.000226
best/1/exp 132621.5 40.003971 9.3961 5.9278 1293.0262 2584.85
current-to-best/1 30.984666 98.205432 0.270788 0.219391 0.891301 0.038622
current-to-rand/1 31.702063 92.263070 0.164786 0.184920 0.464829 5.169196
current-to-rand/1/bin 24.260535 0.0 0.0 0.0 0.001007 0.000114
rand/2/dir 30.654916 0.0 0.0 0.0 0.0 0.0

Table 3. Performance Comparison among IA and ”rand/1/bin” on 13 functions bench-
marks, using 30 and 100 dimensions

30 dimension 100 dimension
IA rand/1/bin IA rand/1/bin

f1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f3 0.0 2.02× 10−9 0.0 5.87× 10−10

0.0 8.26× 10−10 0.0 1.83× 10−10

f4 0.0 3.85× 10−8 6.447 × 10−7 1.128 × 10−9

0.0 9.17× 10−9 3.338 × 10−6 1.42 × 10−10

f5 12 0.0 74.99 0.0
13.22 0.0 38.99 0.0

f6 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f7 1.521 × 10−5 4.939× 10−3 1.59 × 10−5 7.664× 10−3

2.05 × 10−5 1.13× 10−3 3.61 × 10−5 6.58× 10−4

f8 −1.256041× 10+4 −1.256948 × 10+4 −4.16× 10+4 −4.1898 × 10+4

25.912 2.3 × 10−4 2.06× 10+2 1.06 × 10−3

f9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f10 0.0 −1.19 × 10−15 0.0 8.023× 10−15

0.0 7.03 × 10−16 0.0 1.74× 10−15

f11 0.0 0.0 0.0 5.42× 10−20

0.0 0.0 0.0 5.42× 10−20

f12 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

f13 0.0 −1.142824 0.0 −1.142824
0.0 4.45 × 10−8 0.0 2.74 × 10−8
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Table 4. IA versus rand/1/exp, best/1/exp and their memetic versions by [4], with
n = 50 dimensional search space

IA rand/1/exp best/1/exp DEfirDE DEfirSPX

f1
0 ± 0 309.74 ± 481.05 0 ± 0 0 ± 0

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
0.0535 ± 0.0520 0.0027 ± 0.0013 0.0026 ± 0.0023 1 · 10−4 ± 4.75 · 10−5

f5
79.8921 ± 102.611 3.69 · 10+5 ± 5.011 · 10+5 72.0242 ± 47.1958 65.8951 ± 37.8933

30 ± 21.7 52.4066 ± 19.9109 54.5985 ± 25.6652 53.1894 ± 26.1913 45.8367 ± 10.2518
90.0213 ± 33.8734 58.1931 ± 9.4289 66.9674 ± 23.7196 52.0033 ± 13.6881

f9
0 ± 0 0.61256 ± 1.1988 0 ± 0 0 ± 0

0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
0 ± 0 0 ± 0 0 ± 0 0 ± 0

f10
0 ± 0 0.2621 ± 0.5524 0 ± 0 0 ± 0

0 ± 0 9.36 · 10−6 ± 3.67 · 10−6 6.85 · 10−6 ± 6.06 · 10−6 2.28 · 10−5 ± 1.45 · 10−5 3.0 · 10−6 ± 1.07 · 10−6

0.0104 ± 0.0015 0.0067 ± 0.0015 0.0060 ± 0.0015 0.0019 ± 4.32 · 10−4

f11
0 ± 0 0.1651 ± 0.2133 0 ± 0 0 ± 0

0 ± 0 9.95 · 10−7 ± 4.3 · 10−7 0 ± 0 0 ± 0 0 ± 0
0.0053 ± 0.010 0.0012 ± 0.0028 4.96 · 10−4 ± 6.68 · 10−4 5.27 · 10−4 ± 0.0013

Table 5. IA versus rand/1/exp, best/1/exp and their memetic versions by [4], with
n = 100 dimensional search space

IA rand/1/exp best/1/exp DEfirDE DEfirSPX

f1
1.58 · 10−6 ± 3.75 · 10−6 0.0046 ± 0.0247 0 ± 0 0 ± 0

0 ± 0 59.926 ± 16.574 30.242 ± 5.93 11.731 ± 5.0574 1.2614 ± 0.4581
2496.82 ± 246.55 1729.40 ± 172.28 358.57 ± 108.12 104.986 ± 22.549

f5
120.917 ± 41.8753 178.465 ± 60.938 107.5604 ± 28.2529 99.1086 ± 18.5735

85.6 ± 31.758 12312.16 ± 3981.44 7463.633 ± 2631.92 2923.108 ± 1521.085 732.85 ± 142.22
3.165 · 10+6 ± 6.052 · 10+5 1.798 · 10+6 ± 3.304 · 10+5 2.822 · 10+5 ± 3.012 · 10+5 16621.32 ± 6400.43

f9
0 ± 0 0 ± 0 0 ± 0 0 ± 0

0 ± 0 2.6384 ± 0.7977 0.7585 ± 0.2524 0.1534 ± 0.1240 0.0094 ± 0.0068
234.588 ± 13.662 198.079 ± 18.947 17.133 ± 7.958 27.0537 ± 20.889

f10
1.02 · 10−6 ± 1.6 · 10−7 9.5 · 10−7 ± 1.1 · 10−7 1.2 · 10−6 ± 6.07 · 10−7 0 ± 0

0 ± 0 1.6761 ± 0.0819 1.2202 ± 0.0965 0.5340 ± 0.1101 0.3695 ± 0.0734
7.7335 ± 0.1584 6.7251 ± 0.1373 3.7515 ± 0.2773 3.4528 ± 0.1797

f11
0 ± 0 0 ± 0 0 ± 0 0 ± 0

0 ± 0 1.1316 ± 0.0124 1.0530 ± 0.0100 0.7725 ± 0.1008 0.5433 ± 0.1331
20.037 ± 0.9614 13.068 ± 0.8876 3.7439 ± 0.7651 2.2186 ± 0.3010

Table 6. IA versus rand/1/exp, best/1/exp and their memetic versions by [4], with
n = 200 dimensional search space

IA rand/1/exp best/1/exp DEfirDE DEfirSPX

f1
50.005 ± 16.376 26.581 ± 7.4714 17.678 ± 9.483 0.8568 ± 0.2563

0 ± 0 5.45 · 10+4 ± 2605.73 4.84 · 10+4 ± 1891.24 9056.0 ± 1840.45 2782.32 ± 335.69
1.82 · 10+5 ± 6785.18 1.74 · 10+5 ± 6119.01 44090.5 ± 6122.35 9850.45 ± 1729.9

f5
9370.17 ± 3671.11 6725.48 ± 1915.38 5302.79 ± 2363.74 996.69 ± 128.483

165.1 ± 71.2 4.22 · 10+8 ± 3.04 · 10+7 3.54 · 10+8 ± 3.54 · 10+7 2.39 · 10+7 ± 6.379 · 10+6 1.19 · 10+6 ± 4.10 · 10+5

3.29 · 10+9 ± 2.12 · 10+8 3.12 · 10+9 ± 1.65 · 10+8 3.48 · 10+8 ± 1.75 · 10+8 1.21 · 10+7 ± 4.73 · 10+6

f9
0.4245 ± 0.2905 0.2255 ± 0.1051 0.1453 ± 0.2771 0.0024 ± 0.0011

0 ± 0 1878.61 ± 60.298 1761.55 ± 43.3824 352.93 ± 46.11 369.88 ± 136.87
5471.35 ± 239.67 5094.97 ± 182.77 1193.83 ± 145.477 859.03 ± 99.76

f10
0.5208 ± 0.0870 0.4322 ± 0.0427 0.3123 ± 0.0426 0.1589 ± 0.0207

0 ± 0 15.917 ± 0.1209 15.46 ± 0.1205 9.2373 ± 0.4785 6.6861 ± 0.3286
19.253 ± 0.0698 19.138 ± 0.0772 14.309 ± 0.3706 9.4114 ± 0.4581

f11
0.7687 ± 0.0768 0.5707 ± 0.0651 0.5984 ± 0.1419 0.1631 ± 0.0314

0 ± 0 490.29 ± 21.225 441.97 ± 15.877 78.692 ± 11.766 28.245 ± 4.605
1657.93 ± 47.142 1572.51 ± 53.611 368.90 ± 41.116 85.176 ± 12.824

with rand/1/exp, best/1/exp and their memetic versions, called DEfirDE and
DEfirSPX [4], respectively. For each experiment, the maximum number of fitness
function evaluations Tmax was fixed to 5 × 105, and 50, 100 and 200 dimension
variables were used. For each instance 30 independent runs were performed. The
same functions proposed in [4]: f1, f5, f9, f10 and f11, were used. In Tables 4,
5 and 6, for the two DE variants and their memetic versions, are reported the
results obtained varying the population size, with n, 5n and 10n, where n is
the dimensional search space, as showed in [4]. Moreover, for each algorithm,
is showed the mean value of the best fit individuals and standard deviation
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(mean ± sd), used to indicate the consistency of the algorithm. In Table 4 we
report the results obtained using n = 50 dimensional search space. From this
table one can see that IA is comparable and in many cases outperforms DE and
its memetic variants, expecially for f5.

In Tables 5 and 6 one can see the results obtained using 100 and 200 dimen-
sional search space. From these two tables it is clear that IA outperforms the
compared algorithms when increasing the function dimension. It is important
to highlight that our proposed algorithm outperforms DE variants and their
memetic versions, in each function using smaller population size for n = 100 and
n = 200.

5 Conclusion

The main features of the IA can be sumarized as: (1) the cloning operator, which
explores the neighbourhood of a given solution, (2) the inversely proportional
hypermutation operator, that perturbs each candidate solution as a function of
its fitness function (inversely proportional), and (3) the aging operator, that
eliminates the oldest candidate solutions from the current population in order
to introduce diversity and thus avoiding local minima during the search process.

In this research paper we presented an extensive comparative study illustrat-
ing the performance of a well-known immune algorithm [1], with the features
mentioned above, and that of several differential evolution variants [6], [5] and
their memetic versions [4]. We used the 13 classical benchmark functions from
[3] (unimodal and multimodal functions) for our experiments. Furthermore the
dimensionality of the problems was varied from n = 30 to n = 200 dimensions.

Our results suggest that the proposed immune algorithm is an effective nu-
merical optimization algorithm( in terms of solution quality) particularly for the
most challenging highly dimensional search spaces. In particular, increasing the
dimension of the solutions space improves the performances of IA. Finally, the
experimental results also show that the IA is comparable, and it often outper-
forms, all 8 DE variants as well as their memetic counterparts.
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Abstract. This paper focuses on modified genetic algorithm based on
the graph representation and specialized genetic operators. Advantages of
changed representation, multi-level organization as well as self-adaptive
aspects of the proposed method are described. The results of algorithm
usage in optimising skeletal structures are also presented.

1 Introduction

The aim of our work is to develop a tool for supporting the design of skeletal
structures. An important part of such design is the optimisation process, which
has to reduce structural cost, most commonly in terms of the overall construction
weight. The search for optimum solution can be performed at three levels: a
topological level, a geometrical level and a component level.

At the last level only the parameters of individual structural components (i.e.
the cross-sections of the bars) are optimized. The geometrical level is responsible
for proper positioning of the components, which means finding optimal coordi-
nates of the structural nodes. At the highest, topological level, the number of
components and the connections between them are considered.

The optimum design of skeletal structures is a widely explored research area.
The procedures for the geometric and component levels are well described, while
the topological optimisation still remains an open question. Certain progress has
been achieved by using the topological derivative [1], the theory of homogeni-
sation [2], the bubble evolution method [3]. Usually the search is performed by
means of the genetic algorithm, since classical optimisation methods are not
applicable.

In our model a graph-based representation of skeletal structure is used. Graphs
have much more complex internal structure than binary strings. This is obvious
advantage in terms of the expression power. From the other hand, it requires
the development of new operators for evolutionary computing.

The required operators are defined within a concept of hierarchical graph - a
graph in which nodes can contain internal nodes. A crossover operator can be
basically described as exchanging nodes on some level of hierarchy between two
graphs. Additionally, to ensure that this operator produces meaningful graphs, a
notion of context similarity (homology) is used. A mutation is defined as a change
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of the graph structure (removing or adding nodes or edges) or a modification of
labels and attributes assigned to the graph nodes and edges.

Based on fundamentals related to hierarchical graphs and operators defined
on them, a customised evolutionary algorithm is built. This algorithm is orga-
nized as a sequence of the following steps: selection, crossover, mutation and
evaluation. The optimised skeletal structure is evaluated with the assistance of
commercial CAD tool (Robot Millennium) [4]. This tool provides internal forces,
reactions and displacements induced by given load. It allows us also to find di-
mensions of structural components that ensure the fulfilment of the Code of
Practice.

The procedure described above has been implemented in the Java program-
ming language and a number of numerical experiments were performed. We
took the well-known cantilever truss as the benchmark problem. Three groups
of experiments were done: a decoupled optimisation on each level, a full-scale
optimisation under user control and a full-scale optimisation in self-adaptive
mode.

The full-scale optimisation begins with the topology optimisation. When the
satisfying solution is found, it is used as a seed for generating an initial population
in the geometrical optimisation. After promising result at the geometrical level
is found, it is used similarly for starting the process of component optimisation.
The full-scale optimisation process can be controlled either by the user or by the
self-adaptive software module. In both cases the parameters of the evolutionary
algorithm can be changed during the optimisation process in order to improve
convergence.

2 Representation of Structures

One of the most important things in whole design/optimization task is represen-
tation of a considered artefact. The chosen model has to fulfil several require-
ments: it has to have adequate expression power, considering computer support
it has to be simple enough to enable automatic processing and it should provide
reusability if possible. These requirements are partially contradicting, causing
sometimes serious problems at early stages of analysis.

In the classical genetic algorithm binary strings are used for coding the design.
This coding showed many advantages and disadvantages as well. To the most
important advantages should be qualified: simplicity, well defined and reusable
operators and theoretical fundamentals. From the other side in complicated tasks
binary strings exceeded reasonable lengths and caused problems with the con-
vergence of algorithm. To avoid those problems real-number encoding in form of
one- or two-dimensional table was proposed. It proved its usability for a group
of tasks, but also copied disadvantages from binary encoding. Long-term solu-
tion is the usage of more complicated structures: trees or graphs. In our work
hierarchical graphs are used, since they provide very good expression power and
good theoretical foundations as well.
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Fig. 1. Example of hierarchical CP-graph. Bonds are not presented for clarity.

Hierarchical CP-graph is an extension to CP-graph. While CP-graph is able to
represent relations between components, hCP-graph provides additional mech-
anism for hierarchical dependencies. It allows the designer to look at the object
being designed at different levels of abstraction and comfortably separate differ-
ent stages of design process. Depending on a current design stage a more detailed
view down to the level of subcomponents with relation between them or only
the highest level of the structure without too many details may be chosen.

Basically speaking hierarchical CP-graphs are CP-graphs in which nodes can
contain internal nodes. These nodes, called children also can contain other in-
ternal nodes. Each node has at most one direct ancestor, node which has no
direct ancestor is said to be at the highest level of hierarchy. To each node a
set of bonds is assigned. An edge is defined as a pair of bonds, thus two nodes
are connected not directly, but through its bonds. At most one edge can be con-
nected to the bond. Nodes at the different levels can be connected by the edge,
only connection between node and its ancestor is forbidden. Nodes and edges
are labeled and attributed (by means of node and edge labeling and attributing
functions respectively). Attributes may represent geometrical properties (size,
coordinates), material characteristic or relation parameters.

Graphs represent structure of designed artifacts, which is sufficient at early
stages of design process. To provide mechanism for object description in final
stages of design process concepts of graph implementation and interpretation
were proposed. Implemented graph is a graph in which value of all attributes
is determined. Implemented graph represent exactly one real design and can be
in deterministic way interpreted. Interpretation is defined as a pair of functions,
which first assign geometrical objects to graph nodes and second establishes
proper relations between those objects according to knowledge encoded in graph
edges. More information about CP-graphs and h-CP graphs is provided in [5],
[6], [7]. An example of the hierarchical CP-graph is presented in Fig. 1.
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3 Evolutionary Methods

Intelligent methods are very closely coupled with the representation of data.
As hierarchical CP-graph was chosen as a data model a new set of ’genetic’
operators have to be designed for them, as standard genetic operators originally
designed for binary strings are not applicable anymore. Graphs have much more
complex internal structure than binary string, which require completely different
operators to enable construction of proper evolutionary process.

In binary strings meaning of a bit was defined by its position. Thus during
crossover operation exchanging appropriate parts of strings gives as a result
correct binary string, which represent valid design. To achieve same within graph
structures, kind of similarity relation has to be defined. This relation, called
homology is responsible for establishing homologous (having similar or identical
function) subgraphs of selected graphs and thus selects appropriate parts of
graph exchanged in the crossover process. This relation is defined, based on the
intendment of a graph part, not on the actual internal structure or on values of
attributes. Technically only labels of nodes will be taken into consideration.

The homology relation is defined on three levels, which differ in terms of
requirements. Context free homology is the weakest of them and requires two
subgraphs have the same number of nodes with identical labels at highest level of
hierarchy. The second one, called strongly context dependent homology has same
requirements as previous one extended with additional rule. Top-level nodes of
subgraphs have to have identically labeled ancestors up to the highest level of
hierarchy in parent graphs. Last one, weakly context dependent homology is
placed between both previously described relations. It takes into consideration
only direct ancestors of the subgraph top-level nodes. Extended description of
homology relation can be found in [7]. Based on homology relation, crossover
operator is defined.

In the mutation operator several subtypes can be distinguished. All opera-
tions in which graph structure is changed (adding and removing edges, adding
and removing subgraphs) are coupled into the group called structural mutation.
Second type, called value mutation is responsible for changing values of nodes
and edges attributes. Simultaneous change of attributes values for a group of
nodes is called macro-mutation.

Well-known selection algorithms can be used without any modifications. Fit-
ness functions are strongly coupled with actual design problem. Examples of the
crossover and the mutation operators as well as the selection algorithm and the
fitness function used in our work will be provided in the next paragraph.

4 Practical Development

Based on fundamentals presented in previous paragraphs, a customised evolu-
tionary algorithm for solving optimum skeletal structure problem was built. This
algorithm uses the canonical sequence of genetic algorithm: selection, crossover,
mutation, evaluation. This sequence is repeated until acceptable solution is found.
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Fig. 2. Optimal result obtained in one of topology optimization experiments

For the selection process two well-known algorithms were tested: the roulette
and the random choice without repeat. Several fitness functions were developed:
most of them are based on summarizing forces in particular bars. To evaluate
those forces external, professional commercial CAD tool called Robot Millen-
nium was used. Besides internal forces this tool provides reactions, displacements
induced by given load and performs and norm calculations as well. Best solution
found in particular generation is copied to next generation without modification,
which assures not loosing the best solution over whole evolution process.

To enable practical experiments all described concepts and algorithms were
implemented in the Java programming language. As a benchmark problem well-
known 2D cantilever truss was chosen.

In the first experiment, the optimum topology search was performed under
given nodal coordinates and given structural components. The cantilever is as-
sembled from a number of panels (minimal and maximal number of them was
configurable) of a certain type. We are looking for the best solution in the sense
of the number and the type of panels. On the data structure level panels are
encoded as nodes at highest level of hierarchy. The crossover is implemented as
exchanging groups of panels between graphs, the mutation - as removing, adding
or changing type of the panel (all operations belong to the type of structural
mutation). For the fitness evaluation variety of functions of bars lengths and
internal forces were used. The obtained optimum result is presented in Fig. 2.

During the experiment of optimum geometry search experiment, number of
elements, connections between them and properties of bars were kept constant.
Only positions of nodes were modified (minimum and maximum values for geo-
metric coordinates were configurable). The crossover was defined as in the previ-
ous experiment, while the mutation changed values of nodal coordinates (nodes
attributes - value mutation). The same fitness functions as in the previous exper-
iment were used. The best result obtained during one of experiments is presented
in Fig. 3.

In the next experiment - optimization of components - both the topology and
the geometry were fixed and properties of the components were variable. The
set of possible cross-sections was given a priori. We were looking for the optimal
solution in the sense of cross-sections defined for particular bars. The crossover
remains as in previous experiments, while the mutation changes values of mate-
rial attributes assigned to nodes. As this change is performed simultaneous for
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Fig. 3. Best result obtained in one of geometry optimization experiments

Fig. 4. Optimal result obtained in one of components optimization experiments

the whole panel the macro-mutation is used. The fitness was measured as the
overall structural weight. The optimum solution is shown in Fig. 4.

All described experiments were performed in manual and automatic mode. In
the manual mode user set initial parameters for the genetic algorithm and begin
optimization for specified number of generations. After that he can take decision
if change some values of parameters and continue evolution for some additional
number of generations. In automatic mode user also begins optimization process
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Fig. 5. Geometry optimization. Best individual fitness in dependence of generation
number. Self-adaptive algorithm shows better convergence in late stages of process.

with setting initial parameters for the genetic algorithm. After that evolution is
controlled by the independent software module. Changes of the genetic algorithm
parameters and evolution stop are performed without any user interaction.

Changes of the genetic algorithm parameters during evolution process can sig-
nificantly improve performance, especially in late stages. In the manual mode
that changes requires constant user attention during statistics analysis and con-
sumes big amount of user’s time. The automatic mode shows its advantage in
this area: evolutions took less time (both user and general) as decisions are made
faster and without user interaction.

The full-scale optimisation process groups all three stages of optimization. It
begins with the topology optimization. Satisfying solution found in this process
is used as a basis for generating an initial population in the geometrical op-
timisation. After promising result at the geometrical level is found, it is used
similarly for starting the process of component optimisation. Process can be
controlled by the user or by the software module. Despite some limitations of
current implementation, experiments showed superiority of self-adaptive full-
scale optimization to decoupled series of optimizations in sense of number of
evaluations required to achieve similar results.

As a benchmark problem for the presentation, geometrical part of optimization
was chosen. Series of experiments showed that self-adaptive algorithm gave about
4% better results than classical algorithm within same number of generations.
Best individual fitness chart, based on data from sample experiment is presented
in Fig. 5.
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5 Conclusions and Future Work

We presented modified evolutionary algorithm defined on graph structures. It
was used to support skeletal structure design/optimization. Several evolution
strategies were tested. Strategy with dynamic changes of algorithm parameters
during evolution showed its superiority over strategy without the changes. Inde-
pendent software module was created to control changes during evolution and
showed its usefulness. The full-scale, software-controlled optimisation confirmed
its superiority over the decoupled manual-controlled mode.

Self-adaptive software module seems to be promising tool for evolution process
control. In the future we indent to extend the software module to an independent
agent that will control the whole optimisation process. This agent will not only
tune parameters of the evolution process at the subsequent stages, but will be
able to control several simultaneous populations on different levels and exchange
individuals between them.
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Abstract. Effective scheduling is of great importance to parallel programming 
environments. The aim is to minimize the completion time of task graphs. The 
completion time of a task graph is directly affected by the length of its critical 
path. Hence, the trend of an evolutionary approach for task graph scheduling 
can be biased towards reduction of the critical path. In this paper, a new genetic 
scheduling algorithm is presented. The algorithm, in the first priority, 
minimizes the critical path length of the parallel program task graph and in the 
second priority minimizes the inter-processor communication time. Thereby, it 
achieves a better scheduling in comparison with the existing approaches. 

1   Introduction 

Efficient scheduling is of great importance to achieve higher performance in parallel 
programming environments. Scheduling must be performed in such a way that it 
could minimize the completion time of parallel program code considering the time 
required to perform the program tasks and inter-processors communications. There 
are six known deterministic approaches to solve the task graph scheduling problem: 
ETF [11], DLS [18], LAST [3], HLFET [5], ISH [13], MCP [20]. Amongst these 
approaches MCP is known as the most efficient scheduling algorithm [14] and it has 
been suggested as a basis to evaluate scheduling algorithms [14]. However, optimal 
scheduling of task graphs is a NP-hard problem [4]. Therefore, deterministic 
approaches are not recommended for scheduling of task graphs with a relatively large 
number of tasks [4]. Instead, an evolutionary approach such as genetic algorithms 
may be applied to solve such problems, effectively [6], [8], [10], [16], [19]. 

The representation of a problem solution, encoding scheme, highly affects the 
speed of genetic algorithms. In HAR [10] encoding scheme a chromosome consists of 
an ordered list of numbers each representing the priority or height of the task as a 
function of its longest distance from starting nodes of the task graph. In this scheme 
precedence relation between the tasks depends on the height of the tasks. Therefore, 
even if there is no relation between two tasks with different heights those two tasks 
can not be executed in parallel. Hence, the search space in HAR may not contain, in 
general, any optimal solution for the scheduling problem under consideration. 

Solutions in CGL [6] approaches are represented as list of strings, each string 
corresponding to one processor of the target system. The strings maintain both the 
assignment and execution order of the tasks on each processor. However, this string 
representation which is similar to a sparse matrix entails a high amount of the main 
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storage and results in a crossing over operator which is relatively time consuming. 
Furthermore as described in [16], solutions generated by genetic operators do not 
generally resemble the solutions from which they are derived, a direct consequence of 
the rigidity of the string representation. 

To reduce the complexity of genetic operators a two structure representation for the 
solutions which is suitable for task partitioning is proposed in an algorithm called 
BCGA [16]. A major difficulty with this approach is that the number of processors 
used for the scheduling is limited to the number of clusters. Therefore, if the number 
of clusters, ncl, is less than the number of processors, npr, then npr- ncl processors will 
not be used for the scheduling. The solution representation in BCGA decomposes a 
schedule into two independent structures: a task-to-processor assignment matrix that 
stores the assignment of tasks to processors, and a topological-sort vector representing 
the execution order of the tasks in the schedule. This representation also disaffects the 
speed of the genetic algorithm. We have developed a simple chromosomal 
representation which, as shown in Sect. 2.1, results in a faster evolution compared 
with the above mentioned approaches, CGA and BCGA. In this representation, the 
order of allocation and execution of each task on parallel processors can be specified. 
Also the global order of the task execution in whole task graph is specified. 

The performance of a genetic algorithm is often sensitive to the quality of its initial 
population. The better the fitness of the initial population, the lower the number of 
generations required to get the final individuals. As described in Sect. 2.2, by creating 
a three quarter of initial population as graph scheduling with near minimal critical 
path length the convergence rate of our proposed algorithm is highly accelerated. In 
PSGA [8], FGL [6] and CGL [6] approaches inter-tasks communication costs are not 
considered whilst we have considered the cost of communication in our approach. 

Encoding schemes highly affect the performance of crossover operators. The 
encoding scheme presented in [19], has made it possible to have scheduling, resulted 
from applying crossover operator, with a same task assigned to several processors. 
We have applied a two-point crossover operator, which does not generate such a 
problem for scheduling of task graphs coded with our encoding scheme. As described 
in Sect. 2.5, since a two-point crossover operator often provides the highest power of 
search [7], a two-point crossing over operator is applied in our proposed algorithm.  

The remaining parts of this paper are organized as follows: In Sect. 2, a new 
scheduling algorithm is proposed. Section 2.4 presents an algorithm to compute the 
fitness of individual chromosomes. In Sect. 2.5, the crossover and mutation operators, 
applied within the proposed algorithm, are described. Practical evaluations of the 
proposed scheduling algorithm are presented in Sect. 3. 

2   Task Graph Scheduling Algorithm 

In this section a pseudo code description of our genetic scheduling algorithm is 
presented. The input to the algorithm is a parallel code partitioned and represented as 
a directed acyclic graph (DAG), G = (V, E), where V is a set of vertices or tasks of 
the parallel code and E is a set of directed edges between the tasks. Each directed 
edge represents the order of execution and the time required to communicate the tasks 
at the two ends of the edge. Apparently, the cost can be assumed zero when the tasks 
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Fig. 1. A sample task graph 

are executed on the same processor. Each vertex of the task graph is a pair 
representing the name and the execution time of the task. Below, in Fig. 1, a sample 
task graph [2] is presented. 

The aim is to find an optimal scheduling for running task graph on multiprocessors 
such that the total completion time is minimized. We assume that processors are fully 
connected [19]. In a task graph, nodes that have no predecessors are nominated entry 
node, and nodes that have no successors, are nominated exit node. As described above 
in Sect. 1, task scheduling is an NP-hard optimization problem which can be best 
solved by applying a genetic optimization approach [4] 

2.1   Chromosome Representation 

It is recommended to represent a scheduling or chromosome as an ordered list of 
strings. Each string represents the execution order of the tasks assigned to a specific 
processor [16]. The problem is the global order of the tasks executions which is not 
shown in these representations of scheduling solutions [6]. To resolve the problem a 
new representation of schedules based on the string representation is given Fig. 2. In 
this new encoding scheme, a scheduling solution is represented as an array of pairs 
(Ti, Pj) where Ti indicates the task number assigned to the processor Pj. Using this 
representation both the execution order of the tasks on each processor and the global 
order of the tasks executions on the processors are defined in each chromosome.      

As described above in the current string representations of scheduling solutions, 
the length of the strings representing the tasks assigned to each processor varies. This 
variation aggravates the complexity of the genetic scheduling algorithm. However, in 
the proposed representation, illustrated in Fig. 2, the length of the string 
representation of chromosomes are identical.  

T0 T2 T3 T1 T4 T5 T6 T11 T13 T12 T9 T10 T8 T7 T14 T15 T16 T17 T18 

P0 P1 P2 P0 P1 P2 P1 P1 P1 P1 P0 P0 P0 P2 P0 P1 P0 P1 P1 

Fig. 2. A chromosome created by scheduling the task graph in Fig. 1 
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2.2   Initial Population 

The evolutionary process of genetic algorithms starts with an initial population. The 
quality of the initial population affects the performance of the genetic algorithm. 
Having an initial population with acceptable fitness values, the speed of reaching an 
optimal solution will be increased dramatically [9]. Further, high diversity in the 
population inhibits early convergence to a locally optimal solution. In order to 
maintain diversity, in our proposed scheduling algorithm, about a quarter of the 
individuals of the initial population are created randomly. To have an acceptable 
fitness, the rest of the initial population is created by applying a new approach 
described in this section. 

Within a task graph the length of the critical path is equal to the earliest time to 
complete the scheduling. In our new approach to produce high quality chromosomes, 
the earliest start time for the tasks in a given task graph is calculated, firstly. The tasks 
are then sorted descending by earliest start time. A new algorithm for computing the 
earliest start time, Ttlevel (ni), for each task number, ni, is described in Fig. 3, below. 
This algorithm also finds the nodes on the critical path. The idea is to minimize the 
length of critical path in order to generate scheduling with minimum completion time. 

1: Initialize length, list of nodes and number of nodes on  
   critical path to zero: LenghtOfCriticalPath := 
       NodesOnCriticalPath := NumberOfNodesOnCriticalPath := 0. 
2: For each node  ni in V such that G = (V, E) Do 

       Initialize Ttlevel (ni), NodesOnLongestPathTo (ni) to ∅; 
                 Initialize NumberOfNodesOnLongestPathTo (ni) to 0. 
3: For each node  ni in V such that G = (V, E) Do Ttlevel (ni):=0. 
4: For each node ni in V Do ReferenceCount(ni) :=  # Parents(ni) 
5: For each node with no parents Do Add the node to ready list   

                 ReadyList := { ni ∈ V | ReferenceCount (ni) = 0} 
6: While the ready list is not empty Do 
       Select a node nk from the ready list, randomly. 
         For each child nj of node nk Do ReferenceCount(nj) += -1.   
          If ReferenceCount(nj)= 0 Then Append nj to the ready-list. 
          Set the Earliest start time of nj,Ttlevel (nj)= Max(Ttlevel(nj, 
                         Ttlevel(nk)+ExecutionTime(nk)+CommunicationCost(nk,nj))) 
          LenghtOfCriticalPath =  
       Max(LenghtOfCriticalPath, Ttlevel(nj + ExecutionTime(nj)) 
          If Ttlevel(nj)= Ttlevel(nk)+  
         ExecutionTime(nk+CommunicationCost(nk,nj)then  
     Copy NodesOnLongestPathTo(nk)onto NodesOnLongestPathTo(ni). 
            Append nk to the end of the list NodesOnLongestPathTo(ni). 
            Add 1 to NumberOfNodesOnLongestPathTo(ni). 
            If Ttlevel (nj) > LenghtOfCriticalPath Then   
        LenghtOfCriticalPath := Ttlevel (nj);  
                Copy NodesOnLongestPathTo(ni) onto NodesOnCriticalPath. 
                Put the Node ni at the end of NodesOnCriticalPath. 
                LenghtOfCriticalPath := Ttlevel (nj) + ExecutionTime (nj). 
                Add 1 to NumberOfNodesOnCriticalPath. 

Fig. 3. An algorithm to evaluate earliest start time and critical path 
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A reference count indicating the number of predecessors of a task which are not 
scheduled is assigned to each task within the task graph. The value of the reference 
count for the tasks with no immediate predecessors is zero. To assign tasks to 
processors, a task from within the tasks with reference count of zero is selected 
randomly. If the selected task is on the critical path then, in order to reduce the length 
of the critical path, the task will be assigned to the processor containing its parent on 
the critical path. Otherwise, to reduce the inter-task communication cost, the task will 
be assigned to the processor including tasks with proportionally higher number of 
communications with the task. After a task is assigned to a processor, the reference 
count of each task immediately after the task in the task graph is reduced by one and 
the task is removed from within the task list. The rest of the tasks are selected and 
processed as described above until there are no more tasks in the task list. 

2.3   A New Scheduling Algorithm 

Below in Fig. 4, a pseudo code description of our proposed algorithm is given. 

   1:Create initial population as described in Sect. 2.2: 
       Produce a quarter of the population randomly. 
       Produce the rest of the population as follows: 
          Find the earliest start time (EST) for each task. 
          Identify all the tasks on the critical path. 
          Sort tasks according to EST in a linear list, ascending. 
           Repeat Select randomly a task amongst the tasks ready to 

     schedule at the beginning of the linear list. 
               If the selected task is on critical path  
      Then Assign the task to the processor including the  

           previous task on critical path. 
               Else Assign the task to the processor including a task  
          with the highest interconnections with the task. 

Remove the selected task from the linear list.  
            Until the linear list of tasks is empty. 
   2: While no. generations is less than a given number Do 
            For each Chromosome in current population Do   

    Calculate its fitness value as described in Sect. 2.4. 
            Create intermediate generation as follows: 
             Add the fittest chromosome to the intermediate population. 
             Repeat Apply roulette wheel to select two chromosomes. 

 Apply the crossover operator, described in Sect. 2.5. 
 Apply the mutation operator, described in Sect. 2.5. 

            Until the intermediate population size is completed. 
            Copy the intermediate population over current population. 

Fig. 4. A new genetic task graph scheduling algorithm 

2.4   Computing Fitness of Chromosomes 

The completion time of a scheduling represents its fitness. To estimate the fitness, a 
new algorithm is presented in Fig. 5. In this algorithm a local timer is assigned to each 
processor. The timer indicates the last time when a task assigned to a processor is 
expected to complete. Current time is kept in a global timer. If the value of the global 
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timer is more than the local timer of a processor P then the processor is idle and it 
may execute a task which is ready to execute and assigned to the processor. A task is 
ready to execute if its parent tasks in the task graph are all executed. 

1: For each task, t, in the slected chromosome Do 
          Set its reference count equal to the number of immediate  
    parents of the task in the task graph. 
2: For each processor Pi Do set its local timer, Si, to zero. 
3: Set the global timer S to zero. 
4: Starting with the leftmost task T in the chromosome: Repeat 
         If referenceCount(T)#0 Then the chromosome is not acceptable 
         Let Pi be the processor to which task T is assigned. 
         Read the value of timer, Si, of Pi from the chromosome. 
         If S ≥ Si Then the processor is idle. 
              Add sum of S and execution time, t, of the task, T, to Si. 
              Add one unit of time to the global timer, S. 
         Else If S=Si Then the processor has finished with the task. 
         Reduce one from reference count of each child of the task. 
         Select the next task T from the chromosome. 
       Until all the tasks are scheduled. 
5: Set Fitness equal to the max(Si)for all processors, Pi. 
6: For each task Tj assigned to processor Pi Do If predecessors 
    of Tj are not assigned to Pi Then add communication costs 
          between Tj and each of its predecessors to the Fitness. 
7: Return Fitness as the fitness of the chromosome. 

Fig. 5. An algorithm to compute fitness value 

2.5   Crossover and Mutation 

To give chromosomes with a higher fitness a higher chance to parent new children 
during crossover, we select parents by applying a Roulette Wheel selection approach. 
The selected parents are combined by applying a two-point crossover operator. The 
cut points are selected randomly. Two new children are created by swapping the 
processors assigned to the tasks within the cut points in the parents. An example of 
the crossover operation is given in Fig. 6. 

Parent 1: 
T2 T3 T1 T4 T6 T8 T7 T5 
P2 P1 P0 P1 P1 P0 P0 P2 

Parent 2: 
T1 T2 T4 T3 T5 T7 T8 T6 
P1 P2 P0 P1 P2 P2 P0 P1  

Offspring 1: 
T2 T3 T1 T4 T6 T8 T7 T5 
P2 P1 P0 P1 P2 P2 P0 P2 

Offspring 2: 
T1 T2 T4 T3 T5 T7 T8 T6 
P1 P2 P0 P1 P1 P0 P0 P1  

Fig. 6. An example of crossover 

Reproduction also involves mutation, a random swap of processor assigned to two 
tasks in each selected chromosome of the new population. The primary purpose of 
mutation is to increase variation in a population.  
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3   Experimental Results 

In this section the performance results and comparison of our proposed genetic 
algorithm is presented. In Fig. 7, our proposed genetic scheduling algorithm is 
compared with the well known algorithm of MCP [20] and five other scheduling 
algorithms [3], [5], [11], [12], [17]. The comparison is made by applying our 
algorithm to the task graph presented in reference [1] and used by MCP and the other 
five algorithms. The task graph of reference [2] is redrawn in Fig. 1. The results of 
comparison are shown in Fig. 7. It is observed that the proposed genetic algorithm 
results in a better scheduling than algorithms (3) to (7) and it produces the same result 
as LC. However, in LC algorithm the number of processors is determined by the 
algorithm [17]. In addition since scheduling is NP-hard, the proposed algorithm runs 
faster when the number of tasks grows. 

(a) The Proposed Genetic Algorithm (PGA) parameters: 
   Population Size = 30, Number of Generations = 150, Number of Processors = 3, 
   Crossover probability = 0.8, Mutation probability = 0.05. 

(b) Scheduling results:  
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LC 
[17] 
(2) 

Our PGA 
(1) 

Algorithm  
[Ref. No.]  
(Alg. No.) 

40 43 41 41 40 39 39 Completion Time 

(c) Scheduling produced by proposed GA (PGA): 
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Fig. 7. A Comparison of the completion times for scheduling a task graph with 7 algorithms 

The evolution of the chromosomes, while applying our proposed genetic algorithm 
in the above example, is shown bellow in Fig. 8. Also, in order to demonstrate the 
reliability of the result obtained in the above example, the results obtained by thirty 
runs of the algorithm to schedule the task graph [1] are compared in Fig. 8. 
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Fig. 8. Best fitness in 100 generations and fitness obtained in 30 runs 

Below in Fig. 9, the results of comparing the proposed algorithm with an algorithm 
called Standard GA are shown. To demonstrate the stability of the results, both the 
algorithms have been applied 30 times to the random graph depicted is Fig. 9. Also in 
Fig. 9, the qualities of the first generations produced when applying the two 
algorithms are compared. 

     Genetic Algorithm parameters: Population Size = 30, Number of Generations = 150,  
     Number of Processors = 3, Crossover   Probability = 80%, Mutation Probability = 5%. 

 

(a) Proposed GA., Fitness = 302 
0 1 3 5 2 6 8 4 7 9 11 12 10 13 14 15 16 17 20 18 21 19 24 22 23 
0 1 2 0 1 0 2 0 1 0 1 2 1 0 2 0 1 2 2 0 2 1 2 1 1 

(b) Standard GA., Fitness = 330 
3 1 0 5 2 8 7 4 11 6 10 12 14 13 9 17 16 18 15 21 20 19 22 23 24 
2 2 1 0 0 2 0 1 0 1 0 2 2 0 1 2 1 1 0 2 1 2 0 1 2  

Fig. 9. Comparison of the proposed and the Standard genetic scheduling algorithm 
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Fig. 10. Comparison of applying CGL, BCGA and PGA on FFT graphs (a) and Parallel time 
and number of processors (b) 

Fast Fourier Transformation (FFT) and Internal Rate of Return IRR graphs provide 
a useful benchmark for evaluating the performance of scheduling algorithms [15]. In 
Fig. 10 (a), the results of applying our proposed algorithm, PGA, on FFT and IRR 
graphs are compared with the results presented in [15].  

A comparative analysis of the speedup and performance can be delivered by 
comparing the results of applying the proposed algorithm, PGA, on the FFT and IRR 
graphs with the results in reference [4]. Speedup is defined as the ratio of serial time 
to parallel time and efficiency is the ratio of speedup to the number of processors 
used. In Fig. 10 (b) the parallel time and number of processors used, is shown. 

4   Conclusions 

Task graph scheduling problem is NP-hard. Scheduling can be considered as an 
optimization problem. To solve this NP-hard problem, non-deterministic approaches 
such as genetic algorithms are quite effective. 

A task graph scheduling can be best encoded as an array, where each cell of the 
array represents a task and the processor to which the task is assigned. Considering 
the fact that the completion time of a scheduling is directly affected by the length of 
the critical path of the corresponding task graph, the objective of a genetic scheduling 
algorithm can be to minimize the length of the critical path. In this way, the fitness of 
each chromosome in a population is dependent on the length of its critical path. 
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Abstract. The recently discovered Yang-Baxterization process for the
quantum double of the dihedral group algebra, is presented keeping on
mind the quantum computation. The products resultant from Yang-
Baxterization process are interpreted as universal quantum gates us-
ing the Bryslinski’s theorem. Results are obtained for two-qubits and
two-qutrits gates. Using the Zhang-Kauffman-Ge method (ZKGM), cer-
tain Hamiltonians responsible for the quantum evolution of the quantum
gates are obtained. Possible physical systems such as anyons systems are
mentioned as referents for practical implementation.

1 Introduction

In the present work we intend to use the methodology given in [1] with the aim to
exploit within the quantum computing the findings of reference [2]. This metho-
dology consists in to construct the quantum gates, starting from unitary repre-
sentations of certain groups and algebras which appear in geometric topology
and they refer direct and naturally to structures of topological entanglement.
Examples of such algebraic structure are: the braid group, the Iwahori-Hecke al-
gebra [3], the Temperley-Lieb algebra [4], the Birman-Wenzl-Murakami algebra
[5], and so on. Examples of structures with topological entanglement are braids,
knots, links, tangles, and so on.

From the other side, a very similar equations to the braid relation, appear in
physics as the integrability conditions for certain systems of statistical physics [6].
Such equations are generically named the Yang-Baxter equations (YBE). One of
this equations is called the QYBE and carries certain spectral parameter. Recently
has been proposed that universal quantum gates can be derived from unitary so-
lutions of the QYBE [1], being such unitary solutions derived, using a procedure
which is named Yang-Baxterization [7]. Also recently the Yang-Baxterization of
the quantum doubles of finite groups such as the dihedral group [2] was discov-
ered and associated with certain kinds of anyon systems. In the present work we
intend to use the methodology given in [1] with the aim to exploit within the quan-
tum computing the findings of reference [2]. Our principal objective here is to
understand more clearly the relationships among quantum universality, quantum
entanglement, topological entanglement and anyon computation.
� This research was supported by EAFIT UNIVERSITY (grant # PY0511).
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2 The Zhang-Kauffman-Ge Method

In this section we collect the basic elements to understand the ZKGM of Yang-
Baxterization that produces universal quantum gates and also possibly quantum
algorithms for the computation of the knot invariants. (In the present work only
are considered the questions about the relation between Yang-Baxterization and
universal quantum gates via the Bryliski theorem [1]. The exploration of the re-
lations between Yang-Baxterization and knot invariants via quantum algorithms
will be realized in future investigations). The basic elements of the ZKGM are:
the braided YBE and the QYBE. The braided YBE is defined as

(Ř ⊗ 1I)(1I ⊗ Ř)(Ř ⊗ 1I) = (1I ⊗ Ř)(Ř ⊗ 1I)(1I ⊗ Ř) , (1)

and the QYBE has the form

(Ř(x) ⊗ 1I)(1I ⊗ Ř(xy))(Ř(y) ⊗ 1I) = (1I ⊗ Ř(y))(Ř(xy) ⊗ 1I)(1I ⊗ Ř(x)) , (2)

where Ř and Ř(x) are square matrices of order d2 and 1I is the identity matrix of
order d, being d the dimension of certain Hilbert space. With these elements, it
is possible to understand the Yang-Baxterization procedure as one that derives a
unitary solution of the QYBE (2) starting from a unitary solution of the braided
YBE (1). Note that this procedure is originally associated with the braided YBE
directly derived from the braid relation of the braid group.

The solutions of (1) and (2) are square matrices of dimensions 4, 9, 16, .... The
most simple solutions appear obviously for dimensions 4, 9. The solutions with
four dimensions correspond with universal quantum gates for a system of two
qubits. The solutions with nine dimensions corresponds with universal quantum
gates for a system of two qutrits. In the present work only the cases for qubits and
qutrits are considered. Now the ZKGM proposes to use the brylinskis theorem
with the purpose to obtain the range of variation of the spectral parameter x,
for which the solution of (2) is a universal quantum gate. Finally the ZKGM
introduces an evolution equation of the Schrödinger kind which has the form

i
∂ψ(x)

∂x
= H(x)ψ(x), H(x) = i

∂Ř(x)
∂x

Ř−1(x) . (3)

In the equation (3), the spectral parameter x takes the role of the time t. When
the equation (3) is applied for a matrix that is solution of (2) a hamiltonian is
obtained. This hamiltonian is certain matrix which can be rewritten as a sum
of tensorial products on Pauli matrices. For hence it is possible to consider the
resultant hamiltonian like one that corresponds to a system of spin 1/2 chains.
This physical system is the referent for certain kind of topological quantum
computation. More details can be found on [1]. The principal purpose of the
ZKGM is to understand the complex relations among quantum universality,
topological entanglement and quantum entanglement.
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3 The Dancer-Isaac-Links Method

The ZKGM entails the application of the Yang-Baxterization of the braid
group. It is clear that is possible to apply the ZKGM for other algebras that
appear in geometric topology such as previously mentioned, Temperley-Lieb,
Birman-Wenzl-Murakami, and their generalizations. In the present work we in-
tend to apply in quantum computing the Dancer-Isaac-Links method (DILM)
of Yang-Baxterization which uses the dihedral group or more technically the
quantum double of the group algebra of the dihedral group D(Dn). The Yang-
Baxterization procedure used by the DILM is the same that is used in the ZKGM.
The principal difference between DILM and ZKGM is that ZKGM applies the re-
presentations of the braid group Bn while the DILM applies the representations
of D(Dn). Other difference is that the braid group Bn of the ZKGM is directly
related to the topological entanglement while for the D(Dn) of the DILM it is not
the case. But these methods have on common that the corresponding algebras
can be considered as fusion and braiding rules for systems of anyons.

Finally within the DILM is possible to construct universal quantum gates
and hamiltonians, but such constructions are not presented in the fundamental
reference [2]. Our principal contributions in this work will be presented in the
following two sections on which we use the results of DILM according with the
lines on quantum computing proposed in the ZKGM.

4 Two-Qubits Universal Quantum Gates

We start here from the matrix taken from [2]

Ř =

⎡

⎢⎢⎣

ωj 0 0 0
0 0 ω−j 0
0 ω−j 0 0
0 0 0 ωj

⎤

⎥⎥⎦ , (4)

where ω = exp(2πi/n) and 0 ≤ j < n. The Ř matrix given by (4) is a uni-
tary matrix and it is a solution of the braided YBE. Such matrix is naturally
associated with the two-dimensional irreps of D(Dn) [2]. We consider the ma-
trix Ř of (4), being unitary, as a universal quantum gate and given that Ř of
(4) is a representation of D(Dn) which is the dynamical algebra of a certain
system of anyons, then the Ř can be considered as an operator that performs
anyonic entanglement, it is to say an operator that performs fusion and braiding
for anyons. >From other side, it is possible to show that Ř of (4) also perform
quantum entanglement when such matrix actuates on Hilbert spaces that repre-
sent quantum states of two qubits. The action of Ř over the basic states of two
qubits is

Ř | 00〉 =wj | 00〉 , Ř | 01〉 = w−j | 10〉 , (5)

Ř | 10〉 =w−j | 01〉 , Ř | 11〉 = wj | 11〉 .
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At the sequel we consider now the following quantum state for a single qubit
| ψ〉 = | 0〉+ | 1〉, and for hence we can obtain the following disentangled quantum
state for two qubits

| ψ〉 ⊗ |ψ〉 = | 00〉 + | 01〉 + | 10〉 + | 11〉 . (6)

Now the action of the quantum gate Ř over the disentangled state (6) gives

| φ〉 = Ř(| ψ〉 ⊗ | ψ〉) = wj | 00〉 + w−j | 01〉 + w−j | 10〉 + wj | 11〉 . (7)

The resultant state (7) is entangled when w2j �= w−2j , or equivalently when
j �= 0, j �= n/4, j �= n/2, j �= 3n/4, j �= n. Now from Yang-Baxterization the
following Ř(x) matrix is obtained [2]

Ř(x) =

⎡

⎢⎢⎣

ωj − ω−3jx2 0 0 0
0 (ωj − ω−3j)x −ω−j(x2 − 1) 0
0 −ω−j(x2 − 1) (ωj − ω−3j)x 0
0 0 0 ωj − ω−3jx2

⎤

⎥⎥⎦ . (8)

The matrix of (8) satisfies the following unitary condition [2]

Ř(x)Ř(x−1) = (w−6 j + w2 j − 1
w2 j x2 − x2

w2 j
) 1I2 ⊗ 1I2 . (9)

In the reference [8] the unitary braiding operators were considered as universal
quantum gates. Posteriorly, in the reference [1], the unitary Ř(x)-matrices were
viewed as universal quantum gates with the help of the Brylinski’s theorem. Now
in this subsection we apply the ideas of [1] for the case of the Ř(x)-matrix given
by (8). The equation (10) shows the action of the operator Ř(x) of (8) over an
initial state denoted V1

V1 =

⎡

⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤

⎥⎥⎥⎥⎥⎦
, V2 = R (x)V1 =

⎡

⎢⎢⎢⎢⎢⎣

(
ωj − ω−3 jx2

)
a

(
ωj − ω−3 j

)
xb − ω−j

(
x2 − 1

)
c

−ω−j
(
x2 − 1

)
b +

(
ωj − ω−3 j

)
xc

(
ωj − ω−3 jx2

)
d

⎤

⎥⎥⎥⎥⎥⎦
, (10)

where V2 represents the final state. Now according with the Brylinski theorem,
the matrix of (8) is universal if and only if the following entanglement condition
is satisfied

K2
1 (x)ad − bc(K2

2(x) + K2
3(x)) − K2(x)K3(x)(b2 + c2) �= 0 . (11)

Assuming that the initial state V1 is disentangled (ad = bc), then the universality
condition is changed to

K2
1 (x)bc − bc(K2

2(x) + K2
3 (x)) − K2(x)K3(x)(b2 + c2) �= 0 . (12)
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where

K1 (x) = ωj − ω−3 jx2, K2 (x) =
(
ωj − ω−3 j

)
x, K3 (x) = −ω−j

(
x2 − 1

)
.

(13)
Using the formula for the hamiltonian given by (3) and using the matrix of

(8) we obtain the following hamiltonian

H(x) =

⎡

⎢⎢⎢⎢⎢⎣

F1 (x) 0 0 0

0 F2 (x) F3 (x) 0

0 F3 (x) F2 (x) 0

0 0 0 F1 (x)

⎤

⎥⎥⎥⎥⎥⎦
, (14)

where

F1 (x) =
−iB1 (x)

√
ρ (x)

−ωj + ω−3 jx2 , (15)

F2 (x) =
−i

√
ρ (x)

(
B2 (x) ω5 j(x2 − 1) + B3 (x) ω3 jx(ω4 j − 1)

)

−x2ω8 j − x2 + x4ω4 j + ω4 j
, (16)

F3 (x) =
−i

√
ρ (x)

(
B2 (x) ω3 jx(ω4 j − 1) + B3 (x) ω5 j(x2 − 1)

)

−x2ω8 j − x2 + x4ω4 j + ω4 j
, (17)

and being

B1 (x) = − 2
ω−3 jx√

ρ (x)
− 1

2

(
ωj − ω−3 jx2

)
d
dxρ (x)

(ρ (x))3/2 , (18)

B2 (x) = − 2
ω−jx√
ρ (x)

+
1
2

ω−j
(
x2 − 1

)
d
dxρ (x)

(ρ (x))3/2 , (19)

B3 (x) =
ωj − ω−3 j

√
ρ (x)

− 1
2

(
ωj − ω−3 j

)
x d

dxρ (x)

(ρ (x))3/2 . (20)

The hamiltonian (14) can be rewritten as

H(x) =
1
2
F1(x)(σz ⊗ σz + I ⊗ I) − 1

4
F2(x)(σz + I) ⊗ (σz − I) (21)

−1
4
F2(x)(σz − I) ⊗ (σz + I) + F3(x)(σ1 ⊗ σ2 + σ2 ⊗ σ1) ,

where we use the operators σx, σy, σz , σ1, σ2 for a particles of spin 1/2.
We show that the DILM when is applied according with the lines of ZKGM,

produces universal quantum gates via yang-baxterization for various values of
the spectral parameter. The Ř(x) given by (8) is able to generate quantum en-
tanglement but it has no direct relationship with the topological entanglement.
This matrix has an origin inside anyon systems with quantum dihedral sym-
metry(dihedral anyons). These indicate that results that were presented in this
section may useful for to understand the relations between quantum universality,
quantum entanglement, topological entanglement and dihedral anyons.
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5 Two-Qutrits Universal Quantum Gates

In quantum computing may be necessary the introduction of one and two- qutrits
universal quantum gates. For then, in this section we show the construction of
two-qutrits universal quantum gates via Yang-Baxterization of three dimensional
representations of the quantum double of certain dihedral group algebras. The
procedure is similar that it was presented in the previous section and for hence
we just will show the final results. In the reference [2] was discovered a new
21-vertex model for a system of anyons with D(D3) or D(D6) symmetry with a
fundamental representation which is three-dimensional. We argue here that such
system of anyons can be used for implementation and processing of systems with
one and two qutrits. Particularly via Yang-Baxterization we obtain two-qutrits
quantum gates. The details are as follows. We start from the Ř given by [2]

Ř = (−1)b

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 (−1)a 0
0 0 (−1)a 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 (−1)a 0 0
0 (−1)a 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

with a = b = 0, whose eigenvalues are:

{(−1)
2
3 , (−1)

2
3 , −(−1)

1
3 , −(−1)

1
3 , 1, 1, 1, 1, 1} . (23)

Via Yang-Baxterization the following Ř(x) matrix is obtained [2]

Ř(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1(x) 0 0 0 0 0 0 0 0
0 G2(x) 0 0 0 G3(x) G4(x) 0 0
0 0 G2(x) G4(x) 0 0 0 G3(x) 0
0 0 G3(x) G2(x) 0 0 0 G4(x) 0
0 0 0 0 G1(x) 0 0 0 0
0 G4(x) 0 0 0 G2(x) G3(x) 0 0
0 G3(x) 0 0 0 G4(x) G2(x) 0 0
0 0 G4(x) G3(x) 0 0 0 G2(x) 0
0 0 0 0 0 0 0 0 G1(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

were G1(x) = x2 − x + 1, G2(x) = x, G3(x) = 1 − x, G4(x) = x(x − 1). The
matrix of (24) satisfies the following unitary condition [2]

Ř(x)Ř(x−1) =
[
G1(x)
G2(x)

]2

1I3 ⊗ 1I3 , (25)
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which is immediately verified. Finally from the Ř(x) matrix of (24), the following
hamiltonian is derived

H(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 (x) 0 0 0 0 0 0 0 0

0 F2 (x) 0 0 0 F3 (x) F4 (x) 0 0

0 0 F2 (x) F4 (x) 0 0 0 F3 (x) 0

0 0 F3 (x) F2 (x) 0 0 0 F4 (x) 0

0 0 0 0 F1 (x) 0 0 0 0

0 F4 (x) 0 0 0 F2 (x) F3 (x) 0 0

0 F3 (x) 0 0 0 F4 (x) F2 (x) 0 0

0 0 F4 (x) F3 (x) 0 0 0 F2 (x) 0

0 0 0 0 0 0 0 0 F1 (x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where

F1 (x) =
iA1 (x)

√
ρ (x)

G1(x)
, (27)

F2 (x) =
−i

√
ρ (x)(A4(x)G4(x) − A3(x)G3(x) − A2(x)G2(x))

G2
1(x)

, (28)

F3 (x) =
i
√

ρ(x)(A2(x)G4(x) + A4(x)G3(x) + A3(x)G2(x))
G2

1(x)
, (29)

F4 (x) =
i
√

ρ(x)(A3(x)G4(x) + A2(x)G3(x) + A4(x)G2(x))
G2

1(x)
, (30)

being

Ai (x) =
d
dxGi (x)√

ρ (x)
− 1

2
Gi (x) d

dxρ (x)

(ρ (x))3/2 for i = 1, 2, 3, 4 . (31)

The hamiltonian (26) is a nine-dimensional operator which can be rewritten as
a sum of tensorial products between three-dimensional spin-1 operators. This
hamiltonian corresponds to a chain of spin-1 anyons and such system is able to
process qutrits. It worthwhile to remark that the Ř(x) given by (24) has no an
intrinsic topological origin, since the dihedral group is very different to the braid
group, but this matrix is able to produce quantum entanglement despite it has no
direct relation with topological entanglement. This matrix has a direct relation
with dihedral anyon systems and for hence its universality is a consequence of
the anyon physics. The systems of qutrits are expected have an amplified power
of computation with respect to the system of qubits. The results thrown some
light about the relations among quantum entanglement, topological entangle-
ment, universality and anyon computation, from a more wide perspective that
it corresponds to the standard qubits.
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6 Conclusions

Our principal contribution in this paper to the anyonic topological quantum com-
puting was the application of DILM in quantum computing with the guidance
of the ZKGM. We believe that such application is new in quantum computation.
The principal novelty was the introduction of dihedral anyons without the neces-
sity to invocate some kind of structure of topological entanglement(braids). We
use only the dihedral quantum double when this is assumed as the dynamical
symmetry for certain class of anyon systems. In this way the universal quantum
gates have a physical referent from the beginning which it is not the case for the
ZKGM.

With respect to the future lines of research is worthwhile to note here that
ZKGM can extended in such way that is possible to have quantum algorithms
for the computation of invariants for knots and links, starting from the repre-
sentations of braid group. In this perspective is very interesting to consider the
possibility of existence of quantum algorithms for link invariants starting from
representations of D(Dn).
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Abstract. This paper introduces a new study in evolutionary computation 
technique in order to learn optimal configuration of a multilayer neural 
network. Inspired from thermodynamic perception, the used evolutionary 
framework undertakes the optimal configuration problem as a Bi-objective 
optimization problem. The first objective aims to learn optimal layer topology 
by considering optimal nodes and optimal connections by nodes. Second 
objective aims to learn optimal weights setting. The evaluation function of both 
concurrent objectives is founded on an entropy function which leads the global 
system to optimal generalization point. Thus, the evolutionary framework 
shows salient improvements in both modeling and results. The performance of 
the required algorithms was compared to estimations distribution algorithms in 
addition to the Backpropagation training algorithm.  

1   Introduction 

Designing the architecture and correct parameters for the learning algorithm is a 
tedious task for modeling an optimal artificial neural network with better 
generalization performance. Often, the emerging needs to hybrid intelligent systems 
overcomes neural networks limits and becomes an optimal way to achieve synergic 
neural systems [2], [3], [18]. Despite the fact that many intelligent systems undertake 
to increase neural performance, the co-evolution of learning and self-organization 
behaviors become the best natural means to highlight the fundamental behavior 
criterion of neural adaptation. Hence, one of the most commonly ascribed approaches 
to reach adaptive continuous updating consisted in matching the neural network 
modeling capabilities with the adaptation properties of evolutionary computation [4], 
[5], [8]. 

Evolutionary Artificial Neural Networks EANN framework conjugates the 
potentialities of evolutionary computation and the neural networks capabilities [4], 
[9], [18], [12] to optimize several tasks like connection weights training, architecture 
topologies [1], [10], [11], [19], [20], [21], [22]. Although EANN formalism raised and 
many satisfactory results obtained, the subject receives still and much frequently 
interest. Evolving neural system to acquire concurrently optimal neural topology and 
optimal weights is always an attractive goal, especially when it is always possible to 
improve generalization performance. Moreover, to draw such perspective, our 
research studies were motivated by the following observations:      
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• Demonstrate the strongly reliability of a neural network on evolutionary 
computation. The causality relation implies the dominance of the evolution 
metaphor which ensures the training of a neural network. Herein, evolutionary 
computation largely contributes to outperform neural learning than the opposite 
case.   

• Increase the effectiveness of both the accuracy of classification and generalization. 
This is meaningful by integrating self-adaptive behavior as a relevant 
characteristic to guide the evolution of optimal neural network configuration.    

• Map a new semantic to the evolution mechanic by including a thermodynamic 
evolution principal as evaluation function of the global system. Also, it is 
worthwhile to note that the process of problem solving develops an evolutionary 
dynamism which considerably raises the system capacities through a lower order 
convergence time complexity.     

In the following, we introduce Sect. 2 that exposes briefly some notions and notations 
about multilayer neural network. Section 3 explains the proposed framework for 
evolubility of a neural network; Sect. 4 describes experiments for classification 
problems which lead to some comparisons between estimation distribution algorithms 
and Backpropagation algorithm. Finally, Sect. 5 concludes the elaborated working.      

2   Artificial Neural Networks 

In literature, a neural net is defined as a graph ( )N,A,ΨG , where N is a set of neurons 
(or nodes), A denotes neurons connections (also called arcs or synapses), and 
Ψ represents the leaning rule whereby are able to adjust the strengths of their 
connections. A neuron receives its inputs from an external source or from others 
neurons in the graph. It then undertakes some processing on this input and sends the 
result as output. The underlying function of a neuron is called the activation function. 
Hence, each neuron computes its activation as a weighted sum of the inputs to the 
node in addition to a constant value called the bias. From herein, the following 
notations will be used form a one hidden multilayer neural net:     
 
• I  and H are the number of input and hidden units respectively. 

• ( )y,x
pp is the training pattern ( )xxxXx p

I
ppp ,,, 21 …=∈ and Pp …1= ., is 

pth pattern in the input feature space X of dimension I , P is the total number of 

patterns, and YY P ∈ the corresponding scalar of pattern x p in the hypothesis 
spaceY . 

• wih and wh0 are the weights connecting input unit i to hidden unit h , and hidden 

unit h to output unit o respectively. 

• ( ) ( )ax k
p

h σ=Φ , wwa p
i

I

i
ihh ∑=

=1
, Hh …1= , is the hth hidden unit's output 

corresponding to the input pattern x p , where ah is the activation function. The 
common node function (sigmoidal or logistic, tangent hyperbolic function etc) are 
differentiable to arbitrary order, which implies that the error is also differentiable 
to arbitrary order. 
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• ( )aσY
P

0ˆ = , ( )xwa p
h

H

h
h Φ∑= 00  is the network output and ao is the activation of 

output unit o corresponding to the input pattern x p . 
 
In practice, multilayer neural networks are used as non-parametric regression methods 
that approximate underlying functionality in data by minimizing an error function. 
The notion of closeness on the training set P is typically formalized through an 

approximated empirically function defined as an error function such as ( )∑ −
=

P

p
YY

pp
1

2
ˆ . 

Obviously, in learning state the neural network requires more than one objective 
function. In addition to the error function which purpose is to evaluate the 
performance of the learning parameters, it is also important to specify the leaning rule 
that determines efficiently optimal weights. Commonly, the learning by iterative 
gradient descent such as Backpropagation and its other extensions seems to be 
adequate algorithms. But, in most cases these algorithms encounter certain difficulties 
in paractice, like: the convergence tends to be extremely slow, convergence to the 
global minimum is not guarantee, learning constants must be guessed heuristically. 

3   Bi-objective Optimization Through Multi-scaled Learning 

From the point of view of optimization, evolutionary computation is a powerful 
stochastic zeroth order method, requiring only values of the function to optimize. In 
literature, the reasons to choose evolutionary computation to deal with architecture 
design were summarized according to the following landscape criteria: 
 
• Infinitely large surface  
• Non-differentiable surface  
• Complex and noisy surface (between architecture and performance)  
• Deceptive surface (similar architecture, but different performance)  
• Multimodal surface (different architecture, but similar performance)  
 

In our current research studies, the evolutionary “operational” semantic is 
provided by a dynamism degree of evolution function. Indeed, this macroscopic 

landscape function which entails a pseudo-temperatureT will be able to simulate the 
energy of the global system in order to drive the system to an equilibrium state with 
optimal configuration. Consequently, all neural elements become subject to 
microscopic laws of mechanics substantially guided by the dynamic of mutation rates.  

The elaborated framework represents the first machine inspired by both statistical 
mechanics to learn mutation rates in order to update the neural environment structures 
(chromosomes), and thermodynamic metaphor as an evaluation heuristic to reach 
equilibrium state of the system. In other words, this machine is able to achieve the 
optimal convergence state relating on the maximum energy of the system at final state.  

This new version of energy landscape entropy-based comes to improve some 
weakness of the system when we elaborated the first energy function which involved 
an exponential evaluating [14] and regardless to substantial mechanics.   
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Let us now drawing the global behavior of the system: a set of neural structures 
(connection chromosomes and weights chromosomes) are evolutionary evolved in 
time to reach optimal structures according to a learning kernel. This evolutionary 
multi-scaled kernel embodies an entropy function to both control the system 
equilibrium (maximum energy) and self-adapt microscopic laws of evolution 
probabilities. We expose at first scale the optimization mechanism of connection 
structures and in second scale the driven mechanism entropy-based which supervises 
both connection and weight structures.    

3.1   Self-organization of Neural Maps 

Self-organization of neural maps represents a learning task which aims to obtain 
dynamic and variable neural structures. The lowest network complexity is itself a bi-
objective problem insofar as the learning procedure should be able to determine both 
the optimal layer topology (optimal hidden nodes) and the optimal fan-in (the reduced 
number of connections neighbors) for each hidden node. It is well known that a 
network that is too big for a particular classification task is more likely to overfit the 
training data and have poor performance on unseen examples (i.e., poor 
generalization) than a small network.     

First Phase. We lunch the evolution according to a descendent learning approach in 
order to reduce the vicinity of the network (hidden nodes) for each network layer and 

for each neural network Ω∈η i  ( Ω is the neural networks population). The 

descendent learning procedure applies mainly three steps: 
 

• Configure the static design of an individual neural net η i with hmax hidden nodes 

in jth hidden layer. The configuration number hmax could be fixed either 

empirically or heuristically   
• Construct for each hidden node k a randomly connection structure (by 0 or 1) 

• Resize the connectivity of each layer according to ( )ηi
jSizeReduce  function which 

applies two updating rules respectively defined by (1) and (2) : 

It is assumed that if one connection link does not exist, it is automatically removed 
from the network. 

⎪
⎪
⎩

⎪
⎪
⎨

⎧ ⎟
⎠
⎞⎜

⎝
⎛

=⎟
⎠
⎞⎜

⎝
⎛

=

0Connect1

0Connect0

η

η
ϖ

i
jk

 
i
jk

 

m

               

       

 

 

(2) 

( ) ∑=
−≤h 1j

Connect
m

m
i
jk ϖη  (1) 
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Function ( )ηi
jSizeReduce   

Input: h j  

hh jj ←′   {Assuming that hh j max=  at the beginning} 

For each node 1=k to h j 1−  then  

 If ( ) 0Connect =ηi
jk then 1−′=′ hh jj { k th hidden node is removed)  

 Compute ( )ηi
jkConnect   

Output h j′  

End.    

Second Phase. This phase selects valid networks those considered as competitive in 
the population by means of a score evaluation function. The used heuristic relies on 
considering the state of hidden neurons. A hidden neuron is actually active when it 
has at least one connection link with neurons of lowest layer. The score of a neural 

η i strongly depends on the score of each hidden layer net designed byϖ j , 

where Nj H≤≤1 and N H is the number of hidden layers. The schedule of the 

evaluation is described by the following main steps:   
 

• Evaluate the score of η i following learning heuristics described by (3) and (4) : 

1 if

0 otherwisej

act πj j

ϖ
≥⎧⎪= ⎨

⎪⎩

 
(4) 

act j is the number of active neurons in layer j , and
α

H
π

j
j =  is an empirical value with  

{ }4,3,2=α . 

• If ( ) N H
i =ηScore then we selectη i as a competitive solution; otherwise η i will be 

rejected.     
 
This evaluation is carried out each generation, and the net could eventually change its 
morphological aspect following the connection constraint as shown in Fig. 1. 
However, this method stills a best way to select optimal network configuration before 
to lunch the learning behavior to train weight neurons. 

3.2   Thermodynamic Learning Entropy-Based 

Inspired from both thermodynamic principles and statistical principles, the 
evolutionary learning kernel (ELK) embodies mainly an entropy function to measure 
the energy of the system in order to: 

( ) ∑=
≤NHj

Score ϖη j
i  (3) 
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• Self-adapt stochastic evolution operators like mutation probabilities  
• Self-adapt the selection rate at each generation 
• Control obviously the equilibrium state of the system to stop evolution.  
 

But as opposite to HelmHoltz free energy and Boltzmann machine, the principle of 
the system stability is inversed in the sense where the higher energy implies lower 
evolution probability and then a smooth stopping of the evolution. 

To define the entropy in the genetic context, we must understand first the evolution 
principle of all individuals in the population. For this intention, we should firstly 
consider the environment energy Z  as the difference ratio between the temperature 
T of the system at instant t and the maximal temperatureT max , secondly express the 
genetic entropy (5) as the phenotypic variability defined in terms of the environment 
energy. Thus, the entropy should be described by the following statement: 

(Z)a LogE −=  (5) 

Where
T

T
 Z

max

= , and  1Ta −=  (all parameters vary in time).  

At this stage, the entropy function acts as an adaptation function in a “chaotic” 
distribution. All following genotypic updating are strongly subject to the intensity of 
mutation probabilities described by equations (6) and (7):  

( )σp )(t
i −= +exp 1log  (6) 

( )Epi Log−=  (7) 

 
Fig. 1. Dynamic configuration of an optimal neural network 

The parameterization of evolution speed up and the speed moving in a multi-
dimensional search space constitutes our contribution to avoid extensive 
computational time.   
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Algorithm. Evolutionary neural learning entropy-based  
 0←t  {counter generation} 
 InitializeΩs a random population with static nets 

 Evaluate score-basedΩs  

 Construct the solutions populationΩD fromΩs     
 Repeat   
  1+← tt  
  If φ=ΩD  Then initialize Ps randomly with static nets            
  Else  
   CompleteΩD with valid solutions  

   Select best solutions  
   Compute Entropy function  
   Compute adequate probabilities Entropy-based     
   If (T converges toT max ) and ( pall k still negligible) 

   Then StateSystem←EquilibrumPoint {Stop evolution} 
   Else  
      Apply evolutionary operators 
      Evaluate score-basedΩs   

      ConstructΩs { Ω≡Ω sD } 
 Until (stateSystem = EquilibrumPoint) 

4   Experiments  

This section presents details of some efficient optimization algorithms used in the 
goal of comparing different generalization performances reached on data sets.   

4.1   Comparison Methods 

Estimation of Distribution Algorithms (EDAs). EDAs include a class of algorithms 
and were first introduced by Mühlenbein and Pâaß [15]. The template of EDAs [13], 
[16] can be described as follows: 
  
• Initialize population (usually randomly) 
• Select promising individuals 
• Estimate the distribution of those promising individuals (probabilistic model 

building) 
• According to the distribution (model), sample new solutions, and then go to step 2 

until the halting criterion is meet. 

The following experiments are tested with a simple genetic algorithm (sGA) and three 
distribution estimation algorithms (DEAs): a compact GA (cGA), an extended 
compact GA (ecGA), and the Bayesian Optimization Algorithm (BOA). Instead of the 
mutation and crossover operations of conventional GAs, DEAs use a statistical model 
of the individuals that survive selection to generate new individuals. Numerous 
experimental and theoretical results show that DEAs can solve hard problems reliably 
and efficiently.  
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4.2   Data Sets  

Table 1 introduces briefly the data sets used in the experiments and which are 
available in the UCI repository [6]. The parameters 1, 2, 5 mentioned with BP 
(Backpropagation) represent the number of epochs.  

4.3   Empirical Results  

Table 2 shows that the sGA and the BOA finished in similar number of generations 
(except for Credit-Australian), and were the slowest algorithms in most cases. On 
most data sets, the ecGA finishes faster than the other algorithms. However, the ecGA 
produced networks with inferior accuracy than the other methods or the fully-
connected networks in the Housing case. Despite the occasional inferior accuracies, it 
seems that the ecGA is a good pruning method with a good compromise of accuracy 
and execution time as reported in [7].   

Table 1. Description of the data sets used in the experiments 

   Features  Neural Networks  
Domain Cases class Cont. Disc. Input Output Hidden 
Breast Cancer 699 2 9 - 9 1 5 
Credit-Australian 659 2 6 9 46 1 10 
Credit-German 1000 2 7 13 62 1 10 
Housing 106 3 12 1 13 3 2 
Ionosphere 351 2 34 - 34 1 10 

 
We notice that all results provided by ELK are relatively better than those mentioned 
by others algorithms. This proves that the adaptation learning could improve 
performance better.   

Table 2. Performances classification accuracies obtained for each used algorithm 

Domain  ELK sGA cGA ecGA BOA 1 BP 2 BP 5 BP 
Breast Cancer 98.85 96.54 96.13 95.84 96.42 98.48 98.91 99.03 
Credit-Australian 87.01 85.78 85.75 86.18 85.84 84.12 83.75 83.32 
Credit-German 71.00 70.68 70.92 70.30 70.14 71.15 71.98 70.12 
Housing 77.36 75.36 67.11 64.18 66.24 68.77 70.91 69.54 
Ionosphere 87.88 84.61 82.95 82.22 84.22 68.43 69.43 67.86 

5   Conclusion 

In this paper, we introduce a learning framework to training feedforward neural 
networks. This perspective aided to get a clear vision in neural learning. The used 
ELK will be parameterize and eventually adapted in order to generalize its application 
to other neural architectures like Kohonen or radial basis networks. Even more than 
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an artificial vision the global view of the framework gives a real position in 
neuroscience. The model proves the rigid relation between the genetic metaphor and 
the control of brain connectivity. The functionality of each parameter and its 
granularity in the model ensures to the artificial brain memory the cognitive behavior.  
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Abstract. The paper presents one of additional mechanisms called distributed
frontier crowding which can be introduced to the Semi-Elitist Evolutionary Multi
Agent System—selEMAS and which can significantly improve the quality of ob-
tained Pareto frontier approximation. The preliminary experimental comparative
studies are based on a typical multi-objective problem presenting the most im-
portant features of the proposed approach.

1 Introduction

The approach of evolutionary multi-agent systems is both similar as well as different
from classical evolutionary algorithms. The key idea of EMAS is the incorporation of
evolutionary processes into a multi-agent system at a population level [6]. Thus EMAS
may be considered as a computational technique utilizing a decentralized model of evo-
lution, unlike (extending) classical evolutionary computation. It was already shown that
EMAS-based multiobjective optimization allows for obtaining high quality approxima-
tions of Pareto frontiers for both discrete and continuous multi-objective optimization
problems [9,7]. It has been also shown that on the basis of the EMAS further research
and more sophisticated approaches, models and mechanisms can be proposed [4,8,3].
For instance including the—borrowed from classical evolutionary algorithms—elitism
mechanism into an evolutionary multi-agent system in general, and into EMAS for mul-
tiobjective optimization in particular, is possible, quite simple in realization, and leads
to obtaining quite promising results [8]. It turns out, that model of semi-elitist evolu-
tionary multi-agent system allows for introducing further modifications responsible for
improving the quality of the Pareto frontier approximation. The model that is being
discussed in this paper introduces a special mechanism, which controls the dispersing
of individuals over the Pareto frontier, which is called distributed frontier crowding by
analogy to well-known niching technique of crowding.

The paper is organized as follows. Section 2 gives the details of the semi-elitist evolu-
tionary multi-agent system—as the basis of proposed here distributed frontier crowding
mechanism. In section 3 details of the realizations of the semi-elitist EMAS with distrib-
uted frontier crowding are presented. In section 4 the problem used for evaluation of the
proposed approach and comparison criteria are presented. Finally, the results obtained
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by selEMAS with distributed frontier crowding in comparison to results obtained by
EMAS and selEMAS, as well as by MOGA algorithm are discussed in the last section.

2 Semi-elitist EMAS for Multiobjective Optimization

The starting point for considerations about distributed frontier crowding mechanism
is a Semi-Elitist Evolutionary Multi-Agent System (selEMAS)[8] for multiobjective
optimization that should be perceived as a modification of the Evolutionary Multi-agent
System (EMAS)[9]—modification that—-according to the presented results—causes
significant improvement of the Pareto frontier approximation. Before the distributed
frontier crowding mechanism will be described in details in next section—below the
selEMAS approach is discussed.

Including elitism into EMAS may be obviously done in different ways. In the consid-
ered case, it is based on a slightly modified structure of the agents’ world (see fig. 1a).
In comparison to the structure of the EMAS environment (presented for example in [8])
the modification consists in introducing an additional, elitist type of an island, and a
special action that can be performed (only) by selected (elitist) agents allowing them
for migration to this very island. The exceptionality of the elitist island lies in the dedi-
cated elite-preserving operators that are applied to the elitist agents. Additionally, in the
“semi-elitist” island there is no evolution process, and there are only coming in paths
to this island(s). Thus agents, which decided to migrate to this island are not able to go
back from elitist to “ordinary” island(s), and in consequence they cannot take part in
the process of evolution. So, because this model assumes that identified elitist agents
do not take part in the evolutionary processes, the approach is called semi-elitist, even
though such external set storing the best individuals is referred as a kind of elitism in
the literature [1] and even though that since the best agents can not be removed from
the system—EMAS possesses the natural built-in elitist mechanism but and overview
of this mechanism is out of the scope of this paper.

Unfortunately, in case of multicriteria optimization since there are many objective
functions, it is not as straightforward as in the single-objective case to identify the elite.
In such situations, the non-dominating ranking comes to our rescue [2, p.240]. In the
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described realization the mechanism allowing for identification of the elite is based on
the level of additional (in comparison to the ”classical” EMAS) resource called prestige,
which is being gathered (and is not lost) by agents during their life. The level of prestige
at the beginning of agents’ life is equal to zero. Then, every time an agent dominates (in
the sense of domination relation) any other agent, its level of prestige increases, and so it
may be assumed that agents with high level of this specific resource belong to the elite.
This very mechanism allows—in quite elegant, easy to understand and to implement
way, that does not require any additional complicated operations and computations—
for the realization of the above-mentioned idea of non-dominating ranking.

Of course, the proposed mechanism requires the modification (in the comparison to
the ”classical” EMAS approach of course) of agent’s decision-making algorithm, which
can be formulated as it is shown in fig. 2a.

a)

Procedure Make_an_elitist_decision { 
   Make_a_decision() 
   if (prestige > elite_threshold) 
       Perform elitist action(s) 
 } 
 

b)

Procedure Perform_elitist_action() { 
    if (elitist island is not empty) 
        Introduce itself to the elitist agents 
        if (I am dominated by elitist agent(s)) 
            exit 
        if (I dominate elitist agent(s)) 
            Eliminate them from the system 
    Perform simple reproduction 
    Migrate to the elitist island 
} 
 
 Fig. 2. Make an elitist decision() procedure (a) and Perform elitist action() procedure (b)

The only difference between Make an elitist decision() procedure and ”classical”
Make a decision() procedure (i.e. between elitist and non-elitist agent’s decision mak-
ing) consists in adding an additional decision point and an additional block of opera-
tions1. The additional decision point is connected with checking if an agent belongs to
the elite. If so, the agent performs elitist actions.

The elitist action considered in the discussed approach consists in migration to the
elitist island. If this island is not empty, an agent tries to introduce itself to all other
members of the elite. If the agent discovers during this process that it is dominated by
another member of the elite it does not migrate. Next, if the agent meets during this
process agents that it dominates, it eliminates them from the system.

After all these meetings, when an agent is sure that it can migrate to the elitist is-
land, it performs a final action in its ordinary island, which is a simple reproduction
(i.e. cloning and then applying the mutation operator). Then it migrates to the elitist
island and begins (according to the assumption that the elite does not take a part in the
process of evolution) the only activity consisting in meetings with agents entering the
elitist island. Thus Perform elitist action() procedure can be formulated as it is shown
in fig. 2b.

1 One may ask why these decisions are made by agent at the end of its decision process. This is
because in all species the most important is to survive and to have offspring, and only if these
”necessities” are satisfied individual can satisfy its higher needs.
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3 Semi-elitist EMAS with Distributed Frontier Crowding

It turns out, that applying the described in the previous section semi-elitist operator(s)
into an evolutionary multi-agent system—despite of other advantages—gives the op-
portunity for introducing additional mechanism(s) responsible for improving dispersing
individuals over the Pareto frontier. This can be very useful, especially during solving
quite difficult problems with a disconnected Pareto frontier (and Pareto set as well). One
of such mechanisms is the technique that might be called distributed frontier crowding,
because it applies to criteria space—by analogy to the commonly used notion of crowd-
ing which applies to the solution space (search domain). Such mechanism can be real-
ized as follows: During the meetings, an agent is able to check if a solution represented
by its opponent is located in its surrounding (i.e. if the distance between solutions repre-
sented by the agents is less than the given value r). If so, an agent increases its personal
counter storing the number of individuals located in the same fragment of the objective
space. Additionally, asking its opponents for the number of individuals located in their
surroundings, an agent is able to gather with time the (partial) knowledge about the
average number of individuals located in areas represented by met agents. Thanks to
this, if an agent becomes the elitist one, it can make a decision about migrating to the
elitist island on the basis of the relation between the number of individuals located in
its surrounding and the average number of individuals located in other regions of the
objective space.

Procedure Perform_frontier_crowding_elitist_action() { 
    if (elitist island is not empty) 
        Introduce itself to the elitist agents 
        if (I am dominated by elitist agent(s)) exit 
    if (number of neighbors > avg. number of agents in other areas of the frontier) 
        if (number of my neighbors < m * avg. number of agents in other areas of the PF) 
            Perform simple reproduction action with macromutation 
        Migrate to the elitist island 
        if (I dominate elitist agent(s)) 
            Eliminate them from the system 
    else 
        if(k * number of my neighbors < avg. number of agents in other areas of the PF) 
            Perform simple reproduction with (micro)mutation 
} 

Fig. 3. Perform distributed frontier crowding elitist action() procedure

Of course such modified decisive process can be realized in many different ways.
In the simplest form, an agent may decide about migration if the number of its direct
neighbors is greater than the average number of individuals located in another areas.
Moreover, if an agent discovers that number of its direct neighbors is much lesser than
the number of individuals located in other areas of objective space, it can make a deci-
sion about reproduction with mutation (but this time mutation operator is applied with
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a very small range—sampling promising areas of the objective space). So, a modified
Perform elitist action() that takes into consideration the described above mechanism
can be formulated as it is shown in fig. 3.

Such mechanism (assuming k > m or even k >> m) allows for: deeper exploration of
the areas of the Pareto frontier which are worse sampled than its other regions, main-
taining the diversity of agents population and thus—avoiding evolution stagnation.2

4 Testing Problems and Comparison Criteria

The experimental and comparative studies are based on known from the literature test-
ing problem—i.e. on the so-called Kursawe problem. Its definition is as follows:

Kursawe =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1(x) =
∑n−1

i=0 (−10exp(−0.2
√

x2
i + x2

i+1))

f2(x) =
∑n

i=1 |xi|0.8+5sin x3
i

n = 3 −5 ≤ x1, x2, x3 ≤ 5

and in this case optimization algorithm has to deal with disconnected two-dimensional
Pareto frontier and disconnected three dimensional Pareto set. Additionally, a specific
definition of f1 and f2 functions causes that even very small changes in the space of
decision variables can cause big differences in the space of objectives. All of these
cause that Kursawe problem is quite difficult for solving in general—and for solving
using evolutionary techniques in particular.

In the literature there at least three criteria distinguishing high-quality approximation
of Pareto frontiers can be found: the closeness to the model Pareto frontier (the closer
the better), the number of individuals belonging to the proposed approximation (the
more the better), and the dispersing of individuals over the whole Pareto frontier [2].
All these criteria will be considered in the comparison below.

To present some reference points allowing for evaluation of the results obtained by
the proposed agent-based technique, two algorithms will be used i.e. ”classical” (non-
elitist) evolutionary multi-agent system and a classical (i.e. non agent-based) evolu-
tionary algorithm for multiobjective optimization. Thus some figures presented in the
section 5 include also results and characteristics obtained using EMAS and MOGA—
Multiple Objective Genetic Algorithm[5] as well.

5 EMAS vs selEMAS with Distributed Frontier Crowding—
Comparative Studies

As it was mentioned in section 4 the influence of proposed in this paper mechanism was
tested using, inter alia, three dimensional problem with disconnected Pareto frontier
and Pareto set as well—i.e. so called Kursawe problem. But proposed approach was

2 A similar mechanism can be based on the space of decision variables, which should cause (and
causes in fact) deeper exploration of these areas of the Pareto set, which are worse sampled
than its other regions—preliminary results are quite promising but it requires further research
that goes beyond the scope of this article.
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Fig. 4. Pareto frontier approximations for Kursawe problem obtained by EMAS-, selEMAS and
MOGA-based algorithms after 1 (a), 30 (b), 1500 (c) and 3000 (d) steps

tested also using both not so difficult problems (MaxEx), and more difficult problems
(ZDT-4,ZDT-5, ZDT6). In case of simple problems with coherent Pareto sets and Pareto
frontier as well (such as MaxEx problem [2]) the crucial influence of proposed here
frontier crowding mechanism on the Pareto frontier approximation was not observed.
Generally it can be said that proposed mechanism seems to be the more important the
more difficult is the problem that should be solved.

In fig. 4 there are presented approximations of the Pareto frontier obtained by an-
alyzed algorithm (and—for comparison—by MOGA and EMAS as well) after 1, 30,
1500 and 3000 steps. As one may see MOGA is definitely the worst alternative—since
it does not allow for obtaining satisfactory solution. Unfortunately in this case (i.e. in
case of Kursawe problem) also both agent-based algorithms are not able to find high-
quality approximation of the Pareto frontier. Generally, analysis of fig. 4a,b and c, and
fig. 6 as well, confirms that EMAS and selEMAS behave similarly and allow for obtain-
ing very similar approximations of the Pareto frontier. These approximations are better,
as the matter of fact, than the one obtained by MOGA algorithm—but they still leave
a lot to be desired. Fortunately, it seems that presented in section 3 distributed frontier
crowding mechanism comes to our rescue.

To present the influence of this mechanism on solutions that are being obtained, the
following experiment has been performed. Solving Kursawe problem for the first 1500
steps of system run the distributed frontier crowding was switched off, then until the
end of computations this mechanism was switched on. In the consequence—as it was
mentioned—initially (i.e. during first ca. 1500 steps of system run) both algorithms
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Fig. 5. Pareto frontier approximations for Kursawe problem obtained by EMAS (a), selEMAS
(selEMAS with distributed frontier crowding between 1500th and 3000th step of system run) (b)
and MOGA (c) algorithms after 3000 steps of system simulation

(i.e. Evolutionary Multi-Agent System and Semi-Elitist Evolutionary Multi-Agent Sys-
tem without frontier crowding) behave very similarly (see fig. 6) and are quite similarly
effective (see fig. 4a–c).

Switching on the distributed frontier crowding has obvious influence on almost all
characteristics, what explains such violent and significant changes of values presented
in fig. 6. But what is the most important, after comparing fig. 4c and fig. 4d there is no
doubt that switching on the distributed frontier crowding has significant influence on
the quality of obtained by system Pareto frontier since—in contrast to the EMAS-based
system and selEMAS-based system without frontier crowding—this very algorithm is
able to discover all parts of the Pareto frontier and additionally within all these parts
no-dominated individuals are evenly dispersed.

Because in fig. 4 (especially in fig. 4d) presented Pareto frontiers (partially) overlap,
in fig. 5 there are separately presented approximations of the Pareto frontier and Pareto
set obtained by selEMAS, EMAS and MOGA algorithm after 3000 steps (in the case of
selEMAS it was the system with distributed frontier crowding). After analyzing these
figures there is no doubt that selEMAS algorithm with distributed frontier crowding is
definitely the best alternative.

In fig. 6 there are presented some characteristics describing behavior of analyzed
system. In fig. 6a there are presented size of EMAS and selEMAS population in
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Fig. 6. Selected characteristics obtained during solving Kursawe problem: size of EMAS and se-
lEMAS (selEMAS with distributed frontier crowding between 1500th and 3000th step of system
run) population (a), number of found non-dominated solutions (b), and diversity of x1 (c), and x2
(d) decision variable in EMAS- selEMAS- and MOGA-based Pareto set

consecutive steps of system run. As one may see—during first 1500 steps both pop-
ulations have almost the same size—then the size of selEMAS population significantly
decreases—which is caused by switching on the distributed frontier crowding. It is
worth to pay attention to the fig. 6b presenting number of non-dominated solutions
found by both agent-based algorithms and by MOGA as well. As one may notice—
during the whole simulation—non-dominated selEMAS-based frontier is more numer-
ous than the EMAS-based one. And with time, especially during last stage of simulation
this difference is deeper and deeper (to selEMAS advantage of course). In fig. 6b there
is also presented the size of the Pareto frontier obtained by MOGA—and as it is shown
MOGA only during first a dozen (or a few dozen) or so steps is as effective as agent-
based methods. Additionally, analyzing only sizes of populations and Pareto frontiers,
it can be said that during solving Kursawe problem selEMAS algorithms (especially
with distributed frontier crowding) turned out to be more efficient since it is able to
discover more non-dominated solutions using significantly less numerous population
(such characteristic took place also during another experiments).

Based on the presented results and characteristics it can be said that taking efficiency
into consideration a kind of hybrid system based on selEMAS can be proposed. Assum-
ing N steps of such system run—during first N/2 the distributed frontier crowding can
be switched off—what is conductive to drifting non-dominated solutions to the model
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Pareto frontier. Then, switching on the frontier crowding—causes as the matter of fact
more complexity of the system—but simultaneously it allows for much better dispers-
ing individuals over the Pareto frontier.

6 Concluding Remarks

Presented results confirm that semi-elitist evolutionary multi-agent system approach
allows for introducing additional mechanism(s) responsible for ”controlling” and sig-
nificant improving the dispersing of individuals over the Pareto frontier. Presented in
this paper distributed frontier crowding mechanism is only one of such mechanism(s),
but as it was shown, introducing this technique significantly improves the quality of the
Pareto frontier approximation (see fig. 4c and fig. 4d in section 5). The natural extension
of distributed frontier crowding is applying similar mechanism in the space of decision
variables. However, although preliminary results prove in the promising way, that such
mechanism allows for deeper exploration of the Pareto set—it needs further research.

To recapitulate this article, presented results, our approach and motivation—there are
several ’becauses’ that have to be emphasized in this place, i.e.:

– Because this paper is devoted to improving EMAS-based multiobjective optimiza-
tion (not to introducing a new general mechanisms responsible for dispersing so-
lutions over the Pareto frontier) in the course of the paper obtained results are
compared not to results obtained using another ”disperse–preserving” mechanisms
(such as niching, incremental learning, crowding distance etc.) but rather to results
obtained by Evolutionary Multi-Agents Systems that have been deprived any addi-
tional mechanisms of this kind (in another words this paper—and our research at
the moment is devoted to improving EMAS-based multiobjective optimization not
to introducing a new crowding mechanism).

– Because the EMAS-based approach to multiobjective optimization is not very
popular—authors decided to present it in details. In the consequence, because of
the space limitations only qualitative results are here presented. The quantitative
results i.e. the value of some metrics—such as HV, HVR, spread etc.—will be dis-
cussed in details in the next article related to conducted research.

– Because of the readability of the presented results—statistical characteristics (such
as standard deviation etc.) have been omitted—however presented results have been
recurrent during conducted experiments and representative characteristics are here
presented.

In the next paper related to this topic apart from the quantitative results also the formal
mathematical model of the proposed approach will be presented. Simultaneously further
experiments taking into considerations multiobjective problems with more dispersed
Pareto frontier and combinatorial multiobjective problems will be conducted.

It was mentioned as the matter of fact that—at the moment at least—authors
are focusing on Evolutionary Multi-Agent System not on introducing new disperse-
preserving mechanisms—but especially because such characteristics as: almost com-
plete transparency related to computational complexity—the further research devoted
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to proposed distributed frontier crowding mechanism will be also conducted. For exam-
ple presented mechanism needs further research related to the value of m and k parame-
ters (see theMake distributed frontier crowding elitist action() procedure in section 3)
etc.—especially that some problems with stabilization of the population size have been
observed.
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Abstract. The extraction of IF-THEN rules from data is a promising task of 
data mining including both Artificial Intelligence and Statistics. One of the 
difficulties encountered is how to evaluate the relevance of the extracted rules? 
Many authors use statistical interestingness measures to evaluate the relevance 
of each rule (taken alone). Recently, few research works have done a synthesis 
study of the existing interestingness measures but their study presents some 
limits. In this paper, firstly, we present an overview of related works studying 
more than forty interestingness measures. Secondly, we establish a list of 
nineteen other interestingness measures not referenced by the related works. 
Then, we identify twelve semantic properties characterizing the behavior of 
interestingness measures. Finally, we did a theoretical study of sixty two 
interestingness measures by outlining their semantic properties. The results of 
this study are useful to the users of a data-mining system in order to help them 
to choose an appropriate measure.  

1   Introduction 

In Data Mining, Data knowledge extracted is generally represented by a whole of 
rules (classification or association rules).  The first method allowing the generation of 
the association rules was proposed in 1993 by Agrawal [1] through its APRIORI 
algorithm. Indeed, the use of APRIORI algorithm in Data Mining makes it possible to 
test the various possible combinations between the exogenous variables (Attributes) 
to find potential relationships (associations) which will be expressed in the form of 
association rules.  However, the rules selected by APRIORI algorithm are evaluated 
by the support and confidence. These two interestingness measures allow evaluation 
of association rules quality and to evaluate their relevance.  The advantage of this 
algorithm is that it is unsupervised (not preliminary knowledge about classes). 
However, it has a disadvantage by the exponential number of generated rules [6].   
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In order to solve this limit, several approaches were proposed.  In fact, we can 
classify these approaches in two classes. The first one is purely algorithmic which is the 
improvement or the extensions of APRIORI algorithm, through heuristics in the 
objective to reduce the space of research and/or to perform the Data Mining process 
[15]. The second class relates to the post-processing of the rules generated by APRIORI 
algorithm.  These suggested approaches help users to choose the best rules which are 
adapted to their data and their needs.  According to Huynh [12] some research works 
related to the approaches of post-processing are summarized as following:   

− Advanced techniques of visualization in order to improve the legibility of the rules [6], 
− Interactive techniques for searching summaries [11], 
− Techniques to reduce the redundancies and preserving non-redundant rules (logical 

implication) [15]. 
− Optimization techniques by a Multi-criteria Decision Aid [16] 
− Complementary interestingness measure to evaluate association rules [7]. 

In our work, we are interested to the last mentioned approach. In fact, we propose, firstly, 
to draw up an "exhaustive" list of the various measures suggested in the literature.  
Secondly, we identify semantic properties of interestingness measures in the objective to 
characterize these measures. This task will be exploited by the user to choose the 
appropriate measure which respond at his needs in function of the studied data.  

In this paper, we present an overview of related works to our contribution in the 
first section. In the second section, we present interestingness measures that are not 
considered. The third handles the added properties which are dispersed in several 
works. At the last section, we study the behaviour of each measure in reference to its 
semantic properties in the objective to compare them.  

2   The Interestingness Measures: An Overview 

In the two last decades, many statistical measures were introduced to select relevant 
rules (Hypothesis) in learning processes [6], [12]. Several application domains have 
contributed to the diversification of interestingness measures of association rules. 
Each suggested new measure responds to one or more needs in the form of constraints 
which are dependent on the data or on the preferences specified by the users.   

Let A B→  be an association rule. The different interestingness measures are defined 

using the parameters ( ),  ( ), ( ), ( )p AB p AB p AB p AB  where p(X) represents the probability of X. 
In fact, in related works, some attempts of synthesis were carried out.  They 

consist, in a first stage, to define semantic properties allowing characterizing the 
measures. In a second stage, the authors try to compare these measures by classifying 
them according to their experimental behaviour.  

 To make a comparison of these measures and to study their behavior, some 
authors were interested to propose properties judged interesting to characterize an 
interestingness measure [17], [16]. In a first work, three properties were proposed in 
[17]. After that, eight properties were suggested in [16]. Other properties were 
proposed in similar works, but in specific contexts (biologic data and textual data). In 
[2], the author is interested in unexpected and stable rules obtained from noisy data. 
Consequently, they focus on insensitive measures to the noises that can guarantee the 
selection of the most stable rules.  
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In the following section we present the most interesting work which is related to 
our contribution. 

2.1   Properties Study for Multi-criteria Decision Support 

In [16], Lallich and his team propose a different way to resolve the problem of 
association rule selection. Indeed, they present a multi-criteria decision support 
system to satisfy the needs and the preferences of the user.  

Table 1. Interestingness measures studied in [16] 

 Measure Expression 
m1 Support ( )ABp  

m2 Confidence 
(precision/accuracy) 

( )ABp  

m3 Pearson’s correlation 
coefficient 

( ) ( ) ( )
( ) ( ) ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−

BpApBpAp

BpApABp  

m4 Centered confidence ( ) ( )BpABp −  

m5 PS (Novelty,RI) ( )( ( / ) ( ))n p A p B A p B⋅ −  

m6 Loevinger (Certainly factor) ( ) ( )
⎟
⎠
⎞⎜

⎝
⎛

−

Bp

BpABp  

 
m7 

 
Zhang 

( ) ( ) ( )
( ) ( ) ( ) ( )( )

⎭
⎬
⎫

⎩
⎨
⎧ −⎟

⎠
⎞⎜

⎝
⎛

−

ABpApBpBpABpMax

BpApABP

;

 

 
m8 

-(implication index) ( )

( ) ⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛

−
BpAp

BpApBAp
n

 

m9 Lift (Interest Factor)) ( )
( ) ( )BpAp

BAp ∩  

m10 Least contradiction  ( )
( )Bp

BApABp ⎟
⎠
⎞⎜

⎝
⎛−  

m11 Sebag-Schoenauer index 
 

( )
⎟
⎠
⎞⎜

⎝
⎛ BAp

ABp  

m12 Odd multiplier 
 

( )
( )BpBAp

BpABp

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛  

m13 Conviction 
 

( )
⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

BAp

BpAp  

m14 Example and counter-example 
ratio 

( )
( )ABp

BApABp ⎟
⎠
⎞⎜

⎝
⎛−  

m15 Kappa Coefficient(Cohen’s 
quality index) 

( ) ( ) ( )
( ) ( ) ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−−

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−−⎟

⎠
⎞⎜

⎝
⎛+

BpApBpAp

BpApBpApBApABp

1

 

m16 Information gain 
 

( )
( ) ( ) ⎟⎟⎠

⎞
⎜⎜
⎝

⎛ ∩
BpAp

BAp
2log  

 
m17 

intensity of Implication ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⋅≥⎟

⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⋅ BpApnBpApnPoissonP  

 
m18 

Entropic intensity of implication 
( )( ) ( )( )

21
41

2221 11
⎪
⎭

⎪
⎬
⎫

⎪
⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ − ABphABph

 

m19 Probabilistic discriminate index 
(PDI) 

(0,1) /p N IMPINDRC B⎡ ⎤>⎢ ⎥⎣ ⎦

 

m20 Laplace ( )
( ) 2

1

+⋅
+∩⋅

Apn

BApn  



 On Semantic Properties of Interestingness Measures for Extracting Rules 151 

Table 2. Interestingness measures studied in [9] 

 Measure Expression 
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In this work, the authors studied twenty interestingness measures (see table 1) 
taking into account eight properties. These properties are supposed to be relevant since 
they include most of the preferences expressed by users [16].  These properties are: 
asymmetric processing of rules, sensibility to the size of the consequent, reference 
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situation of independence between antecedent and consequent, reference situation of 
logical implication, linearity, sensitivity to the data size, easiness to fix a threshold 
and intelligibility. 

This work, has studied measures based on eight properties which are not studied 
everywhere. Furthermore, in this work they take into account the preference of the 
user for measure-choice in the context of multi-criteria decision support. However, 
they studied only twenty measures and there are a lot of other measures which are not 
considered such as: J-measure [9], etc. 

2.2   Measures Study by Guillet 

In [9], a synthesis of approximately 43 measures including those studied in [16] was 
made (see table 2). In this synthesis Guillet studies some properties of the various 
interestingness measures. Indeed, these properties correspond to: semantic of 
measure, number of parameters to which the measure is sensitive, linearity of 
measure, value in independence, value in balance, symmetry of measure, nature of 
measure (statistical or descriptive measure) and maximum value (limited or not). 

In this work, a whole synthetic study is done on interestingness measures. In fact, 
for each measure they establish some semantic properties. Furthermore, they 
developed the ARQAT platform which helps the user to evaluate and compare 
visually the behaviour of thirty six measures. 

However, there are other interestingness measures which are not considered, such 
as: recall [2], gain measure [10], etc. Even for the considered measures Guillet does 
not establish all the considered properties as the symmetry of the Descriptive-Confirm 
measure [13]. 

3   The New Studied Measures 

In this section, we try to establish a more exhaustive theoretical study of 
interestingness measures. For this reason, we report more than sixty measures and we 
try to establish their behaviour according to semantic properties. We consider the 43 
measures reported in [9] which take into account the 20 measures reported in [16]. 
Furthermore, we have identified 19 new measures (table 3) which are presented and 
studied partially in [2], [6] and [3]. 

4   The Studied Semantic Properties 

According to [16], the considered semantic properties are insufficient. The authors 
encounter a difficulty in evaluating these properties. The considered properties are 
very different according to their kinds and values (numerical or symbolic, ordinal or 
not, etc). Another difficulty is to express user criteria based on the considered 
semantic properties. They found difficulty to evaluate the subjective properties such 
as the simplicity of implementation. 
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Table 3. New studied Interestingness measures 

 Measure Expression Reference 
m44 Recall(sensitivity) ( )BAp  [2], [6] 
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In our work, we try to establish a more exhaustive list of semantic properties. For 
this reason, we report the 8 theoretical and semantic properties that were considered 
in [16]. This includes the asymmetric processing, the sensibility to the number of 
positive examples, the reference situation of independence, the reference situation of 
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logical implication, the linearity (sensibility to the number of counter-examples ), the 
sensibility to the data size, the easiness to fix a threshold and the intelligibility. 

Then, we report two properties which were introduced in [2] and [17]. We consider 
the sensibility to A and the sensibility to the noise. Finally, we propose to consider 
two new semantic properties indicating the sensitivity to the two reference situations: 
The incompatibility and the equilibrium. 

In the following, we define the twelve semantic properties that we propose to 
study. 

 p1:Asymmetric processing of A and B: This property expresses the fact that the 
rules A B→  and B A→ are different [16].  We should not use measures which 
evaluate these two rules in the same way. Consider that m is a quality measure, 
we should have:  

m A B m B A⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→ ≠ →  

We will use the value 1 to indicate the asymmetry behaviour and the value 0 for 
the symmetric behaviour. 

 p2:Sensibility to B: the interest of a rule depends on the size of B [17]. The measure 
should be a decreasing function according to the size of B (or p(B)). We will use 
the value 1 when the measure decreases according p(B) and the value 0 for other 
behaviours. 

 p3:Sensibility to A: the interest of a rule depends on the size of A [2]. In the same 
way for B, the measure should decrease when p(A) increases. We will use the 
value 1 when the measure decreases according p(A) and the value 0 for other 
behaviours. 

 p4:Sensitivity to the reference situation of independence: The situation of 
independence consists on that the realization of B is independent of the realization 
of A:  

p AB p A p B⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
= ⋅  

There is no new information from a rule A B→ , if A and B are independent [17]. 
It is more important that the value of the measure be constant if A and B are 
independent. Thus, the measure can help us to identify this reference situation. 
We will use the value 1 when the measure has a constant value and the value 0 
other ways. 

 p5:Sensitivity to the reference situation of logical implication: When the number 
of counter examples is null, there is a logical implication indicated by: 

p AB p A⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=  

In this situation it is desirable that the measure’s value be constant. We will use 
the value 1 when the measure has a constant value and the value 0 other ways. 

 p6:Sensitivity to the reference situation of equilibrium: When the number of 
examples is equal to the number of counter examples, there is a situation of 
equilibrium indicated by:  
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( )p AB p AB
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=  

In this case, it is desirable that the measure has a constant value. We will use the 
value 1 when the measure has a constant value and the value 0 other ways. 

  p7:Sensitivity to the reference situation of incompatibility: When the number of 
examples containing both A and B is null, there is a situation of incompatibility 
indicated by:  

( ) 0p AB =  

In this case, it is desirable that the measure has a constant value. We will use the 
value 1 when the measure has a constant value and the value 0 other ways. 

  p8:Linearity with the number of counter examples around 0+ : A nonlinear 
measure is insensitive to the noise and to the appearance of counter examples 
[16].  In fact, the authors suggest that the reduction of measure’s values should be 
insignificant at the beginning and more important after that (a convex shape) [8]. 
This weak decrease can be tolerated by the user and that can be explained by the 
noise or errors of observations. We will use the value 1 when the measure has a 
linear shape around 0+ , the value 0 when it has a concave shape and the value 2 
when it has a convex shape. 

  p9:Sensibility to the data size: the rule’s interest increases according to data size 
(n). So, it is desirable that the measure is increasing according to n. But it is 
possible that the measure provides many rule-values close to the measure 
maximal-value. So, the measure looses its discriminate capability. We will use 
the value 1 to indicate the increasing behaviour and the value 0 other ways. 

p10:Facility to fix a threshold: this property is important to easily be able to fix the 
threshold from which we can judge the relevance or not of a rule. This depends 
on the distribution of the rule-values within the interval of values taken by each 
measure.  

p11:Sensitivity to the noise: It is rare to use perfect real data without noise. The 
noise can take various forms: missing values, replaced values, etc. Ideally an 
interestingness measure must provide “stable” rules even if data is noisy [2].  

p12:Intelligibility: The semantic of the measure has a great importance to 
communicate and explain the results. The measure should be comprehensible by 
experts and users. 

5   Results of the Study 

In this section, we establish the first nine semantic properties for the different sixty 
two measures (table 4). To evaluate the property p1, we 
compared   m A B and m B A⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→ → . To evaluate the properties p5, p6, p7 and p8, we 

calculated the values of the sixty two measures in the four reference situations. To 
evaluate the properties p2, p3, p8 and p9, we draw the corresponding curves. 
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Table 4. Semantic properties of interestingness measures 

measures 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

p1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 
p2 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 
p3 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 
p4 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 
p5 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 
p6 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 
p7 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 
p8 1 1 1 1 1 1 2 1 1 1 0 0 0 2 1 2 

pr
op

er
tie

s 

p9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

p1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 
p2 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 
p3 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0 
p4 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 
p5 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 
p6 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
p7 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 
p8 2 2 1 1 0 1 1 1 1 1 1 1 1 1 0 2 

pr
op

er
tie

s

p9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

p1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 
p2 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 
p3 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 
p4 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 
p5 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 
p6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
p7 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 
p8 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 

pr
op

er
tie

s

p9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
49 50 51 52 53 54 55 56 57 58 59 60 61 62 

p1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 
p2 1 0 1 1 1 1 0 0 0 0 0 0 0 0 
p3 1 0 1 1 1 1 0 0 0 0 0 0 0 1 
p4 1 0 0 0 0 0 0 0 0 1 0 0 0 1 
p5 0 0 1 0 0 0 0 1 1 1 0 0 0 0 
p6 0 0 0 0 0 0 0 1 1 0 1 0 0 0 
p7 0 1 1 0 1 1 1 1 1 0 1 0 0 0 
p8 1 0 0 0 1 1 0 2 2 0 0 1 1 1 

pr
op

er
tie

s

p9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

6   Conclusion and Perspectives 

We presented related works which have outlined some semantic properties of some 
interestingness measures in order to help the user choosing an appropriate one. Our 
contributions are that: firstly, we identified twelve semantic properties summarizing 
and completing the studied ones. Secondly, we established the values of nine 
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semantic properties for sixty two interestingness measures. The evaluation of the 
intelligibility (p12) is subjective because it depends on the user. The evaluation of the 
facility to fix a threshold (p10) and sensitivity to the noise (p11) can be done 
experimentally. We plan to continue the evaluation of these remaining three 
properties for the sixty two studied measures. 

Based on table 4, we can identify some week measures. The Causal-Support (m25) 
have not any interesting property. The Support measure (m1), the Rectangular-Gain 
(m50) and the Collective-Strength (m55) measure have only one interesting property: 
The sensitivity to incompatibility. The Surprisingness (m43), the Gain (m48), the 
Quotient (m60) and the Improvement (m61) have only one interesting property: the 
asymmetry. 

We observe also that there is an important measure: The Zhang measure (m7). It 
has seven interesting properties. It is asymmetric, sensible to A and B, sensitive to 
independence, logical implication, incompatibility and have a concave shape 
(linearity property). 

As future work, we plan to develop a Multi-criteria decision support system 
exploiting the results of this study to assist the user choosing an appropriate 
interestingness measure. We plan also to study the experimental behavior of these 
interestingness measures in supervised learning (classification task). 
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Abstract. A Compact Genetic Algorithm (CGA) is a genetic algorithm
specially devised to meet the tight restrictions of hardware-based imple-
mentations. We propose a new mutation operator for an elitism-based
CGA. The performance of this algorithm, named emCGA, was tested
using a set of algebraic functions for optimization. The optimal muta-
tion rate found for high-dimensionality functions is around 0.5%, and
the low the dimension of the problem, the less sensitive is emCGA to the
mutation rate. The emCGA was compared with other two similar algo-
rithms and demonstrated better tradeoff between quality of solutions and
convergence speed. It also achieved such results with smaller population
sizes than the other algorithms.

1 Introduction

Since long ago, Genetic Algorithms (GA) have been used as efficient tools for
optimization problems, not only in Computer Science, but also in Engineering
[4]. For most applications, GAs are implemented in software running on general-
purpose processors. However, for applications that require the algorithm to run in
real-time, hardware-based implementations are more adequate. Reconfigurable
logic can be used for such implementations, by using high-performance FPGA
(Field Programmable Gate Array) devices [2]. Even the most advanced devices
have limited resources, specially regarding available memory. The Compact Ge-
netic Algorithm (CGA) was devised to meet tight requirements of hardware-
based implementations. For instance, a CGA represents a population of individ-
uals by using a single probability vector, thus reducing significantly the amount
of memory needed.

The CGA has been sparsely explored in the recent literature. Therefore, there
is much room for theoretical development and research that can improve its
efficiency. In this work we present a new mutation operator for an elitism-based
CGA, capable of better controlling the selective pressure and improving the
quality of solutions found. This is achieved without significant decrement of
the convergence speed of the algorithm. Following the terminology previously
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B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 159–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



160 R.R. Silva, H.S. Lopes, and C.R. Erig Lima

used by other authors, the proposed algorithm is named “Elitism with Mutation
Compact Genetic Algorithm”, or, in short, emCGA. The performance of the new
operator is analyzed by means of computational simulations. We also perform
simulations comparing the proposed algorithm with other algorithms proposed
in the literature.

This paper is divided as follows. In Sect. 2 a formal description of the CGA
is presented, with special focus on those works that use elitism to minimize
the perturbations caused by the crossover operator in a CGA. The emCGA is
presented in details in Sect. 3. Section 4 presents the results of the computational
simulations. Finally, Sect. 5 presents the conclusions of the work.

2 The Compact Genetic Algorithm

The Compact Genetic Algorithm was first proposed by [5]. This algorithm uses
a random-walk approach to represent a conventional genetic algorithm in a com-
pact way. This technique is a stochastic process that formalizes successive steps
towards a random direction. CGA simulates random-walks for each bit in the
chromosome.

In short, in the CGA, individuals are generated randomly based on a prob-
ability vector and, at each generation, a tournament among individuals takes
place. The probability vector is then updated towards the tournament winner.
The elements of this vector represents the probability that each bit in the in-
dividual’s chromosome to be either 0 or 1. The population of individuals is,
therefore, represented compactly and it converges when all the elements of the
probability vector reach either 0% or 100%. Since the probability vector repre-
sents itself the whole population, the amount of memory necessary to hold the
population is much smaller when compared to a conventional GA. The memory
resources needed by a conventional GA are estimated in N × L bits, where N
is the population size and L is the number of bits of the chromosome. For a
CGA, the elements of the probability vector are quantized with resolution 1/N .
Therefore, the amount of memory resources needed by a CGA falls down to only
L×log2(N). This feature of CGA makes it an appealing alternative for hardware
implementations, rather than the conventional GA.

In the CGA, the selection phase is called random generation of chromosomes,
or simply, generation, and the reproduction phase is known as updating the
probability vector, or simply, updating. In a conventional GA, the Darwinian
principle of survival of the fittest is most evidenced in the selection phase, where
high-fitted individuals have more chance to survive and spread their genetic
material. In a CGA, this phase is embedded in the generation. Recalling that
the probability vector is updated towards the direction of the tournament winner
at each generation, the chromosome will tend to retain the genetic information
of the best individuals, thus influencing the upcoming generations.

Reproduction, the other phase of the algorithm, is typically represented in a
conventional GA by the application of genetic operators, mainly crossover and
mutation. Crossover is an operator capable of recombining parts of parental
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chromosomes and generating two new offsprings. Throughout generations, the
repeated applications of crossover leads to a decorrelation of the genes in a pop-
ulation. According to [5], in such decorrelated state, a simple probability vector
can be a more compact and suitable representation for the whole population
of individuals. In this case, updating the probability vector is analog to the
crossover operator action in the conventional GA. Most of the CGAs reported
in the literature do not use the mutation operator.

The typical stopping criterion for a conventional GA is when the number of
generations achieves a predefined number of generations. In a CGA, the stopping
criteria cannot be other than the convergence of the probability vector.

Crossover can generate critical perturbations in problems with high-order
building blocks [4]. Harik and colleagues [5] demonstrated that such pertur-
bations can be minimized when the selective pressure is increased. Further, [1]
showed that elitism is even more suited for this purpose. This fact has motivated
the emergence of several elitism-based CGAs in recent years [1], [3].

When elitism is used in a conventional GA, one or more top-fitted individuals
are copied with no change to the next generation. In the original CGA, at each
generation, two individuals are randomly generated using the probability vector.
These two individuals compete in a tournament. In an elitism-based CGA, only
one individual is randomly generated and the other competitor of the tournament
is a copy of the best individual of the current generation. Examples of elitism-
based CGAs are: persistent elitist CGA (pe-CGA) and nonpersistent elitist CGA
(neCGA) [1], and CGA with elitism and mutation (mCGA) [3].

Depending on the nature of the problem dealt by a CGA, the use of elitism
can induce a too high selective pressure. Hence, some technique for controlling
selective pressure is necessary. Inheritance control of the best individuals was
proposed by [1] in the neCGA. Also, a mutation operator was proposed by [3]
in the mCGA. Both works present important improvement in the quality of
solutions obtained by the algorithm.

Two features of CGA make it appealing for hardware implementations: the
binary representation of solutions and its small demand of memory resources.
However, a CGA does not explore all the typical features of a conventional GA
and, thus, a more limited performance is expected. Therefore, this fact suggests
that, by using specific features of a conventional GA in a CGA it is fair to believe
that a better performance can be achieved, as shown later in this work.

3 The emCGA

The previously mentioned works (neCGA and mCGA) perform better than the
original CGA [1]. This is obtained by minimizing the perturbation provoked by
the crossover operator, and thus, leading to a significant improvement in the
quality of solutions. In this work we propose a new mutation operator, aimed
at improving even more the quality of obtained solutions but, also, keeping a
reasonable convergence speed. This operator allows a more efficient control of
the selective pressure, adjusting the population diversity as the consequence of
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the manipulation of the probability vector. Comparing the proposed mutation
operator with that of mCGA [3], the new operator decreases the number of tour-
naments per generation and, consequently, the total number of fitness evaluations
per generation. The consequence is a significant improvement in the convergence
speed of the algorithm. On the other hand, the mutation in the mCGA works
on the best individual of the current generation. This method requests a new
tournament and, consequently, one more fitness evaluation.

The new CGA resulting from the use of the proposed mutation is named em-
CGA (elitism with mutation CGA). Basically, the proposed mutation operator
changes the random generation phase, by modifying the chromosome generated
by the probability vector.

4 Computational Experiments and Results

Mathematical functions have been frequently used as a benchmark for optimiza-
tion algorithms, including GAs. In this work we selected a suite of complex math-
ematical functions defined in a n-dimensional space (Rn). This suite includes the
following problems, with respective dimensions: Sphere(15), Circle(2), Shaffer-
F6(2), Griewank(15), Discrete-1 (15) and Discrete-2(15). Such problems were
chosen because some of them were used to evaluate performance of evolutionary
computation algorithms [6].

For the Sphere problem (Sect. 4.1) we used a population of 255 individuals,
whereas for the remaining problems (Sect. 4.2) we analyzed the performance
of the algorithm using 31, 63, 127, 255, 511, 1023 and 2047 individuals. These
values were chosen based on the current literature. The stopping criterion is
not based on a predefined number of generations, but in the convergence of the
probability vector. This approach leads to a variable number of generations, and
this in an observable parameter in these experiments.

All functions represent minimization problems, and the optimal solution is a
multidimensional null vector. For each problem, a different representation was
used for the elements of the vectors applied to the functions. For the Circle
problem we used 16 bits to represent the range from -32.767 to 32.768. For
Discrete-1 and Discrete-2, we used 16-bit integers, ranging from -32768 to 32767.
For the remaining problems, we used 18 bits to represent the range -131.071 to
131.072.

For each problem, 100 independent runs were done. Values reported in Sect.
4.1 and Sect. sec-compare are: the average best fitness value and the average
number of generations until the convergence of the probability vector.

4.1 Analysis of the Mutation Parameter in the emCGA

The first group of experiments aimed at finding the best value for the mutation
rate in the emCGA. The higher the dimension of the problem, the larger the chro-
mosome size and the more complex the problem becomes. Therefore, this exper-
iment will evaluate how the dimension of the problem affects the best mutation
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Fig. 1. Best mutation rate as a function of the dimension, for the Sphere problem

rate. For this experiment we used the Sphere problem up to 15 dimensions, and
mutation rate ranging between 0 and 15%, with resolution of 0.1%.

In this experiment we observed that the best value for the mutation rate is
a function of the dimension of the problem. The best mutation rate is inversely
proportional to dimension. That is, the mutation rate that leads to the smallest
fitness value depends on the dimension of the problem. It was also observed that
exists a range of mutation rates for which the best values of fitness are found,
resembling a plateau. This range narrows as the dimension grows. Also, at the ex-
tremes of that plateau, the behavior is exponential. As the dimension decreases,
the problem becomes less complex and, therefore, it also becomes less sensitive
and more tolerant to different values of the mutation rate. Figure 1 shows in a
simplified way the behavior of the best mutation rate for all dimensions of the
problem tested. It can be observed in this figure a nonlinear relationship between
the dimension and the best mutation rate. For high dimensions of the problem,
the mutation rate that leads the algorithm to the best performance (regarding
fitness values) is around 0.5%. On the other hand, when the dimension of the
problem is low, the value for the best mutation rate tends to grow exponentially.

The same experiments done for the Sphere problem were repeated for the
other problems. Results obtained (not shown here) were qualitatively equivalent

Table 1. Best mutation rates for the problems tested

Dimension Problem Best mutation rate

2 Circle, Shaffer-F6 8.5%
15 Sphere, Griewank, Discrete-1, Discrete-2 0.5%
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Fig. 2. Comparative analysis in the Pareto front of three CGAs

to those obtained with the Sphere problem. That is, even if we consider different
problems, with different dimensions, the behavior is similar to that shown in
Fig. 1. This fact suggests that the best mutation rate for a given problem is really
dependent on the problem and its dimension. According to these experiments,
the best mutation rate found is shown in Table 1.
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4.2 Comparison of emCGA with Other Algorithms

Here we compare the performance of the proposed emCGA with other algo-
rithms published in the recent literature, the mCGA [3] and the neCGA [1]. The
parameters used in these algorithms are those suggested by respective authors
in their publications. In particular, for the mCGA, the mutation rate used was
5% and, for the neCGA the inheritance length was set to 10% of the population
size. For the emCGA the mutation rate was set according to the problem, that
is, 8.5% for Circle and Shaffer-F6, and 0.5% for the remaining problems.

Considering the nature and purpose of a CGA, for this type of analysis it is
important not only the quality of the solution (that is, the best fitness), but also,
the number of fitness evaluations to achieve such quality (that is, the number of
generations). For a CGA it is important to obtain a good solution in as few as
possible generations. Since both objectives are contradictory, the analysis in the
Pareto plane can be more useful instead of analyzing both objectives separately.
In the Pareto plane, the best tradeoff between the two objectives is that closest
to the origin of coordinates system.

Therefore, we used the Pareto plane to compare the behavior of the three
algorithms for the test problems (excluding the Sphere problem, used in Sect.
4.1), regarding the best fitness and the number of evaluations. This comparison is
shown in Fig. 2. All values in these plots are the average of 100 independent runs.
Recall that 100 independent runs were done for each of the several population
sizes and for each algorithm. In the plots we show only the results regarding the
population size that yielded the best performance for the algorithms. The closest
point to the origin is highlighted in the plot with the corresponding population
size used. Some of the algorithms had a very poor performance. Consequently its
value for fitness and/or number of evaluations was so high that the corresponding
point could not fit the scale of the plot.

5 Conclusions

In this work we proposed a new mutation operator for an elitism-based CGA.
We analyzed the performance of the proposed operator on several test prob-
lems, for different mutation rates and problem dimensions. We also compared
the performance of the proposed algorithm with other two recently published
algorithms.

The performance analysis of the proposed emCGA reveals that using specific
mutation rates for each problem (and each dimensionality) leads to better perfor-
mance compared with a fixed rate for any problem. Also, we observed a nonlinear
relationship between the dimension of the problem and the mutation rate that
gives best performance (regarding average fitness). For high-dimensionality prob-
lems, a mutation rate of 0.5% seems to be appropriated. For low-dimensionality
problems, higher values give better results. However, the low the dimension of
the problem, the less sensitive it is to the mutation rate.

Comparing the proposed emCGA with mCGA and neCGA, we observed that,
except for the Circle problem, emCGA achieved, at the same time, better
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convergence speed and better fitness value than the other algorithms. The Circle
problem is the simplest one of the suite, furthermore it is a low-dimensionality
problem. Possibly, these are the reasons why emCGA achieved a performance
quite similar to mCGA, however with a better convergence speed.

For the high-dimensionality problems (and also for Shaffer-F6 problem), em-
CGA found solutions using smaller populations than those used by the other
algorithms. This is an important issue since such algorithms were proposed for
hardware implementations, where memory resources are limited.

Figure 2 shows that emCGA is the algorithm that has the better tradeoff be-
tween quality of solution and convergence speed. This fact suggests that emCGA
is an interesting alternative for implementations that require compact genetic
algorithms.

Future work will focus on evaluating the overall limits of the proposed ap-
proach, by implementing emCGA in a FPGA device do deal with a real-world
difficult problem such as [7], [8].
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Abstract. We present an approach for automated generation of proac-
tive aggregation protocols using Genetic Programming. First a short in-
troduction into aggregation and proactive protocols is given. We then
show how proactive aggregation protocols can be specified abstractly.
To be able to use Genetic Programming to derive such protocol specifi-
cations, we describe a simulation based fitness assignment method. We
have applied our approach successfully to the derivation of aggregation
protocols. Experimental results are presented that were obtained using
our own Distributed Genetic Programming Framework. The results are
very encouraging and demonstrate clearly the utility of our approach.

1 Introduction

Determine the highest temperature measured by a sensor in a given area. Find
the average load of all computers in a grid. Aggregation functions with their
ability to summarize information in a certain, user-specified way are a very im-
portant building block for distributed applications [1]. As a standard service of
databases, SQL-queries allow the user to aggregate locally available data in one
or multiple tables. Performing aggregation in a sensor network [2], as done in the
introductive examples, however is more complicated. Only data obtained from
the local sensors is available on a node. In order to determine the desired aggre-
gate, a node needs to exchange messages with other nodes in its neighborhood.
Therefore, reactive and proactive protocols can be distinguished. Reactive pro-
tocols are used to compute queries issued by a single node and offer the result
of the query to this node only. Proactive protocols update aggregation values
continuously and make them globally available.

In this paper we demonstrate that Genetic Programming is an effective tech-
nique to derive proactive aggregation protocols. We describe how such protocols
can be specified in an abstract manner and introduce a simulation-based fitness
assignment method used to evaluate these specifications.

2 Related Work

In our work we strongly refer to Jelasity et al. who have defined and evalu-
ated many proactive aggregation protocols for large-scale overlay networks [3].

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 167–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



168 T. Weise, K. Geihs, and P.A. Baer

Although their communication model is gossip-based, our abstract protocol spec-
ifications will work with epidemic [4] or SPIN-based [5] communication as well.

Protocol generation has been a field of application for Genetic Algorithms in
the past ten years. Genetic Algorithms have been used to optimize different as-
pects of protocols like communication, implementation costs, and performance
[6,7,8,9]. While these approaches separate the application logic itself from the
protocol generation and focus on the communication, we introduced in our previ-
ous work [10] a versatile Genetic Programming technique for simple distributed
algorithms combining both of these aspects. In this paper we shift the emphasis
towards the application logic (i.e. the formulas needed to compute aggregation
values) while using an implicit communication pattern.

As we will show in the next sections, this mathematical logic is based on a
form of symbolic regression [11,12] but exceeds its scope in many ways.

3 Basic Model and Protocol Specification

For our studies we use a system model similar to the one introduced by Jelasity
et al. [3]. A distributed system is regarded as a large collection of nodes that
communicate through message exchange. These nodes are assumed to be con-
nected by a routed network allowing all nodes to exchange messages with each
other.

In order to compute an aggregate value (see target in Figure 1), each node
owns a local storage, consisting of n variables vi : i ∈ 1..n named a, b, c, . . .
and so on. It furthermore knows one value, for example a sensor measurement,
needed to compute the aggregate. With this provided value, 0 < m ≤ n of
the variables will be initialized while the others have constant numerical initial
values.

To perform the aggregation, data exchange and variable updates are needed
to be carried out iteratively in a loop. The data exchange in the network is per-
formed as follows: 0 < p < n of the variables are marked as output and also p
variables are marked as input. At the beginning of each iteration step, a partner
node y is selected for each node x in the network. This could, for example, be a
node in transmission range chosen from the direct neighborhood. The values of
the output variables of node x will then be stored in the input variables of node
y, and vice versa. After this is done, the variables are updated by computing
formulas fj : j = 1..q on every node, where each formula fj assigns a new value
to one of the variables vi. Formulas are expressions built with operators such
as +, −, ∗, /, ^ (power), | ∗ | (absolute value), min, max, constants, and with
variables.

Figure 1 displays such a protocol specification, able to compute the aggregate
Average. This optimal protocol, which was found using our own Distributed
Genetic Programming Framework [13,14,15], is exactly the same as the solution
proposed by Jelasity et al. [3].
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a = (0.5*(a+b))

variables: a..b

initial : 2.0 0.5

target : a

provided : a

output : a

input : b

Node i
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Protocol Specification

Fig. 1. A protocol specification for the distributed average, found using GP

4 The Fitness Assignment Method

In principle, the evolution of protocol specifications is a complex extension of
symbolic regression [11]. Instead of trying to evaluate a single formula with a
single input parameter one time for each test set [12], multiple formulas with
multiple inputs are evaluated T times in a loop on multiple nodes in a simulated
network.

When performing symbolic regression, the functionality of a formula can be
determined by computing its result for a number of test sets. The difference
between the values computed and the expected results then clearly indicates the
fitness.

In case of engineering an aggregation protocol P , each test set is an n-dimen-
sional vector where n is the number of simulated nodes. Running the protocol
yields an aggregate value ay for each one of the nodes (y = 1..n) in a network.
To decrease the inaccuracy as well as to reward protocols with at least one
good approximation, we compute the sum δ of the average and the maximum
deviation of these aggregates from the correct result A. As shown in equation 1,
δx(t) is the deviation sum of the aggregate values ay computed by the nodes y
for a single test set x. This value should be minimized.

δx(t) = max
∀nodes y

{|ay(t) − Ax|} + avg
∀nodes y

{|ay(t) − Ax|} (1)

Instead of calculating this value at the end of each simulation, we integrate
it for each of the T iterations of the protocols loop (equation 2). Therefore we
do not only measure protocol accuracy but also convergence speed: If a protocol
converges faster than another one of the same accuracy, the deviation sums will
begin to shrink sooner.

This approach has a minor drawback: Protocols which simply “guess” a con-
stant value for the aggregates may be rewarded with a better fitness (smaller
δ values) in most of the iteration steps – if they guess well. Weighting the last
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iteration with the square root of the total iteration count T has proven to be a
useful countermeasure to prevent this phenomenon.

The formula for the functional fitness f of the protocol P computed using all
test sets x is presented in equation 2. This value is subject to minimization.

f(P ) =
∑

∀ testsets x

1
|Ax|

1
|T +

√
T |

[
T−1∑

1

δx(t) +
√

Tδx(T )

]
(2)

Other quality aspects of an aggregation protocol are the size of the messages
exchanged, the number of variables needed and the complexity of the formula
expressions. Introducing a second fitness function, we use a weighted multi-
objective approach to optimize these aspects too.

5 Example

Trivial basic aggregation functions like Minimum, Maximum and Average can
be evolved by using the fitness assignment method of the previous section within
only a few generations using Genetic Algorithms with less than 2000 individuals.
To prove that our approach is also suitable for more complex aggregates, we chose
the following function to be approximated: Each node owns one sensor producing
one measured value. We are interested in the average of the square roots of
the absolute values of these measurements. The most trivial solution would be
that the nodes compute initially the square roots of their sensor measures and
then execute the Average protocol of figure 1. In a real application, the sensor
measurements will change over time forcing the protocol to incorporate new
values (see figure 2). This is not possible with the trivial solution discussed,
which therefore is not a valid protocol specification.
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b = (b/a)

a = |c|

c = max((a*b),(a-(b*a)))

a = ((a*b)^0.5000000022)

variables: a..c

initial : 3.14 0.11 154

target : a

provided : c

output : a

input : b

Protocol Specification
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Fig. 3. A protocol evolved for the example problem and its convergence behavior

Since the search algorithm implementations of the Distributed Genetic Pro-
gramming Framework, which we use for our studies, are intended for maxi-
mization only, the functional fitness (see equation 2) was inverted. A Genetic
Algorithm with a bigger population of 8192 individuals was applied, yielding
the solution depicted in figure 3. This figure shows the functionally best pareto-
optimal protocol, which produces approximation values differing only by a very
small error from the correct aggregate. The diagram in the right part of figure 3
shows the convergence of the protocol. 50 nodes were initialized with values uni-
formly distributed over the interval [−1, 9] and quickly converged to a constant
shared by all nodes, only deviating less than 1% from the real solution. These
deviations rise considerably if the measured input values change, as mentioned
at the beginning of this section. The protocol is however able to adapt to bigger
changes – it is also the source of figure 2.

It is important to mention here that genetically evolved protocol specifications
have a strong affinity to memorize test sets. Symbolic regression often does not
yield the “original” formula which was used to create the test sets but a function
which only resembles this formula closely. In symbolic regression this effect is
wanted in many cases – for protocol generation it is devastating. Sometimes
generated protocols which seem to be excellent solutions for a given aggregation
problem turn out to be disguised decision tables. In our work we use two simple
means to circumvent this problem:

1. We use many test sets (empirically determined ≥ 240).
2. The values contained in the test sets differ in scale, sign, and generating

distribution function (uniform, normal, many zeros/few ones).

Another interesting phenomenon concerns the fitness of the protocol specifica-
tions. Plotting the maximum and the median of the functional fitness of each
generation exhibits an interesting behavior (see figure 4): while the fitness of the
best individuals becomes significantly better step by step, the fitness of most
of the population degenerates at the same rate. A possible explanation for this
phenomenon would be that the more accurate protocol specifications get, the



172 T. Weise, K. Geihs, and P.A. Baer

0 25 50 75 100

Generation

F
it

n
e
s
s

maximum median of population

Fig. 4. The maximum and median fitness of the whole population of the Genetic Al-
gorithm for the average-of-square-roots problem, plotted against the generations

more destruction can be done by genetic operators. This effect is increased by
the non-functional fitness function applied which adds pressure towards compact
protocol design – and therefore tends to shrink those parts of the specification
that have smaller impact on the total results.

6 Conclusion and Future Work

In our research we were able to demonstrate the utility of Genetic Programming
for deriving proactive aggregation protocols. Thus, after having shown its useful-
ness for breeding assembler-like distributed algorithms in [14], in this paper we
have presented our second successful application of GP to create emergent phe-
nomena: A global property of a whole (network) has been transformed into be-
havior rules for an individual (node). In our future work we will go on evaluating
different fields of application of GP as a means for creating distributed algorithms.
Our DGPF [13] will be improved further with the ultimate goal to provide a com-
prehensive platform for automated software creation for sensor networks.
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Abstract. This paper proposes an automated quantum circuit synthe-
sis approach, using a genetic algorithm. We consider the circuit as a
successive rippling of the so-called gate sections; also, the usage of a
database is proposed in order to specify the gates that will be used in
the synthesis process. Details are presented for an appropriate compari-
son with previous approaches, along with experimental results that prove
the convergence and the effectiveness of the algorithm.

1 Introduction

1.1 Quantum-Inspired Genetic Algorithm

The field of Evolvable Quantum Information (EQI) has significantly grown over
the last years [7]. At first glance, the merging of quantum computation and evolv-
able computation seems natural and benefic. Indeed, relevant progress has been
signaled in the EQI subfield of Quantum-Inspired Genetic Algorithms (QIGA)
including the so-called evolvable quantum hardware or the automatic synthesis of
quantum circuits by evolvable means [7]. Ongoing developments concerning the
other EQI subfield of Quantum Genetic Algorithms (QGA) have been presented
previously [8].

This paper concerns the QIGA field, and attempts to automatically build
quantum circuits that implement a given unitary transformation (i.e. automated
quantum circuit synthesis) by means of Genetic Programming. Our motivation
was to evolve complex quantum circuits.

1.2 Background

In quantum computation the qubit is the basic unit of information. In Bra-Ket
notation, a qubit is a normalized vector in a two dimensional Hilbert space |ψ〉 =
α|0〉 + β|1〉, |α|2 + |β|2 = 1 (α,β ∈ C), where |0〉 and |1〉 are the basis states [6].
The quantum system is described by a superposition of the basis states whereas a
classical binary system can only settle in one of the basis states ’0’ or ’1’ [2]. The
qubits can be organized in linear structures called quantum registers, encoding a
superposition of all possible states of the classical register. For a n-qubit quantum
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register, its corresponding state is a normalized vector in a H2n

space, |ψn〉 =∑2n

i=0 αi|i〉, where
∑2n−1

i=0 |αi|2 = 1, i ∈ N. Quantum circuits are constrained
networks of gates with no cloning and no feedback allowed [6]. The quantum
gate is a physical device implementing an unitary operator that represents the
quantum state transformation. Due to the unitary property, all quantum circuits
are reversible and are considered the most feasible implementation for quantum
algorithms.

Figure 1 presents several quantum gates [1] used by our algorithm’s database.

|q1〉 H

(a)
HADAMARD

|q1〉 •

|q2〉 ⊕
(b) CNOT

|q1〉 •

|q2〉 •

|q3〉 ⊕
(c) TOF-
FOLI

|q1〉 ×

|q2〉 ×
(d) SWAP

|q1〉 •

|q2〉
Fredkin

|q3〉
(e) FREDKIN

Fig. 1. Elementary gates

1.3 Proposed Approach

We present a new approach that facilitates the successful synthesis for different
quantum circuit types that are described with real number matrix elements. The
desired output function is provided to the synthesizer, and the tool computes
whether a quantum circuit (composed of one or more quantum gates from our
database), that implements the function, exists.

section m

plane 1

plane 2

plane n

section 2section 1

Fig. 2. The quantum circuit view that is used for the new approach

The novelty of the approach lies in splitting the potential circuits in verti-
cal levels called “sections” and horizontal levels called “planes” (Fig. 2), for a
consistent representation of the genetic algorithm, which is used for the chro-
mosome definition. Information is exchanged from left to right with the upper
wires representing the most significant qubits.
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Potential circuits are represented by individuals (Fig. 3(b)), each containing
rows for possible gates on which the tensor product can be applied, and one
column for the section decomposition. The number of gates on a row is limited
by the number of circuit qubits. The number of gate elements within the column
is not limited and the level of decomposition can be set interactively. Each indi-
vidual represents a possible solution, which is computed by applying the tensor
product for all horizontal rows and then multiplying all the results.

2 Previous Work

As proposed previously [3], a four-phase design flow assists computations by
transforming a quantum algorithm from a high-level language program into pre-
cisely scheduled physical actions. The first three phases are implemented by a
compiler and the last phase is hardware dependent (in some cases can be just a
simulator). The simulation and layout tools incorporate details of the emerging
quantum technologies that would ultimately implement the algorithms described
by higher level languages.

In reference [10], Lukac and Perkowski have identified the following question:
how the number of wires and the gate position within the circuit be encoded by
employing the least complex data structure? They proposed a transformation of
the quantum circuit in an encoded chromosome, in order to be used in a standard
genetic algorithm. In the encoded chromosome the following rules are imposed:
equal probability of presence of each gate type, fast encoding and decoding of
an individual and no other parameters beside basic definitions (no control bits).
The potential weak point is that beside the gate order, there is no information
indicating what gates are connected to what wires. Thus, in order to obtain the
chromosome, it is required that the quantum circuit be altered by employing
swap gates.

Rubinstein, in reference [11], considers for the genetic algorithm a scheme in
which a gate has a type, a number of sets for the qubit operands and some sets of
parameters for different categories (the generalised 2-qubit gate takes four real
parameters for different types of rotations; the CNOT gate takes a number of
control qubits, etc). The quantum circuit is considered as a list of gate structures,
where the size of the circuit (number of gates) is variable.

An application of a genetic algorithm for evolving quantum computing circuits
has also been proposed in reference [4]. The genetic algorithm automatically
searches for the appropriate circuit design that yields the desired output state.
The fitness function compares the current output with the desired output, the
search being stopped when a close match is found.

Shende et al. proposed a top-down structure and effective computation by em-
ploying the Cosine-Sine Decomposition [5]. With the help of an optimized quan-
tum multiplexor, a quantum analog Shannon decomposition of Boolean functions
is derived, by applying this decomposition recursively to quantum operators.
This leads to a circuit synthesis algorithm in terms of quantum multiplexors.
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3 A New Genetic Algorithm Approach

3.1 Implementation of Quantum Gates

The algorithm proposed in this paper operates with a collection of quantum
gates, that are correspondingly encoded as matrices. A dynamic approach for
the matrix representation (list-in-a-list) was used. This approach allowed for
efficient memory usage due to different gate types used for synthesis. In order to
decrease the time required by the Kronecker product and multiplication, we have
created several dedicated memory locations for intermediate results storage.

3.2 The Genetic Algorithm

The special purpose algorithm [9] is used for the automated search of the best
quantum gate composition, in order to implement a given quantum multi-qubit
unitary transformation.

Our main focus was to define all the phases required by the algorithm, allowing
interactive specification of a minimal set of parameters, mainly those necessary
for defining the exit point (algorithm stop condition) and those for increas-
ing or decreasing the solution convergence (depending on mutation/crossover
percentage, multiple mutation/crossover percentage). Figure 3(a) presents our
genetic algorithm. An important step in defining the fitness function (as per-
centage derived from the matrix comparison) was to find the best encoding for
the chromosome (plane and section decomposition) by taking into account, at
the same time, the matrix dynamic representation. For example, we compute in
parallel the tensorial product for one individual on each section, and only after
that we perform the multiplication between sections. This parallel execution of
operations reduce the general computation time.

3.3 The Implementation

When encoding the chromosomes (Fig. 3(b)), each individual will contain one or
more sections, each section containing one or more gates. The number of gates is
given by the number of qubits in the circuit, which is computed from the number
of matrix elements (i.e. number of qubits = log2 (number of elements)). The
number of sections is specified interactively and represents the granularity level
of synthesis (a higher number of sections means that the circuit will be composed
of elementary gates, and a small number of sections means that the algorithm
will search in order to find more complex gates for synthesis). Depending on this
parameter, we may find a solution.

The approach randomly selects an individual, then picks a random gate so-
lution. This gate solution will suffer a mutation, thus being replaced by a new
randomly generated gate (all gates are defined in the input database). Because
we allow multiple mutations, the same individual may suffer another mutation
within the defined probability (Fig. 4(a)). This operator is very important when
searching the problem space, in order to avoid being trapped in a local minimum
of the fitness function.
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Fig. 3. Genetic algorithm (a) and chromosome encoding (b)
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Fig. 4. Genetic operators

Also, we implemented a one-point crossover (Fig. 4(b)): two parents are ran-
domly selected together with a point on their sections, and from that point all
the gates between are swapped. The crossover results are used to improve the
fitness value of the selected chromosome, allowing the exploration of a larger
problem space.

When implementing selection it is important to eliminate the individuals from
the generation that manifest a small solution convergence. We used a propor-
tional selection, so that an individual with a fitness value that is smaller than a
threshold will be eliminated from the population, and a new one will be created
randomly (intruder in population).

We defined our fitness function as a matching percentage with the given out-
put function by comparing each matrix element from our chromosome with each
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corresponding element from the expected solution. For instance if our chromosome
has three out of four elements that are identical with the given output, the fitness
function will be 0.75 .

4 Experimental Results

4.1 Two-Qubit Circuit

Suppose we have the following unitary transformation (1) as an output function:
⎡

⎢⎢⎣

1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0

⎤

⎥⎥⎦ (1)

and the algorithm is initialized with the default values, a solution will emerge
immediately (Fig. 5(a)). If we repeat the algorithm, a second solution will emerge

|q1〉 ⊕ H •

|q2〉 • ⊕
(a)

|q1〉 ⊕ • • H •

|q2〉 • ⊕⊕ ⊕
(b)

Fig. 5. Circuit synthesis of equation (1)

implementing the same output function (Fig. 5(b)); however it is no longer an
optimal solution.

4.2 Three-Qubit Circuit

Suppose we have the unitary transformation (2) as an output function:

1
2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 2 0
0 0 0 0 2 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 −2 0 0 0 0
0 0 2 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

two solutions may be obtained by running our genetic algorithm, as shown in
Fig. 6.
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|q1〉 ⊕ • •

|q2〉 • • ⊕ • ⊕

|q3〉 ⊕ H ⊕ H

(a)

|q1〉 H ⊕ H ⊕

|q2〉 • •

|q3〉 ⊕ •
(b)

Fig. 6. Circuit synthesis of equation (2)

4.3 Multi-Qubit Circuit

The algorithm successfully generates solutions for multi-qubit circuits (i.e. we
emerged solutions for a 5-qubit circuit).

4.4 Benchmark

We used the benchmark proposed in reference [10] to compare our experimental
results. Thus, we performed the following tests in the imposed conditions: one-
point crossover, mutation can erase, add, increase or decrease the chromosome
length, the number of individuals is relatively small (50-100), the maximum
number of generations is 50-100, the mutation probability is 0.2-0.6 and the
crossover probability is 0.2-0.6. We used gates with 1, 2, 3 and 4 wires (see
Table 1) with real elements. The tests where performed for 20 runs in total, the
average result being used for comparison.

Table 1. Gates used in benchmark

Number of inputs Gates

1 Wire, Hadamard, Pauli (X, Z)
2 CNOT, Swap, Controlled-Z
3 Toffoli, Fredkin

The first test, described in Table 2 is intended to prove the algorithm con-
vergence. All the gates are used with the defined scope of discovering similar
circuits. Each gate is used as target gate for the genetic algorithm and the ex-
pected result shall be the same gate, a smaller one or a circuit having the same
function.

Our approach resulted in better runtime results compared with [10]. Moreover,
if multiple mutations and multiple crossover parameters are used, the algorithm
becomes convergent in a smaller time, because of the increasing number of possi-
ble gate recombination. We may conclude that there is a link between mutation
and the search time; a small search time will imply a high number of mutations
and few mutations will imply an increased search time. For small gate situations
(with one or two inputs), the convergence is fast due to recombination restric-
tions (i.e. a three input circuit cannot be used to perform synthesis for a two
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Table 2. Test the convergence of our approach

Number of
inputs per
q-gate

pM pC
Population
size

Number of
generations

Real time
(average 20
runs) as in
[10]

Runtime (average
20 runs)

1-input 0.4 0.6 50 <50 <30sec <0.1sec
1-input 0.2 0.6 50 <50 <60sec <0.1sec

2-inputs 0.6 0.4 50 <50 <30sec <1sec
2-inputs 0.2 0.4 50 <50 <60sec <1sec

3-inputs 0.6 0.6 50 <50 <60sec <3sec
3-inputs 0.2 0.6 50 <50 <180sec <5sec

|q1〉 ⊕

|q2〉 H • •

|q3〉 ⊕
(a) first circuit (b) second circuit

|q1〉 • H

|q2〉 • ⊕

|q3〉 H ⊕
(c) third circuit

Fig. 7. Synthesis of composite circuits

|q1〉 ⊕

|q2〉 H • •

|q3〉 ⊕
(a) first circuit

|q1〉 •

|q2〉 H ⊕

|q3〉 ⊕ •
(b) second circuit

Fig. 8. Circuit synthesis from [11]

input circuit). The time increase depends on the number of inputs used by the
search circuit.

The second test is intended to prove the effectiveness of the synthesis of com-
posite quantum circuits. In [10], three circuits are used, as described in Fig. 7,
but the starting set of the used gates was opened. Without having the same
prerequisites, we cannot compare our approaches. Using different input gates,
we were able to emerge solutions for all of them in a less time than 60 seconds,
which is the minimum time obtained in [10] for this specific test.

In reference [11], Rubinstein proposes two three-qubit circuits (see Fig.8), for
the entagled qubit production problem and presents his experimental results.
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Table 3. EPR problem synthesis

pM pC
Population
size

Number of
generations

Runtime as
in [11] Runtime

0.01 0.8 5000 50 between 30sec and few minutes <4sec

We derived, from our approach, better runtime results using the same quantum
gate set and the same values for the genetic algorithm, as is presented in Table 3.

5 Conclusion

In the quest for automated quantum circuit synthesis, the approach presented
herein, which uses genetic algorithms, has produced different solutions by inter-
actively changing the parameters of the genetic algorithm, or by just repeating
the execution.

The resources employed by the algorithm (memory and CPU time) increase
with the complexity of the output function. This is due to the number of qubits
needed by the algorithm and because of the mathematical operations involved
(i.e. the tensor product).

The algorithm will find circuits that implement a given unitary transformation
(i.e. the output functions). The tool uses, as input, a database that can be updated
interactively with new unitary matrixes representing new quantum circuits.

The major difference, with respect to other approaches is the way circuits
are seen as being split in sections and planes, in order to facilitate a better
chromosome definition. The optimal encoding of the chromosome allows for a
low complexity synthesis of the quantum circuit. Therefore, our proposed genetic
methodology offers, at least in the considered experiments, better performance
in terms of time; for instance the methodology described in [4] is working only
on two qubits.

Dynamical memory allocation allows for efficient time and memory consump-
tion, as well as for the synthesis of different types of circuits without any prior
parametrization.

Our motivation was to evolve more complex quantum circuits, and not the
benchmark evaluation of the convergence and the effectiveness of the genetic
algorithm, although the presented results seem to outperform those obtained
with the previous approaches.

Future work will focus on chromosome encoding through graph representation
(m-graphs may be suitable), along with an enhanced matrix representation.
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Abstract. Efficiency of two mutation operators applied in a clonal se-
lection based optimization algorithm AIIA for non-stationary tasks is
investigated. In both operators traditional Gaussian random number gen-
erator was exchanged by α-stable random number generator and thus α
became one of the parameters of the algorithm. Obtained results showed
that appropriate tuning of the α parameter allows to outperform the
results of algorithms with the traditional operators.

1 Introduction

Clonal selection based algorithms belong to the group of evolutionary approaches
to optimization. They were inspired by the clonal selection phenomenon which
is present in the human immune system. The phenomenon is responsible for the
ability of adaptation to new patterns of invading organisms. It is a part of the
so called primary immune response of the system. The clonal selection paradigm
was an inspiration for a set of heuristic approaches to optimization since the end
of 90’s [12].

In our research we investigate the use of the clonal selection principle based
approaches for non-stationary optimization tasks. In our previous research [9] it
was shown that some of them are more successful than the others in optimization
of a suite of tasks created with two known test-case generators [2,6,10]. Thus
for our recent investigations the AIIA algorithm was selected as the most effi-
cient of them. The results of experiments with two types of mutation operator
are presented in this paper. Our goal was to study the influence of the applica-
tion of random number generators with different types of distributions over the
efficiency of these operators.

In Section 2 the AIIA algorithm is briefly reminded. Detailed description of
the two tested mutation operators can be found in Section 3. Section 4 includes
description of testing environments and applied measures while Section 5— ob-
tained results and conclusions. A short discussion about the measure applied for
the evaluation of the results is presented in Section 6. Final remarks are gathered
in Section 7.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 184–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Artificial Immune Iterated Algorithm (AIIA)

The detailed description of AIIA can be found in [11]. The pseudo-code of the
main loop of AIIA is given in Figure 1 below. The symbol xi represents i-th
antibody, xci,k — k-th mutated clone of the i-th antibody, f(xi) — fitness of
the i-th antibody to the antigen, and xc∗i is the best mutated clone of the i-th
antibody, i.e. xc∗i = arg maxxci,k,∀k∈{1,...c} f(xci,k) where c is the number of
clones.

1. Fitness evaluation. For each antibody xi in the population P
compute its fitness i.e. the value of the objective function f(xi).

2. Clonal selection. Choose n antibodies with highest fitness to the antigen.
3. Somatic hypermutation.

Make mutated clones xci,k, k ∈ {1, . . . c} for each antibody xi,
i ∈ {1, . . . n}.

The mutated clone xc∗
i with highest fitness replaces the original

antibody xi if f(xc∗
i ) > f(xi).

4. Apoptosis. Replace d weakest antibodies by randomly generated solutions.

Fig. 1. Pseudo-code of the main loop of AIIA

AIIA has five control parameters: |P | — population size, n — size of the
subpopulation activated for clonal selection procedure, c — number of mutated
clones of the antibody (in general the number of clones for each of activated anti-
bodies could be different. However in experiments presented below we simplified
this rule and the number of clones of each antibody was the same), d — size of
the subpopulation that undergo apoptosis procedure, and rm — mutation range.

3 Mutations Based on Symmetric α-Stable Distributions

Authors of [7] point Gutowski’s publication in 2001 [4] as the first paper treat-
ing the usefulness of α-stable distribution in heuristic global optimization algo-
rithms. Since then there appeared more publications where properties of α-stable
distributions as well as the results of application of α-mutation operators in evo-
lutionary algorithms were widely discussed [5,7].

The α-stable distribution is controlled by four parameters: stability index α
(α ∈ 〈0 < α ≤ 2〉), skewness parameter β, scale parameter σ and location pa-
rameter μ. In symmetric version of this distribution (called SαS, i.e. symmetric
α-stable distribution) β is set to 0. For α = 2 the SαS(μ, σ) distribution reduces
to the Gaussian N(μ, σ) and in the case of α = 1 the Cauchy C(μ, σ) is obtained.

3.1 SαS(μ, σ) Generator

In both tested mutation operators a SαS random numbers generator is applied.
In [7] a theorem is presented where a formula for the simulation of standard
α-stable symmetric random variable X for σ = 1 and μ = 0 is given:
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X =

⎧
⎪⎨

⎪⎩

sin(αV )

(cos(V ))
1
α

[ cos((α−1)v)
W ]

1−α
α if α �= 1,

tan(V ), if α = 1.

(1)

V and W are independent random variables where: V ∼ U(−π
2 , π

2 ), and W
is exponentially distributed with the mean 1. Thus a random variable Z ∼
SαS(μ, σ) is obtained by:

Z = μ + σX. (2)

In our research the generator based on this formula (called SαS(μ, σ) gener-
ator) was implemented and applied in the experiments1.

3.2 Simple SαS(μ, σ) Mutation Operator

The first of the tested mutation operators was a simple mutation where a new
value of an l-th coordinate of a mutated clone xci,k is calculated as follows:

xci,k[l] = xi[l] + SαS(0, rm) · (dom widthl/2).

where xci,k[l] — the value of the l-th coordinate of the mutated clone xci,k, xi[l]
— the value of the l-th coordinate of the clone’s predecessor, rm — the mutation
range (0 < rm ≤ 1), and dom widthl — a constant value which is equal to the
distance between the upper and the lower boundary of the l-th dimension of the
search domain.

If the value of xci,k[l] is out of the domain then the remainder of xci,k[l] and
dom widthl is evaluated as advised in [8]: xci,k[l] = xci,k[l] mod dom widthl.

3.3 Modified opt-IA Mutation Operator

The second tested mutation operator originates from [3] where it was a com-
ponent of the aiNet optimization algorithm. However in the version presented
below the SαS(μ, σ) generator was applied instead of the Gaussian random num-
ber generator. Thus the mutated value of an l-th coordinate of a clone xci,k is
calculated as follows:

xci,k[l] = xi[l] + SαS(0, σi,l),
σi,l = rm · (dom widthl/2) · exp(−f ′(xi)).

where f ′(xi) is the fitness of the clone’s predecessor normalized in [0,1]:

f ′(xi) =
f(xi) − fmin

(fmax − fmin)
,

fmax = max
xj ,∀j∈{1,...|P |}

f(xj) and fmin = min
xj ,∀j∈{1,...|P |}

f(xj).

1 The C++ source code of the SαS(μ, σ) generator (a MS Visual Stu-
dio .NET 2003 project) employed in the presented research is available at:
http://www.ipipan.waw.pl/∼trojanow/alpha/
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4 Plan of Experiments and Applied Measures

Behavior of the algorithms was tested with six environments generated with two
test-benchmarks. The first test-benchmark is a Test Case Generator 2 (or TCG)
proposed in [10]. We created four testing environments with TCG; two of them
with cyclic changes and two with non-cyclic ones. In case of cyclic changes a
full run of a single experiment includes 5 cycles of changes in the environment.
In case of non-cyclic environments the total number of changes for the full run
was 25. The second test-benchmark is a Moving Peaks Benchmark (or MPB)
generator [2,6]. Its description, sample parameters settings and a source code
are available at the web page [1]. We created two testing environments with
MPB called scenario 1 and 2 [1]. The total number of changes for the full run
for each of the scenarios was also set to 25.

Table 1. Parameters of environments for six groups of experiments: TCG10c and
TCG20c, TCG12nc, TCG20nc , MPB5 and MPB50

Environment TCG10c TCG20c TCG12nc TCG20nc MPB5 MPB50

No. of dimensions 2 2 2 2 5 5

Environment type 10×10 10×10 6×6 10×10 1 2

No. of varying optima 10 20 12 20 5 50

No. of iterations 1000 2000 500 500 500 500

Six groups of experiments were performed. Table 1 shows the settings of each
of the groups. The first row called No. of dimensions shows the number of di-
mensions of the search space where the optimization is performed. Environment
type shows the identifier of the testing environment. In case of TCG the identi-
fier describes the landscape for the 2-dimensional search space, e.g. 10×10 means
that we have a ”chessboard” with 100 fields (10 by 10) each with a single hill in
the center. In case of MPB the identifier is a number of scenario. No. of varying
optima shows the number of varying hills, peaks or cones in the optimization
landscape. No. of iterations shows the number of iterations performed in one
full run of a single experiment. In case of cyclic changes this number is equal to:
number of cycles of changes multiplied by the number of changes in a cycle (i.e.
no. of varying optima) and by the number of iterations between changes (e.g.
for TCG10c it is: 5×10×20).

To evaluate the results, we used a measure called offline error which represents
the average deviation of the best individual from the optimum evaluated since the
last change of the fitness landscape. Every time the solution’s fitness is evaluated,
an auxiliary variable is increased by the value which is the deviation of the best
2 Figures of sample environments generated with TCG are available at:

http://www.ipipan.waw.pl/∼stw/ais/environment/env.html
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solution evaluated since the last change including the one just evaluated as well.
When the experiment is finished the sum in the variable is divided by the total
number of evaluations and returned as the offline error. Every experiment was
repeated 100 times and the mean was calculated.

5 Results of Experiments

For each of the testing environments a set of tests was performed where the
influence of three selected parameters of the algorithm on the offline error was
observed. The first parameter is α in the SαS(μ, σ) generator applied in the mu-
tation operators. Tests with the following values of the α parameter were per-
formed: {0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 1.75, 1.9, 1.95, 2}. The second parame-
ter, rm varied from 0.01 to 0.99 with step 0.02. The third parameter, the number
of activated antibodies varied from 2 to 20 with step 1. To satisfy the assumption
of the same or almost the same number of fitness evaluations between changes
in the fitness landscape from one side and the assumption of constant number
of iterations between changes from the other side the number of clones had to
depend on size of the set of activated antibodies. For a set of size 2 there were
99 clones, for 3 – 66, 4 – 50, 5 – 40, 6 – 33, 7 – 29, 8 – 25, 9 – 22, 10 – 20, 11 –
18, 12 – 17 , 13 – 16, 14 – 15, 15 – 14, 16 – 13, 17 – 12, 18 – 11, 19 – 11, 20 – 10.

Offline error for TCG 10 by 10, trace 1, alpha=0.10
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Offline error for TCG 10 by 10, trace 1, alpha=1.00
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Fig. 2. Offline error obtained by AIIA for the tested parameters: rm (mutation range)
and number of activated antibodies. Four graphs for the values of α: 0.1, 0.3, 1 and 2.
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Sample results of the algorithm with the modified opt-IA mutation for four se-
lected values of α and for the selected test-case TCG10c are presented in Figure 2.
Similar offline error landscapes were obtained for all the testing configurations.
For each of the tested values of α the best values of offline error were found.
They are presented in Tables 2 and 3.

Table 2. Best values of offline error obtained by AIIA with simple SαS mutation

α: TCG10c TCG20c TCG12nc TCG20nc MPB5 MPB50

0.10 9.24 21.18 11.22 18.55 50.28 24.27

0.20 9.24 21.18 11.19 18.54 50.28 24.27

0.30 9.24 21.18 11.18 18.57 50.28 24.27

0.40 9.24 21.18 11.26 18.49 50.28 24.27

0.50 9.32 21.14 11.17 18.57 50.28 24.27

0.75 9.32 21.14 11.31 18.66 50.28 24.11

1.00 (Cauchy) 9.26 21.16 11.26 18.51 50.74 24.36

1.50 9.32 21.14 11.30 18.71 50.28 24.27

1.75 9.24 21.18 11.20 18.70 50.28 24.27

1.90 9.24 21.18 11.27 18.64 50.28 24.27

1.95 9.24 21.18 11.24 18.55 50.28 24.27

2.00 (Gauss) 9.30 21.07 11.22 18.64 50.86 24.66

Results of experiments for the first type of mutation, i.e. simple SαS(μ, σ)
mutation are presented in Table 2 and their graphical representation can be
found in Figure 3.a. It can be seen that there is no relevant relationship between
the value of α of the SαS(μ, σ) generator and the algorithm’s efficiency. For all
the tested values of α the obtained results are quite similar to each other. In
comparison to the results presented in other publications about non-stationary
optimization they are not very impressive.

The second group of results for the modified opt-IA mutation is presented
in Table 3 and in Figure 3.b. These results are much better and show more
regular relationship than the results for the first type of mutation. Starting with
α = 0.1 it can be seen that the error decreases with the growth of the α value.
For α between 0.3 and 1.0 the graphs are getting stable. For two test-cases an
improvement of the results can be observed till the end of the tested interval of
α values while for four remaining test-cases there exist optimum value of α. The
optimum α values for the four tasks are respectively: TCG10c — 0.3, TCG12nc —
1.0, MPB5 — 0.5, and MPB50 — 0.5. It completely confirms observations known
from the literature, where in many cases the Cauchy mutation was indicated as
the more efficient than the Gaussian one.
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Table 3. Best values of offline error obtained by AIIA with modified opt-IA mutation

α: TCG10c TCG20c TCG12nc TCG20nc MPB5 MPB50

0.10 2.96 10.52 4.07 8.54 4.07 5.77

0.20 2.67 8.78 3.53 7.12 3.20 5.40

0.30 2.63 7.39 3.13 6.36 3.13 5.37

0.40 2.74 6.25 2.91 5.90 2.95 5.19

0.50 2.74 5.38 2.73 5.59 2.92 5.14

0.75 2.83 4.07 2.60 5.30 3.02 5.24

1.00 (Cauchy) 2.84 3.67 2.52 5.28 3.26 5.23

1.50 2.88 3.50 2.60 5.32 3.72 5.68

1.75 2.93 3.48 2.59 5.36 3.90 5.80

1.90 2.90 3.49 2.61 5.35 3.96 5.82

1.95 2.90 3.48 2.59 5.44 3.92 5.71

2.00 (Gauss) 2.91 3.47 2.59 5.04 4.11 5.83
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Fig. 3. Comparison of the offline error obtained with two types of mutation. E1 rep-
resents best i.e least values of error for TCG10c, E2 – for TCG20c, E3 – for TCG12nc,
E4 – for TCG20nc, E5 – for MPB5, and E6 – for MPB50.
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T-student’s test was used for analysis of the significance of differences between
average values of offline error in the neighboring rows of Table 3. Calculated t -
values are presented in Table 4. P value less than 0.05 was considered significant.
For 198 degrees of freedom and the assumed level of significance the tabulated
critical value tα equals 1.9720.

Table 4. An analysis of the significance of differences between average values of offline
error obtained by AIIA with modified opt-IA mutation: calculated t-values. t-values
greater than critical value tα are underlined.

compared α: TCG10c TCG20c TCG12nc TCG20nc MPB5 MPB50

0.10-0.20 2.8891 14.5448 5.1021 5.0997 8.6804 1.5778

0.20-0.30 0.3503 12.3526 5.3890 4.7219 0.5942 0.3347

0.30-0.40 0.7108 11.5419 2.1186 1.3052 0.1475 0.7035

0.40-0.50 0.2596 11.0943 2.3398 2.0001 0.1345 0.0880

0.50-0.75 1.1799 17.6733 2.4652 1.9183 0.9053 0.1719

0.75-1.00 1.4025 6.2833 0.5804 0.5027 2.3375 0.9176

1.00-1.50 1.8801 1.8569 2.2835 0.9993 3.0922 0.2053

1.50-1.75 0.9431 0.8323 0.9960 1.4427 0.0000 0.6077

1.75-1.90 0.6418 1.4487 0.8270 0.4763 1.1506 0.0000

1.90-1.95 0.1551 0.9740 0.1229 0.2277 1.3545 0.1338

1.95-2.00 0.1471 0.1560 1.4745 2.3474 0.7934 0.6347

In Table 4 it can be seen that in many cases calculated t -values do not exceed
assumed critical tα-value so some of the pairs of means can not be considered as
significantly different. For most cases the last significant difference between the
means of offline error is in the middle of the tested interval of the α parameters.
In all the cases except TCG20nc the differences between pairs obtained for α
close to 2 were not statistically significant. For MPB50 none of the pairs of
means differs significantly and for TCG10c there was just one such a pair. From
the other side the differences between pairs obtained for α close to 0 were usually
significant.

6 Indeterminism in the Offline Error Measure

When we take a closer look at the formula of evaluation of the offline error it
can be noticed that there is a kind of indeterminism in the way of its application
and thus a set of different values of the error can be obtained for the same set
of solutions. Depending on the order of evaluation of the solutions the offline
error can be lower if we start from the best of them or higher if we start from
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the worst ones and the best are evaluated last. Difference in the obtained value
of the error depends on the difference between the fitness of the best individual
in the population and the fitness of the worst one and of the distribution of the
better and worse fitness values over the population.

In all our experiments presented above the set of solutions was never sorted for
the better tuning of the results. However we wanted to check the difference in the
obtained results for the case where after every change in the fitness landscape the
set of solutions was sorted from the best to the worst one before the reevaluation
of them. Additionally we also wanted to check stability of the results obtained
from the series of 100 repetitions of the tests. For a single configuration of the
algorithm and for the selected test-case MPB50 we performed a hundred tests
where each test consisted of a hundred experiments. The result of a single test
is a single value which is a mean of all the offline errors in the series. For the
results of the hundred tests the following values were evaluated: mean, median,
minimum value, maximum value and standard deviation (Table 5).

Table 5. Comparison of offline error obtained by AIIA with modified opt-IA mutation
(α = 0.5) without and with sorting of population for a series of 100 tests

type: mean median min. val. max. val. std. dev.

without sort. 5.5086 5.505 5.10 5.88 0.16960

with sort. 5.5015 5.500 5.09 5.87 0.16979

Results in Table 5 show that there is a difference in benefit to the version
with sorting however it is a very low difference. In case of mean values it is on
the third digit after the decimal point. For both versions the values of mean and
median are similar to each other which means that the distribution is symmetric.
Additionally the estimation of a single experiment’s standard deviation can be
obtained from last column of the table. Since the test is an average of 100
experiments, the standard deviation of a single experiment is equal to

√
100 = 10

times greater.
Finally let us note that the respective value of offline error in Table 3 is higher

than the minimal value of offline error in Table 5 and lower than the mean value.
Thus the result in Table 3 can be classified as a rather good one. Unfortunately
we do not have a similar knowledge about all the remaining values in Tables 2
and 3. In spite of this the significance of tendencies observed in these tables and
in Figure 3 is not depreciated.

7 Conclusions

In this paper applicability of a version of the clonal selection algorithm called
AIIA [11] was studied. We tested the algorithm equipped with two types of
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mutation, both using the SαS(μ, σ) generator. Obtained results showed that
the second of them, the modified opt-IA mutation is much better than the first
one, i.e. simple mutation.

The results also showed clearly that the parameter α of the random number
generator can be used to advantage as yet another parameter for control of the
clonal selection based algorithm. This parameter can significantly influence the
algorithm’s behavior and efficiency.
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Abstract. This paper deals with the flow-shop scheduling problem with
no-store policy and minimal cycle time criterion. The model and some
properties of the problem have been presented. To solve the problem, we
propose new genetic algorithm equipped with auxiliary gene expression
mechanism, which creates offspring using genetic information from both
parents as well as asleep information from ancestors (grand- father, grand
grandfather). The presented computational tests proved superiority of
the proposed approach over traditional, basic GA scheme.

1 Introduction

Cyclic manufacturing is the fundamental strategy of systems providing mixture
of various products, in long production series, with slowly changeable production
profile. Cyclic system provides on the output, every time period called cycle
time, the fixed mixture of products, which composition depends on medium- and
long-time orders of clients. By minimizing cycle time we are able to maximize
the productivity of the system as well as the degree of machines utilization.
The system efficiency can be additionally improved by limitation or elimination
storage of semi-products between production stages. This leads to constraints
”no store” and ”limited store” quite often required in cyclic manufacturing.

Cyclic manufacturing, modelled in terms of deterministic scheduling problems
with storage constraints, belongs to the class of the hard discrete optimization
cases. Not only quite non-trivial numeric procedures, that find the minimal cycle
time and the corresponding schedule, but also the lack of problem-specific prop-
erties makes the search process particularly hard. That’s why studies carried out
up till now did not go beyond basic production structures (as an example flow
line, which refers to flow-shop scheduling problem), whereas nobody defines and
analyses cycle time for more complex system, as an example job-shop.

Strong NP-hardness of these problems limits the applicability of exact opti-
mization methods to instances of small size only. Therefore, the intelligent fast
approximate methods become foreground tasks in the scheduling research. This
type methods base chiefly on two-level decomposition of the problem: (A) find
the optimal sequence of jobs in a cycle (upper level) and (B) find the minimal
cycle time for fixed sequence of jobs (lower level). Generally (B) can be solved
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by using a linear programming method, a min flow problem or a problem of find-
ing specific paths in a graph. Unfortunately, the lack of special properties for
(B), eliminates most of local search approaches (as excessively time consuming)
and pointed out genetic approach (GA) and simulated annealing (SA) as the
potentially promising, see e.g. [1]. We use the former one.

Advantages and disadvantages of GA [2] are commonly known. In order to
obtain the best effect, GA needs to be tuned in time consuming tests. Moreover,
binary coding of chromosome finally appears unusable for scheduling problems.
This have implied certain non-homogeneity in chromosome coding techniques,
that finally tends towards the concept: solution = combinatorial object = individ-
ual = genotype (assumption individual = genotype simply reduces the number of
tuning parameters). This, in order, increases the role of problem-specific genetic
operators being the ”source of progress”. Thus, the artificial evolution creates
distracted individuals, in accordance with pure democratic and multi-directed
policy of the Nature. Such democracy is superfluous in scheduling problems
where search history can efficiently influence on further search directions. The
Nature owns similar mechanism since, in fact, the individual is determined by the
collection of phenotype features, which follows from the huge number of genes,
carried out from a generation to the next generation, frequently asleep, express-
ing indirectly data from the history of generation development. This leads to the
idea: solution = individual = phenotype �= genotype presented in this paper.

2 The Problem

In this section we introduce the cyclic scheduling problem as the problem of com-
binatorial optimization. The set of tasks J = {1, 2, . . . , N} has to be processed
on machines, indexed 1, 2, . . . , m, organized in a line structure. Single task re-
flects one final product manufactured. Every task is performed in m subsequent
stages; task routes are identical for all tasks. Stage i is performed by machine i.

Next, there is no storage place neither in production stockroom nor in buffers
between subsequent machines. It means, that task completed on machine i can
be moved to machine i+1 if only i+1 is free, otherwise this task blocks machine
i until machine i + 1 will be released. Then, every task j ∈ J may be perceived
as the sequence of m operations O1j , O2j , . . . , Omj performed on machines in
turn. Operation Oij reflects processing of task j on machine i with processing
time pij > 0. Once started, operation cannot be interrupted. Each machine can
execute at most one task at a time, each task can be processed on at most
one machine at a time. Systems restricted by limited buffers capacity or buffers
absence are subjects of interest of many researchers [3,4,5,6].

Let us assume that set J consists of t different types of tasks, with cardinal-
ity of every type denoted by r1, . . . , rt, respectively; task of identical type have
identical processing times of individual operations. Thus, we have N =

∑t
i=1 ri.

If there exists integer c > 1, being the greatest common division of integers
r1, . . . , rt, then set J may be split into c identical subsets, every of them con-
taining n = r1/c+ . . .+ rt/c tasks. Each of this subset is called the minimal part
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set (MPS). After completing k-th MPS (i.e. its task in a fixed order), system
performs (k + 1)-st MPS (tasks processed in the same order), k = 1, 2, . . ..

We will focus only on tasks from single MPS. It is shown that feasible process-
ing order on every machine must be identical, [4]. Thus, order of tasks from sin-
gle MPS may be defined as permutation π of elements from set {1, . . . , n}. The
processing order of all tasks from J can be obtained by c-times concatenation of
π. Schedule of tasks from k-th MPS can be described by matrix [Sk]m×n where
Sk

i,j is the time moment when processing of task j starts on machine i. Feasible
schedule [Sk]m×n, for given π, must satisfy the following set of constraints

Sk
i,π(j) + pi,π(j) ≤ Sk

i+1,π(j), i = 1, . . . , m − 1, j = 1, . . . , n, (1)

Sk
i,π(j) + pi,π(j) ≤ Sk

i,π(j+1), i = 1, . . . , m, j = 1, . . . , n − 1, (2)

Sk
i+1,π(j) ≤ Sk

i,π(j+1), i = 1, . . . , m − 1, j = 1, . . . , n − 1, (3)

Sk
i,π(n) + pi,π(n) ≤ Sk+1

i,π(1), i = 1, . . . , m, (4)

Sk
i+1,π(n) ≤ Sk+1

i,π(1), i = 1, . . . , m − 1, (5)

for k = 1, . . .. Constraint (1) comes from technological processing order, while
(2) from unitary machine throughput. Constraint (3) models store limitations -
processing of task π(j+1) on the machine i may start not earlier than processing
of task π(j) starts on the machine i+1; i. e. machine i must be released by task
π(j). Constraints (4) and (5) model time relations between processing of last
task from k-th MPS and the first task from k + 1-st MPS. These constraints
are fully analogous to (2) and (3). Assumption about cyclic production requires,
that there exist constant T , called the cycle time, such that

Sk+1
i,π(j) = Sk

i,π(j) + T, i = 1, . . . , m, j = 1, . . . , n, k = 1, 2, . . . (6)

Obviously, T depends on π. Actually, we are interested in minimal possible value
T (set individually for fixed schedule π), such that constraints (1–6) are fulfilled.
This value will be called minimal cycle time and denoted by T (π).

The optimization problem is as follows. Let Π denote the set of all permuta-
tions on the set {1, . . . , n}. We want to find permutation π∗ ∈ Π , such that

T (π∗) = min
π∈Π

T (π). (7)

3 Minimal Cycle Time

This section aim is to provide methods of finding T (π) for fixed π. Let π is fixed
and T is a cycle time defined by (6). Substituting (6) to (1)-(5) we get set of
constraints defined for single MPS, identical for all k = 1, 2, . . . . This means that
index k may be omitted in Sk

ij . Thus, T (π) and schedule Sij , i = 1, . . . , m, j =
1, . . . , n can be obtained by solving the following linear programming problem

T (π) = min
T,Sij

T (8)
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Si,π(j) + pi,π(j) ≤ Si+1,π(j), i = 1, . . . , m − 1, j = 1, . . . , n, (9)
Si,π(j) + pi,π(j) ≤ Si,π(j+1), i = 1, . . . , m, j = 1, . . . , n − 1, (10)

Si+1,π(j) ≤ Si,π(j+1), i = 1, . . . , m − 1, j = 1, . . . , n − 1, (11)
Si,π(n) + pi,π(n) ≤ Si,π(1) + T, i = 1, . . . , m, (12)

Si+1,π(n) ≤ Si,π(1) + T, i = 1, . . . , m − 1, (13)

too time consuming to be applied in any iterative approximate algorithm. There-
fore, we are looking for other less expensive methods.

An alternative methodology was presented in [7], where schedule Sij , i =
1, . . . , m, j = 1, . . . , n and T (π) was obtained by solving a problem of minimal
flow in the specific net. Considering the size of the net O(nm) and computational
complexity of the flow algorithm, we obtain still too expensive method having
the computational complexity O(n3m3).

We propose, in the sequel, the efficient method, with computational complexity
O(nm2), based on paths in a graph. From (12)-(13) it follows, that

T (π) ≥ LBT (π) = max
1≤i≤m

[
max{Si,π(n) + pi,π(n), Si+1,π(n)} − Si,π(1)

]
(14)

where Sm+1,j = Sm,j , j = 1, . . . , n.
In order to find LBT (π) we build rectangular grid graph with m + 1 rows and

n+1 columns, similarly as in [6]. It has the form of G(π) = (V, R∪F (π)) with set
of nodes V and set of arcs R∪F (π), where V = {1, . . . , m+1}×{1, . . . , n+1}, R =⋃m

k=1
⋃n+1

j=1 {((k, j), (k +1, j))}, F (π) =
⋃m

k=1
⋃n

j=1{((k +1, π(j)), (k, π(j +1)))}
respectively. Node (i, j) ∈ V represents operation i of task π(j). Node weight
(i, j) ∈ V is pi,π(j). Arcs from set R model constraints (10) and (12), and have
weight equal 0. Arcs from set F (π) model constraints (11) and (13); every arc
has weight minus pk+1,π(j). Column j of this graph corresponds to tasks π(j),
j = 1, . . . , n. Row k corresponds to machine k, k = 1, . . . , m. Row (m + 1)-st
represents virtual machine m+1, with pm+1,j = 0, j = 1, 2, . . . , n. Column n+1
represents virtual task being copy of the first task, namely π(n + 1) = π(1).

Let Di, i = 1, . . . , m, is the length of the longest path from node (i, 1) to node
(i, n + 1), including pi,π(1) but excluding pi,π(n+1), in G(π). We proved that

Property 1. LBT (π) = Dmax = max1≤i≤mDi.

Property 2. There exists solution of (8)–(13), such that T (π) = LBT (π).

Notice, many local search algorithms need only T (π), but Sij , i = 1, . . . , m,
j = 1, . . . , n. We have provided also an efficient method of finding the schedule
Sij , i = 1, . . . , m, j = 1, . . . , n, on the base of T (π), however in the context of
proposed next GA method it is of less importance.

4 Genetic Algorithm

Traditional scheme of genetic algorithms is a significant simplification of com-
plex natural evolution process, where crossing is the base mechanism to produce
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individuals with diverse features. In fact, crossing enables exchange of basic ge-
netic information contained in DNA, which coded origin of iRNA, tRNA, mRNA
and enzymes responsible for proteins biosynthesis producing material of life. For
organism originated in this way, its external features are assessed according its
adaptation to environment (estate). Phenotype feature (external) is determined
usually by many genes interacting each other through so called gene expression
mechanism. One can say, that information contained in DNA is in some meaning
excessive (redundant) and provide information about history of given species. In
the paper [8], essentially different model of phenotype representation was pro-
posed for the Travelling Salesman Problem, joined with specific gene expression
algorithm based on some heuristic method providing phenotype.

We assume that solution corresponds to phenotype, since it fitness is evaluated.
For our problem the processing order of tasks in the cycle is represented by a
permutation, so phenotype is a permutation on the set {1, . . . , n}. To hold genetic
information coming from previous generations, we propose to code individual
genotype as three permutations. The first one is agreeable with current individual
phenotype, while the second and third are phenotypes of individuals father and
grandfather, respectively. Obviously, in this way we can store genetic information
coming from even older generations.

One of the most effective crossing operator for permutation chromosomes is
the operator with partial matching PMX, [9]. For our needs, we propose new
operator E adapted immediately from PMX to our extended representation of
the chromosome. More precisely, in E pure crossing of individuals is done in
following way: the first permutation of the descendant coming from parents by
application of PMX, the second permutation is obtained by copying fathers
phenotype, whereas the third one is got by copying the second permutation of
the father, which in turn is identical with phenotype of grandfather (precisely
father of the father). The second mirror descendant inherits by female line. The
behaviour of E operator is presented in the example from Fig. 1. Let randomly
selected cut points on the first permutation are a = 2, b = 5. For mother (first
individual on the Fig. 1a) and father (second individual on the Fig. 1a), points a
and b determines sequence of task transpositions 7 ↔ 5, 1 ↔ 10, 4 ↔ 3, 2 ↔ 7.
The descendant is created by copying the first permutation of the father and
exchanging elements listed in the above sequence of transpositions. The second
and third permutations are inherited accordingly from father. Analogously, by
changing roles of parents the second descendant can be generated.

Gene expression algorithm determines phenotype of an individual observable
immediately after crossing, in our case on the base of three stored permuta-
tions. Then newly created phenotype is stored in the first permutation of this
individual. The phenotype is created in two stages. In the first stage, there is
modified position of elements, which comes from father and their positions have
been fix during sequence of transpositions (underlined positions in the figure).
Let us call these element as movable. Next, every pair of adjacent elements from
fathers phenotype is taken into consideration. Let (x, y) is one of such pairs, then
if x and y are movable elements, y is moved directly behind x in phenotype of
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Fig. 1. Genetic engineering: (a) parents, (b) descendant, (c) gene expression stage
one, (d) gene expression stage two. Corresponding Gantt charts and cycle times are
included.

newly created individual. In our example, as result of such operation, element
4 is moved behind 1 and then element 2 is moved behind 4 (see Fig. 1c). At
the begin of the second stage, descendant phenotype is split into chunks. Every
chunk contains as much elements as possible which come from the same parent,
and are performed in the same order in parents phenotype. In the second stage
every adjacent pair from grandfather phenotype is analyzed. Let (x, y) be one
of such pairs, then, if x is the last element in some segment and y is the first in
other one, all elements from the second are put in behind element x respecting
order they existed in this fragment. In Fig. 1d, as result of second stage, fragment
(1, 4, 2) is moved directly behind the last element of fragment (5, 10, 3, 7).

5 Numerical Experiment

In order to examine the influence of the excessive coding with gene expres-
sion mechanism on the algorithm efficiency, algorithm from [10] has been imple-
mented. It checks successive NGEN generations, works on the population POP
of individuals, the size of the population is POPSIZE. The starting population is
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generated at random. At a iteration, the fitness function fit(t) of an individual
t ∈ POP is calculated using

fit(t) =
maxj∈POP [T (F (j)) − T (F (t))]∑

k∈POP maxj∈POP [T (F (j)) − T (F (k))]
, t ∈ POP, (15)

where F (t) denotes the phenotype of individual t, and T is the cycle time. Then,
for individual, the probability of its choosing is calculated as follows

pr(t) =
fit(t)∑

k∈POP fit(k)
, t ∈ POP. (16)

From population POP , pairs of parents are selected to reproduction accord-
ing to roulette rule. Every pair is crossed with probability PCROSS and or
every individual is mutated with probability PMUTE. The mutation consists
of exchange of two elements placed on two randomly selected positions.

New population contains newly created descendants and the best fitted indi-
vidual from parent generation. In case of low diverse of the generation, i.e. if more
than POPFIT individuals match each other, population is re- placed with the
population generated randomly, in the same way as initial population. Fitness
of individual i ∈ POP means, that maxj∈POP (fit(j) − fit(i)) ≤ FITTOLER.
Algorithm returns the best permutation generated during its working, i.e. per-
mutation with minimal cycle time. Similarly like in [10], algorithm has been run
with following parameters: POPSIZE = 95, NGEN = 1000, FITTOLER =
1E − 10, POPFIT = 60, PCROSS = 0.25, PMUTE = 0.009.

Algorithm, coded in C++, was tested using first six group of benchmarks
of Taillard [11]. Genetic algorithm has been implemented with three crossover
operators. The first implementation GA-PMX uses only PMX, the second one
GA-EO uses PMX and the first stage of gene expression algorithm. The last
algorithm GA-E uses crossover operator PMX and the full two-phase gene ex-
pression algorithm. Every variant of the algorithm was run 10 times for every
test instance. For every problem instance, for every tested algorithm, (GA-PMX,
GA-EO, GA-E) and for every from among 10 runs of the algorithm, the following

Table 1. Comparison of crossing operators efficiency

Group GA-PMX GA-OE GA-E
n ×m AB SB MINB MAXB AB SB MINB MAXB AB SB MINB MAXB

20×5 2.95 0.29 1.29 4.41 2.01 0.26 0.56 3.27 1.12 0.25 0.01 2.57
20×10 2.48 0.33 0.82 4.13 2.18 0.26 0.95 3.56 1.49 0.26 0.13 2.83
20×20 1.81 0.20 0.79 2.79 1.43 0.18 0.48 2.42 1.13 0.21 0.07 2.26
50×5 2.97 0.24 1.68 4.21 2.15 0.28 0.67 3.52 1.52 0.26 0.13 2.89
50×10 2.46 0.23 1.26 3.83 1.65 0.25 0.43 3.03 1.35 0.24 0.16 2.59
50×20 1.50 0.14 0.72 2.28 1.16 0.17 0.31 2.03 1.00 0.17 0.10 1.99

All 2.36 0.24 1.09 3.61 1.76 0.23 0.57 2.97 1.27 0.23 0.10 2.52
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results have been traced: T ∗ – minimal cycle time obtained during experiments
for this instance, BA

i = 100(T (πA
i ) − T ∗)/T ∗ – error of the solution obtained

during i-th run of the algorithm A. Based on BA
i for every instance and for every

examined algorithm, the following parameters have been computed : AB – mean
value of BA

i , SB – standard deviation of BA
i , MINB – minimal BA

i , MAXB –
maximal BA

i . Finally, for every algorithm and every test group, average values of
previously mentioned parameters have been calculated. Results are presented in
Table 1. For comparison, algorithm from [7] run on the same instances provided
the mean value of BA

i as follows: 20×5 – 7.61%, 20×10 – 9.92%, 20×20 – 9.32%,
50×5 – 2.37%, 50×10 – 3.41%, 50×20 – 6.04%.

6 Conclusions

From Table 1 it follows that, for the considered case, redundant coding of genes
linked with gene expression mechanism significantly increases efficiency of GA.
Already GA-EO, which uses only first stage of the gene expression mechanism
generates solutions better in average by 0.6% than GA-PMX with classic opera-
tor PMX. Further improvements of efficiency is obtainable for GA- E that uses
full gene expression module - this algorithm generates solutions better by 1%.
Superiority of GA-EO and GA-E over GA-PMX can be observed in all groups
of instances. Moreover GA strongly dominates method from [7].
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Abstract. In this paper we propose a genetic and greedy algorithm
combination for the optimization of the Topological Active Nets (TAN)
model. This is a deformable model used for image segmentation that
integrates features of region-based and edge-based segmentation tech-
niques, being able to fit the edges of the objects and model their inner
topology. The hybrid approach we propose can optimize the active nets
through the minimization of the model energy functions and, moreover,
it can provide some segmentation results unreachable by the GA method
alone such as changes in the net topology.

1 Introduction

Deformable models are well-known tools for image segmentation. They were pro-
posed by Kass et al. [1] in 1988 and applied in several fields such as segmentation,
mapping or tracking and motion analysis. The active nets model was proposed
by Tsumiyama and Yamamoto [2] as a variant of the deformable models that in-
tegrates features of region–based and boundary–based segmentation techniques.
To this end, active nets distinguish two kind of nodes: internal nodes, related
to the region–based information, and external nodes, related to the boundary–
based information. The former models the inner topology of the objects whereas
the latter fits the edges of the objects. The Topological Active Net (TAN) model
[3] was developed as an extension of the original active net model. It solves some
intrinsic problems to the deformable models such as the initialization problem.
The model deformation is controlled by energy functions in such a way that the
mesh energy has a minimum when the model is over the objects of the scene.
This way, the segmentation process turns into a minimization task.

We have proved the superiority of a global search method by means of a Ge-
netic Algorithm (GA) [4] in the optimization of the Topological Active Nets [5].
Our results show that the GA is less sensitive to noise than the greedy algorithm
and does not depend on the parameter set or the mesh size. But the biggest
limitation of the implemented GA relates to the TAN ability for performing
topological changes in its structure in order to achieve a fine adjustment, de-
tect concavities, or divide the net to segment several objects in the same image.
However, the proposed hybrid approach can overcome this problem. The com-
bination of both adaptive methods, GAs and a greedy algorithm, allows a local
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search in each individual of the genetic population and in particular generations
of the evolutionary process. We use a Lamarck strategy, this is, everything com-
putationally learned in an initial genotype will be transferred to the genotype of
its offspring.

There is very little work in this field with GAs, mainly in edge or surface
extraction [6,7,8]. Regarding to hybrid approaches, Tohka [8] has used a GA
to globally minimize the energy of a deformable surface mesh. The minimum
obtained is further strengthened by a greedy algorithm. The author states that
“The purpose of the GA is to perform an exploration for an approximate surface
in the close vicinity of the real target. Thereafter a local search by the greedy
algorithm will be more efficient (than the GA) for the surface extraction”. His
results, as ours [5], show that the GA is well suited for noisy conditions and
improves the energy minimization obtained by a greedy algorithm.

This paper is organized as follows. Sect. 2 introduces the basis of the TAN
model. Sect. 3 explains the combination between the GA and the greedy algo-
rithm, with emphasis in the topological changes allowed in the hybrid approach.
Sect. 4 shows some results of the new method. Finally, Sect. 5 expounds the
conclusions and intended future work.

2 Brief Description of Topological Active Nets

A Topological Active Net (TAN) is a discrete implementation of an elastic two
dimensional mesh with interrelated nodes [3]. The model has two kinds of nodes:
internal and external. Each kind of node represents different features of the
objects: the external nodes fit their edges whereas the internal nodes model the
internal topology of the object.

A Topological Active Net is defined parametrically as v(r, s) = (x(r, s), y(r, s))
where (r, s) ∈ ([0, 1]× [0, 1]). The mesh deformations are controlled by an energy
function defined as follows:

E(v(r, s)) =
∫ 1

0

∫ 1

0
(Eint(v(r, s)) + Eext(v(r, s)))drds (1)

where Eint and Eext are the internal and the external energy of the TAN, re-
spectively. The internal energy controls the shape and the structure of the mesh
whereas the external energy represents the external forces which govern the ad-
justment process.

The internal energy depends on first and second order derivatives which con-
trol contraction and bending, respectively. The internal energy term is defined
by the following equation:

Eint(v(r, s)) = α(|vr(r, s)|2 + |vs(r, s)|2) +

+ β(|vrr(r, s)|2 + |vrs(r, s)|2 + |vss(r, s)|2)
(2)

where subscripts represents partial derivatives. α and β are coefficients that
control the first and second order smoothness of the net. In order to calculate
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the energy, the parameter domain [0, 1] × [0, 1] is discretized as a regular grid
defined by the internode spacing (k, l) and the first and second derivatives are
estimated using the finite differences technique. On one hand, the first derivatives
are computed using the following equations to avoid the central differences:

|vr(r, s)|2 = ||d+
r (r,s)||2+||d−

r (r,s)||2
2 |vs(r, s)|2 = ||d+

s (r,s)||2+||d−
r (r,s)||2

2
(3)

where d+ and d− are the forward and backward differences respectively, which
are computed as follows:

d+
r (r, s) = v(r+k,s)−v(r,s)

k d−r (r, s) = v(r,s)−v(r−k,s)
k

d+
s (r, s) = v(r,s+l)−v(r,s)

l d−s (r, s) = v(r,s)−v(r,s−l)
l

(4)

On the other hand, the second derivatives are estimated by:

vrr = v(r−k,s)−2v(r,s)+v(r+k,s)
k2 vss = v(r,s−l)−2v(r,s)+v(r,s+l)

l2

vrs(r, s) = v(r−k,s)−v(r−k,s+l)−v(r,s)+v(r,s+l)
kl

(5)

The external energy represents the features of the scene that guide the ad-
justment process. It is defined by the following equation:

Eext(v(r, s)) = ωf [I(v(r, s))] +
ρ

|ℵ(r, s)|
∑

p∈ℵ(r,s)

1
||v(r, s) − v(p)||f [I(v(p))] (6)

where ω and ρ are weights, I(v(r, s)) is the intensity value of the original image
in the position v(r, s), ℵ(r, s) is the neighborhood of the node (r, s) and f is a
function, which is different for both types of nodes since the external nodes fit
the edges whereas the internal nodes model the inner features of the objects.

If the objects to detect are dark and the background is bright, the energy of
an internal node will be minimum when it is on a point with a low grey level. On
the other hand, the energy of an external node will be minimum when it is on a
discontinuity and on a light point outside the object. In this situation, function
f is defined as:

f [I(v(r, s))] =

⎧
⎪⎪⎨

⎪⎪⎩

h[I(v(r, s))n] for internal nodes

h[Imax − I(v(r, s))n + ξ(Gmax − G(v(r, s)))]+

+δGD(v(r, s)) for external nodes

(7)

where ξ and δ are weighting terms, Imax and Gmax are the maximum intensity
values of image I and the gradient image G, respectively, I(v(r, s)) and G(v(r, s))
are the intensity values of the original image and the gradient image in node
position v(r, s), I(v(r, s))n is the mean intensity in a n × n square and h is
an appropriate scaling function. The external energy also includes the gradient
distance term, GD(v(r, s)), this is, the distance from the position v(r, s) to the
nearest edge. This term introduces a continuous range in the external energy
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since its value diminishes as the node gets closer to an edge. This way, the
gradient distance facilitates the adjustment of the external nodes to the object
boundaries.

The adjustment process consists in minimizing these energy functions. In the
case of the greedy algorithm, the mesh is placed over the whole image and, in
each step, the energy of each node is computed in its current position and in its
nearest neighborhood. The position with the lowest energy value is selected as
the new position of the node. The algorithm stops when there is no node in the
mesh that can move to a position with lower energy.

3 Hybridization of the Evolutionary and Greedy
Algorithms

The greedy algorithm gets good results in most cases since it takes the best local
adjustment. However, the local adjustment may not be the best global one. This
way, if the model reaches a wrong segmentation, it gets stuck in it. The global
search provided by the GA reduces the probability of falling in local minima[5].
As the greedy algorithm, the GA was used to minimize the energy components.
To this end, the genotypes coded the Cartesian coordinates of the TAN nodes.
The following genetic operators were also developed or adapted to our problem:

Crossover operator. We have used an arithmetical crossover instead of the
classical crossover operator because the latter produces a great number of
incorrect offspring genotypes, this is, TANs with crossings in their nodes.
Our alternative operator defines the new genes as a mean between the cor-
responding values in the two parent chromosomes.

Mutation operator. We have developed a mutation operator that avoids TAN
crossings. It consists in computing the area of the 4 polygons formed by the
8 neighboring nodes and the central node that mutates. If the addition of
the 4-subareas is the same before and after the mutation, the mutation is
correct and it will not produce any crossing.

Spread operator. We have implemented this operator in order to maintain
the diversity of sizes in the population since the proposed crossover operator
tends to produce individuals with progressively similar sizes. The spread
operator stretches a TAN in a given direction.

Group mutation. A group of neighboring nodes randomly selected is mutated
simultaneously in the same direction and with the same value. Performing
a group mutation is usually more useful than mutate only a node since the
internal energy is minimum when nodes are equidistant so that, in most
cases, a single mutation could not reduce the TAN energy.

Shift operator. It is used in the exploration stage and moves the net to other
position in the image. This movement allows that external and internal nodes
can get into the object at the same time approximately. This way, the posi-
tion of the objects in the image does not affect the final node distribution.
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The pure GA approach has restrictions since the TAN topology cannot be
changed to obtain a better adjustment. To avoid this limitation, we have in-
cluded a local greedy search stage in the evolutionary process. The idea is to
perform a given number of steps of the greedy algorithm in each individual of
the genetic population and in particular generations of the evolutionary process.
We have followed a Lamarck strategy so all the changes made by the greedy
procedure are reverted in the original genotypes.

In the hybrid approach, we have followed the principle of “first exploration
and then exploitation”. This way, we have applied the greedy algorithm only in
particular generations. In the beginning of the evolutionary process, the greedy
algorithm is used every 15 generations. The interval of generations between the
application of the greedy method decreases as the evolution progresses until a
value between 1 and 5 at the end of the process.

Regarding to local search depth, this is, the number of greedy algorithm steps,
different tests have induced us to use a random value between 0 and 5 or 6
(depending on the kind of image) to minimize the probability to deeply fall in
local minima and, at the same time, maintain an adequate heterogeneity in the
population, that can be reduced using the Lamarckian strategy.

3.1 Topological Changes: Link Cutting

The greedy algorithm can perform cuts of links between adjacent external nodes
after the minimization process. The basic procedure requires the identification of
the external nodes that are more distant to the object edges using the Tcheby-
cheff’s theorem. This way, an external node vext is badly placed if its gradient
distance fulfils the following inequality:

GD(vext) > μGD + 3σGD (8)

where μGD is the average gradient distance of the whole set of external nodes
and σGD is their standard deviation.

After the identification of the outlier set, the link to remove is selected. It is
the node with the highest gradient distance and its worst neighbor in the outlier
set. Once the link is cut, some internal nodes become external since they are
on the boundaries of the net as Fig. 1 shows. This increment of external nodes
allows a better adjustment to the object boundaries.

Internal nodes

External nodes

Fig. 1. Basic process in the link cutting. The figures show the TAN before and after
the link cutting. After the cut, the neighboring internal nodes become external nodes.
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Fig. 2. Steps in the link cutting process during the local search

In the hybrid approach proposed, the local search method also uses the link
cutting in order to improve the results of the pure GA approach. Fig. 2 shows
three steps in the link cutting process in areas where the GA alone cannot obtain
an optimal segmentation.

As we follow a Lamarck strategy, the modified topologies have to be trans-
ferred to the genotypes, so the genotype features need to be redefined. This way,
for each node, the genotype must include not only the x and y coordinates, but
also the directions where the node has neighbors, the kind of node (internal or
external), and the priority for a link cut in the node.

Additionally, to maintain fitness coherence in the population individuals, a
node that turns from internal to external after a link cut is only considered as
external for fitness computation when it is over the object edges.

Crossover Operator with Different Topologies. The topological changes
imply additional considerations in the crossover operator. With the previous de-
finition, if two nets with different topologies are crossed, the resulting nets can
have crossings in their connections, and the probability increases as the differ-
ences between the topologies of the selected parent nets increase. In addition,
the topology of the resultant crossed nets must be decided by the operator.

Since we want populations with individuals of different topologies, a solution is
to allow the crossover only between nets with the same topology. This fact implies
a population categorization. Each population group with identical topology can
be associated with the “niche” concept, this is, a group based on common features
[4]. Only crossover between individuals of the same niche is allowed.

4 Results

We show in this section some representative examples of the improvements of the
hybrid approach. In all the examples, the same image was used as the external
energy for both internal and external nodes, and all the test images had 256 gray
levels.

The hybrid approach and the pure GA have used a tournament selection with
a window size of 3% of the population. The mutation probability was 0.0005,
the crossover probability was 0.5 and the spread operator probability was set
to 0.5. Regarding the ad hoc operators, we have experimentally set intervals of
[0.001, 0.0005] and [0.005, 0.0001] for the probabilities of the shift operator and
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Fig. 3. Results obtained with similar mesh sizes and parameter sets in an image with
fuzzy contours. The image was segmented using the greedy algorithm (left), the GA
method (center), and the hybrid approach (right).

the group mutation, respectively. The examples of this section have used values
in these intervals. The population is between 700–1000 individuals in the GA
examples and 500 individuals in the case of the hybrid approach. Finally, we have
applied between 0 and 6 steps of the greedy algorithm in the hybrid approach.

Global search advantages are clearer in images with fuzzy edges as Fig. 3
shows. In this case, only the greedy algorithm does not achieve a fine adjust-
ment to the object edges. Table 1 summarizes the TAN parameters used in the
examples.

Table 1. Summary of TAN parameters used in the segmentation examples

Method Image Size α β ω ρ ξ distGrad

Greedy Alg.

Fig. 3 10 × 10 2.5 0.0001 1 2.5 8
Fig. 4a 15 × 11 3.5 0.0001 2 5.5 2
Fig. 4c 14 × 14 1 0.005 2 3 2
Fig. 5 14 × 13 0.1 0.05 10 4.5 4

Genetic Alg.
Fig. 3 10 × 10 2.5 0.0001 1 2.5 8 6
Fig. 5 14 × 13 0.1 0.05 10 4.5 4 4

Combination

Fig. 3 10 × 10 2.5 0.0001 1 2.5 8 6
Fig. 4b 15 × 11 3.5 0.0001 2 5.5 2 6
Fig. 4d 14 × 14 1 0.005 2 3 2 3
Fig. 5 14 × 13 0.1 0.05 10 4.5 4 4

Left column of Fig. 4 shows the main problem of the greedy search respect
to the hybrid strategy. This kind of search easily falls in local minima in images
with noise whereas the hybrid approach overcomes local minima thanks to the
GA global search. Right column of Fig. 4 depicts another example of better
adjustment of the the hybrid approach respect to the greedy algorithm.

Finally, another advantage is the hole delimitation in objects with non-uniform
interior features. The aim of the TAN segmentation is to detect holes in a reliable
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Fig. 4. Results obtained with the greedy (left) and the hybrid approach (right)

Fig. 5. Hole delimitation through internal nodes with the greedy algorithm (left), the
GA (center), and the hybrid approach (right)

way, avoiding that the internal nodes fall inside them. Fig. 5 shows that the global
search (pure GA and hybrid method) achieves a better hole delimitation than
the greedy algorithm. The differences between local and global search increase
as the hole or the mesh size increases, too.

Regarding to computation times, the greedy method is obviously faster than
the GA methods whereas the hybrid approach is the slowest one. In an AMD
Athlon at 1’2 GHz, the average computing time of the greedy algorithm is 5
seconds for a simple image and 30-60 seconds for a complex image, whereas the
GA spends 5-10 minutes in simple images and 15-25 in complex ones. The hybrid
approach requires, as average, the double as the GA, although the time depends
on the number of generations and the number of iterations of the greedy search.
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5 Conclusions

We present in this work a hybrid combination of a local search by means of
a greedy algorithm and a global search through a genetic algorithm for the
optimization of the TANs. It follows a Lamarck strategy as all the changes in the
positions or nature of nodes are transferred to the original genotypes. The hybrid
approach gets better results in cases where the local greedy strategy falls in local
minima, such as the segmentation of fuzzy external contours or noisy images.
Additionally, the hybrid approach performs a better internal segmentation.

Finally, not considered in this paper, the possibility of an automatic division
of the net in several ones will allow the simultaneous segmentation of different
objects in an image. These advantages justify the use of the combination in some
cases, in spite of the higher computational cost.
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Abstract. Chromatic number, chromatic sum and chromatic sum num-
ber are important graph coloring characteristics. The paper proves that
a parallel metaheuristic like the parallel genetic algorithm (PGA) can
be efficiently used for computing approximate sum colorings and finding
upper bounds for chromatic sums and chromatic sum numbers for hard–
to–color graphs. Suboptimal sum coloring with PGA gives usually much
closer upper bounds then theoretical formulas known from the literature.

1 Introduction

Graph Coloring Problem (GCP) and Graph Chromatic Sum problem (GCS)
belong to the class of NP–hard combinatorial optimizations problems [6,12].

GCP is defined for an undirected graph G(V, E) as an assignment of avail-
able colors {1, . . . , k} to graph vertices providing that adjacent vertices receive
different colors and the number of colors k is minimal. The resulting coloring is
called conflict–free and k is called graph chromatic number χ(G).

GCS is defined for an undirected graph G(V, E) as an assignment of available
colors {1, . . . , h} to graph vertices providing that sum of all color numbers in a
conflict–free coloring must be minimal. The minimum number of colors h in a
minimum–sum coloring is called chromatic sum number s(G), s(G) ≥ χ(G).

A generalization of GCS is the Minimum Sum Multicoloring problem related
to distributed resource allocation [1].

Intensive research has been conducted in the area of graph coloring and re-
sulted in a large number of exact and approximate algorithms, heuristics and
metaheuristics. The Graph Coloring Problem was the subject of Second DI-
MACS Implementation Challenge in 1993 and Computational Symposium on
Graph Coloring and Generalizations in 2002. A collection of hard to color graph
instances in DIMACS format and summary of results are available at [16,17].

Chromatic number and chromatic sum number are important coloring pa-
rameters that characterize graphs. While chromatic numbers for most DIMACS
graphs are determined little is known about their chromatic sums. Some theoret-
ical lower and upper bounds for general and some specific graphs are reported

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 211–219, 2007.
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in the literature [14]. In addition, new lower bounds for chromatic sums are
established in the present paper. However, in most cases the gap beetween
bounds is still large.

The objective of this paper is to compute experimentally sum colorings, closer
upper bounds for chromatic sums and evaluate their corresponding approximate
chromatic sum numbers s(G) for a set of DIMACS graphs. For computations the
parallel genetic algorithm (PGA) [4] is adapted which has already been found to
be efficient in solving GCP problem [10,11]. For sum coloring another definition
of the fitness function is applied. As a result of conducted computations the
theoretical upper bounds for chromatic sums of the selected benchmark graphs
are significantly improved by our experimental data.

The rest of the paper is organized as follows. The next section presents basic
definitons and theoretical bounds on the graph chromatic sum and the chro-
matic sum number. Next, the migration model of PGA is characterized in sec-
tion 3. Some specific operators and functions used in the PGA are described in
section 4. Sections 5 and 6 contain main computational results and conclusions.

2 Graph Coloring Sum Problem – Definitions and
Bounds

Let us define formally the optimization problems GCP and GCS.
For a given graph G(V, E), where : V — set of graph vertices, |V | = n, and E

— set of graph edges, |E| = m, the optimization problem GCP is formulated as
follows: find the minimum positive integer k, k ≤ n, and a function c : V −→ A,
A = {1, . . . , k}, such that c(u) �= c(v) whenever (u, v) ∈ E. The obtained value
of k is refered to as graph chromatic number χ(G).

The cost of a vertex coloring c is the sum
∑

v∈V

c(v). (1)

The chromatic sum of graph G is
∑

(G) = min
c

∑

v∈V

c(v). (2)

The optimization problem GCS is formulated as follows: for a given graph
G(V, E) find the minimum positive integer h, χ(G) ≤ h ≤ n, and a function
c : V −→ B, B = {1, . . . , h} such that

∑
(G) is minimal. The obtained value of

h is refered to as graph sum chromatic number s(G).
In the above definitions the color set A = {1, . . . , k} is an interval subsets of

N, i.e. A = {j ∈ N : 1 ≤ j ≤ k}. Similarly, the color set B = {1, . . . , h} is an
interval subsets of N.

A conflict–free vertex coloring c is a partition of V into independent sets Ci,
where i is a color number in a color set. Thus, an optimal sum coloring minimizes

∑

i∈B

i · |Ci|. (3)



On Sum Coloring of Graphs with Parallel Genetic Algorithms 213

For any optimal sum coloring c of G the following properties hold:

|C1| ≥ . . . |Ci| ≥ . . . ≥ |Ch|, (4)

and
∀i<j ∀v∈Cj ∃u∈Ci{u, v} ∈ E, (5)

where i, j are color values.
Parameters χ(G) and s(G) are related exclusively to the given graph G(V, E)

and are invariable with respect to the formulation of problems GCP and GCS.
An exemplary graph G(V, E) with ten vertices is shown in Fig.1.

10

7

6

1

2

5

3

9

8

4

Fig. 1. An exemplary graph G(V,E)

In graph coloring problems k–colorings of graph vertices are encoded in chro-
mosomes representing set partitions with exactly k blocks. There are two equiv-
alent notations for vertex colorings that are commonly used in the algorithm
design.

In assignment representation available colors are assigned to an ordered se-
quence of graph vertices. Thus, the vector c =< c[1], c[2], . . . , c[n] > represents a
vertex coloring. For the graph in Fig.1, an optimal 3–coloring is denoted by the
vector c =< 1, 2, 3, 2, 3, 1, 2, 3, 2, 1 >.

In partition representation the vertex coloring is a unique sequence of partition
blocks. Each block of the partition p does correspond to a single color. The
elements within each partition block are ordered in the increasing lexicographic
order, and all blocks are ordered increasingly according to the value of their first
elements. For our graph the same optimal 3–coloring is denoted by the partition
p = {1, 6, 10}{2, 4, 7, 9}{3, 5, 8}.

The cost of the above optimal 3–colorings is
∑

v∈V c(v) = 20.
In some cases of non–optimal colorings the result can be improved by re-

ordering of partition blocks according to decreasing order of their sizes and
assigning them increasing color numbers according to property 4. In this way
the coloring presented above can be improved to c =< 2, 1, 3, 1, 3, 2, 1, 3, 1, 2 > or
p = {2, 4, 7, 9}{1, 6, 10}{3, 5, 8} and the resulting chromatic sum is∑

v∈V c(v) = 19.
The minimum chromatic sum can be obtained when the number of colors is

not minimal.
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A number of theoretical lower and upper bounds on chromatic sum
∑

(G)
with the color set B = {1, . . . , s(G)} as well as bounds on the chromatic sum
number s(G) is known from the literature [12].

The chromatic sum
∑

(G) is bounded by:

n ≤
∑

(G) (6)

	
√

8m � ≤
∑

(G) (7)

∑
(G) ≤ n(n + 1)/2 (8)

∑
(G) ≤ n + m (9)

∑
(G) ≤ �3(m + 1)/2 (10)

∑
(G) ≤ n(χ(G) + 1)/2 (11)

The chromatic sum number s(G) is bounded by:

χ(G) ≤ s(G) (12)
s(G) ≤ �

√
n(χ(G) + 1) (13)

s(G) ≤ Δ(G), (14)

where Δ(G) denotes degree of the graph G, i.e. maximum degree of v ∈ V .
(Remark: for full graphs and odd cycles s(G) = Δ(G) + 1).

We propose two new theoretical lower bounds according to the following
theorem:

Theorem 1. The graph chromatic sum defined above satisfies the following two
inequalities:

n + s(G)(s(G) − 1)/2 ≤
∑

(G) (15)

n + χ(G)(χ(G) − 1)/2 ≤
∑

(G) (16)

Proof. In order to prove 15 it is sufficient to show that the cost of optimal
sum coloring with exactly h = s(G) colors is at least :

∑s(G)
i=1 i + (n − s(G)) =

s(G)(s(G)+1)/2+(n−s(G)) = n+s(G)(s(G)−1)/2. The inequality 16 follows
directly from 12 and 15.

Bounds 11, 12, 13 and 16 are as hard to compute as χ(G), but for many bench-
mark graphs χ(G) is known.

3 Migration Model of Parallel Genetic Algorithms

There are many models of parallelism in evolutionary algorithms: master–slave
PGA, migration based PGA, diffusion based PGA, PGA with overlaping sub-
populations, population learning algorithm, hybrid models etc.

The migration model used in this paper is basically the same as the model
used in [10,11]. Migration models of PGAs consist of a finite number of disjoint
subpopulations that evolve in parallel on their ”islands” and exchange genetic
informations under control of a migration operator. Co–evolving subpopulations
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are built of individuals of the same type and are ruled by one adaptation function.
The selection process is decentralized.

During the migration phase every island sends its representatives to all other
islands and receives the representatives from all co–evolving subpopulations. The
migration process is fully characterized by migration size, distance betweeen pop-
ulations and migration scheme. Migration size determines the emigrant fraction
of each population. This parameter is limited by capacity of islands to accept
immigrants. The distance between migrations determines how often the migra-
tion phase of the algorithm occurs. Three migration schemes are applied: no
migration, migration of randomly selected individuals and migration of best in-
dividuals of the subpopulation. In our algorithm a specific model of migration is
applied in which islands use two copies of genetic information: migrating individ-
uals still remain members of their original subpopulation. In other words they
receive new ”membership” without losing the former one. Incoming individuals
replace the chromosomes of host subpopulation at random. Then, a selection
process is performed. The rationale behind such a model is as follows. Even if
the best chromosomes of host subpopulation are eliminated they shall survive on
other islands where their copies were sent. On the other hand any eliticist scheme
or preselection applied to the replacement phase leads to premature elimination
of worse individuals and lowers the overall diversity of subpopulation.

Computer experiments provide an evidence that parallel genetic algorithms
can be efficiently used for a class of graph coloring problems [10,11].

4 Genetic Operators for GCS

In this section a collection of genetic crossover, mutation and selection operators
is introduced that is used in our PGA. Two recombination operators: CEX,
GPX and the mutation operator First Fit were initially designed for GCP (for
more details see [10,11]). The cost function and selection operator is designed
especially for GCS.

4.1 Recombination Operators

In conflict–based crossovers for GCP the assignement representation of colorings
is used and the offspring tries to copy conflict–free colors from their parents.
The recombination operator called Conflict Elimination Crossover (CEX) re-
veals some similarity to the classical crossover. Each parental chromosome p and
r is partitioned into two blocks. The first block consists of conflict–free nodes
while the second one is built of the remaining nodes that break the coloring rules.
This second block in both chromosomes is then replaced by corresponding colors
taken from the other parent. This recombination scheme provides inheritance of
all good properties of one parent and gives the second parent a chance to reduce
the number of existing conflicts. However, if a chomosome represents a feasible
coloring the recombination mechanism will not work properly. Therefore, the
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recombination must be combined with an efficient mutation mechanism. As a
result two chromosomes s and t are produced. The operator CEX is as simple
and easy to implement as the classical crossover.

4.2 Greedy Partition Crossover

The method called Greedy Partition Crossover (GPX) was designed by Galinier
and Hao for recombination of colorings or partial colorings in partition represen-
tation [5]. It is assumed that both parents are randomly selected partitions with
exactly k blocks that are independent sets. The result is a single offspring (a col-
oring or a partial coloring) that is built successively in a greedy way. In each odd
step select the maximum block from the first parent is selected. Then the block
is added to the result and all its nodes from the both parents are removed. In
each even step the maximum block is selected from the second parent. Then the
block is added to the result and all its nodes from the both parents are removed.
The procedure is repeated at most k times since in some cases the offspring has
less blocks then the parents. This possibility is not considered in the original
paper [5]. Finally, unassigned vertices (if they exist) are assigned at random to
existing blocks of partition. The first parent is replaced by the offspring while
the second parent is returned to population and can be recombined again in the
same generation.

4.3 Mutation Operator

The mutation operation called First Fit (FF) is designed for colorings in partition
representation and is well suited for GCS. In this mutation one block of the
partition is selected at random and we try to make a conflict–free assignment
of its vertices to other blocks using the heuristic First Fit. Vertices with no
conflict–free assignment remain in the original block. Thus, as a result of the
mutation First Fit the color assignment is partially rearranged and the number
of partition blocks is often reduced by one.

4.4 Selection

Selection process maintains constant size of population selected by means of a
fitness function.

The quality of a solution is measured by the following cost function:

f(c) =
∑

(G) +
∑

(u,v)∈Eq(u, v) + d , where:

c – is a graph coloring,∑
(G) =

∑
v∈V c(v) – is the sum of colors used in c,

q – is a penalty function for pairs of vertices connected by an edge (u, v) ∈ E:

q(u, v) =
{

5, when c(u) = c(v)
0, otherwise
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d – is a general penalty function applied to graph colorings c:

d =
{

100, when
∑

(u,v)∈Eq(u, v) > 0
0, when

∑
(u,v)∈Eq(u, v) = 0.

In many cases less colors results in more conflicts. Modeling the cost function
we can favour conflict–free colorings by setting values of q(u, v) and d. On the
other hand conflict colorings with less colors can also be useful. Therefore, we
decided to set relatively low values of q(u, v) and d. Thus, with the cost function
given above, all k’–colorings with i conflicts, k′ ≤ (k − 2i − 2), are better then
conflict–free k–colorings.

The proportional (roulette) selection is performed with the fitness function
1/f(c).

In section 5 the theoretical bounds for selected subset of DIMACS graphs are
given and compared with the bounds computed experimentally.

5 Experimental Results

Initial experiments for graph GCS problem were conducted with greedy coloring
heuristic GIS and conventional genetic algorithm.

GIS is an approximation algorithm proposed by Johnson [8] which computes
valid graph coloring via computing subsequent approximate independent sets
(ISs). Decreasing ordering the graph ISs according to their powers and assigning
to them increasing color numbers from the color set is one of the methods of
finding approximate minimal sum coloring in graphs [14]. For each selected graph
the program implementing GIS heuristic was executed once.

The best sum 3–coloring of the graph G from Fig.1 computed by GIS heuris-
tic was the partition p = {1, 2, 3, 4, 9}{5, 6, 10}{7, 8} with the coloring cost∑

v∈V c(v) = 17.
Genetic algorithms (GA) are metaheuristics often used for GCP [3,5]. GA

was applied with coloring chromosomes in assignment representation, standard
1–point crossover, 1–point mutation and proportional selection. The initial pop-
ulation was generated at random. We set the following parameters of GA: pop-
ulation size = 200 , crossover probability= 0.8, mutation probability = 0.1. All
experiments were repeated several times times for each selected graph.

The best sum 3–coloring of the graph G from Fig.1 obtained by GA was
c =< 1, 1, 2, 2, 2, 1, 3, 3, 1, 1 > with cost

∑
v∈V c(v) = 17.

Further experiments were conducted with migration model of PGA described
in section 3.

In this paper PGA is applied with coloring chromosomes in both assignment
and partition representations, CEX and GPX crossovers, respectively, First Fit
mutation and proportional selection. The initial population was generated at
random. We used the following parameters of PGA: population size = 60 , num-
ber of islands = 3 or 5, crossover probability= 0.8, mutation probability = 0.1 with
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GPX and 0.5 with CEX, number of iterations = 5000 with GPX and 10000 with
CEX. All experiments were repeated several times times for each selected graph.
In some cases PGA generates colorings not satisfying property 4. Therefore, the
final reordering of assigned colors was necessary for improving the value of graph
chromatic sum.

Preliminary experiments on graph coloring benchmarks showed us that PGA
for GCS outperforms both the GIS heuristic and the conventional GA. The
comparison results are not presented in the present paper.

All our experiments with PGA were performed on a computer with Pentium 4
processor (3,06GHz, 1GB RAM). The programs generated detailed reports and
basic statistics. Processing times are not reported in the present paper.

We used the graph coloring instances available in the web archive [16]. This
is a collection of graphs in DIMACS format with known parameters, including
graph chromatic numbers. In the preprocessing phase we converted list of edges
representation into adjacency matrix representation.

The theoretical bounds and the best computational results for 16 DIMACS
benchmarks with at most 200 vertices are presented in Table 1. We used the
following notations: L.B. and U.B. stand for lower and upper bound, respectively,
A.B. denotes approximate upper bound for s(G) (in fact the exact value of s(G)
can be lower then, equal or greater then A.B., satisfying bounds 12–14).

All theoretical bounds on
∑

(G) were improved except L.B. and U.B for
queen5.5 and U.B for queen7.7. Also approximate upper bounds for s(G) are
significantly lower in comparison to theoretical upper bounds.

Table 1. Bounds on chromatic sums and chromatic sum numbers

theoretical bounds experimental bounds
G(V, E) n m χ(G) Δ(G)

∑
(G) s(G)

∑
(G) s(G)

L.B. rule U.B. rule U.B. rule U.B. A.B.
anna 138 493 11 71 193 16 631 9 38 13 281 11
david 87 406 11 82 142 16 494 9 30 13 243 11
huck 74 301 11 53 129 16 375 9 28 13 243 11
jean 80 254 10 33 125 16 334 9 28 13 218 10

queen5.5 25 160 5 12 36 7 75 11 11 13 75 5
queen6.6 36 290 7 19 57 16 144 11 15 13 138 8
queen7.7 49 476 7 24 70 16 196 11 18 13 196 7
queen8.8 64 728 9 27 100 16 320 11 24 13 302 10
games120 120 638 9 13 156 16 600 11 13 14 460 9
miles250 128 387 8 16 156 16 515 9 16 14 347 8
miles500 128 1170 20 38 318 16 1298 9 38 14 762 20
myciel3 11 20 4 5 17 16 27 11 5 14 21 4
myciel4 23 71 5 11 33 16 69 11 10 13 45 5
myciel5 47 236 6 23 62 16 164 11 16 13 93 6
myciel6 95 755 7 47 116 16 380 11 27 13 189 7
myciel7 191 2360 8 95 219 16 859 11 39 13 382 8
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6 Conclusions

The paper shows that general heuristics like PGA can be used for finding ap-
proximate solutions to the optimization problem GCS.

The theoretical and experimental results obtained in this paper provide a bet-
ter insight into the chromatic sum problem by improving known lower and upper
bounds on chromatic sums

∑
(G) and, simultaneously, by a closer approximation

of chromatic sum numbers s(G) for selected benchmark graphs from DIMACS
web archive. The authors hope that further progress in computing bounds can
be obtained with the help of parallel metaheuristics [2]. The presented results
can be useful reference data in future research in this area. Computing exact
chromatic sums

∑
(G) for all DIMACS benchmarks remains an open question.
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Abstract. A new Genetic Programming variant called Liquid State Ge-
netic Programming (LSGP) is proposed in this paper. LSGP is a hybrid
method combining a dynamic memory for storing the inputs (the liquid)
and a Genetic Programming technique used for the problem solving part.
Several numerical experiments with LSGP are performed by using sev-
eral benchmarking problems. Numerical experiments show that LSGP
performs similarly and sometimes even better than standard Genetic
Programming for the considered test problems.

1 Introduction

Liquid State Machine (LSM) is a technique recently described in the literature
[3], [5]. It provides a theoretical framework for a neural network that can process
signals presented temporally. The system is comprised of two subcomponents,
the liquid and the readout. The former acts as a decaying memory, while the
latter acts as the main pattern recognition unit.

Liquid State Genetic Programming (LSGP), introduced in this paper, is simi-
lar to both LSM and Genetic Programming (GP) [1] as it uses a dynamic memory
(the liquid) and a GP algorithm which is the actual problem solver. The liquid is
simulated by using some operations performed on the inputs. The purpose of the
liquid is to transform the inputs into a form which can be more easily processed
by the problem solver (GP). The liquid acts as some kind of preprocessor which
combines the inputs using the standard functions available for the internal nodes
of GP trees.

We have applied the LSGP on several test problems. Due to the space lim-
itation we will present the results only for one difficult problem: even-parity.
We choose to apply the proposed LSGP technique to the even-parity problems
because according to Koza [1] these problems appear to be the most difficult
Boolean functions to be detected via a blind random search.

Evolutionary techniques have been extensively used for evolving digital cir-
cuits [1], [4], due to their practical importance. The case of even-parity circuits
was deeply analyzed [1], [4] due to their simple representation. Standard GP was
able to solve up to even-5 parity [1]. Using the proposed LSGP we are able to
easily solve up to even-8 parity problem.
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Numerical experiments, performed in this paper, show that LSGP performs
similarly and sometimes even better than standard GP for the considered test
problems.

The paper is organized as follows: Liquid State Machines are briefly described
in Sect. 2. In Sect. 3 the proposed Liquid State Genetic Programming technique is
described. The results of the numerical experiments for are presented in Sect. 4.2.
Conclusions and further work directions are given in Sect. 6.

2 Liquid State Machines – A Brief Introduction

Liquid computing is a technique recently described in the literature [3], [5]. It
provides a theoretical framework for an Artificial Neural Network (ANN) that
can process signals presented temporally. The system is comprised of two sub-
components, the liquid and the readout. The former acts as a decaying memory,
while the latter acts as the main pattern recognition unit. To understand the
system, a simple analogy is used. If a small rock thrown in a cup (pool) of water
it will generate ripples that are mathematically related both to characteristics of
the rock, as well as characteristics of the pool at the moment that the rock was
thrown in. A camera takes still images of the water’s ripple patterns. A com-
puter then analyzes these still pictures. The result is that the computer should
know something about the rock that was thrown in. For example, it should know
about how long ago the rock was thrown. The rock represents a single bit from
an input stream, or an action potential. The water is the liquid memory. The
computer functions as the readout.

Translated into ANN’s language the idea behind Liquid State Machines has
been implemented [3], [5] as follows: Two ANNs are used: one of them plays
the role of the liquid and the other is the actual solver. The inputs of the first
network are the problem inputs and this network will reshape (modify) the
inputs in order to be more easily handled by the second network. This second
network, which is the actual problem solver, takes the inputs from some of the
nodes (randomly chosen) of the first network. In this way, it is hopped that the
structure of the second network (the actual problem solver) is simpler than the
case when a single network is used for solving the problem.

3 Liquid State Genetic Programming

In this section the proposed LSGP technique is described. LSGP is a hybrid
method combining a technique for manipulating the liquid and a GP technique
for the individuals.

For a better understanding we will start with a short example on how a LSGP
individual looks like for the even-parity problem. The example is depicted in
Fig. 1.

The liquid can be viewed as a set (a pool) of items (or individuals) which are
subject to some strict rules which will be deeply explained in the next sections.
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Fig. 1. A liquid and a GP program for the even-3-parity problem. The liquid contains
5 items. Three of them are the standard inputs for the even-3-parity problem and 2
of them are combinations of the standard inputs. The inputs for the GP program are
taken from the liquid. The gates used by the GP program are the standard one: AND,
OR, NAND, NOR.

The liquid is simulated by using some operations performed on the inputs. The
purpose of the liquid is to transform the inputs into a form which can be more
easily processed by the problem solver (GP). The liquid acts as some kind of
preprocessor which combines the inputs using the standard functions available
for the internal nodes of GP trees.

The liquid and its accompanying rules can also be viewed as a simple GP
algorithm that manipulates only the output of the tree rather than the entire
tree. The state of the liquid will also evolve during the search process.

The GP algorithm is a standard one [1] and due to the space limitations will
not be detailed in this paper.
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3.1 Prerequisite

The quality of a GP individual is usually computed using a set of fitness cases [1].
For instance, the aim of symbolic regression is to find a mathematical expression
that satisfies a set of m fitness cases.

We consider a problem with n inputs: x1, x2, . . . xn and one output f . The
inputs are also called terminals [1]. The function symbols that we use for con-
structing a mathematical expression are F = {+, −, ∗, /, sin}.

Each fitness case is given as an array of (n + 1) real values:

vk
1 , vk

2 , vk
3 , ..., vk

n, fk

where vk
j is the value of the jth attribute (which is xj) in the kth fitness case

and fk is the output for the kth fitness case.
Usually more fitness cases are given (denoted by m) and the task is to find

the expression that best satisfies all these fitness cases. This is usually done by
minimizing the quantity:

Q =
m∑

k=1

|fk − ok|,

where fk is the target value for the kth fitness case and ok is the actual (obtained)
value for the kth fitness case.

3.2 Representation of Liquid’s Items

Each individual (or item) in the liquid represents a mathematical expression ob-
tained so far, but this individual does not explicitly store this expression. Each
individual in the liquid stores only the obtained value, so far, for each fitness
case. Thus an individual in the liquid is an array of values:

(o1, o2, o3, . . . , om)T ,

where ok is the current value for the kth fitness case and ()T is the notation for
the transposed array. Each position in this array (a value ok) is a gene. As we
said it before behind these values is a mathematical expression whose evaluation
has generated these values. However, we do not store this expression. We store
only the values ok.

3.3 Initial Liquid

The initial liquid contains individuals (items) whose values have been gener-
ated by simple expressions (made up by a single terminal). For instance, if an
individual in the initial liquid represents the expression:

E = x1,
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then the corresponding individual in the liquid is represented as:

C = (v1
1 , v2

1 , v
3
1 , ..., vm

1 )T

where vk
j has been previously explained.

Example 1. For the particular case of the even-3-parity problem we have 3 inputs
x1, x2, x3 (see Fig. 1) and 23 = 8 fitness cases which are listed in Table 1:

Table 1. The truth table for the even-3-parity problem

x1 x2 x3 Output
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Each item in the liquid is an array with 8 values (one for each fitness case).
There are only 3 possible items for initial liquid: (00001111)T , (00110011)T and
(01010101)T corresponding to the values for variables x1, x2 and x3. Other
items can appear in the liquid later as effect of the specific genetic operators
(see Sect. 3.4). Of course, multiple copies of the same item are allowed in a
liquid at any moment of time.

It is desirable, but not necessary to have each variable represented at least once
in the initial liquid. This means that the number of items in the liquid should
be larger than the number of inputs of the problem being solved. However, an
input can be inserted later as effect of the insertion operator (see Sect. 3.4).

3.4 Operators Utilized for Modifying the Liquid

In this section the operators used for the Liquid part of the LSGP are described.
Two operators are used: combination and insertion. These operators are specially
designed for the liquid part of the proposed LSGP technique.

Recombination. The recombination operator is the only variation operator
that creates new items in the liquid. For recombination several items (the par-
ents) and a function symbol are selected. The offspring is obtained by applying
the selected operator for each of the symbols of the parents.

The number of parents selected for combination depends on the number of
arguments required by the selected function symbol. Two parents have to be
selected for combination if the function symbol is a binary operator. A single
parent needs to be selected if the function symbol is a unary operator.
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Example 2. Let us suppose that the operator AND is selected. In this case two
parents (items in the liquid):

C1 = (p1, p2, . . . , pm)T and

C2 = (q1, q2, . . . , qm)T

are selected and the offspring O is obtained as follows:

O = (p1ANDq1, p2ANDq2, . . . , pmANDqm)T .

Example 3. Let us suppose that the operator NOT is selected. In this case one
parent (item in the liquid):

C1 = (p1, p2, . . . , pm)T

is selected and the offspring O is obtained as follows:

O = (NOT (p1), NOT (p2), . . . , NOT (pm))T .

Remark 1. The operators used for combining genes of the items in the liquid
must be restricted to those used by the main GP algorithm. For instance, if the
function set allowed in the main GP program is F = {AND, OR}, then for the
recombination part of the liquid we can use only these 2 operators. We cannot
use other functions such as NOT, XOR etc.

Insertion. This operator inserts a simple expression (made up of a single ter-
minal) in the liquid. This operator is useful when the liquid contains items
representing very complex expressions that cannot improve the search. By in-
serting simple expressions we give a chance to the evolutionary process to choose
another direction for evolution.

3.5 The LSGP Algorithm

Due to the special representation and due to the special operators, LSGP uses
a special generational algorithm which is given below.

The LSGP algorithm starts by creating a random population of GP individ-
uals and a random liquid. The evolutionary process is run for a fixed number of
generations. The underlying algorithm for GP has been deeply described in [1].

The modifications in liquid are also generation-based and usually they have a
different rate compared to modifications performed for the GP individuals. From
the numerical experiments we have deduced that the modifications in the liquid
should not occur as often as the modifications within GP individuals. Thus an
update of the liquid’s items will be performed only after 5 generations of the GP
algorithm.
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The updates for the liquid are as follows: at each generation of the liquid
the following steps are repeated until the new LiquidSize items are obtained:
with a probability pinsert generate an offspring made up of a single terminal (see
the Insertion operator, Sect. 3.4). With a probability 1 − pinsert randomly select
two parents. The parents are recombined in order to obtain an offspring (see
Sect. 3.4). The offspring enters the liquid of the next generation.

A basic form of elitism is employed by the GP algorithm: the best so far GP
individual along with the current state of the liquid is saved at each genera-
tion during the search process. The best individual will provide solution of the
problem.

3.6 Complexity

A very important aspect of the GP techniques is the time complexity of the
procedure used for computing the fitness of the newly created individuals.

The complexity of that procedure for the standard GP is O(m ∗ g), where m
is the number of fitness cases and g is average number of nodes in the GP tree.

By contrast, the complexity of generating (by insertion or recombination) an
individual in the liquid is only O(m), because the liquid’s item is generated by
traversing an array of size m only once. The length of an item in the liquid is m.

Clearly, the use of the liquid could generate a small overhead of the LSGP
when compared to the standard GP. Numerical experiments show (running times
not presented due to the space limitation) that LSGP is faster than the stan-
dard GP, because the liquid part is considerably faster than the standard GP
and many combinations performed in the liquid could lead to perfect solutions.
However, it is very difficult to estimate how many generations we can run an
LSGP program in order to achieve the same complexity as GP. This is why we
restricted GP and LSGP to run the same number of generations.

4 Numerical Experiments

Several numerical experiments using LSGP are performed in this section by
using the even-parity problem. The Boolean even-parity function of k Boolean
arguments returns T (True) if an even number of its arguments are T. Otherwise
the even-parity function returns NIL (False) [1].

4.1 Experimental Setup

General parameter of the LSGP algorithm are given in Table 2.
For the even-parity problems we use the set of functions (for both liquid and

GP trees) F = {AND, OR, NAND, NOR} as indicated in [1].

4.2 Summarized Results

Summarized results of applying Liquid State Genetic Programming for solving
the considered problem are given in Table 3.
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Table 2. General parameters of the LSGP algorithm

Parameter Value
Liquid’s insertion probability 0.05
GP Selection Binary Tournament
Terminal set for the liquid Problem inputs
Liquid size 2 * Number of inputs
Terminal set for the GP individuals Liquid’s items
Number of GP generations before updating the liquid 5
Maximum GP tree height 12
Number of runs 100 (excepting for the even-

8-parity)

Table 3. Summarized results for solving the even-parity problem using LSGP and
GP. Second column indicates the population size used for solving the problem. Third
column indicates the number of generations required by the algorithm. The success
rate for the GP algorithms is given in the fourth column. The success rate for the
LSGP algorithms is given in the fifth column.

Problem Pop size Number of
generations

GP success
rate (%)

LSGP success
rate (%)

even-3 100 50 42 93
even-4 1000 50 9 82
even-5 5000 50 7 66
even-6 5000 500 4 54
even-7 5000 1000 - 14
even-8 10000 2000 - 1 successful out

of 8 runs

For assessing the performance of the LSGP algorithm in the case of even-
parity problems we use the success rate metric(the number of successful runs
over the total number of runs).

Table 3 shows that LSGP is able to solve the even-parity problems very well.
Genetic Programming without Automatically Defined Functions was able to
solve instances up to even-5 parity problem within a reasonable time frame and
using a reasonable population. Only 8 runs have been performed for the even-8-
parity due to the excessive running time. Note again that a perfect comparison
between GP and LSGP cannot be made due to their different individual repre-
sentation.

Table 3 also shows that the effort required for solving the problem increases
with one order of magnitude for each instance.

5 Limitations of the Proposed Approach

The main disadvantage of the proposed approach is related to the history of the
liquid which is not maintained. We cannot know the origin of an item from the
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liquid unless we store it. We can also store the tree for each item in the liquid
but this will lead to a considerable more memory usage and to a lower speed
of the algorithm. Another possible way to have access to the liquid’s history is
to store the entire items ever generated within the liquid and, for each item, to
store pointers to its parents. This is still not very efficient; however, it is better
than storing the entire tree, because, in the second case, the subtree repetition
is avoided.

6 Conclusions and Further Work

A new evolutionary technique called Liquid State Genetic Programming has
been proposed in this paper. LSGP uses a special, dynamic memory for storing
and manipulating the inputs.

LSGP has been used for solving several difficult problems. In the case of even-
parity, the numerical experiments have shown that LSGP was able to evolve
very fast a solution for up to even-8 parity problem. Note that the standard
GP evolved (within a reasonable time frame) a solution for up to even-5 parity
problem [1].

Further effort will be spent for improving the proposed Liquid State Genetic
Programming technique. For instance, the speed of the liquid can be greatly
improved by using Sub-machine Code GP [6], [7]. Many aspects of the pro-
posed LSGP technique require further investigation: the size of the liquid, the
frequency for updating the liquid, the operators used in conjunction with the
liquid etc.

The proposed LSGP technique will be also used for solving other symbolic
regression, classification [1] and dynamic (with inputs being variable in time)
problems.
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Abstract. This paper presents optimal planning of tie-switch operation in an 
electric power distribution system under an emergency feed condition, i.e. op-
eration during a post-fault condition. A heuristic fault isolation algorithm and a 
genetic-based service restoration algorithm are proposed and compared. With 
the proposed restoration algorithm, high reliable service of electric distribution 
systems is expected. To ensure a small number of customer interruption, aver-
age energy not supplied (AENS) is used as the objective function to be mini-
mized. 25-node and 118-node distribution test feeders were employed for test. 
Satisfactory results show that the genetic approach is appropriate to a kind of 
tie-switch operation planning in order to minimize effects of a permanent fault 
on customer service interruption. 

1   Introduction 

Short-circuit or so-called “fault” conditions can occur unexpectedly in any part of an 
electric power distribution system at any time due to various physical failures. Such a 
case causes a fault current flowing through some power system equipment. The oc-
currence of the fault is harmful and must be isolated immediately by a set of protec-
tive devices. Over several decades, protective relaying has become the brain of power 
system protection [1]-[3]. Its basic function is to monitor abnormal operations as a 
“fault sensor” and the relay or other protective devices will open their contractors to 
separate a faulty part from the healthy parts of the network. To date, electric power 
distribution systems are bulky and complicated. These lead to the need for a large 
number of protective devices cooperating with one another to assure the secure and 
reliable operation of a whole. The research as presented in this paper is based on elec-
tric utility control practice for the applicability of a restoration algorithm. Since con-
trol operators can successfully deal with small-scale outages, such as feeder fault, a 
computer-based restoration algorithm should be primarily developed for large-scale 
outages in a large-scale distribution system to minimize customer service interruption 
[4]-[6]. Distribution feeder control is a real-time environment and an emergency un-
der fault is a stressful situation. A computer-based restoration program can be helpful 
to system operators in which the proposing of various possible restoration scenarios 
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are available. The proposed restoration strategy used in many regional electric utilities 
nowadays is based on heuristic search guided by expert knowledge. In this paper, an 
intelligent optimization, genetic algorithms (GA), that guarantees the optimal solution 
has been proposed. Aiming to minimize customer service interruption, average energy 
not supplied (AENS) is employed to evaluate the fitness of each restoration scenario.  

A heuristic fault isolation algorithm is introduced and described in the next section. 
Exploitation of GA to solve service restoration problems in order to minimize AENS 
is proposed in Sect. 3. To demonstrate this scheme, 25-node and 118-node IEEE stan-
dard test feeders were situated and the test results are presented in Sect. 4 while Sect. 
5 gives conclusions. 

2   Heuristic Fault Isolation Algorithm 

When a faulty event was unexpectedly occurred at any feeder portion, system opera-
tors must decide which action to perform in order to keep operating the rest of the 
system under this emergency before it becomes haywire. To achieve this task a fault 
isolation algorithm is primarily required. Assume that a permanent short-circuit fault 
is occurred at a particular node and there is a fault location algorithm which was al-
ready performed successfully. The proposed heuristic fault isolation algorithm 
(HFIA) [7] applied herein is based on searching for the nearest switch in each con-
necting branch and then disconnecting them all. As a result, the faulty node is suc-
cessfully isolated. This algorithm is similar to a spanning tree that expands from the 
faulty node through all connecting branches. It can be summarized step-by-step as 
follows. 

1. Start from a faulty node k. 
2. Check all connections between the faulty node and its adjacent nodes. Define 

Γk as a set of existing connections found. 
3. Check through Γk, line-by-line: if there exists a switching device, disconnect 

it and remove it from Γk. Otherwise, go to step 4. When returned: if Γk is an 
empty set, go to step 5.  

4. Sub-problem: recall step 2 but consider the node at the other end of the tar-
geted line, says node i. To avoid confusion, define Φi instead of Γi as a set of 
existing connections found for this case. Repeat step 3. 

5. Fault was isolated successfully. 

As can be seen in Fig. 1, node 3 is the faulty node. For the first level of the span-
ning tree from node 3, Γ3 is {d,e,h,k,q}. Checking through Γ3, S3 and S11 are the 
switching device of line d and e respectively. With operation of these two switches, 
branches d and e are disconnected and must be removed from Γ3. At this stage, Γ3 is 
reduced to {h,k,q}. For line h, due to no switch protecting this line, Φh can be gener-
ated as Φh = {i,j}. Switches S12 and S13 are found and therefore disconnected for 
branch i and j, respectively. Return to the main task. For line k, Φk = {l,m} and this 
leads to disconnection of switches S4 and S5. In the same manner, Φq = {r,s,t}. 
Switches S8, S9 and S10 are operated. Eventually, Γ3 is empty and the fault was com-
pletely isolated as shown in Fig. 1. 
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Fig. 1. Example of utilizing the heuristic fault isolation algorithm 

3   Genetic Algorithms for Distribution Service Restoration 

Service restoration problems [4]-[7] involve finding a set of switching status. Each bit 
of binary arrays represents a status of switches (switch opened or switch closed). To 
find a solution in order to minimize effects of fault isolation on customer interruption 
needs some efficient algorithm that can directly deal with binary variables. One of 
which widely used is genetic algorithms (GA) [8]-[9]. During the GA process, all 
variables must be coded into binary string. Each individual solution can be performed 
with genetic operators, e.g. crossover, mutation, etc, to create offspring. The offspring 
in binary code can be decoded into a real-valued variable in the end of the process in 
each generation. As can be seen, with a set of switching status each solution repre-
sents an already coded binary string that is ready to use in the GA process. Utilization 
of the GA for power restoration can reduce problem complexity in which the fault 
isolation and network reconfiguration to managing an emergency feed can be com-
bined together. To formulate the restoration problem is obviously simple. All switches 
in the power distribution systems are set as bits to form a binary string. For example, 
assume that there are 4 switches (S1, S2, S3 and S4) in the system. A string represen-
tative consists of 4 bits. Each bit is either one (switch closed) or zero (switch opened). 
If S1 and S4 are in service while S2 and S3 are switched off, the string representative 
of this solution is 1001. Because the GA is very popular and widely used in most 
research areas where a intelligent search technique is applied, it can be summarized 
briefly as follows. 

1. Initialization: Randomly initialize populations or chromosomes and set them 
as a search space and then evaluate their corresponding fitness value via the 
objective function. 

2. Evolution: Apply the genetic operators to create an offspring population as 
the sequence below, 

a. Selection: Form a set of mating pool with the same number of the 
population size by using a random procedure, e.g. the roulette-wheel 
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or tournament schemes [10], with the assumption that each chromo-
some has a different chance (probability to survive. The higher the 
fitness value, the higher the chance or probability. 

b. Crossover: This operation is applied to a subset of the mating pool 
by taking a pair of chromosomes called the parents. The parents will 
yield a pair of offspring chromosomes. This operation involves ex-
changing sub-string of the parent chromosomes. It is performed by 
choosing a random position in the string and then swapping either 
the left or right sub-strings of this position (one-point crossover) 
with its chromosome mate. 

c. Mutation: For the chromosome to be mutated, the values of a few 
positions in the string are randomly modified. To prevent complete 
loss of the genetic information carried through the selection and 
crossover processes, mutation (if use at all) is limited to typically 
2.5% of the population [10].  

3. Fitness Test: Evaluate the fitness value for the generated offspring popula-
tion. 

4. Convergence Check: Check for violation of all termination criteria. If not 
satisfied, repeat the evolution process. 

An optimal solution is not unique. It depends on which criteria are made. In this 
paper, effects of fault on customer service interruption must be minimized. So a reli-
ability index describing an amount of customers or loads is used to formulate the 
objective function. Average energy not supplied (AENS) [11]-[13] is defined by the 
following expression 

Total Energy Not Supplied
AENS=

Number of Customer Served . 
(1) 

Given that a 9-bus power system consists of 7 load buses (at bus 2, 3, 4, 5, 7, 8 and 
9) as show in Fig. 2. Assume that the line between bus 4 and 6 is disconnected for 
some reason. Loads at buses 7, 8 and 9 are not served with the total of 500 MW. 
Therefore, the AENS can calculated by the following expression 

100 + 73 + 327
AENS= 71 4285

7
= .

. 

When the AENS is small, the average of interrupted loads in MWh per customer is 
also small. This implies that the smallest area of fault isolation could be achieved by 
minimizing the AENS. The objective function of the service restoration can be written 
as follows.  

Minimize AENS

Subject to Fault Isolation Criteria

System Operation Limits

. (2) 
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Fig. 2. Example of AENS calculation 

 

Fig. 3. 25-node IEEE standard test feeder [14] 
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Fig. 4. 118-node IEEE standard test feeder [15] 

4   Simulation Results 

25-node and 118-node IEEE standard test feeders were situated for test as shown in 
Figs 3 and 4. In the 25-node test feeder, 11 switches are installed and 7 of them is 
connected to the system under normal operation. Whereas the 118-node test system 
consists of 42 switches. 36 switches are assigned to be switched on. In this work, 
parameter setting for the GA is as follows: {number of population = 50, crossover 
probability = 0.7, mutation probability = 0.005, maximum generation = 100} for each 
test case. The test case scenario is set by assigning fault at node 7 and node 55 for the 
25-node and 118-node test systems, respectively. Table 1 shows results of minimum 
AENS using the GA for both cases.  

Table 1. Optimal solution obtained by using the GA with minimum AENS 

Test system AENS using HFIA AENS using GA % reduced AENS  
25 nodes  0.7201 0.15016 79.15 
118 nodes 0.8659 0.62712 27.51 

The optimal solutions obtained by GA can be graphically presented in following 
single-line diagrams as shown in Figs 5 and 6 for 25-node and 118-node test cases, 
respectively. In addition, by using MATLAB™ Genetic Algorithms and Direct 
Search (GADS) TOOLBOX, convergences of the GA process is shown in Figs 7 and 
8 for the IEEE 25-node and the IEEE 118-node test systems, respectively.  
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Fig. 5. Optimal solution of 25-node IEEE standard test feeder 

 

Fig. 6. Optimal solution of 118-node IEEE standard test feeder 
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Fig. 7. Convergence of the GA optimizing process for the IEEE 25-node test system 

 
Fig. 8. Convergence of the GA optimizing process for the IEEE 118-node test system 
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Interestingly, before applying the GA to minimize AENS, all customers in faulty 
and restorative zones are completely blackout. After solving the optimization prob-
lem, the blackout area is confined as in the faulty zone only, where the restorative 
zone can serve their customers.   

5   Conclusion 

This paper presents optimal planning of tie-switch operation in an electric power 
distribution system under an emergency feed condition. A heuristic fault isolation 
algorithm (HFIA) can simply isolate the faulty node. However, it also results in a 
large area blackout. To reduce customer service interruption, a genetic-based service 
restoration algorithm is proposed. Due to the use of binary string to represent switch-
ing status, the GA is appropriate for this kind of problems. To ensure a small number 
of customer interruption, average energy not supplied (AENS) is used as the objective 
function to be minimized. 25-node and 118-node IEEE standard distribution test feed-
ers were employed for test. As a result, the AENS after performing the intelligent 
optimization is reduced to approximately 40% of that obtained by the heuristic fault 
isolation algorithm (HFIA). 

Acknowledgements. The authors would like to acknowledge the financial support 
from Suranaree University of Technology, Thailand. 

References 

1. Blackburn, J.L: Protective Relaying. Marcel Dekker, 1987 
2. Horowitz, S.H., Phadke, A.G..: Power System Relaying. Research Study Press, 1995 
3. Qin, B.L, Guzman-Casillas, A., Schweitzer, E.O.: A New Method for Protection Zone Se-

lection in Microprocessor-Based Bus Relays. IEEE Trans on Power Delivery 3 (2000), 
876-887 

4. Mun, K. J., Park, J.H., Kim, H., Seo, J.: Development of real-time-service restoration sys-
tem for distribution automation system. IEEE International Symposium on Industrial Elec-
tronics (ISIE 2001), June 2001, 1514 – 1519 

5. Lehtonen, M., Matsinen, A., Antila, E., Kuru, J.: An advanced model for automatic fault 
management in distribution networks. IEEE Power Engineering Society Winter Meeting 
(2000), January 2000, 1900 – 1904 

6. Sarma, N.D.R., Prasad, V.C., Rao, P., Sankar, V.: A new network reconfiguration tech-
nique for service restoration in distribution networks. IEEE Trans. on Power Delivery 9 
(1994), 1936 – 1942 

7. Sudhakar, T. D., Vadivoo, N.S., Slochanal, S.M.R. : Heuristic based strategy for the resto-
ration problem in electric power distribution system, International Conference on Power 
System Technology (POWERCON 2004), November 2004, 635 - 639 

8. So, C.W., Li, K.K., Lai, K.T., Fung, K.Y.: Application of Genetic Algorithm for Overcur-
rent Relay Coordination. IEE Int. Conf. On Development in Power System Protection, 
March 1997, 66-69 

 



 Genetic Based Distribution Service Restoration with Minimum AENS 239 

9. Choi, D., Kim, C., Hasegawa, J.: An application of genetic algorithms to the network re-
configuration in distribution for loss minimization and load balancing problem. Interna-
tional Conference on Energy Management and Power Delivery (EMPD 1995), November 
1995, pp. 376 – 381 

10. Goldberg, D.E., Edward, D.: Genetic Algorithms in Search, Optimization and Machine 
Learning, Wiley. 1989 

11. Li, W., Wang, P., Li, Z., Liu, Y.: Reliability evaluation of complex radial distribution sys-
tem considering restoration sequence and network constraints. IEEE Trans. on Power De-
livery 2 (2004), 753 – 758 

12. He, Y., Anderson, G., Allan, R.N.: Modeling the impact of automation and control on the 
reliability of distribution systems. IEEE Power Engineering Society Summer Meeting, 
July 2000, 79 – 84 

13. Billington, R., Allan, R.N.: Reliability Evaluation of Power Systems. Pitman Advanced 
Publishing. 1984 

14. Goswami, S.K., Basu, S.K.: Direct solution of distribution systems. Proc. Inst. Electr. Eng.  
138 (1991) 

15. Distribution system analysis subcommittee: IEEE 118-node test feeder. IEEE Power Engi-
neering Society 



B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 240–247, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Multi-objective Feature Selection with NSGA II 

Tarek M. Hamdani1, Jin-Myung Won2, Adel M. Alimi1, and Fakhri Karray2 

1 REsearch Group on Intelligent Machines (REGIM)  
University of Sfax, ENIS  

BP. W-3038 – Sfax – Tunisia 
{tarek.hamdani,adel.alimi}@ieee.org 

2 Pattern Analysis and Machine Intelligence Research Group,  
Department of Electrical and Computer Engineering,  

University of Waterloo, Waterloo, ON N2L 3G1, Canada 
{jinmyung,karray}@pami.uwaterloo.ca  

Abstract. This paper deals with the multi-objective definition of the feature 
selection problem for different pattern recognition domains. We use NSGA II 
the latest multi-objective algorithm developed for resolving problems of multi-
objective aspects with more accuracy and a high convergence speed. We define 
the feature selection as a problem including two competing objectives and we 
try to find a set of optimal solutions so called Pareto-optimal solutions instead 
of a single optimal solution. The two competing objectives are the minimization 
of both the number of used features and the classification error using 1-NN 
classifier. We apply our method to five databases selected from the UCI 
repository and we report the results on these databases. We present the 
convergence of the NSGA II on different problems and discuss the behavior of 
NSGA II on these different contexts.  

1   Introduction 

The feature selection problem is defined as the selection of a subset of features of size 
d from an original set of size D with respect of d<<D. This problem is very important 
in pattern recognition system especially when we are in presence of a very high 
number of features. With recent digitalization technologies and analysis, the number 
of presented features can be of a very high number and we can frequently have 
redundant or ambiguous information. This is why number of approaches was 
developed to deal with features selection problem [1].  

Evolutionary techniques were intensively used for feature selection to solve the 
combinatory problem and to provide efficient exploration of the solutions’ space and 
to provide one optimal solution with the maximum classification performance [2]. 
Genetic Algorithms (GAs) were specifically developed for this task and results 
provided by GA solution were more efficient than classical methods developed for 
feature selection as confirmed in [3], [4].  

Multi-objective approach, which was intensively studied in the recent years [5], 
[6], was applied in many fields in relation with the pattern recognition problem. In [7] 
authors used the multi-objective approach in the field of features selection for creating 
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classifiers’ ensembles and it was developed and applied to handwriting words 
recognition in [8]. The problem of nuclear transients’ classification was also 
addressed in [9] using GA based feature selection. GA based approaches was also use 
in [10] with a clustering context for pattern recognition in the case of an 
environmental problem.  

Naturally, features selection problem can be defined as a multi-objective problem 
dealing with two competing objectives. Consequently, an optimal feature set has to be 
of a minimal number of features and have to produce the minimum classification 
error. Number of works was developed to provide a multi-objective solution for 
feature selection problem as in [11]. In [12] authors applied mutli-objective approach 
for features selection to recognize digits and they defined for this their method that 
was based on the NSGA algorithm of [13]. We can also refer the work of [14] in 
which authors propose a hierarchical multi-objective solution for feature selection.  

In this paper we resolve the features selection problem with the use of NSGA II 
[15] the latest developed algorithm for multi-objective problems. We define the 
feature selection problem as a task of two competing objectives and we try to 
minimize both the number of used features and the classification error to find pareto-
optimal solutions for five pattern recognition problems. The results found on the 
tested databases were very interesting. In Sect. 2, we describe the proposed definition 
of the features selection problem with NSGA II. In Sect. 3, we explain how we 
establish our experimental process and we report the experimental results for different 
pattern recognition problems. Sect. 4 draws conclusions and suggests several future 
works. 

2   Feature Selection Problem with NGSA II 

We implemented the feature selection problem referring to a simple coding scheme 
and we used binary chromosomes to present even the feature was selected or not.  

Two competing objectives were defined; the first was the minimization of the 
number of used features; the second was the classification error. The classification 
error was computed on each database using the 1-NN classifier to evaluate the 
discrimination value of the each selected set of features.  

We used 1-NN as classifier to evaluate the performance of a given feature set 
identified by a chromosome on different training and testing sets. The 1-NN classifier 
returns a real variable belonging to [0,1] and denoting the classification error on a 
testing data set.  

Furthermore, to decrease the computational complexity of the pattern recognition 
problem we have implemented a special classifier 1-NN that saves the computational 
time by computing just the necessary distances pointed by the selected feature. This 
improvement was implemented by means of the integration of a data structure 
completing the chromosome encoding containing the indexes of the selected sequence 
of features. This saves the computational time of the whole classification process.  

The NSGA II [15] was recently implemented by Deb to improve the first version 
of the algorithm. Deb has show that the new algorithm outperforms the first version of 
NSGA and has a lower computational complexity. The principal of this algorithm is 
to use the fast non-dominated sorting technique and a crowding distance to construct 
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the population’s fronts that dominate each other in a non-dominating rank. The 
algorithm uses a niche technique and a speciation technique to preserve diversity and 
to find the best population. One of the most important proposition of the NSGA II is 
that it’s proposes to modify the non-dominating sorting process to accelerate it by the 
definition of the fast non-dominating sorting that decreases the complexity of the 
algorithm from O(M N3) to O(M N2).  

We implemented this algorithm and we tested its efficiency on different contexts 
and we report the results in the next section. The used crossover technique was the 
uniform crossover consisting on replacing genetic material of the two selected parents 
uniformly in several points. The mutation operator used in this work was 
implemented as conventional mutation operator operating on each bit separately and 
changing randomly its value.  

3   Experimental Results 

In the following subsections we will describe the experimental setting with a 
description of the used databases and we present the results found in different 
contexts defined by the pattern recognition problems.  

3.1   Experimental Setting  

For the experimentations we used five datasets selected from the UCI repository [16] 
and we implemented NSGA II with the flowing parameters:  

− Population size: 50 
− Crossover probability: 0.5 
− Mutation probability: 1/number of features 

Details of the used databases are presented in the following table (see Table 1) with 
the reference recognition rate computed for each pattern recognition problem using all 
the predisposed features.  

Table 1. Detailed Information about Used Databases 

Database  
name 

Training  
points 

Testing  
points 

Number of  
features 

Number of 
classes 

Recognition  
rate 

Segment  700 700 19 numerical  7 91,00 
Satellite  600 600 36 numerical  6 81,67 
Letter  2 600 2 600 16 numerical  26 86,04 
MNIST  1 000 1 000 114 numerical  10 81,00 
DNA 300 300 180 logical  3 62,67 

3.2   NSGA II Results  

Five databases were used to perform the experimentation on the NSGA II for pattern 
recognition and results observed by the pareto-optimal population are given in 
respecting three categories; the first category presents the pareto-optimal solutions for 
the simple structured problems (Segment and Satellite); the second category presents 
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results of the Letter database that can be considered as a complex pattern recognition 
problem; the third deals with the results of NSGA II for the MNIST and DNA 
databases. These problems have the specificity to be of a high number of features and 
are defined for a high number of data points.  

For all the experimentations we will present two graphs with the set of pareto-
optimal solutions in first iteration and after convergence of NSGA II. We will also 
present with the pareto-optimal solutions in Fig. 2 a reference diamond point which 
will represent the original solution defined by all the features and its associated error 
rate to compare it to the given solutions.  

The x axis will present the number of used features and the y axis will measure the 
error rate associated to each defined solution. In the following graphs we will not 
present all the population given by the NSGA II and we will just use the first front 
population composed of individuals that dominate all the other suboptimal solutions.  

 

Fig. 1. The graphic presents the results for small databases using NSGA II. Results in (a) are 
reported for the Segment database. In (b) we reported results for the Satellite database. The first 
graph for each database is associated to 10 first iterations of the algorithm. The second graph 
presents the pareto-optimal subset after convergence.  

In these results we can observe that the NSGA II converges from the first iteration 
and the pareto-optimal solutions were progressively ameliorated. Solutions given 
after convergence are more diversified and give the used more possibilities to choose 
his suboptimal solution. The earlier convergence speed can be explained by the 
simplicity of the used databases.  
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The next experimentation will concerns a very specific case in which the data are 
of a high number but we manipulate here a limited number of features results 
presented in Fig. 2.  

This experimentation is specific due to the high number of classes and the high 
number of used data, which was relatively high and increases the complexity of 
the pattern recognition problem. NSGA II has reduced this complexity proposing 
a set of high quality solutions. In spite of the high complexity of the pattern 
recognition problem the NSGA II has converge from the first iterations to a 
relatively good set of solutions and the convergence of the algorithm was also 
relatively early.  

 

Fig. 2. Graphic presents results of NSGA II on the Letter database. The algorithm converges 
from the first iterations and it tries to ameliorate and increase the number of pareto-optimal 
solutions.  

The NSGA II algorithm begins with proposing a set of non optimal solutions and 
will improve it and increase the number of solutions to be more efficient (see Fig.3). 
In these two cases the convergence of NSGA II wasn’t evident from the first 
iterations.  

MNIST and DNA databases are considered as complex databases for two points of 
view; the first is the high number of data points and the second is the abundance of 
defined features. In such kind of problems NSGA II gives amelioration and spends 
more time to converge. We can see in Fig. 3 that after convergence solutions are more 
distributed in the space and are much more optimal that in first iterations.  
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Fig. 3. Results of the NSGA II on MNIST and DNA databases are presented on the graph and 
we can clearly see the improvement of the pareto-optimal set 

3.3   Convergence and Computational Time  

The computational time of the presented solution is reported in the Table 2.  

Table 2. Computational time for the NSGA II in the different conducted experimentations 

Database Number of iterations for 
convergence  

Computational time for 10  
iterations in minutes 

Segment  30 1 
Satellite  610 1 
Letter  130 7 
MNIST  1000 5 
DNA 800 < 1 

From this table we can see that the computational time of the NSGA II depends 
on the complexity of the defined pattern recognition problem. The computational 
time was higher then the other databases for complex databases as Letter and 
MNIST.  

Convergence of the NSGA II can be measured referring to the necessary number of 
iterations for the algorithm to find the pareto-optimal set. According to this criterion, 
the convergence can be directly related to the number of defined features. This can be 
considered with the complexity and the eventual correlations existing between 
features.  
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4   Conclusion  

In this paper we proposed the use of NSGA II the latest developed algorithm for 
features selection. The proposed solution was tested on five standard pattern 
recognition problems selected from the UCI repository and we presented the quality 
of the pareto-optimal sets given by NSGA II. We analyzed the quality of the given 
solution on three different types of databases and we found that the NSGA II provides 
really very good solutions from the first iterations for the simple datasets and then it 
continuously ameliorates the quality of the optimal set. For difficult datasets we 
observe a quick convergence on the datasets having relatively small number of 
features. For the third type of problems, which is characterized by a high number of 
features, the convergence time in term of number of iteration is more important and 
the improvement is more enhanced. Future works on these results will be conducted 
to accelerate more the convergence of the NSGA II for the specific case of discrete 
variables.  
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Abstract. The paper presents a method for designing 2-D IIR filters
with a quadrantally symmetric magnitude response. The method is based
on two error criteria, i.e., equiripple error criterion in the passband and
least-squared error criterion in the stopband. Two objective functions are
introduced and the filter design problem is transformed into an equiva-
lent bicriterion optimization problem. The stability of the filter is ensured
by explicitly including stability constraints in the considered optimiza-
tion problem. A two-step solution procedure of the considered problem
is proposed. In the first step, a genetic algorithm is applied. The final
point from the genetic algorithm is used as the starting point for a local
optimization method. Two design examples are given to illustrate the
proposed technique. A comparison with a 2-D IIR filter designed using
LS approach is also presented.

1 Introduction

Two dimensional (2-D) digital filtering is one of the most important processing
techniques in 2-D digital signal processing. 2-D filters have many important
applications, e.g., in image processing and in seismic, radar and sonar signal
processing.

Digital filters can be classified into two groups, i.e., finite impulse response
(FIR) filters and infinite impulse response (IIR) filters. FIR filters can have
exactly linear-phase response and they are free from stability problems [7]. In
comparison with FIR filters, IIR filters offer better selectivity and improved
computational efficiency due to the significant reduction in the number of mul-
tipliers [5,7,14]. However, the major problem encountered in the design of IIR
filters is stability. IIR filters are useful is in wide range of applications where
high selectivity and efficient processing of discrete signals are desired [8].

Techniques for designing 2-D IIR digital filters have been developed exten-
sively for several years [2,4,5,6,7,8,9,10,11,13,14]. The design of 2-D IIR filters
is more complicated then the design of 2-D FIR filters. The transfer functions
of IIR filters are rational functions and the resulting optimization problems are
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highly nonlinear and computationally intensive. Besides, IIR filters can be un-
stable and that is why the stability constraints must be incorporated into IIR
filter design problems.

2-D IIR filters have usually been designed using either the minimax or least-
squared (LS) error criteria [7]. In case of the minimax design, the maximum
error is smaller than in case of the LS design. However, the minimax design
is complicated and computationally intensive. In many cases, the design based
on the equiripple error criterion in the passband and LS criterion in the stop-
band is much more appropriate than the pure minimax or LS design. A detailed
discussion on this problem can be found in [1].

In the paper, a new approach for the design of 2-D IIR filters with a quadran-
tally symmetric magnitude response is presented. This approach is based on the
equiripple error criterion in the passband and the LS criterion in the stopband. In
this approach, the approximation problem is transformed into an equivalent bi-
criterion optimization problem that is converted into a single criterion one using
the weighted sum strategy. The obtained objective function is then minimized
subject to several constraints. These constraints include stability constrains and
a constraint on the maximum allowable approximation error in the passband.
The solution of the considered problem is achieved using a two-step procedure.
In the first step, a genetic algorithm (GA) [3] is applied. GAs are probabilistic
search techniques based on the mechanics of natural genetics and natural selec-
tion. They have strong robustness and general utility. Therefore, GAs are often
used for solving difficult nonlinear optimization problems and multi-objective
optimizations. The final point from the GA is used as the starting point for a
local optimization method. Using a local optimization method, when the solu-
tion is close to the optiumum, results in improving the speed of convergence.
Two numerical examples are presented to illustrate the proposed technique. The
results are compared with those obtained using the LS approach.

2 Formulation of the Design Problem

Let H(z1, z2) be the transfer function of a 2-D IIR filter. Assume H(z1, z2) has
a separable denominator. This assumption imposes a constraint on the type of
the IIR filter, because only IIR filters with quadrantally symmetric frequency
response have the separable denominator [2,8,13]. The class of quadrantally sym-
metric 2-D IIR filters covers practically all types of 2-D IIR filters that have been
found useful in 2-D signal processing applications [8].

A two-variable function F (ω1, ω2) possesses quadrantal symmetry if it satisfies
the following condition [6]:

F (ω1, ω2) = F (−ω1, ω2) = F (ω1, −ω2) = F (−ω1, −ω2) (1)

If F (ω1, ω2), in addition, satisfies

F (ω1, ω2) = F (ω2, ω1) (2)

then it has octagonal symmetry.
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The transfer function of a quadrantally symmetric 2-D IIR filter can be ex-
pressed as

H(z1, z2) =
B(z1, z2)

D(z1)D(z2)
(3)

where

B(z1, z2) =
n∑

i=0

n∑

k=0

bikz−i
1 z−k

2 (4)

and

D(zj) =
m∑

i=0

giz
−i
j , j = 1, 2 (5)

with g0 = 1.
In case of an octagonally symmetric 2-D IIR filter, the transfer function can

be written in the form [13]:

H(z1, z2) =
Q(z1 + z−1

1 , z2)Q(z2 + z−1
2 , z1)

D(z1)D(z2)
=

=
(
∑M

i=0
∑N

j=0 aij(z1 + z−1
1 )izj

2)(
∑M

i=0
∑N

j=0 aij(z2 + z−1
2 )izj

1)

(zK
1 +

∑K−1
i=0 dizi

1)(z
K
2 +

∑K−1
i=0 dizi

2)
(6)

An octagonally symmetric 2-D IIR filter design problem is to determine the
coefficients aij and di of the stable transfer function H(z1, z2) such that the
resulting frequency response is the best approximation of the desired frequency
response in the given sense.

The advantage of using the transfer function given by (6) is that the number
of independent coefficients to optimize is significantly reduced in comparison
with (3).

The denominator polynomial D(z1, (z2) = D(z1)D(z2) has to satisfy the con-
ditions for the stability. D(z1, (z2) is stable if and only if both D(z1) and D(z2)
are stable [9,13]. A 1-D polynomial D(z) is stable if its zeros are in the region
{z : |z| < 1} [7].

Let Y = [a00, a01, ..., aNM , d0, d1, ..., dK−1]T be a vector of the transfer func-
tion coefficients.

Assume that the continuous (ω1, ω2) - plane is discretized by using a K1 ×K2
rectangular grid (ω1k, ω2l), k = 0, 1, ..., K1 − 1, k = 0, 1, ..., K2 − 1.

The desired magnitude response Ad(ω1k, ω2l) of the 2-D filter is:

Ad(ω1k, ω2l) =
{

1 for (ω1k, ω2l) in the passband P ,
0 for (ω1k, ω2l) in the stopband S. (7)

Let A(ω1k, ω2l,Y) = |H(eω1 , eω2 ,Y)| denote the amplitude response of the
filter obtained using the coefficients given by vector Y.

In the passband P , the approximation is to be equiripple, so the error function
E(ω1k, ω2l,Y) is:

E(ω1k, ω2l,Y) = A(ω1k, ω2l,Y) − Ad(ω1k, ω2l), ω1, ω2 ∈ P. (8)
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In the stopband S, the LS error E2(Y) to be minimized is:

E2(Y) =
∑ ∑

(ω1k,ω2l)∈S

[A(ω1k, ω2l,Y) − Ad(ω1k, ω2l)]2 (9)

The filter design problem can be formulated as follows: For desired amplitude
response Ad(ω1k, ω2l) defined on a rectangular grid K1 × K2, and and given de-
grees of numerator and denominator find a vector Y for which the considered
filter is stable and the error function E(ω1k, ω2l,Y) is equiripple in the pass-
band and, simultaneously, the LS error E2(Y) is minimized in the stopband.
Optionally, the following condition on the maximum allowable approximation
error δ > 0 in the passband can be additionally imposed:

∀ω1k, ω2l ∈ P |A(ω1k, ω2l,Y) − Ad(ω1k, ω2l)| ≤ δ (10)

Adding the above condition results in obtaining the magnitude ripple equal or
smaller than δ.

3 Transformation of the Problem

In order to solve the considered design problem, we transform it into an equiv-
alent bicriterion optimization problem. We introduce two objective functions
X1(Y) and X2(Y). We assume that the function X1(Y) has the minimum equal
to zero when the error function E(ω1k, ω2l,Y) is equiripple in the passband.
The error function E(ω1k, ω2l,Y) is equiripple in the passband when the ab-
solute values ΔEi(Y), i = 1, 2, ..., J , of all the local extrema of the function
E(ω1k, ω2l,Y) in the passband, as well as the maximum value ΔEJ+1(Y) of
E(ω1k, ω2l,Y) at the passband edge are equal, i.e.:

ΔEi(Y) = ΔEk(Y), k, i = 1, 2, ..., J + 1. (11)

In order to find a vector Y, for which the conditions (11) hold, we introduce an
objective function X1(ΔE1, ΔE2, ..., ΔEJ+1) defined as follows:

X1(ΔE1, ΔE2, ..., ΔEJ+1) =
J+1∑

i=1

(ΔEi − R)2, (12)

where:

R =
1

J + 1

J+1∑

k=1

ΔEk. (13)

is the arithmetic mean of all ΔEk, k = 1, 2, ..., J + 1.
The function X1 is non-negative function of ΔE1, ΔE2, ..., ΔEJ+1 and it is

equal to zero if and only if ΔE1 = ΔE2 = ... = ΔEJ+1. As ΔE1, ΔE2, ..., ΔEJ+1
are the functions of the vector Y, the function X1 can be used as the first ob-
jective function in our bicriterion optimization problem. As the second objective
function we apply the LS error E2(Y), so X2(Y) = E2(Y).
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We convert the bicriterion optimization problem into a single criterion one
using the weighted sum strategy. The equivalent optimization problem can be
stated as follows: For given filter specifications and a weighting coefficient β find
a vector Y such that the function

X(Y, β) = βX1(Y) + X2(Y) (14)

is minimized, when the following stability constraints are given:

D(z1) �= 0 for |z1| ≥ 1 (15)

D(z2) �= 0 for |z2| ≥ 1 (16)

4 Two-Step Solution Procedure

In the optimization problem formulated in the previous section, the objective
function is highly nonlinear, may have many local minima and has high dimen-
sionality. Besides, the stability constraints on the filter coefficients are imposed.
Local optimization methods may succeed in certain cases, but they generally are
less suited for solving such difficult optimization problems. Global methods, such
as GAs, are particularly effective when the goal is to find an approximate global
minimum in case of high-dimensional, difficult optimization problems, objective
functions that can have many local minimas and multi-objective optimizations.
GAs are also largely independent of the initial conditions. That is why GAs are
well suited for solving the considered optimization problem.

GAs are stochastic search and optimization techniques based on the mecha-
nism of natural selection where stronger individuals would likely be the winners
in a competing environment. A simple GA relies on the processes of reproduc-
tion, crossover and mutation to reach the global or ”near-global” minimum. GAs
operate on fixed length strings (chromosomes) representing possible solutions of
a given optimization problem. To start implementing a GA, an initial population
is considered. Successive generations are produced by manipulating the solutions
in the current populations. Each solutions has a fitness (an objective function)
that measures its competence. New solutions are formed using crossover and mu-
tation operations. According to the fitness value, a new generation is formed by
selecting the better chromosomes from the parents and offspring, and rejecting
other so as to keep the population size constant. The algorithm converges to the
best chromosome, which represents the solution of the considered optimization
problem. The detailed description of a simple GA can be found in [3].

In order to solve the optimization problem formulated in the previous section,
a two-step procedure is proposed, i.e., a hybridization of the GA and a local
optimization method. Such hybridization is described by Golberg [3]. It is useful
in our case because GAs are slow in convergence, especially when the solution
is close to the optiumum. In order to improve the speed of convergence, after a
specified number of generations in the GA has been reached, a local optimization
method, i.e., the Davidon, Fletcher, and Powell (DFP) method is applied to solve
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the considered problem. The final point from the GA is used as the starting
point for the DFP method. The DFP method is a quasi-Newton method which
approximates the inverse Hessian matrix [12].

Numerical calculations have shown that it is possible to achieve better conver-
gence if, instead of the minimization problem formulated in the previous section,
we apply the GA to the following least square approximation problem

E2(Y) =
∑ ∑

(ω1k,ω2l)∈P∪S

[H(ω1k, ω2l,Y) − Hd(ω1k, ω2l)]2 (17)

Then, the solution of this problem is used as a starting point for solving the
problem of minimizing X(Y) using the DFP method. The local extrema of the
error function E(ω1k, ω2l,Y) are determined by searching the grid.

In applying the GA, the choice of the probability of crossover, the probability
of mutation as well as the choice of the population size are very important.
Their settings are dependent on the form of objective function. In the developed
program, the population size is 30, the probability of crossover is 0.8, and the
probability of mutation is 0.01.

The constrained optimization problem has been transformed into an uncon-
strained problem using penalty function technique.

5 Design Examples

In this section, two design examples are presented to illustrate the performance
of the proposed approach. In both examples, a square grid of 101 × 101 points
is used for discretizing the (ω1, ω2) - plane. The desired magnitude response is
1 in the passband P , 0 in the stopband S and varies linearly in the transition
band Tr. The weighting coefficient is β = 2 × 104.

As the first example, we design a diamond-shaped, lowpass 2-D IIR filter with
the passband situated between the points (0, 0.35π), (0.35π, 0), (0, −0.35π) and
(−0.35π, 0) on the (ω1k, ω2l)-plane. The width of the transition band is 0.14π.
The filter is designed with M = 1, N = 9, K = 7, and δ = 0.07. The magnitude
response of the resulting filter is shown in Fig. 1. The designed filter is stable.
The maximum pole magnitude is 0.778.

In order to compare the resulting filter with the filter obtained using the LS
approach, the LS filter was designed for the same filter specifications. In case
of the proposed approach, the maximum approximation error in the passband
is δ = 0.07. For the LS filter, δ = 0.120. Note that in case of the proposed
approach, the maximum approximation error δ is considerably smaller than in
case of the LS approach.

As the second example, we design a circularly symmetric, lowpass 2-D IIR
filter. The passband of the filter is a circular region centered at (0, 0) with a
radius rp = 0.5π. The stopband corresponds to the region outside the circle with
a radius of rs = 0.7π. The filter is designed with M = 1, N = 5, K = 4, and
δ = 0.07. The magnitude response of the resulting filter is shown in Fig. 2. The
designed filter is stable. The maximum pole magnitude is 0.695.
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Fig. 1. Magnitude response of the filter designed in the first example (x = ω1/π,
x = ω2/π)
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Fig. 2. Magnitude response of the filter designed in the second example (x = ω1/π,
x = ω2/π)

As in case of the first example, the resulting filter can be compared with the
filter obtained using the LS approach. For the LS filter, the maximum approx-
imation error in the passband is δ = 0.112. In case of the proposed approach -
δ = 0.07. Note that as in the previous example, in case of the proposed approach,
δ is considerably smaller than in case of the LS approach.
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To check usefulness of the proposed two-step solution procedure, we compare
the results obtained using the proposed approach with the results obtained using
a local optimization method instead of the GA in the two-step solution proce-
dure. We design 2-D IIR filters for the same specifications as in the considered
examples, but using the DFP method for solving the least square approximation
problem (17). In case of the first example, the results were approximately the
same as using the GA. In case of the second example, the solution of the problem
(17) has been trapped at a local minimum. This local minimum is quite far from
the global minimum obtained using the GA and the magnitude response of the
resulting filter is not acceptable.

6 Conclusions

We have attempted to show that the GA can be used as a tool in the design of
2-D IIR filters according to the equiripple error criterion in the passband and
least-squared error criterion in the stopband. A technique for the design of 2-D
IIR filters with quadrantally symmetric magnitude response has been proposed.
The stability of the filter is ensured by explicitly including stability constraints
in the considered optimization problem. The technique is simple to implement
because standard GA and local optimization procedures can be used to solve the
considered minimization problem. It is also flexible as additional linear and/or
nonlinear constraints can be incorporated into the optimization problem. The
application of the GA ensures that the obtained solutions are not trapped at
local minima. The proposed approach, in which the filter design problem is
transformed into a bicriterion optimization problem, can also be also applied
to solving 2-D FIR filter design problems in which a compromise between the
equiripple and LS errors is required [15].
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Abstract. In this study, a hybrid genetic algorithm, which merges a genetic al-
gorithm with simulated annealing, is derived for nonlinear channel blind equali-
zation using RBF networks. The proposed hybrid genetic algorithm is used to 
estimate the output states of a nonlinear channel, based on the Bayesian likeli-
hood fitness function, instead of the channel parameters. From these estimated 
output states, the desired channel states of the nonlinear channel are derived and 
placed at the center of a RBF equalizer to reconstruct transmitted symbols. In 
the simulations, binary signals are generated at random with Gaussian noise. 
The performance of the proposed method is compared with those of a conven-
tional genetic algorithm (GA) and a simplex GA. It is shown that the relatively 
high accuracy and fast convergence speed have been achieved. 

1   Introduction 

The nonlinear inter-symbol interference (ISI) that often arises in high speed commu-
nication channels degrades the performance of the overall communication system [1]. 
To overcome the effects of nonlinear ISI and to achieve high-speed reliable commu-
nication, nonlinear channel equalization is necessary.  

However, only a few papers have dealt with nonlinear channel models because of 
their complexity. The blind estimation of Volterra kernels, which characterize nonlin-
ear channels, was derived in [2], and a maximum likelihood (ML) method imple-
mented via expectation-maximization (EM) was introduced in [3]. The Volterra ap-
proach suffers from its enormous complexity. Furthermore the ML approach requires 
some prior knowledge of the nonlinear channel structure to estimate the channel pa-
rameters. Major progress in nonlinear channel blind equalization was made by Lin et 
al. [4], in which they used the simplex GA method to estimate the optimal channel 
output states instead of estimating the channel parameters directly. The desired chan-
nel states were constructed from these estimated channel output states, and placed at 
the center of their RBF equalizer. With this method, the complex modeling of the 
nonlinear channel can be avoided, and it has turned out that the nonlinear channel 
blind equalization problem can be transformed to the problem of determining the op-
timal channel output states. 

In this paper, a new hybrid genetic algorithm (GA merged with simulated anneal-
ing (SA): GASA) to find optimal output states of a nonlinear channel is investigated. 



258 S. Han, I. Lee, and C. Han 

GA [5] and SA [6], each of which represents a powerful optimization method, have 
complementary strengths and weaknesses. To get the synergy effect between GA and 
SA, many researchers have considered the combination of these two, and those algo-
rithms have been successively used for the optimization problems [7][8]. Thus a  
hybrid architecture with GA and SA can be a possible solution to find the optimal 
channel output states for nonlinear channel blind equalization. For our particular ap-
plication, the proposed GASA has the Bayesian fitness function in the searching pro-
cedure, and it can reach the optimal global solution with a relatively high speed even 
when it is trapped in a local solution. More details for its searching algorithm are 
shown in section 4. The performance of the proposed GASA is compared with those 
of a conventional GA and a simplex GA. 

2   Nonlinear Channel Equalization Using RBF Networks 

 

Fig. 1. The structure of a nonlinear channel equalization system 

A nonlinear channel equalization system is shown in Fig. 1. A digital sequence s(k) is 
transmitted through the nonlinear channel, which is composed of a linear portion H(z) 
and a nonlinear portion N(z), governed by the following expressions,  

0

( ) ( ) ( )
p

i

y k h i s k i
=

= −∑  (1) 

2 3 4
1 2 3 4ˆ( ) ( ) ( ) ( ) ( )y k D y k D y k D y k D y k= + + +  (2) 

where p is the channel order and Di is the coefficient of the ith nonlinear term. The 
transmitted symbol sequence s(k) is assumed to be an equiprobable and independent 
binary sequence taking values from {±1}, and the channel output is corrupted by an 
additive white Gaussian noise e(k). Thus the channel observation y(k) can be written as 

ˆ( ) ( ) ( )y k y k e k= +  (3) 

If q denotes the equalizer order (number of tap delay elements in the equalizer), then 
there exist M = 2p+q+1 different input sequences such as 
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[ ]( ) ( ), ( 1), , ( )s k s k s k p q= − − −s k  (4) 

For a specific channel order and equalizer order, the number of input patterns that in-
fluence the equalizer is M, and the input vector of equalizer without noise is 

[ ]ˆ ˆ ˆ ˆ( ) ( ), ( 1), , ( )y k y k y k q= − −y k  (5) 

The noise-free observation vector ŷ (k) is referred to as the desired channel states, 

and can be partitioned into two sets, Yq,d
+1 and Yq,d

-1, as shown in equations (6) and 
(7), depending on the value of s(k-d), where d is the desired time delay.  

( ) ( ){ }1
, ˆ | 1q d s k d+ = − = +Y y k  (6) 

( ) ( ){ }1
,

ˆ | 1q d s k d− = − = −Y y k  (7) 

The task of the equalizer is to recover the transmitted symbols s(k-d) based on the ob-
servation vector y(k). Because of the additive white Gaussian noise, the observation 
vector y(k) is a random process having conditional Gaussian density functions cen-
tered at each of the desired channel states, and determining the value of s(k-d) be-
comes a decision problem. Therefore, Bayes decision theory [9] can be applied to de-
rive the optimal solution for the equalizer, and this optimal Bayesian equalizer 
solution is given by equations (8) and (9).  

( ) ( )
1 1

2 21 2 1 2

1 1

( ( )) exp ( ) 2 exp ( ) 2
s sn n

B i e i e
i i

f σ σ
+ −

+ −

= =

= − − − − −∑ ∑y k y k y y k y  (8) 

( )( )( ) 1, ( ( )) 0
ˆ( ) sgn

( ( )) 0
B

B
B

s k d
+ ≥⎧

− = = ⎨− <⎩

   f y k
f y k

1,  f y k  
 (9) 

where yi
+1 and yi

-1 are the desired channel states belonging to Yq,d
+1 and Yq,d

-1, respec-
tively, and their numbers are denoted as ns

+1 and ns
-1, and σe

2 is the noise variance. In 
our study, the optimal Bayesian decision probability shown in equation (8) is imple-
mented by using a RBF network. In general, the output of a RBF network for input 
vector x, is given by equation (10) [10]. 

2

1

( )
n

i
i

i i

x ω φ
ρ=

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
x c

f  (10) 

where n is the number of hidden units, ci are the RBF centers, ρi is the width of the ith 
units and ωi is its weight. The RBF network is an ideal processing means to imple-
ment the optimal Bayesian equalizer when the nonlinear function φ is chosen as the 
exponential function φ(x) = e-x and all of the widths have a same value ρ, which is 
twice as large as the noise variance σe

2. For the case of equiprobable symbols, the 
RBF network can be simplified by setting half of the weights to 1 and the other half to 
-1. Thus the output of this RBF equalizer in equation (10) is same as the optimal 
Bayesian decision probability shown in equation (8). 
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3   Desired Channel States and Channel Output States 

The desired channel states, yi
+1 and yi

-1, are used as the centers of the hidden units in 
the RBF equalizer to reconstruct the transmitted symbols. If the channel order p = 1 
with H(z) = 0.5 + 1.0z-1, the equalizer order q = 1, the time delay d = 1, and the 
nonlinear portion D1 = 1, D2 = 0.1, D3 = 0.05, D4 = 0.0 in Fig. 1, then the eight differ-
ent channel states (2p+q+1 = 8) may be observed at the receiver in the noise-free case, 
and the output of the equalizer should be ŝ (k-1), as shown in Table 1. From Table 1, 
it can be seen that the desired channel states [ ŷ (k), ŷ  (k-1)] can be constructed from 

the elements of the dataset, called “channel output states”, {a1,a2,a3,a4}, where 
a1 = 1.89375, a2 = -0.48125, a3 = 0.53125, a4 = -1.44375. The length of dataset, n , is 
determined by the channel order, p, such as 2p+1 = 4 This relation is always valid for 
the channel that has a one-to-one mapping between the channel inputs and outputs 
[4]. Thus the desired channel states can be derived from the channel output states if 
we assume p is known, and the main problem of blind equalization can be changed to 
focus on finding the optimal channel output states from the received patterns. 

Table 1. The relation between desired channel states and channel output states 

Nonlinear channel with H(z) = 0.5 + 1.0z-1, D1 = 1, D2 = 0.1, D3 = 0.05, D4 = 0.0 d=1 

Transmitted symbols Desired channel states 
Output of 
equalizer 

( ) ( 1) ( 2)s k s k s k− −  ˆ ˆ( )           ( 1)y k y k −  
By channel output states, 

{a1,a2,a3,a4} 
ŝ (k-1) 

1          1          1   89375.1    89375.1  ),( 11 aa   1  

1       1          1  −  1.89375  48125.0−  ),( 21 aa   1  

1          1          1−  53125.0    89375.1  ),( 13 aa   1  

1       1          1 −−  53125.0  48125.0−  ),( 23 aa   1  

1          1       1   −  48125.0−  53125.0  ),( 32 aa  1−  

1       1       1   −−  48125.0− 44375.1−  ),( 42 aa  1−  

1          1       1 −−  44375.1−  53125.0  ),( 34 aa  1−  

1       1       1 −−−  44375.1− 44375.1−  ),( 44 aa  1−  

It is known that the Bayesian likelihood (BL), defined in equation (11), is maxi-
mized with the channel states derived from the optimal channel output states [11].  

( ) ( )( )
1

1 1

0

max ,
L

B B
k

BL f k f k
−

+ −

=

= ∏  (11) 

where 
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2 21 1 2 1 1 2
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= − − = − −∑ ∑y k y ,   y k y  
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and L is the length of received sequences. Therefore, the BL is utilized as the fitness 
function (FF) of the proposed algorithm to find the optimal channel output states after 
taking the logarithm. However, the optimal channel output states, which maximize FF, 
cannot be obtained with the conventional gradient methods, because the mathematical 
formulation between the channel output states and FF cannot be accomplished without 
knowing the channel structure. These are shown in [4]. Thus a new hybrid genetic al-
gorithm, called GASA, is applied to search for the optimal output states, and is com-
pared with a conventional GA and the simplex GA introduced in [4]. 

4   GA Merged with SA (GASA) 

GA and SA have complementary strengths and weaknesses. While GA explores the 
search space by means of the population of search points, it suffers from poor conver-
gence properties. SA, by contrast, has good convergence properties, but it cannot ex-
plore the search space by means of population. To get the synergy effect between GA 
and SA, a new hybrid genetic algorithm, which combines GA with SA, is investigated 
and applied to find the optimal channel output states for nonlinear channel blind 
equalization. The proposed GASA algorithm has the following pseudo-code. The 
Bayesian likelihood in equation (11) is utilized as the fitness function, and thus 
GASA searches the channel output states which maximize the Bayesian likelihood. 

begin 

     initialize population at random 

     randomly generate the initial temperature T[i] in   
     a specified region 

     calculate the fitness function for the initial  
     population 

     for k=1 to stopping criterion 

     begin 

          save the current population as parents 

          crossover 

          mutation 

          find the best-fit individual among the  
          parents and offsprings and then update the 
          best solution 

          for i=1 to population size 

begin 

 ith-individual=SA-selection(SA-selection(offspring[i],  
 parent[i],T[i]),  

best solution, T[i]) 

             update the ith-individual fitness 
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             T[i]=T[i]×cooling rate 
          end 

     end 

end 

In the pseudo-code, the selection of SA, shown in “SA-selection(SA-
selection(offspring[i], parent[i], T[i]), best solution, 
T[i])”, has been modified to have its fitness function maximized. For example, the 
function “SA-selection(new, old, T)” calculates the acceptance probability 
“P=exp(-(old-new)/T)”.  If “new>old”, a “new” solution is selected, which 
means that an uphill move is always accepted. And also, if “new≤old” and 
“P>random number in [0, 1]”, a “new” solution will be selected, which 
means that a downhill move is occasionally accepted, depending on P. An “old” so-
lution will be selected for all other cases. This selection of SA allows a downhill 
move (same as an uphill move in a typical SA which minimizes the fitness function) 
to explore the search space at higher temperature, and to exploit the search space  
acceptance of the best solution’s individual at lower temperatures. Thus in this algo-
rithm, the GA-selection is effectively replaced with an SA-selection without increas-
ing the number of fitness evaluations per generation. This means that the population 
stores a diversity of annealing schedules, and the proposed GASA can reach the opti-
mum global solution with a relatively high speed even when it is trapped in a local  
solution. 

5   Simulation Results and Performance Assessments 

The blind equalizations with GA, simplex GA, and GASA are taken into account to 
show the effectiveness of the proposed hybrid algorithm. Two nonlinear channels in 
[4] and [12] are evaluated in the simulations. Channel 1 is shown in Table 1, and the 
other is as follows. 

Channel 2: 

1 2

1 2 3 4

( ) 0.3482 0.8704 0.3482 ,

1, 0.2, 0.0, 0.0 and 1

H z z z

D D D D d

− −= + +
= = = = =

 

In channel 2, the channel order p, the equalizer order q, and the time delay d are 2, 1, 
1, respectively. Thus the output of the equalizer should be s (k-1), and the sixteen de-
sired channel states (2p+q+1 = 16) composed of the eight channel output states 
(2p+1 = 8, a1,a2,a3,…,a8) may be observed at the receiver in the noise-free case. The 
desired channel states, (a1,a1), (a1,a2), (a2,a3), (a2,a4), (a5,a1), (a5,a2), (a6,a3), (a6,a4), 
belong to Y1,1

+1, and (a3,a5), (a3,a6), (a4,a7), (a4,a8), (a7,a5), (a7,a6), (a8,a7), (a8,a8) be-
long to Y1,1

-1, where a1,a2,a3,…,a8 are 2.0578, 1.0219, -0.1679, -0.7189, 1.0219, 
0.1801, -0.7189 and -1.0758, respectively. 

In the experiments, 10 independent simulations for each of two channels with five 
different noise levels (SNR=5,10,15,20 and 25db) are performed with 1000 randomly 
generated transmitted symbols, and the results are averaged. The three algorithms,  
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Fig. 2. Averaged fitness functions in successive 100 generations: (a) channel 1, (b) channel 2 

GA, simplex GA and proposed GASA, have been implemented in a batch way in or-
der to obtain an accurate comparison among them, and the same quantities of popula-
tion size, crossover rate, and mutation rate are used. The averaged fitness functions in 
successive generations with 25db are shown in Fig. 2 for each of the two channels. It 
is observed that the proposed GASA converges with the highest speed because of its 
diversity of annealing schedules as mentioned in the previous section. 

We also measure the normalized root mean squared errors (NRMSE) for the esti-
mation of channel output states, defined by equation (12), and they are shown in Fig. 
3. GASA presents the lowest NRMSE over all of the SNR ranges. A sample of 1000 
received symbols under 5db SNR for channel 2 and their desired channel states con-
structed from the estimated channel output states by GASA is shown in Fig. 4.  

2

1

1 1
ˆi

i=
= −∑

m

NRMSE a a
a m

 (12) 

where a is the dataset of optimal channel output states, a i is the dataset of estimated 
channel output states, and m is the number of simulations performed (m = 10). Fi-
nally, the bit error rates (BER) are checked and summarized in Table 2. It is shown 
that the BER, with the estimated channel output states by GASA, is almost same as 
the one with the optimal output states for both of channel 1 and 2. 

 

Fig. 3. NRMSE: (a) channel 1, (b) channel 2 
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Fig. 4. A sample of received symbols for channel 2 and their desired channel states by GASA 

Table 2. Averaged BER(no. of errors/no. of transmitted symbols) for channel 1 and 2 

Channel        SNR 
with optimal 
states 

GASA Simplex GA GA  

5db 0.0797 0.0815 0.0824 0.0816 
10db 0.0121 0.0120 0.0128 0.0136 
15db 0 0 0 0.0003 
20db 0 0 0 0 

Channel 1 

25db 0 0 0 0 
5db 0.0970 0.1070 0.1162 0.1210 
10db 0.0420 0.0460 0.0492 0.0502 
15db 0.0100 0.0112 0.0114 0.0112 
20db 0.0008 0.0008 0.0008 0.0008 

Channel 2 

25db 0 0 0 0 

6   Conclusions 

A new genetic algorithm merged with SA (GASA) is presented for nonlinear channel 
blind equalization. In this study, the complex modeling of an unknown nonlinear 
channel becomes unnecessary by constructing the desired channel states directly from 
the estimated channel output states. It has been shown that the proposed GASA with 
the Bayesian likelihood as the fitness function offers better performance than conven-
tional GA and simplex GA. It successively estimates the channel output states with 
relatively high speed and accuracy. Thus a RBF equalizer, based on GASA, can be a 
possible solution for nonlinear blind channel equalization problems. 
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Abstract. This paper presents Genetic Algorithms and Simulated Annealing 
(GASA) based on feature extraction of speech signal and comparison with tra-
ditional Linear Predictive Coding (LPC) methods. The performance of each 
method is analyzed for ten speakers with independent text speaker verification 
database from Center for Spoken Language Understanding (CSLU) which was 
developed by Oregon Graduate Institute (OGI). The GASA algorithm is also 
analyzed with constant population size for different generation numbers, cross-
over and mutation probabilities. When compared with the Mean Squared Error 
(MSE) of the each speech signal for each method, all simulation results of the 
GASA algorithm are more effective than LPC methods. 

1   Introduction 

Feature extraction is the most important stage of the speech processing. Speech sig-
nals should be analyzed by effective methods. Then feature vectors obtained from 
these analyzed speech signals are used to form a robust speech processing system. 
LPC is an analytically tractable model. The methods of LPC are mathematically pre-
cise and straightforward to implement. 

LPC models the signal as a linear combination of its past values. In the frequency 
domain, this is equivalent to modeling the signal spectrum by a pole-zero spectrum 
[1]. The analysis of the speech signal is concern of the “time series analysis”. Each 
continuous-time signal s(t) is sampled to obtain a discrete-time signal s(n), also 
known as time series. A major concern of time series analysis is the estimation of 
power spectra, autocorrelation and cross-correlation functions. It is clear that if one is 
successful in developing a parametric model for the behavior of some signal, then the 
model can be used for different applications, such as recognition, prediction or fore-
casting, control, and data compression. The following equation is one of the most 
powerful models [2]. In (1), ai (1≤ i ≤ p; p is degree of the parameter set) are LPC 
coefficients, the excitation gain factor G and excitation source u(n) are the parameters 
of the system.  

The excitation function is either a quasi-periodic impulse sequence for the voiced 
sounds or a random noise source for unvoiced sounds with a gain factor G set to con-
trol the intensity of the excitation. 
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The gain factor G is usually ignored to allow the parameterization to be independ-
ent of the signal intensity. Equation (1) shows that the signal s(n) is predictable from 
linear combinations of past outputs and inputs. Hence, the name of the algorithm is 
linear predictive coding. The LPC coefficients ai can be derived from Autocorrelation 
and Covariance based methods [3]. Moreover, Cepstral Coefficients (ci) can be de-
rived from LPC coefficients ai as follows [4]: 
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Also optimum prediction of the signal s(n) can be done by genetic algorithms (GA). 
Genetic algorithms are global search techniques for optimization [5], [6]. However, 
they are poor at hill-climbing [7]. Simulated annealing (SA) has the ability of prob-
abilistic hill-climbing. Therefore, hybridization of two techniques which is called 
GASA supplements each other by their special abilities. 

Recently published numerous studies  apply genetic and simulated annealing algo-
rithms for different application areas such as photovoltaic power systems, digital 
filters, unit commitment, power system operation, load forecasting and manufacturing 
[8]-[13].  

2   Proposed Algorithm 

The flowchart of the proposed GASA algorithm is shown in Fig. 1.  GASA parameter 
settings and operations are also tabulated in Table 1. Nsame parameter shows how 
many generations the fittest chromosome is unchanged. In Table 1, each parameter 
except for population size (Ps) and Nsame is analyzed separately keeping all others 
fixed. Ps and Nsame parameters are chosen 50 and 1000 respectively for all the oth-
ers. Therefore, proposed algorithm works like a simple GA by reducing the SA fea-
ture of GASA. Then, different values, such as 10, 100 and 500, of Nsame parameters 
are only applied to the best result of the GASA parameter setting. Because of LPC 
coefficients are floating points, chromosome type is chosen real coded. 

Determining initial temperature T0 is generally difficult because it depends on the 
problem being solved. T0 is defined as the fitness value of the worst chromosome in 
the population. In the simulation, cooling schedule for simulated annealing process is 
defined as follows: 

0

log( )
( )

k
T k

T
=

 
(3) 

where k=1, 2, ..., N and N is generation number. 
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Stop

No
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Fig. 1. The flowchart of the proposed GASA algorithm 
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The hybrid algorithm GASA is proposed here to improve the performance of the 
GA. In general, SA searches for the minimal energy state while GA searches for the 
chromosome with the maximum fitness value. No change is made to the crossover 
operator for preserving the accomplishment of GA. The proposed GASA algorithm 
includes the merits of SA by changing the mutation operator. The new mutation 
which is basically different only from changing the operator probability operates like 
SA as follows: if a random generated new chromosome is better than the original one, 
it accepts. Otherwise, the new chromosome is accepted according to the probability 
given as follows: 

1 1
( ) ( )

new old

p k = exp - - * T k ,
F F

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4) 

where Fold is the fitness value of the original chromosome and Fnew is the fitness value 
of the randomly generated chromosome. 

From (3) and (4) the probability can be written as follows: 

0
1 1

0

1 1
( ) ( ) .old new

- /T
F F

new old

p k = exp - - * log k /T = k
F F

⎛ ⎞
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⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 (5) 

The simple elitism strategy, that is always transferring the best solution to the next 
generation without any alterations, is applied in order to get a good solution under the 
condition of randomized search due to the repeated cooling schedules. 

Each speech frame overlapped and framed by Hamming window is processed in 
GASA algorithm for estimating the each sample of s(n). The initial population is used 
here as prediction coefficients. After the total error TE of the framed speech which 
has length of Ni is calculated, the F fitness value of the k-th population can be calcu-
lated as follows: 

1 .iF(k)  / TE /  N=  (6) 

The modified mutation operator increases hill-climbing capability of GA. From the 
perspective of GA, the modified mutation operator functions as the standard one does. 
From the perspective of SA, it searches multiple neighborhood points that are pre-
sented for the selection of the fittest value of the chromosome. 

3   Experiments and Results 

The speech data for 10 speakers from CSLU speaker verification database are used in 
the experiments. Text independent data was pronounced by 5 female and 5 male 
speakers. The female and male speakers are labeled as F1-F5 and M1-M5 respec-
tively. The preprocessing of the speech data consists of several steps. The speech 
data, which is sampled at 8 KHz, is processed by the application of a pre-emphasis 
filter H(z)=1-0.98z-1. The 40-ms Hamming window is applied to the speech every  
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20 ms. 12th-order LPC analysis is performed for each speech frame. First, Auto-
correlation and Covariance analyses are performed for determining LPC coefficients. 
Then ci are derived from ai coefficients that are obtained from Autocorrelation analy-
sis according to (2). All these feature vectors are applied to the framed speech signal 
for determining the Mean Squared Errors (MSEs). Also, the same speech frames are 
used to determine 12 coefficients with GASA algorithm which is performed by (1), 
(3), (4), (5) and (6).  

GASA experiments are realized according to the initial parameters and operations 
which are shown in Table 1. Since the degree of the parameter set p is 12, the popula-
tion of GA is initialized randomly between -1 and +1 in a size of 50x12. The same 
initial population is used for all simulations.  

Table 1. GASA initial parameters and operations 

Number of Generation N = 500, 1000 
Population size Ps = 50 

Chromosome length 12 

Chromosome type Real-coded 

Mutation probability Pm = 0.01, 0.05, 0.1 

Crossover probability Pc = 0.6, 0.8, 1 

Selection type Roulette well 

Mutation type Chromosome by chromosome 

Crossover type One cut point 

Elitism Simple 

Nsame generations 10, 100, 500, 1000 

Initial temperature T0 1/min(fitness values) 

Coefficients of each speaker’s speech frame are computed by GASA algorithm for 
different parameter settings. Then results of MSEs are computed according to these 
coefficients. Table 2 shows the results of MSEs for different parameter settings. After 
each line of generation number in Table 2, minimum, maximum and mean values of 
the MSEs are computed and minimum of them are indicated by bold characters in 
related column. According to these three lines, the simulation result of 1000 genera-
tion number, 0.8 crossover and 0.1 mutation probabilities with 1000 Nsame value for 
50 generation number the best convergence result is obtained. Nsame simulations are 
started for examining the effect of SA according to these parameters of the best con-
vergence of MSE results of Table 2. 

The parameter Nsame is changed for 10, 100 and 500 values to avoid repetitiveness 
of GA. These results are shown in Table 3. The MSE values of each speaker appear 
the same for the simulation result of Nsame parameter value of 500 and value of 
1000. But in some values, there is a difference between them after 7 floating points. 
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Table 2. The results of MSEs for different parameter settings 

Ps 50 

Pc 0.6 0.8 1 

Pm 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

N 500 

Min. (1E-6) 6.41 4.50 4.12 7.11 4.98 4.31 7.72 5.02 4.35 

Max. (1E-5) 5.47 3.67 3.22 8.08 3.92 3.41 6.47 3.91 3.27 

Mean (1E-5) 2.45 1.61 1.40 3.01 1.74 1.46 2.77 1.77 1.47 

N 1000 

Min. (1E-6) 3.83 3.94 3.71 6.14 4.06 3.70 6.73 4.25 3.83 

Max. (1E-5) 2.92 3.07 2.92 6.31 3.17 2.89 5.35 3.28 2.92 

Mean (1E-5) 1.29 1.34 1.25 2.42 1.38 1.23 2.36 1.47 1.29 

Table 3. The effect of Nsame parameter on MSEs 

 

When examining the MSEs result of Nsame parameter such as 500 and 1000, it is 
clear that even 500 value of Nsame parameter is quite high for optimal SA procedure. 
Table 3 shows that the Nsame parameter with value 100 gives the best result for SA 
procedure. Thereby, SA procedure with proper Nsame value such as 100 assists the 
GA for hill climbing. 

The best result of GASA is chosen from Table 2 and Table 3 to compare with 
traditional LPC methods of Autocorrelation, Covariance and Cepstral Coefficients. 
Comparison results of these methods are given in Table 4. It is proven that Covari-
ance method, again, gives better results than Autocorrelation method. Also the  
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Cepstral Coefficients method which is the dominant method in speech processing 
outperforms the LPC based methods as expected. But prediction performance of 
GASA algorithm is more robust than the others as is seen from last row of Table 4. 
The average value of MSE result of the GASA algorithm is almost 2.9E-4 point less 
than the other methods. 

Table 4.  Comparison of LPC based methods and GASA Algorithm 

Speakers 
Autocorrela-

tion Covariance 
Cepstral 

Coefficients GASA 

F1 6.3937E-04 6.3867E-04 6.4643E-04 2.8750E-05 

F2 1.1652E-04 1.1649E-04 1.0352E-04 3.6719E-06 

F3 4.9340E-05 4.9249E-05 4.0595E-05 3.8303E-06 

F4 1.9082E-04 1.9038E-04 2.4626E-04 6.3153E-06 

F5 7.5049E-05 7.4929E-05 5.2227E-05 4.1471E-06 

M1 5.8750E-04 5.8755E-04 6.3220E-04 2.4207E-05 

M2 2.4346E-04 2.4316E-04 1.5136E-04 1.6392E-05 

M3 2.8805E-04 2.8780E-04 2.6460E-04 1.6841E-05 

M4 4.8009E-04 4.7965E-04 5.7291E-04 8.4411E-06 

M5 4.2526E-04 4.2499E-04 2.2277E-04 1.0640E-05 

Mean 3.0955E-04 3.0929E-04 2.9329E-04 1.2324E-05 

Since the effect of Nsame parameter is indicated in Table 3, the MSE results 
vs. each speaker and mean values are given in Fig. 2 as subplots for the best 
GA’s parameters such as generation number, crossover and mutation probabili-
ties. The general opinion can be repeated except for the first female speech data: 
“Speech data of females are more distinguishable than males’ speech data”. As it 
is seen from Fig.2 (a), (b) and (c); 1000 generation number, 0.8 crossover and 
0.1 mutation probabilities give the optimum values of GASA parameters for the 
average values of MSEs. The results of speaker F2 are the best MSE values when 
MSE results of the labeled speakers are compared as shown in Fig. 2. According 
to the best results of the MSE of speaker F2’s speech signal, using the 43rd mid-
dle frame’s max, min and mean fitness values and the coefficients of LPC com-
puted with GASA algorithm are plotted as shown in figure 3. In Fig. 3 (a), the 
coefficients have small changes after 600 generations, and become stable about 
900th generation. It can be seen in Fig. 3 (b), fitness values increase for each 
generation. That means, while the total prediction error of each speech frame 
decreases, the fitness value increases for each generation. So, the proposed 
GASA algorithm properly converges according to object function which is de-
termined by means of (6). 
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Fig. 2. The MSE results vs. each speaker and mean values: (a) Generation number, (b) Cross-
over probability, (c) Mutation probability 
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Fig. 3. The 43rd frame of Speaker F2: (a) Generation Number (N) vs. LPC coefficients com-
puted by GASA, (b) Generation Number (N) vs. max., mean and min. fitness values  

4   Conclusion 

Comparison of LPC based methods and GASA algorithm is done for prediction of 
discrete signal s(n) from its past values. The simulation result of 1000 generation 
number, 0.8 crossover and 0.1 mutation probabilities with 1000 Nsame value for 50 
generation number gives the best result of GASA algorithm. Since generation number 
and Nsame parameters are 1000, the simulation result shows the effect of GA. Then 
Nsame parameter is changed to 10, 100 and 500 values in different simulations to 
determine the effect of SA according to the mentioned parameters of the best MSE 
results. When Nsame parameter is chosen 100, SA assists the GA for hill climbing. 
Therefore GA does not suffer from repetitiveness. While the fitness values increase 
total error decreases for each generation. This situation shows that proposed GASA 
algorithm properly converges. The best result of GASA with 100 value of Nsame 
parameter is compared with traditional LPC methods of Autocorrelation, Covariance 
and Cepstral Coefficients. Comparison results of MSEs of these methods show that 
GASA algorithm is almost 10-4 point less than the other methods. When compare the 
MSEs of the each speech signal for each method, all simulation results of the GASA 
algorithm are more effective than LPC methods. GASA algorithm provides 0.1 more 
accuracy than the others. That means discrete signal s(n) is estimated 10% more pre-
cisely with the GASA algorithm. Therefore, this improvement affects positively the 
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recognition tasks. Instead of simple elitism, different elitism and evolutionary optimi-
zation tasks such as Particle Swarm Optimization (PSO) [14] are proposed for future 
studies. 
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Abstract. This paper describes a new technique for automatically developing 
Artificial Neural Networks (ANNs) by means of an Evolutionary Computation 
(EC) tool, called Genetic Programming (GP). This paper also describes a prac-
tical application in the field of Data Mining. This application is the Iris flower 
classification problem. This problem has already been extensively studied with 
other techniques, and therefore this allows the comparison with other tools. Re-
sults show how this technique improves the results obtained with other tech-
niques. Moreover, the obtained networks are simpler than the existing ones, 
with a lower number of hidden neurons and connections, and the additional ad-
vantage that there has been a discrimination of the input variables. As it is ex-
plained in the text, this variable discrimination gives new knowledge to the 
problem, since now it is possible to know which variables are important to 
achieve good results. 

1   Introduction 

ANNs are learning systems that have solved a large amount of complex problems 
related to different disciplines (classification, clustering, regression, etc.) [1]. The 
interesting characteristics of this powerful technique have induced its use by research-
ers in different environments [2]. 

Nevertheless, the use of ANNs has some problems mainly related to their devel-
opment process. This process can be divided into two parts: architecture development 
and training and validation. As the network architecture is problem-dependant, the 
design process of this architecture used to be manually performed, meaning that the 
expert had to test different architectures and train them until finding the one that 
achieved best results after the training process. The manual nature of the described 
process determines its slow performance although the recent use of ANNs creation 
techniques have contributed to achieve a more automatic procedure. 

The technique described in this paper allows the automatically obtaining of ANNs 
with no need of human participation. This technique is applied to a well-known prob-
lem: the Iris Flower classification Problem [3]. Results show how this technique can 
solve the problem. Moreover, it is capable of obtaining simpler networks than the 
existing ones for solving this problem. 
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2   State of the Art 

2.1   Genetic Programming 

Genetic Programming (GP) [4] is based on the evolution of a given population. In this 
population, every individual represents a solution for a problem that is intended to be 
solved. The evolution is achieved by means of selection of the best individuals – al-
though the worst ones have also a little chance of being selected – and their mutual 
combination for creating new solutions. This process is developed using selection, 
crossover and mutation operators. After several generations, it is expected that the 
population might contain some good solutions for the problem. 

The GP encoding for the solutions is tree-shaped, so the user must specify which 
are the terminals (leaves of the tree) and the functions (nodes capable of having de-
scendants) for being used by the evolutionary algorithm in order to build complex 
expressions. 

The wide application of GP to various environments and its consequent success are 
due to its capability for being adapted to numerous different problems. Although the 
main and more direct application is the generation of mathematical expressions [5], GP 
has been also used in others fields such as rule generation [6], filter design [7], etc. 

2.2   ANN Development with EC Tools 

The development of ANNs is a subject that has been extensively dealt with very di-
verse techniques. The world of evolutionary algorithms is no exception, and proof of 
that is the great amount of works that have been published about the different tech-
niques in this area, even with GAs or GP [4] [13] [15] [19] [20] [21]. These tech-
niques follow the general strategy of an evolutionary algorithm: an initial population 
consisting of different types of genotypes, each one of them codifying different pa-
rameters (typically, the weight of the connections and/or the architecture of the net-
work and/or the rules of learning), and is randomly created. This population is evalu-
ated in order to determine the goodness of each individual. Afterwards, this group is 
made to evolve repeatedly by means of distinct genetic operators (replication, cross-
over, mutation, etc.) until a determined termination criteria is fulfilled (for example, a 
sufficiently good individual is obtained, or that a predetermined maximum number of 
generations is achieved. 

As a general rule, the field of ANNs generation using evolutionary algorithms is 
divided into three main fields: evolution of weights, architectures and learning rules. 

First, the weight evolution starts from an ANN with an already determined topol-
ogy. In this case, the problem to be solved is the training of the connection weights, 
attempting to minimize the network failure. Most of training algorithms, as back-
propagation (BP) algorithm, are based on gradient minimization, which presents sev-
eral inconveniences [8], mainly the possibility of getting stuck into a local minimum 
of the fitness function. With the use of an evolutionary algorithm, the weights can be 
represented either as the concatenation of binary values [9] or of real numbers [10]. 
The main disadvantage of this type of encoding is the permutation problem. This 
problem means that the order in which weights are taken at the vector might cause 



278 D. Rivero et al. 

that equivalent networks might correspond to completely different chromosomes, 
making the crossover operator inefficient. 

Second, the evolution of architectures includes the generation of the topological 
structure. This means establishing the connectivity and the transfer function of each 
neuron. The network architecture is highly important for the successful application of 
the ANN, since the architecture has a very significant impact on the processing ability 
of the network. Therefore, the network design, traditionally performed by a human 
expert using trial and error techniques on a group of different architectures, is crucial. 
The automatic architecture design has been possible thanks to the use of evolutionary 
algorithms. In order to use them to develop ANN architectures, it is needed to choose 
how to encode the genotype of a given network for it used by the genetic operators. 

At the first option, direct encoding, there is a one-to-one correspondence between 
every one of the genes and their subsequent phenotypes. The most typical encoding 
method consists of a matrix that represents an architecture where every element re-
veals the presence or absence of connection between two nodes [11]. These types of 
encoding are generally quite simple and easy to implement. However, they also have 
a large amount of inconveniences as scalability [12], the incapability of encoding 
repeated structures, or permutation [13]. 

Apart from direct encoding, there are some indirect encoding methods. In these 
methods, only some characteristics of the architecture are encoded in the chromo-
some. These methods have several types of representation. Firstly, the parametric 
representations represent the network as a group of parameters such as number of 
hidden layers, number of nodes for each layer, number of connections between two 
layers, etc [14]. Although the parametric representation can reduce the length of the 
chromosome, the evolutionary algorithm performs the search within a restricted area 
in the search space containing all the possible architectures. Another non direct repre-
sentation type is based on grammatical rules [12]. In this system, the network is repre-
sented by a group of rules, shaped as production rules that make a matrix that repre-
sents the network, which has several restrictions. 

The growing methods represent another type of encoding. In this case, the geno-
type does not encode a network directly, but it contains a group of instructions for 
building up the phenotype. The genotype decoding will consist on the execution of 
those instructions [15]. 

With regards to the evolution of the learning rule, there are several approaches 
[16], although most of them are only based on how learning can modify or guide the 
evolution and also on the relationship among the architecture and the connection 
weights. 

2.3   Iris Flower Problem 

The iris flower data were originally published by Fisher on 1936 as examples of dis-
criminant analysis and cluster analysis [3]. Four parameters, sepal length, sepal width, 
petal length and petal width, were measured in millimeters on 50 iris specimens from 
each of three species, Iris setosa, Iris versicolor and Iris virginica. Given the four 
parameters, one should be able to determine which of the three classes a specimen 
belongs to. There are 150 data points listed in the database, taken from UCI [18]. As 
was already studied, with only two variables (petal length and petal width), a higher 
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discrimination for the three classes, a fitness of a 98% success using only these two 
variables, can be obtained (i.e., 147 correct classifications out of 150 data points) [22]. 

This problem has already been solved with different tools, ANNs between them. 
Martinez and Goddard [23] have proven that a maximum adjustment of 98.67 % cor-
rect answers (2 errors) is achieved with 6 neurons in the hidden layer. With the sys-
tem put forward by Rabuñal [24] and 5 hidden neurons, tangent hyperbolic activation 
functions and threshold function of 0.5 in the output neurons, the previous register has 
improved (with regard to the number of hidden neurons), reaching also a 98.67% of 
correct answers. Results obtained with the technique described in this paper will show 
how smaller networks can be obtained in order to solve this problem. 

3   Model 

The GP-development of ANNs is performed by means of the GP typing property [17]. 
This property provides the ability of developing structures that follow a specific 
grammar. In this case, the nodes to be used, as described in previous works [25], are 
the following: 

• ANN. Node that defines the network. It appears only at the root of the tree. It 
has the same number of descendants as the network expected outputs, each of them a 
neuron. 

• n-Neuron. Node that identifies a neuron with n inputs. This node will have 
2*n descendants. The first n descendants will be other neurons, either input or hidden 
ones. The second n descendants will be arithmetical sub-trees. These sub-trees repre-
sent real values. These values correspond to values of the respective connection 
weights of the input neurons – the first descendants – of this neuron. 

• n-Input neuron. Nodes that define an input neuron which receives its activa-
tion value from the input variable n. These nodes will not have any descendants. 

• Finally, the arithmetic operators set {+,-,*,%}, where % designs the opera-
tion of protected division (returns 1 as a result if the divisor is 0). They will generate 
the values of connection weights (sub-trees of the n-Neuron nodes). These nodes 
perform operations among constants in order to obtain new values. As real values are 
also needed for such operations, they have to be introduced by means of the addition 
of random constants to the terminal set in the range [-4, 4]. 

    ANNs can be generated with these operator sets. However, these networks 
would not allow, for a given neuron, the existence of output connections to more than 
one different neuron. For such reason, the system has been endowed with a list where 
neurons are being added as the evaluation of the tree progresses, and an index that 
points at one specific element of the list. In order to extract neurons from the list, and 
therefore to operate with it, the operator sets is added with the following operators: 

• “Forward”. This node advances the index list one unit. This node has one de-
scendant. 
• “Pop”. This node extracts from the list the neuron at the position pointed by 

the index. This node substitutes the evaluation of a neuron, as it gives back an already 
existing one, so it has no descendants. 
 



280 D. Rivero et al. 

ANN

2-Neuron

Pop

2-Input 

Forward

2-Neuron

2-Neuron

1-Input 

1-Input

3-Neuron

2-Input
-

3-Input 

4-Input 0.67

x1

x2

x3

x4

3.2

-2

2.1
1

1.3

%

-2.34

-
2

2.6
1.8

3.2 

2.8

-2 

0.67 1.3 

1.1 

2.8 

-1

-1 

-2.34 0.4 

 

Fig. 1. GP tree and its resulting network 

Every time a neuron is created, it is added to the list once its descendants have 
been evaluated. In such way, they are not allowed to reference that neuron, so recur-
rent links will be avoided. 

Note that, during the neuron creation, a given neuron - either an input one or a ref-
erenced one - can be repeated several times as predecessor. In such case, there is no 
new input connection from that processing element, but the weight of the already 
existing connection will be added with the value of the new connection. 

Fig. 1 shows an example of a GP that, using these nodes, represent an ANN. 
Once the tree has been evaluated, the genotype turns into phenotype. In other 

words, it is converted into an ANN with its weights already set (thus it does not need 
to be trained) and therefore can be evaluated. The evolutionary process demands the 
assignation of a fitness value to every genotype. Such value is the result after the 
evaluation of the network with the pattern set representing the problem. This result is 
the mean square error (MSE) of this evaluation. 

Nevertheless, this error value considered as fitness value has been modified in or-
der to induce the system to generate simple networks. The modification has been 
made by adding a penalization value multiplied by the number of neurons of the net-
work. In such way, and given that the evolutionary system has been designed in order 
to minimize an error value, when adding a fitness value, a larger network would have 
a worse fitness value. Therefore, the existence of simple networks would be preferred 
as the penalization value that is added is proportional to the number of neurons at the 
ANN. The calculus of the final fitness will be as follows: 
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PNMSEfitness *+=  

Where MSE is the mean square error of the ANN within the group of training pat-
terns, N is the number of neurons of the network and P is the penalization value for 
such number. 

4   Results 

The system described here has been applied to solve this particular problem. After 
doing the normalization of the four variables between 0 and 1, the whole database has 
been applied to the system. It was run with the following configuration parameters, 
which have shown to give good results on previous works [25]: 

• Crossover rate: 95%. 
• Mutation probability: 4%. 
• Selection algorithm: 2-individual tournament. 
• Creation algorithm: Ramped Half&Half. 
• Tree maximum height: 5. 
• Maximum inputs for each neuron: 6. 
• Penalization: 0.00001. 

Different networks were obtained that solved this problem. A small comparison of 
the networks found can be seen on Table 1. 

Table 1. Comparison of the architectures found 

Method Hits Accuracy Hidden Connections Figure 
[24] 148 98.66 % 5 35 - 

149 99.33 % 3 15 Fig. 2 b) 
148 98.66 % 1 11 Fig. 3 a), b) 
147 98 % 1 9 Fig. 4 a) 
146 97.33 % 1 10 Fig. 5 b) 

Proposed 
here 

145 96.66 % 1 10 Fig. 6 a) 

As can be seen on this table, the architectures found are very simple, with a small 
number of hidden nodes and connections, improving the results found in the previous 
works. Even the accuracy was improved, reaching a 98.66% success (149 correct 
answers). 

Fig. 2 shows two networks with this accuracy (99.33%). Network b) is the one 
shown on Table 1, with 3 hidden neurons and 15 connections. Network a) is a little 
more complicated, with the same number of neurons (3) but more connections (19). 
However, this latter network has another important feature: input X1 (sepal length) 
was not used. So, it can be concluded that this input is not useful for the correct classi-
fication of 149 out of the 150 data points. 
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Fig. 2. 99.33% accuracy (1 fail) ANNs 

Fig. 3 shows two other networks that solve the problem with an accuracy of 
98.66%, i.e., it fails on two data points. Both networks show that the variable X1 
(sepal length) was not needed to do this classification. These networks are much 
simpler than the ones found using other systems [23] [24] and gave the same  
accuracy. 

X1

X2

X3

X4

X1

X2

X3

X4  

Fig. 3. 98.66% accuracy (2 fails) ANNs 

Fig. 4 shows three different ANNs that give an accuracy of 98%. As was ex-
plained, this accuracy was proved to be able to be found with only two inputs [22]. 
This is also shown on this figure, since network c) does not need neither X1 nor X2 
(sepal length and width) to perform the 98% correct classifications. Fig. 4 a) and b) 
show small networks found that perform this accuracy too. 
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Fig. 4. 98% accuracy (3 fails) ANNs 

Some networks with an accuracy of 97.33% are shown on Fig. 5. On two of them, 
neither X1 nor X2 were used to make the classification. 
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Fig. 5. 97.33% accuracy (4 fails) ANNs 

Finally, Figure 6 shows three different networks that perform the classification 
with an accuracy of 96.66%, i.e., it fails on 5 data points. The interesting of the net-
works b) and c) are that they don’t use variables X1 (sepal length) and X3 (petal 
length) to perform this classification. As was previously explained, variables X3 and 
X4 (petal length and width) are needed to correctly classify the 98% of the data points. 
However, as can be seen on these networks, variable X3 was found not to be needed to 
classify the 96.66% of the data.  
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Fig. 6. 96.66% accuracy (5 fails) ANNs 

5   Conclusions 

As the results section shows, the technique described in this paper can develop ANNs 
which provide good results at solving this particular problem. This problem is only an 
example of an application of this technique to a Data Mining problem, but is well 
documented, so it can be deeply analyzed and its results compared to other Data Min-
ing tools. Results show that the method described here provides results better than 
many other knowledge extraction methods, and better that all of the remaining ANN 
development methods. 

But this system has other different advantages: First, the developed ANNs are 
much simpler than the existing ones for solving this problem (many ANNs were ob-
tained with only one hidden neuron), and they provide better results; and second, a 
discrimination between the variables has been found, i.e., many ANNs have not found 
some variables to be useful for achieving a particular accuracy in solving this  
problem. 

This latter advantage is very important, since it gives new knowledge to this envi-
ronment. In particular, from the obtained results, it can be concluded: 
 



284 D. Rivero et al. 

• To correctly classify 149 out of the 150 data point, the variable sepal length 
is not necessary. 

• The variable petal length, which is necessary for achieving a correct classifi-
cation higher than 145 correct classifications, is not necessary (together with the vari-
able sepal length, which is neither necessary) for correctly classify 145 of the 150 data 
points. 

• As was already known and found here again, both variables sepal length and 
sepal width are not necessary for the correct classification of 147 data points. 

Therefore, it can be concluded that the most important variable for the classifica-
tion is petal width, which is the only that is needed in all of the cases. On the other 
side, the variable sepal length has very few influence, since it was not found to be 
used by the majority of the networks. 
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Abstract. As an alternative to traditional artificial neural network approaches to 
pattern recognition, a hardware-implemented evolvable characters recognizer is 
presented in this paper. The main feature of the proposed evolvable system is 
that all the components including the evolutionary algorithm (EA), fitness 
calculation, and virtual reconfigurable circuit are implemented in a Xilinx 
Virtex xcv2000E FPGA. This allows for a completely pipelined hardware 
implementation and yields a significant speedup in the system evolution. In 
order to optimize the performance of the evolutionary algorithm and release the 
users from the time-consuming process of mutation parameters tuning, a self-
adaptive mutation rate control scheme is also introduced. An analysis of 
experimental results demonstrates that the proposed evolvable system using 
self-adaptive mutation rates is superior to traditional fixed mutation rate-based 
approaches.  

1   Introduction 

In recent years, evolvable hardware (EHW) has been employed in the high-speed 
pattern recognition system design automation field, as an alternative to conventional 
artificial neural networks (ANN) approaches [1]. The significant benefits of the EHW 
approach to pattern recognition compared with ANN are the high processing speed of 
the hardware and the readability of the learned result, which have been discussed in 
literature [2]. Some EHW-based pattern recognition systems have previously been 
proposed. Torresen [3] introduced an incremental evolution-based EHW approach for 
the evolution of 16 characters recognition system. In report [4], another kind of 
evolvable recognition system was proposed by Torresen for recognizing speed limit 
sign numbers. Both of them are based on the extrinsic evolution strategy in which 
fitness evaluation of each candidate circuit is simulated by software. Several studies 
[5, 6] have proved that the evolutionary speed of the extrinsic EHW is much slower 
than intrinsic evolutions in which each evolved candidate circuit is built and tested on 
hardware. In the domain of evolvable pattern recognition system, an intrinsic 
evolution approach with Xilinx 4025 FPGA was proposed in [2]. In this report, Iwata 
et al directly mapped the configuration bit streams of the FPGA as the chromosome. 
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With the idea of realizing incremental evolution by virtual reconfigurable circuit-
based intrinsic EHW, we have proposed different FPGA-implemented evolvable 
characters classification systems as the scalability approaches to EHW in literatures 
[7, 8].  

In this paper, a novel self-adaptive mutation rate-based intrinsic EHW is 
introduced to evolve a 16 characters recognition system. In order to allow the EA to 
optimize its performance in the running period and to eliminate the non-trivial EA 
parameter tuning time, a self-adaptive mutation rate control scheme is implemented in 
our experiments. A Xilinx Virtex xcv2000E FPGA fitted in a Celoxica RC1000 PCI 
board [9] is utilized as our hardware experimental platform. The work presented 
herein mainly focuses on demonstrating the possibility and efficiency of the FPGA 
implementation of evolvable characters recognizer and the benefits of utilizing a self-
adaptive mutation rate control scheme, rather than evolving a complicated characters 
recognition system which have been successfully implemented in our previous works 
[7, 8] with different incremental evolution strategies.  

The remainder of this paper is organized as follows. Section 2 describes the basic 
concept of the proposed evolvable characters recognizer. Hardware realization of the 
self-adaptation mutation rate-based intrinsic evolvable system is introduced in section 3. 
Section 4 presents experimental results. Section 5 discusses the obtained results and the 
final section provides conclusions. 

2   Evolvable Characters Recognizer 

 

Fig. 1.  Diagram of characters recognizer for patterns A to P identification 

Characters recognizer can be evolved from both the gate and function level [1]. This 
paper concentrates on a gate level evolution. The target evolvable system is expected 
to identify 16 different binary patterns (characters from A to P) of 5 × 6 pixels, where 
each pixel can be 0 or 1. The characters recognition procedure consists of two phases. 
The first phase is the characters recognizer training phase. In this phase, proposed 
evolvable characters recognizer works as an adaptive machine that tries to minimize 
the diversity between the desired output and the actual system output by using EA 
learning. Characters from A to P are employed as a training patterns set (see Fig. 1). 
In each system clock, one character is processed by the evolvable system as a training 
vector. To process each input character of 5 × 6 pixels, the proposed character 
recognizer includes a 30-bit input port. Each 1 bit input responds to one pixel in the 
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input characters. As shown in Fig. 1, each single bit output port of the evolvable 
characters recognizer corresponds to one character in the training set. Therefore, the 
proposed system consists of 16 single bit output ports. The second phase of the 
character recognition procedure is the character distinguishing process. During this 
process, the output port of the evolved system corresponding to the input character 
should be 1; synchronously the other 15 single bit outputs should be 0. According to 
this feature, 16 different characters in the training set can be recognized individually. 

3   Hardware Realization  

 

Fig. 2.  Block diagram of complete FPGA-implemented evolvable system 

In order to evolve the proposed character recognizer, a virtual reconfigurable circuit 
architecture-based intrinsic evolvable system is employed as our experimental 
platform. This architecture was inspired by the Cartesian Genetic Programming 
(CGP) [10] and was first proposed by Sekanina in literature [11] as a feasible and 
efficient approach to realizing intrinsic evolvable image operators on a commercial 
FPGA.  

The main feature of our proposed evolvable system is that all the components of 
the system including a virtual reconfigurable circuit (VRC) unit, EA unit, fitness unit, 
and control and interface are realized in a Xilinx Virtex xcv2000E FPGA that is fitted 
in a Celoxica RC1000 PCI board. The block structure of our evolvable system is 
shown in Fig. 2. In the system evolution process, all system evolutionary operations 
are executed on FPGA. The function of the host PC is only for communicating with 
the RC1000 PCI board, i.e. for writing/reading data to/from on board SRAM and 
sending/receiving the start/stop signals to/from the FPGA by the 8 bits status port and 
the 1 bit control port. In the FPGA, control and interface manages the operations of 
other components of EHW by using a finite state machine and communicates with the 
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host PC and onboard memory. The EA unit implements the evolutionary operations 
and generates configuration bits to configure the VRC unit. System function and 
evolution are performed in the VRC unit. The fitness unit calculates individual fitness 
value by comparing the outputs from the VRC unit with predefined expected system 
outputs. 

In the evolution process of EHW, there are several EA parameters that need to be 
predefined. This specifies some aspects of how the EA search will be conducted, e.g. 
the population size, the mutation rate, etc. This paper focuses on discussion of the 
mutation operator, as it has been suggested to be the most sensitive EA control 
parameter [12, 13]. A general way of setting the mutation parameter is parameter 
tuning. In order to find an optimized constant mutation rate for a certain application, 
researchers generally base their choices on tuning the mutation parameters by hand, 
that is, experimenting with different values and selecting one that exhibits the best 
performance. However, this process is very time-consuming and the tuned result is 
only efficient for some limited EA settings. On the other hand, EA learning is an 
intrinsically dynamic, adaptive process. Generally, different values of mutation rate 
are desired at different stages of the evolutionary process in order to achieve balance 
between global and local searches. The use of a fixed mutation rate seems be in 
conflict with this requirement of EA. Unfortunately, most reported CGP-inspired 
evolvable hardware [3, 6, 7, 8, 14, 15] still employs a rigid mutation rate, as most of 
reported adaptive mutation rate control schemes [12] are complicated and unfeasible 
for hardware. 

In this paper, we propose a novel and hardware feasible self-adaptive mutation rate 
control scheme for our FPGA-implemented EHW. Self-adaptation is based on the 
concept of the evolution of the mutation parameters, which adjust mutation rates to 
adapt the problem during EA running. The parameters that control the mutation rates 
of the chromosomes are encoded into their corresponding chromosomes as additional 
genes and also undergo evolutionary operations (selections and mutations). The 
motive of this scheme is that better values of these encoded mutation parameters will 
lead to better individuals, which in turn are more likely to survive and produce 
offspring and hence propagate better parameter values. The important feature of self-
adaptation of the mutation rate is that potentially the algorithm can be adjusted to the 
problem while solving that problem. 

3.1   Virtual Reconfigurable Circuit Unit 

The VRC unit includes 30 bits input and 16 single bit outputs. Traditional CGP 
scheme [10] employed a string of integers as chromosome to represent the functions 
and connections of a grid of 3-inputs nodes. However, in our proposed virtual 
reconfigurable circuit-based EHW, for the hardware implementation, the system 
genotype is revised as a linear binary bits string that illuminates the connections and 
functions of a 2-inputs function elements (FE) array. The system phenotype is 
presented by an interconnected network of enabled FEs which is created in the FEs 
array by system genotype mapping. To self-adapt the mutation rate, rather than fix it, 
the mutation rate control parameters are also encoded into the chromosome as 
additional genes. The genotype and the mapping process of the genotype to phenotype 
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Fig. 3. Genotype-phenotype mapping 

are illustrated in Fig. 3, in which the additional genes for self-adaptive mutation rates 
selection are marked as gray blocks. 

For our proposed application, the FEs array consists of 4 FE layers. 16 uniform 
FEs are placed in each layer. Each FE’s two inputs in layer l (l=2, 3, 4) can be 
connected to any one output of FEs in layer l-1. As shown in Fig.3, the input 
connections of each FE are selected by its two equipped 16-to-1 multiplexers. In layer 
1, each FE employs two 32-to-1 multiplexers. Therefore, each input of FE in layer 1 
can be connected to any one of the 30 bits system inputs or defined as a bias of value 
1 or 0. In the FEs array, each FE in the last layer corresponds to one system output. 
This means the circuit output connection is not evolvable. Each FE in layers 2,3,4 can 
have one of eight functions, as is evident from Fig. 3. Only two functions of buffer a 
and inverter b are available for FEs in layer 1. Each FE is equipped with a Flip-flop to 
support pipeline processing. A layer of FEs is considered as a single stage of the 
pipeline. 16 FEs in the same layer can be configured simultaneously and we need 4 
system clocks to completely change the configuration of the FEs array. According to 
this feature of the reconfiguration of the FEs array, each chromosome is divided into 4 
individual configuration bits strings (cfg). Each cfg undergoes independent 
evolutionary operations and is responsible for the configuration of its corresponding 
single layer of FEs (as shown in Fig. 3, the intact chromosome is divided into 4 parts: 
cfg1, cfg2 etc.). Each FE needs 11 bits (5+5+1 bits in layer 1, 4+4+3 bits in the other 
layers) to determine its input connections and functions. On the other hand, each cfg 
needs additional 2 bits (it is configurable) to select an enabled mutation rate from four 
candidates. In total, the chromosome length is 4 × (11 × 16+2) =712 bits. Chromosome 
is uploaded from EA unit. By continuously altering the chromosome, the 
interconnections and functions of FEs array can be evolved. 
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3.2   Evolutionary Algorithm Unit 

The evolutionary algorithm employed in the EA unit is according to the 1+ λ  
evolutionary strategy, where λ =4. In our experiment, evolution is only based on the 
mutation and selection operators; crossover is not taken into account. Because the FEs 
array has to be configured layer by layer, the chromosome is divided into 4 individual 
configuration bits strings which undergo mutation operations individually. Two 
mutation operators are performed in the proposed EA: (1) to the configuration bits 
strings of the FEs array; and (2) to the additional genes that decide the mutation rates 
of their corresponding configuration bits strings. Each additional genes controls the 
mutation probability pm of its corresponding cfg according to some predefined 
descriptions. For example, we choose the mutation rates 0.2%, 0.4%, 0.8%, and1.6% 
as candidate mutation probabilities. The size of additional genes is 2 bits. Active pm 
can be selected based on the following rule: 

Additional 2 bits genes 00 01 10 11 
pm 1.6% 0.8% 0.4% 0.2% 

The size of the additional genes and the value of mutation probability pm are 
configurable.  

 

Fig. 4. Implementation of self-adaptive mutation rate control in evolutionary algorithm unit 

Fig. 4 shows the hardware realization of the EA unit. The EA unit consists of a 
population memory, a best chromosome memory, a random number generator (RNG), 
a mutation unit, and a mutation rate selector. When the EA unit receives the start 
signal from control and interface, the population memory is filled by four 
chromosomes, which are the mutated versions of four 4 × (176+2) bits random 
numbers generated by the RNG with cellular automata [16]. In the mutation process, 
the 4 × (176+2) bits number is divided into two parts: 4 × 176 bits and 4 × 2 bits 
numbers, which are processed by the mutation unit and mutation rate selector, 
respectively. The mutation unit processes each 4 × 176 bits data in 4 clocks per 176 
bits. Synchronously, 4 × 2 bits additional genes are also mutated in the mutation rate 
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selector in 4 clocks per 2 bits with a constant mutation rate of 12.5%. The mutation 
rate is defined as the percentage of the bits of the entire 4 × 2 bits additional genes, 
which will undergo mutation. The mutated version of four 2 bits additional genes will 
decide the mutation probabilities of their corresponding four 176 bits configuration 
bits strings, respectively. The fitness value of each individual will be evaluated by 
using the four mutated 176 bits strings to configure the virtual reconfigurable circuit 
unit. This means that the encoded additional genes of 4 × 2 bits affect only the 
generation of offspring, and have no direct impact on the fitness evaluation of an 
individual. After all chromosomes of the initial population have been evaluated, the 
best one is selected and saved in the best chromosome memory as the parent 
chromosome. The new population is generated using the parent chromosome and its 4 
mutants. If the fitness value of a mutant is higher than the parent chromosome, then 
the mutated chromosome replaces the parent in the best chromosome memory. This is 
repeated until the stop criteria of EA are satisfied. The stop criteria of EA are defined 
as: (1) EA finds the expected solution; (2) The predefined generation number (230) is 
exhausted.  

3.3   Fitness Unit 

In the proposed system, system training set includes 16 test vectors (16 characters 
from A to P).The fitness unit evaluates the circuits uploaded to the virtual 
reconfigurable circuit unit by reading its output vectors and comparing them against 
the expected output vectors. The fitness function is calculated as follows: 

vector output

Fitness x= ∑ ∑ ;    where 
1

0

output expect
x

output expect

=⎧
= ⎨ ≠⎩

 (1) 

In an output vector, each single bit output is compared with its corresponding 
expected system output (which is labeled as expect). If they are equal, the variable x 
will be presented as 1 and be added to the fitness function. Fitness is the sum values 
(the maximum fitness value is 16 × 16=256) for the compared results of all 16 single 
bit outputs (output) in the processed 16 output vectors (vector) set. 

4   Experimental Results 

The evolvable character recognizer was designed using VHDL and synthesized into a 
Xilinx Virtex xcv2000E FPGA using Xilinx ISE 6.3. With the diversity of the 
mutation rate control schemes, the device costs were slightly different, as shown in 
Table 1. According to the system synthesis report, the proposed systems can be 
operated at more than 90MHz. However, the actual hardware experiment was run at 
30MHz for easier synchronization with the PCI interface. 

As the pipeline process is supported by the proposed evolvable system, all EA 
operations time as well as reconfiguration time of FEs array could be overlapped by 
the process of fitness evaluation. Therefore, if the number of generations is ngen, the 
population size is p, the size of characters training set is S, and the hardware platform 
operates at mf  MHz, it is possible to express the system evolution time t as:  
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init
m

ngen p S
t t

f

× ×= +  (2) 

Where tinit is the time needed to generate the first output in pipeline process (several 
FPGA clocks only).  

Table 1.  Results for evolving a 16 characters recognizer by using different mutation control 
schemes 

Number of generations  Mutation 
scheme 

Size of 
additional 

genes 

Mutation
Rate 
  (%) 

Total  
evolution  
time (avg.) avg.   std. dev. 

Device 
cost 

(slices) 
  4 × 2 bits 1.6~0.2 1.18 sec 552619   254594 6047 
  4 × 2 bits 0.8~0.1  0.69 sec 325180   181018 5791 

Adapt. 
mutation 

 rate   4 × 3 bits 0.8~0.1  0.77 sec 362291   189634 6302 
0.1 1.77 sec 829290   1017057 5616 
0.2   1.12 sec 525465   464265 5603 
0.4   4.67 sec 2189462   2429495 5614 
0.8   4.78 sec 2238728   1513587 5615 

Constant  
mutation  

rate 
0 bits 

1.6   115.88 sec 54318945   35729839 5841 

 
The target 16 characters recognition systems have been evolved using different 

self-adaptive mutation and fixed mutation rate-based approaches, respectively. For the 
EAs with self-adaptive mutation rates, three different self-adaptive mutation control 
settings were tested in our experiments: (1) additional genes = 4× 2 bits, pm=1.6%, 
0.8%, 0.4%, 0.2%, (2) additional genes = 4 × 2 bits, pm=0.8%, 0.4%, 0.2%, 0.1%, and 
(3) additional genes = 4 × 3 bits, pm=0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 
0.1%. For comparison, traditional EAs with different fixed mutation probabilities 
were also executed in our experiments. We performed 50 runs per mutation rate 
setting and the initial seed for the initial population in each EA run was generated at 
random. All 50 EA runs were successful in all cases. One successful run means EA 
can find a feasible result circuit within predefined number of generations. Table 1 
summarizes the experiments. All the average and stand deviation (std. dev.) results in 
Table 1 were calculated for 50 EA runs.  

5   Discussion 

In this paper, a complete FPGA implemented evolvable character recognizer is 
introduced. The proposed system could evolve the target 16 characters recognizer 
from scratch in relatively short time (no more than 1 second when a proper self-
adaptive mutation rate control scheme was selected). When compared to the same 
algorithm described in C language running on an AMD Athlon64 3200+ CPU, our 
hardware implementation showed a performance increase of at least two orders of 
magnitude. 

Different mutation rate settings have been tested in the experiments of evolving 
16 characters recognizers. From Table 1, it can be observed that the performance of 
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the target evolvable system is very sensitive to the choice of the mutation 
probability. Under a rigid mutation rate, once outside the interval pm 

∈ [0.1%, 0.2%], 
the number of generations required to reach the maximal fitness value (256) 
increases rapidly. For example, more than 103 times as many average numbers of 
generations are required as the fixed mutation probability is changed from 0.2% to 
1.6%. On the other hand, for the proposed self-adaptive mutation, the performances 
of EAs are not very sensitive to the selection of the mutation probabilities interval. 
Three different partitions of self-adaptive mutation probabilities intervals have been 
tested in our experiments. All of them achieved the expected results under the close 
average number of generations. Another important observation listed in Table 1 is 
that the performance of the EA with a self-adaptive mutation operator outperforms 
all of the fixed mutation rates when the self-adaptive mutation rates interval is 
selected properly (e.g. under the mutation probabilities interval pm ∈ [0.1%,0.8%], 
self-adaptive mutation scheme with 4 × 2 bits additional genes obtains a performance 
speedup of 1.6 times when compared to the selected best constant mutation 
probability, i.e. 0.2%). 

6   Conclusions 

In order to achieve the ability of high-speed pattern recognition, this paper has 
presented a complete FPGA implemented evolvable 16 characters recognition system. 
The proposed intrinsic evolvable system can evolve the target circuit in less than 1 
second, significantly outperforming any reported conventional artificial neural 
networks or extrinsic EHW-based approaches. A hardware feasible self-adaptive 
mutation rate control scheme has been introduced for improving the performance of 
the evolvable hardware. To investigate the influence of the self-adaptive mutation rate 
control, its evolutionary results are compared with different fixed mutation rates-
based evolutions. It is found that the performance of the proposed evolvable system 
using a self-adaptive mutation rates is remarkably superior to that of the traditional 
fixed mutation rate-based approaches. The proposed approach holds promise as a 
means of avoiding the time-consuming process of mutation parameter tuning. 
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Abstract. The prediction of operons is critical to reconstruction of regulatory 
networks at the whole genome level. In this paper, a multi-approach guided 
genetic algorithm is developed to prediction of operon. The fitness function is 
created by using intergenic distance of local entropy-minimization, participation 
of the same metabolic pathway, log-likelihood of COG gene functions and 
correlation coefficient of microarray expression data, which have been used 
individually for predicting operons. The gene pairs within operons have high 
fitness value by using these four scoring criteria, whereas those across 
transcription unit borders have low fitness value. On the other hand, it is easy to 
predict operons and makes the prediction ability stronger by using these four 
scoring criteria. The proposed method is examined on 683 known operons of 
Escherichia coli K12 and an accuracy of 85.9987% is obtained. 

1   Introduction 

Operon is a string of one or more genes, which is transcribed as a fundamental unit 
and is on the same strand of a genomic sequence. Generally, genes within an operon 
have much shorter intergenic distances than genes at the borders of transcription units. 
And they usually belong to the same functional category, or show highly correlated 
expression patterns in microarray expression data [2], or their functions are related. 
Prediction of pathway often relies on operon, and the functions of operons reveal 
valuable information for studying protein function and drug design [1]. Therefore, 
understanding the operon maps of the whole genome is critical to reconstruction of 
regulatory networks and research on the whole genome. 

Many computational algorithms for operon prediction using these properties have 
been developed in the past decade [2-12]. Salgado [4] developed an approach, which 
utilized the feature of intergenic distance between gene pairs within operon (WO pairs 
in short) and transcription unit borders (TUB pairs in short). Overbeek [5] proposed a 
method to search for conserved gene pairs across multiple genomes. Sabatti [7] used a 
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Bayesian classification method to gene microarray expression data. With the increase 
of available data sources, Crave [8] developed naïve Bayes models, which used a rich 
variety of data types including sequence data, gene expression data, and functional 
annotations associated with genes to estimate the probability that a given sequence of 
genes constitutes an operon. Chen [9] developed an approach based on a comparative 
genomics approach and applied Neural Network to intergenic distance, COG 
function, phylogenetic profile. Jacob[11] proposed a Fuzzy guided genetic algorithm 
for operon prediction. This method used a genetic algorithm to evolve an initial 
population, which presents a putative operon map of a genome. Each putative operons 
are scored using intuitive fuzzy rules. 

In this paper, we propose another method for assessing features by using different 
method, in which the four features, intergenic distance, participation in the same 
metabolic pathway, COG gene functions, microarray expression data are utilized. A 
Local Entropy Minimization method (LEM) is utilized for assessing the “fitness” of 
each adjacent gene pair based on intergenic distance. COG function log-likelihood is 
computed for adjacent gene pair. Correlation coefficient of microarray expression 
value is calculated. Genetic algorithm is used for evolving an initial population, each 
individual of which is created by clustering based on intergenic distances with 
different thresholds. We applied our method to Escherichia coli K12 genome. 

2   Data Representation 

We have downloaded 319 completed Microbial Genomes data including 26 Archea 
and 293 Bacteria from GeneBank database (http://www.ncbi.nlm.nih.gov/genomes/ 
MICROBES/Complete.html). From the RegulonDB database, we obtain 904 WO 
pairs and 653 TUB pairs for E.coli. 

In this paper, our approach to predicting operon is based on genetic algorithm, in 
which we use intergenic distance, metabolic pathway, COG gene functions and 
microarray gene expression to compute the fitness value of each putative operon. A 
table T: R×A→O is created from data files mentioned above, where A is the set of the 
four attributes, R is the number of adjacent gene pair, O is the set of 1, 2, 3, …, k, k is 
the number of operons. If Oi = Oi+1, then genei and genei+1 belong to an operon. 
Otherwise, they don’t belong to an operon. Our object is to use the four properties of 
two adjacent gene pairs to predict if they belong to an operon. That is, we should 
compute the probability that two adjacent genes belong to a same operon. The pair-
score of two adjacent genes should reflect the probability. The pair-scores for the four 
properties are computed as follows. 

2.1   Intergenic Distance Features 

We evaluate intergenic distance frequencies of known WO pairs and of known TUB 
 pairs as Fig.1. For obtaining the pair-scores according to the intergenic distances, all 
the intergenic distance entropies are calculated according to Eq.(1).  

( ) log( ) (1 ) log(1 )E p p p p p= − − − −  (1) 
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where p is the probability that the intergenic distance id is a known WO. From Fig.1, 
we can see that the genes with smaller intergenic distances will be more possible to be 
within an operon. For showing the tendency, we propose a novel Local Entropy 
Minimization method to divide the set of intergenic distances into several intervals 
and compute the score of each interval by Eq.(2). Fig.2 presents the interval partition 
algorithm. 

 

Fig. 1. Frequent intergenic distance distributions of adjacent gene pairs in operons in contrast 
with those of adjacent gene pairs at transcription unit boundaries 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Algorithm for the interval partition 
 

Algorithm:  Interval Partition based on LEM 
Input: Data array )2,( PD of P adjacent gene pairs. 

Output: Intervals. 
{ 

Compute the entropy (di) for every intergenic distance di, i∈[1,P]. 
Make an ordered list O of all of the adjacent gene pairs using intergenic distance di  

    from the largest to the smallest. 
Set an interval entropy threshold Δ. 
Set the list Θ to be an empty list. 
While(the list O is not empty) 

{ 
Add the top intergenic distance in the list O to Θ. 
Calculate the entropy from the first to the ith adjacent gene pair for i=2, 3,…, P. 
Choose the kth adjacent gene pair whose entropy is the smallest and add its 

     intergenic distance to Θ. 
Remove the record from the first to the kth from the list O. 

} 
Compute the score of each interval as defined in Eq.(2) and add them to Θ. 
Return the list Θ 

} 
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At first, we choose an interval entropy threshold and sort the intergenic distances in 
descending order. Then from the beginning of the sorted intergenic distances, we take 
one distance out into an interval one by one and compute the interval entropy. If the 
entropy of the interval is larger than the threshold, then the process stops and we 
choose an interval from all of the generated intervals whose local entropy is 
minimum. We continue to find the next interval in the rest with the next point after 
the interval as the beginning. The rest intervals may be deduced by analogy. Thus, all 
the intergenic distances are partitioned into several intervals. 

Since their entropy are equal if the probability of a known WO in an intergenic 
distance interval is equal to that of a known TUB in another interval, we define S(d) 
to show their difference and consider it as the pair-score based on intergenic distance. 
S(d) is defined in Eq.(2). E(d) and S(d) of intergenic distance between two adjacent 
genes are shown in Fig.3.  
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1 1
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(2) 

where S(d)is the score of adjacent gene pair based on intergenic distance, E(d) is the 
entropy of interval d. 

 

Fig. 3. E(d) and S(d) of intergenic distance between two adjacent genes 

Table 1. 33 intervals of intergenic distance after using Local Entropy Minimization method 

Interval Score Interval Score Interval Score Interval Score 

[40611,561] -1 [380,560] -0.3902 [290,378] -0.4007 [235,289] -0.2879 
[211,234] -0.1502 [186,210] -0.0617 [167,185] -0.0148 [140,166] -0.1074 
[128,139] -0.0817 [114,127] -0.0148 [98,113] -0.0192 [91,97] 0.1233 
[82,90] 0.2081 [77,81] 0.0089 [69,76] 0.0573 [65,68] 0.0226 
[54,64] 0.2317 [49,53] 0.029 [47,48] 0.188722 [38,46] 0.408327 
[32,37] 0.374738 [30,31] 0.408327 [28,29] 0.456436 [21,27] 0.531 
[10,20] 0.7355 [5,9] 0.5862 [2,4] 0.6549 [-6,1] 0.791443 
[-15,-7] 0.66271 [-18,-16] 0.188722 [-24,-19] 0.278072 [-70,-25] 0.733235 
[-149,-71] -1 
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From Fig.3, it can be seen that when the probability of a known WO in an 
intergenic distance interval is equal to 1, its entropy is equal to 0 and its pair-score 
equal to 1. When the probability of known TUB in an interval, its entropy is also 
equal to 0, but its pair-score is equal to -1. This shows that S(d)  can be used for 
prediction of operon. 

We executed the algorithm and obtained 33 intervals. The intervals and their 
corresponding scores are presented in Table 1. From the table, we can see that the 
maximum score is appeared in the intergenic distance from –6 to 1. 

2.2   Metabolic Pathway Features 

Genes in one operon often carry out highly specific activity in a biochemical 
metabolic pathway [6, 12]. E. coli’s metabolic pathway data file is obtained from 
http://ecocyc.org and http://www.genome.jp/kegg/. 

If genei and genej in the same operon are in the same metabolic pathway, then the 
pair-score SP(Pi) of the gene pair based on the metabolic pathway is 1 or else is 0. 

2.3   COG Functions Features 

We use the COGnitor program, which is available at http://www.ncbi.nlm.nih.gov 
/COG/, to create a protein function file by assigning a COG function category to each 
gene. Generally, genes in an operon have the same or similar COG functional 
category, which has been proved by Salgado [4] and Chen [9]. The COGs are clusters 
of orthologous groups, and consist of three main levels. In the first level, there are 
four classes: information storage and processing, cellular processing and signaling, 
metabolism and poorly characterized. There are many small classes in each first level 
class.  

Table 2. Frequencies of adjacent pairs for different COG functional categories and their scores 

COG functional categories 
Frequency 
WO pairs 

Frequency 
TUB pairs 

Log-likelihoods 

information storage and processing 0.074 0.035 1.0733 
cellular processing and signaling 0.132 0.040 1.7251 
metabolism 0.463 0.182 1.3467 
Different COG categories 0.319 0.722 -1.1789 

 
We also compute whether each adjacent gene pair has the same first-level 

functional category or not. For evaluating whether each adjacent gene pair belongs to 
a same operon or not, we compute the corresponding Log-Likelihood as defined in 
Eq.(3) for each the first level COG functional class, as shown in Table 2.  

( ) ( )
( )

|
| lo g

|
i

C i
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P c la ss T U B
=  

(3) 

where iclass  (i=1, 2, 3, 4) are the functional category as shown in Table 2. 
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2.4   Microarray Gene Expression Features 

With the development of experiment technology, gene expression microarray 
experiments become more and more popular in eukaryote and prokaryote under 
different environment conditions. This makes microarray experiment data become 
available. DNA microarray data represents the expression intensities of genes. The 
genes in an operon are transcribed at the same level under many conditions. That is to 
say that the correlation coefficient of the expression value of genes in an operon 
should be equal to 1 in different microarray experiments. Hence, we can predict 
whether the genes are in an operon or not according to their correlation coefficient. 
Similar argument has been verified by Sabatti [7]. 

We have downloaded 8 microarray data files including GDS25, GDS95, GDS96, 
GDS97, GDS98, GDS99, GDS100, and GDS680 from The Gene Expression 
Omnibus (GEO) at NCBI. We calculate the Pearson correlation coefficient of gene x 
and gene y of n experiments as defined in Eq.(4).  

1

2 2

1 1
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i i
i

n n

i i
i i

x x y y
r x y

x x y y

=

= =

− −
=

− −

∑

∑ ∑
 (4) 

where ix is the log-ratio of gene x in the ith experiment, x  is the mean of x, iy is the 
log-ratio of gene y in the ith experiment, y  is the mean of y, n is the number of 
experiments, in this paper n is 84. We take r(x,y) as the score of microarray 
expression. 

3   Operon Prediction Based on Genetic Algorithm 

Genetic algorithm is used to find the optimization solution in this article and consists 
of three main processes as follows: 

Firstly, create an initial population.  
Secondly, compute the fitness of each chromosome.  
Thirdly, use selection, crossover and mutation to evolve the population and create 

the next gap. 

3.1   Initial Population 

We create an initial population in which there are 20 chromosomes and each 
chromosome represents a possible solution that all genes are organized into operons 
according to their intergenic distance values under different thresholds. In this paper, 
the thresholds are between 0 and 300 bps. We make a Visual C++ program in which 
20 intergenic distances with random thresholds are created and all genes are clustered 
into operons based on each different threshold. The intergenic distances and their 
operon numbers that is the order of operons are stored in 20 data files. For example, 
in E.coli K12 genome, if a threshold is 150 bps, its gene cluster will be 1, 1, 1, 1, 2, 3, 
4, 5, 6, 6, …. That is, the genes thrL, thrA, thrB and thrC belong to operon number 1, 
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and dnaK and dnaJ belong to operon number 2, etc. Each series of operon number in 
each data files is a chromosome in the initial population. 

3.2   Fitness Function 

The pair-score of adjacent genes is the sum of the pair-score based on the four 
features as aforementioned. To interpret how to calculate the fitness value of a 
putative operon, we suppose there are m genes and n gene pairs in the ith putative 
operon. The fitness value fitnessi of the ith putative operon is as follows: 

1

1 1

1 1

1 1 1 1
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where d i is the average of intergenic distances of the m-1 adjacent gene pairs in the 
putative operon, n is the number of all gene pairs in it. The fitness of a chromosome is 
the sum of the fitness of all the putative operons in the chromosome as following 
defined: 

1

l

i
i

fitness fitness
=

= ∑  
 

where l is the number of operons in the chromosome. 

3.3   Selection, Crossover and Mutation 

After the initial population is generated, we compute the fitness value of each 
chromosome and sort these fitness values from the largest to the smallest. Then the 
classical roulette wheel method is utilized for selecting chromosomes for the next 
population. The roulette wheel method can make it more likely that there are many 
copies of the chromosomes with higher fitness values in the next population. 

The crossover method used is the classical single-point crossover. For two 
chromosomes, a random crossover point is selected. Each of the two chromosomes is 
divided into two parts at the random position. Then we combine the first part of one 
chromosome with the second part of another chromosome into a new chromosome. 

The mutation operator is carried out as following steps: 

1. If two adjacent genes that are in the same strand and don’t belong to one operon 
have very high score, the two adjacent genes will be combined. 

2. If the last gene pair of a putative operon has very low score, we will remove the 
last gene from the operon. 

For each generation, we compute its fitness based on the above method for each 
chromosome, and then carry out selection, crossover and mutation operation and 
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obtain the next generation, until the fitness values are stable in the successive 
generation. We select the best operons in the last generation as the final results. 

4   Simulation Results 

We develop a Visual C++ program to implement the proposed algorithm. To examine 
the performance of the method, we apply this method to the aforementioned E. coli 
K12 genome and obtain the best operons. Because the size of the predicted and 
experimental operons may be different, it is unreasonable to compare each operon. 
Therefore, we use the performance measurement that was used by many earlier 
researchers [9, 11, 13] to evaluate the proposed method. In the method, we only 
evaluate the known WO pairs and TUB pairs in the predicted operons. We take 904 
known WO pairs as the positive test set and take 635 known TUB pairs as the 
negative test set. 

 

Fig. 4. ROC curves for E. coli based on each of the four features and all features 

In order to obtain the best prediction result, we changed the very high score and the 
very low score in mutation operator. The accuracy of 85.9987% was obtained.  

To assess the utility of different data sources in our method, we measured the 
predictive performance when each property is used alone and that involves all 
properties. Fig. 4 shows the ROC curve of the results of these experiments. We can 
see that the prediction based on all properties is much better than other four 
predictions based on the four properties individually, which proves the predicting 
ability of the presented method. A true positive rate of 90% with 20% false positives 
is obtained. In the four properties, intergenic distance and metabolic pathway are the 
most effective. COG function can also be used for predicting operons, but its false 
positive is very high. If metabolic pathway data were more enough, the prediction 
accuracy would be high. 

5   Conclusions and Discussions 

It has been reported to be an effective way for predicting operons by using different 
kinds of biological information. In contrast to the conventional methods where all 
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kinds of biological information are dealt with using the same method, we apply 
different approaches to different genome information for exploiting their unique 
biological characteristics. A modified genetic algorithm is presented by defining the 
fitness function with four kinds of genome information involved. Numerical 
experimental results show that the prediction accuracy of Escherichia coli K12 is 
improved efficiently. Future research of this topic is to apply this method to other 
genomes and add other genome information to further improve the accuracy. 
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Abstract. In this paper, an optimal direct design method of steel frame using 
advanced analysis and genetic algorithm is presented. The advanced analysis 
realistically assesses both strength and behavior of a structural system and its 
component members in a direct manner. The micro-GA is used for minimum 
weight optimization of steel frames. Constraint functions are load-carrying 
capacities and serviceability. The optimum designs determined by the proposed 
method are lighter than those given by other approaches. 

1   Introduction  

The steel design methods used in the U.S. are Allowable Stress Design (ASD), Plastic 
Design (PD), and Load and Resistance Factor Design (LRFD). However, despite 
popular use of conventional design methods as a basis for design, these design 
methods have their major limitations. The first of these is that it does not give an 
accurate indication of the factor against failure, because it does not consider the 
interaction of strength and stability between the member and structural system in a 
direct manner. The second limitation is probably the rationale of the current two-stage 
process in design: elastic analysis is used to determine the forces acting on each 
member of a structure system, whereas inelastic analysis is used to determine the 
strength of each member treated as an isolated member. There is no verification of the 
compatibility between the isolated member and the member as part of a structural 
system.  

With the development of computer technology, two aspects, the stability of 
separate members, and the stability of the structure as a whole, can be treated 
rigorously for the determination of the maximum strength of the structures. The 
development of the direct approach to design is called "Advanced Analysis". In this 
direct approach, there is no need to compute the effective length factor, since separate 
member capacity checks encompassed by the specification equations are not required.  

The purpose of this paper is to present an optimal and direct design method of steel 
frames using advanced analysis and genetic algorithms. Until now, several advanced 
analyses for steel frames were developed by Ziemian et al. [1], Prakash and Powell 
[2], Liew and Tang [3], and Kim and Choi [4]. When these advanced analyses are 
combined with optimal design procedures leading to minimum weight, the results 
must be a considerable contribution to practicing engineering.  
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2   Advanced Analysis for Direct Design Method 

From Kim and Choi [4], the force-displacement relationship of the beam-column 
member considering the second-order effects associated with P-δand P-Δ moments 
and  gradual yielding due to residual stresses and flexure may be expressed as  
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The terms Aη  and Bη  are scalar parameters that allow for gradual inelastic stiffness 

reduction of the element associated with plastification at end A and B. This term is 
equal to 1.0 when the element is elastic, and zero when a plastic hinge is formed. 1S , 

2S , 3S , and 4S  are the stability functions with respect to y and z axes, respectively. tE  

is the CRC tangent modulus to account for gradual yielding along the length of 
axially loaded members between plastic hinges. 

3   Optimum Design Problem  

One of the most important considerations in the optimization of steel frames is that 
frame members are generally to be selected from available steel profiles. The simple 
GA introduced by Holland [5] has a better chance in finding optimal solutions with 
the discrete design variables and is still widely used in the multidisciplinary field of 
engineering design optimization. If the population size is kept smaller to reduce 
operation time, its search performance becomes unsatisfactory due to the genetic drift 
of a specified bit. In this paper, micro-GA developed by Krishnakumar [6] is adopted 
for the efficient use of population while keeping it small [7].  

3.1   Fitness Function  

The GAs are suitably applied in the unconstrained maximization problems. However, 
the design optimization problems are constrained minimization problems. The design 
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optimization problems should be transformed into unconstrained maximization 
problems to use the genetic algorithms. In this paper, the fitness function is defined in 
Eq.(3), where the weight function for a steel frame has been modified using the 
violations of normalized constraints.  

( ) (1 )F x K OBJ rC= − +  (3) 

in which, K is any number that is large enough to transform the constrained 
minimization problem to an constrained maximization problem, OBJ is total weight 
of structure, r  is an increment parameter of 30 for penalty function, and C  is the 
coefficient of violation.  

1

1000
n

i
i

K L
=

=∑  (4) 

1

n

i i
i

OBJ W L
=

=∑  (5) 

1

max(0, ( ))
m

i
i

C g x+

=

=∑  (6) 

where iW  is the unit weight of AISC WF-shape used and ( )ig x+ is a i-th inequality 

constraint condition which has positive values.  

3.2   Constraint Condition by Load Resistant Capacity and Serviceability  

With using load-ratio acting on structure, constraint condition by load resistance 
capacity is formulated as  

1

1.0
0g λ

φ
= − ≤  (7) 

where φ  is resistance factor of 0.9 for the structure collapsed by yielding and 0.85 by 
buckling. λ  is the applied load ratio of structure. According to studies of Ad Hoc 
committee [8] and Ellingwood [9], this constraint condition by serviceability is 
formulated as  

2

( )
1.0 0

/360
bv i

i

g
L

Δ= − ≤  (8) 

3

( )
1.0 0

/ 300
cv j

j

g
H

Δ
= − ≤  (9) 

Here, Eq.(8) and Eq.(9) are constraint conditions for deflection and story drift, 
respectively. iL  and ( )bv iΔ are length and deflection of i-th beam. jH  and ( )cv jΔ  mean 

height of column and story drift.  
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3.3   Optimum Design Aalgorithm  

The GA-based optimum design algorithm developed for direct design method of steel 
frames consists of the following step.  
 

1. Initial population is constructed randomly. The size of initial population is selected 
as 10. The maximum number of generations is initially taken as 1000.  

2. For each individual, the binary codes for all design variables are converted into a 
base-10 sequence number that identifies the corresponding sections.  

3. The frame is analyzed for these sections with the proposed advanced analysis and 
the applied load ratio is obtained under the factored load and the deflection and the 
story drift are obtained under service load.  

4. Using Eq.(3), the fitness value for each individual is calculated.  
5. Two individuals are selected arbitrarily and two off-springs are generated by the 

tournament selection to manage small population efficiently.  
6. Two individuals are coupled randomly and two off-springs are generated using a 

single point crossover operation, the value of 1.0 is used for the probability of 
crossover. The new population is obtained.  

7. When applying the micro-genetic algorithm, the mutation is not required.  
8. The individual that satisfies the design constraints and has the minimum weight is 

recorded.  
9. The initial population is replaced by the new population and steps 1-8 are 

repeated.   

4   Design Examples  

4.1   Planar Three-Story Frame  

Figure 1 shows the topology and loading of a two-bay three-story frame.  This frame 
was designed by Pezeshk et al. [10] and Yun and Kim [11].  Structural elements are 
classified into two groups as shown in Figure 2.  Nine column members and six beam 
members are required to have the same WF-shape in the design, respectively.  The 
yield stress used is 250 MPa (36 ksi) and Young's modulus is 200,000 MPa  
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Fig. 1. Planar three-story frame Fig. 2. Design variables 
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(29,000 ksi).  The further reduced tangent modulus modeling proposed by Kim and 
Chen [12] is used to account for geometric imperfections.  

The optimized design for the frame obtained by the proposed method is compared 
with those generated by Pezeshk et al. [10] and Yun and Kim [11] as shown in  
Table 1.  The frame encountered ultimate state when the applied load ratio reached 
1.13.  Since the frame collapses by forming plastic mechanism, the system resistance 
factor of 0.9 is used.  The ultimate load ratios λ  resulted in 1.02 (0.9×1.13), which were 
greater than 1.0 and the member sizes of the system are adequate. The weight of 
optimized design for the frame is 32.8% and 13.9% lighter than those of Pezeshk's 
design and Yun's design, respectively. The numbers of nonlinear analyses required in 
optimum design using the proposed method was 960 times for the frame.  However, 
the numbers of nonlinear analysis required to get optimum value by Pezeshk et al. and 
Yun and Kim were 54,000 and 7,500. Therefore, the proposed optimum design proves 
its computational efficiency. 

Table 1.  Comparison of member sizes of planar three-story frame 

Design Variables Proposed Pezeshk et al. Yun and Kim 

Group 1 W18×40 W10×68 W10×24 

Group 2 W21×44 W24×62 W21×48 

Total weight 
58.29 kN 
(13,104lb) 

86.79 kN 
(19,512 lb) 

67.74 kN 
(15,228 lb) 

Applied load ratio 1.13 1.455 1.074 

Number of analysis 960 54,000 7,500 

4.2   Space Two-Story Frame  

Figure 3 shows the topology and loading of a two-story frame.  This frame was 
designed by Kim and Ma [13].  All columns are oriented such that their strong  
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Fig. 4. Design variables 

principal axes are parallel with the x -axis.  The structural members are classified into 
eight groups as shown in Figure 4.  The yield stress and Young's modulus are taken to 
be 250 MPa (36 ksi) and 200,000 MPa (29,000 ksi), respectively. The further reduced 
tangent modulus modeling proposed by Kim and Chen [12] is used to account for 
geometric imperfections.  

The optimized design for the frame obtained by the proposed method is compared 
with that generated by Kim and Ma [13] as shown in Table 2.  The frame encountered 
ultimate state when the applied load ratio reached 1.16.  Since the frame collapses by 
forming plastic mechanism, the system resistance factor of 0.9 is used.  The ultimate 
load ratios λ  resulted in 1.044 (0.9×1.16), which was greater than 1.0 and the 
member sizes of the system are adequate. The weight of optimized design for the 
frame is 25.6% lighter than that of Kim's design.  The number of nonlinear analysis 
 

Table 2.  Comparison of member sizes of space three-story frame 

Design Variables Proposed Kim and Ma  

Group 1 W10×54 W14×145 

Group 2 W12×152 W16×67 

Group 3 W6×16 W10×112 

Group 4 W27×217 W12×65 

Group 5 W12×45 W24×68 

Group 6 W24×62 W16×31 

Group 7 W12×22 W12×30 

Group 8 W14×34 W10×68 

Group 9 W10×30 W8×18 

Group 10 W12×22 W12×30 

Total weight 
111.25 kN 
(25,010 lb) 

145.58 kN 
(32,727 lb) 

Applied load ratio 1.16 1.93 

Number of analysis 930 200,000 
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required by the proposed method was 930 times in optimum design for the frame. 
However, the number of nonlinear analysis required to get optimum value by Kim 
and Ma was 200,000 since a population size of 10 and a generation size of 20,000 
were used to find optimum value. Therefore, the proposed optimum design proves its 
computational efficiency. 

5   Conclusions  

In this paper, an optimal design of steel frames using genetic algorithms and advanced 
analysis is developed.  The summaries and conclusions of this study are as follows.  

The weight of optimized design for the planar three-story frame is 32.8% and 
13.9%  lighter than those of Pezeshk's design and Yun's design, respectively.  The 
weight of optimized design for the space two-story frame is 25.6% lighter than that of 
Kim's design.  

The proposed optimum design method for the planar three-story frame can save 56 
and 8 analysis times compared with the method proposed by Pezeshk et al. and Yun 
and Kim, respectively.  The proposed optimum design method for the space two-story 
frame can save 215 analysis times compared with the method proposed by Kim and 
Ma.  

The advanced analysis and optimal design method are combined to provide much 
benefit to practical engineering. 
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Abstract. Under the multi-region and multi-sector consideration, the
previous double-objective optimal public investment model is extended
to involve optimal employment rate objective and time-flow total income
maximization objective first. Then genetic algorithm is applied to solve
the multi-objective model. Finally a case study is carried out to verify the
superiority of the genetic algorithm-based solution to traditional public
investment distribution approach.

1 Introduction

The governments usually adopt multiple financial tools to achieve multiple goals
when implementing optimal policies related to public investment. The available
variables include tax rates, transfer payments, regional proportions of public in-
vestment, etc.; the goals may be multiple, including economic growth [1], equity
and efficiency [2], full employment [3], etc. The former optimal public invest-
ment model [4] can be extended to involve two new objectives - the optimal
employment rate objective and time-flow total income maximization objective.
With these objectives added, the model may be more practical. And the more
complicated model can be solved with genetic algorithm.

2 Literature Review

First, Single-objective two-region two-sector optimal economic growth model and
double-objective multi-region multi-sector optimal public investment model are
briefed in this section.
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2.1 Single-Objective Two-Region Two-Sector Optimal Economic
Growth Model

The optimal public investment model is derived from optimal economic growth
model. Suppose the aggregative production function is homogenous production
function of degree one: Y (t) = F (K(t), L(t)), and the output-capital ratios of
private and public sector are constant. The basic objective is to maximize final
total income Y (T ). As for the constraints, the economy is divided into two sectors
(public and private sector) and two regions (1 and 2). The production function is
assumed as linear. Under different rates of savings (si) and different distribution
rates of investment (ϕ and φ) from public and private sectors, considering income
tax rate r(t), the model can be summarized as follows (Sakashita Model [5]):

Max W = Y1(T ) + Y2(T )
s.t. Y ′1(t) = σ1φ(1 − r(t))(s1Y1 + s2Y2) + δ1ϕr(t)(s1Y1 + s2Y2)

Y ′2(t) = σ2(1 − φ)(1 − r(t))(s1Y1 + s2Y2) + δ2(1 − ϕ)r(t)(s1Y1 + s2Y2)
0 ≤ r ≤ θ, ϕ ∈ [0, 1], Y1(0) = Y 0

1 , Y2(0) = Y 0
2

σi and δi are output-capital ratios of private and public sectors in region i.

2.2 Double-Objective Multi-region Multi-sector Optimal Public
Investment Model

After TIAN, etc. [4] introducing multi-region multi-sector Cobb-Douglas pro-
duction function and labor-investment ratio, the former assumptions are relaxed.
Considering cross-region income per capita gap minimization, modifying taxa-
tion factor and capital transfer loss, the optimal economic growth model maybe
extended to a double-objective multi-constraints optimal problem from the pub-
lic investment perspective:

Max W =
∑n

i=1
∑m

j=1 ωiξijYij(T )
E = (−1)

∑n
k,v=1

∫ T

T0
|Yk(t)/Nk(t) − Yv(t)/Nv(t)| dt (1)

s.t. I(t) = K ′(t) + γK(t) (2)
Lij(t) = λijIij + Cij , λij > 0, Cij > 0 (3)
K ′(t) = r(t)

∑n
i=1[(1 −

∑n
k=1 bik)zi

∑m
j=1 ϕijYij(t)]

+(1 − r(t))
∑n

i=1[(1 −
∑n

k=1 aik)si

∑m
j=1 φijYij(t)]

−γ
∑n

i=1
∑m

j=1 Kij(t) (4)
Y (t) =

∑n
i=1

∑m
j=1 AijKij(t)αij Lij(t)βij . (5)

ϕij , the weight of public sector investment to sector j of region i, should be
solved. The relevant parameters are: I(t) is the investment; K(t) is the capital
stock, and K ′(t) = dK(t)

dt ; the current capital stock depreciates at a constant
rate γ; Aij is the contribution of technological innovation to output of sector j
of region i; αij/βij means 1% increase of capital/simple labor will bring forth
αij/βij increase of output; si/zi is rate of savings of private/public sector of
region i; ξij is weight of sector j of region i; ωi is weight of region i; φij is weight
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of private sector investment to sector j of region i; aik/bik is the proportion of
capital transfer loss between regions; λij is the labor-investment ratio of sector
j of region i; Cij is the necessary simple labor of sector j in region i; Ni is
the population in region i; Yij(0) is the initial income; I(0) is the initial total
investment. Please refer to the previous study of TIAN, etc. [4] for GA-based
solution and case study verifying the validity of the model and solution.

3 New Objective Functions

In this section, time-flow total income maximization and employment rate max-
imization objectives will be discussed. The control variables include rate of sav-
ings, tax rates, public investment shares of regions and sectors, etc. And the new
model - multi-objective public investment model can be established.

3.1 Time-Flow Total Income

The maximization objective of final total income does not explain the total
income level during the whole planning horizon. In order to overcome this defect
of the model, Intriligator (1964), Takayama (1967), Friesz (1977), etc. pioneered
in introducing time flow objective to the economic growth model. The time flow
objective will be redesigned to fit into the optimal public investment model by
taking relative importance of the regions and sectors into consideration.

Suppose μ is the exponential discounting factor. In the period (T0, T ), if
the total welfare is figured with the discounted total income μ, the maximiza-
tion objective of discounted time-flow income can be written as: Max W =∫ T

T0
e−μ(t−T0)Y (t)dt =

∫ T

T0
e−μ(t−T0) ∑n

i=1
∑m

j=1 ωiξijYij(t)dt.
If the final total income maximization objective and time-flow total income

maximization objective are combined, they can be used to balance the rela-
tive importance of final total income and discounted time-flow income, and the
weighted average of the two values can figure the maximization objective of total
welfare:

Max W = η

n∑

i=1

m∑

j=1

ωiξijYij(T ) + (1 − η)
∫ T

T0

e−μ(t−T0)(
n∑

i=1

m∑

j=1

ωiξijYij(t))dt

3.2 Moderate Employment Rate

Full employment is one of the four basic macroeconomic objectives. In order to
maximize total employment rate, it is only necessary to:

Max P =
�n

i=1 Li(t)�
n
i=1 Ni(t)

(7)

Considering equity between regions, a moderate employment rate should be
pursued. Then a lower limit B of regional employment rate can be set, so that:

Li(t)
Ni(t)

≥ B, 0 < B < 1 (8)
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There is certain relationship between these objectives. For example, income
maximization and full employment are constrained mutually. In addition, these
three objectives must be realized by meeting certain constraints.

3.3 Multi-objective Model

The multi-objective optimal public investment model is:

Max (1), (6), (7), s.t. (2), (3), (4), (5), (8) . (9)

The dependent variable of the model is the investment proportion of sector j
of region i. The control variables of the model are financial tools, including tax
rate, weights of every sector of every region, etc. The main external parameters
are rate of savings, private sector investment proportions, discounting rate, etc.

4 GA-Based Solution

Genetic algorithm is the effective algorithm designed specially for complicated
optimization problems on the basis of biological simulation, the powerful sto-
chastic searching optimization technique [7], [8], and has been applied in solving
optimal public investment problem [9]. As for the nonlinear [10] optimal public
investment model with many variables, multiple objective functions, and multi-
ple constraints in this paper, objective functions and constraints are handled to
adapt the model into the multi-objective multi-constraint programming model
suitable for genetic algorithm-based solution. Then encoding and decoding ap-
proaches are designed according to characteristics of the model.

4.1 Fitness Function

Resolve ordinary differential equation (2):

K(t) = e−γt(
∫

I(t)eγtdt + C̃) . (10)

Combining (3), (5) and (10), we get:
Yij(t) = AijK

αij

ij (t)Lβij

ij (t) = Aij(e−γt(
∫

Iij(t)e−γtdt + C̃))αij (λijIij + Cij)βij .
Without losing generality, suppose the government is making public invest-

ment plan for period (T0, T ) at T0. So at T0 the government plans to invest ϕijI
in sector j of region i during (T0, T ).

Definition: The governmental investment Iij(t) during (T0, T ) is called the
feasible investment path of sector j of region i.

Proposition: There are infinite feasible investment paths (Iij(t)) for given T0,
T , ϕij , and I.

Proof: According to the definition of feasible investment path, the following
formula exists:
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ϕijI =
∫ T

T0

Iij(t)dt . (11)

among which the integral indicates the cumulative sum of Iij(t).
First, there obviously exists a feasible investment path Iij(t) satisfying formula

(11), such as

Iij(t) = ϕijI
T−T0

Second, suppose p(t) is a viable feasible investment path, i.e. ϕijI =
∫ T

T0
p(t)dt.

Then for any real number v1 and v2, v1 ≤ p(t) and v1 = (v2−1)ϕijI
(T−T0)

:
∫ T

T0

p(t)+v1
v2

dt = ϕijI.
So p(t)+v1

v2
is also a feasible investment path. Since v1 and v2 can be any real

number, there are infinite feasible investment paths. The proof of Proposition 1
is completed.

Although there are infinite feasible investment paths of sector j of region i,
most investment processes can be divided into two stages in practice: At first a
initial Ĩij is invested, and the rest is invested gradually. The investment process
can be described with the following segmented function:

Iij(t) =

{
Ĩij if t = T0

(ϕijI − Ĩij)/(T − T0) if t > T0
. (12)

Then, formula (1), (6), and (7) can be rewritten as:

E = (−1)
n∑

k,v=1

∫ T

T0

∣∣∣
�m

j=1 Akj(e−γt(
�

Ikj(t)eγtdt+ �C))α(λkjIkj+Ckj)β

Nk(t)

−
�m

j=1 Avj(e−γt(
�

Ivj(t)eγtdt+ �C))α(λvjIvj+Cvj)β

Nv(t)

∣∣∣ dt (13)

W = η
∑n

i=1
∑m

j=1 ωiξijAij(e−γt(
∫

Iij(t)eγtdt + C̃))α(λijIij + Cij)β

+(1 − η)
∫ T

T0
e−μ(t−T0)(

∑m
i=1

∑m
j=1 ωiξijAij(e−γt(

∫
Iij(t)eγtdt

+C̃))α(λijIij + Cij)β)dt (14)

P =
�

T
T0

�n
i=1

�m
j=1(λijIij(t)+Cij)dt�

T
T0

�
n
k=1 Nk(t)dt

(15)

Combining (12), (13), (14), and (15), it can be seen that optimal public invest-
ment problem is actually to solve Max(E, W, P ), i.e. to solve ϕij - the proportion
of investment in sector j of region i to the total investment. After the constraints
are handled as above, some constraints have been incorporated into the objective
functions, and only (4) and (8) are left as constraints of optimal public invest-
ment problem. Since E, W , P , and constraints (4) and (8) are the all and only
functions of ϕij , they can be rewritten as the following equivalent formula:
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E = f1(ϕ11, ϕ12, ..., ϕ1m, ϕ21, ..., ϕ2m, ..., ϕn1, ..., ϕnm)
W = f2(ϕ11, ϕ12, ..., ϕ1m, ϕ21, ..., ϕ2m, ..., ϕn1, ..., ϕnm)
P = f3(ϕ11, ϕ12, ..., ϕ1m, ϕ21, ..., ϕ2m, ..., ϕn1, ..., ϕnm)
f4(ϕ11, ϕ12, ..., ϕ1m, ϕ21, ..., ϕ2m, ..., ϕn1, ..., ϕnm) = 0
f5(ϕ11, ϕ12, ..., ϕ1m, ϕ21, ..., ϕ2m, ..., ϕn1, ..., ϕnm) ≤ 0

,

among which f6 =
∑n

i=1
∑m

j=1 ϕij = 1.
When this multi-objective programming problem is solved with genetic al-

gorithm, constraints f4 and f6 should be relaxed properly to avoid premature
convergence of the algorithm, so:

Let f7 = |f4| ≤ Δ1, f8 = |f6 − 1| ≤ Δ2, among which Δ1 and Δ2 are positive
real numbers with very small value. Then the optimal public investment model
can be rewritten as:

Max(E, W, P ) s.t. f5 ≤ 0, f7 ≤ Δ1, f8 ≤ Δ2 . (16)

Combine weighted-sum approach and penalty function approach, transform
(16) into the following single objective programming model:

Max V = π1E + π2W + π3P + F (f5) + F (f7) + F (f8) , (17)

among which πi ≥ 0(i = 1, 2, 3) is the weight of three optimal objective func-
tions in (17), and

∑3
i=1 πi = 1. F (f5), F (f7) and F (f8) are negative penalty

functions [11] which penalize the solutions violate constraints.

4.2 Encoding

It is a key to GA to encode and decode the solutions into chromosomes. In
the optimal cross-region public investment model, a binary string [12] of 7 bits
can be used to represent ϕij . The value of the binary string is a percent. If it
exceeds 100%, the value is defined as 100%. For example, if the corresponding
binary string of ϕ11 in the chromosome is 0011001, then ϕ11 = 15%. Then after
encoding m × n variables, the chromosomes of optimal public investment model
are binary strings with the length of 7 × m × n.

5 Case Study

The validity of multi-region multi-sector public investment model and GA-based
solution has been proven in previous study [4]. In this section, a new case study
is carried out to verify the superiority of GA-based solution to traditional in-
vestment distribution approaches based on negotiation.

Suppose there are two regions with two sectors each. Sector 2 is more labor-
intensive than sector 1. Region 2 is less developed than region 1. The relevant
parameters are:

A = 5, representing the contribution of technological innovation to output;
α = 0.6, representing 1% increase of capital will bring forth 60% increase of

output;
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β = 0.4, representing 1% increase of simple labor will bring forth 40% increase
of output;

si = 50%, zi = 90%, representing rates of savings of private sector and public
sector;

μ = 0.9, representing the discount rate of income;
ξ11 = 0.6, ξ12 = 0.4, ξ21 = 0.7, ξ22 = 0.3, representing weights of the two

sectors in the two regions;
ω1 = 0.4, ω2 = 0.6, representing weights of the two regions;
η = 0.2, representing the weight of discounted time-horizontal total income

in total income;
φ11 = φ12 = φ21 = φ22 = 0.25, representing the weights of private sector

investment to sector j of region i;
r(t) = 0.3, representing the average tax rate;
a12 = a21 = b12 = b21 = 0.2, representing the proportion of capital transfer

loss between regions;
γ = 0.1, representing the capital stock depreciation rate;
λ11 = 1, λ12 = 0.5, λ21 = 2, λ22 = 0.2, representing the labor-investment

ratios of sector j of region i;
C11 = 1, C12 = 2, C21 = 1, C22 = 2, representing the necessary simple labor

of sector j in region i;
N1 = 15, N2 = 20 (in thousands), representing the population in regions (in

thousands);
Y11(0) = Y12(0) = Y21(0) = Y22(0) = 0, representing the income at the

beginning of the period;
I(0) = RMB200 (in millions).
Suppose the government would adopt (ϕ11, ϕ12, ϕ21, ϕ22) = (1/4, 1/4, 1/4, 1/4)

in traditional approach. TThe optimal cross-region public investment model is
resolved with genetic algorithm according to the parameters above. The GA-
based solution will show different results.

The chromosomes are selected based on roulette wheel selection approach for
next population. Two-point crossover and uniform mutation are performed. And
the population is evaluated based on fitness function (17). The results are shown
as follows, where K̄ is average capital stock, ȳ is average income per capita, and
Yij is in RMB millions.

If the investment is divided averagely between regions, solution samples are
shown as Table 1. If the investment is divided averagely between sectors, solution
samples are shown as Table 2.

Table 1. Investment is divided averagely between regions

(ϕ11, ϕ12, ϕ21, ϕ22) Y11, Y12, Y21, Y22 W/K̄ E/ȳ P

(0,1/2,0,1/2) (4.94,10.75,4.94,8.59) 2.01% 42.90% 37.14%

(1/8,3/8,1/8,3/8) (8.15,9.93,10.11,8.15) 2.85% 27.57% 53.57%

(1/4,1/4,1/4,1/4) (9.87,9.03,12.88,7.66) 3.27% 20.37% 70.00%

(3/8,1/8,3/8,1/8) (11.62,7.91,14.96,7.12) 3.58% 16.31% 86.43%

(1/2,0,1/2,0) (12.88,6.51,16.68,6.51) 3.79% 10.86% 100.00%
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Table 2. Investment is divided averagely between sectors

(ϕ11, ϕ12, ϕ21, ϕ22) Y11, Y12, Y21, Y22 W/K̄ E/ȳ P

(0,0,1/2,1/2) (4.94,6.51,16.68,8.59) 3.32% 49.35% 80.00%

(1/8,1/8,3/8,3/8) (8.15,7.91,10.11,8.15) 2.75% 15.90% 46.43%

(1/4,1/4,1/4,1/4) (9.87,9.03,12.88,7.66) 5.83% 20.37% 70.00%

(3/8,3/8,1/8,1/8) (11.62,9.93,10.11,7.12) 3.05% 50.05% 65.00%

(1/2,1/2,0,0) (12.88,10.75,4.94,6.51) 2.48% 93.38% 60.00%

(a) Investments vary in sectors (b) Investments vary in regions

Fig. 1. Investments vary in sectors and regions

The results can also be shown in figures more clearly. In Fig. 1(a), the welfare
growth rate and employment rate increase while the income gap decreases as the
investment to the more labor-intensive sector increases. In Fig. 1(b), the welfare
growth rate and employment rate fluctuate but tend to decrease while the income
gap fluctuates but tends to increase as the investment to the less-developed
region increases. The fluctuations are caused by different labor-investment ratios,
simple labor thresholds, etc.

If the government requires B = 80% and the income gap no higher than 20%,
then (3/8, 1/8, 3/8, 1/8) and (1/2, 0, 1/2, 0) are in the feasible solution set. If the
government requires B = 50% and the income gap no higher than 50%, then
(1/8, 3/8, 1/8, 3/8), (1/4, 1/4, 1/4, 1/4), (3/8, 1/8, 3/8, 1/8), (1/2, 0, 1/2, 0), and
(0, 0, 1/2, 1/2) are in the feasible solution set. The GA-based solution provides
scientific foundation for public investment decision, and is much better than the
traditional decision approach on basis of negotiation.

6 Conclusions

Two new objective functions are integrated into the previous double-objective
optimal public investment model. And the complicated multi-objective multi-
constraint optimal problem is solved with GA-based solution. Then encoding
and decoding approaches are designed according to characteristics of the model.
Case study shows the superiority of GA-based solution in providing theoretic
foundation for public investment decision on the ground of regional economic
growth, equity per capita, and employment rate.
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Abstract. Many-objective optimization refers to multi-objective opti-
mization problems with a number of objectives considerably larger than
two or three. This papers contributes to the use of Particle Swarm Op-
timization (PSO) for the handling of such many-objective optimization
problems. Multi-objective PSO approaches typically rely on the employ-
ment of a so-called set of leaders that generalizes the global best particle
used in the standard PSO algorithm. The exponentially decreasing prob-
ability of finding non-dominated points in search spaces with increasing
number of objectives poses a problem for the selection from this set
of leaders, and renders multi-objective PSOs easily unusable. Gradual
Pareto dominance relation can be used to overcome this problem. The
approach will be studied by means of the problem to minimize the Euclid-
ian distances to a number of points, where each distance to the points
is considered an independent objective. The Pareto set of this problem
is the convex closure of the set of points. The conducted experiments
demonstrate the usefulness of the proposed approach and also show the
higher resemblance of the proposed PSO variation with the standard
PSO.

1 Introduction

Recently, there has been growing interest in the application of particle swarm
optimization (PSO) to the handling of multi-objective optimization problems.
Since the initial presentation of the MOPSO algorithm (Multi-objective Particle
Swarm Optimization) [2], a growing number of proposals about corresponding
standard PSO variations can be found in the literature. The recent survey of
Reyes-Sierra and Coello [10] already classifies nearly thirty of such algorithms.
According to [10], the general structure of any such PSO variant can be seen
as given in Algorithm 1.1 (also covering the standard “single-objective” PSO).
The main difference to a PSO is the notion of “leaders,” which generalizes the
common concept of the global best particle in the standard PSO. This regards the
fact that in multi-objective optimization, usually, there is not a single optimum
but a set of optima solutions. Without the support of an additional, external
“decision maker” instance, the problem statement does not entail any further
selection criteria that can be applied to this set of optima.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 323–331, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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MOPSO and all its successors proved to be competent algorithms to handle
the domain of multi-objective optimization, at least for problems posing two
or three conflicting objectives. However, no efforts so far have been devoted to
the handling of a notably larger number of objectives. More and more, problems
with a larger number of objectives are appearing in practice and deserve a deeper
study of the question whether they could be handled by the PSO heuristic as
well.

Algorithm 1.1. General Particle Swarm Optimization([10])

Initialize swarm
Locate leader
g ← 0
while g < G

do

�������
������

for each particle

do

��
�

Update position (Flight)
Evaluation
Update lbest

Update leader
g ← g + 1

Notably, approaches to handle these so-called many-objective optimization prob-
lems are likely to suffer from the so-called “curse of dimensionality.” In this pa-
per, we will stress on this and identify a weak point in the common scheme for
selecting among the leaders, related to the rapdidly decreasing probability of
finding such leaders in the search space at all. We will propose an approach to
overcome this drawback by using a gradual ordering relationship among particles,
and compare its performance by means of a scalable many-objective optimization
problem that we are going to introduce here as well.

Section 2 will provide the necessary algorithmic concepts and solicit the prob-
lem statement. Due to space limitations, multi-objective optimization and PSO
will be only briefly touched. The reader is suggested to consider the excellent
books of Coello et al. [3] and Deb et al. [4] about multi-objective optimiza-
tion, and the book of Kennedy and Eberhart to learn about PSO[6]. The used
ranking by Fuzzy Pareto Dominance (FPD), which is employed in the PSO gen-
eralization, will be recalled in Sect. 2 as well. The so-called P* many-objective
optimization problem will be introduced in Sect. 3. Section 4 then provides the
results of test runs of multi-objective PSOs on this problem, and a discussion of
the results. The concluding section and the references will be at the end of this
paper.

2 Multi-objective Particle Swarm Optimization

In multi-objective optimization, the mapping of a feature vector space F into an
objective vector space O is considered, where points of F are seeked, having all
their objective values as small as possible. For comparing two points in objective
space, the common notion of Pareto dominance (or just dominance) is employed.
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Given two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of same size, it
is said that vector x “Pareto dominates” y, if each component of x is smaller
than or equal to the corresponding component of y, and at least one component
is smaller: x <D y ↔ ∀i(xi ≤ yi) ∧ ∃k(xk < yk). A similar definition for the
maximum case, or the case “smaller/larger-or-equal” (so-called weak dominance)
can be provided as well.

For simplicity, we also consider the dominance relation among points in the
feature space, if their corresponding objective vectors are in such a relation.
The set of all objective vectors assigned to feasible feature vectors, which are
not dominated by any other objective vector is the so-called “Pareto front” of
the multi-objective optimization problem. The set of the corresponding feature
vectors will be referenced as Pareto set in the following.

The general task of an multi-objective optimization algorithm is to find a rep-
resentation of the Pareto front of the given mapping. A new class of evolution-
ary algorithms, with specialized selection operators to regard for the multiple
objectives, has gained much attractiveness for the handling of such problems.
As already said in the introduction section, this interest has expanded to the
Particle Swarm Optimization algorithm in between.

Here, we consider the multi-objective PSO (MOPSO) that was recently pro-
posed by Alvarez et al. [1], see the algorithm listing 2.1. It shows the same
global structure as the general PSO given in listing 1.1. The procedure to select
the leader is based on selecting from an archive that stores all non-dominated
positions found by the algorithm during its course so far.

Algorithm 2.1. MOPSOrand([1])

A← ∅
Initialize particles
for g ← 1 to G

do

�������������������
������������������

for n← 1 to N

do

�����������������
����������������

for k← 1 to K

do
�

vnk = wvnk + r1(Pnk − xnk) + r2(Gnk − xnk)
xnk = xnk + vnk + ε

xn ← enforceConstraints(xn)
on ← f(xn)
if ∼ ∃u ∈ A : u ≤D xn

then
�

A← {u ∈ A | xn 	≤D u}
A← A ∪ xn

if xn ≤D Pn ∨ (xn 	<D Pn ∧ Pn 	<D xn)
then Pn ← xn

Gn ← selectGuide(xn, A)

The parameters used in the listing are: xn and vn are position and veloc-
ity of the n-th particle, A stands for the archive, G is the maximum number
of cycles, N is the number of particles, K the dimension of a particles’ vec-
tor, Pn is the local best position of particle xn, and Gn the leader (or guide)
for this particle, used to update its position according to the general swarm
equations. The parameters r1 and r2 are random numbers drawn from the in-
terval [0, . . . , wlocal] and [0, . . . , wglobal] respectively, w is the weight of former
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velocity, and ε so-called curl parameter, a small random number. The proce-
dure enforceConstraints() ensures the swarm to stay within the feasible space,
and the procedure selectGuide() selects the leader for each particle, and will be
detailed in a moment.

2.1 Choices for the Leader Selection

In [1], three procedures for the selection of the leader from the archive were pro-
posed. All of them assume the presence of particles being dominated by vectors
that are already stored in the archive, or being dominated by new positions.
The procedure RAND randomly selects one of the archive members dominating
particle xn as leader for this particle. If there is no such particle, an archive
member is randomly selected.

However, for a larger number of objectives, the second choice becomes more
likely. Equation (1), taken from [7], gives the expected size of the Pareto front
of m points randomly selected from the n-dimensional unit hypercube

em(n) = m −
m∑

k=1

(−1)k+1

kn−1

(
m

k

)
. (1)

A closer look on this equation gives that the probability of finding two points
with one dominating the other drops exponentially with the problem dimen-
sion. For example, for 15 objectives and 10 particles, the probability to have a
randomly selected dominated point is already as low as 0.0027.

For this reason, we are considering gradual Pareto dominance here, as it was
presented in [9]. Given a set of points, a “ranking value” is assigned to each point
a. This ranking value is the maximal value of the “degree of being dominated”
by any other element of the set. The dominance degree is computed as

μpmin(x, y) =
∏

i

[
xi

yi

]
, (2)

where the notion of a bounded division was used:
[
x

y

]
=

{
1, if y ≤ x

x/y, if x < y .
(3)

The ranking value of a dominated point is 1, otherwise its between 0 and 1.
Points with smaller ranking values can be considered to be less dominated by
the other points in the set. The ranking value is scale independent, and points
close to other points in the set yields higher ranking values than points that are
more distant. Thus, the ranking values also punish crowding of points at the
same location. Finally, the ranking value is set-dependent. If in a set a point x
has a lower ranking value than y, adding an element to the set close to x may
reverse the ranking value size relation.

In this paper, the procedure FPD for selectGuide() selects as leader for all
particles the particle with the lowest ranking value within the set of all swarm
particles.
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3 The P* Many-Objective Optimization Problem

The evolutionary multi-objective optimization community maintains a set of
benchmark measures for the performance assesment of algorithms, with the
DTLZ suite of problems [5] being among the most popular. Unfortunately, not
much is known about these problems for the many-objective case. This cir-
cumstance has already been remarked with the introduction of the Pareto Box
problem, which identifies objective vector and feature vector [8]. However, issues
of vector components becoming 0 and the bounded domain of positive vector
components hardens the use of the Pareto Box problems, especially for swarms.

Here, we are introducing a related problem, referred to as P* problem for
indicating the variable number of points from which the objectives are derived.

Given is a set P of m points Pi in the Euclidian plane (the case of two
dimensional Euclidian space is completely sufficient for the present analysis).
The feature space F equals the Euclidian plane, where the points Pi are located.
The objective space O is an m-dimensional vector space. For a given point x in
the feature space, its objective vector o(x) is the vector with the components
oi = d(x, Pi) for i = 1 to m, where d(x, y) is the Euclidian distance of two points
x, y ∈ F . Thus, the objectives to minimize are the distances to a given collection
of points, where the distance to any of these point is treated as an independent
objective.

The Pareto set of this problem equals the convex closure of the points Pi. To
see this, consider Fig. 1. The left subfigure shows that for any point x outside
the convex closure there is at least one point y that is closer to all points of P .
In the subfigure, the line AiAi+1 represents one segment of the convex hull. All
points on this line or on the other side of this line than x are more close to y
than to x.

To see that none of the points of the convex closure dominates any other,
consider the right subfigure of Fig. 1. By connecting any two points U and V
of the convex closure and drawing the perpendiculars to this line trough U and
through V , the convex closure is segmented into three parts. There is at least one
point of the point set A (and thus of P ) located to the l.h.s. of the perpendicular

Ai Ai+1

X

Y

B

A
B

A1

A2

A3

A4A5

A6

A7

A8

U V

Fig. 1. Proof that the Pareto set of the P* problem for some points Ai is the convex
closure of these points
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through U (indicated by encircled A in the figure), or located on this line, and
there is at least one point of A belonging to the r.h.s. of the perpendicular
through V or on it (indicated by encircled B). Otherwise, the shape would not
be convex. Now, point U is more close to any point of A than V , and point V is
more close to any point of B than U . Neither U nor V can dominate the other.

Having thus a rather simple solution structure, the problem is worth a study
for a heuristic algorithm for several reasons:

– the number of objectives can be easily scaled
– by reducing the area enclosed by the convex closure, the effort for random

search (the “Monte-Carlo Barrier”) can be easily increased
– typical performance measures (as average distance to Pareto front, number

of particles belonging to the Pareto front) can be directly computed
– as the feature space is two-dimensional, the results can be directly visualized;

however, extension to higher-dimensional spaces is straightforward
– the search space is not bounded
– the problem is a continuous optimization problem
– boundary conditions can be directly included
– crowding in objective space directly corresponds to crowding in feature space
– modelling of algorithm behaviour seems feasible
– by using the distance to the center of gravity of the points instead, a com-

parison to the single-objective case becomes possible

In the following, we are considering the performance of three algorithms on
the P* problem.

4 Results and Discussion

Several experiments have been conducted to study the behaviour of three algo-
rithms on the P* problem. The three algorithms were the MOPSO of Alvarez
et al. using RAND (algorithm MOPSOrand), the proposed usage of FPD (al-
gorithm MOPSOfpd) as procedures for selectGuide(), and the standard PSO
(algorithm PSO) by taking the distance to the c.o.g. of the points P as objective.
The result that we want to present here was achieved with the following settings:
swarm sizes were 10 particles each; the swarms were randomly initialized around
point 0, with deviation of 0.1 and max initial velocity of 0.001; the weight of the
global best was 0.08, the weight of the local best 0.02, the weight of the former
velocity 0.985. For each target problem, the average distance of the c.o.g. of the
particle positions after 1000 cycles for 20 different random initializations was
computed. The target problems were given by placing a set of 15 circular points
at a radius of 0.01 around the center (i/10, i/10) with i going from 1 to 20.

The results can be seen in Fig. 2. For reference, the initial distance of the target
to the starting point of the swarm has been plotted as well. The most notable
fact is the nearly complete failure of the algorithm MOPSOrand to find the
target set, once the target gets placed beyond the (0.8, 0.8) offset. The constant
bias of about 0.1 of MOPSOrand performance to the reference line refers to the
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Fig. 2. Plots of the average distances to the target after 1000 cycles vs. different initial
target distances for a problem with 15 objectives

fact that the initial positions varied by about 0.1 around the point 0. Before
the failure, it has to be noted that the averages for MOPSOrand are taken from
more or less binary cases: the MOPSOrand swarm was either reaching the target
set, or got stuck at the initial position.

For understanding this failure, consider a snapshot of the MOPSOrand swarm
particles taken anywhere in such a situation (see Fig. 3). The snapshot also shows
the positions of the local best, as they are kept by each individual, and the target
points. It can be seen that in such a situation, the local best positions establish
a kind of “trap” for the swarm. The swarm is surrounded by these positions,
and the probability of finding a closeby position that either dominates the local
best positions, or can get added to the archive is nearly zero. The archive so far
is not able to guide the swarm out of this trap. So, the swarm stays within the
area surrounded by the local best positions, and the local best positions never
get updated by new dominating positions. Thats the reasoning, given in humble
words. Any manner of quantifiying the situation of a MOPSO getting stuck will
only provide additional evidence for the fact that this is a ubiquitous feature of
all algorithms that depends on the finding of dominated points, to perform their
operations.

The algorithm MOPSOfpd shows a much more improved performance, as it
is capable to appraoch the target even if being initially placed distant from the
target set. However, naturally the explorational effort for MOPSOfpd is also
increasing. But it has to be taken into account that the average values shown for
the MOPSOfpd were taken from a variety of distance values: in nearly no case,
the MOPSOfpd swarm got ever stuck at the initial position, as it happened
many times for the MOPSOrand. It could always escape the trap set up by
the local best, even if no dominating position was found, as it is also rewarding
nearly dominating positions. By extending the number of cycles, the MOPSOfpd

swarm may still approach the target.
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Fig. 3. A situation where a MOPSOrand swarm is trapped within the local best po-
sitions of the particles

The performance measure for the standard PSO has been taken as well. It
is remarkable how strongly MOPSOfpd performance resembles the one of the
standard PSO, as both plots go nearly equal. This encourages the choice of the
FPD-based leader selection scheme as a way to expand the standard PSO to the
many-objective optimization domain.

5 Conclusions

In this paper, the extension of Multi-objective Particle Swarm Optimization
(MOPSO) to the case of many-objective optimization has been studied. Here,
“many-objective” stands for a number of objectives considerably larger than
two or three. It has been demonstrated how algorithms that rely on the presence
of dominated points may get stuck in their search for the Pareto front. The
notion of Pareto dominance is not fully suited to the case of many objectives.
Pareto dominance requires ALL components of a vector to be smaller than the
corresponding components of the other vector. This becomes more and more
unlikely, as the number of components increases. As a consequence, such an
MOPSO algorithm may get trapped by the local best selection of the particles
itself, without being able to find new dominating positions. As a countermeasure,
this paper presented the use of gradual Pareto dominance, to fuse the relative
amount of smaller vector components, and the degree by which they are smaller,
into a single measure. Doing leader selection based on these so-called “ranking
values” allows for the design of a MOPSO, which better resembles a standard
single-objective PSO in the multi-objective case.
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Abstract. In this paper, a mixed integer programming method based on ant 
colony optimization is presented, and applied to the classical Unit Commitment 
problem. The idea is to reformulate the problem into a graph exploration 
structure, and to use discrete ant colony optimization to explicitly take into 
account time down, time up and demand constraints in the optimization 
procedure. This method is coupled with a continuous ant colony algorithm to 
compute produced powers. Results, obtained on relatively small cases, show the 
viability of the proposed approach: a near optimal solution, with guarantees of 
feasibility, can be computed with low computation times. 

1   Introduction 

Unit Commitment is a classical mixed integer problem in power systems, which aims 
to compute the optimal scheduling of several production units while satisfying 
consumer’s demand and technical constraints. On/off variables, which are integer 
variables, and produced powers, which are real ones are the optimization variables. 
Numerous methods have already been applied to solve this classical optimisation 
problem. They are for example listed in [1] and are here briefly called up. 

Firstly, exact solution methods have been tested: exhaustive enumeration, Branch 
and Bound [2], dynamic programming [3]. These methods suffer from combinatorial 
complexity, and thus, efficient approximated methods are required. Furthermore, 
taking into account temporal constraints, such as minimum time up or time down 
constraints, may be difficult. It is the case for dynamic programming solution, for 
which extended spaces have to be considered. 

Deterministic methods can be used such as priority lists [4]. Due to numerous 
constraints, they are strongly suboptimal. Constraints are considered by Lagrangian 
relaxation [5]. Constraints which couple several production units are relaxed, and the 
Unit Commitment problem can be divided into several optimization problems (one 
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per production unit). Solutions are computed with dual problems. The non convexity 
of the objective function implies a duality gap and no guarantee can be given on the 
actual optimality. An iterative procedure has to be performed: solution of the 
optimization problems (fixed Lagrange multipliers) and update of the multipliers. The 
update can be made with genetic algorithms [6] or by subgradient methods [7]. 

Metaheuristics methods have also been intensively used (see [1]). A random but 
relevant enumeration of variables is performed. There is no guarantee on the actual 
optimality, but a very suitable solution with low computation times can be found. A 
simulated annealing approach is used in [8], tabu search is used in [9] and genetic 
algorithms are used in [10]. Cooperative algorithms are also developed to combine the 
advantages of several methods, like genetic algorithms and simulated annealing in 
[11]. The management of the feasibility of solutions may be difficult with such 
methods. The algorithm “moves” randomly in the search space, and so, there is no 
guarantee that the final solution is in the feasible set. This is the case for Unit 
Commitment, as the feasible set is much smaller than the search space.  

In this paper a mixed ant colony optimization method is used to compute solutions 
for the Unit Commitment problem. Indeed, the use of a constructive algorithm allows 
explicitly handling the constraints and so, the guarantee of feasibility is achieved. Ant 
colony has already been used in Unit Commitment literature in [12], [13], [14] and 
[15]. For example, in [12], real variables are computed using an extension of discrete 
ant colony to continuous spaces as depicted in [16]. In [13], real variables are 
computed using a lagrange multipliers method. In [15], they are computed with a 
lambda iteration method. In this article, the idea is to use the structure of the problem 
to solve the problem with a purely ant colony algorithm: a discrete ant colony 
algorithm computes the binary variables, taking into account the time down, time up 
and demand constraints. Simultaneously, a continuous ant colony algorithm performs 
the computation of produced powers (real variables).  

The paper is organized as follows. First, the Unit Commitment problem is called 
up in section 2. The mixed ant colony algorithm is depicted in section 3; it is based on 
a graph exploration reformulation. Section 4 presents numerical results about Unit 
Commitment solution. Finally, concluding remarks are drawn in section 5. 

2   Unit Commitment Problem 

Unit Commitment refers to the optimal scheduling of several production units:  

{ } ( )/ 1
, 1 1

min ( , ) ( , ) ,
k k
n n

N K
k k k k k k
prod n n on off n n

u Q n k

c Q u c u u −
= =

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ ∑  (1) 

where N is the length of time horizon, K is the number of production unit, un
k (resp. 

Qn
k) is the on/off status (resp. produced power) of the production unit k during the 

time interval n. Production costs ck
prod and start up and shut down costs ck

on/off can be 
defined by these equations:  
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where ak
0, ak

1, ak
2, ck

on, c
k
off are technical data of production unit k. 

The constraints of the problem are: 

• capacity constraints 

{ } { }min max , 1, , , 1, , ,k k k k k
n n nQ u Q Q u n N k K≤ ≤ ∀ ∈ ∀ ∈… …  (3) 

 

• consumer demand fulfilling 
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• time up and time down constraints 
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 (5) 

3   Mixed Ant Colony Optimization Formulation 

Ant Colony Optimization was firstly introduced by Marco Dorigo. This method is 
based on the way natural ants are searching for food. The ant colony is able to find 
the shortest path from the nest to the food, despite the fact that a single ant does not 
have a global vision of the problem. Ants move in the search space and influence 
each other with the help of the pheromone trail. For a more precise description, see 
[17]. This behavior can be exploited to design efficient stochastic algorithms for 
graph exploration problems, such as the classical traveling salesman problem  
in [18].  

3.1   Graph Exploration Formulation 

The Unit Commitment problem can be formulated as a graph exploration problem as 
shown in figure 1, as in previous work [19]. The nodes of the graph represent all the 
possible states (un

1,…,un
K) of production system, for all the time intervals. The aim is 

to go from one of the possible states at time 1, to one of the possible states at time N, 
while satisfying all the constraints and minimising global costs defined in equation 
(1). For each edge (un

1,…,un
K)→ (u1

n+1,…,uK
n+1) of the graph, start-up and shut-down 

costs are added. Production costs are also associated to nodes. 
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Time 
interval 1 

State 00…00 

State 00…01 

State 01…11 

State 11…11 

Time 
interval 2 

Time  
interval N-1 

Time  
interval N  

Fig. 1. Graph structure for Unit Commitment 

3.2   Computation of Binary Variables 

As in the classical ant colony algorithm, during iteration t of the algorithm, F ants 
walk on this graph. When a ant f is in state i = (un

1,…,un
K), the probability of choosing 

the next state j = (u1
n+1,…,uK

n+1) is defined by the probabilistic law:  

( )

( )

( )
( ) .

( )
f

ij ijf
i

im im
m J i

t
p j

t

α β

α β

η τ
η τ

∈

=
∑

 (6) 

• τij(t) is the pheromone trail on edge i = (un
1,…,un

K)→ j = (u1
n+1,…,uK

n+1) 
during iteration t. Its value depends on the results of previous ants, and will be 
discussed in section 3.4. 

• ηij is called the attractiveness. This parameter refers to the « local choice ». In 
the travelling salesman problem, ηij is the inverse of the distance between town 
i and town j. For Unit Commitment, the following remark can be made: when 
next node has to be chosen, the best local candidate is the node for which the 
gap between the maximum produced power and the predicted demand is the 
smallest. This is the basis of the definition of attractiveness for Unit 
Commitment; for more details, see previous work [19]. 

• α and β are weighting factors. 
• Jf(i) is the feasible set. This feasible set contains a priori all 2K states. But, 

those states which do not satisfy time up and time down constraints, and those 
states which do not satisfy consumers’ demands, are to be removed. Note that, 
even if produced powers are not known yet, it is possible to check the 
possibility of consumer’s demand satisfaction with the equation:  

max
1

.
K

k k dem
n n

k

Q u Q
=

≥∑  (7) 

Finally, Jf(i) sets are recursively constructed for each ant, and lead to the guarantee 
of the feasibility of solutions. In this study, the principles of “Max-Min Ant System”, 
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proposed in [20], are used. The pheromone trail for each edge is bounded to          
[τmin, τmax]. The goal of this limitation is to avoid premature convergence of the 
algorithm to a local minimum: all the edges, even if they seem to be unprofitable, can 
be chosen by successive ants. After the ant has completed its path, it is possible to 
evaluate the solution by solving the real optimization problem defined in equation (1), 
with fixed binary variables. However, as this kind of problem would have to be 
solved numerous times, this is too much time consuming. That is why a continuous 
ant colony method is added to this method to compute real variables from integer 
ones. 

3.3   Computation of Real Variables 

For each integer solution U = {un
k; n = 1,…,N; k = 1,…,K}, computed with discrete 

ant colony algorithm, a real solution Q = {Qn
k; n = 1,…,N; k = 1,…,K} = {x1,…,xKN} 

has to be associated. To compute these real variables, a continuous ant colony 
optimization algorithm defined by Socha and Dorigo in [21] is used and is here called 
up. A matrix T of s real solutions, called archive matrix of solutions, is stored and 
represented in figure 2. 
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… …
 

Fig. 2. Archive matrix for the continuous ant colony algorithm 

These global solutions (binary and real variables) have been evaluated with respect 
to the objective function defined in equation (1) and their costs are stored in H (see 
figure 2), whose components are then:  

( ) ( ) ( )( )/ 1
1 1

, , , .
N K

k k k k k k
j j j prod n n on off n n

n k

f f U Q c Q u c u u −
= =

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

∑ ∑  (8) 

The stored solutions are sorted according to their costs:  

1 2 .r sf f f f≤ ≤ ≤ ≤ ≤… …  (9) 

Weights are defined according to the ranks of the solutions in the matrix. For the 
solution with rank r, the weight is: 

( )2
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ω

π

−
−

=  (10) 
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The coefficient q is a parameter of the algorithm. Finally, a discrete probability 
distribution is defined from these weights:  

1

.r
r s

j
j

p
ω

ω
=

=
∑

 
(11) 

To compute a new real solution, a “model ant”, say l, is chosen, according to this 
discrete probability distribution. Each real variable xi

new, i = 1,…,KN, is randomly 
chosen with a Gaussian probability distribution whose mean and standard deviation is 
computed by: 

1

.

1

i i
new l

s
i i i
new m l

m

x

x x
s

μ
ξσ

=

⎧ =
⎪
⎨ = −⎪ −⎩

∑
 (12) 

The coefficient ξ is also a parameter of the algorithm. Remember that these real 
solutions are computed from feasible binary solutions. Therefore, equation (7) is 
satisfied. But, when real variables are randomly chosen, consumer’s demands may not 
be fulfilled. Furthermore, the random selection of produced powers may lead to 
overproduction, which is highly unprofitable. To prevent these problems, the 
following procedure is applied: 

• Select produced powers Qn
kwith the previous algorithm, 

• If ∑K
k = 1Qn

kun
k > Qn

dem (resp. ∑K
k = 1Qn

kun
k < Qn

dem ), then choose randomly one 
of switched on units, and decrease (resp. increase) the corresponding produced 
power until ∑K

k = 1Qn
kun

k = Qn
dem. If it is not sufficient, choose several 

production units. Note that it is always possible to do so, as equation (7) is 
satisfied by binary variables. 

3.4   Pheromone Updating and Evaporation 

The algorithm is based on a positive feedback, as current ants try to influence future 
ants by enforcing the pheromone trail. As a result, to avoid premature convergence, it 
is necessary to forget the past mistakes. This is done by the pheromone evaporation. 
At the end of iteration t of the algorithm, F mixed ants have computed F feasible 
solutions for the initial problem. For binary variables, the pheromone trail is updated, 
with the following equation, for each edge of the graph of figure 1: 

( 1) (1 ) ( ) ( )ij ij ijt t tτ ρ τ τ+ = − + Δ  (13) 

ρ is the evaporation coefficient. This coefficient can be viewed as an analogy with 
physical evaporation of pheromone in nature. Δτij is the updating coefficient. Its value 
depends on the results of ants in iteration t. In classical “Max-Min Ant System”, see 
[20], the update is performed using three mechanisms: iteration best, global best and 
restart-best. In this study, only iteration-best procedure is used: each ant is evaluated 
with respect to the objective function (equation (1)). An elitism algorithm is used: 
only the best ant of current iteration is allowed to lay some pheromone on each edge it 
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has used. However, if the best ant at current iteration has performed the same solution 
as the one computed at the previous iteration, no pheromone is added again on the 
corresponding path. This can be viewed as a way to reinforce the exploration of the 
search space, or local restart mechanism. At present, no global-best update procedure 
(the best solution found from the beginning on the algorithm adds pheromone) has 
been used: it has been observed that it may lead to premature convergence of the 
algorithm. However, adaptive strategies are among forthcoming works of this study. 

For real variables, the solutions computed by best ants are stored in matrix T, 
replacing old solutions whose corresponding costs were too bad. Once again, the past 
is slowly forgotten. 

4   Numerical Results 

The algorithm has been implemented with Matlab 6.5 and a Pentium IV, 2 GHz. To 
test the viability of the approach, it has been tested on relative small cases (4 unit 
benchmark case). Characteristics are given in table 1. The time horizon is 24 hours, 
with a sampling time of one hour. Thus, the optimization problem is made of 96 
binary variables, and 96 real variables. For this benchmark example, linear costs have 
been considered. Thus, it is still tractable to compute the global optimum, for example 
with a “Branch and Bound” method, so as to evaluate the gap to optimality. The 
optimum, computed with this method, is 8780 €€ . 

Table 1. Characteristics of the benchmark example 

Unit Qmin 
(MW) 

Qmax 
(MW) 

a0 

(€€ ) 

a1 

(€€ /MWh) 
con 
(€€ ) 

coff 
(€€ ) 

Tdown 
(h) 

Tup 

(h) 
1 
2 
3 
4 

10 
10 
10 
10 

40 
40 
40 
40 

25 
25 
25 
25 

2.6 
7.9 

13.1 
18.3 

10 
10 
10 
10 

2 
2 
2 
2 

2 
2 
3 
3 

4 
4 
3 
3 

 
As the algorithm is stochastic, statistical results are provided to evaluate the 

behavior of the algorithm. For the tests, the algorithm is performed 100 times. Mean 
and best cases are reported as well as the standard deviation of the results. Results are 
given in table 2, for 100 and 200 iterations of the algorithm. Several tests have been 
performed so as to get suitable values for parameters. Finally, satisfying values are as 
follows: 

• α = 1; β = 2 
• ρ = 0.2, 
• q = 1; ξ = 0.8, 
• F = 20, s = 100. 

An iteration of the algorithm is about 0.5 second time consuming. Results show 
that the method gives promising results. The quality of the method may not be as 
good as other dedicated methods, but it is very tractable and gives quickly medium 
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quality solutions, with guarantees of feasibility. Research is done to improve the 
quality of the method by choosing suitable coefficients and hybridize the method with 
other metaheuristics such as genetic algorithms and local search methods. The idea 
would be to use the method as a “fast feasible solution generator”. Promising results 
about cooperative optimization methods ant colony/genetic algorithm have been 
obtained in previous works [22] for a purely integer programming formulation of Unit 
Commitment. 

Table 2. Optimization results for the benchmark example 

 Best Case Mean Standard 
deviation 

After 100 iter. 
 

After 200 iter. 

9.18 103 €€  
(+4.5%) 

8.98 103 €€  
(+2.3%) 

9.78 103 €€  
(+11.4%) 
9.48 103 €€  
(+7.7%) 

451 €€  
 

370 €€  

5   Conclusion and Forthcoming Works 

A mixed ant colony optimization algorithm has been presented in this paper. The idea 
is to use a purely ant colony algorithm both for integer and real variables to solve the 
Unit Commitment problem. Thus, a coupling of a discrete ant colony algorithm and a 
continuous one has been developed. Finally, as this algorithm is a constructive one, 
the satisfaction of all constraints is guaranteed by the whole procedure. The advantage 
of this method is that penalty functions are not required to solve the problem: the 
guarantee of the solution feasibility does not lead to the tuning of new extra 
parameters. Finally, numerical results obtained with a benchmark example show that 
the method is a promising one, as interesting solutions can be computed with very low 
computation times.  

At present, several interesting questions are investigated. Among them is the 
extension of the method to more generic mixed optimization problems. Indeed, the 
developed approach is well suited to Unit Commitment problem as all constraints can 
be taken into account by considering only binary variables, which is of course not 
always the case for mixed problems. Forthcoming works deals also with the 
hybridization of the proposed method with other classical optimization methods such 
as genetic algorithms or local search algorithms, the extension to larger scale cases of 
Unit Commitment, and the extension of the algorithm to other classical optimization 
problems of the literature. 

References 

1. Padhy N. P., Unit commitment – a bibliographical survey, IEEE Transactions on Power 
Systems, Vol. 9 (2004), pp.1196-1205. 

2. Chen C.-L, Wang S.-C., Branch and Bound scheduling for thermal generating units, IEEE 
Transactions on Energy Conversion, Vol. 8, n°2 (1993), pp. 184-189. 



340 A.-T. Serban and G. Sandou 

3. Ouyang Z., Shahidehpour S. M., An intelligent dynamic programming for unit 
commitment application, IEEE Transactions on Power Systems, Vol. 6, n°3 (1991), pp. 
1203-1209. 

4. Senjyu T., Shimabukuro, K., Uezato K., Funabashi T., A fast technique for Unit 
Commitment problem by extended priority list, IEEE Transactions on Power Systems, 
Vol. 19, n° 4 (2004), pp. 2119-2120. 

5. Zhai Q; Guan X., Unit Commitment with identical units: successive subproblems solving 
method based on Lagrangian relaxation, IEEE Transactions on Power Systems, Vol. 17, 
n°4 (2002), pp. 1250-1257. 

6. Cheng C.-P., Liu C.-W., Liu C.-C. Unit Commitment by Lagrangian Relaxation and Genetic 
Algorithms, IEEE Transactions on Power Systems, Vol. 15, n° 2 (2000), pp. 707-714. 

7. Dotzauer E., Holmström K., Ravn H. F., Optimal Unit Commitment and Economic 
Dispatch of Cogeneration Systems with a Storage, 13th Power Systems Computation 
Conference, Trondheim, Norway (1999), pp. 738-744. 

8. Yin Wa Wong S., An Enhanced Simulated Annealing Approach to Unit Commitment, 
Electrical Power & Energy Systems, Vol. 20, n° 5 (1998), 359-368. 

9. Rajan C. C. A, Mohan M. R. An evolutionary programming-based tabu search method for 
solving the unit commitment problem, IEEE Transactions on Power Systems, Vol. 19, n°1 
(2004), pp. 577-585. 

10. Swarup K . S., Yamashiro, Unit commitment solution methodology using genetic 
algorithm, IEEE Transactions on Power Systems, Vol. 17, n°1 (2002), pp. 87-91. 

11. Cheng C.-P., Liu C.-W., Liu C.-C., Unit Commitment by annealing-genetic algorithm, 
Electrical Power and Energy Systems, Vol. 24 (2002), pp. 149-158. 

12. Song Y. H., Chou C. S., Stonham T. J., Combined heat and power economic dispatch by 
improved ant colony search algorithm, Electric Power System Research, Vol. 52 (1999), 
pp. 115-121. 

13. Simon S. P., Padhy N. P., Anand R. S., An ant colony system approach for unit 
commitment problem, Electrical Power & Energy Systems, Vol. 28, n° 5 (2006), 315-323. 

14. Sisworarhardjo N. S., El-Keib A. A., Unit commitment using the ant colony search 
algorithm, Large Engineering Systems Conference on Power Engineering, Halifax, Canada 
(2002). 

15. Sum-Im T., Ongsakul W., Ant colony search algorithm for unit commitment, IEEE 
International Conference on Industrial Technology, Maribor, Slovenia (2003). 

16. Bilchev G., Parmee I., The ant colony metaphor for searching continuous spaces, Lecture 
Notes in Computer Science, Vol. 993 (1995), pp. 25-39. 

17. Dorigo M., Maniezzo V., Colorni A., The Ant System: Optimization by a Colony of 
Cooperating Agents, IEEE Transactions on Systems, Man and Cybernetics-Part B, Vol. 
26, n° 1 (1996), pp. 1-13. 

18. Dorigo M., Gambardella, L. M., Ant Colony System: a Cooperative Learning Approach to 
the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, Vol. 1 
(1997), 53-66. 

19. Sandou G., Font S., Tebbani S., Hiret A., Mondon C., Optimisation par colonies de 
fourmis d’un site de génération d’énergie, Journal Européen des Systèmes Automatisés, 
Numéro spécial Métaheuristiques pour l’optimisation difficile, Vol. 38, n°9/10 (2004), pp. 
1097-1119. 

20. Stützle T., Hoos, H. H., MAX-MIN Ant System, Future Generation Computer Systems, 
Vol. 16 (2000), pp. 889-914. 

21. Socha K., Dorigo M., Ant colony optimization for continuous domains, Accepted to 
special issue of EJOR on adapting metaheuristics to continuous optimization (2006). 

22. Sandou G., Modélisation, optimisation et commande de parcs de production multi énergies 
complexes, PhD. Thesis, University Paris XI, (2005). 



B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 341–349, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Shuffled Complex Evolution of Particle Swarm 
Optimization Algorithm 

Jiang Yan1, Hu Tiesong1, Huang Chongchao2, Wu Xianing1, and Gui Faling1 

1 State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan 
University, Wuhan 430072, China 

lirenjy@sohu.com, tshu@whu.edu.cn, wxn800228@sohu.com, 
falinggui@sina.com 

2 School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China 
huangchongchao@hotmail.com 

Abstract. A shuffled complex evolution of particle swarm optimization 
algorithm called SCE-PSO is introduced in this paper. In the SCE-PSO, a 
population of points is sampled randomly in the feasible space. Then the 
population is partitioned into several complexes, which is made to evolve based 
on PSO. At periodic stages in the evolution, the entire population is shuffled 
and points are reassigned to complexes to ensure information sharing. Both 
theoretical and numerical studies of the SCE-PCO are presented. Five 
optimization problems with commonly used functions are utilized for 
evaluating the performance of the proposed algorithm, and the performance of 
the proposed algorithm is compared to PSO to demonstrate its efficiency. 

1   Introduction 

Particle Swarm Optimization (PSO) is a stochastic, population–based algorithm for 
solving optimization problems, which was introduced in 1995 by Eberhart and 
Kennedy [1] [2], who was inspired by the social behavior of animals such as fish 
schooling and bird flocking. PSO is initialized with a group of random particles 
(solutions) and then searches for optima by updating generations. At each step, each 
particle keeps track of its coordinates in hyperspace which are associated with the best 
solution it has achieved so far. This value is called pbest . And it keeps also track of 

the overall best value, and its location, obtained thus far by any particle in the 
population; the best value is a global best and is called gbest . 

As general swarm intelligence method, PSO also has premature convergence, 
especially in complex multi-peak-search problems. Many researchers are devoted into 
this field to handle its premature convergence. Angeline [3] incorporates PSO with an 
explicit selection mechanism similar to that used in more traditional evolutionary 
computations to improve PSO. Løvbjerg [4] proposes a hybrid PSO combining the 
traditional velocity and position update rules with the ideas of breeding and 
subpopulations, which has the potential to achieve faster convergence and the 
potential to find a better solution. Parsopoulos [5] [6] introduces function “stretching” 
to PSO for the alleviation of the local minima problem. In [7], Parsopoulos uses the 



342 J. Yan et al. 

technique of initializing the particle swarm optimizer using the nonlinear simplex 
method to explore the search space more efficiently and detect better solutions. 
Higashi [8] presents particle swarm optimization with Gaussian mutation. This 
method has been proved that can succeed in acquiring the better results than those by 
PSO alone. Inspired by GA, Shi [9] presents a hybrid evolutionary algorithm based on 
PSO and GA methods through crossing over PSO and GA, which possess better 
ability to find the global optimum than that of the standard PSO algorithm. Wang [10] 
integrates PSO and simulated annealing to improve the performance of PSO. 

Inspired by [11], we propose a shuffled complex evolution of particle swarm 
optimization algorithm (SCE-PSO) in this paper. The paper is organized as follows: 
Section 2 presents a review of PSO. Description of the proposed algorithm the SCE-
PSO is given in section 3. A convergence study of the SCE-PCO is given in section 4. 
Numerical examples used to illustrate the efficiency of the proposed algorithm are 
given in section 5. Finally, section 6 concludes this paper. 

2   Overview of PSO 

PSO is a population based optimization tool, where the system is initialized with a 
population of random particles and the algorithm searches for optima by updating 
generations. At each step, each particle keeps track of its coordinates in hyperspace 
which are associated with the best solution it has achieved so far. And it keeps also 
track of the overall best value, and its location, obtained thus far by any particle in the 
population. Suppose that the search space is n-dimensional, and then the particle i of 
the swarm can be represented by an n-dimensional vector

1 2( , , , )i i i inX x x x= . The 

velocity of this particle can be represented by another n-dimensional 
vector

1 2( , , , )i i i inV v v v= . The fitness of each particle can be evaluated according to 

the objective function of optimization problem. The best previously visited position of 
the particle i is noted as its individual best position

1 2( , , , )i i i inP p p p= . The position 

of the best individual of the whole swarm is noted as the global best 
position

1 2( , , , )nG g g g= . At each step, the velocity of particle and its new position 

will be assigned according to the following two equations: 

( )1 1 2 2( 1) * ( ) ( ( ) ( )) ( ( ) ( ))ij ij ij ij j ijv t v t c r p t x t c r g t x tχ+ = + ∗ ∗ − + ∗ ∗ −  (1) 

( 1) ( ) ( 1)ij ij ijx t x t v t+ = + +  (2) 

Where, 1r  and 2r  are independently uniformly distributed random variables with 

range (0,1) . 1c  and 2c  are positive constant parameters called acceleration coefficients 

which control the maximum step size. χ  is a constriction factor, which is used to limit 

the velocity. In PSO, Equation (1) is used to calculate the new velocity according to 
its previous velocity and to the distance of its current position from both its own best 
historical position and the best position of the entire population or its neighborhood. 
Generally, the value of each component in V can be clamped to the range 
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max max[ , ]V V−  to control excessive roaming of particles outside the search space. Then 

the particle flies toward a new position according equation (2). This process is 
repeated until a user- defined stopping criterion is reached. 

3   Description of SCE-PSO Algorithm 

In the original PSO, the swarm is guided by the best solution found so far by the 
whole swarm, which we call the gbest  model. In recent years, many neighborhood 

topologies have been investigated for PSO, which uses each particle’s best current 
performance of its neighbors to replace the best previous one of the whole swarm, 
which we call the lbest  model. In this paper, the algorithm SCE-PSO is proposed, 
which uses the particle’s so far best found function value to define the neighborhood 
relations. This algorithm is similar to the lbest  model in the fact that only a part of 
the swarm is considered for the velocity update of a particle. But in our algorithm the 
neighborhoods are constantly changing, according to the fitness development for the 
individuals. The SCE-PSO strategy is presented below and is illustrated in Fig.1. 

Step 1: Initializing. Select 1, 1p m≥ ≥ , where, p is the number of complexes, m  

is the number of points in each complex. Compute the sample size s pm= . 

Sample s points 
1, , sX X  in the feasible space. Compute the function value if  at 

each point iX . 

Step 2: Ranking. Sort the points in order of increasing function value. Store them 
in an array { , , 1, , }i iE X f i s= = . 

Step 3: Partitioning. Partition E  into p  complexes 1 2, , , pA A A , each containing 

points m , such that:
( 1) ( 1){ , , , 1, , }k k k k k

j j j k p j j k p jA X f X X f f j m+ − + −= = = = . 

Step 4: Evolving. Evolve each complex kA  using PSO separately. 
Step 4.1: Initializing. Select ,q T , where, q  is the population size of PSO, T  is the 

maximal iterated generation. 
Step 4.2: Selecting. Choose q distinct points 

1 , ,k k
qY Y  from kA  according to the 

function values to construct a sub-swarm. Better points in kA  have more probability 
to be selected. Store them in { , , , 1, , }k k k k

i i iF Y V u i q= = , where k
iV  is the velocity 

for particle k
iY  and k

iu  is the corresponding function value. Find out the best 

previously visited position of each particle k
iP  and the position of the best individual 

of the complex kG . 

Step 4.3: Comparing. Compare the function value between each particle k
iY  

and k
iP . If k

iY  is better than k
iP , then k k

i iP Y= . Compare the function value between  

each particle k
iY  and kG . If k

iY  is better than kG , then k k
iY G= . 

Step 4.4: Renewing. According to the formulation (1) and (2), renew the position 
and velocity of each particle. 
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Step 4.5: Iterating. Iterate by repeating Step 4.3 and Step 4.4 T times, whereT is a 
user-specified parameter which determines how fast each complex should evolve. 

Step 5: Complexes shuffling. Replace 1, , pA A  into E .Sort E  in order of 

increasing function value. 
Step 6: Check convergence. If the convergence criteria are satisfied, stop. 

Otherwise, return to Step 4. 
The SCE-PSO combines the strengths of the particle swarm optimization, 

competitive evolution and the concept of complex shuffling. It greatly enhances 
survivability by a sharing of the information gained independently by each complex. 
In the SCE-PSO, each member of a complex is a potential parent with the ability to 
participate in a process of evolution. A sub-swarm selected from the complex is like a 
pair of parents. To ensure that the evolution process is competitive, we require that 
the probability that better parents contribute to the generation of offspring is higher 
than that of worse parents. Finally, each new offspring replaces the worst point of the 
current sub-swarm, rather than the worst point of the entire population. This ensures 
that process before being replaced or discarded. Thus, none of the information 
contained in the sample is ignored. 

Start

Input: n=dimension, p=number of complexes 
        m=number of points in each complex

Compute: sample size s=pm

Sample s points at random in feasible space.
Compute the function value at each point

Sort the s points in order of increasing 
function value. Store them in E

Partition E into p complexes of m points

Evolve each complex A
k
, k=1,… ,p

Replace  Ak, k=1,… ,p into E

Convergence criteria satisfied?

Stop

No

Yes

Select q,T, set t=1

Select q points from A
k
  according to function values. 

Store them in F
k={Y

k
i ,V

k
i ,u

k
i ,i =1,… ,q}

Renew F
k
, V

k
and Evaluate fk

 

 Y
k
 is better than P

k
?

 Pk = Yk

 Y
k 

is better than G
k 

?

t=t+1
No

Yes

Yes

Yes

No

No

Replace Fk into Ak

t>=T?

 Gk = Yk

 

Fig. 1. The flow chart of the proposed SCE-PSO algorithm 

4   Convergence Analysis 

It is important to note if the trajectory of the particle convergences. Therefore, a 
convergence study of the SCE-PCO is given in this section. In equation (1) and (2), 
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the implicit form of the velocity and position equations are used for multi-particles 
working in a multi-dimensional search space. For ease of notation, the analysis below 
will be restricted to a single dimension so that the subscript j  is dropped. This can be 

done without loss of generality to dropping the subscript i , since there is no 
interaction between the different dimensions in the PSO. 

Theorem 1. Assume that at time t , the position of a particle is ( )x t  in the SCE-PSO, 

and then we will have:  

lim ( )
t

x t q
→∞

=  (3) 

Where q  is an arbitrary position in search space. 

Proof: According to the literature [12], we can get the following result: 

( )lim ( ) lim (1 ) ( ) ( )
t t

x t p t g tα α
→∞ →∞

= − +  (4) 

Where
1 1 2c c cα = + , 1c  and 2c  are acceleration coefficients. ( )p t  is noted as its 

individual best position of this particle in each complex , 1, 2, ,=kA k p  and ( )g t  is 

the best position of the complex at time t , where p  is the number of the complexes. 

If
1 2c c= , then the equation becomes: 

( ) ( )
lim ( ) lim

2t t

p t g t
x t

→∞ →∞

+=  (5) 

Based on PSO, if the new position of the particle in each complex is better than its 
individual best position, the value of the latter will be replaced by the former. In the 
same way, if its new position is better than the best position of the complex, the 
former replaces the latter. Suppose that the final best position of the complex is q , 

then we have: 

lim ( )
t

g t q
→∞

=  (6) 

Due to update equation (2), the individual best position of the particle will 
gradually move closer to the best position of the complex, that is: 

lim ( )
t

p t q
→∞

=  (7) 

Substituting equation (6) and (7) into equation (5), we have: 

lim ( )
t

x t q
→∞

=  (8) 

5   Computational Experiences 

In this section, five nonlinear benchmark functions that are commonly used in 
literature [13] are performed. The functions, the number of dimensions, the 
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Table 1. Optimization test functions 

Name Formula Dim Range Opt. Goal

Sphere 2
0 ( ) i

i

f x x
1

n

=

= 30 [ 100,100]n− 0 0.01 

Rosenbrock
1

2 2 2
1 1

1

( ) (100( ) ( 1) )
n

i i i
i

f x x x x+

−

=

= − + − 30 [ 30,30]n− 0 100 

Rastrigrin 2
2

1

( ) ( 10cos(2 ) 10)i i
i

f x x xπ
n

=

= − + 30 [ 5.12,5.12]n− 0 100 

Griewank 2
3

1
1

1
( ) cos 1

4000

n
i

i
i

i

x
f x x

i=

n

=

= − Π + 30 [ 600,600]n− 0 0.1 

Schaffer’s
f6

2 2 2
1 2

6 2 2 2
1 2

(sin ) 0.5
( ) 0.5

[1.0 0.001( )]

x x
f x

x x

+ −
= +

+ +
2 [ 100,100]n− 0 10-5

 

admissible range of the variable, the optimum and the goal values are summarized in 
Table 1. All functions are designed to have minima at the region. 

To evaluate the performance of the proposed SCE-PSO, the basic PSO are used for 
comparisons. For these two methods, the parameter set 
(

1 20.729, 1.494c cχ χ χ= ∗ = ∗ = ) was recommended by Clerc [14]. In our case for 

the SCE-PSO, the following values are used as default: 4, 2 , 3p m q T n= = = , 

where p  is the number of complexes, m  is the number of points in each complex, q  

is selected as the population size of each complex to execute PSO, T  is the number of 
evolution steps taken by each PSO in the SCE-PSO, and n  is the dimension size. 
Each optimization experiment randomly initializes x  and v  in the range

min max[ , ]x x  

indicated in Table 1. Population sizes of 40,80,120N =  particles were tested. 

In the experiments, the goal value for each function was recorded and the average, 
maximum and minimum function value was calculated for each algorithm. If the goal 
was not reached within the maximum number of 10000 iterations, the run was 
considered unsuccessful. For evaluating the significance, the Wilcoxon Rank Sum 
Test was used to compare the results for PSO and the SCE-PSO. The results of the 20 
test runs for the two algorithms form two independent samples. For two algorithms (A 
and B), the distribution of their results, 

AF  and BF  are compared using the null 

hypothesis 
0 A BH : F = F  and the alternative 

1 A BH : F < F . The tests are made at a 

significance level of 0.01α = . In the results section the significance comparison 
between the two algorithms is displayed using a 2 2×  matrix 

, [1,2]( )ij i jA a ∈= , in which 

an entry “+” at position 
ija  denotes that algorithm i  is significantly better. For 

example, the leftmost “+” in the second row of Table 2 indicates that the SCE-PSO is 
significantly better than PSO. An entry “-” at position 

ija denotes that algorithm i  is 

not significantly better than algorithm j . The entries iia on the main diagonal are left 

empty. We call the corresponding matrix a significance matrix (s-matrix). 
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Table 2. The Maximum, Minimum and Average function values of the SCE-PSO and PSO 

Size Alog. Max Min Avg Success rate (%) S-Matrix
Sphere 1 2 

PSO 9.94 2.03E-04 1.82 10 - 
40

SCE-PSO 8.87E-06 1.95E-08 2.88E-06 100 + 
PSO 6.42E-01 8.90E-05 9.34E-02 50 - 

80
SCE-PSO 3.67E-12 2.50E-13 1.03E-12 100 + 

PSO 5.57E-05 1.67E-08 8.83E-06 100 - 
120

SCE-PSO 1.29E-13 4.25E-14 7.02E-14 100 + 
Rosenbrock 1 2 

PSO 488.22 8.19 161.54 55 - 
40

SCE-PSO 2.89 4.33E-06 3.08E-01 100 + 
PSO 5.36E+01 1.05E-01 1.00E+01 100 - 

80
SCE-PSO 5.42E-02 8.57E-07 1.04E-02 100 + 

PSO 2.76E-01 1.88E-09 2.80E-02 100 - 
120

SCE-PSO 1.54E-05 1.58E-10 1.57E-06 100 + 
Rastrigrin 1 2 

PSO 150.07 54.94 105.63 40 - 
40

SCE-PSO 27.86 1.24 20.94 100 + 
PSO 120.49 4.09 60.50 85 - 

80
SCE-PSO 16.91 1.17E-08 5.04 100 + 

PSO 93.74 1.53E-05 28.74 100 - 
120

SCE-PSO 8.95 1.28E-13 2.64 100 + 
Griewank 1 2 

PSO 1.97 8.53E-03 1.22 5 - 
40

SCE-PSO 3.89E-02 7.34E-04 1.33E-02 100 + 
PSO 1.43E-01 1.16E-04 3.83E-02 95 - 

80
SCE-PSO 7.82E-05 2.23E-12 1.91E-05 100 + 

PSO 6.42E-02 2.41E-06 7.82E-03 100 - 
120

SCE-PSO 5.17E-12 2.55E-15 3.89E-13 100 + 
Schaffer’s f6 1 2 

PSO 0 0 0 100 - 
40

SCE-PSO 0 0 0 100 - 
PSO 0 0 0 100 - 

80
SCE-PSO 0 0 0 100 - 

PSO 0 0 0 100 - 
120

SCE-PSO 0 0 0 100 -  
 

The performance of the SCE-PSO and PSO are shown in Tables 2 and 3. In most 
cases, increasing the number of particles decreases both the maximum, minimum, 
average values and the standard deviation of function values. Whatever the population 
size is, the function values and standard deviation of function values obtained by the 
SCE-PSO is smaller than or equal to that of PSO and the success rate of the SCE-PSO 
(fraction of the number of runs it reached the goal) is superior to that of PSO. These 
mean that the SCE-PSO has better global convergence and stability than PSO. Table 3 
lists mean values of CPU time of the two algorithms. It can be seen that the proposed  
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Table 3. The deviation of function values and CPU time of the SCE-PSO and PSO 

Deviation of function values CPU(s)
Function Pop. size 

PSO SCE-PSO PSO SCE-PSO 
40 2.583 0.000 20 4 

Sphere 80 0.178 0.000 66 10 
120 0.000 0.000 137 17 
40 164.709 0.71 28 10 

Rosenbrock 80 12.688 0.019 89 21 
120 0.063 0.000 194 34 
40 28.485 7.919 24 6 

Rastrigrin 80 28.205 5.045 83 13 
120 27.561 2.647 158 23 
40 0.427 0.001 27 8 

Griewank 80 0.039 0.000 86 16 
120 0.016 0.000 160 27 
40 0.000 0.000 4 1 

Schaffer’s f6 80 0.000 0.000 9 2 
120 0.000 0.000 14 3  

algorithm the SCE-PSO can find global or near global optimal solutions for all test 
problems in a short time. Therefore, the proposed algorithm is efficient and effective. 

6   Conclusions 

This paper presents a shuffled complex evolution of particle swarm optimization 
algorithm called SCE-PSO designed to improve the performance of PSO. In the SCE- 
PSO, a population of points sampled randomly from the feasible space. Then the 
population is partitioned into several complexes, which is made to evolve based on 
particle swarm optimization (PSO). At periodic stages in the evolution, the entire 
population is shuffled and points are reassigned to complexes to ensure information 
sharing. 

This new method can enhance survivability by a sharing of the information. Five 
benchmark functions are performed in the simulation part using different algorithms. 
The performance comparisons indicate that the SCE-PSO is superior to PSO. 
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Abstract. This paper proposes a wasp swarm optimization algorithm, which is
applied to the dynamic variant of the maximum satisfiability problem, or MAX-
SAT. Here, we describe the changes implemented to optimize the dynamic prob-
lem and analyze the parameters of the new algorithm. Wasp swarm optimization
accomplishes very well the task of adapting to systematic changes of dynamic
MAX-SAT instances derived from static problems, and significantly outperforms
the local search algorithm used as benchmark.

1 Introduction

In this article we discuss an application of wasp swarm optimization (WSO) [1] to the
dynamic variant of the constraint satisfaction problem MAX-SAT. By applying WSO to
the dynamic variant of MAX-SAT we are solving a problem with different characteris-
tics, specially due to the adaptation required from the algorithm during the optimization
process, to which meta-heuristical approaches are particulary suited. For validating of
the results we use a version of local search (LS) [2], which is very simple but fulfils the
role intended here of showing that WSO is adequate for this problem.

This paper is divided as follows. First, we do a brief introduction to the proposi-
tional satisfiability problem, MAX-SAT and dynamic MAX-SAT. Then we present our
models of LS and WSO applied to the dynamic SAT. We end the paper with a general
conclusion on how well WSO applied to dynamic SAT, and an outline for future work.

2 The MAX-SAT Problem

The general constraint satisfaction problem (CSP) [3] consists of finding an assignment
to a set of variables that satisfies a set of constraints over the domains of these vari-
ables. This problem has many real-life applications, for example in resource allocation
and scheduling, which makes it very interesting as the procedures developed can be
easily applied to these problems. A CSP is formally defined as a triple (X, D, C) where
X = {x1, ..., xn} is the set of variables, D = {D1, ..., Dn} is the set of domains,
which defines the values a variable can assume and C = {C1, ..., Cm} is the set of con-
straints among the variables. The defined triple is called an instance and represented

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 350–357, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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by Φ. A solution of the CSP is a complete assignment of the variables that satisfy all
the constraints. The MAX-CSP is a variant of the CSP, where the problem may be un-
satisfiable, and the goal is then to find the solution that satisfies the maximum number
of constraints possible.

The maximal satisfiability problem (MAX-SAT) is a typical NP-Hard CSP [4] in
which the domain of each variable is true or false, or equivalently X ∈ {0, 1}n. Given
a set of clauses, each of which is the logical disjunction of K ≥ 2 variables, the goal
is to find an assignment that satisfies the largest number of clauses or, in the weighted
version, the assignment that maximizes the sum of weights of the satisfied clauses.

The 3-satisfiability problem, or 3-SAT, is a special case of the k-satisfiability (k-SAT)
problem, where each clause contains at most K = 3 literals.

3 The Dynamic MAX-SAT Problem

The dynamic SAT problem considered here was introduced in [5] by Holger H. Hoos
and Kevin O’Neill and it is a generalization of the satisfiability problem in propositional
logic which allows changes of a problem over time. There is more than one way of
creating those changes. The possibility that we explored here is to start with a fixed set
of clauses and allow certain propositional variables to be set arbitrarily to true or false
at different points in time. Each subproblem created in this way is called a stage with
an instance Φ(i) defined in the same way as for the static SAT problem, so they can be
directly compared.

The problem can be defined as an instance defined by a set of clauses with a fixed
number of variables being set forcibly to true or false in every stage, which means
that for the MAX-SAT problem the variable set X is defined in instance Φ(i) as x ∈
{0, 1, free}, where free means that the variable is unassigned.

As an example, we can formulate a simple problem. Let us have a static MAX-SAT
problem composed by an instance Φ with 3 clauses and 5 variables

Φ = (x1 ∨ x̄2 ∨ x4) ∧ (x3 ∨ x4 ∨ x̄5) ∧ (x1 ∨ x3 ∨ x̄4) (1)

Ψ is the function that determines which ones of the variables of X are fixed for each
instance and their values, from the set of existing variables: X1 = Ψ(X1). In this
example, it fixes 2 variables randomly at each stage

Stage 1 : X = [0, free, 1, free, free] (2)

In order to assure the variability of the problem, at least one of the variables fixed in
stage i cannot have been fixed in stage i − 1.

Stage 2 : X = [0, free, free, free, 1] (3)

Stage 3 : X = [free, 1, free, free, 1]
Stage 4 : ..

Stage 1 can then be formulated as a modified set of constraints and variables. The new
constraints being x1 = 0 and x3 = 1, and the variables being x2, x4 and x5. The
assignment x2 = 1, x4 = 1 and x5 = 0 solves the problem, since
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(0 ∨ 0 ∨ 1) ∧ (1 ∨ 1 ∨ 1) ∧ (0 ∨ 1 ∨ 0) = true. (4)

In this case, the cost of the solution is 0 (no clauses are left unsatisfied) and the solution
is not unique, which does not concern us since the problem here consists only in finding
a best solution.

4 Local Search Applied to the Dynamic MAX-SAT Problem

The local search (LS) [2] used in this paper as a benchmark for the results obtained
with WSO is shown in Algorithm 1 and starts with an initial solution for each stage,
created from the heuristics, which is improved in each iteration by flipping a variable
(i.e. changing its value) that makes the cost of the solution lower (or the utility higher).
In the unweighted variant of the MAX-SAT problem we define cost as the total num-
ber of unsatisfied clauses whose variables are all assigned (i.e., clauses that cannot be
satisfied). In the weighted variant, we define utility as the sum of every satisfied clause
multiplied by its weight. When all clause weights have the value one, the utility is iden-
tical to the cost. If this variable is not found for a given number of evaluations, then the
solution does not improve any further.

We set the maximum number of evaluations equal to the number of variables.

Algorithm 1. Local search applied to dynamic MAX-SAT
Creation of the initial solution

Solution: S = s(η)
While the stopping criteria are not satisfied

Create new solution
Snew = LocalSearch(solution)

End optimization after N iterations

The heuristic information η of the SAT problem considered here is given by

η =
1

1 + f(sk ∪ 〈j, e〉) − f(sk)
(5)

where f(sk ∪ 〈j, e〉) is the cost of the partial solution sk of the problem after assign-
ing the value e to variable j. The probability of assigning the value e to variable j is
determined by ηe=0 and ηe=1 as in:

P1 =
ηα

e=1

ηα
e=0 + ηα

e=1
(6)

where α is a system parameter.
LS evaluates the cost of (sk ∪ 〈j, e〉) for the random variable j and its random as-

signment e. Each iteration of the algorithm returns a new solution that is necessarily
either better or the same (in case the local search was exhausted) as the one before. The
cost and utility are defined as before.
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5 Wasp Swarm Optimization Applied to the Dynamic MAX-SAT
Problem

In this section, we introduce the application of the wasp swarm optimization (WSO) to
the dynamic constrained satisfiability problem.

Theraulaz introduced in [6] a model for the organizational characteristic of a wasp
colony. In addition to the tasks of foraging and brooding, also shared with ant colonies,
wasp colonies organize themselves in a hierarchy through interaction between the indi-
viduals. This hierarchy is an emergent social order resulting in a succession of wasps
from the most dominant to the least dominant and is the inspiration of the WSO algo-
rithm. The model of Theraulaz describes the nature of interactions between individual
wasps and their local environment with respect to task allocation.

Cicirello and Smith [1] have first implemented WSO in order to optimize the job
assignment problem in factories. The optimization process is sketched in Algorithm 2.
In WSO, artificial wasps compete against each other in a tournament in order to win and
thus achieve a desired goal. In applying this concept to the SAT problem, the desired
goal is defined as the wish to be used as the template in the creation of a new wasp.
Each wasp has a certain force Fi that determines its chance of winning the tournament.
The force of solution i is defined by costi, or Utilityi for the weighted problems.

Fiunweighted
= c1×

1
costi

+ c2×divi (7)

Fiweighted
= c1×Utilityi + c2×divi (8)

where c1 and c2 are parameters of the system and divi is the diversity of solution i. Di-
versity is defined as the lowest Hamming distance (number of bits which differ between
two binary strings) between solution i and all the solutions computed previously, nor-
malized by dividing the distance by the number of variables of the system. The concept
of diversity was used in [7] by R. Battiti and M. Protasi to adapt a reactive local search
algorithm with good results.

The initial population of solutions is created through the heuristics in the same man-
ner as described before for the local search.

The new solution is created through a stochastic process where the value e of each
variable j of the best solution S so far and a heuristically assigned value for the same
variable are balanced to obtain a new value. We biased the heuristics η towards the value
of the best solution, by a multiplying factor Ws:

η(e = 0, 1) =
{

η0,1 ∗ Ws if Sj = 0, 1
η0,1 otherwise

(9)

With this approach, each solution has a large probability of being created from the
immediately previous one, but that is not certain, creating a tree of possible interme-
diary solutions which are not explored, but remain available to be explored at a later
moment with a certain probability, that decreases with time, of being picked. The value
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Algorithm 2. MAX-SAT optimization with WSO
Creation of the initial wasp swarm

Solution: Si = s(η)
Force: Fi = f(Si)
Wasp: Wi = [Si, Fi]

While the stopping criteria are not satisfied
Create new wasp

Tournament: P (Wi) = f(Fi/
�

F )
Create new solution:

Snew = s(η, P (Wi))
Compute Force and form new wasp

Update wasp swarm
Update tabu list Γ
Update best solution

End optimization

e assigned to variable j is then determined in a similar way as for LS, being 1 with
probability given by:

P1 = 1
/(

1 +
ηα

e=0

[ηe=1 ∗ Ws]α

)
(10)

and 0 otherwise.
The parameters were set to α = 6, P0 = 1 and Ws = 2.

6 Results for the Dynamic MAX-SAT Problem

We applied our adaptation of wasp swarm optimization to the unweighted version of
the dynamic MAX-SAT problem, using as basis for comparison one weighted instance
with 100 variables and 850 clauses (jnh1) and 900 clauses (jnh301). Then we applied the
algorithms to the unweighted version, using one instance with 250 variables and 1065
clauses (uuf250-01 and uuf250-02). The weighted and unweighted instances can be
retrieved respectively from http://www.research.att.com/∼mgcr/data/maxsat.tar.gz and
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB. These four instances were
made dynamic by building 100 stages with 50 (for the unweighted problems) and 100
(for the weighted problems) iterations per stage with the procedure described in section
3. The number of fixed variables per stage was set to 6. Figure 1 shows the results for
LS and WSO applied to the weighted problems, while Figure 2 shows the results for
the unweighted problems. For the jnh instances we report the average fitness from the
optimal solution and the average number of iterations until the best solution is found.
For the uuf instances we report the average in number of unsatisfied clauses instead of
the average fitness. In the weighted case, fitness is defined as

fitness =
Utility∑

(WeightClausei)
(11)
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Fig. 1. LS(*) and WSO (o) algorithms applied to the weighted dynamic MAX-SAT problems
jnh1 and jnh301, 100 stages each

From the results we conclude that for both the weighted and the unweighted prob-
lems WSO easily outperforms LS. The standard deviation for the fitness is more or less
identical for both algorithms and the difference is too small to influence the comparison
of the algorithms. For the unweighted problems, which are of bigger size, it is clear that
besides getting to a better solution than LS, WSO also ”needs” less iterations to achieve
it (i.e computational cost). It is also noticeable that WSO does stop improving through
the stages, as opposite to LS. There is a slight increase in quality of the solution find for
each stage as the stages progress.

The chosen number of iterations per stage have obviously influenced these results. If
each stage is allowed to have a sufficient number of iterations, then LS will always find
results similar to WSO, although with a much higher computational cost. If each stage
only has a small number of iterations then the effect seen in the figures still occurs,
but the differentiation between LS and WSO only happens after a very large number of



356 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50
Problem UUF250−N01

U
ns

at
. c

la
us

es

10 20 30 40 50 60 70 80 90 100
0

20

40

Ite
ra

tio
ns

 u
nt

il 
be

st

10 20 30 40 50 60 70 80 90 100

20

40

Problem UUF250−N02

U
ns

at
. c

la
us

es

10 20 30 40 50 60 70 80 90 100
0

50

Ite
ra

tio
ns

 u
nt

il 
be

st

Stage

Fig. 2. LS(*) and WSO (o) algorithms applied to the unweighted dynamic MAX-SAT problems
uuf250-01 and uuf250-02, 100 stages each

stages, since WSO needs time to get to a visibly better solution. Afterwards, the quality
of the solution found will only get better through the stages in comparison with LS,
which is unable to find better solutions at a much earlier stage.

7 Conclusions

In conclusion, WSO works very well for the type of dynamic SAT problems analyzed
here and the quality of the solutions it finds is better than the quality of the solutions
found with the LS algorithm. That is true for both the weighted and unweighted variants
of MAX-SAT, with no extra parameter tuning necessary. The quality of the best solution
in each stage is always high, with even a tendency to increase through the stages. For
future work it is our intention to expand these results to other types of problems. Here
we limited the analysis to the problems analyzed in [8].
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How WSO compares with other algorithms used to solve the same problem is another
question. LS can be improved with better heuristics that try to avoid falling into local
minima caused by saturation of LS [9]. These intelligent local search strategies, such
as WalkSAT [10] and IROTS [11], provide very good results in the SAT problem. The
adopted LS provides a reasonable benchmark in this first evaluation of the use of WSO
to optimize dynamic SAT problems.
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Abstract. The multidimensional 0/1 knapsack problem is a classical
problem of discrete optimization. There are several approaches for solv-
ing the different variations of such problem, including mathematical
programming and stochastic heuristic methods. This paper presents the
application of Particle Swarm Optimization (PSO) for the problem, us-
ing selected instances of ORLib. For the instances tested, results were
very close or equal to the optimal solution known, even considering that
the parameters of PSO were not optimized. The analysis of the results
suggests the potential of a simple PSO for this class of combinatorial
problems.

1 Introduction

There are problems with important practical applications concerned with the
search of the “best” configuration or set of parameters to achieve some objective
criteria. Such problems are generally referred to as optimization problems. The
knapsack problem is a classical optimization problem and has many practical
applications in industry, transportation and logistics. A simple and general de-
scription of the problem is as follows. Given a set of objects with corresponding
values and costs (weights), select some of them to put in a container (knap-
sack), without extrapolating its capacity, in such a way that maximize the sum
of values. This is the basic definition of the problem. However, there are several
variations, such that [10]:

– Single knapsack problem: all objects must be put in a single container;
– Multidimensional knapsack problem: more than one container is available;
– Multiple-choice knapsack problem: objects are clustered into subsets and at

most one object can be selected;
– Bounded knapsack problem: there is a limited number of objects available

to be selected.

This paper is related to the Multidimensional Knapsack Problem (MKP),
possibly, the most widely known version of the problem [2]. This same problem
� This work was partially supported by the Brazilian National Research Council –
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is also referred as: Multiconstraint, Multi-Knapsack or 0/1 Multidimensional
Knapsack Problem.

Many problem-independent and domain-specific heuristics have been devel-
oped for optimization problems and, in particular, to the MKP that is NP-
complete. The quest for a computational algorithm that are effective both in
terms of processing time and quality of the solutions is the motivation of this
work. Therefore, we propose a methodology for solving MKP using a relatively
recent evolutionary computation technique, the Particle Swarm Optimization
(PSO), proposed by Kennedy and Eberhart [7]. This problem has been explored
by using genetic algorithms [2],[6],[8], and there are evidences that PSO can
be useful for it [4]. PSO, in fact, has been applied successfully to several prob-
lems like pattern recognition, classification, scheduling, mobile robotics, image
processing, and others [5].

2 Particle Swarm Optimization

PSO is a heuristic method for optimization, inspired in the behavior of social
agents found in nature. This behavior can be observed in bird flocking, bee
swarming, and fish schooling, for instance.

The computational model is population-based. Agents, or particles, change
their position (state) in the multidimensional search space of the problem, ac-
cording to their own experience and the influence of the neighboring particles.
Each particle has a limited store capability, keeping track only of information
about its current position, speed and quality (fitness of the solution regarding
the problem), as well as its best position ever visited (“best particle solution” –
pbest). Amongst the swarm of particles, the one with best quality is referred as
“the best global solution” – gbest. Alternatively, only the neighborhood of the
particle is considered, that is, the (“best local solution” – lbest. At each time
tick, particles move, influenced by both pbest and gbest, to a new position in the
search space. This is an iterative process, repeated until a stop condition is met,
usually a predefined number of iterations. Whenever a better solution than the
previous is found, gbest is updated. This procedure is similar to the principle of
elitism, common in other evolutionary computation paradigms, since throughout
iterations the best solution is conserved. However, there is a subtle difference:
gbest is updated is a reference for all particles in the same iteration (in a genetic
algorithm, this would be similar to say that all individuals would mate with the
best individuals).

It is interesting that pbest would be a point with good fitness and also located
quite far from gbest in the search space, so as to improve diversity. In PSO, like
other population-based heuristics, maintaining diversity throughout iterations
is often a challenge, and it is a necessary condition to assure a satisfactory
exploration of the search space. When many pbest ’s are somewhat close to the
gbest, there will be a particle crowding and the search stagnates. A mechanism
to avoid the consequences of this unavoidable convergence is the explosion of the
swarm, sending particles to random positions and keeping gbest.
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In the classical PSO model, the movement of the i-th particle is defined by
(1), where its next position in the search space (Xt+1

i ) is updated using the
current position and a speed term (V t

i ):

Xt+1
i = Xt

i + V t
i . (1)

In fact, the speed term actually does not have the dimension of velocity. It
could be better defined as ΔX .

i but, for the sake of simplicity, it is called speed,
following [5]. The speed term, in turn, is defined according to (2):

V t
i = c1.r1.Δpbest + c2.r2.Δgbest , (2)

where: V t
i is the current speed of the i-th particle; r1 and r2 are random values

in the range [0..1]; c1 and c2 are the weights of pbest and gbest, respectively (in
percentage); Δpbest and dgbest are the distance between the current position
and pbest and the current position and pgbest, respectively. The speed term,
that is, the updating rate of the current position, is directly proportional to the
distance between the current position to pbest and gbest. Therefore, within few
iterations the particle will be attracted to either pgbest or gbest.

The speed term controls the amount of global and local exploration of the
particle (that is, the balance between exploration and exploitation). A high speed
facilitates global exploration, while small speed will encourage local search. A
user-defined upper bound (Vmax) is established to limit the maximum speed of
particles. Figure 1 shows graphically the elements that influence the position of
a particle in the hypersurface of the search space (in this case, a bi-dimensional
space).

According to a psychological interpretation of PSO [5], the swarm of particles
is like a population of individuals. Then, the two terms of (2) represent the
cognitive and the social components of a particle’s behavior. The former leads
the particle to repeat its own past successful behaviors, while the latter makes it
follows the others’. There are no default values for weights c1 and c2; sometimes
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Fig. 1. Illustration of how the position of a particle is updated in PSO
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they are set identical and sometimes they are set asymmetrical. It is commonly
accepted that those weights are problem-dependent and this seems to be an open
subject for further research [3].

3 Methodology

A description of the MKP includes n objects and m knapsacks with specific
capacities cj (j = 1, . . . , m). There are binary variables xi (i = 1, . . . , n) that
are set to 1 if the i-th object is selected to be put in the knapsacks, and 0,
otherwise. Every object has a satisfaction value pi (i = 1, . . . , n) and a specific
weight wij for each knapsack. Therefore, the optimization problem is defined as
follows [8],[10]:

maximize
∑n

i=1 pi.xi, (3)
subject to

∑m
j=1 wij .xi ≤ cj . (4)

The objective of the MKP is to fill the knapsacks with the most valuable
objects without extrapolating their capacities. Therefore, a particle should be
represented as a possible solution for the MKP. In words, a particle is a binary
vector, where each element indicates whether or not an object is selected to be
included in the knapsacks. The length of the vector depends on the number of
objects available for the selection, that is, it represents the n-dimensional search
space. It should be noted that, in this formulation, a given selected object is to
be included in all knapsacks.

The evaluation of a possible solution is given by a fitness function. This func-
tion is what PSO will optimize. The fitness function was defined before (3), but
the constraint (4) is not directly dealt by the algorithm, and so, unfeasible solu-
tions can be found during search. This policy is frequently used in evolutionary
algorithms because during evolution towards the best global solution, the algo-
rithm can pass through regions of unfeasible solutions. In PSO, a given particle
is dynamically attracted by the social and the cognitive components, and an
unfeasible particle now can be changed to a feasible one later. A particle rep-
resenting an unfeasible solution is allowed to exist in the swarm, but a penalty
will be imposed to the fitness of such particle. This penalty is proportional to
the total amount of excess in the knapsacks.

4 Computational Experiments

For the computational experiments, we used several instances of MKP found in
[1]. These instances were divided into two groups: the first one corresponded to
series “sento” [12] and “weing” [15], and the second group, to “weish” [13]. For all
experiments reported in this section, the PSO was run for 300 iterations.

The first group of experiments had 10 problems with either 2 or 30 knapsacks
and 28, 60 or 105 objects. For these experiments, results are shown in Table 1.
In this table, n is the number of objects and m is the number of knapsacks.
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Table 1. Comparison of results obtained by PSO and the optimal known solutions

problem m n optimum best abs.diff.
sento1 30 60 7772 7725 0.605%
sento2 30 60 8722 8716 0.069%
weing1 2 28 141278 138927 1.664%
weing2 2 28 130883 125453 4.149%
weing3 2 28 95677 92297 3.533%
weing4 2 28 119337 116622 2.275%
weing5 2 28 98796 93678 5.180%
weing6 2 28 130623 128093 1.937%
weing7 2 105 1095445 1059560 3.276%
weing8 2 105 492347 492347 0.000%
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Fig. 2. Performance of PSO regarding the complexity of the problem

Each experiment was repeated 100 times with different random seeds and the
best solution found by PSO is shown in the table. Therefore, a total of 1,000
experiments were run in this group.

The second group of experiments was to investigate the behavior of PSO
regarding the complexity of the problem. In this particular case, complexity
is understood as the number of possible combinations of objects × knapsacks.
The second group of experiments had 30 problems, always with 5 knapsacks,
but objects ranged from 30 to 90. Figure 2 shows the performance of PSO re-
garding the relative difference between the best value found in 100 independent
runs and the optimum known value. As mentioned before, for this group of ex-
periments the number of knapsacks is constant (5) and the number of objects
increases.

To investigate the convergence of the algorithm, we analyzed the experiments
of four different instances with the same number of knapsacks: weish2, weish12,
weish23, weish28, having 30, 60, 80, 90 objects, respectively. Figure 3 shows
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Fig. 3. Evolution of solutions for some instances of the MKP

the evolution of the best solution found by PSO at each iteration for the four
instances (numbered as 2, 12, 23 and 28) in 500 iteractions. Each point of the
curves is the average of the best solution found in 100 independent runs with
random seeds.

It should be noted that [2] present a genetic algorithm for the MKP using
the instances used in our work, and they always found the optimum. However,
to achieve such performance, they needed to process 104 chromosomes, thus
requesting a large computational effort, not comparable with the PSO imple-
mentation.

5 Conclusions and Future Work

In table 1, the average performance of PSO for the ten case studies considered
was 2.269% of the known optimum. This shows that PSO can perform well for
this class of combinatorial problem, even for large instances. That is, PSO seems
to be efficient in navigating the hypersurface of the search space and finding good
solutions (and, sometimes, the best solution) independently of the initialization
and the trajectory of particles.

The second group of experiments aimed at identifying how the performance
of PSO degraded as the difficulty of the problem increased. For the particular
range of experiments done, we observed that PSO tends to decrease the average
performance almost linearly, as shown in figure 2. However, more experiments
have to be done so as to confirm this tendency for even harder instances. Also,
it can be seen in the graphics that, for the same degree of difficulty, different
performances are achieved, depending on the specific nature of each instance.

Figure 3 indicates that, the harder the instance, the longer PSO takes to
converge. In the figure, it can be observed a positive derivative in the curves,
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suggesting that more iterations, besides 500, are needed to converge. This is
specially true for the harder instances.

It is a matter of fact that PSO is sensitive to its control parameters, partic-
ularly for hard combinatorial problems with large search space [14]. Recall that
no serious attempt was done to optimize the running parameters for the PSO,
what could improve the performance achieving better results. Therefore, future
work will focus on fine-tuning the PSO parameters for given classes of problems,
by using some kind of adaptive strategy [11]. Recent literature have shown that
a PSO hybridized with a local search technique certainly can achieve better re-
sults than a “pure” PSO, independently of the problem [9]. Therefore, further
improvement of the system will be towards the hybridization with some local
search technique.

In general, the use of a problem-independent heuristics, such as PSO, gives
robustness and efficiency to the exploration of the search space of difficult prob-
lems. We believe that this is a promising method for solving several classes of
combinatorial problems.
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Abstract. In this paper, five previous Particle Swarm Optimization (PSO)  
algorithms for multimodal function optimization are reviewed. A new and a 
successful PSO based algorithm, named as CPSO is proposed. CPSO enhances 
the exploration and exploitation capabilities of PSO by performing search using 
a random walk and a hill climbing components. Furthermore, one of the previ-
ous PSO approaches is improved incredibly by means of a minor adjustment. 
All algorithms are compared over a set of well-known benchmark functions.  

1   Introduction 

Inspiring from the swarms in nature, such as; birds, fish, etc., Kennedy and Eberhart  
[7] proposed a population based algorithm called Particle Swarm Optimization 
(PSO). PSO combines cognition only model that values solely the self-experience 
and social only model that values solely the experience of neighbors. A particle en-
codes a candidate solution to a problem at hand. The algorithm uses a set of particles 
flying over a search space and moving towards a promising area to locate a global 
optimum. However, there are a set of problems requiring discovery of equal quality 
candidate solutions, so that, a user could make a choice in between them. In some 
problems, local optima, or a set of solutions with a predetermined quality levels can 
also be requested. Multimodal optimization problems represent such class of prob-
lems in which the researchers are interested. Different PSO algorithms have been 
already proposed for solving multimodal problems. These algorithms are mostly 
based on existing approaches used in the evolutionary algorithms for multimodal 
optimization.  

Most of the real world problems carry multimodal characteristics; hence develop-
ing efficient algorithms for multimodal optimization problems is still a research area. 
Previous approaches can be categorized as iterative and subpopulation methods [8]. 
In the iterative methods, the algorithm is applied several times consecutively to locate 
each optimum. In the subpopulation methods, the population is divided into parts to 
search optima simultaneously. In this paper, the previous PSO algorithms for multi-
modal optimization based on subpopulation model are compared to a proposed Parti-
cle Swarm Optimizer with craziness and hill climbing, named as CPSO. Additionally, 
a previous niching PSO approach is modified, yielding an improved performance. All 
algorithms are described in Sect. 2 and 3. The experimental results are presented in 
Sect. 4. Finally, the conclusions are provided in Sect. 5. 
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2   PSO Systems for Multimodal Function Optimization 

In a PSO system based on inertia weight [6], particles representing candidate solu-
tions start their flight from random locations in a search landscape. At each step, a 
particle updates its velocity to move to another location based on (1) and (2). The 
flight is influenced by a fitness function that evaluates the quality of each solution. 

vid(t+1)=w vid(t)+c1 r1(t) (yid(t)–xid(t))+c2 r2(t) (ygd(t)–xid(t)) , (1) 

xid(t+1)= xid(t)+ vid(t+1) , (2) 

where xid(t) is the position of the ith particle at time t on dimension d, v is the velocity, 
w is the inertia weight, c1 and c2 are constant values, r1 and r2 are uniform random 
numbers in [0,1], yi is the ith particle’s best position (generating the best fitness) that 

has been found so far, and yg is the best position visited by the neighbors. Generally, 
the neighborhood is chosen as the whole population for global optimization. If c1 is set 

to 0 (and c2≠0), the PSO system turns into the social only model and if c2 is set to 0 

(and c1≠0), then the system becomes the cognition only model. In this paper, five 
multimodal PSO algorithms are discussed that are extended from the generic ap-
proach: Species-based PSO (SPSO), Niching PSO (NichePSO), nbest PSO (nbest-
PSO), Unified PSO (UPSO) and Parallel Vector-Based PSO (PVPSO).  

Li’s [8] Species-based PSO gathers the similar particles into the sub-swarms called 
species. As a similarity measure Euclidean distance is used. SPSO requires an addi-
tional parameter called species radius; rs. The best fit particle in a species is called the 
species seed, and the boundary of a species is the circle having the radius of rs around 
this seed. The particles in the entire swarm move within their own species at each 
iteration. Then, they are evaluated and the species are redefined. The multiple optima 
are maintained in a parallel manner. The convergence rate of the algorithm is en-
hanced by the communication of particles in the swarm through the PSO algorithm 
and the reconstruction of the species. 

Brits, Engelbrecht and van den Bergh [4] proposed the nbestPSO. This method re-
defines the neighborhood best position to increase the diversity during the information 
sharing between particles. For each particle i, k nearby particles are determined, and 
the neighborhood best position ygi is calculated as the center of mass of the best posi-
tions visited by these k particles. In (1), ygi replaces yg. Then the same velocity update 
equation in (2) is used. Increasing, decreasing and constant k values are analyzed by 
the researchers. The results show that linearly decreasing k value yields the best  
performance. 

The Unified PSO, introduced by Parsopoulos and Vrahatis [13], aims to bring a 
balance to the global and local variants of PSO. The algorithm requires local and 
global neighborhoods to be defined. In this algorithm, the velocity update equation 
(Ui

(k+1)) is changed and divided into local (Li
(k+1)) and global (Gi

(k+1)) parts. A particle 
samples two different velocities using two different velocity update PSO equations 
based on the constriction PSO model, where the constriction factor X controls the 
velocity’s magnitude [6]. The newly introduced unification factor; u∈[0,1] deter-
mines the effect of the global and local information: 
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Ui
(k+1) = u Gi

(k+1) + (1–u) Li
(k+1) , where Ui

(k+1) is the new location of the ith particle 
after the kth iteration. Additionally, a normally distributed random parameter is also 
introduced to be multiplied with either Gi

(k+1) or Li
(k+1), yielding two different models 

that supports mutation. 
The Parallel Vector-Based PSO (PVPSO), introduced by Schoeman and Engel-

brecht [14], uses a set of vector operations to form niches in the search space. PVPSO 
performs better than their previous approach the Vector-Based PSO (VBPSO). In 
PVPSO, the initial niches are identified as in VBPSO, but all particles are evaluated 
simultaneously. The velocity update is done using the personal best and the best 
neighborhood positions. A sub-swarm may absorb the other particles that come close 
by and/or merge with another one. 

2.1   The Niching Particle Swarm Optimizer (NichePSO) 

Brits, Engelbrecht and van den Bergh proposed an algorithm as presented in Fig.1 to 
locate the multiple optima using a particle swarm based algorithm, referred as 
NichePSO [5]. The initial swarm, called as the main swarm is generated by uniformly 
distributing particles over the search space. The quality of the particles is monitored 
during the iterations. If a particle’s fitness does not change for some epochs, its posi-
tion is set to be a candidate solution. Then, this particle is removed from the main 
swarm and a new sub-swarm is generated. As the algorithm proceeds, the main swarm 
loses its members as the new sub-swarms are created. Dynamically generated sub-
swarms are expected to locate all global and local optima in parallel.  

 

Fig. 1. Pseudocode for the NichePSO algorithm 

The algorithm of Løvbjerg et al. [10] is adapted for improving swarm diversity. If 
the swarm size is small, then PSO algorithm has a disadvantage of getting stuck at a 
position when xi≅yi≅yg, where velocity might approach to zero. Therefore, NichePSO 
uses Van den Bergh’s GCPSO algorithm [1] to prevent sub-swarms from halting. 

NichePSO 
Initialize particles in the main swarm 
Repeat 
1. Train particles in the main swarm using a single iteration of the cognition only 

model 
2. Update fitness of each particle in the main swarm 
3. For each subswarm: 

a. Train subswarm particles using a single iteration of the GCPSO algorithm 
b. Update fitness of each particle 
c. Update subswarm radius 

4. If possible, merge subswarms 
5. Allow subswarms to absorb any particles from the main swarm that moved into it 
6. Search main swarm for any particle that meets the partitioning criteria – If found, 

create a new subswarm with this particle and its closest neighbor 
Until stopping criteria are met 



 Particle Swarms for Multimodal Optimization 369 

The initial swarm is vital for the success of the NichePSO, hence Faure-sequences are 
used to distribute the initial particles uniformly over the search space. If a particle 
does not belong to a niche, and the variance of its fitness is below a threshold for 
some epochs, then a niche is created around it. These niches may merge, if the dis-
tance between the best particles in them is less than some value μ or absorb the other 
particles which do not belong to a niche. NichePSO is implemented as described in 
[5]. It is observed that the niche radius may increase, spanning the whole search space 
and causing most of the particles to converge to a single optimum. In this paper, a 
modified version, referred as mNichePSO is proposed to prevent this type of behavior. 
Simply, the niche radius size is not allowed to exceed a maximum value. 

3   PSO with Craziness and Hill Climbing (CPSO) 

In most of the algorithms used for optimization, the balance between exploration and 
exploitation is vital for success. The proposed CPSO algorithm (Fig. 2) for multimo-
dal function optimization uses a random walk component and a hill climber to en-
hance the exploration and exploitation capabilities of PSO, respectively.  

 

Fig. 2.  Pseudocode for the CPSO algorithm 

In this algorithm, the main swarm is divided into sub-swarms of size n according to 
their geographical positions. Starting from the first particle, for each particle which 
does not belong to a sub-swarm, the nearest (n−1) particles, which also do not belong 
to a sub-swarm, are detected. At every m epochs, the sub-swarms are rearranged ac-
cording to their current geographical positions. This action provides a type of  

CPSO 
Initialize particles 
Repeat 
1. On the first and every m epochs, construct sub-swarms according to their 

geographical positions, with a neighborhood size n. 
2. For each particle compute 2 candidate positions: 

a. Use the original PSO, where yg is the sub-swarm’s best. 
b. if (the fitness variance of a particle or particles in a subswarm for k epochs is 

smaller than a variance threshold) 
then 
     use the original PSO, where yg is the sub-swarm’s best 
else 

         generate a random position using (5) 
3. Compute the fitness values of these candidate positions. Choose the position with the 

better fitness as particles’ current positions. If the random position produces a better 
fitness, set the particles’ velocities using (6). 

4. If (the fitness variance of a particle for p epochs is smaller than a variance threshold) 
then 

 reset the velocity of the particle using (6). 
Until stopping criteria met 
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communication and information diffusion between particles, since a local best value 
might change within a neighborhood. Each particle generates two candidate positions, 
denoted by x1 and x2, at each epoch. Let v1 and v2 denote velocities for the related 
candidate positions. In (3), ygi is the best position visited so far within the neighbor-
hood of the ith particle. The parameters maxxd and minxd, in (5), are the limits of the 
search space at dimension d. The first candidate position is computed using (3) and 
(4), and the second one is computed using (5) during the initial moves. For the candi-
date positions x1 and x2, each particle makes a decision based on the fitness values. A 
particle moves to the position that generates a better fitness.  

v1
id(t+1)=w v1

id(t)+c1 r1(t) (γid(t)–xid(t))+c2 r2(t) (ygid(t)–xid(t)) , (3) 

x1
id(t+1)=x1

id(t)+v1
id(t+1) , (4) 

x2
id(t+1)= minxd + r3 (maxxd-minxd) . (5) 

Moving to a better candidate position can be considered as a hill climbing step. A 
single meme consisting of two phases is used: sampling and acceptance. As a sam-
pling technique either a random walk (craziness) or the PSO algorithm itself is in-
voked, depending on the mode of operation as described in Fig. 2. As an acceptance 
strategy, only improving moves are admitted. If the position x2 is chosen, then the 
previous velocity becomes useless. Hence, a new velocity has to be assigned to the 
particle. Equation (6) is used for that purpose. 

vid(t+1)= α maxv r5(t+1) , (6) 

where α is a constant number, maxv is the limit for the velocity of the particles, and 
r5(t) is a uniform random number in [-1,1] at time t. If the variance of the fitness for 
the last p epochs is smaller than a threshold value, all particles in a sub-swarm stop 
making random moves. The mode of operation switches to a refined search. Particles 
generate two velocities invoking the (3) twice, yielding two candidate positions and 
the search continues as described in Fig. 2. CPSO algorithm introduces the following 
parameters: n, k, p, m, variance (threshold) and α. 

4   Experiments 

The runs are performed on a 2 GHz, Windows 2003 operating system with 512 MB of 
memory. A Matlab application is implemented for the experiments, available at 
http://cse.yeditepe.edu.tr/ARTI/projects/cpso. Each experiment is repeated 50 times. 
A run is terminated either the maximum number of evaluations is exceeded or all 
required global optima are found within a fitness range of 0.00005.  

4.1   Experimental Setup and Comparison Criteria 

Well-known benchmark functions are used during the experiments as presented in 
Table 1. The initial experiments are performed for obtaining the best set of parameters  
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for CPSO. Then, seven different multimodal PSO algorithms (SPSO, NichePSO, 
nbestPSO, CPSO, UPSO, mNichePSO, PVPSO) are tested on 10 different benchmark 
functions (F1-F10). The swarm size is chosen as 30 and 50, for functions F1-F4 and 
F5-F10, respectively. The problem dimension is one for the functions F1-F4, two for 
the functions F5-F10. For a fair comparison, the maximum number of evaluations is 
limited to 15,000 for F1-F4, and 25,000 for F5-F10. In UPSO, X is used as 0.729, and 
c1 and c2 are set to 2.05. For the rest of the algorithms, the inertia weight is linearly 
decreased from 0.8 to 0.6, and c1 and c2 are set to 1.5 for a stable PSO. More discus-
sions on the choice of parameters can be found in [6], [8], [11] and [12]. 

Table 1. Benchmark functions used during the experiments; minx and maxx indicate the lower 
and upper bound for each dimension, #gl. and #lo. indicate the total number of global and local 
optima, respectively, for the corresponding function 

lb. Function minx, maxx #gl. #lo. Source(s) 

F1 y=1–sin(5πx)6 0.0, 1.0 5 0 [8,5,1] 

F2 y=1–exp(–2log(2)((x–0.1)/0.8)2)sin(5πx)6 0.0, 1.0 1 4 [8,5] 

F3 y=1–sin(5π(x(3/4)–0.05))6 0.0, 1.0 5 0 [8,5,1] 

F4 
y=1–(exp(–2log(2)*((x–0.08)/0.854)2) 
 sin(5π (x(3/4)–0.05))6) 

0.0, 1.0 
 

1 
 

4 
 

[8,5,1] 
 

F5 z=(x2+y–11)2–(x+y2–7)2 –10.0, 10.0 4 0 [8,5] 
F6 

 
z=sin(2.2 π x+π/2)(( 2–|y| )/2)(( 3–|x| )/2)  
    +sin(0.5πy2+π/2)(( 2–|y| )/2)(( 2–|x| )/2) 

–2.0, 2.0 
 

4 
 

8 
 

[16,17] 
 

F7 z=cos(x)2+sin(y)2 –4.0, 4.0 6 0 [12] 

F8 
 
 

z= (cos(2x+1)+2cos(3x+2)+3cos(4x+3)+ 
          4cos(5x+4)+5cos(6x+5)) 

(cos(2y+1)+2cos(3y+2)+3cos(4y+3)+ 
          4cos(5y+4)+5cos(6y+5)) 

–2.0, 2.5 
 
 
 

2 
 
 
 

38 
 
 
 

[8,15] 
 
 
 

F9 
 

z=(y2–4.5y2)xy–4.7cos(3x–y2(2+x)) 
 sin(2.5πx)+(0.3x)2 

–1.2, 1.2 
 

1 
 

9 
 

[13] 
 

F10 z=4x2–2.1x4+(1/3)x6+xy–4y2+4y4 –1.9, 1.9 2 4 [13] 

In SPSO, the species radius is chosen as (maxx–minx)/20. In NichePSO, the  
parameters μ and the variance are set to 0.001 and 0.0001, respectively [5]. Addition-
ally, in mNichePSO, the maximum niche radius is set to (maxx–minx)/10. In nbest-
PSO, the neighborhood size is linearly decreased from 6 to 2. To evaluate the effect of 
the maximum velocity, each algorithm is investigated with two different values: 
(maxx–minx)/20 and (maxx–minx)/2, where each algorithm is labeled as algo-
rithm_abbriviation-20 and algorithm_abbriviation-2, respectively. 

In the multimodal optimization problems, not only multiple global optima having 
equal quality are to be searched, but also a predetermined set of local optima might be 
required. Therefore, it is difficult to evaluate and compare different algorithms. 
Global peak ratio (gpr) is defined as the ratio of the average number of global optima 
found to the total number of global optima. Local peak ratio (lpr) is defined similarly 
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using the local optima. Global success consistency ratio (gscr) denotes the proportion 
of the runs in which all global optima are discovered to the total number of runs, and 
local success consistency ratio (lscr) denotes the proportion of the runs in which all 
local are discovered to the total number of runs. The overall success rate (osr) is used 
as a single comparison criterion to evaluate all these aspects at once as shown in (7). 
If there are no local optima, lpr and lscr are set to 0, and the divisor to 2. Conse-
quently, osr values are in the range [0,1] and a higher ratio indicates a better  
per-formance 

4

 )(
 

lscrlprgscrgpr
osr

+++= . (7) 

4.2   Parameter Tuning for CPSO 

324 different parameter sets are tested based on the combination of the following 
values for each CPSO parameter with maxv=(maxx–minx)/20: 

− The sub-swarm size; n∈{2, 3, 4}  
− The number of epochs k∈{3, 5, 7} (step 2 (b) in Fig. 2)  
− The number of epochs p∈{3, 5, 7} (step 4 in Fig. 2) 
− The variance (threshold)∈{0.0001, 0.01}  (step 2 (b) and 4 in Fig. 2) 
− The number of epochs m∈{5,7,10} for the sub-swarm reconstruction 
− The velocity reset constant α∈{0.001, 0.01 } (step 3 and 4 in Fig. 2, (6)) 

The performance of CPSO with each parameter set is compared with respect to the 
average osr over all benchmark functions. The results are summarized in Table 2. The 
best parameter set contains: n=2, k=3, p=3, variance=0.01, m=5 and α=0.01. It seems 
that relatively low values for n, k, p, and m and relatively high values for variance and 
α  are good initial choices in a CPSO. 

Table 2.  The parameter sets that rank top ten based on their performances 

rank variance n k p m      α 
1 0.01 2 3 3 5 0.01

2 0.01 2 3 5 7 0.01

3 0.01 2 3 3 7 0.01

4 0.01 2 3 7 5 0.01

5 0.01 2 3 5 5 0.01

6 0.01 2 3 5 5 0.001

7 0.01 2 3 7 10 0.01

8 0.01 2 3 3 10 0.01

9 0.01 2 3 7 7 0.01

10 0.01 2 3 3 5 0.001



 Particle Swarms for Multimodal Optimization 373 

4.3   Experimental Results 

During the experiments, none of the algorithms is capable of finding all optima on all 
functions as summarized in Table 3. The maximum velocity choice can affect the 
performance of an algorithm considerably. NichePSO, mNichePSO, CPSO and 
PVPSO are more sensitive to the maximum velocity as compared to the others. On 
average, NichePSO, mNichePSO, CPSO algorithms perform better with a relatively 
low maximum velocity. PVPSO is the only algorithm that performs better with a 
relatively high maximum velocity. This choice does not generate a significant per-
formance variance for SPSO, nbestPSO and UPSO.  

Table 3.  Average osr of each algorithm over all runs for each benchmark function. The best 
values (algorithms) for the benchmark functions are marked with the bold entries. 

Algorithm F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 avr.osr. stdev. 

SPSO-2 0.98 0.82 0.96 0.84 1.00 0.64 0.97 0.58 0.65 0.59 0.80 0.17 

SPSO-20 0.99 0.99 1.00 0.94 0.95 0.48 0.72 0.27 0.64 0.82 0.78 0.25 

NichePSO-2 0.45 0.69 0.40 0.64 0.13 0.10 0.15 0.13 0.59 0.14 0.34 0.24 

NichePSO-20 0.97 1.00 0.94 0.96 0.19 0.21 0.45 0.13 0.66 0.45 0.60 0.35 

nbest-2 0.71 0.85 0.77 0.80 0.89 0.47 0.72 0.41 0.52 0.60 0.67 0.17 

nbest-20 0.81 0.93 0.74 0.84 0.90 0.43 0.74 0.31 0.46 0.58 0.67 0.22 

CPSO-2 0.96 0.78 0.83 0.78 0.28 0.56 0.98 0.17 0.56 0.53 0.64 0.27 

CPSO-20 0.96 0.87 0.90 0.90 1.00 0.66 1.00 0.52 0.63 0.62 0.81 0.18 

UPSO-2 0.72 0.70 0.66 0.70 0.81 0.47 0.64 0.51 0.56 0.50 0.63 0.11 

UPSO-20 0.72 0.81 0.68 0.74 0.88 0.54 0.55 0.48 0.45 0.54 0.64 0.15 

mNiche-2 0.70 0.69 0.61 0.67 1.00 0.54 0.91 0.62 0.75 0.64 0.71 0.14 

mNiche-20 1.00 1.00 1.00 1.00 1.00 0.66 0.99 0.14 0.47 0.91 0.82 0.30 

PVPSO-2 0.99 0.93 0.98 0.97 0.45 0.57 0.79 0.39 0.55 0.62 0.72 0.23 

PVPSO-20 1.00 1.00 1.00 1.00 0.21 0.38 0.46 0.20 0.35 0.71 0.63 0.35 
 

The proposed modification to NichePSO, mNichePSO as described in Sect. 2.1, 
delivers a significantly better performance compared to the original one considering 
the average osr. Furthermore, mNiche-20, CPSO-20 and SPSO-2 are the top three 
algorithms in that order with respect to the average osr. PVPSO-20 is as successful as 
mNichePSO-20 for locating the multiple optima in the 2D search landscapes, while its 
performance deteriorates extremely for the 3D search landscapes.  

The particle positions at the end of a sample run of a PSO algorithm for F6 are il-
lustrated in Fig. 3. SPSO is good at locating the required optima. Mostly, at end of the 
runs, the species were evenly distributed around these optima. NichePSO provides 
good separation of niches, but, sometimes, all niches might merge into a single one. 
Preventing the niche radius to grow, as in mNichePSO, yields a better diversity. The 
nbestPSO produces a poor convergence rate. The proposed CPSO algorithm is very 
successful in locating the global optima as compared to the local optima (Fig. 3-4). 
Although, UPSO performs poorly, the parameters provide an effective way to derive 
the algorithm to locate any optima.  
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SPSO-2 NichePSO-20 nbestPSO-20 

CPSO-20 mNichePSO-20  PVPSO-2 
 

Fig. 3.  Particle positions after a sample run of each algorithm on F6 

iteration #1 iteration #5 iteration #37  

Fig. 4.  A sample run of CPSO-20 on F5 

5   Conclusions 

There are five essential PSO algorithms that have been proposed for multimodal  
function optimization: SPSO, NichePSO, nbestPSO, UPSO and PVPSO. During the 
preliminary experiments, it is observed that the performance of NichePSO can be 
improved significantly restricting the growth of the niche radius beyond a predefined 
value. mNichePSO performs much better than NichePSO on the benchmark func-
tions, considering the evaluation criteria. In this paper, a new multimodal particle 
swarm optimization algorithm called CPSO is introduced. CPSO is compared against 
these approaches. All algorithms introduce additional parameters, requiring fine tun-
ing. Except UPSO, all algorithms are computationally expensive due to the need of 
the distance calculations. If the dimensionality increases, the scalability issue might 
arise, causing this cost to become remarkable. In CPSO, the cost is some what  
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reduced by making the computations at a predefined frequency. With its enhanced 
exploration and exploitation capabilities based on craziness and hill climbing, CPSO 
has a good performance especially in locating multiple global optima, matching the 
overall performance of mNichePSO and SPSO on the benchmark functions.  
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Abstract. The purpose of this paper is to generalize Quantum-behaved Particle 
Swarm Optimization (QPSO) Algorithm to discrete binary search space. To 
design Binary QPSO (BQPSO), we redefine the position vector and the distance 
between two positions, and adjust the iterative equations of QPSO to binary 
search space. The operations designed for BQPSO are far different from those 
in BPSO, but somewhat like those in Genetic Algorithms (GAs). Therefore, 
BQPSO integrates strongpoint of GA with the features of PSO, which make it 
able to find out the global optimum of the problem more efficiently than BPSO, 
as shown by the experiment results of BQPSO and BPSO on De Jong’s five test 
functions. 

1   Introduction 

The Particle Swarm Optimization (PSO) algorithm, firstly proposed by Kennedy and 
Eberhart [4], is a population-based evolutionary search technique. Its underlying 
motivation for the development of PSO was social behavior of animals such as bird 
flocking, fish schooling, and animal herding and swarm theory. In PSO with M 
individuals, a potential solution to a problem is represented as a particle flying in D-
dimensional search space, with the position vector Xi = (Xi1,Xi2,…,ZiD) and velocity 
Vi = (Vi1,Vi2,…,ViD).  Each particle records its best previous position (the position 
giving the best fitness value) as pbesti = (pbesti1,pbesti2,…,pbestiD) called personal 
best position. At each iteration, each particle competes with the others in the 
neighborhood or in the whole population for the best particle (with best fitness value 
among neighborhood or the population) with best position 
gbesti = (gbesti1,gbesti2,…,gbestiD) called global best position, and then makes 
stochastic adjustment according to the following evolution equations. 

)()()()( 21 iddidididid XgbetRandcXpbestrandcVwV −⋅⋅⋅+−⋅⋅⋅+⋅=  (1) 

ididid XXX +=   (2) 
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for i = 1,2,…,M; d = 1,2,…,D. In the above equations, c1 and c2 are positive constant; 
rand() and Rand() are two random functions generating uniformly distributed random 
numbers within [0,1]. Parameter w is the inertia weight introduced to accelerate the 
convergence speed of the PSO. At each iteration, the value of Vid is restricted in  
[-Vmax, Vmax] 

In original PSO, the particles operate in continuous search space, where the 
trajectories are defined as changes in positions. In discrete binary PSO [6], trajectories 
are defined as changes in the probability that a coordinate of the position vector will 
take on a value from feasible discrete values.  

Recently, Sun et al developed a novel variant of PSO [8], [9]. It was named as 
Quantum-behaved Particle Swarm Optimization (QPSO), since the new PSO is 
inspired by the quantum theory. The results of experiments on several widely known 
benchmark functions show that QPSO outperforms PSO in search abilities and seems 
to be a promising optimization problem solver. 

This paper will focus on developing a discrete binary version of QPSO (BQPSO). 
Because QPSO operates in accord with a set of iterative equations far different from 
equation (1) and (2), the methodology of BPSO does not apply to BQPSO and a new 
set of operators for BQPSO will be proposed. The rest part of the paper is organized 
as follows. In Section 2, a brief introduction of BPSO is presented. The concepts of 
QPSO are described in Section 3. And Section 4 presents the proposed BQPSO. 
Section 5 gives the experiment results of BQPSO and BPSO on De Jong’s suite of 
five test functions. The paper is concluded in Section 5. 

2   Discrete Binary PSO 

Kennedy and Eberhart proposed the original PSO for the use in continuous search 
space. Many Optimization problems, however, are set in a space featuring discrete, 
qualitative distinctions between variables and between levels of variables. For this 
reason, Kennedy and Eberhart modified equations in continuous PSO to be adapted to 
discrete binary search space. In their proposed binary version of the PSO (BPSO), 
trajectories, velocities, etc., are defined in terms of probabilities that a bit will be one 
or the other. Thus, a particle moves in a state space restricted to 0 or 1 on each 
dimension (each bit), where each Vid represents the probability of bit Xid taking the 
value 1 and updates according to equation (1). The main difference between original 
PSO and the BPSO is that equation (3) replaces equation (2). 

if ))(()( idVSrand <  then 1=idX else 0=idX  (3) 

where )(vS  is a sigmoid limiting transformation function (S(v) = 1/(1+e-v)), and  

rand( ) is a random number selected from a uniform distribution in [0,1]. 
In the discrete binary version, Vmax is retained, that is |Vid| < Vmax, which simply 

limits the ultimate probability that bit Xid will take on a binary value. From equation 
(3), we can infer that a smaller Vmax will allow a higher mutation rate. 
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3   QPSO Algorithm 

In Quantum-behaved Particle Swarm Optimization (QPSO), the particle moves 
according to the following equation 

1

1 2
1 1 1

, , ,

M

i
i

M M M

i i id
i i i

mbest pbest M

pbest M pbest M pbest M

=

= = =

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑
 (4) 

(),*)1(* randgbestpbestp didid =−+= ϕϕϕ  (5) 

(),)/1ln(** RanduuXmbestpX iddidid =−±= α  (6) 

where 

mbest The mean best position among the particles, which is calculated by equation 
(4). 

idp  A stochastic point between 
idpbest  and 

dgbest , which the dth coordinate of the 

local attractor of the ith particle, 
iP  

ϕ  A random umber distributed uniformly on [0,1], 
u Another random umber distributed uniformly on [0,1], 
α  The parameter of QPSO, called Contraction-Expansion Coefficient. 

The procedure of Quantum-behaved Particle Swarm Optimization (QPSO) 
Algorithm in [9] is outlined as follows: 
 
QPSO Algorithm 
Initialize particles with random position Xi=X[i][:]; 
Let personal best position pbesti=pbest[i][:]=Xi; 
while termination criterion is not met do 
    Compute the mean best position mbest by equation (4); 
    for i=1 to swarm size M  
       if f(Xi)<f(pbesti) then pbesti=Xi; endif 
       Find the gbest=pbest[g][:]across the swarm; 
       for d=1 to D 
          fi=rand(0,1); u=rand(0,1); 
          pid=fi*pbest[i][d]+(1-fi)*gbest[d]; 
          if (rand(0,1)>0.5) 

             X[i][d]=p+α*abs(mbest[d]-X[i][d])*ln(1/u); 
          else 

             X[i][d]=p-α*abs(mbest[d]-X[i][d])*ln(1/u); 
endif 

       endfor 
endfor 

endwhile 
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The iterative equations (4)~(6) are derived from a quantum δ  potential well model 
proposed in [8]. For the detailed information about QPSO, one can refer to the 
literature such as [8] and [9]. 

4   Discrete Binary QPSO 

In this section, a discrete binary version of QPSO (BQPSO) is proposed. Because the 
iteration equations of QPSO is far different from those of PSO, the methodology of 
BPSO does not apply to QPSO. In QPSO, there  are no velocities and trajectories 
concepts but position and distance. Since position of the particle is represented as a 
binary string, the key problem of designing the BQPSO is how to define the distance 
between two positions and the transformation. 

In our proposed BQPSO, the distance is defined as the Hamming distance between 
two binary strings. That is 

),( YXdYX H=−  (7) 

where X and Y are two binary strings, say two position. The function dH( ) is to get the 
Hamming distance between X and Y. In comparing two bit strings, the Hamming 
distance is the count of bits different in the two strings.  

It is necessary to emphasize that the dimension in BQPSO is defined as the number 
of decision variables like that in continuous PSO, instead of as the length of  the 
binary string like in BPSO. In BQPSO, the variable with subscripts i and d represents 
a substring in the binary string, that is, Xid refers to the dth substring (dth decision 
variable) of the position of the ith particle, not the dth bit in a binary string. Given that 
the lengths of Xid and Xi are ld and l respectively, we can obtain 

1

,    1, 2, ,
D

d
i

l l d D
=

= =∑  (8) 

The key of BQPSO design is to adjust the evolution equations (4)-(6) to discrete 
binary space. In continuous QPSO, the mean best (mbest) position of all particles is 
calculated by equation (4), whereas in our proposed BQPSO, the jth bit of the mbest 
is determined by the states of the jth bits of all particles’ pbests. If more particles 
take on 1 at the jth bit of their own pbests, the jth bits of mbest will be 1; otherwise 
the bit will be 0. However, if half of the particles take on 1 at the jth bit of their 
pbests, the jth bit of mbest will be set randomly to be 1 or 0, with probability 0.5 for 
either state. The pseudo-code of the function for obtaining mbest is given as 
follows. 

Get_mbest(pbest) 
for j=1 to l (the length of binary string) 
   sum=0; 
   for each particle i 
      sum=sum+pbest[i][j]; 
   endfor 
   avg=sum/M; 
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   if avg>0.5  mbest[j]=1;endif 
   if avg<0.5  mbest[j]=0;endif 
      if avg=0.5 
         if rand( )<0.5 mbest[j]=0; 
            else mbest[j]=1; 
         endif 
      endif 
endfor 
Return mbest 

In the above pseudo-code, the inputs of the function Get_mbest( ) is binary strings 
of all particles’ personal best positions (pbest) and output is the string of mbest.  

The equation (5) is uesed for getting the coordinate of the local attractor Pi for 
particle i. In continuous QPSO, the coordinate pid of Pi lies between pbestid and gbestid. 
Therefore Pi = (pi1,pi2,...,piD) distributes randomly in the hyper-rectangle with pbesti 
and gbest being its two diagonal ends. The diatance of Pi to eithor pbesti or  gbest must 
be less than the length of the diagnol line. That is  

gbestpbestpbestP iii −≤−  and gbestpbestgbestP ii −≤−  (9) 

Hence, we can infer that the particle’s converging to point Pi reduces the diversity of 
the population, which corresponds to the local search (exploition) of the particle. In 
BQPSO, the point Pi is generated through crossover operation like that used in 
Genetic Algorithm (GA). That is, Pi is randomly selected from two offspring that are 
generated by exerting crossover on the two parents, pbesti and gbest. Obviously, The 
position of Pi resulted from crossover satisfies the equation (9) in terms of Hamming 
distance in binary space. It is logical that in BQPSO, the point Pi is obtained by one-
point or multi-point crossover operation, becasue the purpose of crossover is to reduce 
the diversity and undertake local search. Outlined below is the procedure 
corresponding to equation (5) . 

Get_P(pbesti, gbest) 
Exert crossover operation on pbesti and gbest to 
generate two offsping binary strings z1 and z2; 
if rand( )<0.5 
      Pi=z1 
else Pi=z2; 
endif 
Return Pi 

Consider iterative equation (6) and transform it as  

(),)/1ln( RanduuXmbestpX iddidid =−=− α  (10) 

In terms of Hamming distance, the equation can be written as  

⎡ ⎤bpXd ididH =),(  (11) 

()),/1ln(),( RanduumbestXdb didH =∗∗=α  (12) 
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where dH(Xid, pid) is the Hamming distance between substring Xid of the new position 
and the dth substring pid in Pi. mbestd is the dth substring in string of mbest. The 
reason for the use of function ⎡⋅⎤ is that the Hamming distance must be an integer.  
According to the above equations, we can obtain the new substring Xid by the 
procedure of inversing the states of ⎡b⎤ randomly selected bits in substring pid, which, 
however, has time complexity O(b⋅ld) at worst. To reduce the compuation cost, we  
replace the procedure by the transformation in which each bit in pid is mutated with 
the probability computed by 

⎩
⎨
⎧

>
=

1/1

/
Pr

d

d

lbif

lb  (13) 

The transformation is described as follows. 

Transf(pid,Pr) 
for each bit in the substring pid; 
    if rand()<Pr 
       if the state of the bit is 1 
          Set its state to 0; 
       else set its sate to 1; 
       endif 
    endif 
endfor 
Xid=pid; 
Return Xid 

The function Transf( ) has time complexity O(ld). It operates on each substring of a 
position, instead of on the whole binary string of the position as Get_mbest( ) and 
Get_P( ) do.  

With the above definition and modifications of iterative equations, the Binary 
Quantum-behaved Particle Swarm Optimization (BQPSO) algorithm can described as  
the following procedure: 

Step 1. Initialize an array of binary bits for all particles: X and pbest=X; 
Step 2. Determine the mean best position among the particles by Get_mbest (pbest); 
Step 3. Evaluate the desired objective function (minimization problem for example) 

for each particle and compare with the particle’s previous best values: if 
f(Xi) < f(pbesti), then pbesti = Xi. 

Step 4. Determine the current global position minimum among the particle’s best 
positions. That is: 

1
arg min ( ( ))i

i M
g f P

≤ ≤
=  (M is the population size). Thus, 

gbest = pbestg. 
Step 5. Compare the current global position gbest to the previous global position: if 

the fitness value of current global position is less than that of the previous 
global position, then set the global position to the current global position. 

Step 6. For each particle, get a stochastic position Pi by Pi=Get_P (pbesti, gbest). 
Step 7.  For each dimension (each substring corresponding to dimension d), compute 

the mutation probability Pr for substring Pid by (12) and (13). 
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Step 8. Generate the new substring Xid by Transf (Pid, Pr). And get the new position 
Xi by combining all new substring Xid (d=1,2…, D) 

Step 9. Repeat steps (2) –(8) until a stop criterion is satisfied OR a pre-specified 
number of iterations are completed 

5   Experiment Results 

The performance of the proposed BQPSO algorithm was tested on the following 
five different standard functions to be maximized. These functions were designed 
by De Jong to test a carefully constructed set of dimensions of performance of an 
optimizer [3].  

3
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This section presents simulation results and performance comparison of 
BQPSO with BPSO, in terms of solution quality and the speed of finding the best 
solution. The functions were run 50 times each, with a population of 20 particles. 
The value parameters used for BPSO are the same as those specified in [6], i.e. 
Vmax is set to 6; c1 and c2 equal to 1. The parameter α in BQSPO is set to 1.1 and 
1.4 for two cases, respectively. The algorithm terminates when the number of 
iterations succeeds 200. We recorded the best fitness value (BFV) when the 
algorithm terminates at each run. The quality of the solutions produced by 
algorithms are evaluated by Mean Best Fitness Values (Mean BFV), Standard 
Deviation (St. Dev.), Maximum Best Fitness Value (Max. BFV) and Minimum 
Best Fitness Value (Min. BFV) out of 50 runs. These measurements are listed on 
Table 1. 

Both BPSO and BQPSO were able to find out the optima of F1, whose fitness 
value is 78.6. BQPSO with either α=1.4 or α=1.1 hit the optima for 8 times out of 50 
trial runs, whereas BPSO find out the optima for 6 times. As of solution quality, both 
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Table 1. Results of BQPSO and BPSO on five testing functions 

Function Algorithm Mean BFV St. Deviation Max. BFV Min. BFV 
 BPSO 78.599846 8.38313E-05 78.6 78.5997 

F1 BQPSO(1.1) 78.599864 8.51459E-05 78.6 78.5997 
 BQPSO(1.4) 78.599871 8.43751E-05 78.6 78.5997 
 BPSO 3905.875171 0.199089262 3905.93 3904.927899 

F2 BQPSO(1.1) 3905.894363 0.064367635 3905.93 3905.616996 
 BQSPO(1.4) 3905.898361 0.110708752 3905.93 3905.153654 
 BPSO 54.94 0.239897937 55 54 

F3 BQPSO(1.1) 54.94 0.239897937 55 54 
 BQPSO(1.4) 54.94 0.239897937 55 54 
 BPSO 1252.669475 3.348750124 1258.628747 1245.186999 

F4 BQPSO(1.1) 1252.008459 2.435689800 1256.59775 1247.783349 
 BQPSO(1.4) 1251.612553 2.402303108 1258.540061 1245.607463 
 BPSO 498.6564274 0.470500681 499.2699104 497.7630575 

F5 BQPSO(1.1) 498.7040881 0.457162494 499.2699104 497.7630575 
 BQPSO(1.4) 498.7262385 0.395844667 499.2699104 498.1080945 

BQPSO(1.4) and BQPSO(1.1) outperform BPSO in terms of Mean BFV and St. 
Deviation. 

On the second F2, both of BPSO and BQPSO were able to hit the optimum fitness 
value 39059300000. However BQPSOs generated better Mean BFV and St. 
Deviation, which means BQPSOs have better quality of solutions than BPSO. 

The third function F3 is an integer function with an optimum of 55. Both BQPSO 
and BPSO made 47 successful searches out of 50 runs. 

Gaussian noise is introduced into F4 function, which was measured as an average 
over the entire population, rather than a population best. The results show that 
BPSO generated slightly better Mean BFV but larger St. Deviation than BQPSO. 
On this function, BQPSO with α=1.1 has better Mean BFV than BQPSO with 
α=1.4.  

The function F5 has an optimum 500 and the algorithms are able to find out the 
best value 499.2699104. BQPSO are able to generate better and more stable solution 
than BPSO. 

Figure 1 shows the convergence processes of BQPSO and BPSO on five testing 
functions. On F1, BQPSO can converge to the optimum more rapidly than BPSO. 
On F2, BPSO converges more quickly but generates worse solution. On F3, 
BQPSO converges rapidly than BPSO at the early stage of running, but after 
about 50 iterations, BPSO catch up BQPSO and generates equal Mean BFV. On 
F4, the convergence speed of BPSO is slower than BQPSO’s. After 100 
iterations, however, BPSO exceeds BQPSO and terminates at a slightly better 
solution. The convergence speed of BQPSO is faster than that of BPSO on F5 
obviously. 
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Fig. 1. The figure shows the convergence process of BQPSO and BPSO on five testing 
functions 

6   Conclusions 

In this paper, a discrete binary version of Quantum-behaved Particle Swarm 
Optimization algorithm (BQPSO) was proposed. The operation strategy of the 
BQPSO seems far different from that of the BPSO, but somewhat like that of the GA. 
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In BQPSO, the local attractor Pi is obtained by using the crossover operation on 
personal best position and global best position, and the transformation of getting new 
position Xi is similar to mutation operation in GA, which make BQPSO possess some 
features of GA. The experiment results show that BQPSO can find better solution 
generally than BPSO. 

The BQPSO was implemented for two cases: α =1.1 and α =1.4. For each case, 
the five functions were implemented in a single program, where the parameters are 
fixed and the only code changed from one function to another was the evaluation 
function. Thus it appears that the Binary QPSO is extremely flexible and robust. 
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Abstract. The paper presents an artificial world model in which various
self-organization and self-modification processes could be simulated. The
model is a two dimensional space in which there are stacks of hexagonal
tiles which are moving, colliding, and making bonds between them. On
the higher level of organization a structure of tiles specifies some function
whose execution affects other tiles in its neighborhood. The functions
encoded in the structures of tiles are expressed in the simple Prolog like
language. Few examples illustrate the behavior of the system.

1 Introduction

The aim of the work is to create some artificial, complete, low level, and closed
environment consisting of space, moving objects, and rules which govern their
interactions. Within the environment a complex behaviour of objects and emer-
gent phenomena can be simulated. Especially a number of problems listed in
[2] can be investigated e.g. simulations of spontaneous generation of life like
systems, novel living organizations or open-ended evolution of life. The pro-
posed system could be seen as an artificial life or an artificial chemistry model
(see [1,3]).

The system operates on two levels. On the first level objects of the system
move, collide, rebound and randomly change their structures. On the second
level some structures of objects are capable of inducing changes in other objects.
The types of changes are encoded in structures of objects in specially defined
Prolog like language.

This work is a major modification of the model presented in papers [5,4] – a
completely new language of objects and more realistic mechanics were developed.
The presented systems is still developed and simulations are run. More about the
system and actual projects can be found at the address www.swarm.eti.pg.gda.pl.

2 The Model

The environment is defined over two dimensional continuous space with periodic
boundary condition.
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2.1 Particles and Complexes

The constituent objects of the environment are called particles represented by
hexagonal tiles. The particles are of 256 types and are characterized by velocity,
position, and internal energy. Each type is related with a set of constant at-
tributes: mass, bond energy (needed to disrupt bond between particles of given
types), activation energy (needed to initiate any transformation of bonds).

Particles can bond together forming a complex of particles. The permanence
of the complex depends on its constituent particles bond energies. Particles can
bond vertically on the directions up and down forming stacks. The particles on
the bottom of the stack can bond horizontally. An example of stack of particles
and complex formed by horizontal bonds are shown in Fig.1.

(a)

N

S

SE

NENW

SW

U

D

(b)

Fig. 1. Examples of complexes: (a) horizontal view of single stack of particles with
directions shown, and (b) vertical view of complex formed by horizontal bonds, where
hexagons drawn by single lines represent single particles, and by double lines represent
stacks of particles and black dots mark horizontal bonds between particles

There are two types of collisions of particles and complexes: elastic and in-
elastic one, where the type is chosen randomly according to a preset probability.
During elastic collision, the resulting velocities are calculated according to the
rules of classical mechanics resolving the collision of two disks (circles surround-
ing hexagons) – conservation of momentum and of kinetic energy is observed.
After inelastic collision the velocities of both particles are equalized – conser-
vation of momentum is observed but the resulting decrease of kinetic energy of
particles is compensated by emission of a photon.

2.2 Photons

In addition to permanent particles the environment contains temporary entities
called photons which transport energy. They have no mass or momentum and
move with constant velocity. They are characterized by energy, position and
direction of movement.

Photons are created after inelastic collision of particles or complexes, after
bonding of particles (bond energy is converted into a photon) or can be emit-
ted spontaneously by particles – in each time step a particle may (with preset
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probability) convert part of its internal energy into a new photon. Photons may
collide with particles. There are two types of collisions: elastic and inelastic.
Elastic collisions change photon direction only, after inelastic collision one of the
following event is randomly selected (each event has its own preset probability):

1. Rebounding of the particle hit by the photon from an adjoining particle. The
energy of the photon is transformed into the kinetic energy of rebounded
particles.

2. Creating horizontal or vertical bond between the hit particle and adjoining
particle. After the reaction a new photon is created having energy equal to
the sum of: the energy of hitting photon, the energy of created bond and the
decrease of kinetic energy of bonded particles.

3. Removing horizontal or vertical bond between the hit particle and bound
particles. After the reaction a new photon is created having energy equal to
the energy of hitting photon minus the energy of removed bond.

4. Photon absorption. Photon is absorbed by the particle, and is converted into
its internal energy.

If selected event cannot be completed, e.g. because of insufficient photon en-
ergy, no other action is performed (photon skips the particle).

The above constitutes the first level of the system. When there are no photons
and the probability of inelastic collisions of particles is set to zero the system
behave like classical Newtonian one. Particles and complexes of particles move
and collide. Otherwise, the possible inelastic collision of particles produce pho-
tons which in consequence can randomly change structures of other particles by
creating and removing bonds between them.

2.3 Functions

Besides the reactions resulting from the collision of particles with photons, there
exists additional class of interactions in which complexes of particles are capable
to recognize and manipulate particular structures of particles in the space around
them. The description of the function performed by a complex is contained in the
types and locations of particles in the complex. The structure of the complex is
then interpreted as a program written in a specially defined language described
below.

2.4 Syntax

Syntax of the program encoded in a complex of particles is similar to the Prolog
language, using the following predicates only: program, search, action, structure,
exists, bind, unbind, move, not. Similarity to Prolog is clearly visible in the overall
structure and execution algorithm but specific syntax of above predicates (es-
pecially exists) needs some transformation of the programs into the well-formed
Prolog. Language syntax in BNF notation is shown in Table 1.

An example of a simple program is presented in Table 2. The program recog-
nizes the structure shown in Fig. 2, and then binds the particle 11111111 to the
unbound particle 00000000.
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Table 1. Language syntax

program ::= program header program body
program header ::= program() :- search(), action().
program body ::= search action definitions
search ::= search() :- header .
action ::= action() :- row action {, row action } .
definitions ::= row definition {row definition }
row definition ::= header :- body.
header ::= structure( integer )
body ::= exists( exists ) {,exists( exists )} {,not( header )}

|not( header ) {,not( header )}
short ::= 0|1|2|3|4|5|6|7|8|9
integer ::= short {short}
exists ::= [not] c [[[not] bound [to f] [on d]] | [adjacent [to f] [on d]]], [mark f]
row action ::= bind( action spec ) | unbind( unbind spec ) | move( action spec )
action spec ::= f to f on d
unbind spec ::= f [from f] [on d]
c ::= 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×, 0|1|×
f ::= V short
d ::= N|NE|SE|S|SW|NW|U|D

Table 2. Example of a program recognizing the structure shown in Fig. 2

program():–
search(), action().

search():–
structure(0).

structure(0):–
exists([0,0,0,0,0,0,×,×], mark V1),
exists([1,1,1,1,1,1,1,1] bound to V1 on N, mark V2),
exists([0,0,0,0,0,0,0,0], mark V5),
not(structure(1)),
not(structure(2)).

structure(1):–
exists([1,1,1,1,0,0,0,0] bound to V2 on NW, mark V3),
exists([1,1,1,1,0,0,0,0] bound to V3 on SW, mark V4),
not(structure(3)).

structure(3):–
exists([0,0,0,0,1,1,1,1] bound to V4 on S).

structure(2):–
exists([1,0,1,0,1,0,1,0]).

action():–
bind(V2 to V5 on SW).
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2.5 Semantics

Program execution is based on Prolog backtracking algorithm. The predicates
of the language may be divided into the following groups:

program, search, action, structure. Each program consists of the single,
main predicate program. This predicate always calls two predicates: search
and action. The first one calls searching predicates, while the second one
calls execution predicates that can affect particles (by moving them or cre-
ating/removing bonds between them). The execution of ”actions” are per-
formed only if searching succeeded, i.e. particular structures were recognized.
Searching commands are grouped in the structure predicates, which describes
some particular structures. These predicates call both predicate exists and
other predicates structure. Predicate structure embedded in another structure
is always in its negative form, not(structure()), i.e. structure description is
formed by the sequence of exists predicates and sequence of some negative
condition.

(a)

0000
00000000

0000

1111
0000

1111
0000

0000
1111

1111
1111

(b)

0000
0000

0000
0000

1111
0000

1111
0000

0000
1111

1111
1111

Fig. 2. Single particle and a complex of particles recognized by the program listed in
Table 2 (a), and the structure after action of the program (b)

exists. The predicate exists. is the basic command for structure searching. It
recognizes a particle (or empty place adjoining a particle) of particular type,
with particular bond structure.

bind, unbind, move. Predicates of the group affects particles in the system
by moving them and/or making or removing bonds between them. If any of
the predicate fails the whole program fails (backtracking is not performed).

not. Negates the single structure predicate.

2.6 Encoding

A complex of particles may encode a program. Each predicate structure is repre-
sented by the single stack of particles. Such a stack encodes a list of predicates ex-
ists. Stack which encodes structure(0) also encodes predicates bind, unbind and/or
move. Adjoining stacks encode negative form of predicates structure. The pro-
gram listed in Table 2 is represented by the structure of particles as shown in
the Fig. 3.

Stacks encoding predicates structure are labelled by specific particles at the
bottom of the stacks. Also inside the stacks, particles of specific types labels the
beginning of predicates, eg. 00110000 encodes the beginning of predicate exists.
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exists([000000xx],
mark V1),
exists([11111111]
bound to V1 on N,
mark V2),
exists([00000000]
mark V5)
bind(V2 to V5 on
SW)

exists([11110000],
bound to V2 on NW,
mark V3),
exists([11110000],
bound to V3 on SW,
mark V4)

exists([00001111], bound
to V4 on S).

exists([10101010]).

structure(0) structure(2)structure(1)structure(3)

Fig. 3. Program listed in Table 2 encoded in complex of particles. Note that the pred-
icates not(structure) are in stacks of particles which adjoin the structure(0) stack.

2.7 Interpreter

Programs encoded in complexes are translated into Prolog and run by built-in
simplified interpreter. Just before execution, the interpreter creates list of facts
about particles which are visible to program (particles which are contained in a
circle of fixed radius surrounding the complex containing the program). Then the
execution is performed. If both search and action part of the program succeeded
the condition is checked that energy balance of all changes must be positive.

If all above conditions are fulfilled, the interpreter applies changes to environ-
ment. Otherwise, the program is rotated and executed again, i.e. before another
execution, every direction related argument in predicates is changed according
to rules: N → NE, NE → SE, SE → S, S → SW, SW → NW, NW → N. Only
if all possibilities were tried and failed, the execution of program is cancelled.

2.8 Stages of Simulation

The simulation of the environment is running in epochs. In each epoch there
are three phases. In the first one the movements and collisions of particles and
complexes are realized. In the second phase the movement of photons and their
collisions with particles are resolved. In the third phase the functions contained
in complexes are executed in random order. During the execution of one function
the rest of the system is frozen – only one function may be executed at a time.

3 Simulation Experiments

To illustrate the potential of the model a simulation experiment is presented.
The aim of the experiment was to demonstrate how a set of complexes contain-
ing programs can construct a regular structure (”flake”) starting from a set of
randomly distributed particles of two types.

The initial state of the environment consisted of 500 unbound particles of
two types used as a building material and of six types of complexes containing
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Fig. 4. Constructing the ”flake”. The initial state of the model, and the state after
1905 time steps. The white dots represents stacks of particles, in the left figure they
contain programs.

programs. Each program existed in 8 copies (one of them in 6 copies). During
the simulation the programs consequently built the structure. They worked in a
sequence – the state of the structure left by one program was recognized by the
second one and so on. The detailed description of the programs can be found in
[7]. The initial state of the system and the state after 1905 time steps is shown
in Fig. 4.

To check and demonstrate the ”softness” of the language and the coding a few
experiments were run in which some bugs were injected into the programs. This
resulted in growing flakes of different shapes, but the erroneous set of programs
still worked. So small changes in programs resulted in relatively small changes
in its functioning. Two examples of erroneous behavior are shown in Fig. 5.

Fig. 5. Effects of bugs injected into the functions encoded in particles
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4 Conclusions and Further Research

The artificial world model has been designed and implemented. Using the model
a variety of selforganization and selfmodification processes can be modelled with
no need to explicitly express a fitness of the units.

The implemented Prolog like language and the way of encoding it in the
structure of complexes has the property that small changes in code of a program
(i.e. in particles in which the program is encoded) usually lead to small changes
in its execution effects. Such a property of the language is crucial while using
the system to simulate the evolutionary, spontaneous development of complex
structures. The lack of such a property was an obstacle in various simulations
presented in [5,4,6].

The possible use of the model is planned in two directions. First the self repli-
cating systems will be designed and modelled. Various self-replicating strategies
can be compared – their dynamics and competition between them. By setting
nonzero probabilities of reactions after the collisions with photons, the evolu-
tion of self-replicating systems can be investigated. The second direction is to
model the evolution of system of particles starting from random initial states,
looking for emergent properties of structures. The future research may extend
the language to allow the recognition of the internal energy of distant particles
which could give the possibility to develop some communication between distant
structures.
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Abstract. Based on the previous proposed Quantum-behaved Particle Swarm 
Optimization (QPSO), in this paper, a novel and more efficient search strategy 
with a selection operation is introduced into QPSO to improve the search ability 
of QPSO. While the center of position distribution of each particle in QPSO is 
determined by global best position and personal best position, in the Modified 
QPSO (MQPSO), the global best position is substituted by a personal best 
position of a randomly selected particle. The MQPSO also maintains the mean 
best position of the swarm as in the previous QPSO to make the swarm more 
efficient in global search. The experiment results on benchmark functions show 
that MQPSO has stronger global search ability than QPSO and PSO. 

1   Introduction 

Particle Swarm Optimization (PSO), originally proposed by J. Kennedy and R.C. 
Eberhart in 1995 [8], was introduced as a stochastic optimization method.  PSO is 
considered as an evolutionary computation approach in that it possesses many 
characteristics that are used by evolutionary algorithms, such as initializing with a 
population of random solutions, searching for optima by updating generations, the 
adjustment of particles and evaluating particles by a fitness function. However unlike 
evolutionary algorithms, the updates of particles are not accomplished by selection, 
crossover or mutation, but implemented by simulation the social behavior of bird 
flock, fish school, insect swarm, animal herd and even human society.  

In the past decade, PSO has been widely used in many real world applications and 
shown comparable performance with Genetic Algorithms (GAs). However, as 
demonstrated by F. Van Den Bergh [3], PSO is not a global convergence guaranteed 
algorithm because the particle is restricted to a finite sampling space for each of the 
iterations. This restriction weakens the global search ability of the algorithm and may 
lead to premature convergence in many cases. To overcome the shortcomings of the 
PSO, a Quantum-behaved Particle Swarm Optimization (QPSO) was proposed 
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previously [11], [12]. To improve QPSO further, in this paper, we introduce a 
selection operation into QPSO and thus propose a Modified QPSO. 

The rest of the paper is structured as follows. In Section 2, the principle of the PSO 
is introduced. The concept of QPSO is presented in Section 3 and the Modified QPSO 
is proposed in Section 4. Section 5 gives the numerical results on some benchmark 
functions. Some concluding remarks and future work are presented in the last section. 

2   Particle Swarm Optimization 

In the original PSO with M individuals, each individual is treated as an infinitesimal 
particle in the D-dimensional space, with the position vector and velocity vector of 
particle i, Xi(t) = (Xi1(t), Xi2(t),…,XiD(t)) and Vi(t) = (Vi1(t), Vi2(t),…,ViD(t)). The 
particle moves according to the following equations:  

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))ij ij ij ij gj ijV t V t c r P t X t c r P t X t+ = + ⋅ ⋅ − + ⋅ ⋅ −  (1) 

( 1) ( ) ( 1)ij ij ijX t X t V t+ = + +  (2) 

for i = 1,2,…,M;, j = 1,2,…,D. The parameters c1 and c2 are called the acceleration 
coefficients. Vector Pi = (Pi1,Pi2,…,PiD) known as the personal best position, is the 
best previous position (the position giving the best fitness value so far) of particle i; 
vector Pg = (Pg1,Pg2,…,PgD) is the position of the best particle among all the particles 
and is known as the global best position. The parameters r1 and r2 are two random 
numbers distributed uniformly in (0,1), that is r1, r2 ∼ U(0, 1). Generally, the value of 
Vij is restricted in the interval [-Vmax, Vmax]. 

Many revised versions of PSO algorithm are proposed to improve the performance 
since its origin in 1995. Two most important improvements are the version with an 
Inertia Weight [15], w, and a Constriction Factor [4], K. In the inertia-weighted PSO 
the velocity is updated by using 

( )1 ( ) ( ) ( ) ( )
1 1 2 2

V t w V t c r P t X t c r P X t
ij ij ij ij gj ij

⎛ ⎞ ⎛ ⎞+ = ⋅ + ⋅ − + ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3) 

while in the Constriction Factor model the velocity is calculated by using 

( 1) ( ) ( ) ( ) ( )
1 2 2 2

V t K V t c r P t X t c r P X t
ij ij ij ij gj ij

⎡ ⎤⎛ ⎞ ⎛ ⎞+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (4) 

where 

2
,   ,   4

1 222 4

K c cϕ ϕ
ϕ ϕ ϕ

= = + >
− − −

 
(5) 

The inertia-weighted PSO was introduced by Shi and Eberhart and is known as the 
Standard PSO [15]. The addition of inertia weight or Constriction Factor leads to 
faster convergence of the PSO algorithm. Other improvements of PSO can be seen in 
literatures such as [2], [9], [10], etc. 
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3   Quantum-Behaved Particle Swarm Optimization 

Trajectory analyses in [5] demonstrated the fact that convergence of PSO algorithm 
may be achieved if each particle converges to its local attractor pi = (p1i, p2i,…,piD) 
with coordinates 

( ) ( )1 1 2 2 1 1 2 2( ) ( ) ( )   or  ( ) ( ) (1 ) ( )ij ij gj ij ij gjp t c r P t c r P t c r c r p t P t P tϕ ϕ= + + = ⋅ + − ⋅  (6) 

where ϕ = c1r1/(c1r1+c2r2). It can be seen that the local attractor is a stochastic 
attractor of particle i that lies in a hyper-rectangle with Pi and Pg being two ends of its 
diagonal. We introduce the concepts of QPSO as follows. 

Assume that each individual particle move in the search space with a δ potential on 
each dimension, of which the center is the point pij. For simplicity, we consider a 
particle in one-dimensional space, with point p the center of potential. Solving 
Schrödinger equation of one-dimensional δ potential well, we can get the probability 
distribution function D(x) = e-2|p-x|/L. Using Monte Carlo method, we obtain 

( )ln 1    ~ (0,1)
2

L
x p u u U= ±  (7) 

The above is the fundamental iterative equation of QPSO. 

In [12], a global point called Mainstream Thought or Mean Best Position of the 
population is introduced into PSO. The global point, denoted as C, is defined as the 
mean of the personal best positions among all particles. That is 

( )1 2

1 2
1 1 1

( ) ( ), ( ), , ( )

1 1 1
( ), ( ), , ( )

D

M M M

i i iD
i i i

C t C t C t C t

P t P t P t
M M M= = =

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 (8) 

where M is the population size and Pi is the personal best position of particle i. Then 
the value of L is evaluated by L = 2α|Cj(t)-Xij(t)| and the position are updated by  

( 1) ( ) ( ) ( ) ln(1/ )ij ij j ijX t p t C t X t uα+ = ± ⋅ − ⋅  (9) 

where parameterα is called Contraction-Expansion (CE) Coefficient, which can be 
tuned to control the convergence speed of the algorithms. Generally, we always call 
the PSO with equation (9) Quantum-behaved Particle Swarm Optimization (QPSO), 
where parameter α must be set as 782.1<α  to guarantee convergence of the particle 
[13]. In most cases, α can be controlled to decrease linearly from α0 to α1 (α0<α1). 

4   The Proposed Algorithm 

QPSO is a promising optimization problem solver that outperforms PSO in many real 
application areas. First of all, the introduced exponential distribution of positions 
makes QPSO global convergent. Furthermore, the introduction of mean best position  
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into QPSO is another improvement of QPSO. In original PSO, each particle 
converges to the global best position independently. On the other hand, in the QPSO 
with mean best position C, each particle cannot converge to global best position 
without regard to its colleagues for there are wait among the particles as Fig.1 shows. 
It is because that the distance between particle’s current position and C determines the 
position distribution of the particle for next iteration. If the personal best positions of 
several particles are far from the global best position (these particle called lagged 
particles) while those of the other particles are near the Pg, the position C may be 
pulled away from Pg, by lagged particles. When the lagged particles are chasing after 
their colleagues, say converging to Pg,, the position C will be approaching Pg, slowly. 
The distances between position C and the personal best positions of a particle near Pg, 
don’t decrease quickly, decelerating the convergences of the particles near Pg,, and 
making them explore globally around Pg, temporarily until the lagged ones are close 
to Pg,. Therefore, in the QPSO with mean best position, the particle swarm does never 
abandon any lagged particle and seems to be more intelligent and more cooperative 
social organism. 

Mean Best Position

Lagged Particles

Global Best Position  

Fig. 1. The example shows there are wait among particles in QPSO 

Like original PSO, all particles in QPSO are converging to the global best position 
Pg, on the course of the search, which make the convergence speed of algorithms 
relatively faster than Genetic Algorithms (GAs) and therefore QPSO or PSO could 
generate the solution with higher precision. However, the memories of particles and 
their convergence to Pg, maybe lead to premature convergence. Let’s take Fig.1 as an 
example. In Fig. 1, most of the particles are clustering around the global best position, 
toward which the lagged particles will be pulled. In case that the global optima lies in 
the area where the lagged particles locate, the optimal solutions may be escaped by 
the particles since Pg, is so far from the global optima that the particles around Pg, 
could have little opportunity to hit it. The lagged particles may also miss the global 
optima because they are rushing at Pg, and appear in the promising area with little 
probability. Unless the particles are lucky enough to search out it during the process 
of converging, the probability with which the global optima may be found is 
decreasing, leading the algorithm to premature convergence as a result.  
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To overcome this shortcoming, we introduce selection operation into QPSO. The 
selection operation, not like what proposed by Angeline [2], is exerted on the global 
best solution. That is, at each iteration, the particle’s local attract point pi is not 
determined by global best position, but by a certain position G that is randomly 
selected from the other particle’s personal best positions and has better fitness value 
than the particle. The selection operation can be described as follows. 

Selection_G: 
randomly select a particle k from the swarm; 
if f(Pk)<f(Pi) 
   G=Pk; 
else 
   G=Pg; 
endif 
Return G 

Accordingly, the coordinate of pi is calculated by  

1 1 2 2 1 1 2 2( ) ( ( ) ( )) ( ),   or  ( ) ( ) (1 ) ( )ij ij j ij ij jp t c r P t c r G t c r c r p t P t G tϕ ϕ= + + = ⋅ + − ⋅  (10) 

Thus each particle’s personal best position may be selected as position G and be a 
point that the particles converge to. For example, in Fig.1, a lagged particle may be 
selected as the G position, and if so, other particles will run to it and may find the 
global optima in the promising area easily. Therefore, it can be concluded that this 
selection mechanism could enhance considerably the opportunity of particles’ finding 
the global optima. 

The proposed Modified QPSO outlined as follows. 

Modified QPSO (MQPSO) Algorithm 
Initialize particles with random position Xi=X[i][:];  
Initialize personal best position by set Pi=Xi;  
while the stop criterion is not met do 
Compute the mean best position C[:] by equation (8);  
   for i = 1 to swarm size M  
      If f(Xi)<f(Pi) then Pi=Xi; Endif 
      Find the Pg=arg min f(P[g][:]); 
      G=Selection_G; 
      for j=1 to D 
         ϕ=rand(0,1); u=rand(0,1);  
         p=ϕ*P[i][j]+(1-ϕ)*G[j];  
         if (rand(0,1)>0.5) 
            X[i][j]=p+α*abs(C[j]- X[i][j])*ln(1/u); 
         Else  
            X[i][j]=p-α*abs(C[j]- X[i][j])*ln(1/u);  
         Endif 
      Endfor 
   Endfor 
Endwhile 
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The values of parameter α can be controlled as in the QPSO [11], [12], [13]. In our 
experiment for this paper, α varies linearly over the running of algorithm. 

5   Experiment 

Five widely known benchmark functions listed in Table 1 are tested for the 
performance comparison of the Modified QPSO (MQPSO) with Standard PSO 
(SPSO) and QPSO algorithms. These functions are all minimization problems 
with minimum objective function values zeros. The initial range of the population 
listed in Table 2 is asymmetry as used in [14], [15]. Table 2 also lists 

maxV  for 
SPSO. 

Table 1. Expression of the five tested benchmark functions 
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The fitness value is set as function value and the neighborhood of a particle is 
the whole population. We had 50 trial runs for every instance and recorded mean 
best fitness and standard deviation. In order to investigate the scalability of the 
algorithm, different population sizes M are used for each function with different 
dimensions. The population sizes are 20, 40 and 80. The maximum generation 
(iteration) is set as 1000, 1500 and 2000 corresponding to the dimensions 10, 20 
and 30 for first four functions, respectively.The maximum generation for the last 
function is 2000. For SPSO, the acceleration coefficients are set to be c1=c2=2 and 
the inertia weight is decreasing linearly from 0.9 to 0.4 as in [14], [15]. In 
experiments for QPSO, the value of CE Coefficient α varies from 1.0 to 0.5 
linearly over the running of the algorithm as in [12], [13], while in MQPSO, the 
value of α decreases from 1.0 to 0.4 linearly. The mean values and standard 
deviations of best fitness values for 50 runs of each function are recorded in Table 3 
to Table 7. 

The numerical results show that both QPSO and MQPSO are superior to SPSO 
except on Shaffer’s f6 function. On Shpere Function the QPSO works better than  
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Table 2. The initial range of population for all the tested algorithms and Vmax for SPSO 

 Initial Range Vmax 
f1 (50, 100) 100 
f2 (15, 30) 100 
f3 (2.56, 5.12) 10 
f4 (300, 600) 600 
f5 (30, 100) 100 

Table 3. Numerical results on Sphere function 

SPSO QPSO MQPSO M Dim. Gmax 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 3.16E-20 6.23E-20 2.29E-41 1.49E-40 1.55E-038 9.96E-038 
20 20 1500 5.29E-11 1.56E-10 1.68E-20 7.99E-20 6.16E-021 2.26E-020 

 30 2000 2.45E-06 7.72E-06 1.34E-13 3.32E-13 4.86E-014 1.34E-013 
 10 1000 3.12E-23 8.01E-23 8.26E-72 5.83E-71 3.93E-060 2.74E-059 

40 20 1500 4.16E-14 9.73E-14 1.53E-41 7.48E-41 8.95E-038 1.89E-037 
 30 2000 2.26E-10 5.10E-10 1.87E-28 6.73E-28 5.37E-026 2.36E-025 
 10 1000 6.15E-28 2.63E-27 3.10E-100 2.10E-99 7.57E-082 5.31E-081 

80 20 1500 2.68E-17 5.24E-17 1.56E-67 9.24E-67 9.08E-053 5.13E-052 
 30 2000 2.47E-12 7.16E-12 1.10E-48 2.67E-48 2.77E-040 7.29E-040 

Table 4. Numerical results on Rosenbrock function 

SPSO QPSO MQPSO M Dim. Gmax 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 94.1276 194.3648 59.4764 153.0842 21.2251 49.1371 
20 20 1500 204.337 293.4544 110.664 149.5483 81.7652 118.7919 

 30 2000 313.734 547.2635 147.609 210.3262 114.0708 160.1809 
 10 1000 71.0239 174.1108 10.4238 14.4799 6.7391 8.9291 

40 20 1500 179.291 377.4305 46.5957 39.5363 41.1235 41.6602 
 30 2000 289.593 478.6273 59.0291 63.4941 47.8311 32.7463 
 10 1000 37.3747 57.4734 8.63638 16.6746 7.0730 8.2491 

80 20 1500 83.6931 137.2637 35.8947 36.4702 28.9102 28.6860 
 30 2000 202.672 289.9728 51.5479 40.8492 55.2497 41.1081 

MQPSO and SPSO. It is because that selection operation in MQPSO may enhance 
global search ability but weaken the local search ability of QPSO at later search stage. 
On Rosenbrock function, the MQPSO outperforms the QPSO except when the swarm 
size is 80 and dimension is 30. On Rastrigrin function, it is also shown that the 
MQPSO generated better results in most cases. On Griewank function, MQPSO is 
superior to the QPSO when the dimension of the problem is 20 and 30. When  
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dimension is 10, MQPSO cannot generate better solution than QPSO under this 
parameter setting. On Shaffer’s function, the MQPSO shows its stronger ability to 
escape the local minima 0.0097 than the QPSO and even than SPSO. Generally 
speaking, the MQPSO has better global search ability than QPSO. 

Fig. 2 shows the convergence process of the MQPSO and QPSO on the first four 
benchmark functions with dimension 30 and swarm size 20. It is shown that, although 
MQPSO converge more slowly than the QPSO during the early stage of search, it 
may catch up with QPSO at later stage and could generate better solutions at the end 
of search. 

Table 5. Numerical results on Rastrigrin function 

SPSO QPSO MQPSO M Dim. Gmax 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 5.5382 3.0477 5.2543 2.8952 3.9190 3.0742 
20 20 1500 23.1544 10.4739 16.2673 5.9771 16.9898 13.0674 

 30 2000 47.4168 17.1595 31.4576 7.6882 24.3047 7.4604 
 10 1000 3.5778 2.1384 3.5685 2.0678 2.6979 2.0492 

40 20 1500 16.4337 5.4811 11.1351 3.6046 10.3782 9.2972 
 30 2000 37.2796 14.2838 22.9594 7.2455 17.7308 4.0300 
 10 1000 2.5646 1.5728 2.1245 2.2353 2.2060 2.3589 

80 20 1500 13.3826 8.5137 10.2759 6.6244 7.7723 5.9316 
 30 2000 28.6293 10.3431 16.7768 4.4858 13.1504 3.2067 

Table 6. Numerical results on Griewank function 

SPSO QPSO MQPSO M Dim. Gmax 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 0.09217 0.0833 0.08331 0.06805 0.0833 0.0721 
20 20 1500 0.03002 0.03255 0.02033 0.02257 0.0162 0.0171 

 30 2000 0.01811 0.02477 0.01119 0.01462 0.0063 0.0088 
 10 1000 0.08496 0.0726 0.06912 0.05093 0.0745 0.0724 

40 20 1500 0.02719 0.02517 0.01666 0.01755 0.0122 0.0122 
 30 2000 0.01267 0.01479 0.01161 0.01246 0.0061 0.0110 
 10 1000 0.07484 0.07107 0.03508 0.02086 0.0499 0.0642 

80 20 1500 0.02854 0.0268 0.0146 0.01279 0.0077 0.0115 
 30 2000 0.01258 0.01396 0.01136 0.01139 0.0063 0.0104 

Table 7. Numerical results on Shaffer’s f6 function 

SPSO QPSO MQPSO M Dim. Gmax 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

20 2 2000 2.782E-04 0.001284 0.001361 0.003405 1.945E-004 0.0014 
40 2 2000 4.744E-05 3.593E-05 3.891E-04 0.001923 3.256E-008 1.087E-007 
80 2 2000 2.568E-10 3.134E-10 1.723E-09 3.303E-09 6.517E-009 1.428E-008 
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Fig. 2. Convergence process of the MQPSO and QPSO on the first four benchmark functions 
with dimension 30 and swarm size 20 averaged on 50 trail runs 

6   Conclusion 

In this paper, a Modified QPSO with a selection operation is proposed. The 
motive of introducing the selection into QPSO is that particles in QPSO or 
original PSO converge to the global best position, which may be apt to encounter 
premature convergence. The selection operation exerted on global best position is 
able to enhance the global search ability of QPSO considerably as shown by the 
performance comparison between MQPSO and QPSO.  

Our future work for QPSO will focus on introducing into QPSO more selection 
operation method and even other evolutionary operations. Moreover, we will also be 
devoted to applying the MQPSO and QPSO to some real world problems. 
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Abstract. In the paper, we describe an application of stochastic context-
free grammars (SCFG) to modelling of the formal RNA string language.
The simplification of the stochastic context-free grammar and it’s conver-
sion to Chomsky normal form was used. We present the modification of
Cocke-Kasami-Younger algorithm that is used for probabilistic estima-
tions of stochastic grammars for RNA sequences. Some better algorithms
were constructed to decrease the computational complexity but still on
the level of O(n3) where n is the length of the RNA strings. The results of
using the algorithms to the training sample consisted of tRNA chains of
Acinetobacter sp. bactery are described.

1 Introduction

Algorithms for an analysis of biological sequences, RNA, DNA and proteins
molecules as strings of nucleotide or amino acid are still interesting problems.
Most algorithms for the analysis assume uncorrelated strings of residues, in which
the identity of a residue at one position has no effect on the identity of another
residue (Rivas and Eddy [8]). It means, the analysis of such sequences is very re-
duced, because RNA secondary structure produces strong long-distance pairwise
correlations between Watson-Crick base pairs.

Computational linguistics gives us another possibility to model strings using
correlated symbols (Jurafsky and Martin [5]), (Gold [3]. From the point of view,
a language of RNA is dominated by nested pairwise correlations which should
be constructed using a context-free grammar. Stochastic context-free grammars
(SCFG) have been used to create probabilistic model that describes RNA sec-
ondary structure (Sakakibara and Muramatsu [10], [11]). In the case, it is nec-
essary to apply some algorithms that learn from RNA strings as examples of a
concept space. Two aspects must be considered with regards to the learning of
SCFGs: (1) the learning of the structural component, i. e. the rules of grammars,
(2) the estimation of the stochastic component, i. e. the probabilities of the rules.
Classical inductive techniques that are based on grammatical inference to obtain
SCFGs have been proposed. However, these techniques present computational
restrictions that limit their use in complex real tasks (Linares et al. [6]). Genetic
algorithms have been applied to the grammar inference problem from programs
(Črepinšek et al. [2]). It was proved that the property of consistency is guaranted
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B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 404–413, 2007.
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for all the SCFGs constructed by using the classical Inside-Outside and Viterbi
algorithms (Sanchez and Benedi [9]) .

In the paper, in the following section we describe a grammar construction
from RNA strings, we analyse probabilistic estimations of rules in stochastic
grammars and its consistency. In the third section we show the construction
of the stochastic grammar in Chomsky normal form from a common form and
we recomputed probabilities of rules from the theoretical point of view. In the
fourth section Cocke-Kasami-Younger algorithm is modificated to a learning of
grammars from RNA strings. We developed some modifications of the algorithm
to get better time complexity. The next section contains results of the approach
in an application of the method to tRNA of Acinetobacter sp. bactery. In the
conclusion we summarize the results.

2 Construction of the Grammar

We consider context-free grammars (CFG) as sufficient to at least partially cover
the most important properties of RNA strings while maintaining polynomial time
complexity of computations based on them. In the first step, we can model a
simple grammar G consisting of one non-terminal X (which is also the starting
symbol), four terminals - a, g, c, u - corresponding to four nucleotide bases and
four sets of the following types of rules:

(1)X → a|g|c|u,
(2)X → aX |gX |cX |uX, (3)X → Xa|Xg|Xc|Xu
(4)X → aXu|cXg|gXc|uXa (complementarity)

The stochastic grammar (SG) GS can be easily obtained by assigning a prob-
ability vector Π . This grammar is able to cope with the following patterns of
secondary RNA structure: stems, loops and bulges. This approach suffers from a
great shortcomming. Although it is very simple, there are 2n possible derivations
for each word of the size n. Since G is CFG we can consider possible improvement
by transformation to some normal form (Greibach or Chomsky). This transfor-
mation, however, is not so easy when we work with the stochastic grammar. A
probability of each new or changed rule must be recomputed using probabilistic
rules and methods [10], [4].

Notation: PG(X → α) is a probability of X → a rule in GS grammar, PG(α)
is a probability that α is derived from the starting symbol in GS . PG(β → α) is
a probability of deriving α from β in GS .

We say that stochastic grammars GS1 = (G1, Π1) and GS2 = (G2, Π2) gener-
ate the same language iff PG1(α) = PG2(α) for each string α.

Let Gs be SG. RGS(X) = {(α1, p1), . . . , (αm, pm)} is a set of tuples represent-
ing all strings and respective probabilities such that GS contains X → αi rule
with probability pi, i ∈ [1, m]. Then we can use the following properties (they
can be proved) to the construction of the SCFG.
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1. We can omit all the rules with zero probability.
2. If GS contains a non-terminal X different from the starting symbol, which

is on the left-hand-side of some rules, but not on the right-hand side. Then
GS without rules containing X generate the same language.

3. If X is a non-terminal in Gs and there exists a non-terminal Y ∈ GS , Y �= X ,
such that RGS(Y ) = RGS (X) then it is possible to replace every occurrence
of Y on the right-hand-side of the rules contained in GS by X without any
influence on the language generated by GS .

We will consider using of some learning algorithm to a stochastic grammar and
we should answer a question if it is possible to simplify the grammar using the
previously mentioned methods without changing the zero-probability rules to
non-zero (during the learning process) or not.

3 Chomsky Normal Forms

For the future goals we analysed process of the modification of SCFG to the
Chomsky normal form (CNF). We present our results in short and we focused
on (1) the construction and (2) the consistency problem.

Theorem 1. Let G be a CFG without any rule with empty symbol on the right-
hand-side and GS = (G, Π) corresponding stochastic grammar. Let G′ be a CFG
in Chomsky normal form such that L(G′) = L(G) − ε. Then a probability vector
Π ′ such that G′S = (G′, Π ′) generates the same language as GS exists.

The theorem enables to transform the grammar GS to G1
S = (G1, Π1) such that

G1
S is in CNF and generates the same language as GS . The rules of G1

S are:

1. Nor it is necessary to modify the rules of the first type neither the corre-
sponding probabilities: X → a|c|g|u,

2. The rules of the second type are replaced by new rules:
X → X2

aX |X2
c X |X2

gX |X2
uX , the rules have the same probabilities as the

rules in GS ,
X2

a → a, X2
c → c, X2

g → g, X2
u → u, the probabilities are 1.

3. The third type rules are transformed to:
X → XX3

a|XX3
c |XX3

g |XX3
u, probabilities are the same as in the original

rules’ from GS ,
X3

a → a, X3
c → c, X3

g → g, X3
u → u, the probabilities are equal 1,

4. Instead of the rules of the fourth type G1
S contains:

X → X4
aXXu|X4

c XXg|X4
gXXc|X4

uXXa, the probabilities are unchanged,
XXa → XX5

a, XXc → XX5
c , XXg → XX5

g , XXu → XX5
u, the probabilities

are 1,
X4

a → a, X4
c → c, X4

g → g, X4
u → u, the probabilities are 1,

X5
a → a, X5

c → c, X5
g → g, X5

u → u, again the probabilities are 1.

Each nonterminal X i
a, i = 2, . . . , 5, X i

a ∈ G1
S rewrites one rule, furthermore right-

hand side of the rules is unaltered hence we can substitute the nonterminals
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X i
a, i = 3, 4, 5 on the right-hand side by a nonterminal X2

a . Then X i
a, i = 3, 4, 5

occur only on the left-hand side of the rules, therefore we can omit the rules
rewriting them. The same can be done with nonterminals X i

b, i = 2, . . . , 5, b ∈
{c, g, u}. G1

S can therefore be simplified to the grammar G2
S as follows:

X → a|c|g|u, X2
a → a, X2

c → c, X2
g → g, X2

u → u, X → X2
aX |X2

c X |X2
gX |X2

uX,
X → XX2

a |XX2
c |XX2

g |XX2
u, X → X2

aXXu|X2
c XXg|X2

gXXc|X2
uXXa,

XXa → XX2
a , XXc → XX2

c , XXg → XX2
g , XXu → XX2

u.

The number of possible derivations of words after the above mentioned trans-
formations is intact as each rule used in derivation of some word in GS is only
substituted by a sequence of rules determined by normalization process in G2

S .
An estimation of the number of possible derivations of a word w, |w| = n in
CNF grammar: Let N = {A1, , Ar} be a set of its non-terminals and Mi the
number of rules, that rewrite Ai to two non-terminals. We denote the count of
all possible derivations of a word of length n by C(n). Then for each n ≥ 2:
C(n) ≤ k ∗ (k + 1)(2n−4), where k = max{i∈[1,r]}Mi.

4 Probabilistic Estimations of Rules in SCFG

The Cocke-Kasami-Younger (CYK) algorithm [5] uses the dynamic programming
method to determine if some string belongs to a language generated by some
CFG in Chomsky normal form. The time complexity of CYK algorithm is O(n3)
and we describe the CYK algorithms for some better understanding of it.

4.1 Cocke-Kasami-Younger Algorithm

Input: string α, a sequence of symbols a1, . . . , an Let G contains r non-terminals:
S1, . . . , Sr. Let S1 be a starting symbol. P [i, j, k] is a three-dimensional Boolean
array; i, j ∈ [1, n]; k ∈ [1, r]. P [i, j, k] is true iff we can derive a subsequence of α
starting with ai of length j from a non-terminal Sk.

1. assign FALSE to all elements of P;
2. for each i ∈ [1, n] for each Sk → ai rule set P [i, 1, k] to TRUE;
3. for each i ∈ [2, n] for each j ∈ [1, n − i + 1] for each k ∈ [1, i − 1]

for each SA → SBSC rule
if P [j, k, B] and P [j + k, i − k, C] are both TRUE then

set P [j, i, A] to TRUE.
4. if P [1, n, 1] is TRUE, then α ∈ L(G), otherwise ¬(α ∈ L(G)).

4.2 Extending CYK for Learning Algorithms

Inside-Outside algorithm (IO): The IO algorithm works with probability
values of words in a learning sample, probabilities of all possible derivations of
that words and rule usage for each such derivation. Therefore we have to mod-
ify the algorithm to provide all necessary information. Now P [i, j, k].prob repre-
sents the probability of deriving a subsequence aiai+j−1 from a non-terminal Sk.
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P [i, j, k].cnt is a count of all possible splittings (to 2 substrings). P [i, j, k].X [m]
stores triples referencing all possible substrings; m ∈ [1, cnt].

1. set all elements of P as follows: P[i,j,k].prob:=0; P[i,j,k].cnt:=0;
2. for each i ∈ [1, n] for each Sj → ai rule set{

P [i, 1, j].prob := P (Sj → ai); P [i, 1, j].cnt := 1
}
;

3. for each i ∈ [2, n] for each j ∈ [1, n − i + 1] for each k ∈ [1, i − 1]
for each SA → SBSC rule

if P [j, k, B].prob ∗ P [j + k, i − k, C].prob > 0 then{
P [j, i, A].cnt := P [j, i, A].cnt + 1;

P [j, i, A].prob:= P [j, i, A].prob+
+P [j, k, B].prob ∗ P [j + k, i − k, C].prob ∗ P (SA → SBSC);

P [j, i, A].X [P [j, i, A].cnt] := (k, B, C);
}

CYK algorithm works in polynomial time, but the recalculation of probabil-
ities for the rules is exponential (as we have previously shown that the number
of all possible word derivations in a CFG to CNF is exponential), therefore
processing all information using this algorithm is exponential.

4.3 Modification of CYK Algorithm for RNA Grammar

Note, that the algorithm could be easily adopted to Viterbi learning. It suffices to
store the information about the most probable derivation in the P array (splitting
into 2 substrings, two non-terminals and so on). In the third step we only compare
P [j, i, A].prob and the value of P [j, k, B].prob ∗ P [j + k, i − k, C].prob ∗ P (SA →
SBSC). If the latter is greater it is necessary to change P [j, i, A].

Less memory: Nonterminals are divided into two groups. The first one consists
of those, which are on the left-hand-side of exactly one grammar rule and are
rewrited to a terminal by this rule. Other nonterminals belong to the second
group. If k is an index of some first-group nonterminal, the cell P [i, j, k] for
j �= 1 doesn’t matter. While processing of the string, length n, we can save
n ∗ (n − 1) fields for every rule from the first group. RNA grammar constructed
according to the method has at least four such nonterminals, which for a word
of length 3000 means, the array P will be smaller by almost 36 millions of fields.

Less time: The basic algorithm works with two groups of rules: those rewriting
a nonterminal to terminal (in the second step) and the others - rewriting a
nonterminal to two nonterminals (in the third step). However, if there is a rule
that rewrites a nonterminal to two nonterminals and the first of them belongs
to the first group it is not necessary to consider all possible splittings into two
substrings in the third step. Therefore we divide the rules into four groups:

1. Rules rewriting a nonterminal to terminal(s).
2. Rules with two nonterminals on the left-hand-side, the first of them belonging

into the first group of non-terminals
3. Rules with two nonterminals on the left-hand-side, the second of them be-

longing into the first group of non-terminals
4. Other rules
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In the third step of the algorithm for given i, j and the rule SA → SBSC belong-
ing to the second group of rules it is sufficient to consider only one splitting into
two substring representing derivation of the first symbol of the word from the
nonterminal SB belonging to the first group of nonterminals and derivations of
the rest of the word from the nonterminal SC . For given i, j and a rule from the
second group we spare i − 2 iterations. The exact number of operations for each
iteration depends on the choice of algorithm for probabilistic estimate. Similarily
for the third-group rule SA → SBSC we do not need to consider for given i and
j all k from 1 to i − 1. Derivation of the word aj . . . aj+i−1 using the chosen rule
is possible iff the first i − 1 symbols are derived from nonterminal SB and the
last symbol of the word is hence derived from the nonterminal SC . Again we
spare i − 2 operations. Only for the rules from the fourth group it is necessary
to consider all possible splittings. Using the proposed changes it is possible for
each rule from the second and the third group to spare

∑n
i=2 (n − i + 1) · (i − 2)

iterations, where n is a length of a word which makes 200533704 operations less
for the length 3000.

Even less memory: If some of the cells stored ”zero” probability informa-
tion in the original algorithm, it could have two different interpretations: (1)
The substring represented by this cell is not derivable from the corresponding
nonterminal. (2) The mentioned derivation is possible but with zero probability.
This situation can happen when we initialize all cells of the array P in the first
step. If we omit the first step it is possible (in the second step) to initialize all
the cells of P handling the rules from the first group before they are assigned
the proper values. Hence the third step of the algorithm should be modified for
i, j, k and a rule SA → SBSC as follows:

if P [j, k, B] and P [j + k, i − k, C] were initialized then
if P [j, i, A] was not initialized then {initialize P [j, i, A]; set P [j, i, A]}
else set P [j, i, A];

Setting of a cell depends on a choice of a probability estimation. The exact
amount of memory spared by this modification depends on the given grammar,
on an input word and on a chosen probabilistic estimation.

5 Resuls of Application

5.1 tRNA Grammar Construction

After consideration of structure, length of RNA strings classes and complex-
ity (space and time) of the probabilistic estimates it is possible to construct a
grammar which models language of tRNA strings (modelling mRNA cannot be
effectively done by CFG as they contain knots and are very long). The grammar
contains terminals a, c, g, u and nonterminals S, X, M, V, L. The nonterminals
represent patterns of the tRNA structure. It is shown in the Fig. 1.

Some separate nucleotids may be attached to the ends 3’ and 5’ of the tRNA
molecule which can easily be covered by these rules: S → aS|cS|gS|uS for 5’
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termination and S → Sa|Sc|Sg|Su for 3’. The nucleotids that form the basic
pairs follow hence the grammar contains a rule S → X . Stem can be modelled
by X → aXu|cXg|gXc|uXa and its transition to the first part of multiloop by
X → M1 rule. In case that M1 or M1 and M2 are of zero length we add rules
X → V M2 and X → V V M3 for the nonterminal X . Some sources [1],[4], [12]
state that the third part of multiloops is functionally similar to the second loop.
Therefore we assume nonemptiness of the substring M3.

Fig. 1. S - start symbol, X - stem, M - multiloop, V - hairpin, L - loop

In the first step we describe the rules for parts of multiloops. It may consist of
some nucleotids followed by hairpin pattern. So the neterminal M1 is rewrited by
the rules M1 → aM1|cM1|gM1|uM1, M1 → V M2 and M1 → V V M3 in case the
second part of multiloops is of length 0. Following the same arguments as in case
of the nonterminal M1 we add rules M2 → aM2|cM2|gM2|uM2, M2 → V M3,
M3 → aM3|cM3|gM3|uM3, M3 → V M4 and M3 → V for nonterminals M2 and
M3. The last part of multiloops must be after som time rewrited to a terminal
which is covered by these rules: M4 → aM4|cM4|gM4|uM4 and M4 → a|c|g|u.

The pattern of hairpin is coverable by:

V → aV u|cV g|gV u|uV a, V → aL|cL|gL|uL, L → aL|cL|gL|uL, L → a|c|g|u.

This grammar is CFG, but if we want to use the CYK algorithm it must
be transformed to CNF using the afforementioned process. This grammar in
CNF models basic pairs only. The alternative pairs can be added by extending
the grammar using rules rewriting nonterminals S and X to strings AYc|CYa

|GYu|UYg and nonterminals M3 and V to AWc|CWa| GWu|UWg. The new non-
terminals Yi and Wi, i ∈ {a, c, g, u} can be rewrited as follows: Yu → XU ,
Yg → XG, Yc → XC, Ya → XA, Wu → V U, Wg → V G, Wc → V C, Wa → V A.

In order to explore properties of loops the nonterminal L can be substituted
by a sequence of nonterminals L1, . . . , Ln where n is the longest possible loop in
tRNA pattern. For i = 1, . . . , n − 1 the grammar contains the rules Li → aLi+1
|cLi+1|gLi+1|uLi+1 and Li → a|c|g|u, for the nonterminal Ln only the rules
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rewriting it to a terminal: Ln → a|c|g|u. Further extension enables us to inves-
tigate the size of loops, measures of stems, or size of the parts of multiloops. In
the grammar, the number of the prepared rules was 165. After the computation
of the rules probabilities we removed 57 rules with the probability 0. The result
of SCFG after 70 iterations under the normal distribution are in the Table 1.

Table 1. SCFG for Acinetobacter sp. bactery.

Rule Prob. Rule Prob. Rule Prob. Rule Prob.

S → US 0.012 S → SA 0.198 S → SC 0.064 S → SG 0.096
S → SU 0.141 S → AB 0.064 S → CD 0.173 S → GE 0.230
S → UF 0.019 X → AB 0.122 X → CD 0.242 X → GE 0.370
X → UF 0.080 X → A1 0.035 X → U1 0.114 X → Cd 0.007
X → Ge 0.019 X → Uf 0.005 1 → A1 0.238 1 → C1 0.207
1 → G1 0.274 1 → U1 0.228 1 → V 2 0.006 1 → V W 0.044
2 → A2 0.270 2 → C2 0.305 2 → G2 0.223 2 → U2 0.094
2 → V 3 0.105 3 → U3 0.037 3 → V 4 0.139 3 → AH 0.126
3 → CI 0.139 3 → GJ 0.240 3 → Ci 0.253 3 → Gj 0.063
4 → C4 0.368 4 → U4 0.052 4 → a 0.526 4 → u 0.052
V → AH 0.095 V → CI 0.188 V → GJ 0.244 V → UK 0.083
V → AL 0.027 V → CL 0.023 V → GL 0.053 V → UL 0.102
V → Ah 0.037 V → Ci 0.077 V → Gj 0.039 V → Uk 0.028
L → AM 0.135 L → CM 0.043 L → GM 0.149 L → UM 0.412
U → u 1.0 L → c 0.043 L → g 0.214 M → AN 0.053
M → CN 0.455 M → GN 0.047 M → UN 0.153 M → a 0.017
M → c 0.053 M → u 0.218 N → AO 0.2 N → CO 0.083
N → GO 0.575 N → UO 0.141 O → AP 0.658 O → CP 0.208
O → GP 0.125 O → UP 0.008 P → AR 0.391 P → CR 0.033
P → GR 0.325 P → UR 0.25 R → AT 0.041 R → a 0.116
R → c 0.266 R → u 0.575 T → GY 1.0 Y → u 1.0
Z → a 0.25 Z → c 0.25 Z → g 0.25 Z → u 0.25
B → XU 1.0 D → XG 1.0 E → XC 1.0 F → XA 1.0
b → XC 1.0 d → XA 1.0 e → XU 1.0 f → XG 1.0
W → V 3 1.0 H → V U 1.0 I → V G 1.0 J → V C 1.0
K → V A 1.0 h → V C 1.0 i → V A 1.0 j → V U 1.0
k → V G 1.0 A → a 1.0 C → c 1.0 G → g 1.0

5.2 Probabilities of Rules

Our aim was to estimate the probability values of the grammar rules using
a training sample. We have chosen the Viterbi learning algorithm, because of
its lower time complexity. The training sample consisted of tRNA strings of
Acinetobacter sp. bactery. ADP1 Complete genetic information was acquired
from http : //www.sanger.ac.uk/cgi− bin/Rfam/genome dist.pl. The aim of
the learning process was to acquire the probability vector for the proposed gram-
mar. This vector would enable the grammar to generate tRNA chains of this cell
only. We extended the basic grammar by adding rules admitting alternative pairs
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and exploring the size of loops in general. Learning algorithm was applied until
the probability vector was not equal to the previous interation’s one. We com-
pared learning process for two distinct initial settings of the probability vector
(equal probabilities for the rules rewriting the same nonterminal vs. lower values
for the rules modelling alternative pairs). In both cases the resulting setting of
the probability vector had similar properties. After generating words we found
out that the grammars are too general to satisafctorily cope with tRNA chains
of one organism. Further research can therefore be focused on learning tRNA
chains for some species (i.e. for all bacteria). It is also possible to try to extend
the grammar by some new rules. The grammar we gained can describe some
properties of one class of tRNA chains. Beforemost it is the information about
the most probable length of a loop contained in the chain (in our case it was 6
nucleotids). Also it is possible to get occurence ratio of the nucleotid in a given
pattern.

6 Conclusions

We extended CYK algorithm for use in the area of probabilistic estimations for
stochastic grammars. We proposed a modification of the algorithm for learning
algorithm of stochastic grammars modelling RNA strings which led to space and
time complexity reduction. We also proposed a modification capable of deriving
the most probable derivations of a word in Viterbi learning (even for words with
long derivations. We built the grammar which covers tRNA chains properties.
In the experiment [7], we tested the learning using the Viterbi algorithm on the
sample representing real biological data of Acinetobacter sp. bactery.
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Abstract. The paper presents a new way of modeling the human per-
formance in two player games using a rating system based on Kelly Cri-
terion which is often utilized for gambling and financial engineering. The
advantage of the proposed system is the ability to assess playing strength
based on both the final outcome of the game and the style of play. The
last aspect of the rating assessment system is novel compared to the
rating systems developed so far (like ELO, Bradley-Terry, etc.). Another
advantage of the proposed method is the tackling of the problem of drawn
games. To the very best authors knowledge the approach presented below
is a relatively new look at the problem of playing strength assessment
based on probability theory. The paper presents and discusses few illus-
trative examples.

1 Introduction

Modeling of human behavior is a problem of great difficulty and importance
in many areas of life. The decision making support systems are but one of the
examples where human behavior plays a significant role and having a valid model
of it is of utmost importance. In the paper we consider one of the cases of
decision making i.e., two player zero sum games, such as a game of chess, which
sets the context of the following considerations on modeling (measurement) of
human player performance. The problem of comparison of playing strength of
human players is almost as old as the games themselves. Comparing playing
strength is very difficult because various playing strategies and styles must be
considered with no sharp criteria. In the case of human players the task is even
more complex due to the strong influence of player’s mentality, shape, age or even
factors unexplainable by the players themselves. The latter may be illustrated
very well with an example from a recent chess event. On November 27 2006
current world champion Vladimir Kramnik played his second game of the match
vs computer chess program Deep Fritz. According to judgement of the chess
experts up to the 34th move, the best human player was playing very well, even
brilliantly. The position was as given in Fig. 1 with Kramnik to move.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 414–421, 2007.
� Springer-Verlag Berlin Heidelberg 2007



Modeling Human Performance in Two Player Zero Sum Games 415

80Z0Z0M0j
7l0Z0Z0o0
60Z0Z0Z0o
5Z0Z0O0Z0
4po0ZQZ0Z
3Z0Z0Z0Z0
20O0Z0ZPO
1Z0a0Z0ZK

a b c d e f g h

Fig. 1. Chessboard position at which Kramnik played a surprisingly bad move

Kramnik played 34...Qe3?? allowing Deep Fritz to checkmate on the 35th

move. Hard to believe, but true. After the game Kramnik stated:

I’m also shocked by what happened. I can’t explain it. My position
was excellent; I felt good, and wasn’t even tired.

The words and the performance of the world champion prove that human behav-
ior can be unpredictable even at the highest level of proficiency. It would be very
difficult to create a deterministic model covering all factors influencing humans
behavior. Such a task is very hard, if possible at all. This is probably the reason
for great success of the probability theory in the field since it provides a frame-
work to cover (better or worse) the influence of most of the possible variables
having influence on the players performance quality.

It is in general acceptable to assume that the history of probability based
rating systems starts in the 60’s of 20th century with the approach proposed by
Bradley and Terry in [1]. Since throughout the paper (due to personal prefer-
ences) we use the game of chess as an example of two player zero sum game,
an extension of hungarian mathematician Arpad Elo [2] to Bradley and Terry
rating system will become a subject of interest. However, all remarks formulated
with respect to Elo system apply to the original idea of Bradley and Terry.

Following Bradley and Terry, Elo proposed to assign chess player a number
representing his/her strength of play. Throughout the years biggest chess federa-
tions accepted Elo rating system and nowadays it has become the most popular
of all ratings in chess world. Despite of its popularity the Elo system (as well as its
originator) has one major drawback. It is draw handling. With huge simplifica-
tion one can say tha such a result of the game is theoretically quite inconvenient
as the rating change mainly depends on difference in wins and loses. Elo system
does not efficiently answer the question how to handle draws. Many tricks and
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some more sophisticated solutions have been proposed in order to tackle this
problem. However, the problem has not been solved entirely.

This paper aims to provide an alternative rating system utilizing Kelly Crite-
rion presented in [3], which gives a clear solution of this problem. It will be shown
that Kelly Criterion allows to take a slightly different look at the two player zero
sum games simultaneously giving some kind of measure of style of play which is
not possible to obtain in the case of rating systems well known so far.

2 Kelly Criterion

Kelly criterion originates in 1956 with the paper [3] where a problem of gambler’s
money growth is considered and has been successfully adopted for many other
applications, especially financial engineering (see [4]). Kelly developed a formula
for gambling assuring exponential gambler’s wealth grow using Shannon’s con-
siderations on transmission channel errors presented in [5]. Shannon defines the
rate of transmission over a noisy communication channel in terms of probability
theory. Kelly has transfered theoretical model based on probability proposed
by Shannon into a gambling system, provided some additional conditions are
satisfied.

2.1 Assumptions

Suppose there are two players, say player A and player B, wagering the money
on some event. Let player A have some finite amount of money and let the player
B be infinitely wealthy. Assume both player’s capital is infinitely divisible and
player A wins with probability p, player B wins with probability q = 1 − p,
no ties. The main assumption is, there are some ”fair” bets available, i.e. bets
having odds consistent with win and lose probabilities.

The matter of identification of such bets is a separate problem. However, it is
quite easy to find such events. As an example a Black Jack can be mentioned.
This game (counterpart to many other casino games) can be favorable to a
player, provided card counting is applied.

2.2 The Criterion

With the above assumptions satisfied, Kelly defines an exponential measure of
player’s capital growth rate as follows

g(f) = p log (1 + f) + q log (1 − f) (1)

where f is the fraction of a capital wagered by player A on a single trial, p, q state
probabilities as described above. For more details see [3,4]. Trivial calculations on
(1) lead to a conclusion that optimal growth rate value with respect to fraction
bet f takes place for

f∗ = p − q (2)

Kelly criterion implies many important conclusions. Below just two of them are
recalled.
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1. If we find an event with positive expectation, i.e. g(f) > 0 for some f , we
for sure can increase our capital to arbitrary amount by betting fraction (2)
of bankroll on every trial.

2. The above strategy is optimal. This means that in the sufficiently long time
period the player using this strategy will become more wealthy than player
using any other strategy while betting on the same event.

Another important remark coming out of the Kelly criterion is on expected
time of doubling the bankroll. Since we use Kelly criterion for betting we have
exponential growth rate f∗ and therefore to double the bankroll we have to
perform n trials, where

n =
log 2
g(f∗)

=
log 2

g(p − q)
(3)

3 The Link to Ttwo Player Games

In this section let us concentrate our attention on the way of transfering the Kelly
criterion results into the field of two player games. In this context the players
will become gamblers, the game will become an event, and the capital possessed
by both players will be limited to a unit. A single move of the game made by
both players can be viewed as single trial in gambling. Both players bet some
part of their capital on each trial. If player A makes better (however defined)
move than player B, he/she wins a single trial and the capital fraction bet by
the opponent. The same takes place if player B wins a single trial. The ultimate
goal for both players is to double the bankroll. This seems to be a natural
assumption in a zero-sum game, where both players start with a unit capital. In
such a case the game ends when either of them doubles his/her bankroll. This
means that the other player’s capital is zero. Of course, both players chances for
victory are not equal and (by assumption) proportional to the rating assigned.
Usually player ranked higher is expected to win, so in all further examples the
game evaluation and rating changes will always be calculated from winner’s
point of view. This is also due to the fact that Kelly assumes application of his
criterion for positive expectation events only, which in the context of the game
is equivalent to winner’s point of view.

3.1 Assumptions

We assume that

1. The game is always played to the terminal state (win, lose, draw) without
resigning.

2. Each player gets a unit initial capital and tends to double it during the
course of the game.

3. Both players play at their best.
4. Players ratings changes compensate each other.
5. Rating changes take place after every single game.
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3.2 Expected Time to Win and Rating Changes

Formula (3) gives the expected number of trials necessary to double the possessed
capital provided we know probabilities p and q, or equivalently the optimal
exponential growth rate g(p − q). In the case of rating system we propose to
look at this formula in a little different way. In the light of previously stated
assumptions and the result of the game one can ask: what are the probabilities
p and q and the growth rate g(p − q) in (3) for the game finished in n moves?
The answer is simple in the case of optimal exponential growth rate

g(p − q) =
log 2

n
(4)

With the growth rate calculated it is possible to proceed further. Having in mind
assumption on optimal play by both players and the relation p = 1 − q we can
use (1) to get the following equation

g(p − q) = q log 2q + (1 − q) log 2(1 − q) (5)

which solved with respect to q implies simultaneously p. With these data at hand
we can view the game as a probabilistic experiment in which better player (not
necessarily the one higher ranked) had a max(p, q) chances for winning a single
trial and the weaker player had a min(p, q) chances for winning a single trial,
respectively.

The recipe for rating change may be as follows. Before the game both players
had together some amount of rating points. With assumption 4 the sum of both
player’s ratings does not change. However, due to the performance of players
during the game the total sum of rating points may split differently from the
initial state. We suggest to split the entire number of points proportionally to
the probabilities p and q obtained from the above calculations. We get, in this
way, differences between initial rating and the rating implied by the result of the
game. Having these differences calculated for both players we can change their
ratings according to some arbitrary strategy (e.g. we may change the ratings by
only 10% of the calculated difference).

Before we proceed to the examples we want to emphasize one important ad-
vantage of the proposed solution over existing rating systems: it is able to reward
(or punish) style of play by introducing exponential growth rate into the model.
This will be illustrated with an example below.

Example 1. Few years ago one of the authors had an opportunity and pleasure
to participate in a simultaneous game with Polish strongest grandmaster. The
grandmaster was ranked that time about 2600 Elo. The estimate of the other
player strength was about 1600 Elo. The author lost the game after 32 moves.
How did he perform according to the Kelly Criterion? To evaluate this perfor-
mance it is necessary to calculate the growth rate with (3)

g(p − q) =
log 2
32

= 0.02166
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This is the number reflecting how fast the grandmaster was supposed to increase
his advantage over the adversary. Now we have to solve the equation

0.02166 = q log 2q + (1 − q) log 2(1 − q)

to get values of p ≈ 0.6025 and q ≈ 0.3975. This means with every move author
had 39.75% probability for improving the position on the board and 60.25%
probability to make it weaker, opposite to the opponent.

Before the game we had in total 2600 + 1600 = 4200 rating points. With
new values of p and q we can make a new split of this number reflecting our
performance in the played game. The new rating of grandmaster would be

max(p, q) ∗ 4200 ≈ 2530

since he was the winner and the new rating for the author would be

min(p, q) ∗ 4200 ≈ 1670

since he lost the game. However, the above calculations show that the grandmas-
ter played weaker than 2600 points rated player or his adversary resited longer
than 1600 points ranked player should have resisted. Despite of losing the game
according to the Kelly Criterion the loser should be rewarded for resiting the
grandmaster more than expected and the grandmaster would be punished for
playing not well enough against 1600 points rated player. This is an example of
how the Kelly Criterion evaluates the style of play. In this case the grandmaster’s
rating is to be decreased by 70 rating points, opposite to the rating of the other
player. How much finally the calculated difference influences both players rat-
ings is an arbitrary choice. With the suggestion was made above the new ratings
would be 2593 and 1607 for the grandmaster and the author, respectively.

Now we can try to analyze how well the grandmaster should play to avoid
decreasing his rating after the game vs such a weak player like in the exam-
ple. In order to answer this question we quickly can calculate the grandmasters
probability p he wins a single trial in our probabilistic experiment with initial
grandmaster’s rating,

p ≥ 2600
4200

≈ 0.62

With this value we can estimate the player ranked 2600 not willing to decrease
his rating should beat player ranked 1600 in less than

n =
log 2
0.029

≈ 24

moves since

g(p − q) = 0.62 log(1 + 0.62 − 0.38) + 0.38 log(1 − 0.62 + 0.38) = 0.029

To make our considerations more complete consider an abstract case when the
game is lost by the grandmaster.
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Example 2. Suppose the player managed to win the game vs the grandmaster.
The calculation proceeds the same way as in the example above and the only dif-
ference is that the player and the grandmaster exchange their roles. This means
the player gets p = 60.25% share of total ratings points and the grandmaster
gets q = 39.75% of the total. If so, the player played like a one ranked 2530
and the opponent like a player ranked 1670. The rating change for the player
would be 2530 − 1600 = 930 and −930 for the grandmaster losing the game.
With the suggestion assumed in the previous example the player would get his
rating raised to 1693 rating points and the opponent would get his rating down
to 2507.

Two examples presented so far show how to deal with wins and loses in the
framework of the rating system based on Kelly Criterion. In the next section the
recipe for draw handling is presented which is an inconvenient, from theoretical
point of view, game result for Elo rating system and other similar rating systems
based on Bradley and Terry idea.

3.3 Ties

Ties are hardest problem for so far known rating systems. In fact none of these
deals with this result of the game directly, but with some tricks which mainly
tend to replace draws with equivalent, in the sense of rating points, number of
wins and loses. As an example may be the proposition of exchanging two draws
got by the player against the same opponent with a win and lose. Many more
can be cited but this is not the point of this section. Here we want to show how
Kelly Criterion provides an easy way to handle draws. It is easy to figure it out
when one notices two basic facts:

– both players performed equally well and this transfered into probability lan-
guage of Kelly Criterion means p = q = 0.5 regardless of the number of
moves,

– none of the players managed to double the bankroll so g(p − q) = 0.

The total sum of rating points is spread equally among players and the rest of
the procedure remains the same as in case of a victory.

Example 3. Assume the player managed to draw the game vs the grandmaster.
Since both played equally strong both got half of total points available before the
game, which means 2100 rating points for each of them, as well as the difference
in rating equal to 500 rating points. Therefore the players rating after the game
would be increased to 1650 where the opponent’s rating would be decreased to
2550.

Worth of explicit formulation is that the Kelly Criterion rating based system for
draws forfeits its style evaluation property since number of moves play no role
in calculations.
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4 Conclusions

To summarize the above short considerations let us point out few remarks on
the new rating system. First of all it is worth to notice that the system is capable
to reflect style of play to rating change (see the first example) by incorporating
number of moves into calculations. Only in case of a draw the amount of moves
in the game has no meaning. In this framework better player can get his rating
down in case of victory in more moves than expected. Compare lost game vs
Kasparov in 18 moves and the game lost in, say, 70 moves. Most players would
agree that defeat in 70 moves vs Kasparov would indicate tough battle on the
board as opposed to defeat in 18 moves. Other argument might be that the top
ranked players used to lose to Kasparov faster than in 70 moves, but never in 18
moves. The Kelly criterion based rating system is able to catch that difference.
Another advantage of the proposed solution is improved draw handling without
various tricks used in other rating systems. Also it is worth mentioning that
basing on th Kelly criterion it is possible to construct a rating system not only
when a single game is played but also for a tournament. In such a case several
players play against each other and the rating system can take into account
their respective results. This is definitely more complicated because during a
tournament one may come across some surprising results affecting the players’
ratings more than the results which where expected. The drawbacks of this
system can be the necessity of rating calculation after every single game and its
quite restrictive character. The second can be handled by application of some
rule scaling rating changes. However, it depends on arbitrary choice.
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Abstract. Following [4], we analyze boosting from a game-theoretic
perspective. We define a wide class of boosting classification algorithms
called H-boosting methods, which are based on Hannan-consistent game
playing strategies. These strategies tend to minimize the regret of a
player, i.e. are able to minimize the difference between its expected cu-
mulative loss and the cumulative loss achievable using the single best
strategy. The “weighted majority” boosting algorithm [4] is proved to
belong to the class of H-boosting procedures. A new boosting algorithm
is proposed, as an another example of such a regret-minimizing method.

1 Introduction

Motivation and related work. Boosting is a “meta” classification method:
it improves performance of any given learning algorithm which generates classi-
fiers achieving accuracy only a little better than random guessing. According to
Breiman [1], the theory behind the success of adaptive reweighing and combining
algorithms such as Adaboost has not yet been well understood. This work ana-
lyzes boosting from a game-theoretic perspective. The close connections between
game theory and boosting were first studied in [4], where boosting was imple-
mented using the Littlestone and Warmuth’s “weighted majority” algorithm [6].

Our approach. A crucial concept in analysis of the game playing procedures
considered is the notion of regret. Intuitively, regret is a measure of how much
the player ”regrets” playing his adaptive strategy instead of choosing any other
one. We focus our interest on the procedures which by adaptive learning tend
to minimize the regret of the row player (learner) playing against the column
player (environment). These procedures are called no-regret (or regret-matching)
strategies. If the strategy is no-regret regardless of the adaptive procedure chosen
by the environment, it is called Hannan-consistent [5].

By formulating boosting as a repeated game where one player makes a selec-
tion from instances in the training set and the other from a set of hypothesis
produced by the base classifiers, we can evaluate resulting algorithm in a game-
theoretic context. In this setting boosting performance is maximized by the sec-
ond player, which by employing an appropriate strategy tries to maximize loss
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of the first one. We explored a number of adaptive strategies considered by [2]
and analyzed them with respect to their applicability to the boosting problem.

Our results. Following [2] we consider two (exponential and polynomial) general
classes of adaptive strategies. Algorithms of both these classes were proved to be
Hannan-consistent. We define a new class of H-boosting procedures, comprising
E-boosting and P-boosting methods which can be implemented as repeated game
playing using those adaptive strategies. A new boosting algorithm AdaBoost.P
based on a P-boosting procedure is proposed. The algorithm derived theoretically
as a regret-minimizing procedure, implemented in the R environment [7] on the
basis of the boosting package ada [3], shows high performance in practice.

2 Preliminaries

We follow the notation and definitions given in [4]. Only two-person, zero-sum
games in normal form are considered. In this case, a game can be defined by a
finite matrix M. The two opponents are referred to as the row and the column
player. Mi,j is the loss the row player suffers playing i when the column player
plays j. For the sake of simplicity, we assume Mi,j ∈ [0, 1], where i ∈ 1 . . . n and
i ∈ 1 . . .m.

In a randomized setting, to play a game, the row player chooses a distri-
bution P = (P1, . . . ,Pn) over the rows of M (called a mixed strategy), and
the column player chooses a distribution Q = (Q1, . . . ,Qm) over columns.
The row player’s expected loss (referred to simply as loss) is computed as
M(P,Q) =

∑
i,j PiMi,jQj = PT MQ.

If the row player chooses a distribution P but the column player chooses a
single column j (called a pure strategy), then the (expected) loss is M(P, j) =∑

i P
iMi,j . The notation M(i,Q) is defined analogously.

We assume the players move in sequential manner. That is, the column player
chooses its strategy Q after the row player has chosen and announced its strat-
egy P. In the zero-sum game context, the row player minimizes his loss. A
mixed strategy realizing this minimum P∗ = arg minP(maxQ M(P,Q)) is called
a minmax strategy.

Suppose now that the column player plays first choosing Q and the row player
can choose its play with the benefit of knowing Q in advance. Here a mixed
strategy optimal for the column player (whose goal is to maximize the row
player’s loss) Q∗ = arg maxQ(minP M(P,Q)) is called a maxmin strategy.

By the von Neumann’s MAXMIN Theorem the loss of the row player playing
a minmax strategy is equal to the loss of the column player playing the maxmin
strategy and is called a game value. Thus, classical game theory says that given
a zero-sum game M, one should play using a minmax (maxmin) strategy.

In our setting, the game is played repeatedly in a sequence of t rounds, with
values of the game matrix M hidden from the players. We refer to the row player
as the learner and the column player as the environment. Consecutive steps of
the game, reveal information on M gradually. The decisions made are available
to the players immediately after each step. On round s = 1, . . . , t :
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1. The learner chooses mixed strategy Ps.
2. The environment chooses mixed strategy Qs.
3. For all i = 1, . . . , n the learner is permitted to observe the loss M(i,Qs) (i.e.

the loss it would have suffered had it played using pure strategy i).
4. The learner suffers loss M(Ps,Qs).

Then it is natural to ask if the row player is able to learn to play well against
the particular opponent that it is facing and to find an approximate minmax
(maxmin) strategy in many iterations, basing on the repeated game history and
the information available. The learner is to adopt such a procedure of choos-
ing his mixed strategies P1, . . . , Pt in the series of rounds against the sequence
of plays Q1, . . . , Qt chosen by the environment that will assure its cumulative
loss

∑t
s=1 M(Ps,Qs) is “not much worse” than the loss of the best strategy in

hindsight , i.e. minP
∑t

s=1 M(P,Qs). The procedure the learner is to adopt is
called an adaptive strategy. All the adaptive strategies are based on the idea of
assigning a higher probability to better-performing actions.

Algorithm LW. Based on Littlestone and Warmuth’s “weighted majority” al-
gorithm [6], it was presented in the repeated play context in [4]. The algorithm
proceeds as follows. The learner maintains nonnegative weights on the rows of
M. Let wi

t denote the weight at time t on row i. Initially, all the weights are set to
unity. On each round t, the learner computes mixed strategy Pt by normalizing
the weights so that they sum up to unity to form a probability distribution:

∀i=1,...,n Pi
t =

wi
t−1∑

j

wj
t−1

(1)

Then, given M(i,Qt) for each i, the learner updates the weights by a simple
multiplicative rule, decreasing the weight on a pure strategy with a higher loss
in the previous round: wi

t = wi
t−1 · βM(i,Qt) Here β ∈ [0, 1) is a parameter of

the algorithm. By unfolding this simple recurrence, we get wi
t = β

�t
s=1 M(i,Qs),

thus obtaining the following value of the i-th component of Pt in Eq. (1):

Pi
t =

β
�t−1

s=1 M(i,Qs)

∑
j β
�t−1

s=1 M(j,Qs)
, (2)

Theorem 1 (Freund and Schapire, 1996). For any matrix M with n rows
and entries in [0, 1], and for any sequence of mixed strategies Q1, . . . , Qt played
by the environment, the sequence of mixed strategies P1, . . . , Pt produced by al-
gorithm LW with parameter β = 1

1+
√

2 ln n
t

satisfies:

1
t

t∑

s=1

M(Ps, Qs) ≤ min
P

1
t

t∑

s=1

M(P, Qs) + ΔLW
t , (3)

where ΔLW
t =

√
2 lnn

t + ln n
t .
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Regret. The notion of regret gives a good intuitive understanding of the adap-
tive strategies that can be proposed for the learner to employ in a repeated
game.

Definition 1 (Regret). The regret the player feels for playing strategy Pt at
time t is a vector rt, whose i-th component corresponds to regret felt for not
choosing the i-th pure strategy and is represented by: ri

t = M(Pt,Qt)−M(i,Qt),
the difference of the loss the player suffered and the loss it would have suffered
had it chosen i.

Definition 2 (Cumulative regret). Cumulative regret is defined as a vector
Rt whose i-th component is defined as: Ri

t =
∑t

s=1 ri
s.

An important class of adaptive strategies, called Hannan-consistent, was distin-
guished by Hannan [5]. As time grows to infinity, regardless of what the oppo-
nent’s actions are, the average per-round loss of the learner playing a Hannan-
consistent strategy exceeds that of the best possible mixed strategy by an arbi-
trarily small amount. In other words, in infinite time the player has played as
well as the best pure action (since the strategy minimizing the loss of the row
player will be a one-point distribution).

Boosting. Let X be a finite space of instances, X = {x1, . . . , xn}, and H a finite
space of hypotheses h : X → {0, 1}, |H| = m. Let c be an unknown concept,
c : X → {0, 1}. c(x) is called a label of x. Denote:

Prx∼δ[A] =
∑

x∈A

δ(x) =
n∑

i=1

δi · 1{xi∈A},

where x ∈ X , A ⊂ X and δ is a probability distribution over X .

Definition 3 (γ-weak learning algorithm). For γ > 0, we say that an algo-
rithm is a γ-weak learning algorithm for (H, c) if, for any probability distribution
δ over the set X , the algorithm takes as input a set of labeled examples distributed
according to δ and outputs a hypothesis h ∈ H with error at most 1

2 − γ.

Given a weak learning algorithm WeakLearn, the goal of boosting is to run it
many times on many distributions, and to combine the resulting set of hypotheses
into a final hypothesis with arbitrarily small error rate. Boosting proceeds in
rounds. On each round t = 1, . . . , T :

– The booster weights the observations in data and normalizes the weights to
construct a distribution δt which is passed to WeakLearn;

– WeakLearn produces a hypothesis ht ∈ H with error on the weighted data
at most 1

2 − γ, i.e. Prx∼δt [ht(x) �= c(x)] ≤ 1
2 − γ

After T rounds, the weak hypotheses h1, . . . , hT are combined into a final hy-
pothesis hfin. As stated in [4], the important issues that have to be considered
when designing a boosting algorithm are (i) how to choose distributions, and
(ii) how to combine the ht’s into a final hypothesis.
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Boosting in a game–theoretic setting. Consider a repeated game where
in a sequence of rounds, the row player chooses a distribution over the set of
instances X and the column player responds with a strategy chosen from the
hypothesis space H. The boosting game matrix should be of the form: Mi,t = 1
if ht(xi) = c(xi) and Mi,t = 0 otherwise.

Indeed, this setting corresponds to the intuitive meaning of the boosting pro-
cedure. The environment always plays a single value distribution concentrated in
each round t on the tth move by having WeakLearn to construct the hypothesis
ht. This maximizes the loss of the learner, as WeakLearn tries to optimize the
performance of ht on his chosen distribution over the training data. The learner
adjusts this distribution to assign higher weights on the wrongly predicted ex-
amples in the previous round.

3 H-Boosting Methods

The analysis performed in this Section is an application of the results achieved
within a more general framework of [2] to the field of theory of repeated games.
Our results concerning adaptive strategies provide theoretical basis for applying
them to implementation of boosting procedures.

Definition 4 (Hannan-consistent adaptive strategy). A Hannan-
consistent adaptive strategy is an adaptive procedure H which for any matrix
M with rows and entries in [0, 1], and for any sequence of mixed strategies
Q1, . . . ,Qt played by the environment, produces a sequence of mixed strategies
P1, . . . ,Pt that satisfies:

1
t

t∑

s=1

M(Ps,Qs) ≤ min
1≤i≤n

1
t

t∑

s=1

M(i,Qs) + Δt, (4)

for some Δt → 0 as t → ∞.

We consider two important classes of adaptive strategies. The exponential adap-
tive strategy with parameter η is defined by:

PEi
t =

exp (−η
∑t−1

s=1 M(i,Qs))∑n
k=1 exp (−η

∑t−1
s=1 M(k,Qs))

(5)

and the polynomial adaptive strategy with parameter p is defined by:

PPi
t =

([∑t−1
s=1(M(Ps,Qs) − M(i,Qs))

]+
)p−1

∑n
k=1

⎛

⎝
[

t−1∑

s=1

(M(Ps,Qs) − M(k,Qs))

]+
⎞

⎠
p−1 (6)

Using the following Fact (for derivation and proof, see [2]) we analyze properties
of both classes of strategies.
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Fact 1. Let REi
t and RPi

t stand for the cumulative regret when the learner
chooses to play strategy PEi

t and PPi
t, respectively. The following inequalities

hold:

(i) In the case of the exponential adaptive strategies, REi
t

t ≤ ln n
ηt + η

2

(ii) In the case of the polynomial adaptive strategies, RPi
t

t ≤
√

(p−1)n
2
p

t

Note that by subtracting from both sides of (4) the loss minimized by the
row player by choosing the best strategy we obtain the maximal time average
cumulative regret:

1
t

t∑

s=1

M(Ps,Qs) − min
1≤i≤n

1
t

t∑

s=1

M(i,Qs) = max
1≤i≤n

Ri
t

t
(7)

Thus, for a given strategy H , if all components of its corresponding cumulative
regret vector approach zero in the time limit, then H is H-adaptive.

By Fact 1, with time growing to infinity each time-average component of
the cumulative vector RE

t /t approaches η
2 . For the parameter η =

√
2 lnn/t,

as proposed by [2], the value η
2 approaches zero, yielding a Hannan-consistent

adaptive strategy. But in the case of η constant, we cannot conclude Hannan-
consistency. We call exponential based adaptive strategies η

2–Hannan-consistent
instead.

The adaptive strategy computed by Algorithm LW is really an exponential
adaptive strategy PE. Indeed, the strategy from Eq. (2) can easily be obtained
by setting η = − lnβ in Eq. (5).

What follows from the Fact 1, is Hannan-consistency of polynomial adaptive
strategies; as time t grows to infinity, all the n components of the time-average
cumulative regret vector RP

t /t approach zero.Point (ii) of Fact 1 states that in
the case of polynomial procedures:

max
1≤i≤n

RPi
t

t
≤

√
(p − 1)n

2
p

t
. (8)

Different values of parameter p in possible strategies yield different bounds
for the time average cumulative regret value. An adaptive procedure proposed
by Hart and Mas-Collel [8] (denote it HMC after the authors’ names) in the
field of game theory has the parameter p set to p = 2, thus achieving bound

max1≤i≤n
RHMCi

t

t ≤
√

n/t.
In [2] p = 2 lnn is proposed. Denote corresponding polynomial procedure BL

(after the authors Bianchi and Lugosi).

Here max1≤i≤n
RBLi

t

t ≤
√

(2 ln n−1)n
1

ln n

t =
√

e(2 lnn−1)
t , which is a stronger

bound than for HMC.
By Eq. (7) and Eq. (8) the following is satisfied:

1
t

t∑

s=1

M(PP
s ,Qs) ≤ min

1≤i≤n

1
t

t∑

s=1

M(i,Qs) +

√
(p − 1)n

2
p

t
. (9)
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Denote ΔP
t =

√
(p−1)n

2
p

t , clearly ΔP
t → 0 as t → ∞. Note Eq. (9) is equivalent

to the Eq. (3) given by Theorem 1 for Algorithm LW.
Thus, by (9) and (3), the complexity of Δt for the LW, HMC and BL algo-

rithms is equal to O( 1√
t
) (we assume n constant).

Consider boosting in a game-theoretic setting, like in Section 2. Let us now
generalize the proposed implementation of the boosting procedure by putting an
arbitrary Hannan-consistent algorithm H in place of LW. That is, H will be used
to compute δ. Let us call this class of boosting algorithms H-boosting methods.

Theorem 2. Let H be H-boosting procedure run on a set of n labeled examples
from the space X using a γ-weak learning algorithm in T rounds, satisfying:

ΔT < γ. (10)

Then the combined classifier hfin produced by H satisfies ∀x∈X hfin(x) = c(x).

This Theorem is a generalization of results obtained by Freund and Schapire [4]
for AdaBoost.LW for all H-boosting procedures. Theorem 2 implies that by the
usage of a Hannan-consistent algorithm in computing distributions and combin-
ing ht’s for sufficiently large t into a final hypothesis by simple majority one can
address the two important issues stated as crucial for designing of the boosting
procedure (see Section 2).

4 Algorithm and Experimental Results

Within the general class of H-boosting methods two different subclasses can be
distinguished, depending on whether the arbitrary Hannan-consistent procedure
H is exponential or polynomial. In the first case we should refer to H as E-
adaptive strategy and in the second case as P-adaptive strategy. We define E-
boosting and P-boosting classes of boosting methods accordingly.

A general schema for implementation of a H-boosting algorithm is based on
employing an arbitrary H-adaptive strategy in the place of the procedure up-
dating the distribution δ. An E-boosting algorithm is obtained by using an ex-
ponential strategy defined by Eq. (5). Different variants of algorithms within
this class are obtained by setting the parameter η. Similarly, different versions
of P-boosting algorithms depend on the value of parameter p in the polynomial
strategy (6).

A new algorithm AdaBoost.P (Algorithm 1), belonging to the P-boosting
class of algorithms is implemented based on polynomial strategy BL, defined by
setting p = 2 ln n (see Section 3). The algorithm takes as an input the number T
of iterations to execute, the set of training examples and the weak learning al-
gorithm WeakLearn. By Theorem 2 the speed of convergence of a given strategy
H determines the lower threshold for the number of iterations T the respective
H-boosting algorithm should be run with. Appropriate T should be set to satisfy
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inequality (10). Here it is enough if
√

e(2 ln n−1)
t < γ. That is, AdaBoost.P should

be run at least

T >
e(2 lnn − 1)

γ2 (11)

number of times. In this version of the algorithm, as it is in the case of other
known boosting algorithms, it is required to set T arbitrarily, since in most cases
for a given WeakLearn the value of γ is usually not known.

Algorithm 1: AdaBoost.P

Input: number of iteration steps T ,
examples {(x1, c(x1)), . . . , (xn, c(xn))},
γ-weak learning algorithm WeakLearn.
Initialize:

∀i=1,...,n Ri
0 = 0

∀i=1,...,n δi
1 =

1

n
for all t = 1, . . . , T do

Train WeakLearn using δt.

Get back a hypothesis ht : X → {−1, 1} such that:

Prx∼δt [ht(x) �= c(x)] ≤ 1

2
− γ

Update cumulative regret vector

∀i=1,...,n Ri
t+1 = Ri

t +
�n

i=1 δi
t · 1{ht(xi)=c(xi)} − 1{ht(xi)=c(xi)}

Set the new weights to be

∀i=1,...,n δi
t+1 =

�
[Ri

t+1]
+�(2 ln n−1)

�n
j=1

�
[Rj

t+1]
+
�(2 ln n−1)

Output: the final hypothesis hfin = sign(
�T

t=1 ht(x)).

To make all the examples equally important, their normalized weights given
by distribution δ are made uniform in the initial step. Throughout the procedure,
a cumulative regret vector is maintained, which is initialized to a zero vector.

In each step t of the iteration, WeakLearn is trained on the δt-weighted exam-
ples and produces a hypothesis ht. Each ith compound of the cumulative regret
vector is updated by adding the difference between the accuracy WeakLearn
achieved with respect to δt and the accuracy it would have achieved if δt was
a degenerate distribution localized at example xi. Note that in this way if ht
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correctly classifies xi then 1{ht(xi)=c(xi)} = 1 and the regret is smaller by 1 − δi
t

than it would be otherwise.
Next, the new distribution is calculated using the polynomial strategy for-

mula (6), ensuring that the more ”regretted” (more often misclassified in previ-
ous steps) examples get a higher weight.

Finally, all the hypotheses produced in the series of T steps are combined by
a majority vote to produce a final hypothesis hfin.

Results. Performance of the new algorithm was verified on benchmark and mass
spectrometry data sets.

Benchmark data sets include the Banana (repository of G. Rätsch), Breast-
cancer and Waveform data sets (the UCI Repository). Benchmark tests were
performed 100 times for the same data set on the different realizations and the
results averaged. The weak learning algorithm used was decision stumps. Per-
formance of AdaBoost.P was comparable to the “weighted majority” boosting
and the standard AdaBoost. For the Banana data set all the three algorithms
achieved average accuracy of c.a. 86%, for BreastCancer c.a. 70%. In the case of
the Waveform data set, AdaBoost.P achieved 88%, and the other two 87%.

Table 1. Comparison of classification results for different classifiers (AdaBoost.P, Ad-
aBoost – standard discrete AdaBoost and CART - decision trees) preceded by dimen-
sion reduction (PCA) or biomarker selection (PPC - Peak Probability Contrasts [9])
methods. Best results for each combination of the methods are bolded.

Classification Reduction/Selection Dimension/ Accuracy Sensitivity Specificity
method method Feature no.

AdaBoost.P PCA 10 67.03% 70.21% 63.63%
50 65.93% 61.70% 70.45%

PPC 50 72.52% 74.46% 70.45%
300 65.93% 68.08% 63.63%

AdaBoost PCA 10 62.63% 65.95% 59.09%
50 64.83% 65.95% 63.63%

PPC 50 70.32% 78.72% 61.36%
300 65.93% 65.95% 65.91%

CART PCA 10 56.04% 57.44% 54.54%
50 61.53% 61.70% 61.36%

PPC 50 59.34% 65.96% 52.27%
300 57.14% 57.45% 56.81%

Further tests were performed on ovarian cancer mass spectrometry data set,
first provided by Wu et.al. [10], and later analyzed by Tibshirani et.al. [9]. The
data set consists of MALDI-MS spectra on pre-treatment serum samples of 89
subjects, consisting of 42 non-cancer controls and 47 ovarian cancer patients. The
MS spectra are measured at 91,360 sites, spaced 0.019 Da apart and extending
from 800 to 3500 Da.
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The size of the data set requires applying dimension reduction or feature se-
lection prior to classification. Since the type and setting of the prior methods sig-
nificantly change the performance of the latter, we take them into account in our
reports. The results, averaged over five times repeated 10-fold cross-validation
runs, are presented in Table 1.

5 Discussion

The original contribution here was to introduce the H-boosting class of algo-
rithms, and to implement a new boosting algorithm AdaBoost.P.

Our framework provides tools for analysis of all H-boosting procedures. Sec-
tion 3 give a game-theoretic explanation of high performance of boosting as an
ensemble of weak classifiers. By analyzing a run of a H-boosting procedure in
terms of a repeated play of a certain game, we showed that it tends to minimize
the average regret vector. Thus the aim of such a procedure is to converge to
the best strategy possible.

An interesting idea would be to provide an adaptive version of AdaBoost.P,
where the number of all iterations T would adjust according to error rates of
the weak learning algorithm achieved during the run of the boosting procedure
described by the formula (11).
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Abstract. A new method of genetic evolution of linear and nonlinear
evaluation functions in the game of checkers is presented. Several prac-
tical issues concerning application of genetic algorithms for this task are
pointed out and discussed. Experimental results confirm that proposed
approach leads to efficient evaluation functions comparable to the ones
used in some of commercial applications.

1 Introduction

In our previous work [1] a comparison was made between two evolutionary heuris-
tic generators applied to the game of give-away checkers. In order to check the
quality of developed heuristics they were tested against themselves and against
TD-GAC program [2,3], which uses temporal difference learning [4].

In this paper the idea of applying evolutionary heuristic generators in two
player games domain is evaluated using the game of US checkers. The game
is well known and several AI-based approaches to playing checkers has been
published, with the most famous ones being Jonathan Schaeffer’s Chinook [5]
and TDL-Chinook [6]. The paper is particularly motivated by the two “grand
Computational Intelligence achievements” - the Samuel’s checkers program [7]
and Chellapilla and Fogel’s Blondie 24 program [8]. In short the former work
empirically proves the efficacy of a combination of self-play and a variant of
reinforcement learning as a suitable learning tool for checkers. On the other
hand, the other inspiring work - Blondie 24 - is an apparent example of learning
from scratch, without any human guidance, in a knowledge-free regime.

The reminder of the paper is organized as follows: in the next section basic
board features used as the components of the evaluation functions are intro-
duced. Section 3 presents different types of both linear and nonlinear heuristical
evaluation functions that were generated using the method described in the
paper. In Section 4 the evolutionary process is presented in detail together with
achieved experimental results. Conclusions and directions for future research are
placed in Section 5.

2 Components of the Evaluation Functions

The heuristics described in this paper are relatively simple and made use of some
or all of the following parameters, calculated separately for each player:
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Eight simple features: numbers of (1) pawns and (2) kings; Numbers of safe
- i.e. adjacent to the edge of the board - (3) pawns and (4) kings; Numbers of
moveable - i.e. able to perform a move other than capturing - (5) pawns and (6)
kings (these two last parameters were calculated taking no notice of capturing
priority); (7) Aggregated distance of the pawns to promotion line; (8) Number
of unoccupied fields on promotion line.

Fig. 1. Notation used for describing patterns. White pawns are at the bottom.

Eleven layout features: (9) number of defender pieces - i.e. together pawns and
kings situated in the two lowermost rows; (10) Number of attacking pawns - i.e.
positioned in three topmost rows; Numbers of centrally positioned - i.e. situated
on the eight central squares of the board - (11) pawns and (12) kings; Numbers
of (13) pawns and (14) kings positioned on the main diagonal; Numbers of
(15) pawns and (16) kings situated on double diagonal; Numbers of loner (17)
pawns and (18) kings (a loner piece was defined as the one not adjacent to any
other piece); (19) Number of holes - i.e. empty squares adjacent to at least three
pieces of the same color.

Six pattern features - described below using common notation presented in
Fig. 1. All patterns are described from the white player’s point of view. Since
at most one instance of each pattern can exist for each player in a given board
position, features (20)-(25) can take only boolean values. (20) A Triangle -
white pawns on squares 27, 31 and 32; (21) An Oreo - white pawns on squares
26, 30 and 31; (22) A Bridge - white pawns on squares 30 and 32; (23) A Dog
- white pawn on square 32 and a black one on square 28; (24) A Pawn in the
Corner - white man on square 29; (25) A King in the Corner - white king on
square 4;

Heuristics could also consider sums of or differences in respective parameters
(1)-(25) for both players rather than raw numbers for each player separately.

Two types of heuristics were considered: linear and nonlinear ones. Each linear
heuristic consisted of linear combination of the parameters listed above:

LinCombOfParam = a1 · param1 + a2 · param2 + . . . + aj · paramj , (1)
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where 1 ≤ j ≤ 25 and param1, . . . , paramj were freely chosen from the above
25 parameters (being either raw numbers or sums or differences calculated for
both players).

Nonlinear heuristics were composed of a small number (in our tests 3) of IF-
conditions which divided the entire game into disjoint stages (c.f. definitions of
heuristics 3Ph and E3Ph in Sect. 3). In each stage the respective linear com-
bination of parameters of the form (1) was considered. As it was the case with
linear heuristics sums or differences of particular parameters calculated for both
players could be used instead of raw numbers. For either type of heuristics co-
efficients a1, . . . , aj in (1) were optimized in the evolutionary process described
in the next section.

3 Types of Heuristics

Initial, simplified tests were carried out in order to find out whether values of
respective parameters for both players in linear heuristics exhibited symmetry
(i.e. they evolve to approximately opposite values). Pawns counts and kings
counts weights were found to be the most asymmetrical. It was therefore obvious
that for the symmetrical parameters differences in respective values should be
used in order to decrease the number of genes. As for the two asymmetrical
parameters, it was suggested that the asymmetry was a result of dependencies
between parameters and therefore using differences instead of individual values
might affect the quality of heuristics in a negative way. The following linear and
nonlinear heuristics were defined.

Linear Heuristics
8 Factors (8F). This heuristic took into consideration differences in values of
eight first features ((1) - (8)) listed in sect. 2.

10 Factors (10F). This heuristic took into account the same parameters as
8F, the only exception being the fact that it considered raw numbers of pawns
and kings for each player separately (instead of differences), as suggested by the
initial symmetry tests described above.

15 Factors (15F). All factors of this heuristic were defined as differences of
the respective parameters calculated for both sides. The following features were
considered: (1)-(4), (9)-(12), (19)-(25).

19 Factors (19F). All components of this heuristic were in the form of
differences between the respective values calculated for both players. It took into
account all parameters (1)-(19) described in Sect. 2. It should be noticed that
patterns (Dog, Bridge, Oreo, ...) were not included in this heuristics’ definition.

25 Factors (25F). This heuristic took into consideration differences in values
of all available parameters described in Sect. 2.

Nonlinear Heuristics
The general idea of nonlinear heuristics was based on the fact that it was proved
to be advantageous to divide the entire game into several stages and to use
different heuristics for different stages. Some crucial moments requiring chang-
ing of the evaluation function were identified. These included presence of kings,
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which clearly indicated that the game was relatively advanced. End-game posi-
tions might also require applying different heuristic. Some tests were carried out
which showed that introducing nonlinear components with conditions that were
not disjoint hindered the genetic algorithm significantly, which resulted from the
fact that having several overlapping conditions made it possible to achieve very
similar results in many ways, each time with very different values of parameters.
Therefore the game was divided into disjoint stages.

3Phase (3Ph). In this heuristic the game was divided into three stages: Be-
ginning: each player has more than 3 pawns and no kings are present on the
board; Kings: both players have more than 3 pieces and at least one king is
present; Ending: one or both players have 3 pieces or less. Linear heuristics in
each stage took into consideration the differences in exactly the same 8 parame-
ters as in 8F heuristics.

Expert 3 Phase (E3Ph). In this heuristic the game was divided into stages
in the same way as it was the case of 3Ph. Linear heuristics used in each of the
three stages took into consideration differences (white vs. black) in the following
ten features : (3), (10)-(12), (16), (20)-(23) and (25). The above set of para-
meters was chosen based on the results obtained in initial runs of the generator
− choosing parameters which proved to be the most significant.

In both 3Ph and E3Ph parameters concerning kings were, of course, only
considered if kings were present on the board.

4 Evolutionary Process and Results

In order to generate coefficients a1, . . . , aj of the above linear combinations ge-
netic algorithms were used. All coefficients of the heuristics were represented as
a vector of real numbers whereby each number denoted a single gene (one coeffi-
cient). In case of nonlinear heuristics, the conditions that nonlinear components
consisted of were not modified by the process of evolution.

Population consisted of 300-400 specimens. In each phase the weakest 75%-
80% of the population were regenerated.

Selection − selection was done by means of tournaments. For each tour-
nament a number of specimens were randomly chosen from the population.
Their fitness assessments were compared in order to determine the winner of
the tournament. Winners of two such tournaments were coupled and went on
to crossbreed. Depending on the number of genes of each specimen the size of
tournament between specimens was set between two and five.

Crossover − each pair of respective linear combinations in a heuristic (i.e.
each nonlinear component and base heuristic function) was crossed over indepen-
dently. The genotype of each linear combination was randomly partitioned into
two. Descendant inherited values of each part of the genotype from respective
parent. The value of the gene on which the division was placed was randomly
chosen from the interval defined by the values of this gene in parent specimens.
The weakest specimen in the population was to be replaced by the newly created
descendant, however only if the new specimen’s fitness evaluation was greater
than that of the one to be replaced.
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The ratio of effective crossovers (i.e. the ones in which a resulting specimen was
actually added to the population) to potential crossovers turned out to remain
fairly stable throughout the process and ranged between 80% − 90%.

Mutation. Three kinds of mutation could occur in each of the genes of every
newly created specimen: multiplying a value of a gene by two, dividing it by
two or changing its sign. Multiplying or dividing a value by two were twice as
probable as changing the sign.

Heuristic Generator (HG). One of the difficulties encountered while de-
signing a genetic algorithm was defining fitness function for the heuristics. In
order to solve this problem the general idea presented in [9] was followed. The
game was partitioned into several disjoint stages according to the number of
moves already performed. During the first phase of the algorithm a heuristic
that would be able to assess correctly situations close to the end of the game was
to be obtained. In order to achieve this, alpha-beta algorithm with no heuristic
was used to assess a number of randomly generated positions close to the leaves
of the game tree. All positions beyond the depth of alpha-beta algorithm were
considered a draw. Subsequently, each specimen assessed the same positions and
its fitness was calculated according to the formulae n/

∑
(hi − ai)2, where n

denotes the number of test situations, hi− assessment of the i-th test situation
by the heuristic specimen and ai− by the alpha-beta algorithm.

Once the initial stage had ended, worst fitted fraction of the population was
replaced by new random specimens. New board situations closer to the root of
the game tree were generated and they were assessed by the alpha-beta algorithm
with the fittest specimen of the previous phase used as its heuristic function. The
process continued until the root of the game tree was reached. In other words,
the evaluation function of HG was evolved step-by-step starting from positions
achieved far from the initial position and moving backwards. In each phase a
constant fraction of all the test boards came from the stage of the game closest
to the beginning (i.e. the stage considered most recently).

In the first step positions obtained in between 82 and 86 moves were consid-
ered. This interval was determined based on preliminary tests calculating the
average number of moves necessary to finish a game performing random moves.
The difference in depths between subsequent phases was set to 6. The number
of positions considered in each phase ranged from 3, 000 to 4, 500.

Heuristics Comparison
In order to determine the relative quality of heuristics a tournament was held,
where each heuristic played 10 games with each other with sides swap after
each game. Due to some randomness in searching the game tree implemented in
alpha-beta, games played between any two heuristics were pairwise different.

Two classifications were used. The first one was based on the total number of
games won, tied and lost by each heuristic. The other one took into consideration
results of whole 10-game clashes between heuristics. In each case, heuristic would
gain 2 points for a win and 1 point for a draw. All the games were played with
alpha-beta’s search depth limit of 6. The results are presented in Fig. 2.



Evolutionary Approach to the Game of Checkers 437

As might be expected the E3Ph heuristic proved to perform better than any
other one, no matter which comparison criteria were considered. More advanced
heuristics, considering more sophisticated parameters, also tended to perform
well in the tournament, which again was in line with the expectations.

Heuristic comparison by games won
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Fig. 2. Heuristic comparison

Comparison with public domain and commercial programs
The piece of research described in this paper was not intended to create a pro-
gram that could compete against professional or commercial checkers programs.
Its main purpose was to assess credibility of evolutionary approach to heuris-
tic generation, in particular with HG method. It was developed with flexibil-
ity rather than speed in mind and as a result assessed between 55, 000 and
100, 000 nodes per second whereas professional checkers applications were some-
times more than one order of magnitude faster. Nevertheless, in order to assess
the quality of evolved heuristics, some comparison games were played. In order
to make them fair, most of the features of the commercial programs (opening
books, endgame databases, hashtables, killer moves identification etc.) had to
be disabled or reduced as much as possible. Four best heuristics were chosen for
those tests: E3Ph, 15F, 19F and 25F.

The first checkers engine that was tested against the generated heuristics
was Simple Checkers (http://www.fierz.ch/checkers.htm). Although it is a rel-
atively simple program with publicly available source code, it is at the same
time one of the best engines among those not making use of opening books
and end-game databases and it surpasses many commercial applications (c.f.
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http://www.bobnewell.net/checkers/checkerprograms.html). In order to make the
comparison fair, Simple Checkers (SC) algorithm was slightly modified so that it
would always perform search exactly to the depth of 6 plies, i.e. the same depth
as our alpha-beta algorithm. Each heuristic played 50 games against SC. Gener-
ally the program appeared to be too strong opponent for developed heuristics.
It turned out that the only heuristic capable of winning at least one of 50 games
played was E3Ph, achieving a final score of 37 points (1 win, 35 ties, 14 loses). All
the other heuristics were capable to draw a few games each: 15F accomplished
9 draws, 25F - 6 draws and 19F - 2 draws.

In the next tests E3Ph heuristic (the undoubtedly best of all heuristics gener-
ated) played against shareware version of commercial application Actual Check-
ers 2000A (http://www.atlantsoft.com/ach2000a/download.htm). Due to share-
ware edition limitation, our heuristic would move first during all of the games
(during all other comparisons, sides were swapped after each game). Actual
Checkers (AC) program was set to the highest possible difficulty level and was
expected to perform a move in 3 seconds on average (which for some reason
it wouldn’t, taking usually around 5 seconds for each move), which resulted in
searches of depth 12 to 18. The number of nodes analyzed by our alpha-beta
algorithm was usually well below 1 million per move, which was equivalent to
search depth of approximately 9 plies during most of the mid-game but signifi-
cantly less during end-game. Despite lower search depth E3Ph managed to draw
3 of 4 games played. Single games played with search depths of 9 and 10 ended
in draws as well. During the tests it was observed that E3Ph would perform
noticeably worse during end-games, often failing to take full advantage of its
upper-hand or defend a draw well enough. This probably stemmed from the fact
that AC’s hashtables proved especially useful in this phase of the game.

Finally, in order to once again confirm quality of the E3Ph heuristic, games
against another shareware edition of commercial checkers program Mad Check-
ers (http://www.sapphiregames.com/madcheckers) were played. This time alpha-
beta’s depth limit was set to 8 as usual, but Mad Checkers (MC) engine, being
less acclaimed application, was given 0.5s for its move, which was not signifi-
cantly less than it usually took our program to assess mid-game situations. In
order to make the competition even easier for MC, alpha-beta was switched to
depth limit of 7 (or in some cases even 6) whenever it happened to perform too
slowly during endgames. Nevertheless, our heuristic managed to win 3 out of
4 games with one being a draw because of position repetitions, although MC
was left with 3 pieces against our heuristic’s 5. In the second 4-game tourna-
ment against MC our alpha-beta algorithm was switched to depth limit of 6
plies whilst MC was still admitted 0.5s for a move (i.e. on average more than
two times longer than our program would require for a move). This time our
heuristic managed to win 1 game and draw 3 others.

5 Conclusions

The focus of this paper is to test usefulness of pure genetic approach for gener-
ating evaluation functions in the game of checkers. The underlying assumption
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is simplicity and generality of proposed solutions which results in using straight-
forward genetic operators and shallow game tree search with plain alpha-beta
algorithm. In particular, no alpha-beta search enhancements (transposition ta-
bles, history heuristics, killer moves, etc.) and no opening books or end-game
databases are used.

Not surprisingly, the best of all tested heuristics is E3Ph − a nonlinear 3-
phase heuristic. This result confirms the common knowledge in game research
that it is advantageous to divide the entire game into phases and develop separate
heuristics for each part of the game. Specifically it was also observed that game
phases need to partition board positions space into disjoint sets. Otherwise the
genetic process may have difficulties in assigning coefficients for the features
shared by two or more game phases.

Another general guideline is to use differences of respective parameters calcu-
lated for both sides rather than raw numbers separately for both players. This
observation was fully confirmed, with the only exception being the case of rela-
tively simple heuristics, where it is recommended that the numbers of pawns and
kings be input as raw values (c.f. comparison between 8F and 10F heuristics).

Taking into account the above mentioned assumptions concerning simplicity
of proposed approach, the achieved outcomes suggest that usage of genetic al-
gorithms may be a credible way of producing heuristic functions for two-player
games. Although heuristics described in this paper did not surpass or even reach
the level of play of those created during years of checkers programs development,
they are still a challenge for at least some of the commercially available software.
This indicates that evolutionary approach, tuned by a careful choice of settings
and meta-rules can be successfully applied - particularly to games, for which not
enough expert knowledge exists.
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1. Kusiak, M., Walȩdzik, K., Mańdziuk, J.: Evolution of heuristics for give-away check-
ers. In: Proc. ICANN 2005, Part 2, Warszawa, Poland. Volume 3697 of LNCS.,
Springer-Verlag (2005) 981–987
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Abstract. Recently, there are many researches about NPC (Non-player 
character) which are appeared in many games. There is a little study which has 
view of the speech of NPC, but most of them are focused on the movement of 
NPC. Most of NPC say the same line repeatedly, that make the game 
unrealistic. In the paper, we construct the quest ontology of game World of 
Warcraft and collect the articles of Q/A bulletin board which is from the web 
site, also called community, of the game. With the game ontology and the 
article from the bulletin, we construct a corpus consisted of game keywords as 
NPC knowledge. In the runtime, when a player asks a question to NPC, it can 
find the answer by comparing the question and its own knowledge. 

1   Introduction 

NPC means the artificial intelligent object in the game. It acts according to a rule 
programmed by game programmer and it can’t be controlled by the game player. 
Many NPC exist as a component of the background in the game. Some of them 
deeply related to the game. But most of NPC have little effective to the player. That’s 
why game company doesn’t think them important. However, some game developers 
attempt to give diverse actions to NPC. It makes NPC more intelligent and makes the 
environment of the game realistic, so it promotes the players’ interests. But there still 
remain unrealistic parts, the messages which are repeated by NPC. So, we make that 
NPC can speak various and helpful message to the player. Consequently, the player 
feels the game more realistic and less uncomfortable. To resolve this problem, we 
propose the way of using Q/A information as a line of NPC it can be collected from 
the bulletin board of the game community. The system updates NPCs’ messages at 
regular intervals and NPC search the proper message in real-time.  

Recently game players don’t satisfy only the playing game, but they want share 
their experiences and information about the game. Game community is the place for 
sharing their information. Many troubles in a game are solved by Q/A board of the 
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game community [1]. That is, the articles in the game community are good for the 
basis of the NPCs’ line because most of them are related to the game. Above all, it has 
the answers of the questions that are frequently queried by the players. So, it can be 
proper candidate message for Q/A situation which can be emerged in the game. 

However, there is a trouble to implement an interactive NPC. The game interface is 
quite different from web site search interface. In the case of web site the people who 
want some information, they send the query with an index word or sentence. And then 
they choose the information in the list, which has many results of searching, by 
themselves. On the other hand, it will be unrealistic that NPC shows every articles as 
the form of the list which are related to the question, when the player send the query 
to NPC. Practically, the person, who gets a question from someone, will answer the 
most proper information by going back over things in his mind. 

To find the most exact answer of the question, we must solve that how can we find 
the best candidates of the similar question which are stored in the Q/A board and how 
can we choose the best answer which explains the question correctly. In this paper, 
the special corpuses are constructed by collecting related words of the game, and the 
relations between of them are defined to provide the ontology information. It is called 
game ontology and is used to NPC knowledge basis. For the Q/A matching, the query 
from the player is disjointed by the game ontology and then the most proper answer 
article is selected by matching between the player’s query ontology and NPCs’ 
knowledge. A process of deducing the answer is similar to the question, but we 
consider special information, the recommendation. This function can be used when 
the other player, who had same question of the game, checked some article which 
showed the excellent guidance of the question. The recommended article has the 
chance of having more correct information of the answer. So we implement that it has 
priority over everything.  

In section 2, the game ontology is presented. Q/A processing is following in 
section 3, and the experiment to verify the proposed idea is mentioned in section 4. 
Finally, we will conclude this paper and present future work. 

2   Game Ontology 

There is an attempt applying the ontology to the game [2]. According to the genre of 
the game, the ontology can be constructed differently. In this paper, we construct the 
ontology of the quest information which is the main element of MMORPG 
(Massively Multiplayer Online Role Playing Game). 

2.1   Quest Ontology  

In the MMORPG, the game is progressed through the quest. The quest is the special 
task which is assigned to the players in the game. They can get a useful item, earn the 
money and make their character stronger by accomplishing the quest. The example of 
the quest is displayed next. 

In the village ‘V’, NPC, whose name is ‘N’, ask to the player find the item ‘I’. The 
player goes at the location ‘L’, and kills the monster, whose name is ‘M’. And then the 
player gets ‘I’ from M and hand it to ‘N’, he then compensates with the weapon, ‘M’. 
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Since the quest is composed of various information of the game, if we can classify 
each of the information according to related quest, it will help to find the related 
information of the player’s query. 

2.2   Game Ontology of ‘World of Warcraft’ 

In this paper, we use the quest information of the game ‘World of Warcraft (WOW)’ 
which is served by Blizzard [3]. First, we classify the quest information to 3 classes, 
NPC class, Item class and Quest class. Each class has several properties and they are 
displayed in table.1 and some of the relations between the classes are explained in 
table 2. 

Table 1. The description of the properties of classes 

Class Properties Description 
Name The name of the quest 
Level The minimum level to perform 

the quest 
Race The constraint of the races to 

perform the quest 
Task Kill the enemy, collect the item, 

send the message 

Quest 

Compensation Item, money, experience 
Name The name of NPC 
Item The item which can be acquired 

from the NPC 

NPC 

Location The location of NPC 
Name The name of the item 
Acquisition The location/NPC where the item 

can be acquired 

Item 

Performance The specification of the item 

Table 2. The description of the relations between classes 

Relation Description 
hasSubquest This is linked to another quest 
hasCollection This is the collection task type 
hasReward This is related to the reward 
hasMonster This is related to the monster 
dropItem This is related to the item 

 
Fig 1. shows the example, ‘Onyxia key quest’ in the WOW, It’s represented by 

using quest ontology, which is defined above. 
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Fig. 1. the representation of the ‘The entrance of Onyxia’ quest ontology information 

3   Q/A Using Game Ontology 

Because the answer corresponding to the question of the player should be handled as 
fast as possible, preprocessing must be completed before Q/A matching for finding 
the answer. 

3.1   Preprocessing the Q/A Board in the Game Community 

The samples, which are used in this paper, are captured from WOW community. 
Figure 2 shows the list of articles which are searched from WOW playforum [4]. 

 

Fig. 2. This figure shows the part of the list which displays the result of searching index ‘onix’ 

The preprocessing is done at regular interval. For the analyzing the article we used 
Morphological Analyzer developed by natural language processing laboratory in 
Kookmin university [5]. Each of the questions goes through the necessary formalities. 
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First of all, the title of the question is analyzed by KMA, and the question title corpus, 
also called ‘keyword’ is made by the result of KMA. After processing of the tile, the 
question content corpus is constructed in the same way. Finally, it finds the most 
matching quest which has the most plenty keyword of the question. 

 

Fig. 3. In the step of morphological analyzing, keywords related to quest ontology and the 
interrogatives are extracted from the article. In this figure, the word ‘erdiseo’ it means ‘where’ 
by Korean so ‘erdiseo’ is extracted for the location information to help finding an answer in 
runtime. 

Generally, we can find the information about the name of NPC or the level of the 
monster from the noun of the question article. And from the interrogative like as 
‘where’ or ‘who’, we can get information what kind of the information they need. 
Using this information NPC finds the article which has the contents related to them. If 
there are many articles which get a recommendation from other players who have the 
same question of it, the article which gets the largest votes will be selected. Unless 
there is recommended one, every answer articles, which are related to the question, 
will be transformed the answer content corpus by preprocessing using KMA. And the 
article which has the most plenty keywords or the information matched the question 
corpus, will be stored as the answer content. Every article in Q/A board of the game 
community are processed in the same way. 

 

Fig. 4. The processing of answers is similar to the question. Keywords, related to quest 
ontology and related the interrogatives which are appeared in the question, are extracted from 
the article. In this figure, ‘the burning plain’ and ‘the heart of the volcano’ are extracted 
because they are location information. 



446 D.-k. Park et al. 

 

Fig. 5. This figure shows the entire processing which is explained in this chapter. The dotted 
line means using the quest ontology to extract related keywords. The solid line represents the 
flow of the process. 

3.2   Q/A Processing in the Runtime 

When the player asks the question to NPC, the query from the player will be 
disjointed keywords and interrogatives and make the question corpus by 
morphological analyzing. Afterward, it’s compared with quest ontology and finds the 
most similar quest then compared with question article corpus in the quest  
category. 
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(1) 

x is the query created by the player, y is the question article corpus, and Sx,y means the 
similarity between x and y. α, β, and γ are the weights to control priority of the 
formula.  

The formula (1), which calculates the similarity, is composed of 3 parts, 
calculating how similar with the title of the question article, the content of the  
 



 Implementation of an Interactive NPC1 447 

question article, and corresponding degree between the player question and the data in 
NPC knowledge. NPC selects the answer which shows the highest similarity in the 
candidates and send it to the player as the answer message. The candidates are the 
question article corpuses which show the similarity over the threshold (θ). Unless 
there are candidates in NPC knowledge, NPC sends the messages that he doesn’t have 
any idea. There are two reasons for existence of the threshold. At first, it must be 
blocked that NPC says irrelevant story of the question. Second, it’s to distribute NPC 
knowledge for providing more realistic environment to the player. Generally, people 
have more information about their place of residence but less information other 
places. So we can give this constraint to NPC through setting the threshold.  

4   Experiment and Result 

For the simulation of our idea, we collect the articles which are searched by the index 
‘Onyxia key’ in the quest Q/A board in the WOW game community [4]. 34 question 
articles are collected and 29 of them transformed to question article corpus. 5 of them 
are discarded because they got no answers. All question articles are classified two 
classes of the quest. Moreover 78 answer articles, corresponding to 29 questions, are 
transformed to answer corpus information. And we assumed one of the question 
content in the question articles as the player question. The details of the selected 
player question are displayed in figure 6. 

 

Fig. 6. This figure shows the selected question article as the player question. The keywords are 
represented under-bar. But the keywords represented in the content section used as the player 
question information. 
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Table 3. This table shows extracted keywords from figure 6 and the result of the classification 
of the quest 

Type Keywords 
The content of the 
player question 

드래곤, 오닉시아(Onyxia), 레어, 열쇠(key), 

첨탑(spire), 벨란, 서부역병, 크로미, 

안돌할폐허, 여관, 가시덤불, 구릉, 밸란, 

여명의설원, 할레, 슬픔의늪, 이타리우스, 

폴리모프, 위치 
The name of the 
quest 

오닉시아 열쇠 

 
Table 3 shows the result of analyzing of the player question using the matching 

with game ontology. 
With the result, it compared the similarity with every answer article in the ‘Onyxia 

key’ quest. For the convenience we assumed the weights α = 0.2, β = 0.3, γ = 0.5, and 
the threshold θ = 0.3θ = 0.3. Table 4 shows the result of the calculation about the 
candidates which exclude the article which shows the similarity under 0.3. 

Table 4. This table informs the result of similarity calculation. NPC will send the message of 
the answer content of no.1 as a result of the similarity calculation. 

No. Related keywords Similarity 
1 할레, 엔피씨, 여명의설원, … 0.39 
2 밸란, 가시덩쿨, 구릉, 벨란, … 0.37 
3 할레, 동굴, 마즈소릴, … 0.30 

5   Conclusion and Future Work 

It is impossible that NPC communicates with the player completely. But if the game 
developer constructs the game ontology with effective relation between them and 
many players share their experiences in the community, we can make NPC more 
meaning objects in the game through the communication with the player using 
external knowledge. It helps the player feel the game more realistic and gives more 
diversity to the game.  

There are many challenges to implement our technique in the practical. The game 
players often use the keyword different way, abbreviated or using a secret language. 
And the existence of a compound word, which is hard to analyze, drops the 
performance. To provide clear answer, the filtering of emoticons and slang should be 
considered. 

From now on, we will effort to resolve the trouble mentioned above and refine the 
similarity formula to find an answer more correctly. Furthermore we will extend the 
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game ontology beyond the quest Q/A, so it will make NPC send to the player the 
message that not only the answer of the question but also various type of the stories 
which are interested in the player. 

References 

1. Jai Jin Jung, Chung Moo Chang, Tae Ung Kim.: An Exploratory Study for Identifying Key 
Factors in Online Games Development Strategy Utilizing Web Community. Journal of 
Korea Information Processing Society (KISP), Vol. 11-D, No. 04, (2004) pp. 991–1002. 

2. Yoon Ho-Chang, Heon Hong-Jun, Oh Jung-Suk : A Study on a Proposal of Gaia Game 
Architecture with Ontology. Journal of Korea Contents Association KOCON, Vol. 03, No. 
01, (2005) pp. 221–228. 

3. World of Warcraft, “http://www.worldofwarcraft.com/” 
4. World of Warcraft playforum, “http://www.playforum.net/wow” 
5. Seung-Shik Kang : Korean Morphological Analysis and Information retrieval, Hongpub 

(2002) 



B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 450–460, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Theory of Saplings Growing Up Algorithm 

Ali Karci 

Firat University, Department of Computer Engineering, 
23119, Elazig, Turkey 

akarci@firat.edu.tr 

Abstract. The saplings sowing and growing up algorithm (SGA) was inspired 
by a natural events – evolution of growing up of trees. This algorithm contains 
two phases: Sowing Phase and Growing up Phase. In this paper, the theoretical 
foundations of SGA were determined. SGA is defined as a computational 
model, and it was depicted that there are a collection of Turing Machines for 
simulating SGA. 

1   Introduction 

The nature is a field of inspiration for some effective ideas in case of developing and 
inventing computational methods. In fact, Evolutionary computation is a field of 
simulating evolution on a computer [1], [2]. There are many computational methods 
which were inspired by the human beings and natural processes: evolutionary 
computation [1], [2], [4], [5], [6], [7], artificial immunology [3], etc. 

The SGA is fundamentally defined as iterative generation and alternation processes 
operating on a garden of candidate solutions called saplings [1], [2], [4]-[7]. In 
general, the SGA process is composed of variation operators generating new 
candidate solutions with selection limiting the search space. The main variation 
operators are mating, branching and vaccinating using simple symbolic processing. In 
addition, the SGA requires neither the differential information nor the continuity 
involved in the objective function of an optimization problem. Due to this features, 
SGAs can be easily applied to various optimization problems. 

Similar to these methods, Karcı et al [10]-[12] introduced a new computational 
method for searching and optimization problems based on the sowing of saplings, 
growing up of saplings, and mating of saplings. The sowing of saplings must have 
equal-length distance in each direction to each other (west, east, north, south), and this 
is the initial step of method. Then saplings are growing up, and they are mating, 
branching and there is vaccinating process so, there will be three operators. 

SGA consists of two phases: Sowing Phase-Uniformed sowing sampling: Saplings 
are scattered evenly in the feasible solution space. Growing up Phase- This phase 
contains three operators: Mating, branching and vaccinating; details of SGA can be 
found in [10]-[12].  

Eberbach [9] defined the series of Turing Machines for evolutionary computation, 
and the aim of this paper is to define the Turing Machine model for SGA. We defined 
SGA as a computational model, and described the collection of Turing Machines for 
SGA. 
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The organization of this paper is as follows. In the Sect. 2, we described the 
cultivating phase and growing up phase of SGA in brief. Section 3 gives the aim of 
this paper. The experimental results for application of the proposed algorithm to some 
benchmark functions were given in Sect. 4. Finally, the last section concludes this 
paper. 

2   Saplings Growing Up Algorithm 

The evolution of a sapling has two stages: Cultivating and growing up.  

2.1   Cultivating Saplings 

Solution space can be considered as a garden of saplings, and hence all saplings must 
be scattered in the garden uniformly (Fig.1). If a farmer wants to sow saplings, he will 
trivially sow them in equal-length distance for the sake of growing up of saplings 
more quickly (Fig.1). In order to solve a problem by simulating the growing up of 
saplings, arbitrary solutions to be generated initially must be scattered evenly in the 
feasible searching space. Each sapling consists of branches, and initially each sapling 
contains no branches and it is a body. The initial saplings in the garden (initial 
solution in the search space) can be generated as uniform garden. 

Uniform Garden: Suppose that the feasible solution space is Z containing s 
elements. Then Z can be written as Z={z0,z1,…,zs-1}. We consider the search space as 
a continuous space and in order to depict the necessity of this method, let us consider 
binary case. If branch alphabet contains two elements, then it is a binary case and Z is 
as follows 

Z={00,01,10,11}, 

and search space size is given by size=2n where n is the length of sapling. The set {01, 
10} is a base of Z, since all remaining elements of Z can be derived from this set by a 
linear combination of base set elements. This case can be considered as a plane and 
base set contains unit vector in each dimension. 

When the search space has three elements in the base set {100, 010, 001}, then 
s=3n. In the continuous case, saplings belong to the space R3. Again, remaining 
elements can be derived from a linear combination of these elements. 

 

  

Fig. 1. Scattering saplings in garden uniformly 
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In general, all vectors in a space can be obtained in a linear combination of 
elements of base set. If one of elements in the base set is absent, then the dimension 
corresponding to this element will be vanishing. So, it is important that initial garden 
must contain saplings which must hold each element of base set. Then cultivating 
process can get any point in the search space. If saplings do not hold at least one 
element in the base set, then the point held the absent dimension can be only obtained 
by branching operation. By considering regularity case and base set, the initial garden 
must be regular and also hold base set. The obtained garden is called uniform garden. 

Initially, two saplings S0, S1 are set where S0={u1,u2,…,un}, S1={l1,l2,…,ln}, n is 
the length of sapling and this case is considered as k=1 where ui, 1≤i≤n is the upper 
bound value for corresponding variable, and li, 1≤i≤n is the lower bound value for 
corresponding variable. Then a dividing factor, let k denote dividing factor, is 
determined. Firstly, k=2 and two extra S3, S4 saplings are derived from S0 and S1. The 
sapling S0 is divided into two part (equal-length, if possible), in this case, 4 saplings 
(22=4) can be derived from S0. However, one of them is same as S0 and another is 
same as S1. Then two saplings which are different from S0 and S1, can be derived: 
 
S3={l1+(u1-l1)*r, l2+(u2-l2)*r,…, ln/2+(un/2-ln/2)*r, ln/2+1+(un/2+1-ln/2+1)*(1-r), ln/2+2+(un/2+2-

ln/2+2)*(1-r)} and  

S4={l1+(u1-l1)*(1-r), l2+(u2-l2)*(1-r),…, ln/2+(un/2-ln/2)*(1-r), ln/2+1+(un/2+1-ln/2+1)*r, 
ln/2+2+(un/2+2-ln/2+2)*r}, 

 
where r is a random number such as 0≤r<1. The remaining saplings in the garden will 
be obtained by applying same method with increasing the value of k. This process 
goes on until the garden is full up. The value of each branch can be binary, and in this 
case, S1={1, 1, …., 1} and S2={0, 0, …, 0}. The derived saplings are 

S3=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

2/n2/n

0...,,0,0,1...,,1,1  and S4=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

2/n2/n

1...,,1,1,0...,,0,0 . 

In the case of k=3, there are 6 derived saplings from S1: 
 
S5={l1+(u1-l1)*r, l2+(u2-l2)*r,…, l2n/3+(u2n/3-l2n/3)*r, l2n/3+1+(u2n/3+1-l2n/3+1)*r,….., 

ln+(un-ln)*r} 
 

S6={l1+(u1-l1)*r, l2+(u2-l2)*r,…, ln/3+(un/3-ln/3)*r, ln/3+1+(un/3+1-ln/3+1)*(1-r), ….., 
l2n/3+(u2n/3-l2n/3)*(1-r),l2n/3+1+(u2n/3+1-l2n/3+1)*r,…..,ln+(un-ln)*r} 

 
S7={l1+(u1-l1)*r, l2+(u2-l2)*r,…, ln/3+(un/3-ln/3)*r, ln/3+1+(un/3+1-ln/3+1)*(1-r), ….., ln+(un-

ln)*(1-r)} 
 
S8={l1+(u1-l1)*(1-r), l2+(u2-l2)*(1-r),…, ln/3+(un/3-ln/3)*(1-r), ln/3+1+(un/3+1-ln/3+1)*r, ….., 

ln+(un-ln)*r} 
 

S9={l1+(u1-l1)*(1-r), l2+(u2-l2)*(1-r),…, ln/3+(un/3-ln/3)*(1-r), ln/3+1+(un/3+1-ln/3+1)*r, ….., 
l2n/3+(u2n/3-l2n/3)*r,l2n/3+1+(u2n/3+1-l2n/3+1)*(1-r),…..,ln+(un-ln)*(1-r)} 
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S10={l1+(u1-l1)*(1-r), l2+(u2-l2)*(1-r),…, l2n/3+(u2n/3-l2n/3)* (1-r), l2n/3+1+(u2n/3+1-
l2n/3+1)*r,…..,ln+(un-ln)*r} 

 
In the binary case for k=3, 

S5=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

3/n3/n3/n

0...,,0,0,1...,,1,1,1...,,1,1  and S6=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

3/n3/n3/n

1...,,1,1,0...,,0,0,1...,,1,1 . 

S7=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

3/n3/n3/n

0...,,0,0,0...,,00,1...,,1,1  and S8=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

3/n3/n3/n

1...,,1,1,1...,,1,1,0...,,0,0 . 

S9=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

3/n3/n3/n

0...,,0,0,1...,,1,1,0...,,0,0  and S10=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

3/n3/n3/n

1...,,1,1,0...,,0,0,0...,,0,0 . 

2.2   Growing Up Saplings 

a) Mating: The aim of mating operator is to generate a new sapling from currently 
existing saplings by interchanging currently exist information. There will be a mating 
factor for each pair of saplings, since the distance between a pair is the most 
important factor which causes the mating of pairs or not. 

Let S1={s1,1, s1,2, …, s1,i, …, s1,n} and S2={s2,1, s2,2, …, s2,i, …, s2,n} be two saplings. 
The distance between S1 and S2 affects the mating process’ taking place or not, and it 
depends on the distance between current pair. Let Pm(S1,S2) is probability of mating of 
saplings S1 and S2. Then Pm(S1,S2) can be calculated as follow 

Pm(S1,S2)=1-

( )
R

ss

2/1n

1i

2
i,2i,1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∑

= , 

where R= ( )
2/1n

1i

2
ii lu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∑

=
, ui is the upper bound for the corresponding distance 

between the pair of currently selected saplings, and li is the lower bound. The 
probability of mating of two saplings depends on the distance between both saplings.  
 
b) Branching: In order to grow up a branch on any point on the body of sapling, 
there will be no near branch previously occurred there. Let S1=s1,1s1,2…s1,i…s1,n be a 
sapling. If a branch occurs in point s1,i (the value of s1,i is changed), then the 
probability of a branch occurring in point s1,j could be calculated in two ways: linear 
and non-linear. The distance between s1,i and s1,j can be considered as |j-i| or |i-j|. If gi 
is a branch, then the probability of s1,j being a branch is 

( )
ji,

|ij|

1
1)s|s(P

2i,1j,1 ≠
−

−=  
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in linear case, and P(s1,j|s1,i) is similar to conditional probability, however, it is not pure 
conditional probability. In the non-linear case, the probability can be considered as 

( )2|ij|

e

1
1)s|P(s 1,ij1, −

−= . 

If i=j, then P(s1,j|s1,i)=0. 

c) Vaccinating: The vaccinating process takes place between two different saplings 
in case of similarity of saplings. Since the similarity of saplings affects the success of 
vaccinating process, and also vaccinating success is proportional to the similarity of 
both saplings. In this study, the similarity of saplings is computed in two ways: 

S1={s1,1, s1,2, …, s1,i, …, s1,n} and S2={s2,1, s2,2, …, s2,i, …, s2,n} for 1≤i≤n, s1,i, 

s2,i∈{0,1} Sim(S1,S2)=∑
=

⊕
n

1i
i,2i,1 ss  The vaccinating process takes place as follow, if 

Sim(S1,S2)≥ threshold, 
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where '
1S  and '

2S  are obtained as consequence of applying vaccinating process to S1 

and S2; random(1) is a binary number. Saplings are not vaccinated arbitrarily. The 
saplings to be vaccinated must satisfy the inequality defined on the similarity 
(Sim(S1,S2)≥ threshold). The initial value of threshold depends on the problem 
solvers. S1 and S2 are saplings and the similarity of S1 and S2 

∑
= −

−
=

n

1i ii

i,2i,1
21 lu

ss
)S,S(Sim . 

If Sim(S1,S2)≥n*ε, where ε is a user-defined constant (0<ε<1), then S1 and S2 are 
vaccinated as follows 
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2.3   Algorithm 

This algorithm applies operator sequentially. The obtained saplings are regarded as 
temporary solutions. After applications of operators in order mating, branching and 
vaccinating, the obtained temporary solutions are evaluated. The next generation will 
be obtained by selecting m best saplings from current generation and temporary 
solutions.  
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Algorithm. SGA 
G(t) is the garden at generation t. 

1. t←0     // Initial time 
2. SowingSapling(G(t))                 // Initial garden 
3. ComputeObjectiveFunction(G(t))  
4. While termination criterion not met do
4.1.      G1(t)←Mating(G(t)) 
4.2.      G2(t)←Branching(G(t)) 
4.3.      G3(t)←Vaccinating(G(t)) 
4.4.      ComputeObjectiveFunction (G1(t)∪G2(t)∪G3(t)) 
4.5.      G(t+1) ←Selection(G1(t)∪G2(t)∪G3(t)∪G(t)) 
4.6.      t ←t+1 

 

3   Turing Machines for SGA 

An SGA is a probabilistic search algorithm directed by the objective function 
maintaining hill climbing at each step. The garden size maintains multiple search 
points, hill climbing means that only a current search point from the search sapling is 
remembered, and a termination condition very often is set to the optimum of the 
objective function. SGA is computational method, and computational model can be 
defined as follow. Definitions 1, 2, 3 and 4 were adapted from definitions in [9]. 

Definition 1. Computational method is CM=(Q, I, O, f), where   
 Q : a set of Computational states 
 I : the set of inputs for algorithm 
 O : the set of outputs for algorithm 
 f : computational rules 
 

Q is the set of subsets of I and O. f: Q→ Q and it is a unit function for elements of the 
set O. Assume that the elements of I x0, x1, …, and  

x0=x and xk+1=f(xk),      k≥0. 

If xk∈O for minimum k value, then computational sequence will terminate. In this 
case, xk data is produced from x data. 
 
Definition 2. SGA can be described in the form of the recurrence relation working in 
a simple iterative loop in discrete time t, called generations, t = 0, 1, 2, ... : 

G(t + 1) = S(V(B(M(G(t)))), 

where G(t) is the current garden and G(t+1) is the garden obtained as a consequence 
of applying Mating, Branching, Vaccinating and Selection operators to G(t). G(t) and 
G(t+1) are elements of Г. Г is the set of all possible gardens with respect to used 
representation and encoding. S is selection, V is vaccinating, B is branching and M is 
mating operators. 
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• G(0)∈Г is the initial garden. 
• Gf∈Г is a garden containing at least one optimum or near optimum solution. So, 

it satisfies the termination condition. The desirable termination condition is the 
optimum of the objective function f(G[t]) of the best sapling in the garden 
G[t]∈Г. 

 
Definition 3. SGA is a computational method SGA=(Q, I, O, f) where Q is the 
sequence of generations, I is the set of generated gardens, O is the set of gardens. f is 
the set of rules applied at each generation. So, f=S(V(B(M(…..)))). 

 
The behaviors of SGA were summarized in brief by adapting from the explanation of 
behaviors of Evolutionary Computation in [9] as follows. 

In fact, there is no restriction on the type of representation and encoding used. 
Encoding depends on the type of problem and modeling manner. The representation is 
the order of operators to apply saplings in the current garden. Someone may change 
the order of operators, while he/she apply these operators to garden at the aim of 
obtaining better sapling(s). Technically, the above means that the domain of the 
mating operator M, branching operator B, vaccinating operator V, selection operator 
S, and the objective function f are extended to operate both on the garden under 
representation G as well as on the encoding of the SGA. The growing up of saplings 
is not static, it fluctuates, their variation operators (mating, branching, vaccinating) 
are subject to slow or fast changes, its goal can be modified as well.  

The name of this study, SGA, is a traditional behavior such as evolutionary 
algorithm. Since SGA violates some basic properties of algorithms. Formally, an 
SGA looking for the optimum of the objective function violates some classical 
requirements of algorithms. If its termination condition is set to the optimum of the 
objective function, it may not terminate after a finite number of steps. In order to 
satisfy the properties of algorithm in this method and SGA remains algorithmic, it has 
to be stopped after a finite number of generations or when no visible progress is 
observable. 

So, SGA operates on the garden of solutions, and process of variation and selection 
are probabilistic. However, selection can be handled as deterministically. The 
objective function is the goal qualified function for solution of problem. Thus such 
widely understood SGA is a superset of all algorithms, since SGA operates on 
multiple search points, and many operators are probabilistic. This is consistent with 
the intuition that adaptive processes are a superset of static processes. 

3.1   Turing Machine for SGA 

We define a formal model of SGA - a Turing Machine of SGA. The Turing machine 
for SGA is a collection of Turing Machines working on the garden G(t), t=0,1,2,…., 
and the transition function of each machine at each step represents the SGA at 
corresponding generation (t=0,1,2,…..). This collection of machines (SGA-Ms) can 
be defined as follows. 
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Definition 4. SGA-M is a possibly infinite collection of Turing Machines working on 
the gardens in generations t=0,1,2, …, where the transition function represents SGA 
evolving on the current garden G(t) in generations t=1,2,3, …. .  

a) The first garden G(0) is generated by using uniform garden, and this algorithm 
can be simulated by a Turing Machine TM(0) whose transition function is 
implement the rules in Algorithm 1. TM(0) generates the G(0). 

b) The output of each generation is a pair (TM(t+1), G(t+1) where TM(t+1) is a 
Turing Machine and G(t+1) is a garden obtained by applying 
f=S(V(B(M(G(t))))) for t=0,1,2,….. 

c) The SGA-M is terminated on G(t) where the current state satisfies the 
termination condition with the pair (TM(t), G(t)) due to the objective function 
obtaining optimum value or near-optimal value in G(t).  

d) Evaluating objective value for each sapling is f(TM(t),G(t))=(TM(t), f(G(t))) 
where f(.) is a problem specific objective function and it is independent on the 
TM(t) . 

 
The SGA-M is a collection of Turing Machines where the first TM is different from 
the other machines in the collection, since the transition function of the first machine 
represents the algorithm for generating the initial garden. All the remaining TMs are 
similar, since their transition functions are same which are the applications of Mating, 
Branching, Vaccinating and Selection on the current garden. The only difference is 
their gardens. 

The operators used in this algorithm are stochastic operators, and the TM whose 
transition function represents these operators, has more than one tape. There will be at 
least a random tape or coin-flip state in SGA-M. The weak side of SGA is that it does 
not remember the history; it just knows the current data. The powerful side of SGA is 
that it starts at more than one search points. 

4   Experimental Results 

In order to depicts the superiority of the proposed algorithm, we have used benchmark 
functions 
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The problem dimension for f1, f2, f3, f4, and f5 is 100 and the problem dimension for 
remaining benchmark functions is 30 (Table 1 and Table 2). These test functions have 
many local minimum points that they are challenging enough for performance 
evaluation, and the existing results reported in [13] can be used for direct comparison. 

Table 1. Basic characteristics of the test functions 

Test 
function 

Used 
feasible 
solution space 

Globally minimal 
function value (claimed 
in literature [10]) 

Problem 
dimensions 
adopted in 
literature 

Number 
of local 
minima 

f1 [-500,500]N -12569.5 30 NA 
f2 [-600,600]N 0 30 NA 
f3 [0,π]N -99.2784 100 N! 
f4 [-5,5]N -78.33236 100 2N 
f5 [-5,10]N 0 100 NA 
f6 [-100,100]N 0 30 NA 
f7 [-100,100]N 0 30 NA 

  
The obtained results in the proposed method show that this method is superior to 

orthogonal genetic algorithm (Table 2), since it has better results than orthogonal 
genetic algorithm as seen in Table 2. While the orthogonal genetic algorithm result is 
-12569.5 for function f1, the result obtained in the proposed algorithm is -13520.910 
for the same function. While the orthogonal genetic algorithm result is 0.0 for 
function f2, the result obtained in the proposed algorithm is also 0.0 for the same 
function. While the orthogonal genetic algorithm result is 0.0 for function f5, the result 
obtained in the proposed algorithm is also 0.0 for the same function. While the 
orthogonal genetic algorithm result is 0.0 for function f6, the result obtained in the 
proposed algorithm is 0.0 for the same function. While the orthogonal genetic 
algorithm result is 0.0 for function f7, the result obtained in the proposed algorithm is 
0.0 for the same function. 

Table 2. Variable ranges and obtained results in literature and in this study 

Test 
function 

Used feasible 
solution space 

Problem dimensions 
adopted in this study 

Obtained function 
value by SGA 

f1 [-500,500]N 100 -13520.910 
f4 [-600,600]N 100 0   
f7 [0,π]N 100 -98,9057747727068    
F8 [-5,5]N 100 -77,873208   
F9 [-5,10]N 100 0 
f13 [-100,100]N 30 0 
f14 [-100,100]N 30 0 

5   Conclusions 

This paper describes the formal model for SGA in brief. The theory of SGA is not just 
single Turing Machine, it composes of a collection of Turing Machines. The first 
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Turing Machine for generating initial garden is different than all others. The 
remaining have differences in case of inputs, since they take different garden. In order 
to make SGA be an algorithm, the collection of Turing Machines have to terminate in 
a finite time. This case maintains by using the maximum number of generations. 

The obtained computational method promises the following properties: 

• Mating operator is a global search 
• Branching operator is a local search operator 
• Branching operator is applied to a single sapling, so, the resulting saplings are 

similar to parent sapling. In this way, branching operator can be used for 
clustering. 

• Vaccinating operator is applied to two dissimilar saplings for the potential of 
using good information in both saplings. 

• This method does not use an extra function or relation for determination of 
quality of sapling. It uses just objective function. 

• If all saplings are used for the solution, they can be used for multi-objective 
optimization. 

• The proposed algorithm does not need to use parameters for evolution of 
garden. It just takes the number of saplings in the garden, and the number of 
branches in a sapling. 

Genetic algorithm is a global search method; however, proposed method contains 
both local and global search steps. Genetic algorithm uses fitness function for 
determination of quality of chromosomes, however, proposed method does not used 
any extra function for determination of quality of saplings. 
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Abstract. In this work, a general framework for developing learning
rules with an added term (perturbation term) is presented. Many learn-
ing rules commonly cited in the specialized literature can be derived from
this general framework. This framework allows us to introduce some
knowledge about vector quantization (as an optimization problem) in
the distortion function in order to derive a new learning rule that uses
that information to avoid certain local minima of the distortion function,
leading to better performance than classical models. Computational ex-
periments in image compression show that our proposed rule, derived
from this general framework, can achieve better results than simple com-
petitive learning and other models, with codebooks of less distortion.

1 Introduction

Vector quantization (VQ) is a coding method designed to represent a multidi-
mensional space by means of a finite number of vectors, called representatives
or prototypes. A vector quantizer maps each input vector in the p-dimensional
Euclidean space R

p into one of the K prototypes. The construction of a vec-
tor quantizer can be modelled as an optimization problem in which a distortion
function is minimized. If the set of input vectors is finite, X = {x1, . . . , xN},
and the set of K prototypes (the codebook) is given by {w1, . . . , wK}, an usual
measure of the distortion introduced in the coding process is given by:

F (W ) =
1
N

N∑

i=1

min
j=1,...,K

||xi − wj ||2 (1)

where the matrix W = (w1, . . . , wK) can also be considered as a vector with
Kp components.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 461–469, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Among the most popular applications of VQ one can find image and speech
signals compression. VQ can also be considered as an approach to data clustering
by means of combinatorial optimization techniques which divide the data into
clusters according to a suitable cost (or distortion) function, like the one given
in (1).

According to Shannon’s rate distortion theory, VQ can always achieve better
compression performance than any conventional coding technique based on the
encoding of scalar quantities [1].

In its beginnings, the high amount of computation required by existing en-
coding techniques did not allow the use of VQ techniques. Linde, Buzo and Gray
[2] proposed the well-known LBG algorithm for VQ which made no use of dif-
ferentiation, and it is the standard approach to compute the codebook. While
the LBG algorithm converges to a local minimum, it is not guaranteed to reach
the global minimum.

Competitive neural networks are designed to cluster the input data. Thus, by
using VQ techniques in this type of networks, tasks such as data coding and com-
pression can be performed. This fact explains that the competitive learning is an
appropriate algorithm for VQ of unlabelled data. A multitude of VQ techniques
were developed in conjunction with competitive networks: Ahalt, Krishnamurthy
and Chen [3] developed a training algorithm for designing VQ codebooks with
near-optimal results, that can be used to develop adaptive vector quantizers.
Yair, Zeger and Gersho [4] proved certain convergence properties of the Koho-
nen algorithm for VQ design, and also introduced the so-called soft competition
scheme, which updates all the codevectors simultaneously with a step size that is
proportional to its probability of winning. Pal, Bezdek and Tsao [5] proposed a
generalization of learning VQ for clustering which avoids the necessity of defining
an update neighbourhood scheme and the final centroids do not seem sensitive
to initialization. The rival penalized competitive learning was introduced by
Xu, Krzyzak and Oja [6]. In this new algorithm for each input not only the
winner unit is modified to adapt itself to the input, but also its rival unlearns
with a smaller learning rate. Ueda and Nakano [7] presented a new competi-
tive learning algorithm with a selection mechanism based on the equidistortion
principle for designing optimal vector quantizers. The selection mechanism en-
ables the system to escape from local minima. Uchiyama and Arbib [8] showed
the relationship between clustering and VQ and presented a competitive learn-
ing algorithm which generates units where the density of input vectors is high
and showed its efficiency in color image segmentation based on the least sum
of squares criterion. Mao and Jain [9] have proposed a self-organizing network
for hyperellipsoidal clustering that is applied to texture segmentation problems.
More recently, Gómez-Ruiz and Muñoz-Pérez [10,11] presented two new learning
rules based on the principle of maximizing the distance between codevectors, in-
troducing the concept of expansive and competitive learning achieving very good
results.

We propose a new heuristic strategy to develop learning rules for competi-
tive networks whose main contribution is the inclusion of an additional term in
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the distortion function allowing to escape from local minima when suitably de-
fined. New learning rules can be derived from this generalized distortion function
and used as weight update schemes for the network, as proved in the following
sections.

2 Construction of Learning Rules with Additional Terms

In this section we will suppose that the set of possible solutions W = (w1, . . . ,
wK) to VQ is bounded (||W || ≤ M < ∞).

We will also consider a sequence of distortion functions {Fn} obtained as small
perturbations of the original F . The perturbation term decreases as n tends to
∞ and helps the learning process (optimization of the distortion function) to
avoid certain local minima, that is, non-global solutions.

The analytic expression for the family of functions Fn considered in this work
is:

Fn(W ) =
1
N

N∑

i=1

(
min

j=1,...,K
||xi − wj ||2 + αn · g(xi, X, W )

)
(2)

where g(xi, X, ·) is a differentiable and bounded function (for every i), that is,
there exists a number M ′ such that ||g(xi, X, ·)||∞ ≤ M ′ < ∞ and {αn} is a
sequence of real numbers converging to 0. This perturbation function g brings all
information necessary to avoid local minima, and corresponds to the additional
term in the learning rule, as we will see next.

This sequence satisfies one convergence condition (condition of uniform con-
vergence): lim

n→∞Fn(W ) = F (W ) for all W ∈ V , where V is a compact (closed

and bounded) subset of R
Kp defined as follows:

V = {W = (w1, . . . , wK) = (w11, w12, . . . , w1p, . . . , wKp) ∈ R
Kp : ||W || ≤ M}

This convergence result ensures that the sequence {Fn} of “perturbed” distor-
tion functions converges to the original F . This fact implies that the learning rule
associated to F can be approximated by the ones associated to the successive
Fn, as long as limn→∞ αn = 0.

To obtain learning rules from the definition of Fn, the stochastic gradient
method will be used. This method can be described as follows:

– Consider a random i ∈ {1, . . . , N} and define:

Ti(W ) = min
j=1,...,K

||xi − wj ||2 + αn · g(xi, X, W )

– The weight update rule is Δwj = −λ ∂Ti

∂wj
=

=

⎧
⎨

⎩
λ(xi − wj) − λαn

∂g(xi,X,W )
∂wj

if wj = arg minj=1,...,K ||xi − wj ||2

−λαn
∂g(xi,X,W )

∂wj
if wj �= arg minj=1,...,K ||xi − wj ||2
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that is, the winning neuron updates its weight w = wj accordingly to the for-
mula λ(xi −w)−λαn

∂g(xi,X,W )
∂w , that includes the original competitive learning

scheme (xi−w) plus a perturbation term. For a non-winning neuron, the update
is only caused by the perturbation in the distortion function.

The addition of this perturbation term provides a way to include more infor-
mation in the learning process, as well as a generalization of the usual updating
schemes.

By giving different values of the perturbation function g, we can obtain learn-
ing rules already known:

1. By defining g ≡ 0 (no perturbation), we obtain the classical learning rule:

Δwj =
{

λ(xi − wj) if wj = w
0 if wj �= w

(3)

2. If we define g(xi, X, W ) = −||w − x̄||2, where w represents the winning
prototype when the input to the net is xi, that is,

||xi − w||2 = min
j=1,...,K

||xi − wj ||2 ,

we arrive at

Fn(W ) =
1
N

N∑

i=1

(
||xi − w||2 − αn · ||w − x̄||2

)
.

With this definition, we are trying to minimize the usual distortion ||xi−w||2
and, at the same time, maximize (note the change of sign) the distance from
this prototype to the data centroid, ||w − x̄||2.

As explained before, we can derive a learning rule given by the expression

Δwj =
{

λ · (xi − w) − λ · αn(x̄ − w) if w = wj

0 otherwise (4)

By naming βn = λ · αn, the learning rule described in [10] is obtained.
3. The updating scheme from [11] can be obtained by defining the perturbation

term g(xi, X, W ) =< x̄, w > where, as usual, w is the winning prototype
and < ·, · > is the Euclidean inner product. The associated learning rule is
derived:

Δwj =
{

λ · (xi − w) − λ · αnx̄ if w = wj

0 otherwise (5)

To get the same analytic expression as in [11], it suffices to define βn such
that (1 − λ)βn = λαn and substitute in the last expression.

The aim of this rule is to minimize the inner product < x̄, w >, which is
achieved when vectors x̄ and w are in opposite directions, that is w ∝ −x̄.

By defining in an adequate way the perturbation term g, we can obtain mul-
tiple learning rules, including most of the mentioned in specialized literature,
for example [6] and others. These rules are derived from an optimization prob-
lem, where the perturbation term helps to avoid local minima of the original
distortion function.
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3 A New Learning Rule

As mentioned in [10,11], a pair of necessary and sufficient conditions to ensure
that the optimum of F is global are:

– Prototypes (that is, w1, . . . , wK) must be as far away as possible from the
centroid of data, that is, the quantity

K∑

j=1

nj ||wj − x̄||2 (6)

where nj is the number of data whose associated prototype is wj , must be
maximized.

– At the same time, prototypes must be the centroids of the set of input
patterns represented by them, that is, if

Sj = {x ∈ X : ||x − wj ||2 = min
l=1,...,K

||x − wl||2}

then it must be satisfied wj =
1

|Sj |
∑

x∈Sj

x.

Our approach is based on these two conditions. The learning rule developed
in this paper will try to maximize the value of (6), but in an indirect way.

The two references mentioned earlier [10,11] presented learning rules based
on maximize that quantity directly.

We consider an alternative way of maximizing the distance from the proto-
types to the data centroid that consists in maximizing the distance from the
prototypes to the prototypes centroid and in minimizing the distance between
both centroids:

maximize ||w − w̄||2 (7)

minimize ||x̄ − w̄||2 (8)

where w is the winning prototype, and w̄ = 1
K

∑K
j=1 wj is the prototypes

centroid.
This new learning rule has an important feature: by (8), the centroid of the

prototypes approach the data centroid, so data are better represented by the pro-
totypes. Moreover, since w̄ ≈ x̄ in the limit, (7) can be approximately rewritten
as maximize ||w − x̄||2. And this implies that the value of (6) is maximized.
But, in addition, we have obtained another property of the solution: prototypes
centroid is close to data centroid.

Then, the definition of the perturbation term, g, is as follows:

g(xi, X, W ) = ||w̄ − x̄||2 − ||w − w̄||2 (9)

where w is the prototype verifying ||xi − w||2 = min
j=1,...,K

||xi − wj ||2.
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With this definition, the expression for the n-th distortion function Fn is:

Fn(W ) =
1
N

N∑

i=1

(
min

j=1,...,K
||xi − wj ||2 + αn · (||w̄ − x̄||2 − ||w − w̄||2)

)

= F (W ) + αn||w̄ − x̄||2 − αn

N

K∑

j=1

nj ||wj − w̄||2 (10)

This expression shows that by minimizing Fn we are also minimizing F and
the expression ||w̄ − x̄||2 (that is, w̄ ≈ x̄), as well as maximizing the total

dispersion of the prototypes
K∑

j=1

nj ||wj − w̄||2, very related to the maximization

of (6), as mentioned before.
The learning rule associated to this Fn is given by:

Δwj =

{
λ(xi − w) + λαn

K (x̄ − w̄) − (K−1)λαn

K (w̄ − w) if wj = w

λαn

K (x̄ − w) if wj �= w
(11)

It must be noted that, in this case, non-winning prototypes are also updated,
that is, in each step, network weights are completely changed. This fact does
not imply an increment of the computational time, since all updates are made
in parallel, but it helps to avoid non-optimal solutions.

4 Experimental Results

In this section we illustrate the effectiveness of proposed approach in image
compression.

In order to perform image compression with unsupervised learning, the set of
input patterns is built by subdividing the gray level image into square subim-
ages named windows. Hence, if the image size is m × n pixels and the window
size is k × k pixels, we will obtain approximately m×n

k2 windows. These win-
dows are our input patterns with p = k × k components (these patterns are
obtained by arranging the pixel values row by row from top to bottom). The
compression process consists in selecting a reduced set of K representative win-
dows (corresponding to the solution prototypes) and replacing each window of
the original image with the closest representative window among the prototypes.
In this experiment we have considered a window size of 4 × 4 pixels and K = 32
representative windows. Thus, the neural network has 32 output neurons.

As test images we have used the ones represented in Fig. 1. Each of these
images has 256×256 pixels, so the number of input patterns is N = 2562

42 = 4096.
The compression was made by using all of these sequential methods (no batch

training is used in this work):

– Simple Competitive Learning (SCL), given by (3).
– Expansive and Competitive Learning from [10] (ECL1), given by (4).
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(a) (b)

Fig. 1. Test images used in this work: (a) lenna, (b) kids

– Expansive and Competitive Learning from [11] (ECL2), given by (5).
– The proposed algorithm, whose learning rule is described by (11).

After 10 executions of each algorithm, the average distortion over the min-
imum is showed on Table 1. That is, if for one image the minimum distortion
obtained among all the algorithms is m0 and μi represents the average distortion
of the i-th algorithm in those 10 executions, the measure of the goodness present
in Table 1 is given by:

Mi =
μi − m0

m0

Table 1. Average results of the 4 algorithms compared in this work after 10 indepen-
dent executions

Image SCL ECL1 ECL2 Proposed

lenna 2.33 22.02 3.60 0.32

kids 1.48 3.99 2.39 1.42

It can be observed that the proposed algorithm achieves better results on
average than the other learning rules compared in this work.

In Fig. 2 we can compare the compression results of the four algorithms on
the test images.

If K = 32 representatives are used, and window size is 4 × 4, then 128
bits are needed to represent each window, but only 5 to represent the code-
words, so we may obtain a compression rate of 128 to 5, that is, 25 to 1
approximately.
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Fig. 2. Compressed images using (from top to bottom): SCL, ECL1, ECL2 and the
proposed learning rule
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5 Conclusions

In this work we have proposed a general framework for developing learning rules
with an added term that plays the role of a perturbation leading to better
compression results by including some kind of knowledge about the problem of
vector quantization.

This general framework englobes many of the learning rules most commonly
cited in the literature, just by defining in a proper way the perturbation term g.

With the help of some previous work [10,11], we have derived a new learning
rule that achieves better results by avoiding some local minima of the distortion
function, which measures the quality of the compression.

As a future research line, we intend to study the use of frameworks of this
kind, generalizing the usual competitive learning, and its convergence to (global
or local) minima of the distortion function. It will be interesting to study the
convergence in sequential training as well as in batch training.
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Abstract. Reinforcement Learning (RL) is analyzed here as a tool for
control system optimization. State and action spaces are assumed to be
continuous. Time is assumed to be discrete, yet the discretization may be
arbitrarily fine. It is shown here that stationary policies, applied by most
RL methods, are improper in control applications, since for fine time
discretization they can not assure bounded variance of policy gradient
estimators. As a remedy to that difficulty, we propose the use of piecewise
non-Markov policies. Policies of this type can be optimized by means of
most RL algorithms, namely those based on likelihood ratio.

1 Introduction

Reinforcement Learning (RL) algorithms provide solutions to the problem of an
intelligent agent that optimizes its behavior in an initially unknown environ-
ment. Adaptive control is a very important application of the intelligent agent
problem. We would like to construct controllers that are able to “learn” by trial
and error to control plants whose dynamics is unknown. The controller may be
understood as the agent, and it is rewarded for reaching the control objectives.
In present control applications, with fast digital controllers, control stimuli are
applied with high frequency. Therefore, each agent’s state results from thou-
sands of previous actions rather that tens like in board games often analyzed as
benchmark problems in RL.

Most RL algorithms [1,9,4,5,7] optimize stationary policies, i.e. ones that draw
an action only on the basis of a current state. Application of RL in control sys-
tems requires discretization of time. Good control requires fine time discretiza-
tion. However, a stationary stochastic policy applied to a deterministic system
leads to a deterministic behavior of the system for diminishing time discretization
[6]. Clearly, this phenomenon precludes exploration capabilities of such policies.
Here we analyze the influence of time discretization on variance of policy gradi-
ent estimators. In an example we show that stabilization of this variance quickly
becomes infeasible as the time discretization decreases.

Our remedy for the fine time discretization problem is based on defining a
policy in a special way. Namely, the policy divides agent–environment interaction

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 470–479, 2007.
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into periods such that it relates actions with each others within the same period.
Within each period a coherent experiment is carried out that gives a clue to
policy improvement. On the basis of a given Markov Decision Process (MDP)
and such the policy we define a new MDP and a stationary policy in the new
one. We show that each RL algorithm based on likelihood ratio can be applied
to optimize the stationary policy in the new MDP.

2 Problem Statement and Likelihood Ratio

We will consider the standard episodic RL setup [8]. A Markov Decision Process
is a tuple 〈S, A, Ps, r, P0, S∗〉 where S and A are the state and action spaces,
respectively; {Ps(·|s, a) : s ∈ S, a ∈ A} is a set of state transition probabilities;
we write st+1 ∼ Ps(·|st, at). In this work we assume that both S and A are
multidimensional continuous and each Ps is a density. The immediate reward, rt

depends on the action and the next state, rt = r(at, st+1). P0 is the distribution
of first states of each episode and S∗ is the set of terminal states. The objective
of a reinforcement learning is to find a control policy that maximizes future
rewards in each state.

We are interested in applications of the solution of the above RL problem to
learning control tasks. A painful difficulty that emerges in control problems is the
fine time discretization. It makes a single action impact the overall performance
insignificantly. Furthermore, the impact of the action emerges a large number
(thousands) of steps after the very action took place. We require the learning
algorithm work properly no matter how fine the time discretization is.

The problem of Reinforcement Learning is an issue of optimization of a certain
performance measure with respect to policy parameters. Because the probability
distributions that define the RL problem at hand are unknown, the optimization
can not be done directly. A possible approach is to adjust policy parameters
along gradient estimators of the performance measure. An important class of
such estimators is based on, so called, likelihood ratio. Let f(a; θ) be a density
of random variables a of values in A. f is parametrized by vector θ ∈ Rnθ .
A sample, a, yields a payment, r(a). We are interested in maximization of the
expected payment

J(θ) = Eθr(a) =
∫

A
r(a)f(a; θ) da.

Under certain, quite liberal regularity conditions, for each constant c,

∇J(θ)=∇(J(θ)−c)=
∫

A
(r(a)−c)∇θf(a; θ) da=

∫

A

(
(r(a) − c)

∇θf(a; θ)
f(a; θ)

)
f(a; θ) da

and thus
(r(a) − c)

∇θf(a; θ)
f(a; θ)

= (r(a) − c)∇θ ln f(a; θ)

is an unbiased estimator of the gradient ∇J(θ). Its variance might be minimized
by an appropriate choice of c. The term ∇θ ln f(a; θ) is the likelihood ratio.
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Reference [2] contains an interesting discussion about the history of its use in
RL and other fields.

3 A Stationary Policy for a Continuous-Time System

In this section we analyze by means of a simple example, how the time discretiza-
tion influences policy gradient estimation. An important insight to this issue has
been provided in [6] where it has been shown that in a continuous environment,
under quite general conditions, the state trajectory converges to a deterministic
limit as the time discretization diminishes. The question arise how this phenom-
enon influences quality of policy gradient estimators. A general answer to this
question is difficult to provide. However, the simple example below suggests that
this influence can be demaging.

Let state represent one-dimensional velocity and action represent one-dimen-
sional acceleration. We have S = A = R. An episode lasts for 1 sec. and it
includes T steps, δ = 1/T long each. Within each step an action is drawn from the
normal distribution N(θ, σ2

a) where θ is a policy parameter. The action defines
constant acceleration within a step and velocity at the beginning of a trial is
null. The only nonzero reward is equal to noised velocity in the last state. We
have

st =
{

0 for t = 0
st−1 + δat for t > 0,

rt =
{

0 for t < T − 1
sT + yT for t = T − 1

where y is a random variable drawn from the normal distribution N(0, σ2
y).

The quality index, J(θ), of the policy defined by θ is equal to the expected
reward at the end of an episode. Because the final reward is a sum of random
variables, we have

EθrT−1 = Eθ

(
T−1∑

t=0

δat + yT

)
= Tδθ = θ.

Therefore, J(θ) = θ and ∇J(θ) = 1. Our main concern here is variance of the
policy gradient estimator. We will consider the policy gradient estimator applied
in the REINFORCE algorithm [10] since prevailing policy gradient estimators
can be considered modifications of this early formula. The estimator applied to
our problem is of the form

ĝ = (rT−1 − c)
T−1∑

t=0

∂ ln π(at; st, θ)
∂θT

where c is the baseline. Variance of this estimator is defined by the following
formula

V ĝ = 2 +
1

δσ2
a

(
(c − θ)2 + σ2

y

)
(1)
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derived in the Appendix. We can see that the larger action variance, the smaller
gradient estimator variance. The exploration–exploitation balance becomes con-
spicuous when we compare V ĝ with variance of sT , namely VsT = δσ2

a (see the
Appendix). By comparing this value with (1), we can see that VsT is “almost”
inversely proportional to V ĝ.

What happens when the time discretization parameter δ decreases? In order
to keep gradient estimator variance small, variance of action has to be increased.
In fact, variance of gradient estimator remains constant if only

σ2
a ∝ 1/δ.

Interestingly enough, this way variance of sT is also stabilized.
It is seen in our example that in order to keep variance of policy gradient

estimator bounded, we have to increase variance of action. However, “actions” in
control systems are always bounded; hence, they can not have too large variance
either. Therefore, while fine time discretization is necessary for good control it
contradicts with quality of policy gradient estimation.

4 MDP Defined by Non-Markov Periods

Let the policy applied by the agent be piecewise non-Markov in the following
sense. It divides an episode into periods and generates actions within each period
on the basis of previous actions and states in this period. Let the periods be
indexed by k and k-th period starts at time tk and lasts for lk instants. For
i : 0 ≤ i < lk we have1

atk+i ∼ π(· ; stk
, atk

, . . . , stk+i, θ).

Let the periods defined by a piecewise non-Markov policy be called non-Markov
periods or, in short, nm-periods.

Given a Markov Decision Process M = 〈S, A, Ps, r, P0, S∗〉 we define a new
one, M̄ = 〈S̄, Ā, P̄s, r̄, P0, S∗〉 with the use of nm-periods defined above. Let
states and actions in M̄ be denoted by s̄ and ā, respectively, and time be indexed
by k. Simultaneously, given a piecewise non-Markov policy π in M , we define a
stationary policy π̄ in M̄ generating actions from Ā. States in M̄ corresponds
to first states in nm-periods; we have

s̄k = stk
and S̄ = S.

Actions in M̄ corresponds to joint trajectories of states and actions within nm-
periods, namely

āk = 〈atk
, stk+1, . . . , atk+lk−1〉 and Ā =

⋃

i≥0

A × (S × A)i.

1 We apply “. . . ” also to denote a subsequence of the sequence (s1, a1, s2, a2, . . . ).
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The transition distribution in M̄ , P̄s is defined by Ps, π, and the way lk emerges.
In the simplest case lk = l for a certain constant l unless k-th period is the
last one in the episode; then 1 ≤ lk ≤ l. We are free to define the method of
calculating rewards in M̄ . For instance, a reward in M̄ can be an average value
of rewards gathered within the corresponding nm-period in M . The distribution
of first states P0 and the set of terminal states S∗ remain unchanged.

An action in M̄ is generated by the policy π in tandem with Ps. What is yet
important is that we can calculate the likelihood ratio ∇θ ln π̄(āk; s̄k, θ). Let us
denote

Sk = [sT

tk
, . . . , sT

tk+lk−1]
T , Ak = [aT

tk
, . . . , aT

tk+lk−1]
T , (2)

πA(Ak; Sk, θ) =
lk−1∏

i=0

π(atk+i; stk
, atk

, . . . , stk+i, θ). (3)

πA is a density of a sequence of actions within an nm-period given a sequence
of states. It is entirely defined by the way the policy π generates actions. From
the decomposition

π̄(āk; s̄k, θ) =
lk−1∏

i=0

π(atk+i; stk
, atk

, . . . , stk+iθ)
lk−2∏

i=0

Ps(st+i+1|stk+i, atk+i) (4)

we see that
∇θ ln π̄(āk; s̄k, θ) = ∇θ ln πA(Ak; Sk, θ).

A special feature of M̄ is the fact that the agent is not entirely free to choose
an action from Ā. It is hence impossible to apply Q-Learning [9] or SARSA to M̄ .
However, optimization of a stationary policy in M̄ can be in principle performed
by all methods based on likelihood ratio, including episodic REINFORCE [10],
Actor-Critics [4,5,7], OLPOMDP [3] and others.

5 Piecewise Non-Markov Policies – Examples

In the present section we define a simple class of non-Markov policies. The poli-
cies we suggest exploit each k-th period to carry out a coherent experiment that
provides a clue to an improvement of the policy. This coherence is a consequence
of the fact that while at each moment the action has a random component, there
is a stochastic dependence among these components within the same nm-period.
In the next subsection we analyze a way of generating such the stochastically
dependent components.

Piecewise independent autoregressive process. Let {εt, t = 1, 2, . . .} be a
sequence of independent random vectors in Rn drawn from the normal distrib-
ution with zero mean and covariance matrix Σ, i.e. N(0, Σ). Also, let α ∈ (0, 1)
and {ξt, t = 1, 2, . . .} be a sequence of random vectors in Rn computed as

ξt =
{

εt if t= tk for any k

αξt−1 +
√

1 − α2εt otherwise.
(5)
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Fig. 1. A run of a piecewise independent autoregressive process for Σ = 1, α =
0.99, tk+1 − tk ≡ 10. Within an nm-period there is a correlation between random
elements while there is no correlation between elements in different nm-periods.

From the above definition it is easy to see, that Eξt = 0 for all t. Also, each ξt

only depends on ε-s that belong to the same nm-period. Therefore,

cov(ξt, ξt′) = E(ξtξ
T

t′) = 0

for t and t′ in different nm-periods. Let us find cov(ξt, ξt′) for t, t′ in the same,
k-th nm-period. We have

ξt = αξt−1 +
√

1 − α2εt = α2ξt−2 + α
√

1 − α2εt−1 +
√

1 − α2εt

= · · · = αt−tkεtk
+

√
1 − α2

t−tk−1∑

i=0

αiεt−i.

If t ≤ t′, then

cov(ξt, ξt′) = E(εεT )

(
αt+t′−2tk + (1 − α2)

t−tk−1∑

i=0

α2i+t′−t

)
= Σαt′−t.

The result for t′ ≤ t is symmetrical. Generally, for t, t′ in the same nm-period,

cov(ξt, ξt′) = α|t
′−t|Σ (6)

and thus {ξt, t = tk, . . . , tk+1 − 1} happens to be an autoregressive stochastic
process. Notice that cov(ξt, ξt) ≡ Σ ≡ cov(εt, εt).

The random process we defined above, the piecewise independent autoregres-
sive process, may be interpreted as a simple method of transforming normal
white noise, εt, into sequences of random vectors that are stochastically de-
pendent (see Fig. 1). Thank to that dependence, each of these sequences may
support a coherent experiment that gives a clue to policy improvement. Below
we present two policy that make use of such experiments.

Deterministic Transformation + Stochastic Process. Let an action, at,
be calculated as

at = ã(st; θ) + ξt (7)
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where ã : S × Θ �→ A is a certain deterministic function, e.g. a neural network
with input s and weights θ. We will denote by ∇ã(s, θ) a matrix of derivatives
of ã with respect to its second argument, namely

∇ã(s, θ) =
∂ã(s, θ)

∂θT
=

[
∂ãj(s, θ)

∂θi

]

i,j

.

What we need is to define the distribution πA(Ak; Sk, θ) and the likelihood ratio
∇θ ln πA(Ak; Sk, θ). for Sk and Ak defined in (2). Given trajectory Sk, quanti-
ties at result from adding random elements ξt to constant values ã(st; θ). Conse-
quently, the distribution πA(Ak; Sk, θ) is the normal one with the expected value
and the covariance matrix equal to

EAk = mk(θ) =

⎡

⎢⎣
ã(stk

, θ)
...

ã(stk+lk−1, θ)

⎤

⎥⎦, cov Ak = Ck =

⎡

⎢⎢⎢⎣

Σ αΣ · · · αlk−1Σ
αΣ Σ
...

. . .
...

αlk−1Σ · · · Σ

⎤

⎥⎥⎥⎦,

respectively. cov Ak results from the fact that cov(at, at′) = cov(ξt, ξt′) and (6).
We thus deal with the normal distribution N(EAk, cov Ak) whose mean de-

pends on the parameter θ and variance does not. The density of this distribution
is given by

πA(A;Sk, θ) =
(√

2π
lkn|Ck|

)−1
exp

(
−0.5(A − mk(θ))T (Ck)−1(A − mk(θ))

)
.

(8)

We also have

∇θ ln πA(A; Sk, θ) = (∇θmk(θ)) C−1
k (A − mk(θ)) (9)

= [∇ã(stk
; θ) · · · ∇ã(stk+lk−1; θ)]C−1

k (A − mk(θ)).

It seems the most convenient to compute vector (Ck)−1(A−mk(θ)) as y satisfying
the linear equation

Cky = A − mk(θ).

Deterministic Transformation Of Stochastic Process. Let an action, at,
be calculated as

at = ã(st; θ + ξt). (10)

Here, the function ã : S×Θ �→ A is defined as previously. However, what is noised
here is parameters of ã rather than its output. Therefore, the dimension of ξt

is different than in the previous section. Here dim ξt = dim Θ while previously
dim ξt = dim A.

For ã smooth with respect to its second argument it is true that

ã(st; θ + ξt) ∼= ã(st; θ) + ∇ã(st, θ)ξt. (11)
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We will derive πA(Ak; Sk, θ) and ∇θπA(Ak; Sk, θ) assuming that the approximate
equation (11) is strict. This assumption is satisfied for ã linear in θ. Actions at

result from an affine transformation of the normal elements ξt. Given Sk, the
distribution of at is also normal with means and covariances equal to

Eat
∼= ã(st, θ) + ∇ã(st, θ)Eξt = ã(st, θ)

cov(at, at′) ∼= ∇ã(st, θ)Eξtξ
T

t′∇ã(st′ , θ)T = ∇ã(st, θ)α|t−t′|Σ∇ã(st′ ; θ)T

respectively, for t and t′ in the same nm-period. If, additionally, Σ = Iσ2,
covariance cov(at, at′) is equal to

cov(at, at′) = σ2α|t−t′|∇ã(st, θ)∇ã(st′ , θ)T .

The above equation is important because it allows us to avoid computations
with Σ which may be a large matrix.

Because Ak is a concatenation of at for a sequence of t, the distribution
πA(Ak; Sk, θ) is normal with mean and variance equal to

EAk = mk(θ) =

⎡

⎢⎣
ã(stk

, θ)
...

ã(st′
k
, θ)

⎤

⎥⎦, covAk =Ck =

⎡

⎢⎣
cov(atk

, atk
) · · · cov(at′

k
, atk

)
...

. . .
...

cov(atk
, at′

k
)· · · cov(at′

k
, at′

k
)

⎤

⎥⎦

respectively, where t′k = tk + lk − 1. With the above definition of mk(θ) and Ck,
the density πA(A; Sk, θ) and the gradient ∇θ ln πA(A; Sk, θ) are expressed in (8)
and (9), respectively.

6 Discussion

Within the idea presented in this paper a reinforcement learning problem at hand
is transformed into the other one and solved by one of the methods based on
likelihood ratio. The objective of this transformation is to make RL algorithms
better suited to adaptive control problems.

Piecewise non-Markov policies decrease the threat of deterministic behavior of
the overall agent-environment system for fine time discretization. For instance,
if nm-periods last for Δτ of real time regardless the discretization and there is
a strong stochastic dependence between actions within the periods, the thread
of deterministicity is headed off and quality of policy gradient estimators is
preserved.

The notion of nm-periods introduces a certain additional degree of freedom
into a RL process. Each such process includes a sequence of experiments that
give clues to policy improvements, usually in the form of policy gradients. Let
us consider the question: What should be the length of each such experiment?
The answer given by the basic form of Episodic REINFORCE is: the length of
an entire episode. Almost all the rest of RL algorithms give the answer that the
experiment should last exactly one time step. Within the proposed approach the



478 P. Wawrzyński

answer is between these two extreme possibilities: An experiment lasts for lk
instants where lk is a controllable parameter.

Third, dividing time into nm-periods enables more flexible treatment the con-
cepts of time and reward. Let us consider algorithms operating on discounted
rewards like OLPOMDP or Actor-Critics. The discount factor applied there de-
fines how long, in terms of time, the agent looks ahead optimizing its actions.
But it is often natural to look ahead in terms of space rather than time. At
present instant t it may be less important what will happen when state becomes
far from st while it may be quite soon in terms of time. In order to achieve the
effect of looking ahead in terms of space, we can define length of a nm-period as

lk = min{l : d(stk
, stk+l) > ε} (12)

where d is a certain metric in S and ε > 0 is a threshold. Then, time goes by
as fast as state changes. Furthermore, suppose we want to penalize the agent
for growing time of accomplishing a certain task. It is possible by assigning a
constant penalty to each moment the task is not completed. Apparently, the
overall penalty is then proportional to the time of accomplishing the task. But
what if we want this penalty to be in a different way related to this time? Within
the traditional approach it would be quite problematic. Within our approach,
we may define lk as (12) and introduce the penalty as any function of lk.

At present we carry out experiments with the proposed methodology. We
test it with the use of a simulated 6-degree-of-freedom robotic manipulator.
It appears that the performance of existing RL methods in optimization of a
stationary control policy for an object of this kind is disappointing. However,
when the concept of non-Markov periods is applied, the same methods become
surprisingly efficient. We are going to report this work in another paper.

7 Conclusions

We have shown that in RL issues with fine time discretization, keeping variance
of policy gradient estimator small may require unfeasibly large action variance.
Significance of this difficulty comes from the fact that fine time discretization
is typical in control problems. We have proposed a remedy, namely piecewise
non-Markov policies. We have shown that combination of existing RL methods
with the piecewise non-Markov policies introduces a new degree of freedom into
a learning process, namely a length of a sequence of actions that give a clue
to policy improvement. Therefore, the piecewise non-Markov policies may be
treated on their own right as an enhancement of the existing RL methods.
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Derivation of Equation 1

π has been defined as the normal distribution N(θ, σ2
a). Therefore
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ξ is a sum of independent random variables. Its distribution is easy to derive as
N(0, δσ2

a). Note that ξ and sT have the same variance. Since for each normal
random variable X , the equality E(X − EX)4 = 3(VX)2 holds, we obtain
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Abstract. JABAT is a middleware supporting the construction of the
dedicated A-Team architecture that can be used for solving variety of
computationally hard optimization problems. The paper includes a gen-
eral overview of the JABAT followed by a description and evaluation of
the architecture designed by the authors with a view to solving RCPSP
and MRCPSP instances. To construct the proposed system a number of
agents, each representing a different optimization algorithm including lo-
cal search, tabu search, as well as several specialized heuristics have been
used. The system has been evaluated experimentally through solving a
set of benchmark instances of the RCPSP and MRCPSP.

1 Introduction

In recent years population based methods as well as agent-based approaches
have become successful in solving difficult optimization problems. Among well
known population-based methods are, among others, genetic and evolutionary
algorithms [6], [15], adaptive memory algorithms [7], ant colony optimization
algorithms [5], cultural algorithms [21] as well as hybrid methods [24]. At the
same time a number of significant advances have been made in both the design
and implementation of autonomous agents. A number of applications of agent
technology is growing systematically. Nowadays agent technology is used in the
real life supporting successfully variety of industrial and commercial applications.
Also a number of agent-based approaches have been proposed to solve different
types of optimization problems [1], [17], [4].

One of the successful approaches to agent-based optimization is the concept
of an asynchronous team (A-Teams), originally introduced by Talukdar [23]. An
A-Team is a collection of software agents that cooperate to solve a problem
by dynamically evolving a population of solutions. More precisely, an A-Team
is a problem solving architecture where autonomous software agents cooperate
to solve problem by sharing access to population of candidate solutions (indi-
viduals). The agents works to create, modify or remove individuals from the
population. The quality of the solutions evolves as improved solutions are added
and poor solutions are removed.

An A-Team usually uses combination of approaches inspired by natural phe-
nomena including, for example, insect societies [16], evolutionary processes [15]
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or swarm optimization [13], as well as local search techniques, for example, tabu
search [8]. The idea of A-Team has been successfully applied to design various
architectures dedicated to solving difficult optimization problems [20], [19].

The paper proposes an agent-based approach to solving instances of the sin-
gle and multiple mode resource constrained project scheduling problems under
the criterion of makespan minimization. RCPSP and MRCPSP instances are
solved using an A-Team environment called JABAT. JABAT is a middleware
supporting the construction of the dedicated A-Team architecture that can be
used for solving variety of computationally hard optimization problems. The
paper includes a general overview of the JABAT followed by a description and
evaluation of the architecture designed by the authors with a view to solving
RCPSP and MRCPSP instances. To construct the proposed system a number
of agents, each representing a different optimization algorithm including local
search, tabu search, as well as several specialized heuristics have been used.

The discussed problems are computationally difficult and belong to the NP-
hard class. Because RCPSP and MRCPSP are important in practical applica-
tions many exact and heuristic algorithms have been proposed for solving them
(see the reviews [9], [10]).

The following sections of the paper include a short overview of the JABAT
environment, RCPSP and MRCSP problem formulation, short overview of the
functionality and structure of JABAT, a description of the proposed JABAT
architecture with details of its implementation, as well as the results of compu-
tational experiment carried out to validate the approach. Conclusions focus on
evaluation of the system and on directions of future research.

2 JABAT Environment

JADE-based A-Team environment (in short: JABAT) is a middleware support-
ing the construction of the dedicated A-Team architectures used for solving a
variety of computationally hard optimization problems. JABAT has been devel-
oped by a team of researchers with the participation of both authors. JABAT en-
gine is JADE, which, in turn, is an enabling technology for the development and
run-time execution of peer-to-peer applications which are based on the agents
paradigm and which can seamlessly work and interoperate both in wired and
wireless environment [2]. From the functional point of view, JADE provides the
basic services necessary to distributed peer-to-peer applications in the fixed and
mobile environment. JADE allows each agent to dynamically discovery other
agents and to communicate with team according to the peer-to-peer paradigm.
To construct JABAT the Java technologies including the Java 2 Platform Stan-
dard Edition (J2SE) with Java Runtime Environment (JRE) have been used.

The problem-solving paradigm on which the JABAT is based can be best
defined as the population based approach. The environment is expected to be
able to produce solutions to difficult optimization problems through applying
the following general rules:
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– To solve difficult optimization problems use a set of agents, each representing
an improvement algorithm.

– To escape getting trapped into a local optimum generate or construct an
initial population of solutions called individuals, which, during computations
will be improved by agents, thus increasing chances for reaching a global
optimum.

Agent-based architecture of the JABAT allowed implementation of the fol-
lowing features:

– The system can in parallel solve instance of several different optimization
problems.

– The optimization processes can be performed on many computers. The user
can easily add or delete a computer from the system. In both cases JABAT
will adopt to the changes, commanding the agents working within the system
to migrate.

The JABAT produces solutions for combinatorial optimization problems using
a set of agents. Each agent represents an improvement algorithm. Main func-
tionality of the environment includes organizing and conducting the process of
search.

Fig. 1. JABAT general structure

JABAT environment is based on two main agents and three types of special
agents. The general structure of the JABAT is shown in Fig. 1. All agents are
implemented as Java classes. The main agents are TaskManager and Platfor-
mManger which manage all other agents and hardware platforms. Both main
agents are running continuously on the main platform placed on a server. The
special agent types are SolutionManager, SolutionMonitor and OptiAgent. The
OptiAgent represents the optimization algorithm which is used to solve some
particular optimization problem. The OptiAgent class must be overwritten by
the code specifically designed for solving a particular problem type. The Solu-
tionManager manages the population of solutions. Its class may be overwritten
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to implement a specific user designed strategy with respect to handling a popu-
lation of solutions. Such a strategy defines which solutions and when are deleted
from the common memory, how they are replaced and how and when new indi-
viduals are generated and incorporated into the common memory. The Solution-
Monitor is responsible to register solutions obtained by OptiAgents. The class
may be overwritten to make possible recording partial results of computations.
One SolutionManager, one SolutionMonitor and a number, fixed or variable, of
OptiAgents are run for each problem instance. The detailed description of the
JABAT environment may be found in [12].

Apart from the above described JABAT-specific classes several general classes
describing a particular optimization problem need to be defined. They include
Data, Task, Solution, DataOntology, TaskOntology and SolutionOntology. These
classes must be overwritten by a code specific for the considered problem.

3 Resource Constrained Project Scheduling Problem
Formulation

A single-mode resource-constrained project scheduling problem consists of a set
of n activities, where each activity has to be processed without interruption to
complete the project. The dummy activities 1 and n represent the beginning and
the end of the project. The duration of an activity j, j = 1, . . . , n is denoted by
dj where d1 = dn = 0. There are r renewable resource types. The availability
of each resource type k in each time period is rk units, k = 1, . . . , r. Each
activity j requires rjk units of resource k during each period of its duration
where r1k = rnk = 0, k = 1, ..., r. All parameters are non-negative integers.
There are precedence relations of the finish-start type with a zero parameter
value (i.e. FS = 0) defined between the activities. In other words activity i
precedes activity j if j cannot start until i has been completed. The structure
of a project can be represented by an activity-on-node network G = (SV, SA),
where SV is the set of activities and SA is the set of precedence relationships.
SSj (SPj) is the set of successors (predecessors) of activity j, j = 1, . . . , n. It is
further assumed that 1 ∈ SPj , j = 2, . . . , n, and n ∈ SSj , j = 1, . . . , n − 1. The
objective is to find a schedule S of activities starting times [s1, . . . , sn], where
s1 = 0 and resource constraints are satisfied, such that the schedule duration
T (S) = sn is minimized. The above formulated problem is a generalization of
the classical job shop scheduling problem and belongs to the class of NP-hard
optimization problems [3].

In case of the MRCPSP each activity j, j = 1, . . . , n may be executed in one
out of Mj modes. The activities may not be preempted and a mode once selected
may not change, i.e., a job j once started in mode m has to be completed in
mode m without interruption. Performing job j in mode m takes djm periods
and is supported by a set R of renewable and a set N of non-renewable resources.

The objective is to find a makespan minimal schedule that meets the
constraints imposed by the precedence relations and the limited resource
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availabilities. It is obvious that the multimode problem can not be computa-
tionally easier than the RCPSP.

4 JABAT Architecture for Solving RCPSP and MRCPSP
Instances

In the RCPSP an individual is a schedule represented as a vector of activities
S = [a1, . . . , an], each activity aj is an object consisting of: starting time - sj ,
duration - dj , set of required units of resources, set of predecessors - SPj and
set of successors - SSj. An individual is represented as an ordered activity list,
in which for each activity, all its predecessors are placed at earlier positions
and all its successors at later positions on the list. The list serves as a starting
point for generating a solution using heuristic known as the serial SGS (Schedule
Generation Scheme). Value of the goal function T (S) is directly used as a measure
of quality of individuals and hence as a selection criterion when deciding on
removing worse individuals from the common memory.

The proposed JABAT architecture for solving RCPSP and MRCPSP in-
stances includes all types of the required agents such as: TaskManager, Platform-
Manager, SolutionManager, SolutionMonitor and OptiAgents. Agents cooperate
together to find the best solution for instances of RCPSP or MRCPSP. The two
most important features affecting the effectiveness of the JABAT architecture
are optimization algorithms used by the optimization agents and the strategy
according to which the population of solutions evolves. In the proposed system
the following algorithms have been implemented as optimization agents:

– Local Search Heuristic (LSA) [11]
– Crossing Heuristic (CH)
– Precedence Tree Heuristic (PTH) [11]
– Tabu Search Algorithm (TSA)
– MCS-based Heuristic (MCSH)

LSA is a simple local search algorithm which finds the local optimum by mov-
ing each activity to all possible places in the solution. In the case of MRCPSP
the algorithm additionally checks all possible modes of the activity. CH is based
on the one point crossover operator. Two initial solution are crossed until the
better solution will be found or all crossing points will be checked. In case of MR-
CPSP the algorithm additionally checks all possible modes of the activity. PTH
is based on the precedence tree approach proposed in [22]. It finds an optimum
solution by enumeration for a partition of the schedule consisting of some activi-
ties. Next, it finds the solutions of the succesive partitions shifted for a fixed step.
The best solution found is remembered. TSA is a tabu search algorithm where
the neighborhood of the initial solution is searched by performing moves that
are not tabu. In considered TSA the move rely on two activities exchange, in the
case of MRCPSP the move includes modes exchange too. The selected moves
are remembered on tabu list. The best solution found is remembered. MCSH is
based on the approach proposed in [14]. The possible constraints are detected
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based on minimal critical sets (MCS) and adapting shaving method. Next, the
solution according to the constraints is created. The procedure is repeated by
the fixed number of iteration. Each of the above described algorithm has been
implemented as the respective OptiAgent class.

The proposed JABAT architecture includes also an implementation of the
classes representing the RCPSP and MRCPSP instances. Data, Activity, Mode,
Resource and RCPSP Task classes have been, respectively, implemented. The
RCPSP Task is inherited from the general Task class available in JABAT. The
RCPSP Task identifies instances which attributes include a list of activities,
and a list of available renewable and non-renewable resources. The Resource
class identifies both - renewable and non-renewable resources, storing the value
representing a number of the resource units. The Mode class identifies activity
modes, which attributes include the mode number, duration and a list of the
required resources of both types. Finally, the Activity identifies activity, which
attributes include the activity number, a list of modes and a list of predecessors
and successors. RCPSP Solution class, inherited from the general Solution class,
has been implemented to describe solutions.

In JABAT, to assure proper communication between agents, ontologies de-
scribing considered instances and solutions need to be defined. The RCPSP Task-
Ontology and RCPSP SolutionOntology classes have been defined through over-
writing the TaskOntology and SolutionOntology classes provided in JABAT.

5 Computational Experiment and Results

To validate the proposed approach computational experiment has been carried
out using 2040 benchmark instances of single-mode RCPSP and 3290 instances
of the multi-mode MRCPSP. The benchmark data set together with known
optimal solution values/upper bounds can be found at [18].

The experiment involved solving all the instances for population consisting of
50 solutions. Initial population was generated randomly. The computation for
one problem instance was interrupted after 5 minutes. The results were evaluated
in terms of mean and maximum relative error (Mean RE, Max RE) calculated
as the deviation from the optimal or best known solutions, percent of solutions
equal to the optimal or best known solutions (Exact) and mean computation
time (Mean CT) during computation on 6 computers with processor 1.7 GHz.
The obtained results are presented in Tables 1-2.

Table 1. Experiment results, single-mode RCPSP

Number of activities Mean RE Max RE Exact Mean CT [s]

30 0.39 % 7.20 % 411 97
60 0.71 % 8.85 % 363 109
90 0.85 % 10.02 % 336 98
120 1.45 % 10.55 % 321 122
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Table 2. Experiment results, multiple-mode RCPSP

Number of activities Mean RE Max RE Exact Mean CT [s]

10 0.72 % 13.16 % 464 46
12 0.73 % 11.36 % 455 50
14 0.79 % 11.44 % 453 54
16 0.81 % 14.14 % 446 55
18 0.95 % 13.34 % 450 58
20 1.80 % 13.29 % 434 64

6 Conclusions

The proposed agent-based approach to solving instances of the single and multi-
ple mode RCPSP produces good or very good solutions which are competitive or
even outperform other population-based approaches. However, main advantages
of the developed JABAT architecture which can be directly attributed to the
multiple agent system paradigm are:

– Scalability
– Increased effectiveness through mobility and agent migration
– Better use of distributed resources
– Web-based accessibility

Future research will focus on assessing the extend of potential gains in terms
of the system effectiveness through increasing a number of optimization agents
and computation platforms. Also other improvement algorithms and techniques
will be tested with a view to finding best combination of agents to deal with
particular project scheduling problem types.
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Abstract. We developed a computational model of the mushroom body
(MB), a prominent region of multimodal integration in the insect brain,
and tested the model’s performance for non-elemental associative learn-
ing in visual pattern avoidance tasks. We employ a realistic spiking neu-
ron model and spike time dependent plasticity, and learning performance
is investigated in closed-loop conditions. We show that the distinctive
neuroarchitecture (divergence onto MB neurons and convergence from
MB neurons, with an otherwise non-specific connectivity) is sufficient
for solving non-elemental learning tasks and thus modulating underlying
reflexes in context-dependent, heterarchical manner.

1 Introduction

Insects are well adapted to their respective ecological niches, but this does not
mean (as is often assumed) that they only perform reflexive, hard-wired behav-
iours. Insects (and other invertebrates) have been shown to have complex and
flexible capabilities. For example, honeybees can solve ‘delayed match to sam-
ple’ and ‘delayed non-match to sample’ tasks [1] and appear to be able to learn
concepts such as symmetry [2]. Studying and understanding these competences
(which might be considered minimalist solutions for cognition) in invertebrate
brains may ultimately help in better understanding more complex vertebrate
brains, and in providing useful design methodologies for intelligent robotics.

A large body of evidence suggests that the mushroom body (MB), a distinct
region in the insect brain, plays a cardinal role in adaptive behaviour. One of
the central functions linked with the MB is olfactory associative learning and
memory. However, the MB in many species receives input from a variety of sen-
sory modalities and is involved in multimodal sensory integration. Its roles have
been reported to include context generalisation [3] and place memory [4]. Fur-
thermore, there is evidence that MB neurons react differently to self-generated
stimuli and other stimuli [5], suggesting proprioceptive or ‘efference copy’ input.
The MB is thus a potential neural substrate for associations and transfer be-
tween sensory modalities, underlying context-specific and non-elemental forms
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of learning. These non-elemental forms of learning constitute the main interest
of this paper.

Thus far, computational models of MB function have been restricted to clas-
sification of sensory inputs in open-loop conditions ([6],[7]). In this paper, we
develop a MB model that modulates reflexive sensorimotor loops through non-
elemental associative learning [8], that is, forms of learning that go beyond simple
associations between two stimuli (classical conditioning) or between a stimulus
and a response (instrumental conditioning). In non-elemental learning tasks, the
stimuli are ambiguously associated with reward or punishment [8]; each stimu-
lus is followed as often by appetitive (+) as aversive (–) reinforcement so that
learning requires the context of the stimulus to be taken into account. In nega-
tive patterning, the agent has to learn to approach (appetitive action) the single
stimuli A and B but retreat (aversive action) from the compound AB. In bi-
conditional discrimination, the agent has to learn to respond appetitively to the
compounds AB and CD but aversively to the compounds AC and BD. In feature
neutral discrimination, the agent has to learn to respond appetively to B and
AC but aversively to C and the compound AB. In our simulation experiments,
we take ‘reinforcement’ and ‘punishment’ to be sensory cues causing different
reflex responses (appetitive or aversive); in successful learning, these responses
become associated with the appropriate conditioned stimuli.

Table 1. Stimuli-reward combinations in the non-elemental learning tasks

Non-elemental learning task Stimuli-reward combinations

Negative patterning A+ B+ AB–
Biconditional discrimination AB+ CD+ AC– BD–
Feature neutral discrimination AC+ C– AB– B+

We propose a minimalist architecture able to modulate reflex behaviours in
closed-loop conditions (where the system’s output influences the system’s inputs)
for non-elemental learning tasks. In this paper, we show that the general neuroar-
chitecture of the MB (fan-out and fan-in) is sufficient for explaining the above
forms of non-elemental learning. Section 2 describes the simulation framework
and Sect. 3 outlines the general architecture (as suggested by neurobiology).
Section 4 describes the neural model in detail. The MB model uses a biolog-
ically plausible neuron model and synapses obey a local spike-time dependent
plasticity rule. Section 5 presents the simulation results. Section 6 concludes and
discusses directions for future work.

2 Experimental Setup for Non-elemental Learning

Our experimental set-up was inspired by conditioning paradigms for visual pat-
tern avoidance in flies, in which the animal in a flight simulator learns an ap-
propriate yaw response to a particular visual pattern which is associated with
an unpleasant heat beam. In our simulation, the agent has a limited field of
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Fig. 1. The wallpapers used for the non-elemental learning tasks: (a) negative pat-
terning, (b) biconditional discrimination, and (c) feature neutral discrimination. The
agent’s field of view is represented by the 4-by-4 grid. As the field of view is gradually
moved to the left, the visual patterns predict what the agent will experience (+ or –)
when it reaches the left edge. Refer to text for further explanations.

view (45 degrees) on a ‘wallpaper’ (of 360 degrees total width) that displays
different patterns. In the absence of any action by the agent, the field of view
is moved gradually to the left, at 1.5 degrees per millisecond. If it reaches the
left edge the agent is “punished” - this generates a reflex action, which moves
the field of view back 180 degrees to the right. Before it reaches the edge it will
encounter a visual pattern, which can thus be used to predict that the edge will
be encountered. The aim is to learn to associate the reflex action with the visual
pattern and execute it before encountering the edge, thus avoiding punishment.
This anticipatory or conditioned reflex, if executed, will move the field of view
21 degrees to the right.

In the non-elemental learning tasks, there are two reflexes, X0-V0 and X1-
V1 (these could be called ‘appetitive’ and ‘aversive’, but in fact they have the
same effective result of turning the agent back to 180 degrees). There are two
corresponding modes for the simulator, i.e. when the field of view reaches the left
edge, the agent experiences either X0 or X1, and will execute the corresponding
reflex, V0 or V1. Which experience will occur is predicted by the visual pattern,
according to the schemes illustrated in Fig. 1; for example, in negative patterning,
the patterns A and B predict X0(+), and the pattern AB predicts X1(–). The
agent must learn to execute the correct reflex (V0 or V1) when it sees a particular
visual pattern, which will move it away from the edge. If it executes the wrong
reflex, then it is instead moved further towards the edge (i.e. 21 degrees to the
left).

The field of view contains 45-by-45 pixels, which are mapped onto a 4-by-4 set
of sensory neurons (see network description below). White areas on the wallpaper
excite these neurons, thus stimulus A will excite the first row of neurons, B the
second row and so on. A typical simulation run lasts 50 seconds, during which the
wallpapers are switched every 0.5 seconds. The simulation timestep is 0.25ms.

3 The Mushroom Body Model

The neural architecture for the agent is based on the insect brain [9], in partic-
ular, on evidence that the MB is involved in modulating more basic, reflexive
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behaviours ([10],[11]) and thus acts as a neural substrate for associations un-
derlying context-specific and non-elemental forms of learning. However, the goal
of the implemented model design was not to imitate physiological mechanisms
involved in MB-mediated learning as closely as possible, but rather to find an
abstract description of the underlying principles, able to reproduce associative
learning in closed-loop conditions. Yet, we aim to use realistic models of the
biological components as more realistic models can be quantitatively and quali-
tatively different from more abstract connectionist approaches.

Detailed discussion of insect brain architecture is provided in [9]. The main
idea is that of parallel pathways, with sensory inputs forming direct reflex loops,
but also feeding into secondary routes that are used to place information from
various sensory modalities or other domain-specific sensorimotor loops into con-
text. The system can thus improve on reflexive behaviours by learning to adapt
and anticipate reflex-causing stimuli. This adaptation process is assumed to oc-
cur in the MB, which form such a parallel pathway for sensory inputs in the
insect brain (see Fig. 2).

The mushroom bodies in insects have a characteristic neuroarchitecture:
namely a tightly-packed, parallel organisation of thousands of neurons, the
Kenyon cells. The mushroom bodies are further subdivided into several dis-
tinct regions: the calyces (input), the pendunculus, and the lobes (output). The
dendrites (inputs) of the Kenyon cells have extensive branches in the calyces,
and the axons (outputs) of the Kenyon cells run through the pendunculus be-
fore extending to form the lobes. Synaptic interconnections between Kenyon cell
axons have been reported [12]. Note that there is considerable divergence (1:50)
from a small number of sensory projection neurons (PN) onto the large number
of Kenyon cells (KC), and considerable convergence (100:1) from the Kenyon
cells onto extrinsic output neurons (EN) (these ratios are estimates based on
data from [13]). KC receive direct excitatory input from PN neurons, but also
indirect inhibitory inputs from the same neurons via lateral horn interneurons
(LHI), arriving shortly after the excitation. These connections are illustrated in
Fig. 2.

It is hypothesised that the MB help disentangle spatio-temporal input pat-
terns by operating as coincidence detectors selective to particular correlations in
the input spike trains [14]. The mapping of sensory neurons onto MB neurons
shows high divergence which can serve for the recognition of unique relationships
in primary sensory channels. In our model, nonlinear transformation, separating
the activity patterns in the PN layer into sparse activity patterns in the KC
layer, is implemented by a randomly determined connectivity matrix between
these layers. EN linearly classify the KC activity patterns. Plasticity of KC-
EN synapses is achieved with a spike timing dependent plasticity rule. The EN
output mediates conditioned responses by activating the appropriate reflex re-
sponses. The inhibition from the LHI, quickly following excitation from the PN,
limit integration time for the KC to short time windows, making them highly
sensitive to precise temporal correlations.
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PN=16

KC=120

EN=2

LHI=16

Reflex pathways

Secondary pathway for sensory inflow via Mushroom Body

Excitatory

Inhibitory

Fig. 2. The implemented MB network receives sensory cues from the visual field via
projection neurons (PN), which make direct excitatory connections, and indirect in-
hibitory connections (via the lateral horn interneurons (LHI)) to the Kenyon cells (KC).
The MB output converges on a small number of extrinsic neurons (EN), which are also
excited by the underlying direct reflex pathways, and can activate these pathways.
Learning occurs between the KC and EN, allowing anticipation of the reflex responses
due to associations with particular visual patterns.

3.1 Model Description

We chose the neuron model proposed by Izhikevich [15] since it exhibits bi-
ologically plausible dynamics, similar to Hodgkin-Huxley-type neurons, but is
computationally less expensive and thus, suitable for large-scale simulation:

C
dv

dt
= k(v − vr)(v − vt) − u + I + [ξ ∼ N(0, σ)] (1)

du

dt
= a(b(v − vr) − u), (2)

where v is the membrane potential and u is the recovery current. a = 0.3,
b = −0.2, c = −65, d = 8, and k = 2 are model parameters. C = 100 is the
capacitance, vr = −60 is the resting potential, and vt = −40 is the instantaneous
threshold potential. ξ is a Gaussian noise term with standard deviation σ = 1.
The variables v and u are reset if v ≥ +35mV:

{
v ← c
u ← u + d

. (3)

Synaptic inputs are modelled by:

I(t + Δt) = gS(t)(vrev − v(t)), (4)
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where vrev is the reversal potential of the synapse (vrev = 0mV for excitatory
and vrev = −90mV for inhibitory synapses) and g is the maximal synaptic
conductance. S(t) is the amount of neurotransmitter active at the synapse at
time t and is updated as follows:

S(t + Δt) =

{
S(t)e

−Δt
τsyn + δ , if presynaptic spike

S(t)e
−Δt
τsyn , otherwise

, (5)

where δ = 0.5 is the amount of neurotransmitter released when a presynaptic
spike occurred and τsyn is the synaptic timescale. The simulation timestep Δt is
set to 0.25ms.

3.2 Network Geometry

The network geometry as shown in Fig. 2 retains proportional dimensions to
the MB system in insects but is smaller in size. A strategy based entirely on
random connectivity and self-organisation through local learning and competi-
tion is explored. Each neuron pair X-X is connected with probability pX,X. The
system implements non-specific connectivity with the exception of full inhibitory
connectivity between EN (c.f., [8]). We describe the various network layers, their
parameters, and their roles below. Learning occurs only through modulation of
the KC-EN connections. We report in Sect. 4 the effects on learning performance
of changing connectivity between the LHI and KC layers, and varying the size
of the KC layer.

PN layer. This layer receives sensory input. The layer consists of 16 neurons
(the agent’s 45-by-45-pixels FoV is divided into a 4-by-4 grid - c.f., Sect. 2). The
input to a single PN neuron is calculated as follows:

IPN =
sum of pixel values
number of pixels

255
. (6)

The neurotransmitter released at each timestep is calculated as follows:

S(t + Δt) = S(t) + IPN × δ. (7)

Black areas have a pixel value of 0 whereas white areas have pixel values of 255,
thus only white areas in the FoV excite the network.

KC layer. The KC layer consists of 16C2 = 120 neurons. Each KC will act as a
coincidence detector and receive inputs from a small number of PNs (pPN,KC =
0.1). The synaptic timescale τPN,KC is set to 2 ms. This parameter needs to be
small in order to make the KC neurons very sensitive to the relative timing of
incoming input from the PN layer. This setup allows the KC neurons to act
as coincidence detectors. The synaptic strength of PN-KC synapses needed to
be carefully adjusted (gPN,KC are initialised uniformly at random in [20,30]). In
addition to this we add an uniformly distributed jitter to the synaptic strengths.
We implemented excitatory and inhibitory KC-KC connections (pKC,KC = 0.1,
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τKC,KC = 5ms) with equal probability (gKC,KC are initialised uniformly at ran-
dom in [5,10]).

LHI layer. Feed-forward inhibition by lateral horn interneurons (LHI) dampens
KC activity in the MB. Thus, the integration time for the KC neurons is limited
to short time windows, making them highly sensitive to precise temporal corre-
lations. This was implemented through 16 LHIs receiving their inputs from the
PN layer and inhibiting activity in the KC layer (pPN,LHI = 0.2, τPN,LHI = 5ms,
gPN,LHI are initialised uniformaly at random in [20,30], pLHI,KC = 0.1, τLHI,KC =
5ms, gLHI,KC are initialised uniformly at random in [20,30]).

EN layer. Every KC-EN pair is connected (pKC,EN = 1 and τKC,EN = 5ms).
However, the synaptic conductance gKC,EN for all synapses is initialised to 0,
and is subsequently modified by STDP as described below. The ENs also receive
excitatory input from the underlying reflex pathways, thus the learning reflects
the coincidence of activity in these pathways and particular patterns of KC
activity.

3.3 Spike Time-Dependent Plasticity

Synapses are modified using Spike Time-Dependent Plasticity (STDP) which
has been observed in biological neural systems (e.g., [16]). In STDP, synaptic
change depends on the relative timing of pre- and post-synaptic action potentials.
Synaptic conductances are adapted as follows:

Δg =

⎧
⎨

⎩
A+e

tpre−tpost
τ+ − gmax

r , if tpre − tpost < 0

A−e
−(tpre−tpost)

τ− , if tpre − tpost ≥ 0
, (8)

where tpre and tpost are the spiking times of the pre- and postsynaptic neuron
respectively. A+ = 2, A− = −1, τ+ = 50ms, and τ− = 5ms are parameters. We
modified the STDP rule proposed by [17] by adding an additional term − gmax

r
if tpre − tpost < 0 where r = 103 is a parameter. This means that if postsynaptic
spikes are not matched with presynaptic ones, the synaptic conductance between
them is decreased by this term. If this modification rule of synaptic conductances
g pushes the values out of the allowed range 0 ≤ g ≤ gmax, g is set to the
appropriate limiting value (gmax = 30).

A ‘forgetting’ factor is introduced in the form of a slow decay of g:

g(t + Δt) = g(t)e
Δt

τdecay (9)

where τdecay = 105.

4 Non-elemental Discrimination Performance

The system was able to learn each of the non-elemental associations shown in
Fig. 1. As the system learns to respond to the visual patterns, the reflex responses
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(a) (b)

Fig. 3. (a) Agent behaviour in response to first (0ms), second (2000ms) and final
(18000ms) presentations of the same wallpaper during a 20s simulation run. At the
start it reaches the edge position (lower dotted line) and performs a reflex turn. In
the next presentation it responds to the visual stimulus (between the upper dotted
lines) but the response is sometimes incorrect. By the final presentation it reliably
responds to the visual stimulus and thus successfully avoids the edge. (b) Boxplots
of performance for different learning tasks (1) negative patterning, (2) biconditional
discrimination, and (3) feature neutral discrimination. The agent encounters a median
of 5 punishments before successfully using the visual patterns to anticipate and avoid
it. The simulation runs lasted 50s.
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Fig. 4. Boxplots of (a) performance with varying probability of connectivity pLHI,KC

between the LHI-KC layers. Performance with varying KC layer size (10,40,70,100,130,
and 160 neurons) for a probability of connectivity pLHI,KC = 0.0.

to encountering the edge are executed less often and the MB drives the agent’s
behaviour (as shown in Fig. 3(a)). The performance index used in this paper
is simply the number of times the reflexes are executed. As shown in Fig. 3(a),
the naive system will repond with one reflex action during one presentation of
one wallpaper. In the biconditional discrimination setup, for example, there are
Nw = 4 wallpapers which are interchanged every tc = 0.5s during tT = 50s.
Thus, tT /(Nw × tc) = 25 activations would mean that a run was unsuccessful.
Figure 3(b) shows boxplots of the number of times reflex pathways were active
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over 30 simulation runs (each lasting 50 seconds) for each of the three condi-
tioning paradigms. All simulation runs for negative patterning were successful
and only one simulation run for biconditional and feature neutral discrimina-
tion each was unsuccessful. The agent learnt after a median of 5 activations of
the reflex pathways which reflex to use, in response to which visual patterns, to
successfully avoid the edge.

Figure 4(a) shows the learning performance with varying probability of con-
nectivity pLHI,KC. As the connectivity between LHI-KC neurons increases (and
with it the inhibition from this layer), the learning performance becomes maxi-
mal at pLHI,KC = 0.1. As the inhibition increases further, the performance drops
off. With increasing inhibition by the LHI neurons, the activity in the KC layer
becomes sparser. Figure 4(b) shows the network performance with varying KC-
layer size with probability of connectivity pLHI,KC = 0.0. The performance tends
to improve with increasing KC layer size.

5 Discussion

Our aim in this paper is to explore the capabilities of an insect-inspired brain
architecture, consisting of reactive behaviours which are modulated by the MB.
We adapted and simulated a widely used conditioning paradigm (the Drosophila
flight simulator) for non-elemental tasks of visual pattern avoidance, and tested
the role of the neuroarchitecture of the MB for this task. The distinct neuroar-
chitecture of the MB, where input (PN) neurons diverge onto large numbers
of mushroom body (KC) neurons and output converges onto a relatively small
number of output (EN) neurons, is able to recognise unique relationships of exci-
tations in the primary sensory channels indicating particular stimulus situations.
The output (EN) neurons, receiving the output of mushroom body neurons, me-
diate conditioned responses.

Based on the proposed architecture and the presented simulation experiments,
the following claims can be made. First, the neuroarchitecture is suited for pat-
tern recognition and was successfully demonstrated for non-elemental learning
tasks. Note that these tasks essentially require the agent to learn to associate
different patterns of stimuli, rather than single stimuli, with the correct action.
Hence the pattern recognition properties of the MB could indeed be a suitable
substrate for this form of learning (c.f., [8]). Second, coincidence detection and
sparse coding are useful for learning. We could show that learning performance
is maximal for small levels of inhibition from the LHI layer. Sparse coding of
sensory inputs helps “make neurons more selective to specific patterns of input,
hence making it possible for higher areas to learn structure in the data” [18].
Future work will further investigate these issues for more specific (i.e. non ran-
dom) connectivity between layers and for modulating larger collections of reflex
behaviours.
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Abstract. Following the rapid development of Grid computing, Grid 
technology has been introduced into the manufacturing realm and is 
contemporarily being considered for the sharing of manufacturing resources. 
However current research in the subject-area is still immature and mainly 
focuses on conceptual framework development. Here a concrete performance-
based Bayesian method for resource collaboration optimization in Extended 
Enterprise is proposed which improves and promotes research in applying Grid-
thinking in inter-organizational manufacturing value chains. Based on the 
research background, problem statement, and the consideration of Bayesian 
learning, the method for probability dependency relationship modeling between 
the performance values of different manufacturing resource nodes in the 
Extended Enterprise is analysed; and is subsequently complimented by the 
development of an extended method for more general use. Finally, a system 
dynamics simulation model for the proposed method is established and the 
validity and effectivity of the suggested method is tested via a simple case 
study. 

1   Introduction 

The contemporary manufacturing environment has seen the rise of a set of problems 
that require the individual firm to satisfy what Browne et al. [1] suggests are issues of 
global marketing, organizational structuring, and product and process development. 
Each of these issues in turn has occasioned a closer examination into how a tighter 
collaboration of independently-owned firms may be achieved. Such analysis has 
given rise to the Extended Enterprise paradigm and other collaborative manufacturing 
rationales. The Extended Enterprise (EE) is a formation of closer co-ordination in the 
design, development, costing and the co-ordination of the respective manufacturing 
schedules of co-operating independent manufacturing enterprises and related 
suppliers [8]; and is the consequent result of a move away from the traditional view of 
manufacturing companies with clear boundaries, limited relationships with other 
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companies and a focus on internal efficiency and effectiveness only [2]. The EE 
concept places emphasis on resource-sharing enterprise partnerships to facilitate both 
integration and co-operation across the value chain; and in doing so, signally 
influences approaches towards greater manufacturing collaboration, especially by 
avowing a greater usage and sharing of contemporary information and 
communication technologies. 

Advances in Grid computing technologies fall into this latter category and make 
them ideal for application in EE. The early development of Grid computing 
technologies was motivated by the problems of creating scientific resource-sharing 
applications, and increasing the functionality and availability of these by coupling 
heterogeneous entities such as scientific instruments, remote computers and archives 
[6][10]. With urgent requirements on manufacturing firms to increase collaborative 
activities with industrial partners, Grid may be adapted to the needs of manufacturers 
to help meet these goals. The concept of the “Manufacturing Grid” (MG) [5] is thus 
proposed with reference to the idea and application of a Computing Grid. This 
relatively new concept is explored further below where we propose a performance-
based Bayesian method for resource collaboration optimization in the EE MG. 

2   Research Background and Related Work 

In the EE MG, different resources exist between computing and manufacturing, while 
the key one is manufacturing resources (MR) which are kinds of manufacturing 
capability and capacity of certain individuals or organizations, such as design, supply 
and production. The performance value here is concerned with the related 
performance of the manufacturing individual or organization, and denotes the relevant 
value of capability and capacity to supply the MR or the demands for them as well as 
the quality and the time consumed during their use. Further, resource collaboration is 
supposed to happen between different individuals or organizations and thus there exist 
certain relationships between them. Thus the individual, unit or organization with 
certain MR in the collaboration can be denoted as a MR node. These form a MR 
network in the EE MG, which may similarly be depicted in different forms [9]. 

Here, the method is presented mainly based on the performance values of different 
resource nodes. Specifically, the relationships between resource nodes discussed 
principally are the MR dependency relationship (DR); that is, the relationships 
between resource nodes in an EE collaboration are dependent as downstream partners 
rely on the delivery of upstream MR to compete. The DR proposed in this paper is a 
kind of representation form of a causal relationship in a sense. The causal relationship 
between nodes and their related performance is a well-researched topic. The models 
of causal relationship were introduced into the scope of enterprise system engineering 
by Cooper [4]; while Ronald and Gyula [11] systematically summarized and 
combined a serial of methods such as causal structure presented in a graphical way, 
statistical methods, system dynamics and qualitative reasoning to model and analyze 
the causal relationship between the performances of nodes. 

In the study of relationships between node’s performance, the introduction of 
certain fixed weights or fuzzy coefficients usually can be used to improve the 
qualitative relationship. But in the practical engineering application, it is found that 
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not only does there exists a correlation between the performance values of nodes with 
DR, but the measure w of this relationship, like a weight or fuzzy coefficient, is 
related to the performance value of the node as well. For example, supposing that 
there are two nodes A and B, and B depends on A; when the performance value of A 
has reached a certain level, further performance improvement of A will not lead to a 
corresponding performance improvement of B. However, when decreasing the 
performance value of A to a certain level, its influence on the performance of B will 
become, suddenly, considerable.  

The common methods of researching the relationship between performances of 
nodes, such as system dynamics and fuzzy cognitive mapping, are mainly based on 
fixed relationships between them, in which the relationship measure w has definite 
value. So it cannot reflect the above described relationship between measure w and 
the performance value of node d. To resolve this kind of problem and propose a more 
convincible and effective method for the MR collaboration, we introduce conditional 
probability relationships into the DR modeling of node’s performances--known as 
probability cognitive mapping in cognitive research [7]. 

3   Probability DR Modeling for MR Collaboration 

3.1   Basic Resources Nodes and Probability DR Model 

Generally speaking, a MR network model RM can be represented as a triple 
RM = <R,RL,PI>, where R is the set of resource nodes (RN) and can be described as 
R = {RNi, i = 1,…,N}; where N is the number of resource nodes; RL denotes the set of 
relationships between resource nodes; and PI is the set of performance information 
value (d) that denotes the performance information of the resource node. Thus the 
performance status of the resources network at a time t can be implied by the 
information in PI. PI can be shown as the following function: 

( ) ( , ), , 1, ...,P I t f d p R N R i N
i i

= ∈ =  (1) 

where di is the performance information value of some resource node RNi, and p, 
which belongs to RL, shows the relation between di of different nodes. So pij is used to 
denote the relationship between nodes RNi and RNj: pij = f(di, dj). That is: 

1

:
N

ij i j ji
j
j i

p d f d w
=
≠

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑  

(2) 

which reflects the set of resource nodes {dj}having a relationship with di  at the time t; 
and wji is the measure of this kind of relationship in terms of weights or fuzzy related 
coefficient. 

As discussed before, wji is usually related with dj, i.e. when the value of dj varies at 
different time, the value of wji will change with it. This indicates that the value of wji 
is not stable. Therefore we can exploit the conditional probability relationship to 
represent this kind of phenomenon: 
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≠

⎡ ⎤
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⎢ ⎥⎣ ⎦
∑  

(3) 

where P(wji | dj) shows the uncertainty of wji caused by dj. Obviously when wji is not 
influenced by dj, Equation (3) can be simplified as Equation (2).  

Note that the DR model of resource nodes described by Equation (3) not only 
includes the usual description of the relationship measure between resource nodes, but 
also indicates the dynamic aspect of this kind of relationship measure; hence it has an 
increased ability to describe the relationship between nodes. In particular, the 
probability DR model in Equation (3) is not about the conditional probability 
relationship between two resource nodes P(di | dj), but between the measure wji and 
the value of performance information P(w | d). 

3.2   Extended Model of Probability DR Between Resource Nodes 

In the basic model, as shown in Equation (3) above, the DR between measure wji and 
the value of performance information dj is discussed. From this we can improve and 
extend it to enhance its representational ability for the probability DR between 
resource nodes. 

(1) The measure wji is influenced by more factors 
In addition to dj, more factors will influence the value of wji. Therefore more 
generally, the value of wji can be affected by the performance information of any 
other resource node other than RNi and RNj. Equation (3) can be extended as: 

( )
1

( ) ( | ) ( | ) ... ( | )

,   and  , ,

N

i j ji ji
j
j i

ji ji j ji m ji n

m n

d f d w P w

P w P w d P w d P w d

d d PI m n i j

=
≠

⎧ ⎡ ⎤
⎪ ⎢ ⎥=⎪ ⎢ ⎥⎨ ⎢ ⎥⎣ ⎦⎪
⎪ = + +⎩

∈ ≠

∑
 

(4) 

in which dm, dn are other factors of the model RM influencing wji besides RNi and 
RNj. 

Thus the above extended model can indicate that the relationship between resource 
nodes is influenced by other factors in a more extensive way. Also, in the model of 
the MR network, there is always lack of methods to quantitatively formalize the 
relationship between resource nodes; so, based on the model given in Equation (4), a 
method which includes the probability distribution relationship between resource 
nodes is proposed to resolve this problem. If the measure of the relationship RLji and 
its probability influence by every factor dn can be obtained by some certain methods 
(such as the method based on apriori knowledge), the probability distribution of every 
influencing factor can be calculated as per  Bayes Theory: 
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1

( | ) ( | )
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|| ||
( | )

ji n ji n
n N

ji
ji m

m

P w d P w d
P d n N

R L
P w d

=
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∑

, (5) 

where ||RLji|| denotes the measure of relationship RLji determined by some kind of 
methods beforehand; and where the relationship RLji has exceptional phenomenon, 
P(dn) is the abnormality probability of the factor dn which influences RLji. In this way, 
Equation (5) provides a method to reason and analyze abnormal events based on the 
already built model of probability DR between resource nodes. 

(2) Model of probability DR between resource nodes with temporal characteristics 
By analogy with the fuzzy cognitive models considering temporal aspects proposed in 
the literature [7], we can improve the model in Equation (3) and form the following 
model with temporal memory effect: 
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where di(t) and dj(t) denote the values of performance information of resource nodes 
RNi and RNj at time t; and di(t+1) is that of resource node RNi at time t+1. Then 
P(wji(t) | dj(t)) represents the uncertainty of wji(t) influenced by dj(t). The term c∗di(t) 
means the influence of the performance information value at the next time exerted by 
the value of the performance information in the previous time and c is the influencing 
factor. 

Thus the model in Equation (6) not only illustrates that the measure of the 
relationship between resource nodes is dynamically affected by the value of 
performance information, but also implies a variation with time which enhances the 
representational ability of the dynamic aspect.  

Further, supposing in Equation (6) with respect to node RNi, that di is only related 
with the value of performance information at the previous time--that is to say, 
conditional probability P(wji(t) | dj(t)) will not vary with time—then the Equation (6) 
can be modified as: 
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(7) 

Accordingly all the nodes RN in resources network model influence the 
relationship RL  between the nodes in terms of the Markov Process (if observing the 
model in discrete time intervals, this process becomes a Markov Chain); this provides 
a much more general way to study the dynamic aspect of the resources network 
model. 
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(3) Adjacency matrix of the model 
Exploiting the representational methods in the study of cognitive mapping, we can 
build the adjacency matrix of the model of probability DR between resource nodes 
based on Equation (3). Supposing that di = 1,…,N, di∈PI is the value of performance 
information of RNi = 1,…,N∈R, then:  

 

12 1 1 1

21 2 2 2

1 2

0 ( | ) ( | )

( | ) 0 ( | )

( | ) ( | ) ( | )

j

j

i i i i ij i

P w d P w d

P w d P w d

P w d P w d P w d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…
…

1d 2d

1d

2d

id

jd... ...

 

(8) 

in which if P(wji | dj) = 0, there is no direct DR between nodes RNi and RNj. With 
reference to methods in fuzzy theory, if the conditional probability relationship 
P(wji | dj) is extended from interval [0, 1] to [-1, 1], then -P(wji | dj) indicates that RNi 
is relied on by RNj. Therefore the construction of the adjacency matrix enriches the 
representational form of the conditional probability relationship and thus the model 
proposed in this paper can be applied to analyze the generalized relationship in terms 
of the network or tree structure between resource nodes. 

3.3   Application of Performance Modeling Based on Probability DR 

In practical application, the above models shown in Equation (3)-(7) mainly require 
three problems to be resolved: 1. the function f which denotes the relationship 
between two resource nodes; 2. the measure w  of the relationship between two 
nodes; and 3. how to use the conditional probability P(wji | dj). 

Firstly the frequently used functions of the relationship representation f are two 
value functions or probability distribution functions. Regarding the measure of the 
relationship w, the representation methods, such as certain weight coefficients or 
fuzzy related functions, are usually applied. Thus the critical existing problem is the 
last: how to apply the conditional probability relationship P(w | d) between the 
measure w  and the value of node performance information d. Nevertheless we must 
note that P(w | d)  here is in its broad sense, which indicates the relationship measure 
w  is influenced by the value of node performance information d; this can imply not 
only the subjective belief degree for this relationship by certain specialists, but also 
some kind of stable objective probability. The former one is called Apriori 
Application while the latter is named as Aposteriori Application. 

In the aposteriori application, P(w(t) | dj(t),…) is always determined after the 
resources network model has been put into practice for some time and thus has 
accumulated data to some extent. Then statistical methods or Bayes equation can be 
used to obtain this probability relationship. Self-adaptive learning algorithms like 
cognitive mapping with the self-learning function of the neural network also can be 
used to solve the probability distribution of the conditional probability relationship. 

Opposed to aposteriori application, the application based on apriori knowledge is 
more critical since it should be completed before the resources network model is put 
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into practice, which will directly influence the effect of application and probably 
result in the expense of adjustment afterwards. During apriori application, the 
conditional probability P(w(t) | dj(t),…) can always be set beforehand according to the 
engineering experience of related specialists or some heuristic information.  

4   Case Study 

In this section, a simple case study of the EE will be put forward to illustrate the 
presented probability DR model for MR collaboration. The illustration is mainly 
concerned with the basic probability DR model as described in Equation (3), and the 
illustrated model will be simplified also to make the case study more understandable. 
Based on industrial practice, a simplified EE process model is presented in Fig. 1, 
which comprises three MR nodes: the original equipment manufacturer (OEM), the 
first tier supplier and the second tier supplier; there are three production processes--
from the purchase of raw materials to the production delivery for customers--that are 
actually the production of accessories/components, semi-manufactured goods and the 
final product. 

The Second 
Tier Supplier

Accessories/
Components

semi-
manufactured

goodsThe First
Tier Supplier

OEM
Purchase

Customer

Final
product

 

Fig. 1. A simple Extended Enterprise process 

Figure 1 is a typical pull production system and, as a result, bullwhip effect exists 
in it. In this case, it is necessary to optimize the MR collaboration in this EE process, 
and weaken the fluctuation caused by the abnormal requirements of the node in the 
downstream position. A related simulation diagram, drawn using the VENSIM 
application, is shown as Fig. 2. VENSIM is a software for modeling and simulating 
dynamic systems. It is used for developing, analyzing, and packaging high quality 
dynamic feedback models.  Models are constructed graphically or in a text editor, 
including features such as dynamic functions, subscripting (arrays), Monte Carlo 
sensitivity analysis, optimization, data handling, and application interfaces. 

The relevant MR nodes and performance factors concerned in the simulation are 
depicted in Table 1. 

The DR model as shown in Fig. 2 has applied the traditional DR modeling based 
on system dynamics [12]. The adjustable performance factors EV0, EV1, EV2 and 
EV3 transfer the feedback information from downstream to upstream in the EE level 
by level, which can play an important role in adjusting the quantity of products and 
lowering its fluctuation. W0, W1, W2 and EV3 are the fixed weight coefficients in the 
transfer process which will not be influenced by the performance value of the transfer 
relationship. Through the simulation of VENSIM [13], we can show, in the left-hand 
column in Table 2, the influence from the abnormal change of customer requirements 
to the quantity of products R1, R2 and R3. 
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Grounded on the model with probability DR described in Equation (3) before, the 
above presented model can be improved to reflect the DR between weight coefficient 
w and the performance value of node. Furthermore, for practical purposes, the 
application of the model is based on apriori knowledge, while the conditional 
probability distribution of W0 and EV1 can be obtained through statistical methods 
according to different performance values of EV1. Accordingly the value of W0 can 
be determined through fuzzy rules. The similar improvement method is also applied 
to W1 and W2. We use the improved model to optimize the EE collaboration and 
through the simulation of VENSIM, we can show, as in the right-hand column of 
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Fig. 2. The simulation for dependency relationship model 

Table 1. Manufacturing resources of nodes and performance factors concerned 

Manufacturing 
Resources of 

Nodes 

Process  Performance 
Factors 

Interim Status  
Performance Factors 

Adjustable 
Performance 

Factors 
R1: The quantity of 
products of the 
second tier supplier 
R2: The quantity of 
products of the first 
tier supplier 
R3: The quantity of 
products of the 
OEM 

V0: Raw materials supply 
velocity 
V1: Accessories /Components 
supply velocity 
V2: Semi-manufactured goods 
supply velocity 
V3: Final product supply 
velocity 
T1: Run time of Accessories 
/Components 
T2: Run time of Semi-
manufactured goods 
R1 AD Time: Adjustment 
time of R1 
R2 AD Time: Adjustment 
time of R2 
R3 AD Time: Adjustment 
time of R3 

ET1: Expectation of T1 
ET2: Expectation of T2 
R1 AD: Adjustment of 
R1 
R2 AD: Adjustment of 
R2 
R3 AD: Adjustment of 
R3 
ER1: Expectation of R1 
ER2: Expectation of R2 
ER3: Expectation of R3 
 

EV0: 
Expectation of the 
velocity of V0 
EV1: 

Expectation of the 
velocity of V1 
EV2: 

Expectation of the 
velocity of V2 
EV3: 

Expectation of the 
velocity of V3 
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Table 2, the influence from the abnormal change of customer requirements to the 
quantity of products R1, R2 and R3. 

Thus, as illustrated in Table 2, it can be concluded that, in comparison with common 
DR model, the improved model can effectively control and monitor the production 
process, alleviate the fluctuation of the quantity of products, and restrain the bullwhip 
effect along the value chain to a great extent. In this way, it can improve the 
effectiveness and efficiency of resource collaboration and decrease the waste of MR. 

Table 2. The comparison of effectivity between the former method and the proposed one 

 The former method Method proposed in this paper 

The influence 
from the 
abnormal 
change of 
customer 

requirements 
to R1 

 

The influence 
from the 
abnormal 
change of 
customer 

requirements 
to R2 

The 
influence 
from the 
abnormal 
change of 
customer 

requirements 
to R3 

 
In the above case study, the proposed model in this paper acts as a “performance 

observation instrument” which can supervise the production process. It is actually 
similar to controlling a system with non-linear factors with probability and statistical 
methods in control theory. Because it is hard to describe the non-linear aspects of a 
resource collaboration system, the mathematical model of the system cannot be 
presented directly and thus be controlled effectively. However the improved model 
based on conditional probability can statistically observe and monitor this kind of 
“non-linear factors” in the resource collaboration system very well. 

The presented case just discusses a simplified EE model; in reality, the EE will 
probably display a more complex network structure. However the extended model 
proposed in this paper can be applied to deal with this kind of complicated situation. 
In fact, the methods introduced in this paper will have a much more obvious effect 
and advantages in this context. 
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5   Conclusions 

Following the needs of manufacturers to collaborate more intensively in the EE 
environment, this paper proposes a MG viewpoint to optimize resource collaboration 
among partnering firms. Taking into account not only the correlation between MR 
nodes but also the probability relationship between the measure w and the 
performance of related nodes, a Bayesian method for the optimization of MR 
collaboration is outlined to meet these urgent requirements. The proposed method can 
manage and monitor the DR between different resource nodes more accurately and 
provide a more convincible reasoning mechanism to find the right cause for 
implementing adjustments of performance improvements. Accordingly, it can 
enhance the scalability, flexibility and reliability of the MR configuration and 
allocation in the collaboration network, and can improve the validity and effectivity of 
MR collaboration--here tested with a simple simulation case study. Moreover, the 
method presented will make the management of complex resources collaboration 
network more computer-processible and reliable so as to make the MG in the EE 
more feasible. 
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Abstract. This paper presents a hybrid simulated-annealing (SA) algorithm for 
two-dimensional strip packing problem (2D SPP) where a set of small rectangu-
lar items has to be allocated on a larger stock rectangle in order to find a  
minimum height. A new recursive placement procedure is proposed and the 
procedure is combined with the SA algorithm. The hybrid-SA algorithm was 
tested on a set of benchmark problems taken from the literature. The computa-
tional results have validated the quality of the solutions and usefulness of the 
proposed hybrid-SA algorithm. 

1   Introduction 

Cutting and Packing Problems (CPPs) are a set of widely studied problems which are 
defined as geometric - combinatorial problems. CPPs are geometric-based because 
within each large object, one or more small items are arranged in such a way to avoid 
overlapping and to fit into the object’s geometric boundaries. They are also combina-
toric-based since small items are to be assigned to the large objects. In other words, 
each large object is assigned a given set of small items and each item is assigned to at 
most one large object [1]. 

Two-dimensional rectangular packing problems (2D RPP) which encountered in 
many industries are a sub-problem of CPPs. Due to the different applications in dif-
ferent industries such as the textile, glass, wood and paper industries, some additional 
constraints and/or assumptions for the solution of the problem may be needed. Main 
concentration is generally given to cutting of rectangular shaped items from a large 
rectangular sheet of material in these industries. 

2D RPP can be defined as allocating a set of items to a single object to minimize 
the used object space. The usual objective of the allocation process is to maximize the 
material utilization and hence, to minimize the “wasted” area [2]. 2D RPP have been 
studied under two titles; 2D bin-packing problems and 2D strip packing problems. In 
case of 2D bin-packing problems (2D BPP); the units are finite rectangles, and the 
objective is to pack all the items into the minimum number of units, while in case of 
2D strip packing problems (2D SPP), there is a single standardized unit of given 
width, and the objective is to pack all the items to find the minimum height [3]. Fore 
more information on packing problems, the readers are referred to [3]-[6]. 

In this study, 2D SPP with rectangular pieces is considered in order to minimize 
the “height”.  The following assumptions are made when solving the problem; 
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i) the object has a fixed width and infinite height,  
ii) each item has a fixed width and height,  
iii) moreover, the set (of items) may contain identical items, and  
iv) the items to be packed can be rotated by 90°. 

A feasible solution of the problem must ensure that there is not an overlap be-
tween items. 

It should be noted that 2D PP are strongly NP-hard [3]. Although, some ex-
act/optimal algorithms were proposed for the solution of the problem, they might not 
be practical for large-scale problems in which large number of rectangular items has 
to be placed [7]. Due to the complex nature of the problem, many heuristic and meta-
heuristic packing algorithms have been suggested in the literature for the solution of 
the 2D PP as well as “hybrid algorithms” which hybridize a heuristic placement-
policy with meta-heuristics are employed. The ability of heuristics, meta-heuristics 
and hybrid algorithms to reach near-optimal/optimal solutions in a reasonable amount 
of time encouraged many researchers to apply them to solve large sized/complex 
packing problems. However when compared to the great amount of work on heuris-
tics for the packing problem, the work on meta-heuristics is limited. The “computa-
tional time” required to obtain the solution as well as the “solution quality” deter-
mines the effectiveness of these algorithms. Recently, Zhang et al. [7] have proposed 
a fast/new recursive algorithm especially for solving large-sized test cases in strip 
rectangular packing problem. One of the first attempts on using meta-heuristics for 
the 2D PP is done by Smith [8], who used Genetic Algorithms (GA) with two heuris-
tic packing routines; slide algorithm and skyline algorithm. Another popular meta-
heuristic algorithm; Simulated Annealing (SA), was used by Downsland [9], for the 
solution of problems with identical and non-identical items. In 1996, Jacobs [10] 
hybridized Bottom-Left (BL) heuristic with GA. Another SA algorithm was presented 
by Lai and Chan [11] for the cutting stock problems.  Leung et al. [12] tested a set of 
combinations of SA and GA with Bottom Left (BL) and Difference Process (DP) 
heuristics. Their experimental results showed that GA and DP heuristics provide more 
favorable results for their test data. Hopper and Turton [2] presented an empirical 
investigation of meta-heuristic and heuristic algorithms for 2D PP. They hybridized 
two heuristic procedures (BL and Bottom Left Fill algorithm) with three meta-
heuristic algorithms (GA, SA, Naïve Evolution) and local search. Unlike Leung et al. 
[12], SA has achieved the best layout quality.  

In this paper, a hybrid simulated-annealing (SA) algorithm for 2D SPP is pre-
sented. A new recursive placement procedure is proposed and combined with the SA 
algorithm. A computational study is also performed in order to validate the quality of 
the solutions and usefulness of the proposed hybrid-SA algorithm. 

2   Recursive Placement Procedure for 2D SPP 

In this paper, a new recursive placement procedure for 2D SPP is introduced. The 
main advantage of using recursive algorithms is that they reduce the solution to a 
problem with a particular set of input to the solution of the same problem with smaller 
input values [13]. Besides, the recursive algorithms are simple and easy to implement. 
The recursive placement procedure that is employed in this study is as follows; 
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 Pack the first item into the bottom left corner ((0, 0) coordinate) of the object 
(This operation also divides the packing space S into two subsequent sub-
spaces). 

 Pack the next item into the subspace S1. If packing to the subspace S1 is not 
possible, then pack the item to the subspace S2. Call this procedure recur-
sively until all the items are packed. 

 

Fig. 1. Packing policy using the recursive placement procedure 

In Fig. 1, the working principle of the recursive placement procedure is illustrated. 
The first item is packed in the bottom-left corner of the larger object. As a result of 
this packing, two subspaces (S1 and S2) are generated. The algorithm tries to pack the 
next item into the bottom-left corner of the subspace S1. If this is not possible, the 
item is packed to the bottom-left corner of the subspace S2. This packing will again 
divide the subspace in which packing is done into two subspaces. The algorithm will 
try to pack a new item firstly to subspace S11, then to subspaces S12, S21 and to S22.  The 
procedure will be called recursively until all the items are allocated into the large 
object. 

In order to demonstrate the difference of the proposed recursive placement proce-
dure from the well known Bottom - Left (BL) heuristic, an example problem from 
Hopper and Turton [2] is solved using both of the methods. Figure 2 shows how the 
rectangular pieces described by the permutation (2, 6, 4, 3, 0, 1, 5) are allocated on 
the rectangular large object. 
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                                (a)                                                          (b) 

Fig. 2. (a) Packing using the proposed recursive placement procedure (b) Packing using the BL 
heuristic 

3   Simulated Annealing (SA) and Its Hybridization 

Simulated Annealing (SA) is a local search meta-heuristic that is applied to many 
combinatorial optimization problems such as traveling salesman problem, scheduling, 
graph partitioning, etc. It is introduced by Kirkpatrick et al. [14] as an analogy to the 
statistical mechanics of annealing in solids.  

SA differs from iterative algorithms in that it does not trap into a local optimum but 
rather reach to global optimum. This is because SA not only accepts neighborhood 
solutions better than the current solution, but also accepts neighborhood solutions 
worse than current solution with a probability. This probability which is known as 
acceptance probability is related to the temperature, which decreases during the proc-
ess. As the temperature decreases, the acceptance probability decreases, too. This 
means that as the temperature decreases, the probability of accepting worse neighbor-
hood solutions decreases. During the annealing process, the temperature decreases 
gradually. At each temperature, a predetermined number of iterations to search the 
solution space are conducted. The search terminates when the stopping criteria are met.  

In this work, the proposed recursive placement procedure (presented in Sect. 2) is 
combined with the SA algorithm in order to get hybrid-SA algorithm.  

2D SPP is modeled as a permutation problem and the SA algorithm is used to 
search better solutions among the neighbors of the current solution. The neighbor 
solutions in the algorithm are produced by the mutation operator. This operator is 
used for either enabling the rotation of an item or disabling of the rotation of an item. 
After the application of the mutation operator, the items are sorted in decreasing order 
of height. Then, the sorted list of items is sent to the recursive placement procedure 
and the “height value” as a result of the allocation of these sorted items is obtained.  

The cooling schedule for the parameters of the SA algorithm is adopted from the 
work presented by Hopper and Turton [2] in order to make a better comparison in 
between the previous algorithms and the one developed in this study. A proportional 
decrement is applied to the temperature where rate of cooling (α) is set to 0.987. 
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Different from the cooling schedule used by Hopper and Turton [2], the starting 
temperature (Tin) is set to 50 (to obtain an initial accepting probability of 80%) and 
final temperature (Tf) is set to 0.5. The number of iterations (ilmax) at each tempera-
ture is determined as 50N total moves or 5N successful moves, where N represents 
the number of items to be placed on the larger object. 

A pseudo-code is given below for the hybrid-SA algorithm in which the recursive 
placement procedure (proposed in this study) is embedded into the SA algorithm: 
 
Step 1. Generate an initial solution  

Calculate the fitness value fitness0 using the  
recursive placement procedure; 
Solution = fitness0; 

Step 2. Parameter initialization; 
2.1. Set the annealing parameters; Tin,Tf,ilmax and α.  
2.2. Read the number of items N. 

Step 3. Annealing Schedule; 
3.1. Inner loop initialization; il=0; 
3.2. At every temperature achieve equilibrium. Exe-
cute inner loop until the condition in 3.2.5 is 
met; 

3.2.1. il =il+1; 
3.2.2. Generate a neighborhood solution and 
calculate the fitness value fitnessil using 
the recursive filling procedure; 
3.2.3. ε = fitnessil - fitnessil-1; 
3.2.4. IF (ε ≤ 0) OR (Random(0,1) ≤ e(-ε/T

iter
)) 

THEN accept the new solution, Solution = fit-
nessil; 
ELSE reject the new solution, Solution = fit-
nessil-1; 
3.2.5. IF (il ≥ ilmax) or 5N successful moves 
are achieved    
THEN terminate inner loop and GOTO step 3.3 
ELSE continue inner loop and GOTO step 3.2.1 

3.3. Titer+1= α * Titer; 
3.4. IF (Titer+1 < Tf) 
THEN terminate inner loop and GOTO step 4 
ELSE continue inner loop and GOTO step 3.1 

Step 4. Terminate the best solution obtained and stop. 

4   Computational Results 

The proposed hybrid-SA algorithm is tested on 7 test problems given in [2]. The opti-
mal solutions of these problems (shown in Table 1) are known and each of the test 
problems has 3 instances which were presented in [2]. The hybrid-SA algorithm was 
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Table 1. Test problems 

Problem category Number of items Optimal height Object dimensions 
C1 16 or 17 20 20 × 20 
C2 25 15 40 × 15 
C3 28 or 29 30 60 × 30 
C4 49 60 60 × 60 
C5 72 or 73 90 60 × 90 
C6 97 120 80 × 120 
C7 196 or 197 240 160 × 240 

 
implemented in C++ language and the problems are run on a computer with 797 MHz, 
Intel Pentium III.  

For checking the performance of the proposed hybrid-SA algorithm, both average 
(of 10 simulations) and best values were recorded in this study. The computational 
results are presented in Table 2 and 3. In Table 2, the relative distance of the solution 
to the optimum height for each problem is presented.  To demonstrate the perform-
ance of the hybrid-SA algorithm, the computational results on the same test problems 
found by different researchers are also presented in the same table (Table 2). The 
 

Table 2. Computational results for the test problems (% over optimum) 

 C1 C2 C3 C4 C5 C6 C7 Avg. 

GA + BL 
 (average of 10 runs) 

6 10 8 9 11 15 21 11,43 

GA + BLF 
(average of 10 runs) 

4 7 5 3 4 4 5 4,57 

SA + BL  
(average of 10 runs) 

4 7 7 6 6 7 13 7,14 

SA + BLF 
 (average of 10 runs) 

4 6 5 3 3 3 4 4 

HR  
(single run) 

8,33 4,45 6,67 2,22 1,85 2,5 1,8 3,97 

*Hybrid-SA  
(average of 10 runs) 

1,66 4,88 4,00 3,94 3,18 3,30 3,38 3,48 

*Hybrid-SA 
(best of 10 runs) 

1,66 4,44 3,33 3,33 2,59 2,77 3,20 3,05 

Table 3. Running time for the test problems (in seconds) 

   C1 C2 C3 C4 C5 C6 C7 Average 

GA + BL  2,3 3,69 4,15 11,07 18,46 30,92 106,15 25,25 

GA + BLF  4,61 9,22 13,83 59,93 165,96 396,46 3581,97 604,57 

SA + BL 1,84 6.46 8.3 34,61 78,46 143,07 540 126,77 

SA + BLF  3,227 11,064 18,44 152,13 530,15 1761,02 19274,41 3107,2 

HR  0 0 0,03 0,14 0,69 2,21 36,07 5,59 

*Hybrid-SA  3,64 6,36 18,78 101,2 287,27 757,2 1650,6 403,57 
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results are compared with the GA with BL heuristic (GA+BL), GA with BLF heuristic 
(GA+BLF), SA with BL heuristic (SA+BL), SA with BLF heuristic (SA+BLF) reported in 
[2] and Heuristic Recursive (HR) reported in [7]. Running times (in seconds) of all the 
compared algorithms are also given in Table 3. 

For the test problems reported in [2], the hybrid-SA algorithm approached to the 
optimum values with deviations ranging from 1.66% to 4.88% with an average of 
3.48%. For the test instances C1(P1), C1(P3) and C2(P3), the hybrid-SA algorithm 
finds “optimal solutions” (notice that the values in parentheses denote “instances”). 
The packing patterns for these instances C1(P1), C1(P3), C2(P3) and C2(P2) are 
presented in Fig. 3 and Fig. 4, respectively. The line in the right of the packing pat-
terns shown in Fig. 3 and Fig. 4 shows the “optimum height”. 

When compared to the GA+BL and GA+BLF, the proposed hybrid-SA algorithm 
(except for problem C4 solved with GA+BLF) produces better results. The improve-
ment on the solution quality, as compared to GA+BL and GA+BLF, is 70% and 24%, 
respectively.  

 

Fig. 3. Optimum packing patterns for C1(P1) and C1(P3) found by hybrid-SA 

 

Fig. 4. Optimum packing pattern for C2(P3) and the best solution for C2(P2) by hybrid-SA 
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When compared to the SA+BL, the hybrid-SA packs better than SA+BL for all test 
cases. The best results obtained by the hybrid-SA are better than the SA+BLF (except 
for problem C4). The average results obtained by the hybrid-SA also outperform the 
SA+BLF for the problems C1, C2, C3 and C7. The improvement on the solution qual-
ity, as compared to the SA+BL and SA+BLF, is 51% and 13%, respectively.  

When compared to the HR algorithm, the hybrid-SA packs better for the problems 
C1, C2 and C3. As the number of rectangular items to be packed increases, the HR 
produces better results. However, the average of deviations from the optimum height 
of the proposed hybrid-SA algorithm is 12% better than that of HR algorithm. 

5   Conclusion 

A hybrid-SA algorithm for 2D packing problems is presented in this paper. A new 
recursive placement procedure is proposed and integrated with the SA algorithm. The 
proposed hybrid-SA algorithm has been tested on a number of test cases taken from 
the literature and the results are compared with those of other approaches (GA+BL, 
GA+BLF, SA+BL, SA+BLF, Heuristic Recursive).  

The computational results show that the proposed SA algorithm outperforms GA 
(GA+BL, GA+BLF). When compared to the previously proposed SA algorithms, the 
best solution and the average solution found by the hybrid-SA always outperforms 
SA+BL. The best results obtained by the hybrid-SA are better than the SA+BLF (ex-
cept for problem C4) whereas the average results obtained by the hybrid-SA outper-
form the SA+BLF for problems C1, C2, C3 and C7. 

The findings show that although simple in nature, the proposed recursive place-
ment procedure is quite effective to improve the solution quality of packing problems. 
When combined with a meta-heuristic such as SA, it is capable of producing good-
quality packing patterns. Another advantage of the proposed hybrid-SA algorithm is 
that, it provides promising results within a reasonable amount of computational time. 
The developed hybrid-SA has been also used in a furniture company with positive 
results. The future work can be done in order to improve the performance of the algo-
rithm using different operators to determine neighbor solutions especially for large-
scale problems. 
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Abstract. An algorithmic approach for handling linguistic values defined in the 
same linguistic variable is proposed. It can explicitly capture the differences of 
individuals’ subjectivity regarding linguistic values. The proposed approach can 
be employed as a useful tool for discovering hidden relationship among linguis-
tic values. Thus, it provides a basis for improving the precision of knowledge 
acquisition in handling linguistic values. We apply the proposed approach to a 
collective linguistic assessment among multiple experts.  

1   Introduction 

Linguistic assessment for selection and ranking is closely related to common facets of 
human decision making activities in practice. In an academic institution, business 
organization, awarding/rewarding/funding agencies, etc., most of the decision activi-
ties involve a process of linguistic assessments in evaluation. In reality, neither all of 
the queries nor the corresponding expert opinions are clear and unambiguous. In most 
of the cases, expert opinions rather come in linguistic forms containing a lot of sub-
jectivity, vagueness and ambiguity too. The main problem in such cases is the prob-
lem of information acquisition and modeling it properly. However, quantization of 
subjective expert opinions has not yet received considerable attention as it deserves. 
Zimmermann & Zysno [11] showed the empirical and practical relevance of the the-
ory of fuzzy sets to human decision making and developed an evaluation framework 
for ‘creditworthiness rating’ from a decision theoretic point of view. Biswas [1] intro-
duced a fuzzy evaluation method of students’ answer scripts. It did not consider how 
fuzzy mark can be generated effectively and it used also a very simplified procedure. 
Chakraborty [3] showed how an individual evaluator’s linguistic responses can quan-
titatively be structured in terms of fuzzy sets and thus aggregated and compared  
towards making a decision. However, it has no mechanism for representing the 
knowledge of multiple experts. 

Representation of the knowledge of multiple experts has long been a goal in expert 
systems development. The experts express most of their judgements by using linguis-
tic terms drawn from different scales. Therefore, each one can express his/her prefer-
ences by means of linguistic terms assessed in linguistic terms sets with different 
granularity of uncertainty and/or semantics [6]. In this respect, we need a new tool for 
handling the uncertainty, vagueness and imprecision in linguistic assessments among 
multiple experts. In this connection, we propose an algorithmic approach for handling 
adjacent linguistic values defined in the same linguistic variable. For example, ‘good’ 
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and ‘very good’ in an evaluation, ‘long’ and ‘very long’ in hair length, or ‘medium’ 
and ‘large’ in size, etc., are generally adjacent linguistic values. The proposed ap-
proach can be used to capture the explicit relationship between adjacent linguistic 
values. In the proposed approach, the explicit relationship between adjacent linguistic 
values is achieved by using parameters. Since the proposed approach can be used to 
find explicitly the differences in linguistic assessments among multiple experts, it 
reduces vagueness (i.e., unsharp boundary) and ambiguity (i.e., multiplicity of mean-
ing) in linguistic assessments among multiple experts, and also enables us to reach a 
collective linguistic assessment by adjusting the values of parameters. Thus, it pro-
vides a basis for improving the precision of knowledge acquisition in handling lin-
guistic values. 

2   An Algorithmic Approach for Handling Linguistic Values 

Based on their behavioral experiment, Zwick et al [12] recommended the five good 
distance measures, i.e., S4, q∞, q*, Δ∞, Δ*, between fuzzy subset A and B of a universe 
of discourse U. We note that the five good distance measures concentrate their atten-
tion on a single value rather than performing some sort of averaging or integration. In 
the case of S4, attention focuses on the particular x-value where the membership func-
tion of A ∩ B is largest; in q∞ and Δ∞, attention focuses on the α-level set where the 
x-distance is largest; in q* and Δ*, attention focuses on the x-distance at the highest 
membership grade. Considering the result of their behavioral experiment, we know 
that the reduction of complicated membership functions to a single ‘slice’ may be the 
intuitively natural way for human beings to combine and process fuzzy concepts. 
Moreover, we know that the relationship between two fuzzy subsets can be efficiently 
represented by a limited number of features. From these ideas, we propose an algo-
rithmic approach for handling linguistic values (fuzzy subsets).  

Zadeh [10] described that granulation of an object A leads to a collection of gran-
ules of A, with a granule being a clump of points (objects) drawn together by in-
distinguishability, similarity or functionality. Granulation involves decomposition of 
whole into parts. Modes of information granulation in which the granules are crisp 
play important roles in a wide variety of methods, approaches and techniques. Impor-
tant though it is, crisp information granulation has a major blind spot. More specifi-
cally, it fails to reflect the fact that in much, perhaps most, of human reasoning and 
concept formation the granules are fuzzy rather than crisp. In the case of a human 
body, for example, the granules are fuzzy in the sense that the boundaries of the head, 
neck, arms, legs, etc., are not sharply defined. Furthermore, the granules are associ-
ated with fuzzy attributes, e.g., length, color, and texture in the case of hair. In turn, 
granule attributes have fuzzy values, e.g., in the case of the fuzzy attribute length 
(hair), the fuzzy values might be ‘short’, ‘long’, ‘very long’, etc. The fuzziness of 
granules, their attributes and their values is characteristic of the ways in which human 
concepts are formed, organized and manipulated. Fuzzy set may be used to design 
intelligent systems on the basis of knowledge expressed in natural language. Many 
aspects of different activities in the real world can not be assessed in a quantitative 
form, but rather in a qualitative one (i.e., with vague or imprecise knowledge). In 
these cases, a better approach may be to use linguistic assessments instead of  
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numerical values. The fuzzy linguistic approach represents qualitative aspects as lin-
guistic values by means of linguistic variables [9]. Fuzzy sets are a means for mathe-
matical modeling of natural language semantics. The linguistic values (terms) can be 
represented by membership functions. The fuzzy linguistic approach has been suc-
cessfully applied to different areas such as decision making [5], information retrieval 
[2], cognition [4, 7], aggregation [8], etc. 

    The experts express most of their judgements by using linguistic terms drawn 
from different scales. Therefore, each one can express his/her preferences by means of 
linguistic terms assessed in linguistic terms sets with different granularity of uncer-
tainty and/or semantics [6]. In this respect, we need a new tool for handling the uncer-
tainty, vagueness and imprecision in linguistic assessments among multiple experts. 
In this connection, we propose an algorithmic approach for handling adjacent linguis-
tic values defined in the same linguistic variable. It can easily capture the explicit 
relationship between adjacent linguistic values.  

                                                                                            Vi+1 of LVi+1

                                                                                             (= τi+k[(Vi+1-τi)/k]) 
                                                                                                  :
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                                                                                                             :
                                                                                            τi+2[(Vi+1-τi)/k]
                                                                                                      τi+[(Vi+1-τi)/k]
                                                                                                      Threshold (τi ) 
                                                                                            τi-|-1| [(τi-Vi)/k]
                                                                                            τi-|-2| [(τi-Vi)/k]
                                                                                                            :
                                                                                                                      τi-|p|[(τi-Vi)/k] 
                                                                                                 :
                                                                                            Vi of LVi  
                                                                                            (=τi-|-k|[(τi-Vi)/k])
                                                                                         
                                                                                                       Parameter (p) 
|-k|ε ………… |p|ε  ………… |-2|ε     |-1|ε    0        ε     2ε    …………    pε     …………        kε
                             Degree of membership to LVi or LVi+1

D
egrees of a granule 

 

Fig. 1. Handling adjacent linguistic values 

In Fig. 1, let LVi and LVi+1 denote adjacent linguistic values. For example, two lin-
guistic values ‘good’ (LVi) and ‘very good’ (LVi+1) in an evaluation are generally 
adjacent linguistic values. We assume that the values Vi and Vi+1 are included in the 
kernel (or the full membership) of fuzzy subsets for adjacent linguistic values LVi and 

LVi+1, respectively. Threshold (τi) (an interval [Ii, Ii+1], where Ii ≤ Ii+1) may be re-
garded as a non-deterministic region between LVi and LVi+1. We note that the fuzzier 
the information regarding a linguistic assessment, the larger the interval [Ii, Ii+1]. The 
values of Vi, Vi+1, Ii, and Ii+1 are differently determined depending on individuals’ 
subjectivity with respect to the adjacent linguistic values. 
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Remark 1. In Fig. 1, the ε divides the interval [-1, 1] into  [-kε (= -1), …, -2ε, -ε, 0, ε, 
2ε, …, kε (=1)], where 0 < ε  ≤ 1, and k = (1/ε). For instance, the relationship between 
k and ε is determined by using the formula : k = 10n , if  ε = 10−n, n is a positive  
integer. 
 
Remark 2. In Fig. 1, the interval [Vi, Vi+1] is divided into (2k+1) levels as follows : 
τi-k[(τi-Vi)/k] (=Vi), τi-(k-1)[(τi-Vi)/k], …, τi-2[(τi-Vi)/k], τi-[(τi-Vi)/k], τi, τi+[(Vi+1-
τi)/k], τi+2[(Vi+1-τi)/k], …, τi+(k-1)[(Vi+1-τi)/k], τi+k[(Vi+1-τi)/k]) (=Vi+1). We assume 
that a given granule (gi) is located between Vi and Vi+1, (i.e., Vi ≤ gi ≤ Vi+1). It should 
be noted that linguistic values are largely divided into two types of linguistic values, 
i.e., monotonically nondecreasing linguistic values or monotonically nonincreasing 
linguistic values. Monotonically nondecreasing linguistic values have a property that 
they converge to the Vi+1 as a given granule (gi) increases, as shown in Fig. 1. On the 
contrary, monotonically nonincreasing linguistic values have a property that they 
converge to the Vi as a given granule (gi) increases. More specifically, for monotoni-
cally nondecreasing linguistic values, consider a linguistic variable ‘popularity’ on 
national parks. We assumed that it is linguistically assessed based on the number of 
visitors. Let LVi and LVi+1 denote adjacent linguistic values ‘popular’ and ‘very popu-
lar’ and let their values Vi and Vi+1 be the number of visitors, respectively. Then it 
converges to the Vi+1 as a given granule (gi) increases. In this case, the given granule 
(gi) is the number of visitors. On the contrary, for monotonically nonincreasing lin-
guistic values, let LVi and LVi+1 denote adjacent linguistic values ‘unpopular’ and 
‘very unpopular’ and let their values Vi and Vi+1 be the number of visitors, respec-
tively. Then it converges to the Vi as a given granule (gi) increases. In this paper, we 
will consider monotonically nondecreasing linguistic values such as ‘popular’, ‘big’, 
etc., as in Fig. 1. Monotonically nonincreasing linguistic values such as ‘unpopular’, 
‘small’, etc., can be handled in the reverse way. 
 
Remark 3. In Fig. 1, the degree of granule per level to the linguistic value LVi (Ddgl) 
is [(τi-Vi)/k], and the degree of granule per level to the linguistic value LVi+1 (Udgl) is 
[(Vi+1-τi)/k]. 
 
Remark 4. The connecting parameter, p, representing the relationship between a 
given granule (gi) and a degree of membership to a linguistic value, is computed as 
follows :  (i) when a given granule (gi) > threshold (τi) (i.e., upward granularity to a 
linguistic value LVi+1 occurs), p = (gi-τi)/(Udgl), or (ii) when a given granule (gi) < 
threshold (τi) (i.e., downward granularity to a linguistic value LVi occurs), p = (gi-
τi)/(Ddgl), where Vi ≤ gi ≤ Vi+1. 
 
Definition 1. Based on Remarks 1-4, degrees of a granule (i.e., perceptions of dis-
tance, size, color, speed, etc.) can be parameterized with (2k+1) levels. 
  Case 1 : Upward granularity (Ug) to a linguistic value LVi+1 occurs when a given 
granule (gi) > threshold (τi). Upward granularity can be parameterized with k levels, 
where 0 < p ≤ k. (k levels occur) 
  Case 2 : A non-deterministic situation occurs when a given granule (gi) = threshold 
(τi). In this case, p = 0, (i.e., threshold (τi) in Fig. 1). (1 level occurs) 
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  Case 3 : Downward granularity (Dg)  to a linguistic value LVi occurs when a given 
granule (gi) < threshold (τi). Downward granularity can be parameterized with k lev-
els, where -k ≤ p < 0. (k levels occur) 
 
Definition 2. Upward granularity to a linguistic value LVi+1 (i.e., τi+p(Udgl)) and 
downward granularity to a linguistic value LVi (i.e., τi-⏐p⏐(Ddgl)) indicate the percep-
tion on a given granule (gi). In Fig. 1, we note that the parameter, p, may be regarded 
as a connecting link between a given granule and a degree of membership to a linguis-
tic value. The parameter, p, is a real number in [-k, k], where k is the number of levels 
to the values Vi or Vi+1 which is included in the kernel of fuzzy subsets for adjacent 
linguistic values LVi or LVi+1, respectively. The degree of membership to a linguistic 
value LVi or LVi+1 is determined according to the value of the connecting parameter p. 
That is, the degree of membership to a linguistic value LVi or LVi+1 at the downward 
granularity (i.e., τi-⏐p⏐(Ddgl)) or upward granularity (i.e., τi+p(Udgl)) is ⏐p⏐ε or pε, 
respectively, as in Fig. 1. 
    Zadeh [10] described that the effectiveness and successes of fuzzy logic in dealing 
with real-world problems rest in large measure on the use of the machinery of fuzzy 
information granulation. In this connection, what should be underscored is that when 
we talk about fuzzy information granulation we are not talking about a single fuzzy 
granule; we are talking about a collection of fuzzy granules which result from granu-
lating a crisp or fuzzy object. One of the most basic facets of human cognition relates 
to the perception of dependencies and relations. In this perspective, we develop an 
algorithmic approach representing the relationship between adjacent linguistic values. 
Based on Remarks 1-4, Definitions 1-2, the proposed approach is executed by the 
following algorithm : 
 
Algorithm 1 
/* Let kε = 1, where 0 < ε ≤ 1 (see Remark 1). The parameter, p, is a connecting pa-
rameter between a given granule and a degree of membership to a linguistic value, 
and it is a real number in [-k, k]. */ 
Step 1 : Get a given granule (gi). 
Step 2 : Determine the adjacent linguistic values (i.e., LVi , LVi+1), where Vi≤gi≤ Vi+1. 
Step 3 : Determine the classification parameters (i.e., Vi, Vi+1, τi). 
Step 4 : Determine the preciseness parameter (i.e., ε). 
Step 5 : Compare a given granule (gi) with threshold (τi). 
  Case gi > τi  : /* Upward granularity to a linguistic value LVi+1 occurs */ 
   • Compute upward degree of granule per level (Udgl) to the linguistic value LVi+1 : 
Udgl = [(Vi+1-τi)/k] (see Remark 3).  
   • Compute the connecting parameter (p) : p = (gi-τi)/(Udgl).  
   • Determine upward granularity(Ug) to a linguistic value LVi+1:Ug=τi+p(Udgl). 
   • Determine a degree of membership to a linguistic value LVi+1 at Ug:μLVi+1(Ug)=pε. 
  Case gi = τi  : Non-deterministic situation occurs, (i.e., the threshold (τi) in Fig. 1). 
Let p = 0. In this case, a given granule is linguistically assessed as ‘between LVi and 
LVi+1’. 
  Case gi < τi  : /* Downward granularity to a linguistic value LVi occurs */ 
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   • Compute downward degree of granule per level (Ddgl) to the linguistic value LVi : 
Ddgl  = [(τi-Vi)/k] (see Remark 3). 
   • Compute the connecting parameter (p) : p = (gi-τi)/(Ddgl). 
   • Determine downward granularity(Dg) to a linguistic value LVi : Dg=τi-⏐p⏐(Ddgl). 
   • Determine a degree of membership to a linguistic value LVi at Dg:μLVi (Dg)=⏐p⏐ε. 
 

The proposed approach shows the following properties : First, monotonicity is gen-
erally comfortable to human reasoning and concept formation. The proposed ap-
proach is designed based on the monotonicity as shown in Fig. 1 and Algorithm 1. 
Second, the proposed approach can be used to capture the explicit relationship be-
tween adjacent linguistic values. Third, degree of membership to a linguistic value is, 
monotonically and adaptively, changed according to a degree of granule. In addition, 
it converges to the full membership of the linguistic values LVi or LVi+1 as a given 
granule (gi) decreases or increases, respectively. Fourth, we can change the number of 
levels to the linguistic values LVi or LVi+1 by adjusting the value of preciseness pa-
rameter ε, where 0 < ε ≤ 1. Fifth, if we use a very small ε value (i.e., ε → 0), we can 
handle the continuous granularity. Thus, the proposed approach can be used both a 
crisp object (discrete granularity) and fuzzy object (continuous granularity). For ex-
ample, the number of apples, the number of visitors, etc., are discrete granularity, 
whereas color of hair, driving a car, etc., are continuous granularity. Sixth, the pro-
posed approach can be similarly extended to multiple linguistic values defined in the 
same linguistic variable. That is, if we define the multiple values of classification 
parameters (i.e., Vi, Vi+1 and τi) and preciseness parameter εi, where 1 ≤ i ≤ n-1, re-
garding the multiple linguistic values (i.e., LV1, LV2,  …, LVn-1, LVn), the linguistic 
assessment with a degree of membership to a linguistic value can be systematically 
computed according to a given granule. It is a further step toward an automatic per-
ception handling. We summarize the differences between the proposed approach and 
existing approaches in Table 1. 

Table 1. Comparisons between the proposed approach and existing approaches 

Attributes                                    The proposed approach     Existing approaches 
Handling linguistic values           Algorithmic                      Ad-hoc 
A degree of membership              Granulation                      Ad-hoc 
Automatic perception handling    Easy                                 Difficult

 

3   Collective Linguistic Assessment Among Multiple Experts 

Representation of the knowledge of multiple experts has long been a goal in expert 
systems development [4]. As aforementioned, the proposed approach can be used to 
capture the explicit relationship between adjacent linguistic values. In the proposed 
approach, the explicit relationship between adjacent linguistic values is achieved by 
using parameters. In Fig. 1, using the values of classification parameters (i.e., Vi, Vi+1 

and τi) and preciseness parameter ε, we can explicitly represent the relationship be-
tween adjacent linguistic values. In this respect, the proposed approach can be  
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employed as a useful tool for discovering hidden relationship between adjacent lin-
guistic values. Using the proposed approach, we can explicitly capture the differences 
of individuals’ subjectivity with respect to the adjacent linguistic values. In this con-
nection, the proposed approach can be used to find explicitly the differences in lin-
guistic assessments among multiple experts, thus, ensuring that all are speaking ‘the 
same language’. Thus, it enables us to reach a collective linguistic assessment by 
adjusting the values of parameters (i.e., Vi, Vi+1, τi, and ε). In Fig. 2 (see Appendix), 
we show the procedure for the collective linguistic assessment among multiple  
experts. 
 
Example 1. Consider a linguistic variable ‘popularity’ on national parks. We assumed 
that it is linguistically assessed based on the number of visitors. Let a given granule 
(gi) be 8630 visitors/day. If the given granule is determined between ‘popular’ and 
‘very popular’ by multiple experts, in this case, adjacent linguistic values LVi and 
LVi+1 become ‘popular’ and ‘very popular’, respectively. Assume that the classifica-
tion parameters Vi, Vi+1, and threshold (τi) are determined by multiple experts, as 
7,000/day, 10,000/day and [Ii, Ii+1] = [8400, 8600], respectively. If we apply ε = 10−2 

to the proposed approach, then k = 102 as in Remark 1. In this case, since the given 
granule (i.e., 8630) is greater than threshold (τi), (i.e., 8600), where τi = Ii+1, upward 
granularity is occurred. The degree of granule per level to the linguistic value LVi+1 

becomes (Vi+1-τi)/k = (10000-8600)/102 = 14. Now, compute the connecting parame-
ter p = [gi-τi]/[(Vi+1-τi)/k] = [8630-8600]/[(10000-8600)/102] = 30/14 ≅ 2.14. In this 
case, the given granule (gi) is located between level 2 (i.e., 8628) and level 3 (i.e., 
8642). As a result, a degree of membership to LVi+1 (i.e., ‘very popular’) becomes pε 
= 2.14 (10−2) = 2.14/100. Similarly, if the given granule (gi) is 8370, downward 
granularity is occurred because the given granule (i.e., 8370) is less than threshold 
(τi), (i.e., 8400), where τi = Ii. Compute the connecting parameter p = [gi-τi]/[(τi-Vi)/k] 
= [8370-8400]/[(8400-7000)/102] = -30/14 ≅ -2.14. As a result, a degree of member-
ship to LVi (i.e., ‘popular’) becomes ⏐p⏐ε = 2.14 (10−2) = 2.14/100. 
 
In Example 1, if we use a smaller ε value, we can obtain a more sophisticated collec-
tive linguistic assessment among multiple experts.  

4   Conclusion 

Based on the behavioral experiment by Zwick et al [12], an algorithmic approach for 
handling linguistic values is proposed. The proposed approach may be employed as a 
useful tool for discovering hidden relationship between linguistic values. In this con-
nection, it enables us to reach a collective linguistic assessment among multiple ex-
perts. It provides a basis for improving the precision of knowledge acquisition in 
handling linguistic values.  

In the meantime, we show that the degree of membership to a linguistic value is, 
monotonically and adaptively, changed according to a degree of granule. We also 
show that the linguistic assessment with a degree of membership to a linguistic value 
can be systematically computed according to a given granule. It is a further step to-
ward an automatic perception handling. 
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Appendix  

A given granule (gi)

                                                                         gi ? τi

                                                                            
                                                                                 = 

                                                                          Thd 

                                                                            

            * Thd (Threshold) : it is linguistically assessed as ‘between LVi and LVi+1’.  

• Compare linguistic assessments among multiple experts by using individuals’ 
classification parameters (Vi, Vi+1, τi) on a given granule (gi).  
•  Find (LVi, LVi+1) by multiple experts. 

Determine the classification parameters (Vi, Vi+1, τi) by multiple experts.

Determine the preciseness parameter εi (0<εi≤1) associated with k defined in 
Remark 1. 

Compute upward degree of granule 
per level (Udgl) = [(Vi+1 - τi)/k]. 

   >   <

Compute downward degree of gran-
ule per level (Ddgl)=[(τi - Vi)/k]. 

Compute the connecting parameter 
(p) : p = (gi - τi)/(Udgl). 

Compute the connecting parameter 
(p) : p = (gi - τi)/(Ddgl). 

Collective linguistic assessment : 
LVi with a degree of membership⏐p⏐εi

Collective linguistic assessment : 
LVi+1 with a degree of membership pεi

 

Fig. 2. Collective linguistic assessment among multiple experts 
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Abstract. To improve the safety of drivers and walkers in a city, several
traffic monitors are usually set on lanes. These traffic monitors can also
improve the security of communities. In this paper, we integrate the so-
called linear/circular consecutive-k-out-of-n:F systems into our proposed
traffic-monitor system. The objective is to find the optimal design of
monitors under limited budget for the system. The main purposes of this
paper are : (1) to propose a new traffic-monitor system, (2) to present an
immune algorithm (IA) for the optimal design of traffic monitors, and
(3) to report numerical results of various parameters by the proposed
algorithm. It is shown that the proposed immune algorithm performs
well for all test problems.

1 Introduction

With the increase of cars and walkers, traffic monitors are usually set on specific
heavy-traffic lanes and circles to enhance the safety of drivers and walkers. Mon-
itors are operative 24 hours per day. The films by the monitors would be useful
to judge the responsibility of drivers and walkers for insurance companies and
to improve the security of communities. For a specific lane L, there are usually
several monitors set in equal distance as those of Fig 1.

In Fig 1, there are n traffic monitors and each monitor can film equal width on
lane L. Monitors 1 and 2 are responsible for line segment [a,b] simultaneously, and
this line segment fails if and only if both monitors 1 and 2 are failed. Similarly,
line segment [b,c] fails if and only if both monitors 2 and 3 are failed,. Thus, the
failure reliability of traffic-monitor system for lane L is defined as the probability
that there is one or more line segments failed.

Note that the traffic-monitor system in Fig 1 is a so-called consecutive-2-
out-of-n:F system (or C(2,n:F) system), in which there are n linearly connected

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 526–535, 2007.
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Fig. 1. Linear lane with n traffic monitors

components, and it fails if and only if there are consecutive 2 or more than 2
components failed. The general C(k,n:F) system consists of n linearly connected
components, and it fails if and only if there are consecutive k or more than k
components failed (Fig 2). Such a C(k,n:F) system has caught much attention
since 1980 due to the followings (Chao et al. (1995)).

(1)C(k,n:F) system usually has much higher probability than the series sys-
tems.

(2)C(k,n:F) system is less expensive than the parallel systems.
Since 1980, much research has been devoted to the derivation of exact for-

mulae for the reliability of C(k,n:F) system. In the early years, most of the
proposed formulae were based upon the recursive equations and assumed that
all the components are independent and have the same probability. In 1984,
Chao and Lin (1984) first observed that the general C(k,n:F) system can be
imbedded in a Markov chain with 2k states. However, only systems with small
k can be manipulated. Later, Fu (1986) successfully reduced the Markov chain
into k+1 states and considerably simplified the probability structure of C(k,n:F)
system.

Fig. 2. Linear C(k,n:F) system

The circular C(k,n:F) system is similar to linear C(k,n:F) system. The system
consists of n components in a circle and it fails if and only if there are consecutive
k or more than k components failed. For example, the system in Fig 3 is a circular
C(2,8:F) system (i.e., k=2), and if both components 1 and 2 are failed will lead
to system failure.

In this paper, we will combine the linear and circular C(k,n:F) systems into
a traffic-monitor system, in which the typical C(k,n:F) system systems are spe-
cial cases of the proposed system. Additionally, we will investigate the optimal
design of the traffic-monitor system whose objective is to minimize the system
failure reliability subject to the budget constraint. In this paper, a new immune
algorithm is presented to solve such optimization problems. Numerical results of
various combinations of parameters are reported and discussed.
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Fig. 3. Circular C(2,8:F) system

2 The New Proposed Traffic-Monitor Systems

For convenience, we consider the following general traffic-monitor system in Fig 4
as an example. Fig 4(a) shows the traffic lanes and a circle (from A to P ) in a
city, and Fig 4(b) shows the 16 possible locations for traffic monitors. Monitors
1 and 2 are responsible for lane A, monitors 2 and 3 are responsible for lane
B, and monitors 3 and 6 are responsible for lane E etc. Note that when both
monitors 1 and 2 are failed, lane A cannot be monitored and it is defined to be
failed.

Similarly, lane B is failed if and only if monitors 2 and 3 are failed. There-
fore, there are 16 minimal cuts for the system, namely, CA={1,2}, CB={2,3},
CC={2,4}, CD={2,5}, CE={3,6}, CF ={6,7}, CG={6,11}, CH={7,8}, CI={7,9},
CJ={9,10}, CK={9,14}, CL={10,11}, CM={10,13}, CN={11,12}, CO={14,15}
and CP ={14,16}. The traffic-monitor system fails if and only if there is one or
more minimal cuts of monitors failed.

Suppose that for each possible location, we have four types of monitors to
choose, namely, 3 (high quality), 2 (medium quality), 1 (low quality), 0 (no
monitor). The higher quality of monitor will have higher reliability and higher
cost. Therefore, the optimal design problem is to find the optimal assignments
of monitors for these 16 possible locations, and there are 416 (=4.29×109) com-
binations for this example.

Note that:
1.The traffic-monitor system contains both linear C(k,n:F) system and circu-

lar C(k,n:F) system.
2.The well known recursive methods for system reliability of the typical linear

C(k,n:F) system and circular C(k,n:F) system can not be used for the new
proposed traffic-monitor system.

2.1 System Reliability of Traffic-Monitor System

Suppose that C1, C2, C3, . . . , Cs are s minimal cuts for a specific traffic-monitor
system. The reliability of the system can be obtained by the inclusion-exclusion
principle as:
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Fig. 4. The general traffic-monitor system

Rsys = 1 − P (C1 ∪ C2 ∪ ... ∪ Cs)

= 1 −
{∑

i

P (Ci) −
∑
i<j

P (CiCj) +
∑

i<j<k

P (CiCjCk) − ...

+(−1)(s+1)P (C1C2...Cs)

}
(1)

Note that there are 2s terms in (1) and it is time consuming to compute Rsys

when s is larger. In this paper, we will use the following disjoint-subset method
to compute the system reliability Rsys=1-P (C1 ∪ C2 ∪ ... ∪ Cs). Consider the
following terms.

P (C1) (2)
P (C2) − P (C2C1) (3)
P (C3) − P (C3(C2 ∪ C1))... (4)
P (Cs) − P (Cs(C1 ∪ C2... ∪ Cs−1)) (5)

Thus P (C1 ∪ C2 ∪ ... ∪ Cs) is the sum of terms from (2) to (5). There are
several advantages for this disjoint-subset method.

1.The method may cancel redundant terms in advance.
2.The method is more “efficient” than inclusion-exclusion principle in compu-

tational complexity (Hsieh (2006)).
3.The method is more “flexible” than inclusion-exclusion principle (Hsieh

(2006)). For example, if we add a new minimal cut Cs+1 into the s minimal
cuts, this disjoint-subset method only has to compute:

P (Cs+1) − P (Cs+1(C1 ∪ C2... ∪ Cs)) (6)

and P (C1 ∪ C2 ∪ ... ∪ Cs+1) is the sum of terms from (2) to (6).

2.2 Optimization of Design

In the past decades, the design of systems/components is always one of the main
issues of research (Kuo and Prasad (2000)). As known, the optimal design of typ-
ical C(k,n:F) system has been investigated by several researchers. For example,
Bai et al (1991), Du and Hwang (1990), Zuo and Kuo (1990) etc. However, only
linear or circular C(k,n:F) systems were studied separately. Interested readers
are referred to the excellent survey paper by Kuo and Prasad (2000).
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Next, we will define the optimal design problems and notations for our pro-
posed traffic-monitor system. Note that:(i) our traffic-monitor system contains
linear and circular C(k,n:F) systems simultaneously, and (ii) there are multiple
types of monitors in our traffic-monitor system.

Assumptions.
1. There are two possible states for the system, i.e., failed and operative.
2. Monitor i has ti types, {0,1,. . . ,ti-1}, where 0 denotes no monitor, 1≤ i ≤ n.
3. The reliabilities and costs of monitors are known.
4. All monitors in the system are independent.
5. Any failure of minimal cut of monitors will incur the system failure.
Notations.
S:the monitor assignment set.
n:the number of locations of monitors in the system.
pij :the reliability of monitor i under type j, 1≤ i ≤ n, j ∈ Ti={0,1,. . . ,ti-1}.
cij :the cost of monitor i under type j, 1≤ i ≤ n, j ∈ Ti={0,1,. . . ,ti-1}.
B:the total budget.
PF (S):the system failure probability under S.
The nonlinear mathematical programming for the design problem is:

min
S∈Ω

PF (S) (7)

st
∑

i∈S

∑

j∈Ti

cij ≤ B, 0 ≤ PF (S) ≤ 1 (8)

where the objective is to minimize the system failure probability PF (S) subject
to the budget constraint.

Since the typical maintenance problem for linear C(k,n:F) system is a NP
hard problem (Flynn and Chung (2002, 2004)), clearly this proposed optimal
design problem for traffic-monitor system is also a NP hard problem. As known,
Branch-and-Bound Method can be used to solve the proposed problem. How-
ever, it is both time and memory consuming especially when the problem size
is larger (Flynn and Chung (2002)). Heuristics can be also developed to solve
the proposed design problems. However, no optimal solution is guaranteed and
it usually converges to local optimal solutions even for small problems (Flynn
and Chung (2004)). Additionally, Enumeration Method and Genetic Algorithm
can be used to solve the proposed problem. But the drawbacks of Enumera-
tion Method are similar to those of Branch-and-Bound Method. In addition,
Genetic Algorithm is sometimes very sensitive to the settings of corresponding
parameters and then converges to local optimal solutions.

3 Immune Algorithm

The natural immune system of all animals is a very complex system for defense
against pathogenic organisms. A two-tier line of defense is in the system in-
cluding the innate immune system and the adaptive immune system. The basic
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components are lymphocytes and antibodies (Farmer (1986)). The cells of the
innate immune system are immediately available to combat against a wide va-
riety of antigen without previous exposure to them. The antibody production
in response to a determined infectious agent (antigen) is the adaptive immune
response mediated by lymphocytes which are responsible for recognition and
elimination of the pathogenic agents (De Castro and Timmis (2002)). The cells
in the adaptive system are able to develop an immune memory so that they
can recognize the same antigenic stimulus when it is presented to the organism
again. Also, all the antibodies are produced only in response to specific infec-
tions. There are two main types of lymphocytes: B-lymphocytes (B-cells) and
T-lymphocytes (C-cells). B-cells and T-cells carry surface receptor molecules ca-
pable of recognizing antigens. The B-cells produced by the bone marrow show a
distinct chemical structure and can be programmed to make only one antibody
that is placed on the outer surface of the lymphocyte to act as a receptor. The
antigens will only bind to these receptors with which it makes a good fit (Huang
(1999)).

To distinguish and eliminate the intruders of the organism is the main task of
the immune system so that it must has the capability of self/nonself discrimina-
tion. As mentioned previously, various antibodies can be produced and then can
recognize the specific antigens. The portion of antigen recognized by antibody is
called epitope which acts as an antigen determinant. Every type of antibody has
its own specific antigen determinant which is called idiotope. Moreover, in order
to produce enough specific effector cells to against an infection, and activated
lymphocyte has to proliferate and then differentiate into these effector cells. This
process is called clonal selection (Weissman and Cooper (1993)) and followed by
the genetic operations such that a large clone of plasma cell is formed. Therefore,
the antibodies can be secreted and ready to bind antigens. According to above
facts, Jerne (1973) proposed an idio-type network hypothesis which is based
on the clonal selection theory. In his hypothesis, some types of recognizing sets
are activated by some antigens and produce an antibody which will then acti-
vate other types of recognizing sets. By this way, the activation is propagated
through entire network of recognizing sets via antigen-antibody reactions. It is
noted that the antigen identification is not done by a single or multiple recog-
nizing sets but by antigen-antibody interactions. The more details are referred
to Huang (1999, 2000). From this point of view, for solving the combinatory
optimization problems, the antibody and antigen can be looked as the solution
and objection function respectively.

3.1 The Procedure of Immune Algorithm

The steps of proposed immune algorithm are as follows:

Step 1. Generate an initial population of strings (antibodies) randomly.
Step 2. Evaluate each individual in current population and calculate the cor-

responding fitness value for each individual.
Step 3. Select the best n individuals with highest fitness values.
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Step 4. Clone the best n individuals (antibodies) selected in Step 3. Note that
the clone size for each select individual is an increasing function of the
affinity with the antigen.

Step 5. The set of the clones in Step 4 will suffer the genetic operation process,
i.e., crossover and mutation (Michalewicz (1994)).

Step 6. Calculate the new fitness values of these new individuals (antibodies)
from Step 5. Select those individuals who are superior to the individ-
uals in the memory set, and then the superior individuals replace the
inferior individuals in the memory set. While the memory set is up-
dated, the individuals will be eliminated while their structures are too
similar.

Step 7. Check the stopping criterion, if not stop then go to Step 2. Otherwise
go to next step.

Step 8. Stop. The optimal or near optimal solution(s) can be obtained from
the memory set.

3.2 The Representation Mechanism

In our implementation, the integer solutions are represented by strings of binary
digits. Each string consisting of substring denotes the types of monitors. In
the above procedures, the clonal selection and affinity maturation processes are
described in details by De Castro and Von Zuben (2000). The stopping criterion
is the maximum iterations in this article.

Because of the soul of diversity in the IAs, the quality of solutions in the
feasible space can be better guaranteed and obtained. So, a suppression process
(diversity embodiment) is needed and shown on the Step 6 in the proposed IAs
procedure. In this study, for each antibody represented by a binary string can
be translated into an integer string which illustrates the types of monitors. The
diversity in each pair of antibody i (Abi) and antibody j (Abj) can be evaluated
by calculating their affinity (fij) by following way:

fij = ||Abi − Abj || . (9)

While the affinity between each pair of antibodies in memory is obtained, the
antibodies will be eliminated if the affinity is less than the predefined threshold.
So, the diversity of the antibodies in memory is embodied.

4 Numerical Results and Discussions

To test the proposed immune algorithm for the traffic-monitor system, we set
Ti={0,1,2,3} for all i and let:

(1)The available budgets B are various from 200 to 800.
(2)Case I:(medium quality of monitors) pi0=0, pi1=0.85, pi2=0.90, pi3=0.95,

ci0=0, ci1=10, ci2=20, and ci3=60.
(3)Case II:(high quality of monitors) pi0=0, pi1=0.90, pi2=0.95, pi3=0.98,

ci0=0, ci1=10, ci2=20, and ci3=60.
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Table 1. Numerical results of top-3 solutions for system in Fig 4

Fig. 5. Optimal reliabilities of traffic-monitor system for test problems of Case I and
Case II under various budgets

All results are reported in Table 1 and Fig 5. The programs are coded in C++
and computed by Pentium IV 2.8 GHz PC. From Table 1 and Fig 5, we have:

(1) The CPU time is stable for the immune algorithm. For all cases, it requires
less than 2400 sec even the possible combinations is more than 4.29×109 for
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each test problem. Especially, the immune algorithm converges after about 46
iterations (mean iteration for all test cases).

(2) The presented immune algorithm can obtain multiple optimal solutions
for all test problems. For example, for B=300 the top-3 system reliabilities are
0.868353, 0.868344 and 0.868097 for Case I.

(3) Fig 5 shows that the optimal solutions tend to use higher levels of monitors
with the increase of budgets.

5 Conclusions

In this paper, (i) we have proposed a practical traffic-monitor system which
integrates both typical linear C(k,n:F) system and circular C(k,n:F) system,
(ii) we have investigated the optimal design of monitors for the traffic-monitor
system whose objective function is to minimize the system failure reliability
subject to available budget. A new immune algorithm has been proposed to
solve such a problem. Numerical results have shown that the presented immune
algorithm performs well for all test problems.
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Abstract. In wireless sensor networks where sensors are geographically de-
ployed in 3D spaces, a mobile robot is required to travel to each sensor in order 
to download the data. The effective communication ranges of sensors are repre-
sented by spheres with varying diameters. The task of finding the shortest trav-
elling path in this scenario can be regarded as an instance of a class of problems 
called Travelling Salesman Problem with Neighbourhoods (TSPN), which is 
known to be NP-hard. In this paper, we propose a novel approach to this prob-
lem using Estimation of Distribution Algorithms (EDAs), which can produce 
significantly improved results compared to an approximation algorithm.  

1   Introduction 

In wireless sensor networks where sensors are geographically deployed in 3D spaces 
(e.g., at different depths below the sea surface), it may not be practical to require sen-
sors to directly coordinate with each other to form a communication network to trans-
fer the data back to the server. A mobile robot is needed in this situation to travel to 
all sensors to collect the data and come back to its starting location. In order to com-
municate with each sensor, the robot must be physically within its effective range, 
which is specified by a sphere. The diameter of the sphere is determined by the cur-
rent battery level of the sensor and is likely to be different among sensors. The opti-
mization problem in this scenario is to design a path for the robot so that it can collect 
the data from all sensors while the overall travelling distance is minimized. 

In its generic form, this routing problem can be regarded as an instance of a class 
of problems known as the Travelling Salesman Problem with Neighbourhoods 
(TSPN) [1] where the neighbourhoods are disjoint spheres. In TSPN, a salesman 
needs to delivery products to a group of clients living in different places. Instead of 
waiting at home, each client is willing to meet the salesman within a certain region 
near their houses. The objective here is to find the shortest trip along which the 
salesman can meet all clients and come back to the starting location. It is easy to see 
that TSPN is a generalization of TSP, which is known to be NP-hard [10].  

Depending on the properties and the connectivity of the regions, a number of ap-
proximation algorithms have been proposed. Arkin and Hassin [1] present the first 
approximation algorithms for a number of special cases, including parallel unit-
segments, translates of a convex region, translates of a connected region and parallel 
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segments where the ratio between the longest and the shortest segments is bounded by 
a constant. These algorithms can find a valid tour in polynomial time and its quality is 
guaranteed to be within a constant factor of the optimal tour. The general idea is to 
carefully pick up a representative point for each of the regions and then apply a TSP 
algorithm on this set of points. For the general situations, Mata and Mitchell [9] and 
Gudmundsson and Levcopoulos [6] present some O (log n)-approximation algorithms 
where n is number of regions. Dumitrescu and Mitchell [4] give an O (1)-
approximation algorithm for the case of arbitrarily connected regions with compara-
ble diameters and a PTAS (Polynomial Time Approximation Scheme) for the case of 
disjoint unit disk regions. For problems closely related to our case (i.e., disjoint 
spheres with possibly varying sizes), de Berg et al. [3] give a constant factor algo-
rithm with approximation factor 12000α3 where α=4 for disk regions and α=8 for 3D 
spheres. Most recently, Elbassioni et al. [5] show a considerably improved (9.1α+1)-
approximation algorithm. 

One of the major issues of these approximation algorithms is that, despite their 
polynomial running time, they are often based on some deterministic procedures and 
there is an inherent lack of global optimization ability. Also, approximating Euclidean 
TSPN within (2-ε) has proven to be NP-hard [11]. After all, the performance of these 
algorithms has only been characterized theoretically in terms of the approximation 
factors in the worst case, which are often several times worse than the optimal solu-
tions. In real-world situations, simply knowing such a loose bound is obviously of lit-
tle practical value.  

In this paper, we approach this problem from a new perspective by taking advan-
tage of advanced Estimation of Distribution Algorithms (EDAs) [8], which refer to a 
relatively new paradigm of Evolutionary Algorithms (EAs) [2]. The unique strength 
of EDAs compared to many other traditional EAs is that they can explicitly capture 
the dependences among problem variables and use this structural information to con-
duct more efficient searching, which may often lead to significantly faster conver-
gence speed on challenging optimization problems [8]. 

2   Methodology 

2.1   Problem Specification 

The formal definition of the problem is given below. The neighbourhood region cor-
responding to each sensor is represented by a sphere specified by two parameters: 
centre e and radius r. A problem instance is then fully specified by the starting posi-
tion s along with a set of n spheres: {s, (e1, r1), ..., (ei, ri), ... , (en, rn)}. Note that the 
radius of each sphere can be significantly different from others, depending on its own 
power status. Since sensors are supposed to be geographically distributed, here it is 
assumed that spheres are disjoint from each other. However, as will be shown later, 
the applicability of the proposed approach is not directly influenced by this factor. 
Also, we assume that the starting position is not within any sphere as the robot would 
otherwise have immediate access to the data contained in the sensor. In practice, such 
sensors may be removed from the problem at the beginning. 
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Fig. 1. An example of the layout of the wireless sensors in 3D spaces. There are totally five 
sensors with each one represented by a sphere of varying sizes. A random path is also shown, 
which connects all spheres with the starting position. 

Figure 1 shows an example of the optimization problem with five sensors as well 
as a valid tour intersecting with all spheres. Since the robot can start communication 
with each sensor as long as it reaches the surface of the sphere, the first intersection 
point between the path of the robot and each sphere is of the major importance. When 
the data acquisition from a sensor is finished, the direction of movement of the robot 
will be solely determined by the location of the intersection point on the next sphere. 
In other words, each TSPN tour is constructed by sequentially connecting the starting 
position s and n first intersection points on the surfaces of n spherical regions, referred 
to as hitting points from now on. 

Suppose p is the set of n hitting points and π is the permutation over p. A valid tour 
is then uniquely specified by a tuple <s, p, π>. It is easy to see that there are two 
groups of parameters to be optimized: the locations of hitting points and their order of 
appearance (permutation) in the tour. Since the hitting points are distributed on the 
surface of each sphere, the location of each hitting point can be fully specified by two 
angles: θ∈[0, 2π] and φ∈[0, π]. The actual coordinate values in the xyz-plane can be 
calculated by: 
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In (1), (x0, y0, z0) and r are the centre and radius of the sphere respectively. In this 
spherical coordinate, φ is the angle between the z-axis and the line connecting the 
centre (x0, y0, z0) and the point (x, y, z) while θ is the angle between the x-axis and the 
projection of this line on the xy-plane. Note that there are different ways to define the 
ranges of θ and φ, which are functionally equivalent.  
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2.2   Problem Decomposition 

According to the problem specification in the last section, for a problem instance with 
n sensors, there are totally 3n parameters to be optimized, including 2n continuous pa-
rameters specifying the location information and n discrete parameters specifying the 
permutation. In this section, three different schemes on how EDAs could possibly be 
applied to this problem will be analysed, taking into account the trade-off between 
time complexity and global optimization ability.  

In the first scheme, all parameters are encoded into the individuals of EDAs, which 
means that the entire search space is under exploration and the true global optimum is 
thus guaranteed to be found in theory. The major issue is that the first part of the indi-
vidual represents a continuous problem while the second part of the individual repre-
sents a combinatorial problem. As a result, it would be quite difficult for EAs/EDAs 
to efficiently handle such individuals and a significant amount of customization may 
be required to design problem-specific search operators. On the other hand, 
EAs/EDAs have not been shown to be the most competitive methods as far as TSP is 
concerned. In other words, they are not particularly good at solving the combinatorial 
part of the optimization problem. Instead, there exist some dedicated algorithms that 
are generally more efficient and effective, especially on large TSP instances.  

An alternative scheme is to only encode the location information into individuals 
and EDAs are only responsible for selecting the set of hitting points (i.e., a continuous 
optimization problem). In this situation, each individual is simply a vector of angles. 
The quality or fitness of each candidate set of hitting points is measured by the length 
of the optimal tour based on these points, which is assumed to be given by an external 
TSP algorithm. Under the assumption that such effective TSP algorithms are avail-
able, this scheme can still guarantee finding the global optimum in theory while the 
dimensionality of the search space to be explored by EDAs can be significantly re-
duced (2n vs. 3n). However, since the evaluation of each individual involves solving a 
TSP instance, this scheme could become very time consuming when there are a rela-
tively large number of sensors.  

In order to avoid the above issues, the scheme adopted in our work is based on the 
following heuristic: find the optimal TSP tour based on the sensor centres and use the 
same permutation of sensors in the evaluation of each set of hitting points. In other 
words, we assume that the permutation of spherical regions πr in the optimal TSPN 
tour is always in consistence with the permutation of sensor centres πc in the optimal 
TSP tour. In practice, this heuristic is certainly not expected to guarantee optimality 
but to provide a close estimation of πr. An important question is to determine when 
this assumption is valid. Although a rigorous analysis is unavailable at this stage, in-
tuitively, if the diameters of spheres are relatively small compared to the distances 
among spheres, it is very likely that πr is equal to πc. After all, when the diameters ap-
proach zero, TSPN also gradually approaches TSP.  

One of the major advantages of this problem decomposition heuristic is that the 
dimensionality of the original problem can be reduced from 3n to 2n and only a single 
TSP instance needs to be solved. Another advantage is that, given the knowledge of πr 
(estimated by πc), it is now straightforward to precisely evaluate the quality of each 
set of hitting points and advanced optimization techniques such as EDAs can be con-
veniently applied. By contrast, although the idea of problem decomposition is also  



540 B. Yuan, M. Orlowska, and S. Sadiq 

incorporated in many approximation algorithms, the selection process of candidate 
hitting points is usually conducted without any clear quality information.  

Note that, although the permutation of spheres is determined in advance and fixed 
in the evaluation of all individuals, the quality of the TSPN tours may still vary sig-
nificantly with regard to different sets of hitting points. To demonstrate this point, a 
sampling experiment was conducted with 100,000 random sets of hitting points. The 
quality (tour length) of each set of hitting points was evaluated based on the problem 
instance with five sensors (10D search space) shown in Fig. 1. The optimal permuta-
tion of sensor centres πc was found using a brute force search due to the small number 
of sensors in this problem. The distribution of the quality of the 100,000 samples is 
shown in Fig. 2 from which it is clear that the quality of TSPN tours was sensitive to 
the locations of hitting points, even if the permutation was fixed. 

 

Fig. 2. The distribution of the quality of 100,000 sets of randomly generated hitting points on 
the five-sensor problem. It shows that there was a large variation on the quality of different sets 
of hitting points even if the permutation was fixed. 

3   Estimation of Distribution Algorithms 

The general mechanism of EDAs is to build a statistical model based on a set of 
promising individuals in each generation. All new individuals are then sampled from 
the generated model (Table 1). The role of the statistical model is to estimate the 
structure of the search space where high quality individuals are likely to be found. A 
continuous EDA named EDAmvg based on a multivariate Gaussian distribution with 
full covariance structure is used in this paper [8], [12]. In this EDA, the model is 
specified by the mean vector and the covariance matrix where off-diagonal elements 
represent the dependence information and all new individuals are generated by sam-
pling from this Gaussian distribution. The advantage of EDAmvg is that it can be im-
plemented very efficiently and still has the capability of capturing complex problem 
structure. EDAs in this class have shown comparable performance compared to EDAs 
based on more complex models.  
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Table 1. The general framework of EDAs 

 
Step 1: Initialize the probability model P0 (X), t=0 
Step 2: Sample a population O = {X1 , ... , Xn} from Pt (X) 
Step 3: Evaluate individuals in O: F={f (X1) , ... , f (Xn)} 
Step 4: Select a subset of the population O' ⊂O 
Step 5: Update the model: Pt (X) → Pt+1 (X) 
Step 6: t=t+1 
Step 7: Go to Step 2 until stopping criteria are met 

 

In (1), using the angles θ and φ, it is possible to specify every point on the surface 
of each sphere. Since we assume that πr = πc, it is possible to reduce the original 
search space to a smaller area compared to the whole surface. Assume that sphere A is 
to be visited immediately after sphere B, the distribution of all possible hitting points 
on sphere A can be determined by the diameters of A and B as well as their relative 
spatial location (see Fig. 3 for a 2D example). In other words, there is always a “dark 
side” on each sphere where no hitting points could possibly be located. It is easy to 
image that, if A and B are of the same size, the dark side on A will account for at least 
50% of the surface of A (it also depends on the distribution of hitting points on B). 

 
Fig. 3. A 2D example of the “dark side” on sphere A visited immediately after sphere B 

However, it is not convenient to specify the feasible search space analytically in 
terms of θ and φ and make sure all individuals are generated within this area. Alterna-
tively, each individual is checked before evaluation to make sure that the hitting 
points are valid. Suppose that the current hitting point on sphere B is PB and the can-
didate hitting point on sphere A is PA. By connecting PA and PB with a line L, the in-
tersection point(s) between L and A can be worked out. If there exists another  
intersection point P'A that is closer to PB, it will replace PA as the new hitting point on 
A as PA is not the first intersection point (hitting point) on sphere A.  
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The intersection points can be found by solving for u the following two sets of 
equations:  

Line L:       
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Sphere A: 2222 )()()( AAAA rzzyyxx =−+−+− . (3) 

4   Experiments 

In this section, we empirically evaluated the performance of the proposed techniques 
for TSPN problems compared to an approximation algorithm called Algorithm A by 
Elbassioni et al. [5]. The major motivation was to provide some preliminary results to 
justify the soundness of our methods. More comprehensive experimental studies will 
be conducted as the future work. 

The basic procedure of Algorithm A is to progressively select a hitting point for 
each sphere and then construct a TSP tour based on the set of selected hitting points. 
More specifically, all spheres are initially sorted in ascending order based on their di-
ameters. The hitting point on the smallest sphere is selected randomly. In our case, the 
starting position s is regarded as a zero-diameter sphere and will always be selected as 
the first hitting point. The hitting point on each subsequent sphere is selected as the 
point with the minimum distance to the current set of hitting points.  

Note that both TSPN algorithms require an external TSP algorithm to either find 
the optimal permutation of sensor centres (our method) or construct the final tour 
based on a set of hitting points (Algorithm A). The Lin-Kernighan heuristic [7] was 
used in this paper, while any other TSP algorithms capable of handling 3D Euclidean 
spaces will also be appropriate. 

 

Fig. 4. The optimal TSP tour (length=39.0140) of the five-sensor problem found by a brute 
force search (left) and the TSPN tour (length=27.2908) constructed by Algorithm A (right) 
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Fig. 5.  A typical TSPN tour (length = 26.1830) of the five-sensor problem found by the EDA 
method (left) and the experimental results averaged over 25 independent trials (right) 

The first experiment was based on the five-sensor test problem shown in Fig. 1. 
Due to its simplicity, a brute force search was used to solve the TSP components in 
both algorithms. Figure 4 (left) shows the optimal TSP tour based on sensor centres 
with length 39.0140. Since the TSP tour is also a valid TSPN tour, it can be used as a 
benchmark against TSPN algorithms. The corresponding TSPN tour with length 
27.2908 constructed by Algorithm A (i.e., an optimal TSP tour found through the 
brute force search based on the set of hitting points selected by Algorithm A) is shown 
in Fig. 4 (right).  

Next, based on the permutation of spheres in the optimal TSP tour, the EDA was 
applied to search for the set of hitting points. The parameter values were chosen as 
population size=100, number of generations=50, truncation selection with selection 
pressure=0.3 (select the top 30% individuals). No specific parameter tuning was con-
ducted and the above values were largely based on recommended values and a few 
preliminary trials.  

Figure 5 (left) shows a typical TSPN tour constructed by the EDA approach with 
length 26.1830. In order to demonstrate the robustness of our method, 25 independent 
trials were conducted and the mean performance is plotted in Fig. 5 (right), together 
with error bars showing one standard deviation above and below the mean value. It is 
easy to see that our approach could reliably find solutions better than the approxima-
tion algorithm. Note that there is no parameter to be tuned in Algorithm A and its per-
formance is deterministic. 

To further verify the performance of the EDA method, a much more challenging 
test problem with 25 sensors was randomly generated, as shown in Fig. 6. The starting 
point was at the origin while sensors were randomly distributed within [-20, 20] in 
each dimension. The radius of each sphere was randomly chosen within [1, 4] and 
special care has been taken to make sure that spheres were disjoint from each other. 
The optimal TSP tour of this problem had length 304 with rounding (the TSP algo-
rithm in use assumes that distances among nodes are integral) while the TSPN tour 
constructed by Algorithm A had length 271 (with rounding). By contrast, with a larger 
population size (1000) and more generations (100), the EDA method could again re-
liably find solutions of significantly improved quality. A typical TSPN tour is shown 
in Fig. 6 with length 248 (with rounding). 
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Fig. 6. A random test problem with 25 sensors and a typical TSPN tour (length = 248) found by 
the EDA method 

5   Conclusions 

In this paper, we presented some preliminary work on a novel technique for finding 
the optimal path in 3D spaces, which was motivated by the data acquisition problem 
in wireless sensor networks. The core idea is to decompose the original problem into a 
TSP problem and a continuous optimization problem. In the TSP component, an op-
timal tour is constructed by an external TSP algorithm based on the sensor centres. 
The permutation of sensors is then used as the estimation of the permutation of 
spheres in the TSPN tour. Consequently, the EDA is dedicated to searching for the 
optimal set of hitting points, represented by a vector of angles.  

In the numerical simulations of two test problems, the performance our method has 
shown to be robust and encouraging and it could significantly improve the quality of 
the tours constructed by the latest TSPN algorithm. 

As to the future work, a major step is to establish some theoretical analysis on the 
effectiveness of the heuristic (estimation of πr by πc) used in our method. It would be 
favourable to be able to formally investigate the analytical properties of this heuristic 
in order to understand and quantify its influence on the quality of tours.  

Although the EDA performed reasonably well in the experiments, an important 
task is to further characterize the structure of this type of problems to have a better 
understanding on what kind of optimization algorithms are mostly applicable and how 
to incorporate more problem-specific knowledge into these algorithms in order to 
achieve better performance.  
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Abstract. Air target identification is an important issue in threat warn-
ing, airline security and surveillance. To obtain accuracy and reliability,
the multisensor is used to give multiple sources information. Thus, an
algorithm to fuse the information from the multisensor is needed. The
(Dempster-Shafer) evidence theory is a generalization of Bayesian statis-
tics. Evidential reasoning is suited to a range of decision-making activi-
ties. But it is invalid when dealing with conflicting probabilities. In this
paper, a new weighted D-S combination rule is proposed to solve the
conflicting management in the air target identification system. In the
weighted method presented here, it is to modify evidences rather than
to modify the combination rule. The rationality and effectiveness of the
weighted method are evaluated by the target identification system.

1 Introduction

Air target identification provides the basis for Battlefield Situation/Threat As-
sessment. Due to the influence of sensor precisions, components of the integrated
system and the external circumstance, the identification by a single sensor is un-
certain and not suitable to air target identification. Gathering the multi-source
data with multisensor to acquire the complete information of the situation and
characteristics of the observing target, and producing meaningful new fused in-
formation can improve the precision of target identification and categorization.

Evidence theory is a generalization of Bayesian statistics [1,2]. It involves
defining a belief function over a hypothesis set. Belief function satisfies the weaker
axiom that is not appear in probability theory. It can distinguish uncertainty and
ignorance. Evidence theory provides not only flexible representation of evidence,
but also simple and intuitive reasoning rules to update belief function. The
consideration of ignorance on belief assignment is similar to the thinking habit
of human expert. It has been widely used in information fusion and expert
systems [3,4].

In the air target identification system, the category probabilities that acquired
by different sensors for the same target might be conflict with each other as the
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fault of the sensor or as the human factor. If applying the evidence combination
rule of D-S evidence theory to update the belief function, the highly conflicting
probabilities tend to produce counterintuitive results [6].

In this paper, we propose a new method for handling cases when the beliefs
are conflicting. Unlike the previous solve strategies [8,9], this method analyzes
the input evidence without trying to modify the combination rule. The conflicts
indicate that the evidence offered by different sensors should not be trusted for
the same extent. The new approach preprocesses the input evidence: if one or
minority of evidence conflict with the most of evidence, the method reduces the
credibility of the minority of evidence, and increases their ignorance degree so
that it could weaken the influence on fusion result.

As illustrated by the simulated data, the method is feasible to multisensor
information fusion for the air target identification, and it can improve the iden-
tification precision and increase the reliability of target classification.

2 D-S Evidence Theory

Evidence theory is a generalization of the venerable Bayesian statistics. In ev-
idence theory, evidence is described in terms of evidential functions. The com-
monly used functions include: basic probability assignment function, belief func-
tion and plausibility function.

2.1 Evidential Functions

Definition 1. Let Θ be the frame of discernment. 2Θ be the set of all subsets
that represent propositions in Θ. A function m : 2Θ → [0, 1] is called a mass
function if it satisfies

m(∅) = 0,
∑

X⊆Θ

m(X) = 1. (1)

A mass function is a basic probability assignment (BPA)function to all subsets
X of Θ. The quantity m(A) is called A’s mass or basic probability value. It
represents the exact amount of belief committed to the proposition represented
by subset A of Θ. A focus of m is a subset A⊆Θ on which m is positive, i.e.,
m(A)�= 0.

Definition 2. A function bel : 2Θ → [0, 1] is a bel function if it satisfies

bel(A) =
∑

X⊆Θ,X⊆A

m(X). (2)

The quantity bel(A) can be interpreted as a measure of one’s belief that hypoth-
esis A is true. Where bel(∅)=0, bel(Θ)=1.
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Definition 3. A function pls : 2Θ → [0, 1] is a plausibility function if it satisfies

pls(A) =
∑

X⊆Θ,X∩A �=∅
m(X). (3)

It is easy to say that pls(∅)=0, pls(Θ)=1.
Also, we have bel(A) + bel(Ā) ≤ 1, or bel(A) ≤ pls(A) for all A ⊆ Θ . For a

given subset A, the information contained in the evidential functions and may
be conveniently represented by the belief interval [bel(A), pls(A)]. A plausibility
function is also called an upper probability function, while a belief function is
called a lower probability function. Here bel(A) gives the degree to which the
current evidence supports A, and pls(A) = 1 − bel(Ā) gives the degree to which
A remains plausible. We call bel(A) the lower probability of A, pls(A) the upper
probability of A. The difference pls(A)−bel(A) represents the residual ignorance:

ignorance(A) = pls(A) − bel(A). (4)

2.2 D-S’s Rule of Combination

The fundamental operation in evidential reasoning is the orthogonal sum of
evidential functions. It is known as D-S’s rule for combining evidence. Let m1,
m2, . . . , mn be n BPA functions on the same frame Θ ,the orthogonal sum
m = m1 ⊕ m2 ⊕ . . . ⊕ mn is defined as

m(A) = (1 − k)−1
∑

∩Ai=A

∏

1≤i≤n

mi(Ai). (5)

where k =
∑
∩Ai=∅

∏
1≤i≤n mi(Ai) is the conflict factor; and 1/(1 − k) is called

the normalization constant, it normalizes the new distribution by reassigning
any probability mass which is assigned to the empty set by the combination.

2.3 Evidence Conflict Management

The Eq.(5) is invalidate while the denominator 1 − k = 0, it implies complete
contradiction between m1, m2, . . . , mn. If the pieces of evidence are highly con-
flicting, the combination rule will assign the 100% belief to a minor probability
hypothesis and produce a counterintuitive result. A typical example given by
Zadeh [6] is as follows:

Example 1. Let Θ = {A, B, C}, assume m1, m2 be two mass functions on the
frame of discernment Θ: m1(A) = 0.9, m1(B) = 0.1, m2(B) = 0.1, m2(C) = 0.9.

These two pieces of evidence m1 and m2 are largely conflicting. By using D-S’s
rule, we have

m(A) = 0, m(B) = 1, m(C) = 0.
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This means the combined result agrees with B no matter that it is only weakly
supported by the respective original pieces.

Various alternative methods have been proposed to solve the problem of con-
flict management. Yager [8] presented an alternative rule of combination(denoted
by ⊥) as follows:

Definition 4. Assume m1, m2 be two mass functions on the frame of discern-
ment. Let {Ai}, {Bj} be their sets of focal elements. Then

(m1 ⊥ m2)(∅) = 0

(m1 ⊥ m2)(X) =
∑

Ai∩Bj=X m1(Ai)m2(Bj), for ∅ ⊂ X ⊂ Θ

(m1 ⊥ m2)(Θ) =
∑

Ai∩Bj=Θ

m1(Ai)m2(Bj) + E. (6)

where E =
∑

Ai∩Bj=∅m1(Ai)m2(Bj) (the total conflict).
With the use of this alternative rule, the total conflict E is put back into the

set Θ. Thus, by using Yager’s rule to Example 1, we have

m(A) = 0, m(B) = 0.01, m(C) = 0, m(Θ) = 0.99.

3 The Weighted D-S Combination Method

In air target identification system, the conflict of evidence is usually caused of
the invalidation sensor with many factors such as weather, enemy jamming or
sensor fault. It means that the sensors should not be trusted equally. Thus,
we proposed a new combination method to fuse the conflict evidence. In this
method, we haven’t tried to find out an alternative combination rule and acquire
a more reasonable result. But, we firstly adjust each sensor’s BPAs before they
are submitted to the D-S reasoning system. The brief steps of the new conflict
management are described as following: first the distance from the BPAs to the
average is used to decide the weight of each sensor; then justify each sensor’s
BPAs by the credibility weight; finally the BPAs adjusted are combined using
D-S combination rule.

Suppose there are u sensors, v categories of target. Then for an observed
target, we will acquired u × v BPAs.

⎡

⎢⎢⎣

m11 m12 . . . m1v

m21 m22 . . . m2v

. . . . . . . . . . . .
mu1 mu2 . . . muv

⎤

⎥⎥⎦

The BPAs adjustment procedure we proposed is shown following:
(1) Calculate the average masses of the evidence:

M j
MED =

1
u

u∑

i=1

mij (j = 1, 2, . . . , v) (7)
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(2) Calculate the distance between the BPAs of each sensor and the average
masses:

Di =
v∑

j=1

|mij − M j
MED| (i = 1, 2, . . . , u) (8)

(3) Compute the credibility weight of each sensor:

wi =
Wi

Wmax
(9)

where Wi = 1/Di. It means the closer a piece of evidence to the average masses,
the higher reliability of this evidence. If a piece of evidence far from the average
masses, it means the sensor doesn’t work-well, then we assign a lower reliability
to the evidence. Where Wmax = max(Wi) ensures the credibility weight wi is in
the range of [0, 1].

(4) Adjust each sensor’s BPAs before they are submitted to the D-S reasoning
system. The weight adjustment process is expressed as:

m∗i (A) = wimi(A), for A ⊂ Θ

m∗i (Θ) = wimi(Θ) + 1 − wi (10)

where the weighting factor wi is in the range of 0.0 and 1.0, the mi(Θ) stands
for the probability assigned to the acknowledgement of ignorance, and the term
m∗i (A) indicates the adjusted BPAs to be submitted to the D-S reasoning system.
As the weighting factor is always equal to or less than 1.0, this differential
credibility effectively lowers the BPAs assigned to the non-zero hypothesis by
each sensor and correspondingly raises the value assigned to the ignorance set.
This will mitigate conflicts among groups of evidence.

4 Air Target Identification

In an air battle system [10], there may be 5 kinds of target: battle aircrafts, offen-
sive aircrafts, bombers, EW or AWACS and other aircrafts (e.g. helicopter, mis-
sile). They are represented by a, b, c, d, e. Also, three kinds of sensor ESM, EO,
IR are used to collect information RF, PW, IR respectively. The optical system
is used to observe the visible light information, which represented as OB.

4.1 Probability Assignment Functions

Now, we have frame of discernment Θ = {a, b, c, d, e}. According to RF, PW, IR,
OB, we have four mass functions m

RF
, m

P W
, m

IR
, m

OB
as follows:

X | {a} {b} {c} {d} {e}
m

RF
| 0.50 0.20 0.15 0.15 0.00

m
PW

| 0.60 0.15 0.25 0.00 0.00
mIR | 0.00 0.00 0.20 0.40 0.40
m

OB
| 0.60 0.30 0.10 0.00 0.00
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Analyzing the source data, we can find that the piece of evidence m
IR

con-
tradict to the other three pieces of evidence. Following the majority rule, it will
be a good choice to decrease the influence of this evidence to the combination
result by adjusting the evidence.

4.2 Justify the BPA Function

Follow Eq.(7) acquired the average masses: mMED{a}=0.425, mMED{b}=0.1625,
m

MED
{c}=0.175, m

MED
{d}=0.1375, m

MED
{e}=0.1. And obtain the credibility

weight by using Eq.(8)-(9),

wRF = 1, wPW = 0.50, wIR = 0.21, wOB = 0.40 .

Then reassign the BPAs of each sensor by using Eq.(10):

X | {a} {b} {c} {d} {e} Θ
m∗RF | 0.50 0.20 0.15 0.15 0.00 0.00
m∗PW | 0.30 0.07 0.13 0.00 0.00 0.50
m∗IR | 0.00 0.00 0.05 0.08 0.08 0.79
m∗OB | 0.24 0.12 0.04 0.00 0.00 0.60

4.3 Combine m
RF&P W&IR&OB

= m∗
RF ⊕ m∗

P W ⊕ m∗
IR ⊕ m∗

OB

Substitute the processed BPAs into Eq.(5), we have:

X | {a} {b} {c} {d} {e} Θ
∑

m
RF&PW&IR&OB

(X) | 0.62 0.15 0.14 0.09 0.00 0.00 1

4.4 Comparison of Combination Results

The combination results of several representative combination methods for the
air target identification system are listed in Table 1. To classical D-S combina-
tion rule, because the BPA of category {a}, m

IR
({a}) is zero, the combination

BPA is always zero. Although all the BPAs to {c} are very small, the combina-
tion result is the only category {c}, because none of the evidence is completely
negated. Yager’s method assigned all conflicts to ignorance. So the combina-
tion BPAs to every category are all small while the BPAs assigned to ignorance
set Θ is very large. From the combination result, one can’t make the category
decision.

The proposed method justifies each sensor’s BPAs by the weight achieved
from the distance to average. The scheme effectively lowers the basic proba-
bility assigned to the unreliable evidence and correspondingly raises the value
assigned to the ignorance set thereby lowers the influence of the evidence to the
combination result. From the combination result acquired by the weighted D-S
combination rule, the BPA of mIR({a}) is zero, the m

RF&PW&IR&OB
({a}) is 0.63.

The result reflects the tendency of most evidence. We can conclude that the
target belongs to category {a} with the most probability.
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Table 1. Comparison of different combination results

RF&PW RF&PW&IR RF&PW&IR&OB

D-S combina- m
RF&PW

{a} = 0.82 m
RF&PW&IR

{a} = 0 m
RF&P W&IR&OB

{a} = 0
tion rule m

RF&PW
{b} = 0.08 m

RF&PW&IR
{b} = 0 m

RF&P W&IR&OB
{b} = 0

m
RF&PW

{c} = 0.10 m
RF&PW&IR

{c} = 1 m
RF&P W&IR&OB

{c} = 1
m

RF&PW
{d} = 0 m

RF&PW&IR
{d} = 0 m

RF&P W&IR&OB
{d} = 0

m
RF&PW

{e} = 0 m
RF&PW&IR

{e} = 0 m
RF&P W&IR&OB

{e} = 0

Yager’s m
RF&PW

{a} = 0.30 m
RF&PW&IR

{a} = 0 m
RF&P W&IR&OB

{a} = 0.22
combination m

RF&PW
{b} = 0.03 m

RF&PW&IR
{b} = 0 m

RF&P W&IR&OB
{b} = 0.11

rule m
RF&PW

{c} = 0.04 m
RF&PW&IR

{c} = 0.13 m
RF&P W&IR&OB

{c} = 0.05
m

RF&PW
{d} = 0 m

RF&PW&IR
{d} = 0.25 m

RF&P W&IR&OB
{d} = 0

m
RF&PW

{e} = 0 m
RF&PW&IR

{e} = 0.25 m
RF&P W&IR&OB

{e} = 0
m

RF&PW
{Θ} = 0.63 m

RF&PW&IR
{Θ} = 0.37 m

RF&P W&IR&OB
{Θ} = 0.62

New weighted m
RF&PW

{a} = 0.58 m
RF&PW&IR

{a} = 0.57 m
RF&P W&IR&OB

{a} = 0.63
D-S combina- m

RF&PW
{b} = 0.17 m

RF&PW&IR
{b} = 0.17 m

RF&P W&IR&OB
{b} = 0.16

tion rule m
RF&PW

{c} = 0.14 m
RF&PW&IR

{c} = 0.14 m
RF&P W&IR&OB

{c} = 0.12
m

RF&PW
{d} = 0.11 m

RF&PW&IR
{d} = 0.12 m

RF&P W&IR&OB
{d} = 0.09

m
RF&PW

{e} = 0 m
RF&PW&IR

{e} = 0 m
RF&P W&IR&OB

{e} = 0

5 Conclusion

A new strategy is proposed to solve the invalidation problem of air target identi-
fication. As the example illustrated, the modified method is an efficient solution
for conflicting management. Compared to other combination rules, the proposed
method is more similar to the human expert. The precision and reliability of the
system is improved.

Acknowledgement. This work was supported by the Specialized Research
Fund for the Doctoral Program of Higher Education (No. 20060183041).

References

1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton, New Jersey. (1976)

2. Guan, J. W., Bell, D. A.: Evidence theory and its applications, Vol.1, 2. Studies
in Computer Science and Artificial Intelligence 7, 8, Elsevier, The Netherlands.
(1991, 1992)

3. Walz, E., Linas, J.: Multisensor data fusion. Boston: Artech House. (1990)
4. Hall, D. L., Llinas, J.: An introduction to multisensor data fusion. Proceedings of

IEEE 85 (1997) 6–23
5. Hall, D. L., McMullen, S. A. H.: Mathematical techniques in multisensor data

fusion. Boston: Artech House. (2004)
6. Zadeh, L. A.: Review of Shafer’s a mathematical theory of evidence. AI Magazine.

5 (1984) 81–83



Evidential Reasoning Based on Multisensor Data Fusion 553

7. Zadeh, L. A.: A simple view of the Dempster-Shafer theory of evidence and its
implication for the rule of combination. AI Magazine. 85 (1986) 85–90

8. Yager, R. R.: On the Dempster-Shafer framework and new combination rules, In-
formation Sciences. 41 (1987) 93–137

9. Hau, H. Y., Kashyap, R. L.: Belief combination and propagation in a lattice-
structured inference network, IEEE Trans. On Systems, Man, and Cybernetics.
20 (1990) 45–57

10. Liu, T. M.; Xia, Z. X.; Xie, H. C.: Data fusion and its applications. National Defense
Press, Beijing, China (1998)



A Simple and Compact Algorithm for the RMQ

and Its Application to the Longest Common
Repeat Problem�

Inbok Lee1 and Ha Yoon Song2

1 School of Electronic, Telecommunication, and Computer Engineering
Hankuk Aviation University, Republic of Korea

inboklee@hau.ac.kr
2 Department of Computer Engineering
Hongik University, Republic of Korea

hayoon@wow.hongik.ac.kr

Abstract. The Range Minimum Query (RMQ) problem is to find the
smallest element in an array for given range (a, b). We propose a simple
and compact algorithm for this problem when the queries are sorted
in ascending order. Then we show how to use this algorithm for the
generalised longest common repeat problem [14]. Our algorithm is easy
to understand and implement and requires much smaller memory.

1 Introduction

The Range Minimum Query (RMQ) problem is defined as follows.

Definition 1. Given an array A[1..n] of integers and a range (a, b) (1 ≤ a ≤
b ≤ n), report the position k (a ≤ k ≤ b) where A[k] is the smallest in A[a..b].

Note that we may interested in not the position k but the value A[k].
The RMQ problem has a lot of applications in string processing and compu-

tational biology. Related problems include the Lowest Common Ancestor (LCA)
problem. In this problem, given two leaves in a tree, we want to find the lowest
node whose subtree includes them. A näıve algorithm for the problem is to scan
the array A[a..b] from left to right and report the position where the smallest
element is located. It runs in O(n) time in the worst case. But in many cases we
are not just asking one query. Therefore we need an efficient algorithm for the
RMQ.

Using precomputation we can obtain a better algorithm. There are a few
works on these problems [3,7,15,1,6,2]. We briefly explain a simple method in
[2]. We use an array M [n][log n]. For each element A[a] (1 ≤ a ≤ n), we find the
minimum element in A[a..a + 2k − 1] (1 ≤ k ≤ log n) and store it in M [a][k].
It takes O(n log n) time and space. For answering the RMQ query for A[a..b],
we divide the range into two: (a, a + 2log(b−a) − 1) and (b − 2log(b−a) + 1, b).
� This work was supported in part by the Seoul R&BD Program funded by the Seoul

Development Institute (DRI).

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 554–561, 2007.
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Then we find these values from the array M and report the smaller one. O(n)-
time preprocessing and O(1)-time query with O(n) space is the best complexity
[1,6]. Although these algorithms have good time/space complexity and are el-
egant, they are not easy to understand. Furthermore, all these algorithms are
based on the assumption that all the entries of A is known in advance. In some
applications it doesn’t hold. The array A can be computed on the fly and we
maintain only a sliding window over A. In that case, range minimum queries are
restricted in the sliding window. We also assume that the window moves from
left to right: left ends of ranges for RMQ are in ascending order.

Repetitions play an important role in real world applications such as Bioin-
formatics, computer-aided music analysis, cryptoanalysis, and so on. Especially
we focus on analyzing genomic sequences in Bioinformatics. It is assumed that
repetitions in genomic sequences are related to genetic diseases. Also, they can
give us clues to RNA secondary structures. They may be used in multiple align-
ment. These problems gets tricky when we consider a set of genomic sequences.
Some repeats appear frequently (i.e. more than twice) in the sequence. Therefore
it would be better if we can specify the number of times a repeat can appear in
special sequences. And, some repeats may not be common to all the sequences
in the set: they may appear only in some subset of the sequences.

In [13], an algorithm based on the generalised suffix tree was proposed. It was
the first approach, but it was not easy to implement. And it requires too much
memory. In [14], another algorithm based on the suffix array was proposed. The
definition of problem was modified to handle the general case (the problem in
[13] cannot set the number of times that a repeat can appear in a string). It is
much easier to implement and used less memory.

2 Preliminaries

Since our main motivation is Bioinformatics, we assume that the alphabet Σ =
a, c, g, t and a bar represents its Watson-Crick pair: g = c, c = g, a = t, and t =
a

Let T be a string over Σ. T [i] denotes i-th character of T and T [i..j] is the
substring T [i]T [i + 1] · · ·T [j] of T . We denote the reverse of T by ←−

T and the
reverse complemented of T by ↼

T . To get ↼T, we first make ←−
T and replace each

character with its Watson-Crick pair.
A repeat of T is a substring of T which appears at least twice in T . There are

three kinds of repeats.

— direct repeat: A string p is called a direct repeat of T if p = T [i..i+ |p|−1]
and p = T [i′..i′ + |p| − 1], for some i �= i′.

— inverted repeat: A string p is called an inverted repeat of T if p = T [i..i+
|p| − 1] and ↼p = T [i′..i′ + |p| − 1], for some i �= i′.

— mirror repeat: A string p is called a mirror repeat (or reverse repeat) of
T if p = T [i..i + |p| − 1] and ←−p = T [i′..i′ + |p| − 1], for some i �= i′.

Once we define repeats, our problem can be defined as followed.



556 I. Lee and H.Y. Song

Problem 1. [14] Given a set of strings U = {T1, T2, . . . , T�}, a set of positive in-
tegers D = {d1, d2, . . . , d�}, and a positive integer k, the generalised longest

common repeat problem is to find the longest string w which satisfies two
conditions: (a) There is a subset U ′ of U such that w appears at least di times
in every string Ti in U ′, and (b) |U ′| = k.

Note that we can restrict the number of times that a repeat can appear in each
string. Even we can let the “repeat” appear just once in some strings.

The suffix array of a text T is a well-known indexed structure for the string.
Basically it is the sorted array s[1..|T |] of all the suffixes of T . It means that
s[k] = i if and only if T [i..|T |] is the k-th suffix of T . We also define the auxiliary
LCP array as an array of the length of the longest common prefix between
each substring in the suffix array and its predecessor, and define lcp(a, b) =
min

a≤i≤b
lcp[i] with the following properties.

Fact 1. lcp(a, b) ≤ lcp(a′, b′) if a ≤ a′ and b ≥ b′.

Fact 2. The length of the longest common prefix of T [s[a]..|T |], T [s[a + 1]..|T |],
. . ., T [s[b]..|T |] is lcp(a + 1, b).

Figure 1 is an example of the suffix array. Consider three substrings ippi,
issippi, and ississippi. lcp(2, 4) = 1 and it means that the longest com-
mon prefix of three substrings is i.

s lcp

1 11 - i
2 8 1 ippi
3 5 1 issippi
4 2 4 ississippi
5 1 0 mississippi
6 10 0 pi
7 9 1 ppi
8 7 0 sippi
9 4 2 sissippi
10 6 1 ssippi
11 3 3 ssissippi

Fig. 1. Suffix array for mississippi

The generalised suffix array for U = {T1, T2, . . . , T�} can be built as in [4].
First we create a new string T ′′ = T1%T2% · · · T� where % is a special symbol
which is smaller than any other character in Σ. Then we compute the lcp array
using the technique presented in [9] in O(|T ′′|) time. We can use only one special
character % instead of � different symbols: let % not match itself. We compute lcp
and and another ids array such that ids[k] = i if T ′′[k]T ′′[k +1] · · ·% is originally
a suffix of Ti (of course, % is the symbol that appears first after T ′′[k] in T ′′).

Once we are given the suffix array for U , a set of positive integers D =
{d1, d2, . . . , d�}, and a positive integer k, a candidate range is a range (a, b)
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which contains k distinct values in the set {ids[a], ids[a+1], . . . , ids[b]} and each
value i appears at least di times in the set. A critical range is a candidate range
that does not properly contain other candidate ranges. The number of critical
ranges is O(n) where n is the size of the array.

Lemma 1. [14] The answer for the generalised longest common repeat problem
is T ′′[s[a′]]..T ′′[s[a′+lcp(a′+1, b′)] such that (a′, b′) is a critical range and lcp(a′+
1, b′) is the greatest among all critical ranges.

Proof. The proof of Lemma 1 can be found in [14].

3 Algorithms

3.1 Algorithm for the RMQ

Our algorithm is based on the simple fact.

Lemma 2. If we have two ranges (a, b) and (b + 1, c), lcp(a, c) = min(lcp(a, b),
lcp(b + 1, c)).

Assume that we have an array of size n and L range minimum queries. Also we
assume that the query ranges are sorted by their left end in ascending order.
When they are not overlapping each other, we do not need complex algorithms:
just scan the ranges and report the smallest elements. But when they are over-
lapping, we need to handle the overlapping ranges.

Suppose that we have three overlapping ranges (a, b), (a′, b′), and (a′′, b′′) such
that a < a′ < a′′ < b < b′ < b′′ as in Fig. 2. First we can find lcp(a, b) using
the näıve algorithm. We define another array M and compute M [i] = lcp(i, b) in
O(b − a) time. After computing lcp(a, b), we can answer the RMQ for any range
(i, b) (a ≤ i ≤ b) by looking up the value M [i] in O(1) time.

b’’a a’ a’’ b b’

Fig. 2. An example of the RMQ for (a, b), (a′, b′), and (a′′, b′′)

Then we need to find lcp(a′, b′). We know lcp(a′, b) = M [a′] and we only have
to know lcp(b + 1, b′). We compute M [i] = lcp(i, b′) (b + 1 ≤ i ≤ b′). Then we
compare M [a′] and M [b + 1]. Note that we don’t need to store the right end for
each range in M . We can free M [a..a′ − 1] since it won’t be used again.

Now we compute lcp(a′′, b′′). It is min(lcp(a′′, b), lcp(b + 1, b′), lcp(b′ + 1, b′′)).
As we did before, M [i] = lcp(i, b′′) (b′ + 1 ≤ i ≤ b′′). But we need to compare
three values (since (a′′, b′′) consists of (a′′, b), (b + 1, b′), and (b′ + 1, b′′)) and
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report the minimum. It is easy to show that in the worst case there may be L
values to compare. We use a minimal heap to find the minimum. A minimal heap
can be implemented by using just an array of length L. Whenever we compute
lcp(a, b), we store lcp(a, b) which is the key for the heap and the range (a, b). We
compare M [b′ + 1] = lcp(b′ + 1, b′′) and the key of the root of the heap. If the
range of the root is in (a′′, b′′), we report the smaller one between M [b′+ 1] and
the key of the root. If not, we keep on deleting the root node and fix the heap
until we meet the condition.

When the new range is not overlapping the previous one, we remove all the
elements in the heap. We have only to set the number of elements in the heap
as 0 in O(1) time. Also we can free entries in M .

The total time complexity is O(n+L log L): O(n) for computing M array and
O(L log L) time for answering L RMQs. The space complexity is O(n+L), O(n)
for M and O(L) for the minimum heap. Note that we use just one O(n) size
array: other algorithms use more than two arrays. Therefore the actual memory
usage is smaller when we have a large array for lcp computation.

3.2 Repeats Finding

We explain our algorithm for repeat finding. Basically we use Lee and Pinzon
Ardila’s algorithm in [14], using our new RMQ algorithm.

Step 1: We first modify each string in U to consider inverted, mirror and everted
repeats. For each i = 1, 2, . . . , �, we create a new string T ′i = Ti%

←−
T i%

↼
Ti. And we

create a string T ′′ = T ′1%T
′
2% . . . %T ′�%.

Step 2: We build the suffix array of T ′′ in O(|T ′′|) time and space, using one of
[8,10,12]. We compute lcp and ids arrays also. (We may not compute ids array.
Instead, we can compute ids[k] from s[k] in O(log �) time. Usually � is quite small
and can be considered as a constant.) This step runs in O(|T ′′|) time and space.
Note that the suffixes of Ti,

←−
T i and ↼

Ti have the same value i in the ids array.

Step 3: In this step we find the critical ranges. For details, refer to [11].
Each time we keep a range (a, b) during this step. At first a = 1 and b = 0.

We maintain � counters c1, c2, . . . , c� (initially c1 = c2 = · · · = c� = 0) and a
counter h which contains the number of ci’s (1 ≤ i ≤ �) that are ≥ di. Initially
h = 0.

Step 3 consists of two sub-steps: expanding and shrinking. In the expanding
sub-step, we find a candidate range. First we expand the range from (a, b) to
(a, b + 1). Then we check ids[b] and set cids[b] = cids[b] + 1. If cids[b] = di, then
h = h+1. We move to the shrinking sub-step if h = k. Then (a, b) is a candidate
range.

In the shrinking sub-step, we find a critical range from the candidate range
(a, b) found in previous expanding sub-step. We start by shrinking the candidate
range downwards. First, we set ca = ca − 1 and a = a + 1. If ca < da, then
h = h − 1. If h < k, then (a − 1, b) is a critical range.
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Fig. 3. Finding common repeats for T1 = acac, T2 = aac, and T3 = caac

Once we find a critical range, we compute lcp(a, b) and report the longest
common prefix. We use our new RMQ algorithm here. After the RMQ, we go
back to the expanding sub-step with (a, b).

We can speed up this step although it doesn’t change the time complexity.
Assume that we computed lcp(a, b) and are going to compute lcp(a′, b′) such
that a < a′ < b < b′. In our new RMQ query algorithm, we find lcp(b + 1, b′).
We are interested in the longest repeat and if lcp(b + 1, b′) < lcp(a, b) then it is
easy to show that lcp(a′, b′) < lcp(a, b). Therefore we know that our answer is
not in (a′, b′).
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We include an example in Fig. 3 from [14]. We have 3 strings T1 = acac,
T2 = aac, and T3 = caac. We want to find the longest substring which appears
twice in T1 and once in T2 and T3. If we do not consider inverted and mirror
repeats, the above table shows that ac and c satisfy the condition. The answer
is ac since it is longer than c. In this example, two critical ranges I2 and I5
are not overlapping. For I2, we compute M [4..6] = {2, 2, 2}. It follows that
lcp(I2) = 2. For I5, we free M [4..6] since it is not overlapping with I5. We
compute M [9..11] = {1, 1, 1} and lcp(I5) = 1. Unlike other algorithms for the
RMQ, our algorithm does not preprocess the whole lcp array and just read 6
entries that are needed, which makes our algorithm perform better. If we consider
inverted and mirror repeats, the below table shows that the answers are ac, ca,
and gt. Actually one substring ac appears inverted and mirrored. I1 and I3 are
overlapping. As we did before, we can compute M [1..9] and report lcp(I1) = 1.
For I3, M [8] = 2 and M [10..11] = {2, 2}. By comparing two, we can find out
lcp(I3) = 2. For I4, I5, I6, I8, and I9, we free M [1..11] and perform the similar
steps for M [13..22] and build a minimum heap. We can safely escape I4, I5, and
I6 since their lcp values are smaller than lcp(I3) = 2. Then we free M [13..22]
and the heap and go for I10, I11, and I12.

Theorem 1. The generalised longest common repeat problem can be solved in
O(n + L logL) time and O(n + L) space, where n =

∑�
i=1 |Ti| and L is the

number of critical ranges.

Proof. Finding critical ranges takes O(n) time. Given L RMQs, our algorithm
runs in O(n + L log L) time. So the total time complexity is O(n + L logL).

4 Conclusions

We proposed a simple and space-efficient algorithm for the RMQ when the
queries are sorted in ascending order. We also showed that using our RMQ
algorithm, it is possible to design and implement a simple algorithm for the
generalised longest common repeat problem.

Future works include handling the case where queries are not ordered.
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Abstract. Bacterial foraging algorithm is a novel evolutionary computation 
algorithm proposed four years ago, which is based on the foraging behavior of 
E.coli bacteria living in human intestine. In this paper an improved operation, 
individual-based search, is presented with regard to the important component 
(Chemotaxi) of bacterial foraging algorithm. The improved algorithm is applied 
to job shop scheduling benchmark problems. Numerical experiments show the 
effectiveness of the improved algorithm. 

1   Introduction 

In the last forty years, researchers have been trying to simulate the biological systems 
from various aspects and proposed some effective bionic algorithms, including 
artificial neural network (ANN), genetic algorithm (GA), ant colony optimization 
(ACO), particle swarm optimization (PSO) and artificial immune system (AIS), etc. 
These bionic algorithms provide novel paradigms for engineering problems by mimic 
the specific structures or behaviors of certain creatures. 

Bacterial foraging optimization (BFO) is a quite young but effective bionic 
algorithm 1. It was presented by Passino in IEEE Control Systems Magazine in Ref. 2 
(2002) and later in the same year Ref. 3 was published in the Journal of Optimization 
Theory and Applications for demonstrating it a simple but powerful optimization 
tool1. BFO is essentially a random search algorithm, which mimics the foraging 
behavior of E. coli bacteria. After its appearance, BFO has been applied successfully 
to some engineering problems 45. By using BFO, Ref. 4 dealt with harmonic 

estimation of signal distorted with additive noise and Ref. 5 designed PID controller 
for a multivariable system. However, compared with other bionic algorithms, BFO 
just starts its life and only obtains limited applications. Its powerful potential is 
expected to emit in further improvements and applications. 
                                                           
1 The MATLAB code of the algorithm and the tri-dimensional functions experimented, can 

also be found on the web address of a recent book from the same author (Biomimicry for 
Optimization, Control and Automation, Springer-Verlag, London, UK, 2005), at 
http://www.ece.osu.edu/~passino/ICbook/ic_index.html. 
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2   Brief Review of Bacterial Foraging Optimization 

E. coli bacteria exist in intestines of most animals on the earth. E. coli bacterium has a 
control system, which directs its behaviors in food foraging. The foraging process 
consists of a series moves towards food sources. The control system is in charge of 
evaluating changes from one state to the other states to provide reference information 
for E. coli bacterium’s next state change. A change between two states is called as a 
move and the states include advancing direction and step length. E. coli bacteria 
approach gradually their food sources under the influence of its control system. 
Biological studies show that the foraging process includes the below four steps: (1) 
search for a possible food region, (2) decide to whether or not enter into the possible 
food region, (3) perform a careful search if it enters into a new region, (4) decide to 
either keep stay in the current region or emigrate into a new and more ideal region, 
after they consume some food in the current region. In general, if the bacteria are 
trapped into a region in deficiency of food, they might draw a conclusion based on 
past experience that other regions must be in abundance of food. Due to this 
conclusion, bacteria would change their states. Hence, each decision of state change is 
made under the physiological and environmental constraints with the final aim to 
maximize the obtained energy in unit time.  

To mimic the aforementioned biological principles shown in the foraging behavior 
of E. coli bacteria, Kevin M. Passino in 2000 presented BFO for distributed 
optimization and control 2. Similar with most swarm intelligence-based random 
search algorithms, by using BFO to solve optimization problems, the first step is to 
encode the solution; and then manipulate the individuals based on the full usage of 
swarm information; at last reach the optimal (or swarm optimal) solution. An 
optimization period of BFO consists of three events: chemotactic event, duplicate 
event and elimination-dispersal event. 

These events are illustrated as follows: 
Chemotactic event: Microbiological studies show that E. coli bacteria move by their 
flagella. Hence, biologists call the flagella of E. coli bacteria as biological engines 6. 
When all the flagella sway counterclockwise, the E. coli bacteria move forward; and 
when all the flagella sway clockwise, the E. coli bacteria slow down and tumble in its 
place. The foraging of E. coli bacteria is accompanied by the alteration of the last two 
behaviors.  

In the foraging of bacteria, the swaying corresponds to the evaluation of 
individual’s current environment, and then decides to whether or not adjust the 
current position and the parameters (e.g., direction of the next move and the step 
length) regarding to how to adjust its position. In BFO, the formula of direction 
change is given as follows: 

( ) ( ) ( ) ( )1, , , ,i ij k l j k l C i jθ θ φ+ = +  (1) 

where θ i(j,k,l) stands for the current position of the ith individual; j, k and l indicate 
for the numbers of chemotactic events, duplicate iterations and elimination-dispersal 
events, respectively; φ(j) stands for the new advancing direction decided by flagella 
swaying and C(i) for the step length. 
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Duplicate event: After a period of food search, the foraging strategies of some 
bacteria appear inferior evidently. These bacteria with inferior foraging strategies 
suffer a high probability to be removed out of the population due to their low ability 
to find enough food. To keep the population size constant, a portion of bacteria with 
superior foraging strategies are duplicated to take the places of removed ones. 

The duplicate event is fulfilled as follows: Let the population size is S, the number 
of bacteria to be removed is defined as 

/ 2rS S=  (2) 

Firstly, rank all of the individuals regarding to evaluations of their positions, and then 
remove out the last half (Sr) individuals and duplicate one copy for each of the 
residual half (Sr) ones to keep a constant population size. 
Elimination-dispersal event: The changes of the environment where the bacteria 
population live, for example, the sudden increasing of the temperature, the flushing 
with water and the affection by other entities, will affect the behavior of the bacteria 
heavily. All of these factors possibly cause gradual or sudden changes of the 
population. The population changes might include that all bacteria in the current 
region are killed or part of them move to a new region. The elimination–dispersal 
event is an evolution operation designed to imitate this biological process. This 
operation likely destroys the performance of the chemotactic event, but also likely 
promotes it, since dispersal might place bacteria near a better food source. 

The elimination–dispersal event is triggered with probability Ped. If certain 
individual satisfies the dispersal condition, it should be deleted and then a new 
individual should be generated. This operation means that the individual moves to a 
new position. 

The procedure of solving optimization problem with bacterial foraging includes: 
(1) encoding the solution of the problem, (2) designing the evaluation function, (3) 
generating the initial population, (4) optimizing the objective function by the 
interaction of individuals. The steps of the algorithm are as follows: 

Pseudocode of bacterial foraging algorithm 

Step 1. Initialize the population 
Step 2. Evaluate the individual using evaluation function 
Step 3. Three loops of optimization 

Inner loop: chemotactic event; 
Middle loop: duplicate event; 
Outer loop: elimination-dispersal event 

Step 4. Decode the optimal individual to obtain the final solution 

There are three loops of optimization in the algorithm. The outer loop is elimination-
dispersal event, the middle loop is duplicate event and the inner loop is chemotactic 
event. The inner loop, chemotactic event, is the core of the three loops. It corresponds 
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 to the direction selection scheme which is the central step employed by a living 
creature to search food and in charge of the decisions that whether or not enter into a 
new region, how long does the individual stay in the current region, which direction 
should be selected in the next move. These decisions mean that the chemotactic event 
has important influence to the algorithm convergence. 

3   The Improved BFO Algorithm 

3.1   Encoding Scheme 

The improved bacterial foraging algorithm will be applied to solving the job shop 
scheduling problems (JSSP). Hence, we design the encoding scheme taking the 
consideration of JSSP. The numbers in a code are the numbers of the workpieces and 
the ith (i=1, 2, ……, m) appearance of the number j (j=1, 2, ……，n) denotes the ith 
operation of the jth workpiece. Fig.1 shows an example of our encoding scheme.  
Fig. 2 and Fig. 3 are the sequence and the Gantt chart corresponding to the Fig. 1. In 
Fig. 2 the group (i, j, k, t) means that the jth operation of the ith workpiece requires 
the t time span on the kth machine. 

 

Fig. 1. Example of our coding scheme 

 

Fig. 2. The decoded operation sequence corresponding the code in Fig.1 

 

Fig. 3. Chart corresponding to the code in Fig.1 
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3.2   The Improved Chemotactic Event 

There are two foraging methods in the biological foraging search scheme: patrol and 
ambuscade. The foragers search food by changing their position continually in the 
patrol scheme, while they keep the static state and wait for the preys passing from 
them in the ambuscade scheme. In fact, the foraging method of most animals 
alternates between the patrol and the ambuscade, which is called bound search. E.coli 
bacteria just search food by this bound scheme, i.e., the patrol and ambuscade are 
applied alternately. When the search scheme changes from ambuscade to patrol, the 
foragers usually adjust the patrol direction according to the information accumulated 
in the previous experience. When they change from patrol to ambuscade, the foragers 
decide the next patrol direction according to the environment. 

Inspired by the intelligent action which embodied in the process of searching for 
food, an improved search schemes for chemotactic event is proposed in this paper. 
The briefly descriptions of the improved schemes is as follows 

In the process of searching food, each bacterium searches its possible direction. 
Searching based on individual means that the individual adjust the patrol direction 
according to its own information. The information is accumulated historically during 
the food searching process. 

The design of this search scheme is as follows: firstly, select an individual from the 
population and randomly select two positions on the encoding sequence. The codes 
between these two positions are called stable region. The codes in the stable region 
will not change at the following operation. So an individual is divided into three parts 
generally. Except for the stable region, the regions in the two sides are called 
exchanging interval A and exchanging interval B, respectively. And then exchange in 
these two intervals, i.e., randomly ranking the sequences in interval A and interval B, 
respectively. This exchanging could guarantee that the encoding sequence is a valid 
solution. 

The individual moves forward into the direction selected after the exchanging. 
Then evaluate the current state. If the new individual is near the food source, the 
previous exchanging is correct and the new individual will take the place of the old 
one. On the contrary, the individual moves back to its previous position. Fig. 4 shows 
the flow chart of the algorithm. The variables in Fig. 4 are described as follows: x 
denotes the selected individual, A and B denote the left side and the right side of the 
stable region, respectively. 

4   Simulation Experiments and Results 

In this section, the proposed improved algorithm is applied to job shop schedule 
problem to test its efficiency. 

The original BFO algorithm and the improved BFO algorithm are implemented 
using C language. The results are showed in Table 1. The test data come form the LA 
test problems generated by Lawrence in 1984 7. BKS is the current optimal solution. 
IBFO is the improved algorithm and BFO is the standard bacterial foraging algorithm. 
TS and BS are the results of taboo search and beam search algorithm reported in 
References 8 and 9. 
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It can be seen from Table 1 that the proposed algorithm in this paper could find the 
optimization for most cases. Fig. 5 shows the makespans trend with regard to the 
iteration number, where the solid, dashed and dotted lines denote the maximum, 
average and minimum values, respectively. 

Table 1. The results of experiments 

Instance Size BKS BFO IBFO TS BS 

LA01 10*5 666 698 666 666 666 
LA02 10*5 655 740 668 655 704 
LA03 10*5 597 671 617 603 650 
LA04 10*5 590 657 604 590 620 
LA05 10*5 593 593 593 593 593 

LA06 15*5 926 930 926 926 926 
LA07 15*5 890 952 890 890 890 
LA08 15*5 863 898 863 863 863 
LA09 15*5 951 993 951 951 951 
LA10 15*5 958 962 958 958 958 

Exchange the interval A in x

Exchange the interval B in x

Is the new individual better? 

x is replaced by the new one

Continue? 

Select an individual x

No 

Yes 

Yes 

No

Terminate
 

Fig. 4. Chart of the individual-based search scheme 
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Fig. 5. Makespan trend for LA01 corresponding to iterations 

5   Conclusions 

In this paper we analyze the direction selection scheme for bacterial foraging and 
propose an improved chemotactic event named individual-based searching scheme. 
The proposed method is verified by solving job shop scheduling problems and 
competitive results are obtained. 
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Abstract. In this paper systems of linear equations Ax = b, where both
A and b contain uncertain factors in terms of fuzziness are investigated.
The classical solutions being vectors of fuzzy numbers are considered.
The complex problem of finding the exact classical solutions is replaced
by a corresponding optimization task with the cost function based on
the Hausdorff metric. This cost function is next minimized with use of
genetic algorithms. A number of numerical experiments are provided in
order to verify the given approach. The results and some conclusions are
also included.

1 Introduction

Several real world problems in economics, finance, mechanics etc. can lead to
solving a system of linear equations. When the coefficients of the system are
imprecise, it may be convenient to use interval real numbers to express that im-
preciseness [1]. Hence, one obtains a system of interval linear equations, which
can be solved using several techniques [8]. If however one has additional knowl-
edge about the parameters of the system and if different degrees of belief can be
assigned to different values of the parameters, then instead of interval numbers,
one can consider using fuzzy real numbers.

A system of linear equations Ax = b, where some (or all) of the elements aij of
the matrix A and bi of the vector b are fuzzy numbers is called System of Linear
Fuzzy Equations, or sometimes Fuzzy Linear System. For sake of simplicity we
hereby denote systems of linear fuzzy equations by SLFE. Many variants of
SLFE have recently been investigating by researchers. In [4], a special type of
SLFE where A is a crisp matrix and b is a vector of fuzzy numbers is considered.
The original n × n system is replaced by another (2n) × (2n) system Sy = b′,
where S is a (2n) × (2n) crisp matrix obtained from the elements of A, b′ is
a crisp vector of the (parameterized) endpoints of the α-cuts of b and y is a
crisp vector representing the endpoints of the α-cuts of the unknowns. In [9]
an iteration method based on interval arithmetics for solving the fuzzy linear
� This work is supported by the grant no. N519 020 31/3900 from the Polish Ministry

of Science and Higher Education (Fund for Scientific Research in 2006-2007).
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systems x = Ax + U , where A is a crisp matrix and U is a vector of fuzzy
numbers is given. It is shown that if the condition ||A||∞ < 1 holds then it is
possible to construct a linear mapping with a unique fix-point being the solution
of the given system.

Another type of SLFE is discussed in [5]. Here both matrix A and vector b
contain fuzzy number elements, however crisp solutions are of interest. Such solu-
tions are approximated by applying a simple fuzzy neural network. The network
has one single output neuron which is fully connected with all input neurons. The
(crisp) connection weights of this neural net represent an approximated solution
of SLFE.

The most interesting case is when A, b and the vector of unknowns x contain
fuzzy elements. Since now we will emphasize that by placing a tilde over them,
i.e. Ã, b̃ and x̃. In [3], the systems Ãx̃ = b̃ with triangular fuzzy numbers are
studied. Several definitions of a solution for such systems are given, including
that based on the united solution of systems of interval linear equations [8],
as well as on the Cramer rule etc. The study is however focused rather on the
theoretical than the computational aspect of the problem.

In this paper we will limit ourself on the classical solutions of Ãx̃ = b̃, as
mentioned in [3]. A vector of fuzzy numbers x̃∗ is called the solution of the
linear fuzzy system Ãx̃ = b̃ if Ãx̃∗ = b̃ in the sense of regular fuzzy arithmetics.
Most attention will be paid on the computational aspect of the problem. In
section 2 various basic notions are given. Some details on the classical solution
are discussed in section 3. Next, an evolutionary approach to approximate the
classical solutions is proposed in section 4. The results of various numerical tests
are given in section 5, whereas in section 6 some final conclusions are drawn.

2 Preliminaries

The concept of fuzzy sets was first introduced by Zadeh in [11]. Fuzzy sets can be
used, among other things, to represent inexact data, to express vague concepts,
rules etc. A fuzzy set Ã over a universe X is characterized by a mapping μ

�A

from X into [0, 1]. This mapping is called the membership function of Ã. For all
x ∈ X , μ

�A (x) is the degree of membership of x in the fuzzy set Ã.
For all α ∈ [0, 1], the subset Ã (α) =

{
x ∈ X : μ

�A (x) ≥ α
}

of X is referred
to as the (weak) α-cut of Ã. In this paper, fuzzy real numbers, or shortly fuzzy
numbers are of major concern. We hereby denote a fuzzy number by placing a
tilde over lower case characters, such as ã, b̃ etc. A fuzzy number ã is a fuzzy set
over the set of all real numbers R where:

– ã is convex, i.e. all α-cuts ã (α) of ã are convex subsets of R (real intervals).
– there exist exactly one value a ∈ R for which μ

�a (a) = 1. This value is
referred to as the mode of the fuzzy number ã.

In other words, fuzzy numbers are convex, normalized and unimodal fuzzy sub-
sets of the real line R. So defined fuzzy real number ã can usually be interpreted
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as about a, where the corresponding uncertainty of this expression is character-
ized by the membership function μ

�a. The set of all fuzzy real numbers is denoted
hereby as F (R).

Let K (R) be the family of all closed subsets of R. The Hausdorff metric on
K (R) is defined as follows:

H (A, B) = max
{

sup
a∈A

inf
b∈B

|a − b|, sup
b∈B

inf
a∈A

|a − b|
}

, (1)

for all A, B ∈ K (R). This metric can be generalized into that on F (R), namely:

H∞
(
ã, b̃

)
= sup

α∈(0,1]
H

(
ã (α) , b̃ (α)

)
, (2)

for all ã, b̃ ∈ F (R). Since for all α ∈ (0, 1], ã (α) and b̃ (α) are interval numbers,
H∞ can be rewritten as follows:

H∞
(
ã, b̃

)
= sup

α∈(0,1]
max

{∣∣∣ã (α)L − b̃ (α)L
∣∣∣ ,

∣∣∣ã (α)R − b̃ (α)R
∣∣∣
}
, (3)

where the indices L and R indicate the left and right endpoints of interval real
numbers [1].

Standard arithmetic operations on fuzzy numbers can be defined with use of
Zadeh’s extension principle [12]. Let ã and b̃ be fuzzy numbers, let ♦ be one of
the operators {+, −, ×, /}. Additionally, assume that the support supp

(
b̃
)

of b̃

(supp
(
b̃
)

= b̃ (0)) does not contain zero in the case of division. Let’s define a
mapping μ

�c : R → [0, 1] as follows:

∀z ∈ R, μ
�c (z) = sup

z=x♦y
min

{
μ
�a (x) , μ

�b (y)
}

. (4)

It can be shown that the fuzzy set c̃ with the membership function μ
�c defined

above is also a fuzzy number. This fuzzy number is referred to as the sum,
difference, product or quotient of ã and b̃ for ♦ being +, −, × and / respectively.

In practice however fuzzy computation usually makes use of the α-cuts. One
can easily show that for ã, b̃ ∈ F (R),

(
ã ♦ b̃

)
(α) = ã (α) ♦ b̃ (α), where

on the right side of this equation the operator ♦ refers to that of interval
arithmetics [1].

3 Systems of Linear Fuzzy Equations

Let us now consider the following system of linear fuzzy equations:

Ãx̃ = b̃ (5)

where Ã = [ãij ]
m×n is an m × n matrix of fuzzy numbers and b̃ =

[
b̃i

]m×1
is

a vector of fuzzy numbers. In general, m can be different from n. A vector of
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fuzzy numbers x̃∗ = [x̃i
∗]n×1 is called the solution of (5) if by substituting x̃∗

into the left side of (5) and performing standard fuzzy number multiplication
and addition, one obtains the right side vector b̃. In other words:

n∑

j=1

ãij x̃j = b̃i, ∀i = 1, m. (6)

A standard way to solve this system is to replace it by a set of systems of
interval linear equations (or a parameterized interval system) [3]:

n∑

j=1

[
ãij (α)L , ãij (α)R

] [
x̃j (α)L , x̃j (α)R

]
=

[
b̃i (α)L , b̃i (α)R

]
, ∀i ∈ 1, m. (7)

This approach however has some serious drawbacks. First, for a given α ∈ [0, 1]
finding the interval solution of (7) is a problem of exponential complexity. Second,
assuming that for each α ∈ [0, 1] the solution x̃j (α) of (7) exists and can be
found, {x̃j (α) : α ∈ [0, 1]} need not be a family of nested intervals. This means
that it need not define a proper fuzzy number.

One of the possibilities to overcome these drawbacks is to apply the GA-
based approach to approximate the solution of systems of interval linear equa-
tions as proposed in one of our previous papers [10]. Starting with α = 0 one
can find the approximating solution

[
x̃j (0)L , x̃j (0)R

]
, j = 1, n of (7). Hav-

ing the solution
[
x̃j (αk)L , x̃j (αk)R

]
for some αk ∈ [0, 1), one can again ap-

ply the algorithm to compute
[
x̃j (αl)

L
, x̃j (αl)

R
]

for some αl ∈ (αk, 1] with

the constraint x̃j (αl) ⊆ x̃j (αk) . This procedure ensures that for all j = 1, n,
{x̃j (α) : α ∈ [0, 1]} represents a proper fuzzy number.

We will propose here however a direct technique to approximate the classical
solution of (5), which can be seen as an extension of that provided in [10] to the
fuzzy case. The details of this approach will be discussed in the next section.

4 Genetic Algorithm for Solving SLFE

Let us now again consider the SLFE given in (6). Let x̃ = [x̃j ] be an arbitrary
vector of fuzzy numbers. Assume that by applying standard fuzzy number mul-
tiplication and addition one obtains

∑n
j=1 ãij x̃j = γ̃i, ∀i = 1, m. Let us now

define a function over the family of all vector of fuzzy numbers in F (R)m as
follows:

f (x̃) =
m∑

i=1

H∞
(
γ̃i, b̃i

)
=

m∑

i=1

H∞

⎛

⎝
n∑

j=1

ãij x̃j , b̃i

⎞

⎠, (8)

where H∞ is the extended Hausdorff metric defined in (3). It can be observed
that if x̃∗ is the exact solution of (5) then it is also the minimum of f . Hence
one can solve (5) by minimizing the cost function f .
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Discretizing fuzzy numbers at p levels of confidence α1, α2, . . . , αp where p > 1
and 0 = α1 < α2 < · · · < αp = 1, the cost function becomes:

F (x̃1 (α1→p) , . . . , x̃n (α1→p)) =
m∑

i=1

max
k=1,p,ψ={L,R}

∣∣∣γ̃i (αk)ψ − b̃i (αk)ψ
∣∣∣. (9)

Here by x̃ (α1→p) we denote the discretized representation of the fuzzy number x̃.
While optimizing the cost function F , one has to take into account the condition
on the x̃i (αk), that is for all r, s = 1, p and r < s, x̃i (αs) ⊆ x̃i (αr). As it can
be observed, F is not everywhere differentiable and gradient based optimization
techniques may not applicable. In this paper, a steady state genetic algorithm
is designed to minimize the cost function F .

4.1 The Steady State Genetic Algorithm

The steady state genetic algorithm starts with a population of randomly gen-
erated individuals (genomes). At each generation it creates a temporary set of
new individuals by performing genetic operations (i.e. selection, crossover and
mutation) on current individuals. The offsprings are then added to the popula-
tion and their fitness values are computed. Next, all individuals in the extended
population are sorted with respect to their fitness values and the worst individ-
uals are removed. Denote by P (t) the population at step t, by S the number
of individuals in the population. Let M be the number of new individuals ad-
ditionally created at each iteration (M < S). Let T be the maximal number of
iterations. The steady state strategy is explained in Fig. 1.

Fig. 1. The steady state strategy

4.2 Genetic Operators

In order to be able to explore the GA in solving the SLFE problem, the genomes
must be encoded so that each of them is a proper representation of some potential
solution of (5). Namely, each genome is a vector of discretized fuzzy numbers,
i.e. x = (x̃1 (α1→p) , . . . , x̃n (α1→p))

T. Here the notation x is used instead of x̃ to
indicate that x is the corresponding discretized version of x̃.
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Selection. Various selection schemes such as roulette wheel selection, tourna-
ment selection etc. can be used. In each case, selection is made based on the
fitness values of genomes. Here the fitness value of each genome is computed
from its associating cost function value (9) and then by applying a linear scaling
scheme.

Crossover. The aim of crossing over during the evolution process is to al-
low genetic material to be exchanged between individuals. The following arith-
metic mating scheme is applied: let x = (x̃1 (α1→p) , . . . , x̃n (α1→p))

T and y =
(ỹ1 (α1→p) , . . . , ỹn (α1→p))

T be two genomes selected for crossing over. First,
a random real number ε ∈ (0, 1) is chosen. Next, two new offsprings b =(
b̃1 (α1→p) , . . . , b̃n (α1→p)

)T
and s = (s̃1 (α1→p) , . . . , s̃n (α1→p))

T are generated
using interval number arithmetics:

b̃i (αk) = p.x̃i (αk) + (1 − p) .ỹi (αk)
s̃i (αk) = (1 − p) .x̃i (αk) + p.ỹi (αk) ,

for i = 1, n and k = 1, p. It can be observed that both b̃i (α1→p) and s̃i (α1→p)
represent a proper fuzzy number.

Mutation. The aim of mutation is to maintain the diversity of genomes from
generation to generation. In the algorithm presented here, an extended version
of nonuniform mutation is applied. Namely let Δ (t, r) (t ∈ N and r ∈ R

+) be a
pseudo-random number generator with the following properties:

1. Δ (t, r) generates pseudo-random numbers between 0 and r,
2. ∀ε > 0, ∀t1, t2 ∈ R

+ : t1 < t2, Prob{Δ (t2, r) < ε} > Prob {Δ (t1, r) < ε}. In
other words, the probability of Δ (t, r) to produce a value close to 0 increases
when t increases.

In this paper Δ (t, r) = r
(
1 − ω1−t/T

)
is used. Here T is the maximal number of

populations and ω is a pseudo-random number generator of uniform distribution
in [0, 1].

Let the i-th component x̃i (α1→p) of a genome x in the t-th population be
chosen for mutation. Starting from k = 1 up to k = p, each interval x̃i (αk) is
shifted by an amount λik to x̃i

′ (αk), i.e. x̃i
′ (αk) = x̃i (αk) + λik, where:

λik = −Δ
(
t, x̃i (αk)L − x̃i (αk−1)

L
)

+ λi,k−1

or
λik = Δ

(
t, x̃i (αk−1)

R − x̃i (αk)R
)

+ λi,k−1,

x̃i
′ (α0) is the largest interval containing the support of x̃i and λi,0 = 0. This

mutation scheme allows the GA to search for the solution in the whole input
space at the beginning phase, whereas as evolution goes on, this process becomes
local. It also ensures that the mutated genomes still represent vectors of proper
fuzzy numbers.
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5 Experimental Results

The proposed GA technique was applied to approximate the classical solutions
of various systems of linear fuzzy equations with different values of m and n. For
each configuration of m × n, a set of 20 different pairs

(
Ã, x̃∗

)
were randomly

generated. Each element of Ã as well as of x̃∗ is a fuzzy real number with the
support in [−2, 2]. Next, the right hand vectors b̃ were computed according to
b̃ = Ãx̃∗ using standard fuzzy arithmetics.

The size of the population S, the maximal number of iterations T, the proba-
bility of crossing over pC as well as the probability of mutation pM were chosen
depending on the size of the problem. For instance, in the case when m = n = 20,
these settings were: S = 500, T = 10000, pC = 0.85 and pM = 0.15. In all ex-
periments, fuzzy numbers were discretized at three levels of confidence: α1 = 0,
α2 = 0.5 and α3 = 1.

For each pair
(
Ã, b̃

)
, the simulation was repeated 10 times, i.e. with 10 dif-

ferent initial populations. The solution with the smallest value of the cost func-
tion (9) was chosen as the final solution for the given system. Each solution
was then compared with its corresponding exact solution and the Mean Square
Errors (MSE) were computed. The experimental results for m = n = 5 and
m = n = 20, in terms of the MSE are shown in Table 1:

Table 1. Test Results for m = n = 5 and m = n = 20

5 × 5 systems 20 × 20 systems

Min MSE 7.17e-4 5.33e-2

Max MSE 1.72e-1 1.05e-1

Avg MSE 3.94e-2 6.66e-2

6 Conclusions

In this paper, a GA-based approach for approximating the classical solution of
systems of linear fuzzy equations was proposed. As finding the classical solution
of (5) is a complex task, the original SLFE was viewed in terms of an optimization
problem. The cost function was built based on the Hausdorff metric on the family
of fuzzy real numbers. Next a steady state strategy was designed to minimize this
cost function, involving fuzzy arithmetic crossover and nonuniform mutation.

One of the issues which should be emphasized is that the given approach
provides a possibility to solve large scale systems of linear fuzzy equations, which
is the case in many real world applications. It can also be observed that when
there is no exact extension principle based solution for a given SLFE, a possible
solution can still be found. The technique discussed here is not limited to the
case of square systems, but it is also capable of solving systems of m equations
with n unknowns, where m �= n.
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The only type of uncertainty mentioned in the systems presented so far is
impreciseness. In general, impreciseness can be modeled by interval numbers
or fuzzy numbers - when additional knowledge is available. However in many
practical problems, beside impreciseness, one may have to deal with another
kind of uncertainty which is randomness [2]. Impreciseness is connected with
values, concepts, rules... which can not be defined exactly, whereas randomness
is related to events which may or may not take place in the future. Hence in many
cases, the systems of linear equations under concern may contain both imprecise
and random factors. This will be subject for further study by the authors.
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Abstract. The stochastic dominance (SD) is based on an axiomatic
model of risk-averse preferences and therefore, the SD-efficiency is an
important property of selected portfolios. As defined with a continuum
of criteria representing some measures of failure in achieving several tar-
gets, the SD does not provide us with a simple computational recipe.
While limiting to a few selected target values one gets a typical mul-
tiple criteria optimization model approximating the corresponding SD
approach. Although, it is rather difficult to justify a selection of a few
target values, this difficulty can be overcome with the effective use of
fuzzy target values. While focusing on the first degree SD and extending
the target membership functions to some monotonic utility functions we
get the multiple criteria model which preserves the consistency with both
the first degree and the second degree SD. Further applying the reference
point methodology to the multiple criteria model and taking advantages
of fuzzy chance specifications we get the method that allows to model
interactively the preferences by fuzzy specification of the desired dis-
tribution. The model itself guarantees that every generated solution is
efficient according to the SD rules.

1 Introduction

The portfolio optimization problem considered in this paper follows the classical
formulation and is based on a single period model of investment. At the begin-
ning of a period, an investor allocates his capital among various securities, thus
assigning a nonnegative weight (share of the capital) to each security. During
the investment period, a security generates a random rate of return. This results
in a change of the capital invested (observed at the end of the period) which is
measured by the weighted average of the individual rates of return.

Let J = {1, 2, . . . , n} denote a set of securities considered for an investment.
For each security j ∈ J , its rate of return is represented by a random variable Rj

with a given mean zj = E{Rj}. Further, let x = (xj)j=1,2,...,n denote a vector of
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decision variables xj expressing the weights defining a portfolio. To represent a
portfolio, the weights must satisfy a set of constraints that form a feasible set P .
The simplest way of defining a feasible set is by a requirement that the weights
must sum to one and short sales are not allowed, i.e.

∑n
j=1 xj = 1 and xj ≥ 0 for

j = 1, . . . , n. Hereafter, it is assumed that P is a general LP feasible set given
in a canonical form as a system of linear equations with nonnegative variables.
Each portfolio x defines a corresponding random variable R(x) =

∑n
j=1 Rjxj

that represents the portfolio rate of return. The mean rate of return for portfolio
x is given as z(x) = E{R(x)} =

∑n
j=1 zjxj . Following the seminal work by

Markowitz [6], the portfolio optimization problem is modeled as a mean-risk
bicriteria optimization problem where z(x) is maximized and some risk measure
�(x) is minimized. In the original Markowitz model [6] the risk is measured by
the standard deviation or variance while several other risk measures have been
later considered thus creating the entire family of mean-risk (Markowitz-type)
models [2,5].

The Markowitz model is frequently criticized as not consistent with axiomatic
models of preferences for choice under risk [13]. Models consistent with the pref-
erence axioms are based on the relations of stochastic dominance or on expected
utility theory [3,14]. In stochastic dominance, uncertain returns (random vari-
ables) are compared by pointwise comparison of some performance functions
constructed from their distribution functions. The right-continuous cumulative
distribution function (cdf): FR(x)(η) = P{R(x) ≤ η}. is used to define the first
degree stochastic dominance (FSD). The second function is derived from the
cdf as F

(2)
R(x)(η) =

∫ η

−∞ FR(x)(ξ) dξ and it defines the second degree stochastic

dominance (SSD). Function F
(2)
R(x), used to define the SSD relation, can also be

presented [10] as F
(2)
R(x)(η) = E{(η − R(x))+} where (.)+ denotes the nonnega-

tive part. Hence, while function FR(x) expresses the probability of a shortfall to
target η, function F

(2)
R(x) measures the mean shortfall to the target. The weak

relations of stochastic dominance (FSD or SSD) are defined by pointwise in-
equalities for all real targets: R(x′) �

F SD
R(x′′) if FR(x′)(η) ≤ FR(x′′)(η) for all

η, and respectively, R(x′) �
SSD

R(x′′) if F
(2)
R(x′)(η) ≤ F

(2)
R(x′′)(η) for all η. We say

that portfolio x′ dominates x′′ under the FSD (SSD) if F
(1)
R(x′)(η) ≤ F

(1)
R(x′′)(η)

(F (2)
R(x′)(η) ≤ F

(2)
R(x′′)(η), respectively) for all η, with at least one strict inequality.

A feasible portfolio x0 ∈ P is called FSD (SSD) efficient if there is no x ∈ P
such that R(x) �

FSD
R(x0) (R(x) �

SSD
R(x0)).

We consider T scenarios with probabilities pt (where t = 1, . . . , T ). We assume
that for each random variable Rj its realization rjt under the scenario t is known.
Typically, the realizations are derived from historical data treating T historical
periods as equally probable scenarios (pt = 1/T ). The realizations of the port-
folio return R(x) are given as rt(x) =

∑n
j=1 rjtxj and the expected value can

be computed as z(x) =
∑T

t=1 rt(x)pt =
∑T

t=1

[∑n
j=1 rjtxj

]
pt. Similarly, values

of functions F
(1)
R(x)(η) and F

(2)
R(x)(η) can easily be computed then for any given
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target η. Nevertheless, as defined with a continuum of criteria representing some
measures of failure in achieving several targets, the stochastic dominance mod-
els do not provide us with a simple computational recipe. While limiting to a
few selected target values one gets typical multiple criteria optimization models
approximating the corresponding stochastic dominance approaches [7,8,9]. How-
ever, in practice, it is rather difficult to justify a selection of a few target values.
This difficulty can be overcome with the effective use of fuzzy target values.

2 Fuzzy Targets

Let us focus on the FSD model. Although the right-continuous cdf defines the
FSD relation, the left-continuous cdf F

(1)
R(x)(η) = P{R(x) < η} can equivalently

be used for this purpose. It provides a lucid interpretation of the FSD relation
as pointwise comparison of downside (below-target) risk measures representing
probabilities of not achieving given levels (targets), as well as it allows us to build
a simple optimization model for those measures. Suppose one has preselected m
return values η1 > η2 > . . . > ηm as targets to evaluate probabilities of the
corresponding shortfalls. Introducing m corresponding criteria

sk(x) = F
(1)
R(x)(ηk) for k = 1, 2, . . . , m (1)

one gets the multiple criteria portfolio optimization model:

min{(s1(x), s2(x), . . . , sm(x)) : x ∈ P} (2)

Due to the use of the left-continuous cdf as criteria sk(x) = F
(1)
R(x)(ηk), optimiza-

tion (2) can be formulated as mixed integer linear programming problem

min (y1, y2, . . . , ym) s.t. x ∈ P , yk =
T∑

t=1

bktpt for k = 1, . . . , m

Mbkt ≥ ηk −
n∑

j=1

rjtxj , bkt ∈ {0, 1} for k = 1, . . . , m; t = 1, . . . , T

where M a sufficiently large constant and bkt are binary variables taking value 1
whenever realization of the portfolio return under scenario t is below the target
value ηk (i.e., bkt ≥ sign((ηk − rt(x))+)).

Model (2) represents an approximation to the FSD approach. One can easily
notice that any portfolio x̄ ∈ P efficient (Pareto-optimal) solution to (2) can be
FSD dominated only by an alternative efficient portfolio x ∈ P with the same
values of criteria sk(x) = sk(x̄) for all k = 1, . . . , m. Hence, a small number
of targets results in serious threat of FSD ambiguity in the sense the selected
portfolio efficient to the multiple criteria model can easily be FSD dominated
by another quite a different portfolio with the same values of the cdf at the few
targets.
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Note that values ηk actually represent the targets defined as corresponding
(closed) crisp sets {η ∈ R | η ≥ ηk}, and their characteristic functions

χ
k
(η) =

{
0 for η < ηk

1 for η ≥ ηk

allow to express the FSD criteria as sk(x) = E{1−χ
k
(R(x))}. Taking advantages

of the discrete distribution we have assumed they can be written as sk(x) =
1 −

∑T
t=1 χ

k
(rt(x))pt. We propose to replace crisp targets with fuzzy targets

Ck. We will focus on trapezoidal fuzzy sets defined by nondecreasing piecewise
linear membership functions:

μk(η) =

⎧
⎨

⎩

0 for η < η−k
(η − η−k )/(η+

k − η−k ) for η−k ≤ η < η+
k

1 for η ≥ η+
k

(3)

defined by two parameters (breakpoints) η−k and η+
k representing the largest

return with membership level 0 and the smallest return with membership level
1, respectively. To relate them with values ηk defining the crisp targets we will
assume that η+

k = ηk while η−k = ηk − Δk for a given fuzzyfication parameter
Δk > 0. Hence, the fuzzy targets Ck can be specified by the interval [η−k , η+

k ] or
equivalently by the pair of numbers (ηk, Δk).

With fuzzy targets Ck, the corresponding FSD criteria are expressed as

sk(x) = E{1 − μ
k
(R(x))} =

1
Δk

∫ ηk

ηk−Δk

FR(x)(η) dη (4)

Applying them in multiple criteria model (2) one gets the fuzzy portfolio op-
timization model which offers more intuitive way to define targets. It provides
an opportunity to define expectations in fuzzy terms like: “minimize the proba-
bility of shortfall to medium profit.” Moreover, due to aggregation on intervals
[ηk − Δk, ηk] made in (4), the following assertion is valid.

Proposition 1. Except for portfolios with identical cdf values within all inter-
vals [ηk −Δk, ηk], every portfolio x ∈ P efficient to the multiple criteria problem
(2) with fuzzy defined criteria (4) is FSD efficient.

Proof. Let x̄ ∈ P be an efficient solution to the multiple criteria problem (2) with
criteria (4). IF it is FSD dominated by portfolio x ∈ P , then FR(x)(η) ≤ FR(x̄)(η)
for all η with at least one inequality strict. Hence, due to (4), sk(x̄) ≥ sk(x) for
all k and any strict inequality FR(x)(η) < FR(x̄)(η) for some η ∈ [ηk − Δk, ηk]
would result in strict inequality sk(x̄) > sk(x) thus contradicting the efficiency
of x̄ to (2).

Note that distributions of rates of return are usually characterized by bounded
support which can easily be covered by the interval [ηm − Δm, η1] while all
Δk ≥ ηk − ηk+1. Following Proposition 1, every portfolio efficient to the cor-
responding multiple criteria problem (2) with fuzzy defined criteria (4) is then
(unconditionally) FSD efficient.
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Problem (2) with fuzzy defined criteria (4) can be expressed as

min{(1 − E{μ1(R(x))}, 1 − E{μ2(R(x))}, . . . , 1 − E{μ
m

(R(x))}) : x ∈ P} (5)

Hence, taking advantages of the discrete distributions, it can be formulated as
the following mixed integer programming problem:

min (y1, y2, . . . , ym) s.t. x ∈ P , yk =
T∑

t=1

vktpt for k = 1, . . . , m

vkt ≥ bkt, bkt ∈ {0, 1} for k = 1, . . . , m; t = 1, . . . , T

Δkvkt + Mbkt ≥ ηk −
n∑

j=1

rjtxj for k = 1, . . . , m; t = 1, . . . , T

(6)

where M a sufficiently large constant and bkt are binary variables taking value 1
whenever realization of the portfolio return under scenario t is below the value
ηk − Δk while vkt ≥ 1 − μk(rt(x)).

3 Extension to Concave Utility

Membership functions μk in criteria 1 − E{μ
k
(R(x))} of problem (5) may be

interpreted as utility functions used to maximize the corresponding expected
utility value. In order to guarantee full consistency of the expected utility max-
imization with FSD the utility function must be strictly increasing. Moreover
concave utility function represent risk aversion (SSD consistency). Membership
function μk is strictly increasing within the interval [η−k , η+

k ] while being con-
stant for η smaller than η−k or larger than η+

k . Moreover, it is neither concave
nor convex. Nevertheless, one can easily extend μk to a strictly increasing con-
cave utility function μ̄k preserving the original values on interval [η−k , η+

k ]. The
simplest such an extension is given by the following piecewise linear function:

μ̄k(η) =
{

(η − η−k )/(η+
k − η−k ) for η < η+

k

1 + β(η − η+
k )/(η+

k − η−k ) for η ≥ η+
k

(7)

where 0 < β < 1 is an arbitrary small positive constant (Fig. 1). Note that
function (7) can alternatively be expressed in terms of η+

k = ηk and η−k = ηk−Δk

as
μ̄k(η) = 1 − β(ηk − η)/Δk − (1 − β)(ηk − η)+/Δk (8)

Reformulating (5) with functions μ̄k we get the multiple criteria problem

min{(1 − E{μ̄1(R(x))}, 1 − E{μ̄2(R(x))}, . . . , 1 − E{μ̄m(R(x))}) : x ∈ P} (9)

Since μ̄k are no longer fuzzy membership functions, the problem is not a fuzzy
optimization model. It is a fuzzy driven multiple criteria model as the utility
functions are defined by parameters of fuzzy targets. However, the use of utility
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Fig. 1. Membership functions μk and increasing concave utility function μ̄k

functions in (9) guarantees the model consistency with the SD rules. Note that,
due to (8)

1 − E{μ̄k(R(x))} =
β

Δk
(ηk − E{R(x)}) +

(1 − β)
Δk

∫ ηk

−∞
FR(x)(η) dη

= [β(ηk − z(x)) + (1 − β)F (2)
R(x)(ηk)]/Δk

(10)

thus allowing us to prove the following consistency statements.

Proposition 2. Every portfolio x ∈ P efficient to multiple criteria problem (9)
is FSD efficient.

Proof. Suppose that x̄ ∈ P efficient to (9) is FSD dominated by portfolio x ∈ P ,
i.e. FR(x)(η) ≤ FR(x̄)(η) for all η with at least one inequality strict. Then z(x) >

z(x̄) and F
(2)
R(x)(ηk) ≤ F

(2)
R(x̄)(ηk) for all k. Hence. due to (10), 1−E{μ̄k(R(x̄))} >

1 − E{μ̄k(R(x))} for all k thus contradicting the efficiency of x̄ to (9).

Proposition 3. Except for portfolios with identical values of the expected utility
criteria E{μ̄k(R(x))}, every portfolio x ∈ P efficient to the multiple criteria
problem (9) is SSD efficient.

Proof. If x̄ ∈ P is SSD dominated by x ∈ P , then F
(2)
R(x)(η) ≤ F

(2)
R(x̄)(η) for all η

and z(x) ≥ z(x̄) [10]. Hence. due to (10), 1 − E{μ̄k(R(x̄))} > 1 − E{μ̄k(R(x))}
for all k and actually 1 − E{μ̄k(R(x̄))} = 1 − E{μ̄k(R(x))} for all k due to the
efficiency of x̄ to (9).

Taking advantages of the discrete distributions, problem (9) can be formulated
as the following linear programming problem. Note that concave piecewise linear
utility functions replacing the fuzzy membership functions allow us to eliminate
binary variables form the optimization problem thus leading to the following
linear programming model

min (y1, y2, . . . , ym) s.t. x ∈ P , yk =
T∑

t=1

vktpt for k = 1, . . . , m

Δkvkt ≥ β(ηk −
n∑

j=1

rjtxj) for k = 1, . . . , m; t = 1, . . . , T

Δkvkt ≥ ηk −
n∑

j=1

rjtxj for k = 1, . . . , m; t = 1, . . . , T

(11)
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4 Reference Point Method and Fuzzy Chances

An operational use of multiple criteria model (9) requires to select one efficient
portfolio for implementation. This can be achieved with the so-called quasisat-
isficing approach to multiple criteria optimization introduced as the reference
point method [15] and later extended the aspiration/reservation based deci-
sion support (ARBDS) approach with many successful applications [4]. In the
ARBDS interactive scheme the decision maker (DM) specifies requirements in
terms of aspiration and reservation levels, i.e., by introducing acceptable and
required values for several criteria. Depending on the specified aspiration and
reservation levels, a special scalarizing achievement function is built which gen-
erates an efficient solution to the multiple criteria problem when maximized.
The computed efficient solution is presented to the DM as the current solution
in a form that allows comparison with the previous ones and modification of the
aspiration and reservation levels if necessary.

The scalarizing achievement function must be strictly monotonic with respect
to each outcome (decreasing for the minimization problem (9)). Second, a so-
lution with all individual outcomes yk satisfying the corresponding reservation
levels is preferred to any solution with at least one individual outcome worse
than its reservation level. Next, provided that all the reservation levels are sat-
isfied, a solution with all individual outcomes yk equal to the corresponding
aspiration levels is preferred to any solution with at least one outcome worse
than its aspiration level. The generic scalarizing achievement function takes the
following form [15]:

a(y) = min
1≤k≤m

{ak(yk)} + ε

m∑

i=k

ak(yk) (12)

where ε is an arbitrary small positive number and ak are the partial achieve-
ment functions measuring actual achievement of outcome yk with respect to the
corresponding aspiration and reservation levels (ya

k < yr
k, respectively). Thus

the scalarizing achievement function is, essentially, defined by the worst partial
achievement but additionally regularized with the sum of all partial achieve-
ments. The regularization term is introduced only to guarantee the solution
efficiency in the case when the maximization of the main term (the worst partial
achievement) results in a non-unique optimal solution.

The partial achievement function ak can be interpreted as a measure of the
DM’s satisfaction with the current value of outcome of the kth criterion. It is
a strictly decreasing function of outcome yk with value ak = 1 if yk = ya

k , and
ak = 0 for yi = yr

k. Various functions can be built meeting those requirements.
We use the piecewise linear partial achievement function given by

ak(yk) =
{

(yr
k − yk)/(yr

k − ya
k) for yk > ya

k

1 + α(ya
k − yk)/(yr

k − ya
k) for yk ≤ ya

k

(13)

where α is arbitrarily defined small parameter satisfying 0 < α < 1 repre-
senting additional increase of the DM’s satisfaction over level 1 when a criterion
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generates outcomes better than the corresponding aspiration level. Partial
achievement function (13) is strictly decreasing and concave piecewise linear
function, which guarantees its LP computability with respect to outcomes yk.
Finally, maximization of the entire scalarizing achievement function (12) can be
implemented by auxiliary LP constraints thus preserving the LP structure of the
entire RPM model:

max{a(y) : x ∈ P , yk = 1 − E{μ̄
k
(R(x))} for k = 1, . . . , m} (14)

Model (14) generates efficient solutions to the corresponding problem (9). Hence,
due to Propositions 2 and 3, the following assertions are valid.

Proposition 4. Every portfolio x ∈ P optimal to the RPM problem (14) is
FSD efficient.

Proposition 5. Except for portfolios with identical values of the expected utility
criteria E{μ̄k(R(x))}, every portfolio x ∈ P optimal to the RPM problem (14)
is SSD efficient.

For outcomes between the reservation and the aspiration levels, the partial
achievement function ak can be interpreted as a trapezoidal membership func-
tion μk for a fuzzy generalization of the crisp target {yk : yk ≤ ya

k}. Hence, the
partial achievement function (13), similar to (7), can be viewed as an extension
of the fuzzy membership function to a strictly monotonic and concave utility.
One may also notice that the aggregation scheme used to build the scalarizing
achievement function (12) from the partial ones may be interpreted as some
fuzzy aggregation operator using the ordered weighted averaging [16]. In other
words, maximization of the scalarizing achievement function (12) is consistent
with the fuzzy optimization methodology and the aspiration and reservation
levels may be regarded as the specification of fuzzy targets for the criteria val-
ues. Actually, as the original criteria sk represent the shortfall probabilities, the
aspiration and reservation levels represent the fuzzy chances. For instance, to
seek low chance of losses and high chance of medium profit one may specify two
(criteria) fuzzy targets: (η−1 , η+

1 ) = (0.00, 0.02) with ya
1 = 0.0 and yr

1 = 0.02 and
(η−2 , η+

2 ) = (0.02, 0.05) with ya
2 = 0.2 and yr

2 = 0.5. Sample list of such simple
fuzzy terms for portfolio selection is given in Table 1.

In our initial tests we have applied the model to the portfolio selection within
the set of assets representing 32 major stock exchange indexes from various
countries.1 The analysis was based on the period 04.07.1997 – 24.09.2004 with the
quotations every 4 weeks. The tests [12] has confirmed easiness of the interactive
preference specification with fuzzy targets and fuzzy chances as well as good
quality of generated portfolios with respect to the classical Markowitz criteria.
Here we present an illustrative example of a simple analysis performed using
only simplified fuzzy terms from Table 1.

We start with the requirement to find a portfolio with low chance of losses.
This requirement leads us to the single-criterion model (m = 1) defined by

1 The quotation data supplied by http://finance.yahoo.com
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Table 1. Sample list of fuzzy terms

Fuzzy targets Definition (η−, η+)

losses rate of return below 2% (0.00,0.02)
medium profit rate of return about 5% (0.02,0.05)
large profit rate of return about 10% (0.05,0.10)

Fuzzy chances Definition (yr, ya)

low chance prob. below 2% (0.00, 0.02)
medium chance prob. about 50% (0.20, 0.50)
high chance prob. about 80% (0.50, 0.80)

Table 2. Sample portfolios characteristics

P1 P2 P3 P4

Expected return rate 1.011 1.015 1.02 1.013
Variance 0.0008 0.0015 0.0044 0.0011
Mean absolute deviation 0.0284 0.029 0.0472 0.0254

the fuzzy target (η−, η+) = (0.00, 0.02) and the aspiration/reservation pair
(yr, ya) = (0.00, 0.02). Note that, due to the use of model (14) with strictly
monotonic utility function μ̄ all probabilities of underachievements are mini-
mized despite only losses are specified as a fuzzy target. This results in a FSD
efficient portfolio (Proposition 4) presented as portfolio P1 in Table 2 where
simplified portfolio characteristics are reported. Next, we try to examine a pos-
sibility of achieving portfolios with higher returns by maximizing the chance
of getting medium or high return, respectively. This leads us to the single-
criterion models (m = 1) defined by the fuzzy targets (η−, η+) = (0.02, 0.05) and
(η−, η+) = (0.05, 0.10), respectively. In both models the aspiration/reservation
pair (yr, ya) = (0.50, 0.80) is used to represent high chance of reaching the re-
sults. The corresponding portfolios are presented as P2 and P3 in Table 2. Again,
following Proposition 4, both the portfolios are FSD efficient. When comparing
to P1, portfolio P2 (high chance of medium return) is characterized by more than
25% increase of the expected return while preserving very similar level risk mea-
sured with mean absolute deviation (mean absolute deviation is a risk measure
consistent with the FSD and SSD orders whereas variance not [8]). Portfolio P3
(high chance of high return) reaches almost doubled expected return but with
similar increase of the mean absolute deviation. Finally, in order to find a portfo-
lio with low chance of losses and high chance to achieve medium return we solve
a bicriteria model (m = 2) defined by the fuzzy targets (η−1 , η+

1 ) = (0.00, 0.02)
and (η−2 , η+

2 ) = (0.02, 0.05). Generated FSD efficient portfolio P4 is indeed char-
acterized by medium return and low risk (mean absolute deviation). Thus, it
might be accepted as the final solution.
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5 Concluding Remarks

Application of the FSD criteria to a few fuzzy targets of rate of return with
membership functions expanded to monotonic concave utility functions allows
us to specify easily an FSD and SSD consistent multiple criteria portfolio op-
timization model. Further, formally FSD criteria allow us to define aspiration
and reservation levels via fuzzy definition of chances. The resulting RPM model
is SSD consistent while allowing for easily defined preference parameters con-
trolling the interactive analysis. The complete model is LP computable in the
case of discrete random variables (historical data). The initial tests [12] has con-
firmed easiness of the interactive preference specification with fuzzy targets and
fuzzy chances as well as good quality of generated portfolios with respect to the
classical Markowitz criteria.
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Abstract. We present a robust version of kernel ridge regression for classifi-
cation, which can gracefully handle outliers. We first show that the ridge re-
gression can be reduced to the proximal support vector machine (PSVM) 
which has been successfully applied in classification problems. In order to in-
corporate robust-ness into kernel ridge regression, we reformulate and derive 
a fuzzy version of kernel ridge regression so that each sample can contribute 
to formation of a decision boundary according to its corresponding fuzzy 
class membership. We also present how to determine the fuzzy class mem-
bership values. Experiments over synthetic and real data sets demonstrate su-
periority of the proposed method, comparing with traditional methods such as 
support vector machines (SVMs). 

1   Introduction 

The ridge regression, also known as a least squares support vector machine (LS-
SVM), can be reduced to the proximal support vector machine (PSVM) [2] when 
target values are set to ±1 for positive and negative samples. As in the PSVM, the 
ridge regression for classification seeks two planes such that each plane is closet to 
one of two data sets to be classified and the two planes are as far apart as possible. 
The two planes are called proximal planes and the plane bisecting these two proximal 
planes is the decision boundary. The ridge regression can be generalized to a kernel 
ridge regression that can handle non-linear decision boundaries [7]. 

In this paper, we propose a robust version of kernel ridge regression (KRR) for 
classification. Since in many classification problems outliers are inevitable, sophisti-
cated classifiers are required to have some capability of handling outliers so that the 
overall performance of classifiers should be less sensitive to outliers [4]. In order to 
incorporate the capability of handling outliers, i.e., robust-ness, into the kernel ridge 
regression, we reformulate the objective function of the KRR such that a sample con-
tributes to the formation of a decision boundary to the extent of the degree of its class 
membership. We call this new kernel ridge regression a fuzzy version of KRR (Fuzzy 
KRR). As indicated in [5][8], the method of computation of fuzzy class membership 
largely influences the performance of fuzzy classifiers. One can predetermine the 
membership values for training samples according to the confidence level of class 
membership. However, in most applications, it may be difficult to assign the member-
ship values to training samples in advance. 
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In this paper, we propose to determine the fuzzy membership values from a mono-
tonic decreasing function of an error caused by a training sample xi. Since the amount 
of error from xi is proportional to its corresponding proximal planes in kernel ridge 
regression, we can interpret the error as a distance from xi to its corresponding proxi-
mal plane [9]. Therefore, samples far apart from two proximal planes would get very 
low values of fuzzy membership, and consequently would make very little contribu-
tion to formation of the decision boundary. The membership values for all training 
samples are initialized to ‘1’. After obtaining the decision boundary, we compute 
errors from the proximal planes, update the membership values according to the er-
rors, and regenerate the decision boundary with new membership values. We do this 
process until there is no significant change in membership values. In this fashion, the 
Fuzzy KRR can produce more reliable decision boundary. 

There are a few approaches to address the aforementioned problems in the litera-
ture [3][5][6]. However, they did not clearly provide how to determine the member-
ship values although all these approaches addressed the problem to incorporate the 
fuzzy membership into the SVM processes. On the other hand, we provide an effi-
cient training method such that the membership value of a sample should be inversely 
proportional to the error from that sample. 

In Sect. 2, we briefly introduce the classic kernel ridge regression. In Sect. 3, we 
present a fuzzy version of kernel ridge regression and the training method. In Sect. 4, 
we present experimental results from the proposed method on synthetic and real data 
sets, comparing with other traditional methods including the SVM. We make conclu-
sions of this work in Sect. 5. 

2   Kernel Ridge Regression 

Ridge regression is a method from classical statistics that implements a regularized 
form of least squares regression [7][12]. Suppose that we are given a training data set 
S = {(xi, yi)}, where xi is a data point in an n dimensional real space nℜ and yi is a real 
number. Ridge regression can be stated as a minimization problem with respect to w 
and b in yxwx =−>⋅=< bf )(  

              yξeXw
w

ξ =+−⎥
⎦

⎤
⎢
⎣

⎡
+ b

b

C
 : subject to     ,

2

1

2
 minimize

2
2

 (1) 

In equation (1), all vectors are column vectors, and the training samples are repre-
sented as a matrix nm×ℜ∈X , where m denotes a number of training samples and n 
represents a dimensionality of xi. Vector y represents a column vector whose element 
represents yi. Vector ξ denotes errors (or slack variables) and C is a non-zero constant, 
and e represents a column vector of ‘1’. Introducing Lagrange multipliers α into equa-
tion (1), one can solve the problem by minimizing the following objective function. 
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Taking the first derivative of equation (2) with respect to w, b, ξ and setting it 
equal to zero, one can obtain the equations: ,αXw T= ,αeTb −= ,Cαξ =  and 

yIeeXXα 1)( −++= CTT . Hence, the corresponding linear model f(x) becomes 

                                  αeXxxwx )()( TTTbf +=−>⋅=<  (3) 

It is noteworthy to point out that the proximal support vector machine [2] (PSVM) 
is a special form of ridge regression where y takes only values of ±1, representing 
positive and negative class memberships. In this case, the ridge regression seeks two 
parallel proximal planes such that one plane 1+=−>⋅< bxw  is closet to positive 
samples and the other 1−=−>⋅< bxw  is closet to negative samples while the two 
planes are as far apart as possible.  

A kernel ridge regression is a non-linear version of ridge regression [7] that can be 
obtained via the so-called “kernel trick”, whereby a linear ridge regression model is 
constructed in a higher dimensional feature space F, where }|)({ Xxx ∈= φF . The 

inner product in feature space is computed via a kernel function 
>⋅=< )()(),( zxzx φφK . The kernel function may be any positive definite “Mercer” 

kernel such as Gaussian radial basis function )exp(),(
2

zxzx −−= kK . A kernel-

induced ridge regression, simply kernel ridge regression, can be formulated as the 
following minimization problem in a feature space: 

                 yξewX
w

ξ =+−⎥
⎦

⎤
⎢
⎣

⎡
+ b

b

C
)( : subject to     

2

1

2
 minimize

2

2 φ . (4) 

One can solve equation (4) as in ridge regression. The corresponding non-linear 
model obtained becomes 

                              ,)),(()())(( αeXxxwx TTTKbf +=−>⋅=< φφ  (5) 

where .)),(( 1yIeeXXα −++= CK TT  In equation (5), we used the notation as de-

scribed in [2]. For nm×ℜ∈A  and kn×ℜ∈B , the kernel K(A,B) maps knnm ×× ℜ×ℜ  into 
km×ℜ . In particular, if x and y are column vectors in nℜ  then, K(xT,y) is a real num-

ber, K(xT,AT) is a row vector in mℜ  and K(A,AT) is an mm ×  matrix. 

3   Fuzzy Kernel Ridge Regression for Classification 

In this section, we present a fuzzy version of kernel ridge regression for classification 
and its corresponding training method. Note that as in the PSVM, the kernel ridge 
regression for classification seeks the decision boundary, and correspondingly two 
proximal planes.  
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3.1   Fuzzy Kernel Ridge Regression 

In equation (4), the kernel ridge regression seeks a non-linear model of f(φ(x)), i.e., a 
non-linear decision boundary such that ||ξ||2, the total sum of squares errors should be 
minimized while two proximal planes are as far apart as possible. In our fuzzy version 
of KRR, we reformulate equation (4) such that the contribution of xi to the decision 
boundary should be proportional to its fuzzy membership value. That is, if the class 
membership of xi is lower, xi should be less contributed to the formation of the deci-
sion boundary, and vice versa. In order to achieve this, we scale the error from  sam-
ple xi, i.e., ξi = yi−f(φ(xi)) by its fuzzy membership value. The corresponding fuzzy 
version of kernel ridge regression in a matrix form can be stated as in equation (6), 
where D is a diagonal matrix whose element Dii represents a fuzzy membership value, 
0 < Dii ≤ 1, of training sample xi. In equation (6), the errors from the samples with 
lower fuzzy membership values are treated less significantly so that the samples make 
less contribution to the formation of decision boundary. 

      yξewX
w

Dξ =+−⎥
⎦

⎤
⎢
⎣

⎡
+ b

b

C
)( : subject to     

2

1

2
 minimize

2

2 φ  (6) 

Introducing Lagrange multipliers α, taking the first derivative of equation (6), and 
setting it equal to zero, one can obtain the following equations: 

           
.)/))((),((

,/))((,,)(
112
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yDeeXXα

αDξαeαXw
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−

++=

=−==

CK

Cb
TT

TTφ
 (7) 

Using these equations, a fuzzy non-linear decision function f(φ(x)) is obtained as 
the following. Note that αi for xi is proportional to the membership value of xi. 

         .)),(()())(( αeXxxwx TTTKbf +=−>⋅=< φφ  (8) 

3.2   Training Method 

The membership values in the proposed version of KRR may be assigned beforehand 
as mentioned in [5]. However, it is difficult to predetermine the membership value in 
most real applications. In this paper, we propose to compute fuzzy membership values 
from a monotonic decreasing function of an error ξi caused by a training sample xi, 
which can be interpreted as a distance from xi to its corresponding proximal plane. 
Note that the two proximal planes can be interpreted as the optimal planes that repre-
sent most of training samples. Therefore, a training sample significantly apart from its 
proximal plane should get a lower membership value and a sample closer to the 
proximal plane should get a higher value. One can use any monotonic decreasing 
function of error ξi. In this paper, we used a bell-shaped membership function as in 
equation (9). If an absolute value of error ξi is less than a threshold value T, the mem-
bership value is assigned 1. We set the threshold value T to the mean value of errors 
and the constant k is set to the variance of errors. 
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We first initialize all membership values of training samples into 1. Then, we run 
the Fuzzy KRR, obtain the decision boundary, and compute errors from the proximal 
planes. Then, using equation (9), we compute the membership values for training 
samples, and obtain new decision boundary. We do this process until no significant 
change in membership values. The whole procedure is summarized in Fig. 1. 

 

Algorithm for the Fuzzy KRR 

1. Initialize all the membership values Dii into 1. 
 

2. Obtain w and b for the decision boundary using equation (7). 
 

3. Compute errors from all xi using ξi = yi−f(φ(xi)) and equation (8). 
 

4. Compute membership values Dii for all xi using equation (9). 
 

5. Go to step 2 until no significant change in D,  

Fig. 1. Training algorithm of the Fuzzy KRR 

4   Experimental Results 

In this section we present the experimental results from the proposed method on vari-
ous data sets, comparing with the traditional learning methods, including kernel SVM 
(KSVM) and KRR [1][4][7][11][15]. In Sect. 4.1, we first present the experimental 
results on a synthetic data set to illustrate the characteristics of the Fuzzy KRR, com-
paring with the classical SVMs. Then, we present the performance of the Fuzzy KRR 
on Web page classifications. The Fuzzy KRR has converged quickly in 3 or 4 itera-
tions throughout the experiments. 

4.1   Synthetic Data 

In order to illustrate the properties of the Fuzzy KRR comparing with traditional 
SVMs, we generated a synthetic data set as in Fig. 2.(a). Both positive and negative 
samples, 100 points for each class, were generated from two different Gaussian distri-
butions, and randomly chosen 15 outliers were added to each class. Positive samples 
and negative samples are depicted as × and , respectively. Fig. 2.(b), (c), and (d) 
show the experimental results from the SVM, KRR, and Fuzzy KRR, respectively. In 
these figures, the solid lines represent the decision boundaries obtained from each 
learning method. One can see that the results from the SVM and the KRR are almost 
equivalent. Note that both methods tend to overfit into training samples. On the other 
hand, the Fuzzy KRR appears to be less sensitive to outliers, extracting a hyperplane 
bisecting two classes. This simple experiment indicates that the proposed fuzzy ver-
sion of KRR tolerates outliers better than the traditional SVMs. 
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Fig. 2. Results on a synthetic data set where solid lines depict the decision boundaries: (a) 
training samples (b) result from the SVM (c) result from the KRR, and (d) result from the 
Fuzzy KRR 

4.2   Web Page Classification 

In order to evaluate the Fuzzy KRR method on real applications, we applied the 
Fuzzy KRR to Web page classification, comparing with the SVMs. Automatic catego-
rization of Web pages is a critical step for mining the Web [10]. Various statistical 
learning algorithms have been applied to Web page classification [1][10-11][14-15]. 
Among a plethora of approaches, the support vector machines (SVM) have been well 
recognized for the outstanding performance in the literature [1][4][10-11]. 

For an experimental data set, we used the WebKB data set [13], well known for 
Web page classification problems. The Web KB data set was collected from the com-
puter science departments from various universities, and has seven categories: course, 
department, faculty, project, staff, student, and others. In this paper, we used four 
categories including course, faculty, project, and student as shown in Table 1. For 
feature extraction, we removed stop words and also words with document frequency 
of less than 3, and words with document frequency of higher than 1000. After remov-
ing these words, we used a normalized term frequency vector as a feature vector. We 
used the leave-one-out cross validation method for the evaluation of the learning 
methods. For the performance measurement, we used the micro average F1 measure 
as in [11][15], which is a harmonic average of recall and precision. 

Table 1. WebKB data 

Category Course Faculty Project Student 

Sample size 930 1124 504 1641 

The experiments have been done with varying the number of training samples and 
outliers, where the outliers were randomly added to each class. We only show two 
experimental results in Table 2 due to the space limit. Column (a) in Table 2 shows 
the results from 350 training samples for each class and 11 outliers. Column (b) 
shows the experimental results from 75 % of training samples for each class and 11 
outliers. One can see that in general the Fuzzy KRR shows much better classification 
performance than KSVM and KRR when there were outliers presented. 
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Table 2. Experimental results from (a) 350 training samples and (b) 75% training samples for 
each class with 11 outliers 

(a) F1 measure (%) (b) F1 measure (%) Class 
KSVM KRR Fuzzy KRR KSVM KRR Fuzzy KRR 

Course 90.54 92.73 93.51 93.94 94.95 95.41 
Faculty 76.93 78.38 79.10 82.73 83.24 83.62 
Project 49.72 51.46 52.42 74.05 73.97 74.96 
Student 84.34 86.13 86.99 89.52 89.33 89.70 

5   Conclusion 

We have presented a fuzzy version of kernel ridge regression in order to deal with the 
outliers in classification problems. In the proposed Fuzzy KRR, we determine the 
membership values according to the distances from the proximal planes such that 
samples, apart from the proximal planes, take much less influence on formation of the 
decision boundary. Experimental results on various data sets indicate that our ap-
proach performs better than the traditional SVMs. The proposed Fuzzy KRR can be 
applied for the classification problems with training samples collected from noisy 
environments. 
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Abstract. Grinding of ceramic materials is an expensive process consid-
ering the cost of abrasive tools and a relatively small machining efficiency.
This paper presents methods to increase the use of the technological po-
tential of automatic machining of ceramic materials with a concurrent
control of the machining accuracy. A method of an assessment of the
influence of process variables monitored on the accuracy of the sizes and
shape of ceramic elements machined was presented. An application of
fuzzy interference methods facilitated a creation of a universal algorithm
to assess the accuracy of machining independent of the accepted para-
meters and machining conditions.

1 Introduction

Ceramic materials, owing to its characteristic properties: a high degree of hard-
ness, substantial brittleness, small thermal conductivity and diamagnetic prop-
erties are materials which are hard to process. Guaranteeing products from tech-
nical ceramics with a high dimensional and shape accuracy usually requires an
operation of precise grinding. It is estimated that as many as 85% [1] of ce-
ramic parts is subject to grinding as finishing. Grinding is an expensive kind of
processing of ceramic materials. In the production of ceramic materials, the costs
of machining are assessed to constitute even up to 80% of the overall costs of the
product. These costs depend of the selection of grinding parameters and the level
of the use of the method’s technological potential [2]. A reduction of the costs
of grinding through the application of a greater efficiency of allowance removal
is limited by an increasing probability of damaging the ceramics surface [3], [4],
which leads to deteriorated utilization properties or even a disqualification of
the product.

Due to a significant share of auxiliary times in the times of a single abrasive
machining operation of small ceramics elements, which are the result of a sig-
nificant labour consumption of the setting and fixing of elements, automatic
machining is an economically justified machining method [5]. It guarantees an
automation of feeding, setting and fixing of the elements machined. An increase
of the machining output of ceramics requires optimization methods for machining
parameters to be developed. A combination of the procedures of an optimization

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 596–603, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. A diagram of the method of an integrated machining of small ceramic elements
in an automatic cycle

of machining parameters with the assessment methods of machining accuracy is
a necessary condition for the achievement of the highest quality level of goods
manufactures in expensive grinding methods.

This publication presents a system for evaluation a machining accuracy in
the process of an automatic machining of ceramic materials with the use of
fuzzy interference methods [6], [7]. In the machining method analysed, the total
allowance to be removed was divided between N grinding wheels placed on the
perimeter of the turntable (Fig. 1).

The result of the occurrence of inaccuracies in the process is a distortion of
an optimal division of the allowance, and therefore a risk connected with the
achievement of the required measurement and shape accuracy of the elements
machined. A direct measurement of the machining parameters on individual fast
headstocks during the machining process is difficult, an in many cases impossible
to conduct. However, as these quantities depend of on the values of the process
variables, such as the grinding force, power, the vibration of the machining sys-
tem, and an acoustic emission, they can be assessed and forecast directly before
the machining is completed [8].

2 Assumptions Concerning the Normalization of Process
Variables

In the machining process analysed, a change of the value of the variable mon-
itored is important only when it has an influence on the machining quality.
A relative value of the variable monitored does not give any information on the
level of its influence on the substantial parameters of the product’s quality. In
order to guarantee a universality of the system, normalized values were used.
A normalization of the monitored variables was conducted with the use of the
theory of fuzzy sets (Fig. 2). The normalized values of the process variable con-
stitute diagnostic information (a diagnostic variable), which constitutes the basis
for the assessment of the level of machining inaccuracy.
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ment of the advancement level of the process’ feature on the example of a componential
of a normal grinding force

The range of the changes of the values of the diagnostic variable can be de-
termined depending of its specificity and can be placed in the range (−1, 1),
(0, 1), or (0, −1). As a result of the representation, the process variable value
becomes independent of the reference point (the initial value being the result
of characteristic features of a given process). By a suitable setting of threshold
values (determined as a result of optimization), identical values of the diagnostic
variable can be obtained in different working conditions of the process. This also
facilitates a correct classification of the states of the process monitored through
making them independent of the absolute values of the process variables.

3 Normalization of Monitored Process Variables

The normalization of process variables requires a determination the limiting val-
ues of the monitored variables. The limiting values of the process variables were
determined with the use of the relationship obtained as a result of experimen-
tal tests of the grinding process of ceramic elements. Experimental tests of the
automated grinding process of ceramic elements [9] proved an influence of the
machining parameters, i.e. the quantity of allowance on the ith fast headstock
a{i} and the speed of the travelling of objects vw on the normal component of
grinding force Fn and the acceleration of the vibrations of the turntable v̇s. Also,
dependencies were determined between the values of the process variables mon-
itored (the normal component of grinding force Fn and the acceleration of the
vibrations of the turntable v̇s) and the deviation of height Δh{i} and flatness
Δp{i} of elements machined in the ith machining zone.

In the optimization process of the machining parameters a complex objective
function was a maximum efficiency of machining process Qv, determined with
the following dependence:
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Qv =
π · d2

4
· vw

To
·

N∑

i=1

a{i}, (1)

where: d - diameter of machined objects [mm], vw - travelling speed of machined
objects [mm/s], To - the circular pitch of the arrangement of objects on the
grinder turntable [rad], N - number of fast headstocks, a{i} - amount of allowance
for ith fast headstock [mm].

In the optimization process, the influence of the machining process parame-
ters (the allowance amount on ith fast headstock a{i} and the travelling speed
of objects vw) on height deviation Δh{i} and flatness deviation Δp{i} of the
elements machined in the ith machining zone were took into acount:

Δh{i} = f
{i}
1 (a{i}, vw), Δp{i} = f

{i}
2 (a{i}, vw), (2)

where: f{i} - the function which includes the influence of the parameters of the
ith fast headstock on the accuracy of the shape and size of the elements machined.
The parameters of the function depend of the properties of the configuration of
the machine tool-the object-the tool.

The limiting value of the deviations of the size and shape on the ith fast head-
stock is the result of the technological capabilities of consecutive fast headstocks:

Δh{i}max(Δh{i−1}
max + a{i}, vw) ≤ Δh

{i}
dop, Δp{i}max(Δh{i−1}

max + a{i}, vw) ≤ Δp
{i}
dop, (3)

where: Δh
{i}
dop, Δp

{i}
dop - permissible amount of deviation of the size and shape

on the ith fast headstock, with is the result of the technological capabilities of
further fast headstocks.

The acceptance of the limiting parameters of machining guarantees that the
assumed parameters of the product’s quality (Δh

{i}
dop ≤ 20μm and Δp

{i}
dop ≤

3.5μm for the final form grinding stage) will be achieved on the final stage,
however the occurrence in the process of any inaccuracies (e.g. abrasive and
form wear occurring with time) will result in an increased share of defective
products in the overall number of the machined elements.

The optimization process which leads to the determination of ,,safe” ma-
chining process parameters assumes the acceptance of an optimal division of
allowance and searching of such a travelling speed of objects vw for which an in-
crease of the process variables monitored is possible (a component of the normal
grinding force Fn and an acceleration of the vibrations of turntable v̇s) in the
assumed permissible durability of the grinding wheel (Table 1). This assumption
makes it possible to conduct machining when inaccuracies occur (an increase of
the process variables monitored), while the required quality is preserved.

While making use of the abovementioned optimization results, a normalization
of the values of the process variables was performed on individual fast headstocks.
Sample results of the normalization of the acceleration of the vibrations of the
turntable on the third fast headstock are presented in Fig. 3.
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Table 1. Example results of the optimization of the division of allowance of fast head-
stocks with rough and form grinding

fast head limiting values ,,safe” values
vw a Δh Δp Fn v̇s vw a Δh Δp Fn v̇s

mm/s μm μm μm N m/s2 mm/s μm μm μm N m/s2

1 6.2 148 31 4.9 38 2.7 4.4 139 20 3.3 30 2.2

2 6.2 97 27 4.5 36 2.6 4.4 100 18 3.1 29 2.1

3 6.2 56 19 3.5 30 2.3 4.4 60 14 2.5 24 1.9
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Fig. 3. An example of the normalization of the acceleration of the vibrations of the
turntable. The normalized variable value corresponds to the level of its influence of the
flatness deviation of the elements machined.

As a result, a diagnostic variable was obtained (a normalized value of the
process variable monitored), which constitutes the assessment of the level of its
negative impact on the machining accuracy:

Fnnorm, v̇snorm =

⎧
⎨

⎩

0 no increase of the process feature monitored
(0, 1) increase level of the process feature monitored

1 high increase level (quality risk)
(4)

Exceeding of the limiting values of the process variables determined by opti-
mization, results in the generation by fuzzy models of inaccuracies of the diagnos-
tic signal of the value = 1, which indicates a high inaccuracy level in the process,
which might result in exceeding of the accepted share of defective products in
the overall number of the elements machined.

4 Machining Accuracy Assessment

In the simplest case, an assessment of the correctness of the machining per-
formed involves making a decision as to whether the process monitored leads
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Table 2. Fuzzy relationships which describe the state of machining conducted in the
case of a divalent assessment

rule no. Fnnorm operator v̇snorm machining quality assessment

1 if small and small objects with required accuracy class

2 if large or large objects outside required accuracy class

to obtaining products which meet the quality criteria, and so whether the ma-
chining is conducted properly, or whether as a result of machining we obtain
products which are outside the required quality class (Table 2). Such a decision
concerning the correctness or incorrectness of the machining process was made
on the basis of the values of the normalized process variables. These variables ac-
cept values 1 — when the variable monitored exceeded the limiting value which
causes a risk to the achievement of the required product’s quality, or value < 1
— when the variable monitored is in the permissible area, which is the result of
the requirements imposed on the machining conditions.

An analysis of the experimental data and the results of the optimization of
the parameters of the grinding process in question [9] allows to make conclusions
about a smaller influence of the increase of the component of the normal grinding
force Fn in relation to the increase of the vibration accelerations of turntable
v̇s on the quality parameters achieved. An increase of the normal component,
while causing deformations, leads to the increase of the height deviation. This
parameter, in the case of ceramic elements machined (in this case, used in valve
sealing) can be characterised by a significant deviation. The flatness deviation is
a more important criterion in the case of elements which mate in a shoe manner.
An excess of this type of deviation constitutes the basis of a disqualification of
the product.

While making use of the abovementioned analyses and other experiments
from this area [9], [10], a system of a multilayer assessment of the machining
quality was developed (Fig. 4), which differentiates the influence of diagnostic
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Fig. 4. The reply space of the fuzzy model of the multilayer quality assessment of the
machining process: a) continuous assessment, b) jump assessment
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Table 3. Fuzzy relationships which describe the state of machining in the case of a
multilayer assessment

rule no. Fnnorm operator v̇snorm machining quality assessment

1 if small and small high

2 if small and medium required

3 if small and large permissible

4 if medium and small required

5 if medium and medium required

6 if medium and large permissible

7 if large and small required

8 if large and medium required

9 if large and large permissible

10 if limiting and small permissible

11 if limiting and medium permissible

12 if limiting or limiting outside quality class

variables (the normalized grinding force Fnnorm and the normalized acceleration
of turntable vibrations v̇snorm). The fuzzy relationships which describe the state
of machining performed in the case of a multilayer assessment were presented in
Table 3.

The process quality assessment strategy applied, allows one to conduct it on
the basis of the normalized values of the process variables. The fuzzy systems
performs an assessment of the level of the growth of individual variables and
of their influence on the change of the machining accuracy. The classification
conducted can have a multivalent form and can correspond with the product’s
quality classes.

By a simple modification of linguistic rules, it is possible to differentiate a
negative impact on the substantial parameters of the product’s quality. This
contributes to a significant universality of the assessment method applied with
regard to the machining correctness. It can be used in the assessment of other
technological processes.

5 Conclusions

The value of the process variables monitored, which enable an assessment of the
machining accuracy, depends on the accepted parameters and conditions of ma-
chining. An application of the theory of fuzzy sets enables such a normalization
of the monitored values of process variables, which takes into account the level
of its impact on the substantial parameters of the product’s quality.

A change of the assessment index of the product’s quality in time, pro-
vides information on the level of an unfavourable impact of inaccuracies on
the substantial parameters of the product’s quality. A change of its index can
be of a temporary nature caused by a change of the allowance of the elements
ground, or of a global nature, connected with the wear of the grinding wheel.
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This constitutes the basis for the identification of the reasons of the occurrence
of inaccuracies in the process of automatic grinding of ceramic elements.

An assessment of the results of a total influence of inaccuracies on the results
of the grinding process leads on to apply effective procedures in the processing
of incomplete, inexact and uncertain data based on the theory of fuzzy sets.
An introduction of the theory of fuzzy sets enables the algorithms applied and
the machining quality assessment with the use of linguistic rules, to be made
universal. These methods also allow the process operator’s expert knowledge to
be made formal. Such an operator, while making use of heuristics only, is able
to make a correct diagnosis concerning the state of the process monitored.
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Abstract. Grid computing is a loosely couple distributed system, and it can 
solve complex problem with large-scale computing and storage resources. 
Middleware plays important role to integrate heterogeneous computing nodes. 
Globus Toolkit (GT) is a popular open source middleware to build grid 
environment. However, a job submission has lots of complicate operations in 
GT especially in a large scale gird. Moreover, the information discovery 
component of Globus Toolkit can only provide the summarized information 
from Grid Head instead of each computing node. Furthermore, job scheduling is 
another important issue in the high performance Grid computing. An 
appropriate scheduling algorithm can efficiently reduce the response time, 
turnaround time and increase the throughput. In this paper, we develop a 
resource broker module for GT infrastructure, which can dynamically describe 
and discover the resource information of computing nodes. Moreover, we 
design an adaptive fuzzy logic scheduler, which utilizes the fuzzy logic control 
technology to select the most suitable computing node in the Grid environment. 
For verifying the performance of the proposed scheduling algorithm, we also 
implement a resource broker as well as fuzzy logic scheduler based on Globus 
Toolkit 4. The experimental results show our algorithm can reduce the 
turnaround time compared with round-robin and random dispatching methods. 
The experiments also show that our algorithm has better speed-up ratio than 
round-robin and random dispatching when number of computing nodes 
increasing. 

1   Introduction 

Grid computing and pervasive computing can solve complex problems with large-
scale computing and data resources. Grid is a computing architecture based on 
internet connection [5], and it shares heterogeneous computing and storage resources 
with internet and has higher scalability. Instead of traditional Cluster system, it can 
easily add more computing resource with lower cost. Middleware applications play a 
significance role in grid environment [2, 8, 9], it enabled distributed computers 
communicate to each other with different type of CPUs, OS, and various hardware 
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specification. It acts as a broker between user and provided resources. Globus Toolkit 
(GT) is one of popular middleware for building grid computing. GT lets people share 
computing power, database, and other tools securely across network connections. GT 
also includes software for security, information infrastructure, resource management, 
data management, communication, fault detection, and portability.  

Although GT seems very convenient to achieve the pervasive computing [13, 15], 
however, there are two drawbacks when submits a job. First, to submit a job to a 
computing grid using Globus Toolkit needed many complicated procedures as well as 
lots of command-line operations. Second, grid system is a heterogeneous computing 
environment, how to submit jobs to computing nodes with most available computing 
resource is an important scheduling problem. 

Job scheduling is another important issue in grid computing. An inappropriate 
scheduling scheme will increase the response time, turnaround time and decrease the 
throughput. The scheduling scheme can be categorized into two types: static and 
dynamic. The static scheme dispatches jobs into computing nodes without considering 
the workload of each node when jobs arrived, for example, random selection and 
round robin selection. On the other hand, the dynamic scheme can dispatch jobs with 
currently workload information when jobs to be executing. It will gather the CPU 
utilization, CPU run queue length, memory usage, and memory swapping as indexes 
to identify the workload of each computing node. 

Conventionally, scheduling algorithm usually uses some fixed threshold value (Crisp 
Set) to distinguish the loading state of each computing node. However, these values can 
not correctly respond the actual workload of computing node [11]. To solve this 
problem, we propose a Fuzzy Logic Scheduler (FLS) algorithm to estimate workload of 
each node by fuzzy logic control. However, the effects of CPU utilization and CPU run 
queue length to workload is not linear. Each factor has different growing model, for 
example, the workload grows rapidly when the CPU run queue length greater than 
threshold. An unsuitable measuring module can not reflect the correct workload.  

A resource broker and scheduler are fundamental for any large-scale grid 
computing [10]. In this paper, we proposed and implemented a resource broker 
module and fuzzy logic scheduler module mainly targeted for Globus Toolkit 
infrastructure. Rather than the grid resource information service (GRIS) in MDS, the 
resource broker monitor can gather the detail information of each computing node, 
not the summarized information.  

The rest of this paper is organized as follows. In section 2, some preliminaries 
about grid middleware Globus Toolkit and fuzzy logic control are given. Proposed 
resource broker module and fuzzy logic scheduler module are described in section 3. 
Section 4 is experimental results, and section 5 is our conclusions. 

2   Background and Motivation 

2.1   Globus Toolkit 

The Globus Toolkit [6, 7, 12] is a set of components which includes basic service [3, 
4] for security, information, resource management, storage and communication. Each 
service is distinct and has well defined interfaces so they can be incorporated into 
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applications or tools. Globus Toolkit 4 (GT4) is an open source software toolkit 
which contains many standard components. In GT4, monitoring and discovery 
services (MDS) are mainly concerned with the collection, distribution, indexing, 
archival, and it provide grid information such as the resources that are available and 
the status of the computing nodes. This information may include number of 
processors available, CPU utilization, network utilization, storage, memory usage, 
and swap usage of each node. Reliable file transfer (RFT) provides a web service 
interface for transfer and deletion of files. RFT receives requests via SOAP message 
over HTTP and utilizes GridFTP [1]. RFT also uses a database to store the list of file 
transfers and their states. Moreover, Globus resource allocation manager (GRAM) is 
an integral component of a computation grid. It is responsible for processing job-
requests, enables remote monitoring of jobs. 

The related components for job submission in GT4 is shown in Fig. 1. GT4 Job 
Submission Components 

 In addition, the problem of selecting appropriate computing nodes is not trivial. 
User needs query information from MDS of Grid Head A to Grid Head N. Afterward, 
user collects the results and selects the jobs manually, then send the jobs and write a 
RSL to execute jobs. Moreover, MDS is unable to obtain the information of sole 
computing node. It can only get the summarized information, for example, Grid Head 
A contains 4 computing node each has 1 GHz CPU power and 256 MB memory 
(Level 3 Information). However, MDS only can report Grid A has 4 GHz CPU power 
and 1 GB memory (Level 2 Information). There are too many complicated operations 
for job submission when scaling of grid is large [14]. 

 

Fig. 1. GT4 Job Submission Components 

In order to solve this problem, we design and implement a Resource Broker (RB) 
module in GT4. Main goal of the resource broker module is to eliminate the 
overelaborate job submission procedure and obtain more detail of resource 
information of each computing nodes.  

2.2   Job Scheduling and Workload Measurement 

Job scheduling can be classified into two categories: dynamic and static. A static job 
scheduling scheme dispatches jobs to the computing node without considering the 
current workload of each node, for example, round-robin and random dispatching 
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method. It has least overhead and it is proper for tightly coupled distributed system 
with the identical jobs. However, grid is a loosely coupled distributed system and it is 
also a heterogeneous computing environment. A dynamic job scheduling scheme is 
more appropriate for grid environment because it dispatches jobs according to the 
current workload status of each node. However, there are many different kinds of 
operating system, CPU, memory size, network bandwidth in a grid. How to measure 
the workload of each computing nodes by using these resource information is a 
difficult problem. There are many conventional jobs scheduling algorithms adopt 
fixed threshold value (Crisp Set) to determine the workload of computing nodes. 
However, there are many resource information (variables) corresponding to the 
workload and sole threshold value with IF-THEN method typically can not represent 
the real workload status of each computing nodes. The fuzzy logic control has a better 
adaptability, robustness, and fault tolerance for these conditions. Therefore, we 
propose a Fuzzy Logic Scheduler (FLS) algorithm to evaluate the workload of each 
computing nodes in a grid. 

3   Proposed Resource Broker Module and Fuzzy Logic Scheduler 
Module 

In this section, we will describe the Resource Broker Module and Fuzzy Logic 
Scheduler Module in detail. By applying the proposed modules, we can correctly 
evaluate the workload status of every computing nodes(level 3) and decrease the 
tedious operations for job submission in GT4.  

3.1   Resource Broker Module 

The overall structure of the proposed resource broker module is shown in Fig. 2. The 
resource broker can reduce the complexity of user operations especially in large-scale 
grid system. The resource broker will discovery the information of each level 3 
computing node. The workload of each nodes can be calculated more precise with the 
CPU utilization, CPU run queue length, etc..., which can not obtained via Globus 
Toolkit. The procedure of job submission with resource broker module is as follows: 

Step 1: User prepares their executable jobs and input data and then describes the 
required resource specification of computing node. Submitting jobs to 
Resource Broker (RB) via Command Line User Interface (CLUI). 

Step 2: RB uses Information Manager to connect to MDS then gets the available 
computing nodes. 

Step 3: RB invokes Resource Broker Monitor (RBM) to retrieve the resource 
information of computing nodes, which including CPU utilization, CPU run 
queue length, total and used memory, total and used swap, etc. 

Step 4: Control Center (CC) receives the loading information of each node. 
Step 5: CC sends loading information to Workload Measurement Module (WMM), 

which utilizes Fuzzy Logic Scheduler (described in 3.2), then get the Node 
Utilization Score. 
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Step 6: RM selects the appropriate computing nodes according to the Node 
Utilization Score followed by invoking Transfer Manager (TM) to send jobs 
to RFT of each selected computing node. 

Step 7: RB uses Execution Manager to send job execution information to GRAM. 
Step 8: Finally, RB collects the execution results of jobs then send back to user via 

CLUI. 

 

Fig. 2. Globus Toolkit with Resource Broker Module 

3.2   Fuzzy Logic Scheduler Module 

An appropriate scheduling algorithm can efficiently reduce the response time and 
turnaround time, and increase the throughput. The workload of each computing node 
influences upon many factors such as CPU utilization, CPU run queue length, 
memory utilization, swap utilization, etc. All of them can be categorized into the 
utilizations of CPU and memory. In this study, a fuzzy logic based scheduler 
algorithm by referring both utilizations was developed and is described in the 
following. 

3.2.1   Define the Input and Output Fuzzy Variables 
As stated in the above, two types of information include the CPU and memory 
utilizations were used as the workload indices. The CPU utilization contains two 
factors, the degree of CPU utilization and the degree of run queue length. The 
memory utilization also contains two factors, the degree of memory utilization and the 
degree of swap utilization. Since it is difficult to construct fuzzy control rules using 
four input variables, both pairs of factors were combined to form two input fuzzy 
variables, the CPU utilization and the memory utilization. It is straightforward to 
compute the CPU utilization by averaging the degrees of CPU utilization and run 
queue length, however, through our observation, when the run queue length is 
distinctness the CPU run queue length affects the workload more significant than the 
CPU utilization. It means that a nonlinear combination of these two factors required 
exhibiting a better efficiency. According to our experience, the CPU run queue length 
affects the workload more significant then CPU utilization when the run queue length 
grater then five. So we construct the nonlinear mapping in the following. 
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in which uti and ql represent the degrees of CPU and membership utilizations and w, 
deg, a, w1 and w2 are parameters for tuning the nonlinearity. In this study, the five 
parameters used in (1) and (2) were set as deg = 1.5, a = 0.6, w = 0.6, w1 = 0.7, and 
w1 = 0.3. Fig. 3. Function used to form the input variable shows the hyperplane 
formed by eqs. (1) and (2). It can be found that the curve in the axis of degree of CPU 
utilization is nearly linear, and is highly nonlinear in the other axis. The definition of 
the second input variable is analogue to the first one, in which the degree of swap 
utilization plays a similar role as the degree of run queue length. There are a wide 
selection to choose your favorite membership function. For example, the triangle and 
trapezoid function. In this paper, we choose triangle function. The membership 
functions for both input fuzzy variables are defined in the following 
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in which x denotes the value of the input fuzzy variable. Since the aim of the proposed 
fuzzy system is to evaluate the workload status, so the output fuzzy variable of the  
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system was defined as the workload degree of the computing node. For simplicity, the 
membership function of the output fuzzy variable was defined the same as the inputs. 

3.2.2   Construct the Fuzzy Inference Rules 
On the purpose of inferring the loading degree, the fuzzy rules constructed by using 
the input and output fuzzy variables defined in the previously paragraph are shown in 
Table 1. In accordance with our experience on loading balance research, the CPU 
utilization affects the system workload notably then the memory utilization. 
Therefore, we fill rules by this conception. For example, if the CPU utilization is 
medium and the memory utilization is light then the loading degree is medium. 
Opposite to CPU utilization is light and memory utilization is medium then this 
loading degree is light. By using the Max-Min inference method and the center-of-
gravity defuzzification process, the load degree of each computing node can be 
obtained, with which the scheduling job can be achieved. 

Table 1. Fuzzy inference rules 

Memory \ 
CPU

Light Medium Heavy 

Light Very Light Medium Heavy 

Medium Light Medium Heavy 

Heavy Medium Heavy Very Heavy

4   Experimental Results 

To evaluate the performance of the proposed fuzzy logic scheduler module, we have 
designed a grid computing environment which consist four grid systems by using 
Globus Toolkit 4, the hardware and software configuration are described in Table 2. 
Each grid system has one head node and several computing nodes. Three schemes, the 
proposed fuzzy logic scheduler (FLS), round-robin (RR), and random were executed 
for performance evaluation. In the experiment, we use Fibonacci sequence 
benchmarks for comparison. The benchmark of Fibonacci sequence is to compute the 
given length of it. 

Table 2. Experimental Environment 

 Grid A Grid B Grid C Grid D 
Grid Head Pentium 3 

800MHz 
256 MB 

memory 

AMD 
1.2GHz SMP 

1 GB 
memory 

Pentium 4 
2.8GHz 

756 MB 
memory 

Xeon 3.2GHz 
HT * 2 

1 GB memory 

Computing 
Nodes 

Pentium 3 
800MHz 

256 MB 
memory 

AMD XP 
1.4GHz 

768 MB 
memory 

AMD XP 
1.4GHz 

768 MB 
memory 

Pentium 4 
3GHz HT 

1 GB memory 

Number of 
Nodes 

9 3 4 4 

Software Debian 3.1r2; Globus Toolkit 4.0.2; DRBL 1.7.1; GCC 3.3.5 
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Fig. 4. Performance comparison of turnaround time with difference number of jobs 
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Fig. 5. Performance comparison of turnaround time with difference number of nodes 
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Fig. 6. Performance comparison of Speed-up ratio with difference number of nodes 

Figure 4 to Figure 6 are the simulation results of Fibonacci sequence. The 
turnaround time with different number of jobs is shown in Figure 4. Here we can 
observe the turnaround time is decreased for FLS compared to RR or random 
dispatching methods. The turnaround time with different number of nodes is shown in 
Figure 5, it illustrates FLS can reduce turnaround time when number of nodes grown. 
To compare the speed-up ratio, we choose one computing nodes from Grid A and one 
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computing nodes Grid D for comparison. For example, four computing nodes means 
select two nodes from Grid A and two nodes from Grid D. Afterward, we can get the 
spped-up ratio for FLS and RR relative to single node of Grid A or Grid D or average 
of them. The results are depicted in Figure 6. In Figure 6, FLS (A-1) denotes the 
speed-up ratio of FLS compared with single node in Grid A. Similarly, FLS (ave) 
denotes the speed-up ratio of FLS compared with average turnaround time which 
choosing one node from Grid A and one node from Grid D. The results show that FLS 
always has better performance than RR compared to single node of Grid A, Grid D, 
and average of them. 

5   Conclusions 

In this paper, we design and implement a resource broker module for Globus Toolkit. 
The resource broker can collect the precise resource information of each computing 
nodes from resource broker monitor and can execute the job submission procedures 
automatically. Moreover, within the proposed resource broker module, we utilize the 
concept of fuzzy logic to correctly evaluate the workload of each computing nodes in 
a grid. Since there are too many variables to determine the real workload of 
computing nodes, our proposed fuzzy logic scheduler can effectively calculate the 
current workload of each computing nodes in a grid. In addition, it can help the job 
scheduler making an appropriate decision. For verifying the performance of our 
proposed resource broker module, we also implement a grid computing by using 
Globus Toolkit 4. Three schemes, the proposed fuzzy logic scheduler (FLS), round-
robin (RR), and random were implemented for comparison. The experimental results 
show that our proposed scheduling algorithm can successfully reduce the turnaround 
time. Furthermore, the speed-up ratio of our algorithm is better than round-robin in 
every simulation. 
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Abstract. Rough set models with financial variables have proven to be effec-
tive in predicting business failure. To enhance the predictive performance of 
rough set models, this paper includes a non-financial variable, auditor switch-
ing, into the modeling process, in addition to 14 financial ratios commonly used 
in business failure research. An empirical study on 62 failed firms and 62 one-
to-one matching non-failed firms in Taiwan between 1998 and 2005 is con-
ducted, using available data for the three years before failure. Six rough set 
models are constructed individually with and without the auditor switching 
variable, using the three-year data respectively. The empirical study shows that 
the non-financial variable is the most significant attribute and plays an essential 
role in enhancing the performance of rough set models. These findings high-
light the effectiveness of rough set models for business failure prediction and 
particularly the importance of incorporating non-financial variables in business 
failure research. 

1   Introduction 

Business failure has been a worldwide economic and social problem, and its predic-
tion has become a major issue in the corporate finance research. Business failure 
research starts from Altman’s pioneering work using multivariate discriminant analy-
sis with a set of five financial ratios for distinguishing failed firms from non-failed 
firms [1]. To improve the prediction accuracy by overcoming shortcomings of the 
discriminant analysis model, other cross-sectional statistical models have been devel-
oped, such as logit analysis [2] and probit regression models [3]. The advances in 
computational intelligence techniques have led to the development of intelligent mod-
els for analyzing and predicting business failure, including decision trees [4], survival 
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analysis [5], expert systems [6], neural networks [7], [8], rough sets [9]-[11] and  
hybrid models [12], [13]. With the aim of providing a higher level of prediction  
accuracy, these non-parametric models need not to pre-specify a functional form, nor 
the distribution assumptions of model variables and errors [11]. In particular, rough 
set models have demonstrated their advantages over other models for business failure 
prediction [10]. 

Based on rough set theory developed by Pawlak [14], rough set models have 
proved to be an effective tool for analyzing financial information systems involving a 
set of firms (objects) characterized by a set of multi-valued financial ratios and  
qualitative variables [12]. As an approach to handling uncertainty and vagueness of 
information in classification analysis, rough set models perform complete classifica-
tion of objects, by generating a set of decision rules from a set of examples. The  
generation of rules often involves the generation of reducts or a core of attributes, 
which are particular subsets of attributes that provide the same classification quality 
as the full set of attributes. As such, a rough set model has an advantage over a  
functional or relational model, as it explains the preferential attitude through easily 
understandable rules with significant attributes (those in a reduct) only. 

To reflect the fact that the patterns of object classes often overlap in real decision 
making settings, variable precision rough set models which incorporate probabilistic 
decision rules are commonly used [15]. Existing models for predicting business  
failure are based on a set of financial ratios, which are regarded as objective (quantita-
tive) indicators of business failure. To further examine if non-financial factors may 
play a significant role in business failure prediction, we construct rough set models 
using a non-financial (qualitative) variable together with 14 financial ratios, as the 
rough set approach can handle both quantitative and qualitative attributes. As such, 
one departure point of this paper is to examine if the development of rough set models 
can help improve our understanding of business failure research by incorporating non-
financial variables. The effectiveness of these models, particularly the significance of 
the non-financial variable will be examined by an empirical study of 124 Taiwanese 
firms. 

2   Basic Concepts of Rough Sets 

In rough set models, knowledge about objects is represented in the form of an infor-
mation table [16]. The rows and columns of the information table represent objects 
and attributes respectively, and entries of the table are attribute values. The central 
concept of rough sets is a collection of rows that have the same values for one or more 
attributes, which form the indiscernibility relation about the finite set of objects 
(called the universe). Any set of all indiscernible objects is called an elementary set, 
which forms a basic granule of knowledge about the universe. Any subset of the uni-
verse can be expressed either precisely or roughly. A set of objects is said to be crisp 
(precise) if it is a union of some elementary sets; otherwise, the set is rough (impre-
cise). A rough set can be represented by a pair of crisp sets, called the lower and up-
per approximations. For a subset of the universe, the lower approximation consists of 
all objects that certainly belong to the set and the upper approximation includes ob-
jects that possibly belong to the set. The difference between the upper and lower  
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approximations constitutes the boundary region of the vague concept (a subset of the 
universe). Approximations are two basic operations in rough set theory. 

Decision rules of rough set models constitute a formal language to describe ap-
proximations in logical expressions (implications) [17]. Decision rules are expressed 
in the form of “If <conditions> Then <decisions>”. Certain rules correspond to the 
lower approximation, whereas the uncertain rules correspond to the boundary region. 
The certainty and the coverage factors of decision rules are conditional probabilities 
which describe how exact our knowledge is about the universe. Each decision rule is 
characterized by the strength of its conclusion, which is indicated by the number of 
objects satisfying the condition part of the rule and belonging to the decision class 
[10]. In generating decision rules based on inductive learning principles, the objects 
are regarded as examples of decisions. To induce decision rules for describing a set of 
objects, the examples belonging to it are called positive and all the others negative. A 
decision rule is discriminant if it distinguishes positive examples from negative ones 
and it is minimal. With the prescription ability of how to make a decision under spe-
cific conditions, decision rules derived give pertinent information useful for decision 
support. 

To have the best quality of approximation of classification with a minimal set of 
decision rules, not all the condition attributes in the information table are to be used. 
An important step in the rough set approach is to identify the minimal subset of condi-
tion attributes (called a reduct), which provide the same quality of classification as the 
whole set of attributes. Attributes that do not belong to a reduct are superfluous in 
terms of classification of elements of the universe [16]. If an information table has 
more than one reduct, the intersection of all reducts is called the core of attributes. 
The core is a collection of the most significant attributes in the table, without any of 
which the quality of classification will reduce. 

3   Financial Ratios and Non-financial Variables for Business 
Failure Analysis 

Financial ratios have been commonly perceived as having the ability to predict the 
failure of business. A large number of ratios have thus been proposed in the literature. 
For example, Courtis [18] identifies 79 financial ratios for analyzing corporate per-
formance and structure, including 28 ratios useful for predicting various forms of 
corporate difficult, 34 additional ratios from contemporary textbook literature, and 17 
ratios used in specific studies or organizations. To represent corporate financial phe-
nomena which express the relationships between the ratios and the characteristics that 
they purport to reveal, these financial ratios are grouped into three categories: (a) 
profitability, (b) managerial performance, and (c) solvency. The most important fi-
nancial ratios are in the solvency category (e.g. working capital/total assets, total 
debt/assets), and the next is in the profitability category, suggesting that the viability 
of a business depends on profit making to a large extent [19]. In addition, the per-
formance and survival of a business are influenced by several factors, including envi-
ronment, national and international economic situations. As such, additional financial 
ratios have been proposed for inclusion in the business failure analysis, including 
economic variables [20]. 
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In business failure prediction studies using rough sets, workable models normally 
use 10 to 86 if–then decision rules with 2 to 5 variables (financial ratios) [13]. A total 
of 13 different financial variables are used in these models and some of these vari-
ables are quite similar as they are surrogates for the same underlying economic fac-
tors. Although rough set models with financial variables may produce good predictive 
ability of business failure, business’s performance and future may be influenced by 
qualitative, non-financial characteristics, such as strategic criteria [21], social impor-
tance of the firm, and the strength of its bank relationship [22]. Based on this notion 
and data availability, the rough set models to be developed in this study consider a set 
of 15 variables as condition attributes, including 14 financial ratios and one non-
financial variable. 

The 14 financial ratios cover all the categories suggested by previous studies, in-
cluding (a) solvency (current ratio, A1; quick ratio, A2; liabilities/assets ratio, A3; 
times interest earned ratio, A4), (b) managerial performance (average collection turn-
over, A5), (c) profitability (return on total assets, A6; return on shareholders’ equity, 
A7; operating income to paid-in capital, A8; profit before tax to paid-in capital, A9; 
earnings per share, A10), (d) financial structure (shareholder’s equity/total assets ratio, 
A11), and (e) cash flow (cash flow ratio, A12; cash flow adequacy ratio, A13; cash flow 
reinvestment ratio, A14). The non-financial variable considered is the status of auditor 
switching (A15), which is used to indicate whether or not a firm had changed its audi-
tor in the past one, two or three years before failure. Previous studies have suggested 
that failing firms are more likely to switch their auditor up to three years before fail-
ure, mainly resulting from disputes between auditors and managers over accounting 
methods as well as disagreements on audit opinions and qualifications [23]. 

4   Rough Set Models for Business Failure Prediction 

4.1   The Data 

All the data required were collected from the Taiwan Economic Journal, a local data-
base including annual reports of more than 4,500 firms in Taiwan and in China. 62 
firms which failed between 1998 and 2005 were identified. In the context of this em-
pirical study and according to the Operational Rules of The Taiwan Stock Exchange 
Corporation, a firm is said to be failed if it (a) was filed for bankruptcy, (b) was 
placed into suspension of trading, (c) was altered trading method, or (d) was involved 
in unusual actions such as a cease trading order or delisting. To match one by one 
with the 62 failed firms, 62 non-failed or healthy firms were selected. The 62 non-
failed firms were selected randomly among those in the same industry with similar 
total assets to the corresponding failed firms. The non-failed firms must have financial 
data available for the same fiscal years that were used for the corresponding failed 
firms. As such, a total sample size of 124 firms was used, which is comparable to 
existing studies, e.g. 80 [10], 90 [11], and 60 [12]. The use of one-to-one match of 
failed and non-failed firms is consistent with business failure prediction studies  
[10]-[12], [19]. 
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Based on the 15 variables identified in the previous section, the corresponding  
financial ratios and auditor switching data of these 124 firms were collected for a  
period of three years, starting from year -3 (three years before failure) and ending 
with year -1 (one year prior to the year of failure, the last year that the firm was in 
business). Clearly the actual year of failure (year 0) is not the same for those 62 failed 
firms, as they did not all fail in the same year. The condition attributes of the rough 
set models are to be selected from the 15 variables, while the only decision attribute 
of the models is for indicating whether a firm has failed. The value of the decision 
attribute is 0 if the firm has failed and 1 if not failed. 

The rough set analysis of the data collected for the 62 failed and 62 non-failed 
firms was performed using the ROSE (Rough Sets Data Explorer) system. With the 
three-year data collected, three rough set models were constructed respectively, each 
with its own set of decision rules. These three rough set models were constructed and 
evaluated in four phases: (a) preprocessing – preliminary data analysis and modifica-
tions, including discretization; (b) reducts – methods dealing with the reduction of 
attributes; (c) rules – methods used to generate decision rules; and (d) classification – 
validation of decision rules. In order to facilitate model construction and testing, 33 
firms failed in the years from 1998 to 2001 and 33 matching non-failed firms were 
selected as a training (learning) sample for generating decision rules of rough set 
models. The remaining 29 failed and 29 non-failed firms were used as a testing  
(holdout) sample. 

4.2   Data Processing 

The data collected were first pre-processed to form the information table, which was 
the knowledge representation in rough set models. Then the continuous condition 
attributes were discretized by dividing the original domains of the condition attributes 
into sub-intervals. Instead of asking human experts, which might be impractical, rela-
tively costly and subjectively [11], we used the ROSE system for data discretization. 
The discretization process produced 2 or 3 intervals for each of the 14 condition at-
tributes (A1, A2, …, A14). For example, in the data of year -1 (one year before failure), 
the first attribute (the current ratio, A1) had three intervals: interval ‘0’ from -inf to 
64.9; interval ‘1’ between 64.9 and 149.8, and interval ‘2’ between 149.8 and +inf. 

4.3   Reduct: Core of Attributes 

The core of attributes was generated to find out the most meaningful attributes. The 
attributes in a core are indispensable for discrimination and a non-empty core helps 
determinate the most important attributes as far as the approximation of classes is 
concerned [10]. Table 1 shows the attributes in the core for the data sets in year -1, 
year -2, and year -3 (one, two and three years before failure) respectively. As shown 
in Table 1, three non-empty cores are generated for all the three-year data respec-
tively, each with a different set of attributes. The non-financial variable (auditor 
switching, A15) and cash flow ratio (A12) are included in the core of all three data 
sets, thus being the most significant attributes of business failure. 
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Table 1. Core of attributes for three data sets 

Data set Core 
Year -1 A10, A12, A15 
Year -2 A2, A5, A12, A13, A14, A15 
Year -3 A1, A2, A4, A8, A10, A12, A13, A15 

4.4   Decision Rules 

The minimal covering rule method was used to generate decision rules for each of the 
three-year data sets using the reduced set of core attributes. A minimal set of 12 rules 
was derived when the data of year -1 was applied. For the year -2 and year -3 data, the 
minimal set of rules generated consisted of 19 rules and 24 rules respectively. 

4.5   Classification: Validation of Decision Rules 

To validate the three rough set models for the three-year data sets, the corresponding 
sets of decision rules were evaluated first on the training sample, and then on the 
testing sample. Table 2 summarizes the result of the classification accuracy of three 
models (for the data sets of year -1, year -2 and year -3 respectively) for both the 
training and testing samples. 

Table 2. Classification accuracy of three models 

 Year -1 Year -2 Year -3 
Training sample 
Failed firms 33/33 (100%) 32/33 (97.0%) 32/33 (97.0%) 
Non-failed firms 33/33 (100%) 33/33 (100%) 33/33 (100%) 
Total 66/66 (100%) 65/66 (98.5%) 65/66 (98.5%) 
Testing sample 
Failed firms 18/29 (62.1%) 21/29 (72.4%) 20/29 (69.0%) 
Non-failed firms 26/29 (90.0%) 19/29 (65.5%) 19/29 (65.5%) 
Total 42/58 (72.4%) 40/58 (69.0%) 39/58 (67.2%) 

As shown in Table 2, the three rough set models produce a high classification ac-
curacy rate for the training sample, although the result for the testing sample is not as 
good as for the training sample. The overall classification accuracy of the three mod-
els constructed is quite satisfactory, which compares favorably with existing rough set 
models and other business failure prediction models used in previous studies [10], 
[11]. This result provides clear evidence for the applicability of the rough set ap-
proach to the business failure prediction problem. 

As indicated in Table 1, auditor switching (A15), along with cash flow ratio (A12), 
is the most significant attribute in all three models. To further examine the signifi-
cance of this non-financial attribute, we have applied the rough set approach to the 
same data sets by considering only the 14 financial ratios as condition attributes. The 
resulting minimal set of decision rules for the data of year -1, year -2 and year -3 is 
13, 20 and 24 respectively. Table 3 summarizes the result of the classification  



620 J.-H. Cheng, C.-H. Yeh, and Y.-W. Chiu 

accuracy of these three sets of decision rules (year -1, year -2 and year -3) for both the 
same training and testing samples. Comparing the results between Tables 2 and 3 
clearly shows that the models with the non-financial variable outperform the models 
without the non-financial variable. This suggests that a business failure prediction 
model using financial variables only may not necessarily produce the best result. The 
inclusion of proper non-financial variables may enhance the performance of the 
model. 

Table 3. Classification accuracy of three models using financial ratios only 

 Year -1 Year -2 Year -3 
Training sample 
Failed firms 32/33 (97.0%) 31/33 (94.0%) 31/33 (94.0%) 
Non-failed firms 33/33 (100%) 33/33 (100%) 33/33 (100%) 
Total 65/66 (98.5%) 64/66 (97.0%) 64/66 (97.0%) 
Testing sample 
Failed firms 17/29 (58.6%) 18/29 (62.1%) 20/29 (69.0%) 
Non-failed firms 24/29 (82.8%) 18/29 (62.1%) 17/29 (58.6%) 
Total 43/58 (74.1%) 36/58 (62.1%) 37/58 (64.0%) 

5   Conclusion 

The importance of business failure prediction has been highlighted by a large body of 
research work. Among numerous methods and models developed to address this is-
sue, the rough set approach has demonstrated its advantages over other approaches in 
terms of variable assumptions and predictive performances. To provide new insights 
into the business failure research, we have developed six rough set models by consid-
ering a non-financial variable (auditor switching) together with 14 commonly used 
financial ratios. As exemplified in the empirical study, the non-financial variable is 
the most significant attribute of business failure and plays an essential role in enhanc-
ing the performance of the rough set models. The performance of the models with the 
non-financial variable is better than the ones using financial variables only. These 
findings strongly suggest that financial ratios alone may not form a complete set of 
significant variables for business failure analysis, as conventionally used in existing 
models. To address the business failure prediction problem effectively, both financial 
and non-financial factors should be considered. 

References 

1. Altman, E.: Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bank-
ruptcy. Journal of Finance 4 (1968) 589-609 

2. Ohlson, J.A.: Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of 
Accounting Research 18 (1980) 109-131 

3. Zmijewski, M.E.: Methodological Issues Related to the Estimation of Financial Distress 
Prediction Models. Journal of Accounting Research 24 (1984) 59-82 



 Improving Business Failure Predication Using Rough Sets 621 

4. Joos, P., Vanhoof, K., Ooghe, H., Sierens N.: Credit Classification: A Comparison of 
Logit Models and Decision Trees. Proceedings of the Workshop on Application of Ma-
chine Learning and Data Mining in Finance, 10th European Conference on Machine 
Learning, Chemnitz, Germany (1998) 59-72 

5. Luoma, M., Laitinen, E.K.: Survival Analysis as a Tool for Company Failure Prediction. 
Omega 19 (1991) 673-678 

6. Messier, W.F., Hansen, J.V.: Inducing Rules for Expert System Development: An Exam-
ple Using Default and Bankruptcy Data. Management Science 34 (1988) 1403-1415 

7. Yang, Z.R., Platt, M.B., Platt, H.D.: Probabilistic Neural Networks in Bankruptcy Predic-
tion. Journal of Business Research 44 (1999) 67-74 

8. Atiya, A.F.: Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and 
New Results. IEEE Transactions on Neural Networks 12 (2001) 929-935 

9. Slowinski, R., Zopounidis, C.: Application of the Rough Set Approach to Evaluation of 
Bankruptcy Risk. International Journal of Intelligent Systems in Accounting Finance and 
Management 4 (1995) 27-41 

10. Dimitras, A.I., Slowinski, R., Susmaga, R., Zopounidis, C.: Business Failure Prediction 
Using Rough Sets. European Journal of Operational Research 114 (1999) 263–280 

11. Beynon, M.J., Peel, M.J.: Variable Precision Rough Set Theory and Data Discretisation: 
An Application to Corporate Failure Prediction. Omega 29 (2001) 561–576 

12. Ahn, B.S., Cho, S., Kim, C.Y.: The Integrated Methodology of Rough Set Theory and Ar-
tificial Neural Network for Business Failure Prediction. Expert Systems with Applications 
18 (2000) 65–74 

13. McKee, T.E., Lensberg, T.: Genetic Programming and Rough Sets: A Hybrid Approach to 
Bankruptcy Classification. European Journal of Operational Research 138 (2002) 436–451 

14. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11 
(1982) 341–356 

15. Ziarko, W.: Variable Precision Rough Set Model. Journal of Computer and System Sci-
ences 46 (1993) 39-59 

16. Pawlak, Z.: Rough Set Approach to Knowledge-Based Decision Support. European Jour-
nal of Operational Research 99 (1997) 48-57 

17. Pawlak, Z.: Rough Sets and Intelligent Data Analysis. Information Sciences 147 (2002) 1-
12 

18. Courtis, J.K.: Modelling a Financial Ratios Categoric Framework. Journal of Business Fi-
nance and Accounting 5 (1978) 371-386 

19. Dimitras, A.I., Zanakis, S.H., Zopounidis, C.: A Survey of Business Failure with an Em-
phasis on Prediction Methods and Industrial Applications. European Journal of Opera-
tional Research 90 (1996) 487-513 

20. Rose, P.S., Andrews, W.T., Giroux, G.A.: Predicting Business Failure: A Macroeconomic 
Perspective. Journal of Accounting, Auditing and Finance 6 (1982) 20-31 

21. Zopounidis, C.: A Multicriteria Decision-Making Methodology for the Evaluation of the 
Risk of Failure and an Application. Foundations of Control Engineering 12 (1987) 45-67 

22. Suzuki, S., Wright, R.W.: Financial Structure and Bankruptcy Risk in Japanese Compa-
nies. Journal of International Business Studies 16 (1985) 97-110 

23. Schwartz, K., Menon, K.: Auditor Switches by Failing Firms. The Accounting Review 14 
(1985) 248-260 



B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 622–630, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Optimization of Fuzzy Model Driven to IG 
and HFC-Based GAs  

Jeoung-Nae Choi1, Sung-Kwun Oh1, and Hyung-Soo Hwang2 

1 Department of Electrical Engineering, The University of Suwon, San 2-2 Wau-ri,  
Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea 

ohsk@suwon.ac.kr 
2 School of Electrical Electronic and Information Engineering, Wonkwang University, 344-2, 

Shinyong-Dong, Iksan, Chon-Buk, 570-749, South Korea 
hshwang@wonkwang.ac.kr 

Abstract. The paper concerns the hybrid optimization of fuzzy inference 
systems that is based on Hierarchical Fair Competition-based Genetic 
Algorithms (HFCGA) and information data granulation. HFCGA is a kind of 
multi-populations of Parallel Genetic Algorithms (PGA), and it is used for 
structure optimization and parameter identification of fuzzy model. The 
granulation is realized with the aid of the Hard C-means clustering (HCM). The 
concept of information granulation was applied to the fuzzy model in order to 
enhance the abilities of structural optimization. By doing that, we divide the 
input space to form the premise part of the fuzzy rules and the consequence part 
of each fuzzy rule is newly organized based on center points of data group 
extracted by the HCM clustering. It concerns the fuzzy model-related 
parameters such as the number of input variables, a collection of specific subset 
of input variables, the number of membership functions, and the polynomial 
type of the consequence part of fuzzy rules. In the hybrid optimization process, 
two general optimization mechanisms are explored. The structural optimization 
is realized via HFCGA and HCM method whereas in case of the parametric 
optimization we proceed with a standard least square method as well as 
HFCGA method as well. A comparative analysis demonstrates that the 
proposed algorithm is superior to the conventional methods. 

1   Introduction 

There has been a diversity of approaches to fuzzy modeling. To enumerate a few 
representative trends, it is essential to refer to some developments that have happened 
over time. In the early 1980s, linguistic modeling [1] and fuzzy relation equation-
based approach [2] were proposed as primordial identification methods for fuzzy 
models. The general class of Sugeno-Takagi models [3] gave rise to more 
sophisticated rule-based systems where the rules come with conclusions forming local 
regression models. While appealing with respect to the basic topology (a modular 
fuzzy model composed of a series of rules) [4], these models still await formal 
solutions as far as the structure optimization of the model is concerned, say a 
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construction of the underlying fuzzy sets—information granules being viewed as 
basic building blocks of any fuzzy model.  

Some enhancements to the model have been proposed by Oh and Pedrycz [5]. As 
one of the enhanced fuzzy model, information granulation based fuzzy relation fuzzy 
model was introduced. Over there, binary-coded genetic algorithm was used to 
optimize structure and premise parameters of fuzzy model, yet the problem of finding 
“good” initial parameters of the fuzzy sets in the rules remains open. 

This study concentrates on optimization of information granulation-oriented fuzzy 
model. Also, we propose to use hierarchical fair competition genetic algorithm 
(HFCGA) for optimization of fuzzy model. GAs is well known as an optimization 
algorithm which can be searched global solution. It has been shown to be very 
successful in many applications and in very different domains. However it may get 
trapped in a sub-optimal region of the search space thus becoming unable to find 
better quality solutions, especially for very large search space. The parallel genetic 
algorithm (PGA) is developed with the aid of global search and retard premature 
convergence [8]. In particular, as one of the PGA model, HFCGA has an effect on a 
problem having very large search space [9]. 

In the sequel, the design methodology emerges as two phases of structural 
optimization (based on Hard C-Means (HCM) clustering and HFCGA) and 
parametric identification (based on least square method (LSM), as well as HCM 
clustering and HFCGA). Information granulation with the aid of HCM clustering 
helps determine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions and the initial values of polynomial function being used in the 
premise and consequence part of the fuzzy rules. And the initial parameters are 
adjusted effectively with the aid of the HFCGA and the LSM. 

2   Design of Fuzzy Model Based on Information Granulation 

Usually, information granules [6] are viewed as related collections of objects (data 
point, in particular) drawn together by the criteria of proximity, similarity, or 
functionality. Granulation of information is an inherent and omnipresent activity of 
human beings carried out with intent of gaining a better insight into a problem under 
consideration and arriving at its efficient solution. In particular, granulation of 
information is aimed at transforming the problem at hand into several smaller and 
therefore manageable tasks. In this way, we partition this problem into a series of 
well-defined subproblems (modules) of a far lower computational complexity than the 
original one. The form of information granulation (IG) themselves becomes an 
important design feature of the fuzzy model, which are geared toward capturing 
relationships between information granules.  

The identification procedure for fuzzy models is usually split into the identification 
activities dealing with the premise and consequence parts of the rules. The 
identification completed at the premise level consists of two main steps. First, we 
select the input variables x1, x2, …, xk of the rules. Second, we form fuzzy partitions of 
the spaces over which these individual variables are defined. The identification of the 
consequence part of the rules embraces two phases, namely 1) a selection of the 
consequence variables of the fuzzy rules, and 2) determination of the parameters of 
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the consequence (conclusion part). And the least square error (LSE) method used at 
the parametric optimization of the consequence parts of the successive rules. 

In the premise part of the rules, we confine ourselves to a triangular type of 
membership functions whose parameters are subject to some optimization. The HCM 
clustering [7] helps us organize the data into cluster so in this way we capture the 
characteristics of the experimental data. In the regions where some clusters of data 
have been identified, we end up with some fuzzy sets that help reflect the specificity 
of the data set. 

The identification of the premise part is completed in the following manner. Given 
is a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, …, xmk]

T, y =[y1, …, ym]T, l is the 
number of variables and , m is the number of data. 

[Step 1] Arrange a set of data U into data set Xk composed of respective input data 
and output data 

Xk=[xk ; y] (1) 

Xk is data set of k-th input data and output data, where, xk =[x1k, …, xmk]
T, y = 

[y1, …, ym]T, and k=1, 2, …, l. 
[Step 2] Complete the HCM clustering to determine the centers (prototypes) vkg with 
data set Xk. 
[Step 3] Partition the corresponding isolated input space using the prototypes of the 
clusters vkg.  Associate each clusters with some meaning (semantics), say Small,  
Big, etc. 
[Step 4] Set the initial apexes of the membership functions using the prototypes vkg. 

After premise part of identification, we identify the structure considering the initial 
values of the polynomial functions based on the information granules realized for the 
consequence and antecedents parts. 

[Step 1] Find a set of data included in the fuzzy space of the j-th rule. 
[Step 2] Compute the prototypes Vj of the data set by taking the arithmetic mean of 
each rule 

1 2V { , , , ; }j j j kj jV V V M= … . (2) 

 [Step 3] Set the initial values of polynomial functions with the center vectors Vj. 

The identification of the conclusion parts of the rules deals with a selection of their 
structure (type 1, type 2, type 3 and type 4) that is followed by the determination of 
the respective parameters of the local functions occurring there. 

The conclusion part of the rule that is extended form of a typical fuzzy rule in the 
TSK (Takagi-Sugeno-Kang) fuzzy model has the form 

1 1 1: ( , , )j
c k kc j j j kR If x is A and and x is A then y M f x x− = . (3) 

Type 1 (Simplified Inference):  

0j jf a=  (4) 
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Type 2 (Linear Inference):  

0 1 1 1( ) ( )j j j j jk k jkf a a x V a x V= + − + + −  (5) 

Type 3 (Quadratic Inference):  

2 2
0 1 1 1 ( 1) 1 1 (2 )( ) ( ) ( ) ( )j j j j jk k kj j k j j k k kjf a a x V a x V a x V a x V+= + − + + − + − + + −  

(2 1) 1 1 2 2 (( 2)( 1) / 2) 1 ( 1)( )( ) ( )( )j k j j j k k k k j k kja x V x V a x V x V+ + + − −+ − − + + − −  
(6) 

Type 4 (Modified Quadratic Inference):  

0 1 1 1 ( 1) 1 1 2 2( ) ( ) ( )( )j j j j jk k kj j k j jf a a x V a x V a x V x V+= + − + + − + − − +  

( ( 1) / 2) 1 ( 1)( )( )j k k k k j k kja x V x V+ − −+ − − . 
(7) 

The calculations of the numeric output of the model, based on the activation 
(matching) levels of the rules there, rely on the following expression 

1

1 1*
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1 1

( ( , , ) )
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Here, as the normalized value of wji, we use an abbreviated notation to describe an 

activation level of rule jR to be in the form 
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(9) 

where, jR is the j-th fuzzy rule, xk represents the input variables, Akc is a membership 
function of fuzzy sets, ajk is a constant, Vjk and Mj is a center value of the input and 
output data, respectively, n is the number of fuzzy rules, y* is the inferred output 

value, wji is the premise fitness matching jR (activation level). 
The consequence parameters ajk can be determined by the standard least-squares 

method that leads to the expression 

-1ˆ ( )T T=a X X X Y . (10) 

In the case of Type 2 we have 

10 0 11 1 1ˆ [ ]Tn n k nka a a a a a=a , 1 2[ ]Ti m=X x x x x , 
T
i =x [ 1ˆ iw ˆniw  1 11 1ˆ( )i ix V w− 1 1 ˆ( )i n nix V w− 1 1ˆ( )ki k ix V w− ˆ( )ki kn nix V w− ], 

1 1 2 2
1 1 1

T
n n n

j j j j m j jm
j j j

y M w y M w y M w
= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − − −

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑Y . 

1 2[ ]Ti m=X x x x x . 
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3   HFCGA and Optimization of Fuzzy Model 

One of the central problems in evolutionary computation is to combat premature 
convergence and to achieve balanced exploration. Parallel Genetic Algorithm (PGA) 
is devised to solve this problem, and there are various PGA models such as global, 
fine-grained, and coarse-grained model [8]. The most popular model is coarse-grained 
model and Hierarchical Fair Competition model (HFC) is one type of PGA. It has 
multiple-deme (subpopulation), individuals evolve within each deme independently, 
and specified individuals migrate to other deme in regular generation interval. 
Evolutionary process is similar to traditional GAs, but it include migration algorithm. 

(Access) deme 1
(The worst deme)

Admission threshold level 2

Initialize population 
randomly

Admission buffer
for deme i

.

.

.

...

Individual
Normalized

Fitness

...
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...

Individual
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...

Individual
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Deme 2

Deme i-1
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Admission threshold level i-1

Admission threshold level i

Admission threshold level 3
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Admission buffer
  for deme i-1

Admission buffer
for Deme 2

 

Fig. 1. The migration topology of HFCGA 

In HFCGA, migration is executed in regular generation interval. And procedure is 
explained in detail like as follows, refer to Fig. 1. 

[Step 1] Normalize the fitness of individuals in each subpopulation 

minmax

min,
, ff

ff
nf ij

ij −
−

= , (11) 

where, fij is fitness of i-th deme and j-th individual, fmax and fmin is maximum and 
minimum value of fitness, respectively. 
[Step 2] Calculate admission threshold (ALi). We use average of normalized fitness to 
determine admission threshold for the i’th deme. 
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,

1 , 
(12) 

where, ni is a size of i-th subpopulation. 
[Step 3] Create admission buffer to collect qualified candidates from other 
populations. All individuals with higher normalized fitness than the boundary of their 
deme (superior individuals) are saved to admission buffer of the appropriate 
subpopulation. 
[Step 4] Move individuals from each admission buffer to appropriated deme. In each 
hierarchy deme, individuals in admission buffer exchange to the worst in deme in 
sequence. If normalized fitness of migrant individual is lower than the worst, pass to 
next individual without moving. So, there is no change if all of them in admission 
buffer have lower normalized fitness than the worst in target deme. And individuals in 
the access deme are initialized randomly to keep diversity of population. 

Optimization procedure of fuzzy model consists of two phase, structural and 
parametric parts. In each optimization phase arrangement of chromosomes are shown 
as Fig. 2. Since we use real-coded HFCGA, allocate one memory space per parameter 
and chromosomes have real number. 

fourth NO. 
of MFs

third No. 
of MFs

Second 
No. of MFs

first No. 
of MFs

Type of 
Polynomial

first 
variable

second 
variable

third 
variable

fourth 
variable

Selected variables Number of membership functions for 
each variable

Order of 
polynomial

First variable

Arrangment of chromosome for parametric identification

Second variable Third variable Fourth variable

First 
apex

Second 
apex

First 
apex

Third 
apex

First 
apex

Second 
apex

First 
apex

Second 
apex

Second 
apex

In case of
Maximum number of input variable : 4
Number of membership function for each variable : [2, 3, 2, 2 ]

No. of
variable

Maximum number of
Input variable

Arrangment of chromosome for structural identification

 

Fig. 2. Arrangement of chromosomes for identification of structure and parameters 

4   Experimental Studies 

We Consider a Medical Imaging System (MIS) subset of 390 software modules 
written in Pascal and FORTRAN for modeling. These modules consist of 
approximately 40,000 lines of code. To design an optimal model from the MIS, we 
study 11 system input variables such as, LOC, CL, TChar, TComm, MChar, DChar, 

N, N
^

, NF, V(G) and BW. The output variable of the model is the number of changes 
Changes made to the software model during its development. In case of the MIS data, 
the performance index is defined as the mean squared error (MSE). Table 1 
summarizes the list of parameters and operators used HFCGA. 
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Table 1. Summary of the parameters of HFCGA 

GA parameters  Structure Identification.  Parameter Identification. 
Generation  300  300 
No. of deme  3  5 
Sizes of demes  [50, 50, 50]  [80, 80, 80, 80, 80] 
Crossover rate  [0.75 0.65 0.5]  [0.75, 0.7, 0.65, 0.6, 0.5] 
Mutation rate  [0.1, 0.1, 0.1]  [0.1, 0.1, 0.1, 0.1, 0.1] 
Migration interval  20  20 

In structure optimization based on HFCGA, two input variables (TComm and 
MChar) are selected, numbers of membership functions are three and two for each 
selected variable, and the order of consequence polynomial is three. Table 2 show the 
optimized structure and performance index in HFCGA.  

In the Fig. 3, upper parts depicts groups and central values through HCM for each 
selected input variable, where central values are used to design IG based fuzzy model 
and used as apexes of the membership functions in structure optimization, and lower 
parts represent tuned apexes of membership functions in parameter optimization. 

Table 2. Performance index of IG-based fuzzy model by means of HFCGA 

Structure Identification  Parameter Identification. 
Selected input 

variables 
No. of 
MFs 

Order of 
polynomial 

PI E_PI  PI E_PI 

TComm 
MChar 

3 
2 

Type 3 29.6447 37.7859  29.9692 26.8127 

Initial membership functions by HCM clustering

Tuned membership functions by HFCGA
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Fig. 3. Results of HCM clustering and tuned apexes of membership functions 
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Table 3 summarizes the results of comparative analysis of the proposed model with 
respect to other constructs. We use performance index of the first layer of other 
models for rational comparison because of the fuzzy relation model is different from 
FNN, SONFN and FPNN in model structure. 

Table 3. Comparison of performance index with previous model 

Model Selected inputs 
No. of MFs 

(rules) 
Polynomial 

Type 
PI E_PI 

All   40.056 36.322 Regression 
Model [10] TComm, MChar, DChar, N   43.849 38.917 

SONFN [11] TComm, MChar, DChar, N 2×2×2×2(16) 2 39.179 23.864 
TComm, N 3×3(9) 1 51.005 36.352 

FPNN [12] 
TChar, TComm, N 2×3×2(18) 1 38.482 30.508 

Our model TComm, MChar 3×2(6) 3 29.969 26.813 

5   Conclusions 

In this paper, we have developed a comprehensive hybrid identification framework 
for information granulation-oriented fuzzy model using hierarchical fair competition 
genetic algorithm. The underlying idea deals with an optimization of information 
granules by exploiting techniques of clustering and genetic algorithms. We used the 
isolated input space for each input variable and defined the fuzzy space by 
information granule. Information granulation with the aid of HCM clustering help 
determine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions and the initial values of polynomial function being used in the 
premise and consequence part of the fuzzy rules. The initial parameters are fine-tuned 
(adjusted) effectively with the aid of HFCGA and the least square method. The 
experimental studies showed that the model is compact (realized through a small 
number of rules), and its performance is better than some other previous models. The 
proposed model is effective for nonlinear complex systems, so we can construct a 
well-organized model. 
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Abstract. Forecasting of traffic flow is one of the most important approaches to 
control the capacity of highway network efficiently during peak flow periods. 
Therefore, many emerging methods have been designed to predict traffic flow 
of freeways. However, the ellipsoidal neural fuzzy model, originally developed 
for control and pattern recognition problems, was seldom used in forecasting 
traffic flow. The aim of this study is to investigate the potential of ellipsoidal 
neural fuzzy model in predicting highway traffic. Monthly traffic data at Tai-
Shan tollgate of a freeway in Taiwan are collected to depict the performance of 
forecasting models. Three other neural network models, namely back-
propagation neural networks (BPNN), and radial basis function neural networks 
(RBFNN) and general regression neural networks (GRNN) models are used to 
predict the same traffic data sets. Simulation results reveal that the ellipsoidal 
neural fuzzy time-series (ENFTS) model is superior to the other models. 
Therefore, the ENFTS is a feasible and promising approach in predicting 
freeway traffic.  

1   Introduction 

It was reported that traffic congestion continues to impose frustrating delays on road 
users, and remains a growing trend in the near future [14]. Furthermore, such 
anomalous traffic congestion may significantly affect the system stability of lane 
traffics either in the time domain or in the space domain [17]. Therefore, accurate 
traffic forecasting can provide freeway traffic control centers with congestion 
information that may arise on highways. In the past decades, many models have been 
designed to forecast traffic flow. Stathopoulos and Karlafits [20] presented a 
multivariate state space model to forecast traffic flow. They reported that the 
multivariate state space models reach more accurate forecasting results than 
univariate time series models. Smith et al. [18] used seasonal ARIMA models to 
forecast single point short-term traffic flow. It was concluded that the heuristic 
forecast generation method significantly outperforms the seasonal ARIMA model in 
terms of forecasting accuracy. A hybrid model combining the ARIMA model and the 
Kohonen neural network approach was developed by Voort et al. [21] to predict 
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short-term traffic in France. Experimental results indicated that the proposed hybrid 
model obtained more accurate results than the ARIMA model as well as the 
backpropagation neural network model. Kamarianakis and Prastacos [6] applied 
ARIMA models with space and time factors to forecast space-time stationary traffic 
flow. Simulation results showed that the ARIMA models successfully measure the 
impact of traffic flow changes. Due to the nonlinear mapping and fault-tolerance 
abilities, artificial neural network recently has become one of the most popular 
techniques in forecasting traffic. Kirby et al. [9] compared the performance of BPNN 
models with ARIMA models in forecasting traffic flow. According to experimental 
results, the BPNN model was inferior to the ARIMA model in the 30-minutes-ahead 
forecast. However, the BPNN model provided more accurate forecasting results than 
the ARIMA model for the two-hours-ahead forecasting. The BPNN models [4], [5] 
were applied to forecast traffic flow and speed of an inter-urban motorway networks 
in Netherlands and Italy, respectively. The noise of traffic flow caused a more 
difficult forecast in traffic flow than in speed. Ledoux [12] designed a two-steps 
neural network approach for predicting urban traffic flow in France. The proposed 
model conducted a one-minute-ahead forecasting policy and obtained fairly good 
forecasting accuracy. Dia [1] applied a time-lag recurrent neural network model to 
predict short-term traffic. Simulation results indicated that the presented neural 
network model can forecast speed data up to 15 minutes into the future with high 
accuracy. Yin et al. [22] employed a fuzzy-neural model, including a gate network 
and an expert network, to forecast traffic flow in an urban street network. 
Experimental results revealed that the proposed model outperforms the BPNN model 
in terms of forecasting accuracy.  

Designed by Dickerson and Kosko [2], the ellipsoidal neural fuzzy system has 
been applied in recognizing gunshot bruise patterns [13], controlling smart cars [7], 
and filtering impulsive noises [8]. In this study, the ellipsoidal neural fuzzy system is 
modified for predicting freeway traffic volume. The rest of this article is organized as 
follows. The proposed ENFTS model is introduced in Sect. 2. Numerical examples 
and performance of the ENFTS model are depicted in Sect. 3. Finally, Sect. 4 draws 
conclusions. 

2   The Ellipsoidal Neural Fuzzy Time Series Model 

The ellipsoidal neural fuzzy system is an additive fuzzy system that can approximate 
any continuous or measurable function. An ellipsoidal fuzzy patch that trades the 
generality of fuzzy rule for the mathematical simplicity of quadratic forms is defined 
by a fuzzy rule. The size and shape of the ellipsoid indicates relations between inputs 
and outputs in certain regions of the state space. Two learning stages, an unsupervised 
learning phase stage and a supervised learning stage, are contained in the ellipsoidal 
neural system (Fig.1). In this study, the adaptive vector quantization (AVQ) system 
and the scaled conjugate gradient (SCG) training algorithm are used in the 
unsupervised learning stage and supervised learning stage respectively. The 
unsupervised learning approach is employed to select the ellipsoidal fuzzy rules 
quickly and roughly. Then the supervised learning is used to update the parameters of  
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Fig. 1. The hybrid neural system combines unsupervised and supervised neural learning to find 
and tune the ellipsoidal fuzzy rules [3] 

ellipsoidal fuzzy rules. It was reported that the hybrid system outperforms either the 
unsupervised learning or the supervised learning along [2]. 

An additive fuzzy system contains a set of rules of the form “IF X is A, then Y is B” 
for fuzzy sets A and B. For a single-input and single-output function, Fig. 2 indicates 
the ellipsoid patches and their triangular projections. An additive fuzzy system like 
multilayer neural networks can approximate continuous or measurable functions 
uniformly by fuzzy patches. Fuzzy patches are defined by the covariance of the 
pattern classes in the data. In general, more fuzzy patches in shrinking sizes improve 
the approximation ability of an additive fuzzy system [3]. However, too many 
ellipsoidal fuzzy patches cause the overfitting of this fuzzy system. The influence of 
the ellipsoidal fuzzy patch number on the performance of the hybrid neural fuzzy 
system is investigated in this study.  

 

Fig. 2. The projection of each ellipsoid on the axes of the input-output state space defines a 
fuzzy set. The ellipsoid defines a fuzzy patch or rule between fuzzy subsets of inputs and 
outputs [3]. 

The AVQ competitive learning principle learns statistics of data clusters [10] and 
each data clusters develops a fuzzy ellipsoidal patch [11]. This training algorithm 
clusters pattern by combining the input x and the output y of the data to the 

form ( ) ( ) ( )T T T
j j jz t x t y t⎡ ⎤= ⎣ ⎦

. Furthermore, the AVQ algorithm compares the vector 

random sample zj(t) with columns of the synaptic connection matrix sj(t). The jth 
neuron wins if the jth quantizing vector is expressed as in (1). 
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( ) ( ) min ( ) ( )j j i i
i

s t z t s t z t− = −  (1) 

Competitive learning estimates the first-order statistics of the data with the 
stochastic difference equation showed as: 

( ) [ ( ) ( )],  if the th neuron wins
( 1)

( ) ,  if the th neuron loses

j j j
j

j

s t L z t s t j
s t

s t j

+ −⎧⎪+ = ⎨
⎪⎩

 (2) 

where L is the learning rate.  
The losing vectors do not change and so do not forget what they have learned. A 

fuzzy ellipsoidal patch is defined by the locus of all z satisfying the following 
equation: 

2 1( ) ( )T
j j j jz c C z cα −= − −  (3) 

where jα is a positive real number, 1
jC−  is the inverse of the covariance matrix, cj is 

the center of the jth ellipsoid. The length of the projection of hyperrectangle at the jth 
axis onto the ith axis is shown as (4). 

( )( ) 1

1

2 c o s
q

j i j j i k j k
k

ρ α γ λ
−

=

= ∑  (4) 

where λjk are eigenvalues of the matrix C. The direction cosine cos jikγ is the angle 

between the kth eigenvector and the ith axis for the jth ellipsoid. From the length of 
the projection of hyperrectangle, the triangular set can be represented as follows: 

2
1  ,   fo r  ( ) 2

0 , else

jk

jk

x jk
k x
j jk

x c
x ca x

ρ
ρ

⎧ −
⎪⎪ − − ≤= ⎨
⎪
⎪⎩

 
(5) 

In this investigation, the output at time t, Ot, is obtained by the centroidal 
defuzzification method with correlation product inference and showed as (6).  

1

1 1

( ) ( )
j j

r r

t j j A t j A t
j j

O c V m x V m x

−

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  (6) 

where Vj 
denotes the area of the jth output set, cj represents the centroid of the jth 

output set, r is the number of output sets, and ( )
jA tm x  is the degree of fired rules. 

For the supervised learning stage, this study employs a three-layer backpropagation 
network (Fig. 3) to train time-series data used by the ENFTS model. In the three-layer 
backpropagation network, the SCG algorithm is applied to adjust rules obtained from 
the unsupervised learning stage. Furthermore, the one-step-ahead forecasting policy is 
adopted. Additionally, various numbers of nodes in the hidden layers are used to 
study the prediction accuracy.  
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Fig. 3. The three-layer time-series neural network of the supervised phase 

According to the SCG algorithm, the search direction of weights, dn+1 is expressed 
by: 

( )1 1'n n n nd E w dβ+ += − +  (7) 

Where E(wn+1) denotes the error at the (n+1)th iteration, w(n+1) is a vector of weights 
connecting two layers at iteration (n+1), and βn is represented by: 

2
1 1

2

'( ) '( ) '( )

'( )

T
n n n

n

n

E w E w E w

E w
β + +−

=  (8) 

Thus, the weight is updated by (9).  

n n nw dεΔ =  (9) 

The step size εn is shown as (10):  

12
'( )T T

n n n n n n nd E w d g dε λ
−

⎡ ⎤⎡ ⎤= − +⎢ ⎥⎣ ⎦ ⎣ ⎦
 (10) 

where gn and λn are illustrated as (11) and (12) 
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where 

{ } 22 [ ( ) ( )] [ '( )]T T T
n n n n n n n n nd g E w E w d d E wε −Δ = − + −  (13) 
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3   A Numerical Example 

In the past, Tai-Shan tollgate had the highest traffic volume among all tollgates in 
Taiwan. In this investigation, monthly traffic data from Jan. 2002 to Dec. 2005 at Tai-
Shan tollgate are used to demonstrate the performance of forecasting models. Fig. 4 
shows the experimental data employed in this investigation. The 48 data are divided 
into a training data set (from Jan. 2002 to Dec. 2003) and a testing data set (from Jan. 
2004 to Dec. 2005). In addition, three other neural networks, namely the back-
propagation network [16], the radial basis function neural network [15], and the 
general regression neural network [19] are used to compare performance with the 
ENFTS model. Because values of parameters used by prediction models influence 
forecasting accuracy a lot, parameter selections are conducted for each model. For the 
ENFTS model, two major parameters are the rule number in the unsupervised 
learning stage and the number of hidden nodes in the supervised learning stage. For 
the BPNN model with one hidden layer, the number of hidden nodes is a main 
parameter to determine the prediction performance. For both the RBFNN model and 
the GRNN model, width of the Gaussian function (σ) is the key parameter to 
influence forecasting accuracy. Figure 5 shows the relation between forecasting 
NRMSE values and two parameters of ENFTS models. It is indicated that the smallest 
NRMSE value (0.02616) is obtained when the number of rules and the number of 
hidden nodes are 10 and 3 respectively. It is shown in Fig. 6 that the BPNN model can 
generate the smallest forecasting NRMSE value when the number of hidden nodes is 
equal to one. Figure 6 indicates the overfitting of the BPNN model when the number 

of hidden nodes increases. Figure 7 depicts the relation between σ values and 

predicting NRMSE values of RBFNN and GRNN models. The RBFNN and GRNN 
models can achieve the most accurate forecasting accuracy while the widths of the 
Gaussian functions are 4 and 2 respectively. Forecasting performances measured by 
NRMSE of four models are listed in Table 1. The results indicate that the ENFTS 
model outperforms the other three neural network models in terms of forecasting 
accuracy. Therefore, this may suggest ENFTS is a valid and promising model in 
predicting freeway traffic.  

 

Fig. 4. The traffic volume at Tai-Shan tollgate 
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Fig. 5. The relation between NRMSE value and two parameters of ENFTS models 

 

Fig. 6. The relation between the number of hidden nodes and NRMSE values of BPNN 

 

Fig. 7. The relation between σ values and NRMSE values of RBFNN and GRNN 
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Table 1. Forecasting accuracy of four models 

Forecasting models ENFTS BPNN RBFNN GRNN 

NRMSE 0.02615 0.03726 0.02862 0.04882 

4   Conclusions 

To provide traffic control centers with useful information, accurate forecast of 
highway traffic is essential. This study modifies the ellipsoidal neural fuzzy model to 
accept time series data and applies the ENFTS model to predict freeway traffic. 
Numerical data collected from the busiest tollgate in Taiwan are employed to depict 
the forecasting performance. Forecasting results obtained by other three neural 
network models are used to compare the forecasting performance with the presented 
ENFTS model. Furthermore, parameter analyses of forecasting models are also 
conducted to illustrate influences of parameters on different prediction models. It is 
indicated that the ENFTS model is superior to the other models in forecasting 
accuracy. Therefore, the presented ENFTS model is feasible and promising 
alternative in freeway traffic prediction. For the future research, some meta-heuristic 
algorithms can be applied to optimizing the parameter selection of the ENFTS model. 
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Abstract Sandwich type piezoelectric ceramic transducers are the most 
frequently applied source of ultrasounds in technical cleaning system. They 
have the ability to radiate in an ultrasonic medium, e.g. water, with maximum 
acoustic power when the vibration is activated by a current whose frequency 
equals the mechanical resonance frequency of the transducer. In resonant 
inverters the transducer units are part of the oscillating circuit, for which 
equivalent electrical circuit consist of connection in parallel: Co end RLC. The 
resonant frequency of the real circuit varies during the operation in function of 
many parameters, among others, the most important are temperature, time, the 
column of cleaning factor, and the surface of the cleaned elements. In this 
situation, to obtain the maximum value of the converter efficiency, its important 
role of control system to assure the optimal mechanical resonant frequencies of 
converter. 

1   Introduction 

High power ultrasonic waves are generally used in such industrial processes as 
welding, acceleration of chemical reactions, scavenging in gas medium, echo 
sounding and underwater communication (sonar systems), picture transmission, and, 
above all, ultrasonic cleaning. 

Currently, the Sandwich-type piezoelectric ceramic transducers are the most 
frequently applied sources of ultrasound. They have the ability to radiate in an 
ultrasonic medium with maximum acoustic power when the vibration is activated by a 
current whose frequency equals the mechanical resonance frequency of the 
transducer. Typical units of the ultrasonic generators feeding these transducers 
operate at frequencies between 20 kHz and 100 kHz (Fig. 1), with output power in the 
range of 20 W to 5 kW.  

In resonant converters, the SANDWICH-type transducer units is a part of the 
oscillating circuit. This transducer made of piezoelectric ceramics PZT and are  
a combination of steel-ceramics-aluminum blocks connected by one or several  
screws. 
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Fig. 1. Ultrasonic SANDWICH-type transducers 

2   Power Circuit Configuration 

 

Fig. 2. The block diagram of the ultrasonic generator 

Block diagram and the main circuit of the converter with piezoelectric ceramic 
transducer (Fig. 2) consists of: 

−  converter AC/DC,  
−  full-bridge inverter (T1-T4, D1-D4) FBI, 
−  isolating transformer T, where z2/z1=n1, z1/z3=n2,  
−  special filter (Lw, Cw) F, 
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−  transducer PT, 
−  sensor of vibrations S, 
−  control unit CU. 

The control unit consists of two parts. The first part, in FBI inverter, is the frequency 
feed-back control loop and the second part in AC/DC converter is the amplitude feed-
back control loop.  

Two coupling loop works independently. 
In the case of overload inverter system of current limiter disconnect supply of 

AC/DC converter.  
Signal fset make possible to set up manually frequency switching inverter FBI and 

signal Aset establish amplitude ultrasonic oscillation. 

3   Digital Model of Inverter-Special Filter-Transducer Group 
System Circuit 

The equivalent circuit of the piezoelectric ceramic transducers with frequency close to 
resonant frequency is shown in Figure 3, where: 
Co - static capacity of the transducer, 
C - equivalent mechanical capacity, 
L - equivalent mechanical inductance, 
R - equivalent resistance, Rp = Rm + Ra, 
where: Rm - equivalent mechanical loss resistance, Ra - equivalent acoustic 
resistance. 

The values Co, C, L, R are calculated from admittance characteristic of transducers 
(Fig. 4), for the off-load and on-load conditions (Ra = var). 

Exemplary values of these parameters for the transducer immersed in air may be 
following: Co = 4 nF, L = 246 mH, C = 182 pF, R = 392 Ω . 

 

Fig. 3. The equivalent circuit of piezoelectric transducer, where :Co – the electrical part of 
circuit, RLC – the mechanical part of circuit 

The susceptance B, conductance G, admittance Y of the transducers in frequency f 
function may be expressed by the following equations: 
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Fig. 4. The admittance characteristics of sandwich-type  transducers: 1. Real characteristic,2. 
Equivalent characteristic 

The frequency fm of mechanical vibration may be calculated by equation: 

1

2
fm LC

π
=  (4) 

A optimum value inductance of choke Lw of special filter may by expressed by the 
equation: 
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2 24 fm
Lw

Co

π=  (5) 

and value of capacity Cw is equals 2Cw Co n= ⋅ . 

The presented system of filter-transducers make possible to supply the 
piezoelectric ceramic transducer with the quasi-sinusoidal current and voltage and to 
determine a extreme values of parameters the elements of the converters FBI in case 
of tuning and untuning resonance frequency of converter and piezoelectric ceramic 
transducer (f ≈ fm). 

The digital model of the inverter-special filter- transducer group system circuit, 
worked in PSpice language, has enable us to analysis the current and voltage 
waveforms in the inverter to determine the optimum parameters for the 
semiconductors, and especially for analysis in the case tuning and untuning of output 
frequency of inverter and the mechanical frequency of the transducer. Exemplary 
results of digital analysis for the power circuit with open the frequency feed-back 
control loop are presented in Fig. 5. 

 
Fig. 5. Current and voltage waveform for transducer and output voltage for inverter for digital 
model of inverter-special filter-transducer group system circuit for f ≈ fm 

4   Control System 

To obtain the maximum value of converter efficiency is necessary to assure the 
optimal mechanical resonant frequencies of converter, but, most of properties of 
piezoelectric ceramic transducer change gradually with time, depends also from the 
ceramic composition and the way the ceramic is processed during manufacture.  
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Fig. 6. Four case variations of change output power and resonant frequency 

Changing the cleaning medium results in the variations of output power of our 
converter and in output resonant frequency we have four case (Fig. 6). In this 
situation, to obtain the maximum value of converter efficiency, its important role of 
fuzzy logic control system to assure the optimal mechanical resonant frequencies of 
converter. 

In this situation logic control system define derived mark of signal amplitude 
proportional to output power and output resonant frequency and change adequate the 
output frequency of converter. the control rules, contain the relationship between the 
input and output variable are defined (Tab. 1.) 

Table 1. Control rules 

 derived of power derived of frequency rules of logic control 

1 dP/dt > 0 df/dt > 0 frequency increase 

2 dP/dt < 0 df/dt > 0 frequency decrease 

3 dP/dt > 0 df/dt < 0 frequency decrease 

4 dP/dt < 0 df/dt < 0 frequency increase 

Fuzzification is process, where non-fuzzy values of power and frequency are 
converted into fuzzy values.  

 

Fig. 7. Structure of Fuzzy Controller 
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It is done by membership function. In our case membership function have a 
trapezoidal shape. The most important part of fuzzy controller in a block of rules  
(Fig. 7). The rules were derived from system behavior. This block makes connection 
between input side and output side. The rules were derived for power and frequency 
values as:  

P/dP 

 NB NS ZE PS PB 

NB NB NB NB NS NS 

NS NB NB NS ZE PS 

ZE NB NS ZE PS PB 

PS NS ZE PS PB PB 

PB PS PS PB PB PB 

With the referred lookup table a fuzzy controller was synthesized by following the 
control algorithm: 

Step 1: Determine the power error, 
Step 2: Determine the power error variation, 
Step 3: Quantization of the power error, 
Step 4: Quantization of the power error variation, 
Step 5: Calculate the controller’s output scale, 
Step 6: If the quantization error and error variation lever are not the smallest  
possible go to, 
Step 7: Adjust the universe of discourse, 
Step 8: Go to Step 3, 
Step 9: Extract the controller’s output value from  the lookup table, 
Step 10: Adjust the controller’s output value using  the output scale value. 

Defuzzification means transfer of fuzzy value power and frequency in to non - fuzzy 
values. 

5   Experimental Research 

The main circuit of the series-resonant converter with piezoelectric ceramic 
transducer and special LC filter system (Fig. 2) was modeling, build and tested. The 
experimental result was obtain in the case of tuning and untuning of output frequency 
of inverter and the mechanical frequency of the transducer (circuit LC). Exemplary 
experimental current and voltage waveform of transducer are shown in the followed 
(Fig. 8 - 10). 
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Fig. 8. Current and voltage waveform in case when f < fm 

 

Fig. 9. Current and voltage waveform in the case when f = fm 

 

Fig. 10. Current and voltage waveform in the case when f > fm 
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6   Conclusions 

Possible application of fuzzy logic may be classified in three categories; the first one 
concerns problems about inaccurate and eventually uncertain knowledge, the second 
one concerns problem which can not be modeled rigorously, at last, problems related 
to very complicated systems, that is  systems with a lot of variables. In this situation 
fuzzy logic control system define derived mark of signal amplitude proportional to 
output power and output resonant frequency and change adequate the output 
frequency of converter.  

The presented control method make possible to supply the piezoelectric ceramic 
transducers group with the quasi-sinusoidal current and voltage with self-tuning 
frequency to mechanical resonance. The purpose of the analysis was to tested the 
control system in the case of tuning the generator frequency to the mechanic change 
the resonance frequency of transducer, to determine optimal parameters of the 
elements of resonant inverter circuit, and as well as to determine the extreme values 
of currents and voltages when the untuning the transducer according to the resonant 
frequency occurs. 

In the case of untuning the output frequency of inverter according to piezoelectric 
ceramic transducer mechanical frequency the current and voltage waveforms of 
piezoelectric transducer are non-sinusoidal. Especially current waveform is 
deformation. Increase the o frequency make decrease current and voltage amplitude of 
transistors generator. 

Because in the case even small untuning resonance frequency in our system the 
reached efficiency is deeply decrease there is necessary to used described control 
system which assure self tuning output voltage inverter frequency to obtain maximum 
output power. 

The results of analysis of piezoelectric transducer and of the system of the 
resonance converter with control loop of frequency have been compared with 
experimental results in real piezoelectric transducer system and satisfactory results 
has been obtained. 

References 

1. Fabijański, P., Łagoda, R.: Control and Application of Series Resonant Converter in 
Technical Cleaning System. Proceedings of the IASTED, International Conference Control 
and Application, Cancun, Mexico, (2002) 

2. Hatanaka, Y., Nakaoka, M., Maruhashi T.: Overlapping Commutation-mode Analysis of a 
High-frequency Inverter. International Journal Electronics, Vol. 49, No. 3, (1980) 

3. Faa-Jeng, L., Rong-Jong, W., Kuo-Kai, S, Tsih-Ming, L, Recurrent Fuzzy Neural Network 
Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive. IEEE Transactions on 
Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 48, No.4, (2001) 



B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 649–656, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Method to Classify Collaboration in CSCL Systems 

Rafael Duque and Crescencio Bravo 

Department of Information Systems and Technologies 
School of Computer Engineering 

University of Castilla – La Mancha 
Paseo de la Universidad 4, 13071 Ciudad Real, Spain 

{Rafael.Duque,Crescencio.Bravo}@uclm.es 

Abstract. One of the most important challenges of collaborative learning sys-
tems is to offer mechanisms to facilitate the study of the relationships between 
the collaboration process and the characteristics of the solution (product) built 
by the learners in this work process. In this article, a machine learning algo-
rithm that generates a set of rules to classify the different forms of collaboration 
within a group of learners with respect to the quality of the solution built is pre-
sented. The algorithm, based on a fuzzy model, is put into practice using data 
registered in a collaborative learning environment. 

1   Introduction 

In the last years, a growing use of information technologies is perceived in educa-
tional environments. Among the reasons that originate this situation, we can point out 
the adoption of some didactic theories that recommend group work [16] and the pro-
liferation of diverse technologies to facilitate support for collective work (the Internet, 
wireless technologies, etc.). Consequently, new paradigms such as CSCL (Computer-
Supported Collaborative Learning) [11] and ITS (Intelligent Tutoring Systems) [19] 
have arisen. CSCL studies the form in which technology can give support to group 
learning. The ITS approach seeks to introduce “intelligent” virtual teachers into teach-
ing-learning processes. 

Many CSCL systems offer analysis functions to study the way in which collabora-
tion takes place [10]. For this purpose, they record the actions carried out with the 
user graphic interface [7], the conversational acts between collaborators [1], and/or 
the changes carried out in the shared work spaces [15]. Starting from these data, some 
CSCL systems calculate analysis indicators [6] using Artificial Intelligence (AI) tech-
niques to evaluate and represent the collaboration. Such techniques include Hidden 
Markov Models [17], Decision Trees [5], Petri Nets [12], Plan Recognition [13], and 
Fuzzy Logic [2, 14]. However, in many of the cases these techniques have not been 
used following a machine learning approach. 

In the ITS area, a great number of systems [18], based on knowledge models, 
evaluate the solutions created by the students. However, these systems usually lack 
facilities to analyze the process of solution building and they do not include support 
for group work. CSCL systems usually offer analysis indicators about the group work. 
On the contrary, ITS are focused on the quality and other characteristics of the  
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solution. In this work, the classification of the different forms of collaboration accord-
ing to the quality of the solution built in a collaboration process is approached.  

The AI techniques to be used in collaboration analysis depend largely on the model 
of the collaboration process and on the objective of the analysis. According to the 
study of Jermann et al. [10], the CSCL systems are classified in three categories: 
those that just reflect the interaction actions, those that monitor the state of the inter-
action, and those that offer advice to the users. However, most of the CSCL systems 
do not advice the user, in part because the AI techniques used, which are not based on 
fuzzy logic, do not allow the system to immediately elaborate a message in natural 
language close to the user since they are focused on obtaining the results by means of 
mathematical models (e.g., Hidden Markov Models) and not by means of a set of 
rules easily understandable. On the other hand, the CSCL systems that do offer advice 
to the users and are not based on machine learning techniques cannot build the advice 
according to the specific situations that take place in real-time but according to some 
parameters defined previously by an expert. 

We hypothesised the validity of using machine learning techniques to provide 
fuzzy models to study how the collaboration and the work process in group interrelate 
with the final product (solution). This article proposes an algorithm to classify the 
quality of collaborative work according to the quality of the solution built in this 
process. This algorithm takes a set of analysis indicator values as input, referred to 
both collaboration and solution, and generates a set of classification rules as output.  

In Section 2 the characteristics of the fuzzy models to support collaboration and so-
lution analysis are discussed. Section 3 proposes the machine learning algorithm men-
tioned above. In Section 4 the application of the algorithm to some data obtained in 
some collaborative learning activities where several students solved design problems 
working in groups are presented. Finally, Section 5 shows the conclusions obtained 
and some future work lines. 

2   Fuzzy Models to Analyze Collaborative Learning 

As mentioned before, diverse uncertainty treatment techniques have been applied to 
analyze collaboration in CSCL systems. We propose the use of fuzzy sets [20]  
because they are very useful to treat the uncertainty of some collaboration analysis 
indicators [6] to describe concepts about the collaboration such as communication, 
cooperation, agreement, or participation. These concepts are difficult to define with 
precision but they can be described with the help of linguistic labels. In the case of 
CSCL systems, it could be interesting to determine, for example, the quality of the 
communication between the members of a work group. However, it is complex to 
define this concept with precision. For that reason, the fuzzy sets (e.g., very fluid 
communication, not very fluid communication, nonexistent communication, etc.) are 
useful to characterize the communication concept. 

Keeping in mind that the academic subject matters are qualified with a general 
grade (usually a number or letter) and that CSCL systems usually offer a set of col-
laboration analysis indicators, a MISO (Multiple Inputs, Single Output) system has 
been chosen to provide a model to relate collaboration analysis indicators with the 
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solution quality. The inputs represent the collaborative work, and the output is a 
global qualification of the work made. 

The rule-based fuzzy models offer easily comprehensible results. Additionally, 
they are easily expressible in natural language, which allows teachers without knowl-
edge on techniques to tackle with uncertainty to manipulate rules and to receive 
analysis and evaluation information. In addition, the simplicity of calculating the rules 
allows synchronous collaboration systems to process these rules in real time. 

In order to build our fuzzy model, a set of cases {C0, C1, … Cm} is considered. 
Each case Ci is made up of k+1 values (xi0, xi1, … xik) for the corresponding analysis 
indicators of group work, and of a value for the solution quality (yj). These cases 
would have been calculated by the collaborative system using the users’ action log 
and some collaboration analysis functions. Thus, the fuzzy rules have the following 
structure: 

Ri: If X0 is Li
0, X1 is Li

1, … Xk is Li
k, then Y is yj, j=1..s 

In brief, Ri: If Ei then yj  

where (X0, … Xk) is the set of input variables (analysis indicators of collaboration), 
(Li

0, … Li
k) is the fuzzy set in which the corresponding variable X takes value, and Y 

is the output variable that indicates the quality of the solution. 

3   Machine Learning Method 

The ITS and CSCL systems are used in diverse environments and learning matters. 
This entails that those who play the role of administrator or teacher are not familiar-
ized with the ways of expressing uncertainty. Therefore, the aim of the classification 
method is to provide the smallest number of rules and with a simpler expression, and 
to manage variables that are independent of the application domain. A machine learn-
ing system that is completely automatic facilitates this aim since it works without the 
help of experts. The method proposes an algorithm to build a fuzzy model made up by 
a set of rules. In classification processes, a variable, data or criteria used to group or 
identify a set of elements is usually named class. In this article the class concept re-
fers to a global indicator of the solution quality used to group rules. The algorithm is 
described below. 

1. Use 80% of cases to derive initials rules  
2. For j=1 to number of classes  

2.1. Group in sets those initial rules of the j class that have the same values 
for one or more variables from the antecedent 
2.2 Select the set with the greatest number of rules and find one or several 
rules that define the set by means of an amplification process  
2.3 If there are initial rules of the j class that have not yet been amplified, re-
peat step 2.1 but only with these initial rules 

Let us analyze each one of the steps proposed in the machine learning algorithm. In 
the first step (step 1) a set of rules is obtained starting from the available cases. Only 
80% of the cases are used, with the aim that 20% remaining can be used to check the 
validity of the obtained rules. If there is a case ((xi0, xi1, … xik), yj), it will be  



652 R. Duque and C. Bravo 

necessary to use a mechanism that transforms the case into a rule of the type (Li
0, …, 

Li
k, yj). This procedure is as follows: in the first place, the value domain of each vari-

able is divided into different intervals, each one corresponding to a linguistic label; 
then, the degree of membership of a value to a linguistic label is calculated. The label 
of the highest membership degree is assigned to the fuzzy variable. 

In step 2.1., some sets of rules of the same class, that is to say, with common linguis-
tic labels for some variables in the antecedent, are therefore created. This way, the hy-
pothesis (to be validated afterwards) is that having common elements it is more feasible 
for the different rules to be defined by one or more rules that include all of them. 

Among the sets obtained, the algorithm selects the one that has the greatest number 
of rules. The amplification process (step 2.2) consists of adding linguistic labels to the 
antecedent. A rule Ri (Ri: If Ei then yj) will be amplified into another rule Rj (Rj: If Ej 
then yj) where Ei⊂ Ej, whenever a rule Rl (Rl: If El then yl) does not exist and that 
El⊂Ej and yj≠yl. The algorithm follows the amplification process proposed in [4], until 
one or several rules that define the whole rule set are found. 

Once a set of rules is obtained, its suitability is tested using those cases that were 
not used in the machine learning process (20%). A rule Rl (Rl: If El then yl) will fulfil 
another rule Rj (Rj: If Ej then yj) when El⊂Ej and yj=yl. 

4   The Method in Action 

The DomoSim-TPC system [3] is a CSCL environment with support for problem 
solving in the Domotics domain. The tool incorporated in this system for the collabo-
ration and solution analysis can be seen in Fig. 1. The user has to select which is the 
analysis target (the collaborative work, the final solution, or a collaboration-solution 
comprehensive study) and the type of variables to visualize (calculated, subjective, or 
inferred). In the right part of the user interface, the values of the selected analysis 
indicators are shown in a graphic way. 

 

Fig. 1. Analysis tool of DomoSim-TPC 
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Fig. 2. Membership functions used 

The DomoSim-TPC system was used in a course by secondary education students. 
From its usage, a data repository was made with analysis indicators of the collabora-
tive work and a general qualification of each solution. In order to create the fuzzy 
model outlined above, the following analysis indicators of the collective work (calcu-
lated by DomoSim-TPC) were considered: 

• GNIm: Average number of actions carried out by the users of the group. 
• GIPC: Interactivity of the group, calculated as the percentage of proposition and 

voting actions that were replied to by a user different from his/her author. 
• GTR: Average time in replying to proposals or voting interactions. 
• GTT: Duration of the realization of the task. 
• GIC: Simulation interactivity, calculated as the percentage of simulation actions 

that are carried out by the users as opposed to the total number of simulation  
actions. 

• Conformity (CON): It represents the number of actions that are carried out with a 
total consensus by the members of the work group. 

The analysis indicator that classifies each case is the solution quality (SQUAL). 
This indicator measures the degree of fulfilment of the objectives defined by the prob-
lem, which implies that the solution is correct or incorrect. SQUAL can take five 
different values (VL: Very Low, L: Low; I: Intermediate; H: High; VH: Very High). 

Once the real cases are available, it is necessary to carry out a fuzzification process 
in which the real values become linguistic labels. Concretely, the domain of each 
variable is divided in five intervals (VL, L, I, H, VH). 

In this application of the method, five functions (δn
VL(xin), γn

L(xin), γn
I(xin), γn

H(xin), 
μn

VH(xin)) have been used for each variable Xn (n=0..k) as can be observed in Fig.2. 
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For each value xin from each case, its associated linguistic label Li
n is obtained ac-

cording to the expression max{δn
VL(xin), γn

L(xin), γn
I(xin), γn

H(xin), μn
VH(xin)}, so that 

the cases are this way converted into rules. Once the fuzzification process concluded, 
the second step of the algorithm described in Section 3 is applied. This way, the rules 
that have variables with the same labels and belong to the same class are grouped 
together. In the example, it is observed that, among all the groups created, the one that 
has the greatest number of rules is shown in Table 1. 

Table 1. Rules with common variables 

Rule GNIm GIPC GIC GTR GTT CON SQUAL 
1 VL VL VH VL VL VL VL 
2 VL I VH VL VL VL VL 
3 VL VH VL VL VL VL VL 
4  L VL VL VL VL VL VL 
5 VL VH VH VL VL VL VL 

As can be seen, all the previous rules belong to the class SQUAL=VL and they 
have in common that GTR is {VL}, GTT is {VL} and CON is {VL}. 

Analyzing rule 1, it can be seen that an amplification of the type ({VL, I, H, VH}, 
VL, VH, VL, VL, VL, VL) is possible, while an amplification of the type ({VL, L, I, 
H, VH}, VL, VH, VL, VL, VL, VL) is not possible since there is a rule (L, VL, VH, 
VL, VL, VL, L) in the initial repository that belongs to a different class. Continuing 
with this system of amplifications, the following rule is derived: ({VL, I, H, VH}, 
{VL, L, I, H, VH}, {VL, L, I, H, VH}, VL, VL, VL, VL), which can be expressed as 
follows: 

If GNIm is not {L}, GTR is {VL}, GTT is {VL}, CON is {VL} then SQUAL  
is {VL} 

This rule includes several rules of the initial set of rules. According to the algo-
rithm, this process is repeated with the remaining initial rules that do not fulfil any of 
the amplified rules. In the example outlined, the following set of general rules is  
obtained: 

− R0: If GNIm is not {L}, GTR is {VL}, GTT is {VL}, CON is {VL} then 
SQUAL is {VL}. 

− R1: If GIPC is {H, VH} then SQUAL is {VL}. 
− R2: If GIC is {H, VH}, GTR is {L} then SQUAL is {VL}. 
− R3: If GNIm is not {H, VL}, GIPC is not {VH, H}, GIC is {VL}, GTR is {L, 

VL}, GTT is not {I, VH}, CON is {VL, L} then SQUAL is {VL}. 
− R4: If GNIm is not {VL, I}, GIC is {VH}, GTR is {VL} then SQUAL is {L}. 
− R5: If GTT is {I} then SQUAL is {I}. 
− R6: If GNIm is {L, H}, GIPC is {L, I}, GTT is not {I} then SQUAL is {H}. 
− R7: If GIPC is {VL, I}, CON is {H, VH} then SQUAL is {VH}. 

At the beginning of the process of rule learning, 20% of the cases were reserved; 
they did not participate in the learning process with the aim of using them to check the 
validity of the obtained rules. When examining the rules that each case fulfils, it can be 
seen that there are no conflicts and that 100% of the cases are defined by the rules. 
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5   Conclusions 

Collaborative learning support systems usually lack mechanisms to relate the form of 
collaborating of a group of students to the quality of the solution produced in this 
process. The use of fuzzy models allows calculating analysis indicators of collabora-
tion with a vague semantics. In this article, a fuzzy model based on a machine learn-
ing process has been built to generate a set of rules as a result. The model has been 
put into practice using data registered in some collaborative problem-solving activi-
ties in the domain of Domotics. The rules obtained provide users not familiarized with 
this type of systems with information easy to understand about what type of collabo-
ration leads to solutions of certain quality. Also, the easiness of computation of these 
rules allows its use on “real time” collaborative systems. 

In the future, we aim at applying the algorithm proposed to databases that contain 
more extensive experiments, considering the possibility of using fuzzy temporal logic, 
being the temporary intervals those levels which the students go through during their 
learning. The implementation of facilities in CSCL environments to analyze in real 
time the users’ interactions and to evaluate the collaborative activities according to 
the rules obtained can facilitate the generation of intelligent advice to the users in 
order to guide them to more fruitful situations of collaboration. The intelligent advice 
can be enriched and improved with the creation of fuzzy MIMO (Multiple Inputs, 
Multiple Outputs) models. 
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Abstract. This paper describes the development of a clustering based fuzzy 
controller of an electromagnetic suspension vehicle using gain scheduling 
method and Kalman filter for a simplified single magnet system. Electromag-
netic suspension vehicle systems are highly nonlinear and essentially unstable 
systems. For achieving the levitation control, we considered a fuzzy system 
modeling method based on clustering algorithm which a set of input/output data 
is collected from the well defined Linear Quadratic Gaussian (LQG) controller. 
Simulation results show that the proposed clustering based fuzzy controller 
robustly yields uniform performance over the mass variation range.  

1   Introduction 

Maglev vehicles constitute a new class of transport systems that has been constantly 
developed and improved to become a new alternative of comfortable and secure 
transport. These vehicles have suspension, propulsion and guidance systems based on 
magnetic forces. A controlled DC electromagnetic suspension system is a highly 
nonlinear position regulator but an adequate insight into the design requirements can 
be obtained by considering a linear model. Different schemes of stabilization and 
control of single-degree of freedom suspension systems have been extensively studied 
at recent years [1][2]. 

In this paper, we suggest a design procedure of the clustering based fuzzy control-
ler for electromagnetically levitated vehicle based on gain scheduling method and 
LQG regulator. 

1. Selection of scheduling variables. In this paper, disturbance is chose as a schedul-
ing variable 

2. Linearization of the nonlinear plant model based on the scheduling variable. 
3. Determination of a control law which composes the state variables and the schedul-

ing variable. 
4. Design of a LQG regulator. The LQG regulator consists of an optimal state-

feedback gain and a Kalman state estimator[3]. 
5. Controller design using clustering based fuzzy logic based on the I/O data of LQG 

regulator. 
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This paper is organized as follows. Section 2 discusses concisely the single elec-
tromagnet levitation systems. Sect. 3 describes the structure of the levitation control 
system. Sect. 4 overviews the clustering based fuzzy system modeling method and 
Sect. 5 shows the simulation results. The main conclusions are then summarized in 
Sect. 6. 

2   Modeling of the Single Magnet Levitation Systems  

Each levitation electromagnet has an “U” shape as shown in Fig. 1 and its attraction 
force is given by  

2 2
0

2

( )
( , )

4 ( )

N Ai t
F i z

z t

μ=  (1) 

where ( )i t is the current, ( )z t  is the air gap and N  is the number of turns.  

 

Fig. 1. Single magnet levitation system 

If R  is the total resistance of the circuit then for an instantaneous voltage ( )v t  
across the magnet winding, the excitation current is controlled by 

2 2
0 0

2

( )( ) ( )
( ) ( )

2 ( ) 2 ( )

N A N Ai tdi t dz t
v t Ri t

z t dt z t dt

μ μ= + −  (2) 

With ignoring the flux leakage and reluctance of electromagnet, we can get the 
nonlinear dynamic model equation as Eq. (3) and (4). 

( ) ( , ) ( )dmz t F i z f t mg= − + +  (3) 

2
0

( ) ( ) 2 ( )
( ) ( ( ) ( ))

( )

z t i t z t
i t v t Ri t

z t N Aμ
= + −  (4) 

where ( )df t  is disturbance input, g is a gravity constant, A  is cross-section area, and 

m  is the mass of the suspended object. 
By choosing ( )z t ,  ( )z t  and ( )i t  as the state variables, the nonlinear state-space 

representation of the above equation is 

( ) [ ( ), ( ), ( )]

( ) [ ( )]
dx t f x t u t f t

y t h x t

=
=

 (5) 
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3   Structure of the Proposed Levitation Control System  

The feedback system of the proposed levitation control is depicted schematically in 
Fig. 2. 

 

Fig. 2. Block diagram of the proposed levitation control system 

At the first step of the design process, disturbance ( )df t  is selected for scheduling 

variable which has limited boundary as : { ( ) | ( ) [ , ], 0}d d d d dF f t f t f f t− += ∈ ≥ . And the 

state vectors of a operating point ( )dx f  is expressed as 

[ ]0 0( )    0   dx f z i=   ,  
0 0 2

0

4( )
  ,   d

d d

mg f
i z f F

N Aμ
+= ∈  

(6) 

From the optimal feedback gain matrix K , the control law which composes the 
state variables and the scheduling variable is given by 

( )( ) ( ), ( )du t K x t f t=  (7) 

where ( )K • is a smoothing function which makes the state vectors of operating point 

( )dx f constant values in the closed-loop system and can be a stable systems. 

The existence of the operating point ( )dx f in the closed-loop systems means that 

the smoothing function should satisfy the followings: 

( ) 2
0 0

4( )
( ) ( ),  ,   d

d d d

mg f
u f K x f f Rz c N A

c
μ+= = =  (8) 

0( )dy f z=  (9) 

Then the linearization mode1, as the second step of the design process, through the 
scheduling variable from the nonlinear state-space equations is approximately  
followings: 
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From Rugh’s method [4] and Eq. (10), the control laws ( )u t  as the third step of the 

design process is computed by  

1( ) ( ( )) ( ) ( ( )) ( ( ))T
d d du t K f t x t x f t u f t⎡ ⎤= − +⎣ ⎦

 (11) 

The disturbance signal containing the scheduling variable can be expressed as  

22
0

0 0

( )
( ) ( )

4 ( )d

N A i t
f t m z t m g

z t

μ ⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 (12) 

The levitation control laws based on a fuzzy logic control (FLC) as a smoothing 
function ( )K •  and Kalman filter ( )H t  as a state estimator is used to improve system 

reliability.  That is, the controller inputs ( )u t is evaluated using the difference between 

estimated state variables ˆ( )x t  from Kalman filter and state variables at operating point 

( )x t  in Eq. (6). As a smoothing function, a fuzzy logic control (FLC) based on the 

data clustering algorithm extracted the I/O data from LQG regulator is used. 
In following section, the clustering based fuzzy system modeling method will be 

described. 

4   Clustering Based Fuzzy System Modeling 

4.1   Modeling of Fuzzy System 

Modeling fuzzy systems involves identification of the structure and the parameters 
with given training data. In the Sugeno fuzzy model[5], unlike the Mamdani 
method[6], the consequent part is represented by a linear or nonlinear function of 

input variables. Fuzzy rules in the MISO Sugeno model with n  inputs 1, , nx x  and 

an output variable iy  of the i th fuzzy rule is of the form: 

1 1 1, ( , , )i n in i i nIF x is A and and x is A THEN y f x x=  (13) 
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where 1, ,i M=  and ijA
 is a linguistic label represented by the membership func-

tion 
( )ij jA x

, and ( )if ⋅  denotes a function that relates input to output.  

( )21
( ) exp ( )

2ij j j ij ijA x x c w
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (14) 

1 0 1 1( , , )i n i i ni nf x x a a x a x= + + +  (15) 

where the parameters ijc  and ijw  define center and width of the Gaussian member-

ship function ( )ij jA x . The coefficients 01 1, , ,i nia a a  are to be determined from input-

output training data. In the simplified reasoning method, the output y  of the fuzzy 
system with M  rules is represented as 

1
1 1

( , , )
M M

i i n i
i i

y f x xμ μ
= =

= ∑ ∑  (16) 

where iμ  is a degree of relevance. In the product implication method, the degree of 

relevance is defined as 

1
( )

n

i ij j
j

A xμ
=

= ∏
2

1

1
exp

2

n j ij

j ij

x c

w=

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  (17) 

In the Sugeno fuzzy model, the time-consuming rule extraction process from ex-
perience of human experts or engineering common sense reduces to a simple parame-
ter optimization process of coefficients 01 1, , ,i nia a a  for a given input-output data set 

since the consequent part is represented by a linear function of input variables. Using 
linear function in the consequent part, a group of simple fuzzy rules can successfully 
approximate nonlinear characteristics of practical complex systems. 

4.2   Clustering Algorithm 

The parameters of the component fuzzy systems are characterized using clustering 
algorithms. The subtractive clustering algorithm[7] finds cluster centers 

* * *
1( , , )i i nix x x= of data in input-output product space by computing the potential val-

ues at each data point.  
There are n -dimensional input vectors 1 2, , , mx x x  and 1-dimensional outputs 

1 2, , , my y y forming ( 1)n + -dimensional space of input-output data. For data 

1 2, , , NX X X  in ( 1)n + -dimensional input-output space, the subtractive clustering 

algorithm produces cluster centers as in the following procedure: 
 

Step 1: Normalize given data into the interval [0,1]. 
Step 2: Compute the potential values at each data point. The potential value iP  of 

the data iX  is computed as  
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2

1
exp( ), 1,2, ,

N

i i j
j

P X X i Nα
=

= − − =∑  (18) 

where a positive constant 
24 / arα =  determines the data interval which affects the 

potential values. Data outside the circle with radius over positive constant 1ar <  do 
not substantially affect potential values. 

Step 3: Determine the data with the largest potential value 
*

1P as the first cluster 

center 
*
1X . 

Step 4: Compute the potential value 
'

iP  after eliminating the influence of the first 
cluster center.      

2' * *
1 1

1
exp( )

N

i i i
j

P P P X Xβ
=

= − − −∑  (19) 

where positive constant 24 / brβ =  prevents the second cluster center from locating 

close to the first cluster center. If the effect of potential of the first cluster center is not 
eliminated, second cluster center tends to appear close to the first cluster center, since 
there are many data concentrated in the first cluster center. Taking b ar r>  makes the 

next cluster center not appear near the present cluster center. 

Step 5: Determine the data point of the largest potential value *
2P  as the second 

cluster center *
2X . In general, compute potential values '

iP  after removing the effect 

of the k th cluster center *
kX , and choose the data of the largest potential value as the 

cluster center *
1kX +  

2' * *exp( )i i k i kP P P X Xβ= − − −  (20) 

Step 6: Check if we accept the computed cluster center. If * *
1/kP P ε≥ , or * *

1/kP P ε>  

and * *
min 1 1a kd r P P+ ≥ , then accept the cluster center and repeat step 5. Here mind  

denotes the shortest distance to the cluster centers * * *
1 2, , , kX X X  determined so far. If 

* *
1/kP P ε>  and * *

min 1 1a kd r P P+ < , then set the *
kX  to 0 and select the data of the next 

largest potential. If * *
min 1 1a kd r P P+ ≥  for the data, choose this data as the new clus-

ter center and repeat step 5. If * *
1/kP P ε≤ , terminate the iteration. 

Fuzzy system modeling process using the cluster centers 1 2, , , MX X X∗ ∗ ∗  in input-

output space is as follows. The input part of the cluster centers corresponds to antece-

dent fuzzy sets. In ( 1)n + -dimensional cluster center iX ∗ , the first n  values are  

n -dimensional input space * * *
1( , , )i i inx x x= . Each component determines the center of 

membership functions for each antecedent fuzzy sets. The cluster centers become the 
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center of the membership functions *
ij ijc x= . The width of the membership function 

jiw  is decided as * *max ( ) min ( ) /ij a i i i iw r x x M= −  where M denotes the number of 

cluster centers, * *max ( ) min ( )i i i ix x−  denotes the difference between the maximum and 

the minimum distances between cluster centers. The number of cluster centers corre-
sponds to the number of fuzzy rules. The next process is to compute optimal conse-
quent parameters 0 1, , ,i i nia a a  in order to produce output jy  of the jy th rule in the 

Sugeno fuzzy model. The number of centers equals the number of fuzzy rules. The 
output of the fuzzy system is defined as a linear function of input variables. 

0 1 1 2 2i i i i ni ny a a x a x a x= + + + + 0
T

i ia x a= +  (21) 

Compute parameters ig  through linear least-squares estimation, the final output y  

of the Sugeno fuzzy model is given as                                    

0
1 1

( )
M M

T
i i i i

i i
y a x aμ μ

= =
= +∑ ∑  (22) 

This is the final output of the fuzzy system. 

5   Simulation and Results  

Electromagnet used for this paper was previously used on a research vehicle which 
consists of 3 bogies and 24 electromagnets insulated copper winding wound on steel 
cores and design to lift a maximum load of 10 times of electromagnet mass at a 
nominal operating air gap of 10 [mm]. An empty vehicle weights 22 [ton] and full 
loaded vehicle weights 28 [ton]. 

The closed-loop responses for a reference gap of 10 [mm] at initial gap of 17 
[mm] has been considered. A step disturbance (30% of the nominal vehicle weight) 
between 0.5 [sec] and 1 [sec], and measurement noise (5% of the nominal gap as a 
random noise) have been applied to the plant by suddenly laying a mass on the 
vehicle. Nominal vehicle weight 1,041.7 [kg]( = 26[ton]/24 ) is used.  

The disturbance step input is presented in Fig. 3. And Fig. 4 shows that the tran-
sient gap responses exhibits containing a disturbance and measurement noise. The 
disturbance has been completely rejected in steady-state. Fig. 5 shows the control 
input as a function of time. 

 

Fig. 3. Disturbance step input 
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Fig. 4. Closed-loop response of nonlinear 
plant at the nominal point 

Fig. 5. Control input of nonlinear plant at 
the nominal point  

Fig. 6 and Fig. 7 show the time response and the control inputs compared with the 
mass variation range which is nominal mass, full load, and empty load of vehicle, 
respectively. 

  

Fig. 6. Comparison of time responses over the
mass variation range   

Fig. 7. Comparison of control inputs over the 
mass variation range  

Table 1 shows the simulation results of the Root Mean Square Error (RMS) to the 
gap response and control input for conventional LQG and FLC, respectively. 

Table 1. Experimental results of Root Mean Square Error (RMS) 

LQG Fuzzy  
nominal empty full load nominal empty full load 

RMS for response 1.3613 1.3168 1.4056 1.3643 1.4167 1.3252 
RMS for control input 35.45 37.81 33.29 35.71 37.89 33.71 

In above Fig. 6, Fig. 7 and Table 1, we can confirm that the time responses and 
control inputs are nearly invariant under all mass variations. Therefore we can con-
clude that the proposed fuzzy system and Kalman filter based on LQG I/O data 
achieves the robust stability and performance under mass variations. 

6   Conclusions 

Gain scheduling is one of the most popular design methods for a various control  
system. Fuzzy control approach to the levitation of an electromagnetic suspension 
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vehicle prototype based on gain scheduling coupling LQG and Kalman filter has been 
proposed in this paper. The proposed design method is very useful because it easily 
obtains from various I/O data designed by classical control method. 

Simulation results have been shown that the proposed gain scheduling method 
based on FLC and continuous Kalman filter methodology robustly shows reasonable 
performance with adequate gap response over the mass variation range. 

References 

1. Sinha, P. K.: Electromagnetic suspension: dynamics and control, Peter Peregrinus Ltd,  
London (1997)  

2. Jayawant, B. V.: Electromagnetic suspension and levitation, Proceedings of the IEE, Vol. 
129, Pt. A, No . 8 (1992), pp. 549-581 

3. Athans, M.: A tutorial on the LQG/LTR Method, Proc. ACC (1986) 
4. Rugh, W. J.: Analytical framework for gain scheduling, IEEE control systems Vol. 11,  

No. 1 (1991) pp. 79-84 
5. Sugeno, M.: Industrial Applications of Fuzzy Control, Elsevier Science Pub., (1985). 
6. Mamdani, E. H. and Assilian, S. :An Experiment in Linguistic Synthesis with a Fuzzy 

Logic Conroller, Int. J. of Man Machine Studies, Vol. 7, No. 1,(1975), pp.1-13. 
7. Chiu S.: Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligent & 

Fuzzy Systems, Vol. 2, No. 3 (1994)  
8. Kim, M. S., Byun, Y. S., Lee, Y. H., and Lee, K. S.: Gain Scheduling Control of Levitation 

System in Electromagnetic Suspension Vehicle, WSEAS Trans. on Circuits and Systems, 
Vol. 5, (2006), pp. 1706-1712. 



B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 666–673, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Fuzzy Relation-Based PNNs with the Aid of IG and 
Symbolic Gene Type-Based GAs 

Sung-Kwun Oh1, In-Tae Lee1, Hyun-Ki Kim1, and Seong-Whan Jang2 

1 Department of Electrical Engineering, The University of Suwon, San 2-2, Wau-ri,  
Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea 

{ohsk,hkkim}@suwon.ac.kr 
2 Department of Electrical Electronic and Information Engineering, Wonkwang University, 

344-2, Shinyong-Dong, Iksan, Chon-Buk, 570-749, South Korea 
swhjang@wonkwang.ac.kr 

Abstract. In this paper, we propose a new design methodology of fuzzy-neural 
networks – Fuzzy Relation–based Polynomial Neural Networks (FRPNN) with 
symbolic genetic algorithms and Information Granules (IG). We have 
developed a design methodology based on symbolic genetic algorithms to find 
the optimal structure for fuzzy-neural networks that expanded from Group 
Method of Data Handling (GMDH). Such parameters as the number of input 
variables, the order of the polynomial, the number of membership functions, 
and a collection of the specific subset of input variables are optimized for 
topology of FRPNN with the aid of symbolic genetic optimization that has 
search capability to find the optimal solution on the solution space. The 
augmented and genetically developed FRPNN (gFRPNN) results in a 
structurally optimized structure and comes with a higher level of flexibility in 
comparison to the one we encounter in the conventional FRPNNs. The GA-
based design procedure being applied at each layer of FRPNN leads to the 
selection of the most suitable nodes (or FRPNs) available within the FRPNN. 
The performance of genetically optimized FRPNN (gFRPNN) is quantified 
through experimentation where we use a number of modeling benchmarks data 
which are already experimented with in fuzzy or neurofuzzy modeling. 

1   Introduction 

It is expected that efficient modeling techniques should allow for a selection of pertinent 
variables and a formation of highly representative datasets. Furthermore, the resulting 
models should be able to take advantage of the existing domain knowledge (such as a 
prior experience of human observers or operators) and augment it by available numeric 
data to form a coherent data-knowledge modeling entity. Most recently, the omnipresent 
trends in system modeling are concerned with a broad range of techniques of 
computational intelligence (CI) that dwell on the paradigm of fuzzy modeling, 
neurocomputing, and genetic optimization [1, 2]. The list of evident landmarks in the 
area of fuzzy and neurofuzzy modeling [3, 4] is impressive. While the accomplishments 
are profound, there are still a number of open issues regarding structure problems of the 
models along with their comprehensive development and testing. 
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As one of the representative and advanced design approaches comes a family of 
fuzzy polynomial neuron (FPN or FRPN)-based self organizing neural networks 
(abbreviated as FRPNN or PNN and treated as a new category of neuro-fuzzy 
networks)[5-7]. The design procedure of FRPNNs exhibits some tendency to produce 
overly complex networks as well as comes with a repetitive computation load caused 
by the trial and error method being a part of the development process. The latter is in 
essence inherited from the original Group Method of Data handling (GMDH) 
algorithm that requires some repetitive parameter adjustment by the designer. 

In this paper, to address the above design problems associated with the 
development of conventional FRPNN, we introduce the information granulation 
based genetically optimized FRPNN (IG_gFRPNN). We confine ourselves to the 
HCM clustering algorithm [10] to develop information granules, and subsequently 
construct the structure of the premise part and the consequent part of the fuzzy rules. 
To assess the performance of proposed model, we experiment with well-know 
medical imaging system (MIS) [11] widely used in software engineering. 

2   The Architecture and Development of FRPNN 

In this section, we elaborate on the architecture and a development process of the 
FRPNN. This network emerges from the genetically optimized multi-layer perceptron 
architecture based on GA algorithms and the extended GMDH method.  

2.1   Fuzzy Relation Polynomial Neurons (FRPNs) 

The FRPN encapsulates a family of nonlinear “if-then” rules. When put together, 
FRPNs results in a Fuzzy Relation—based Polynomial Neural Network (FRPNN). 
The FRPN consists of two basic functional modules. The first one, labeled by F, is a 
collection of fuzzy sets (here denoted by {Al} and {Bk}) that form an interface 
between the input numeric variables and the processing part realized by the neuron. 
Here xq and xp stand for input variables. The second module (denoted here by P) 
refers to the function – based nonlinear (polynomial) processing that involves some 
input variables.  

In other words, FRPN realizes a family of multiple-input single-output rules.  

if xp is Al and xq is Bk then z is Plk(xi, xj, alk) (1) 

Where alk is a vector of the parameters of the conclusion part of the rule while Plk(xi, 
xj, alk) denotes the regression polynomial forming the consequence part of the fuzzy 
rule which uses several types of high-order polynomials. The activation levels of the 
rules contribute to the output of the FRPN being computed as a weighted average of 
the individual condition parts (functional transformations) PK (note that the index of 
the rule, namely “K” is a shorthand notation for the two indexes of fuzzy sets used in 
the rule (1), that is K = (l, k)). 

  rules  rules   rules

1 1 1

( , , ) ( , , )
all all all

K K i j K K K K i j K
K K K

z μ P x x μ μ P x x
= = =

= =∑ ∑ ∑a a  (2) 
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In the above expression, we use an abbreviated notation to describe an activation 
level of the “K”th rule to be in the form 

∑
=

=

rules all

1L
L

K
K

μ

μμ~  
(3) 

The FRPNN comes as a highly versatile architecture both with respect to the 
flexibility of the individual nodes (that are essentially banks of nonlinear “if-then” 
rules) as well as the interconnectivity occurring between the nodes and organization 
of the layers.  

2.2   Genetic Algorithms-Based FRPNN 

Let us briefly recall that GAs is a stochastic search technique based on the principles 
of evolution, natural selection, and genetic recombination by simulating a process of 
“survival of the fittest” in a population of potential solutions (individuals) to the given 
problem. GAs are aimed at the global exploration of a solution space. We are able to 
reduce the solution space with the aid of symbolic gene type genetic algorithms. That 
is the important advantage of symbolic gene type genetic algorithms.  In order to 
enhance the learning of the FRPNN, we use GAs to complete the structural 
optimization of the network by optimally selecting such parameters as the number of 
input variables (nodes), the order of polynomial, and input variables within a FRPN.  

In this study, GA uses the serial method of symbolic type, roulette-wheel used in 
the selection process, one-point crossover in the crossover operation, and a uniform 
mutation operator. To retain the best individual and carry it over to the next 
generation, we use elitist strategy. 

3   The Design Procedure of Genetically Optimized FRPNN 

We use FRPNNs as the building blocks of the network. Each neuron of the network 
realizes a polynomial type of partial description (PD) of the mapping between input 
and output variables. The input-output relation formed by the FRPNN algorithm can 
be described in the form 

1 2( , , , )= ny f x x x  (4) 

The estimated output ŷ  reads as the following polynomial 

1 2 0 1 1 1 2 1 2 1 2 3 1 2 3
1 1 2 1 2 3

ˆˆ ( , , , )= = + + + +∑ ∑ ∑n k k k k k k k k k k k k
k k k k k k

y f x x x c c x c x x c x x x  
(5) 

where ck s are its coefficients. 
The framework of the design procedure of the Fuzzy Relation-based Polynomial 

Neural Networks (FRPNN) based on genetically optimized multi-layer perceptron 
architecture comprises the following steps 
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[Step 1] Determine system’s input variables. 
[Step 2] Form training and testing data. 
[Step 3] Specify initial design parameters. 
[Step 4] Decide FRPN structure using genetic design. 
[Step 5] Carry out fuzzy inference and coefficient parameters estimation for fuzzy  

identification in the selected node (FRPN). 

The regression fuzzy inference (reasoning scheme) is envisioned: The consequence 
part can be expressed by linear, quadratic, or modified quadratic polynomial equation. 
The use of the regression polynomial inference method gives rise to the expression 

{ })(,),(),( 2211

11

nkknnnnn

nkkn
n

vxvxvxfMy

thenAisxandandAisxIfR

−−−=−
:

 (6) 

Where, Rn is the n-th fuzzy rule, xl(l=1, 2, …, k) is an input variable, Ajl(j=1, …, n; 
l=1, …, k) is a membership function of fuzzy sets, vjl(j=1, …, n; l=1, …, k) is the 
center point related to the new created input variable, Mj(j=1, …, n) is the center point 
related to the new created output variable, n denotes the number of the rules, fi(⋅) is a 
regression polynomial function of the input variables as shown in Table 1. 

The coefficients of consequence part of fuzzy rules obtained by least square 
method (LSE)  

[Step 6] Select nodes (FRPNs) with the best predictive capability and construct their 
corresponding layer. 
[Step 7] Check the termination criterion. 

The termination condition that controls the growth of the model consists of two 
components, that is the performance index and a size of the network (expressed in 
terms of the maximal number of the layers). As far as the performance index is 
concerned (that reflects a numeric accuracy of the layers), a termination is 
straightforward and comes in the form 

*1 FF ≤  (7) 

Where, F1 denotes a maximal fitness value occurring at the current layer whereas F* 
stands for a maximal fitness value that occurred at the previous layer.  

In this study, we use performance index that is the Mean Squared Error (MSE). 

2

1

1
ˆ( ) ( )

N

p p
p

E PI or EPI y y
N =

= −∑  (8) 

where, yp is the p-th target output data and pŷ  stands for the p-th actual output of the 

model for this specific data point. N is training(PI) or testing(EPI) input-output data 
pairs and E is an overall(global) performance index defined as a sum of the errors for 
the N. 
[Step 8] Determine new input variables for the next layer. 

The outputs of the preserved nodes (zli, z2i, …, zWi) serve as new inputs to the next 
layer (x1j, x2j, …, xWj)(j=i+1). This is captured by the expression 
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wiwjijij zxzxzx === ,,, 2211 …  (9) 

The FRPNN algorithm is carried out by repeating steps 4-8. 

4   Experimental Studies 

In this section, we illustrate the development of the IG_gFRPNN and show its 
performance for well known and widely used datasets in software engineering, 
medical imaging sysem (MIS) dataset[11]. 

We consider a medical imaging system (MIS) subset of 390 software modules 
written in Pascal and FORTRAN for modeling. These modules consist of 
approximately 40,000 lines of code. To design an optimal model from the MIS, we 
study 11 system input variables such as LOC, CL, TChar, TComm, MChar, DChar, 
N, NE, NF, V(G) and BW. The output variable of the model is the number of changes 
changes made to the software module during its development. In the case of the MIS 
data, the performance index is defined as the mean squared error (MSE) as in (8). 

Table 1 summarizes the list of parameters used in the genetic optimization of the 
network. In the optimization of each layer, we use 150 generations, 300 populations, 
crossover rate equal to 0.65, and the probability of mutation set up to 0.1. A 
chromosome used in the genetic optimization consists of a string including 4 sub-
chromosomes. The first chromosome contains the number of input variables, the 
second chromosome contains input variables, the third chromosome contains number 
of membership functions, and finally the fourth chromosome the order of polynomial.  

Table 2 summarizes the performance of the 1st to 3rd layer of the network when 
changing the maximal number of inputs; here the “Max” parameter was set up to 2 
through 3. Here, node “0” indicates that it has not been selected by the genetic 
operation. In “Node (MFs)” of Table 2, Node stands for node number while MFs 
means number of membership functions per each input variable.  

In the nodes (FRPNs) of Fig. 1, ‘FRPNn’ denotes the nth FRPN (node) of the 
corresponding layer, the number of the left side denotes the number of nodes (inputs 
or FRPNs) coming to the corresponding node, and the number of the right side 
denotes the polynomial order of conclusion part of fuzzy rules used in the 
corresponding node. And the number located in the rectangle in front of each node 
means no. of MFs. 

Table 3 summarizes a comparative analysis of the performance of the network with 
other models. The experimental results clearly reveal that it outperforms the existing 
models both in terms of significant approximation capabilities (lower values of the 
performance index on the training data, PIs) as well as superb generalization abilities 
(expressed by the performance index on the testing data EPIs). To effectively reduce a 
large number of nodes and avoid a large amount of time-consuming iteration of 
FRPNN, the stopping criterion can be taken into consideration up to maximally the 1st 
or 3rd layer. Therefore the width (the number of nodes) of its layer as well as the depth 
(the number of layers) of the proposed Information Granulation and genetically 
optimized FRPNN (IG_gFRPNN) can be much lower in comparison to the  
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Table 1. Summary of the parameters of the genetic optimization 

 Parameters 1st to 3rdlayer 
Maximum generation 150 
Total population size 300 

Selected population size (W) 30 
Crossover rate 0.65 
Mutation rate 0.1 

GA 

String length 1+(Max*2)+1 
Maximal no.(Max) of inputs to be selected 1≤l≤Max(2~3) 

Polynomial type (Type T) of the consequent part of fuzzy rules 1≤T≤4 
Consequent input type to be used for Type T (*) Type T*,T 

Triangular 
Membership Function (MF) type 

Gaussian-like 

FRPNN 

No. of MFs per input 2 or 3 

l, T, Max: integers, Type T* means that entire system inputs are used for the polynomial in 
the conclusion part of the rules. 

Table 2. Performance index of the network of each layer versus the increase of maximal 
number of inputs to be selected 

(a) Triangular MF 
1st layer 2nd layer 3rd layer M 

A 
X Node (MFs) T PI EPI Node (MFs) T PI EPI Node (MFs) T PI EPI 

2 4(3) 10(2) 1 58.277 29.968 2(2) 3(3) 4 19.368 22.346 4(2) 23(2) 3 17.302 18.228 

3 4(3) 10(2) 0 1 58.277 29.968 2(2) 3(3) 0 4 19.368 22.346 2(2) 23(2) 0 4 18.049 18.986 

 
(b) Gaussian-like MF 

1st layer 2nd layer 3rd layer M 
A 
X Node (MFs) T PI EPI Node (MFs) T PI EPI Node (MFs) T PI EPI 

2 8(2) 10(2) 1 67.601 39.644 17(2) 21(2) 3 36.682 32.250 2(2) 29(2) 4 33.815 29.636 

3 5(3) 7(3) 10(2) 2 49.612 35.485 1(2) 11(2) 0 2 45.291 29.693 2(2) 11(2) 0 1 48.110 23.172 

LOC
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TChar

TComm

MChar

DCHar

N

N̂
NF

V(G)

BW

ŷ
FRPN1

2 1

FRPN21

2 1
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3
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FRPN
23

2 13
3

2
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Fig. 1. Optimal networks structure of IG_gFRPNN (for 3 layers) 
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Table 3. Comparative analysis of the performance of the network; considered are models 
reported in the literature 

Model Structure PI EPI 

Simplified 
Generic 

Type 
Basic 

Architecture 
5th layer 
Case1 

40.753 17.898 
SONFN 

[12] 
Linear 

Generic 
Type 

Basic 
Architecture 

5th layer 
Case2 

35.745 17.807 

Triangular Type : 2 5th layer 32.195 18.462 No. of inputs: 
2 Gaussian Type : 1 5th layer 49.716 31.423 

Triangular Type : 1 5th layer 32.251 19.622 
FPNN 
[13] No. of inputs: 

3 Gaussian Type : 1 5th layer 39.093 19.983 
Triangular 3rd layer 17.302 18.228 

max-inputs: 2 
Gaussian 3rd layer 33.815 29.636 

Triangular 3rd layer 18.049 18.986 
Our 

model 
max-inputs: 3 

Gaussian 3rd layer 48.110 23.172 

conventional optimized FPNN as shown in Table 3 (which immensely contributes to 
the compactness of the resulting network). PIs(EPIs) is defined as the mean square 
errors (MSE) computed for the experimental data and the respective outputs of the 
network. 

5   Concluding Remarks 

In this paper, we have introduced and investigated a class of information granulation 
based genetically optimized Fuzzy Relation Polynomial Neural Networks 
(IG_gFRPNN). 

The GA-based design procedure applied at each stage (layer) of the FRPNN leads 
to the selection of the preferred nodes (or FRPNs) with some well-defined optimal 
local characteristics (such as the number of input variables, the order of the 
consequent polynomial of fuzzy rules, a collection of the subset of input variables, 
and the number of membership functions). These options contribute to the flexibility 
of the resulting architecture of the network. The design methodology supports a 
hybrid structural optimization (based on GMDH method and genetic optimization) 
followed by some parametric learning. The GMDH method is augmented by the 
structural phase supported by some evolutionary optimization that is followed by the 
phase of the Least Square Estimation (LSE). 

The comprehensive experimental studies involving well-known datasets 
demonstrate a superb performance of the network when compared to the existing 
fuzzy and neurofuzzy models. More importantly, through the proposed framework of 
genetic optimization we can efficiently search for the optimal network architecture 
(being both structurally and parametrically optimized) and this design facet becomes 
crucial in improving the overall performance of the resulting model. 

As the polynomial neural networks have been developed in different ways, 
endowed with numerous learning mechanisms of structural and parametric learning, it 
is helpful to establish a global perspective as to the evolution of the area and identify  
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where the current research pursuits are firmly positioned. Most importantly, the 
proposed framework of genetic optimization supports an efficient structural search 
resulting in the structurally and parametrically optimal architectures of the networks. 
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Abstract. This paper starts from the fuzzy environments of foreign
currency options markets, introduces fuzzy sets theory, and gives a fuzzy
version of Garman-Kohlhagen currency options pricing model. By taking
exchange rate, domestic interest rate, foreign interest rate, and volatility
as triangular fuzzy numbers, the currency option price will turn into
a fuzzy number. This makes the financial investors who can pick any
currency option price with an acceptable belief degree for the later use.
In order to obtain the belief degree, an optimization procedure has been
applied. An empirical study is performed based on market data. The
study result indicates the fuzzy currency options pricing method is a
useful tool for modeling the imprecise problem in the real world.

1 Introduction

Since the closed-form solution of the foreign currency options pricing model was
derived by Garman and Kohlhagen [1] in 1983, many methodologies have been
proposed by using the modification of Garman-Kohlhagen (G-K) model.

The input variables of the G-K model are usually regarded as the precise real
numbers. However, these variables cannot always be expected in a precise sense.
Therefore, the fuzzy sets theory proposed by Zadeh [2] may be a useful tool for
modeling this kind of imprecise problem. The book [3] of collected papers gave
the applications of using fuzzy sets theory to the financial engineering.

Next the motivation of this study is provided by explaining why it is need
to take into account fuzzy variables in the G-K model, such as the fuzzy ex-
change rate, the fuzzy domestic interest rate, the fuzzy foreign interest rate, and
the fuzzy volatility. In the constant interest rates approach, when the financial
investor tries to price a currency option, the interest rates, both domestic and
foreign, are assumed as constant. However, the interest rates may have the differ-
ent values in the different commercial banks and financial institutions. Therefore,
the choice of a reasonable interest rate may cause a dilemma. But one thing can
be sure is that the different interest rates may be around a fixed value within
a short period of time. For instance, the interest rate may be around 5%, the
interest rate may be regarded as a fuzzy number 5% when the financial investor
tries to price a currency option using the G-K model.

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 674–683, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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On the other hand, the financial market fluctuates from time to time. It is a
little unreasonable to pick a fixed volatility to price a currency option at this time
and then use this price for the later use, since the later volatility has changed.
In this case, it is natural to regard the volatility as an imprecise data.

The usual approach for pricing is to pick fixed input data to price a currency
option by applying the G-K model. However, this currency option price will
be used for the further decision-making by a financial investor within a short
period of time. The problem is that the input data will be changed within this
short period of time because the international financial market fluctuates very
irregular. Therefore, it is a little unreasonable to pick fixed input data to price a
currency option at this time and then use this price for later use, since the later
these input data has already changed. Therefore, it is also natural to assume
these input data as fuzzy numbers.

Although it has been described that how the four fuzzy input variables occur
in the real world, some of four variables can still be taken as the real (crisp)
numbers if the financial investor can make sure that those variables occur in a
crisp sense. In this case, the fuzzy model proposed in this paper is still applicable
since the real numbers are the special case of the fuzzy numbers. Now, under
the considerations of the four fuzzy variables, the currency option price will turn
into a fuzzy number. This fuzzy number is in fact a function defined on R into
[0, 1], and denoted by membership function μã : X → [0, 1]. Given any value c,
the function value μã(c) will be interpreted as the belief degree of closeness to
value a. It means that the closer the value c to a is, the higher the belief degree
is. Therefore, the financial investors can pick any value that is around a with an
acceptable belief degree as the currency option price for their later use. In order
to obtain the belief degree of any a given option price, an optimization problem
will be given. An efficient computational procedure [4] is applied in this paper
to solve this optimization problem.

This paper is organized as follows. In Section 2, the notion and arithmetic of
fuzzy numbers are introduced. In Section 3, the fuzzy version of the G-K model
is given. In Section 4, the computational procedure is introduced in order to
obtain the belief degrees of given option prices. In Section 5, the empirical study
is performed. Finally, the conclusions and limitations are depicted.

2 Fuzzy Numbers

Let X be a universal set and A be a subset of X . The characteristic function
is defined as χA : X → {0, 1} on A. The function χA(a) = 1 if a ∈ A, and
χA(a) = 0 if a /∈ A. Zadeh [2] introduced the fuzzy subset Ã of X by extending
the characteristic function χA : X → {0, 1}. A fuzzy subset Ã of X is defined by
its membership function μÃ : X → [0, 1]. The value μÃ(a) can be interpreted as
the membership degree (i.e. belief degree) of the point a in the set A.

Let X be a universal set and Ã be a fuzzy subset of X . The α-level set of
Ã is defined by Ãα = {x|μÃ(x) � α}. The fuzzy subset Ã is called a normal
fuzzy set if there exists x such that μÃ(x) = 1. The fuzzy subset Ã is called a
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convex fuzzy set if μÃ(λx + (1 − λ)y) � min{μÃ(x), μÃ(y)} for ∀λ ∈ [0, 1]. The
universal set X is assumed to be a real number system; that is, X = R. Let
f be a real-valued function defined on R. The function f is said to be upper
semi-continuous, if {x|f(x) � α} is a closed set for each α. Or equivalently, f is
upper semi-continuous at y if and only if ∀ε > 0, ∃δ > 0 such that |x − y| < δ
implies f(x) < f(y) + ε.

Under some suitable conditions for the membership function, the fuzzy set
is then termed as a fuzzy number. The fuzzy number ã corresponding to a can
be interpreted as ”around a.” The graph of the membership function μã(x) is
bell shaped and μã(a) = 1. It means that the membership degree μã(x) is close
to 1 when the value x is close to a. ã is called a fuzzy number if the following
three conditions are satisfied: (i) ã is a normal and convex fuzzy set; (ii) Its
membership function μã(x) is upper semi-continuous; (iii) The α-level set ãα is
bounded for each α ∈ [0, 1].

From Zadeh [2], Ã is a convex fuzzy set if and only if Ãα = {x|μÃ(x) � α} is
a convex set for all α ∈ [0, 1]. Therefore, if ã is a fuzzy number, then the α-level
set ãα is a compact (closed and bounded in R) and convex set; that is, ãα is a
closed interval. The α-level set of ã is then denoted by ãα = [ãL

α, ãU
α ].

A fuzzy number ã is said to be nonnegative if μã(x) = 0 for ∀x < 0. It is
easy to see that if ã is a nonnegative fuzzy numbers then ãL

α and ãU
α are all

nonnegative real numbers for all α ∈ [0, 1]. The following proposition is useful
for further discussion.

Proposition 1. (Resolution identity, Zadeh [5]). Let Ã be a fuzzy set with mem-
bership function μÃ and Ãα = {x|μÃ(x) � α}. Then

μÃ(x) = sup
α∈[0,1]

α[1Ãα
(x)], (1)

where 1Ãα
is an indicator function of set Ãα, i.e., 1Ãα

(x) = 1 if x ∈ Ãα and
1Ãα

(x) = 0 if x �∈ Ãα. Note that the α-level set Ãα of Ã is a crisp (usual) set.
The ã is called a crisp number with value m if its membership function is

μã(x) =
{

1, if x = m,
0, otherwise. (2)

The real numbers are the special case of the fuzzy numbers when the real num-
bers are regarded as the crisp numbers.

Now the algorithms of any two fuzzy numbers are introduced [6,7]. Let ”�”
be a binary operation ⊕, 	, ⊗, or � between two fuzzy numbers ã and b̃. The
membership function of ã � b̃ is defined by

μã�b̃(z) = sup
{(x,y)|x◦y=z}

min{μã(x), μb̃(y)} (3)

where the binary operations � = ⊕, 	, ⊗, or � correspond to the binary op-
erations ◦=+,−,×, or / according to the ”Extension Principle” in Zadeh [5].
Let ”�int” be a binary operation ⊕int, 	int, ⊗int, or �int between two closed
intervals [a, b] and [c, d].
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Proposition 2. Let ã and b̃ be two fuzzy numbers. Then ã ⊕ b̃, ã 	 b̃ and ã ⊗ b̃
are also fuzzy numbers and their α-level sets are

(ã ⊕ b̃)α = ãα ⊕int b̃α = [ãL
α + b̃L

α, ãU
α + b̃U

α ] (4)

(ã 	 b̃)α = ãα 	int b̃α = [ãL
α − b̃U

α , ãU
α − b̃L

α] (5)

(ã ⊗ b̃)α = ãα ⊗int b̃α = [min{ãL
α b̃L

α, ãL
α b̃U

α , ãU
α b̃L

α, ãU
α b̃U

α },

max{ãL
α b̃L

α, ãL
α b̃U

α , ãU
α b̃L

α, ãU
α b̃U

α }]
(6)

for all α ∈ [0, 1]. If the α-level set b̃α of b̃ does not contain zero for all α ∈ [0, 1],
then ã � b̃ is also a fuzzy number and its α-level set is

(ã � b̃)α = ãα �int b̃α = [min{ãL
α/b̃L

α, ãL
α/b̃U

α , ãU
α /b̃L

α, ãU
α /b̃U

α },

max{ãL
α/b̃L

α, ãL
α/b̃U

α , ãU
α /b̃L

α, ãU
α /b̃U

α }].
(7)

Let F denote the set of all fuzzy subsets of R. Let f(x) be a real-valued function
from R into R and Ã be a fuzzy subset of R. By the extension principle, the
fuzzy-valued function f̃ : F → F can be induced by the non-fuzzy f(x); that is,
f̃(Ã) is a fuzzy subset of R. The membership function of f̃(Ã) is defined by

μf̃(Ã)(r) = sup
{x|r=f(x)}

μÃ(x). (8)

The following proposition is useful to discuss the fuzzy G-K model.

Proposition 3. Let f(x) be a real-valued function and Ã be a fuzzy subset
of R. The function f(x) can induce a fuzzy-valued function f̃ : F → F via the
extension principle. Suppose that the membership function μÃ of Ã is upper semi-
continuous and {x|r = f(x)} is a compact set (it will be a closed and bounded
set in R) for all r, then the α-level set of f̃(Ã) is (f̃(Ã))α = {f(x)|x ∈ Ãα}.

3 Fuzzy Version of Garman-Kohlhagen Model

The G-K model [1] for a European call currency option with expiry date T and
strike price K is described as follows. Let St denotes the spot exchange rate at
time t ∈ [0, T ]. Let Ct denotes the price of this currency option at time t,

Ct = Ste
−rF τN(d1) − Ke−rDτN(d2), τ = (T − t)

d1 = ln(St/K)+(rD−rF +σ2/2)τ
σ
√

τ
, d2 = d1 − σ

√
τ

(9)

where rF denotes the foreign interest rate, rD denotes the domestic interest rate,
σ denotes the volatility, and N stands for the cumulative distribution function
of a standard normal random variable N(0, 1).

Under the considerations of fuzzy exchange rate S̃t, fuzzy interest rates r̃F

and r̃D, and fuzzy volatility σ̃, the currency option price at time t is a fuzzy
number and is denoted as C̃t. The strike price K and time to maturity τ are
real numbers.
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According to Proposition 1, the membership function of C̃t is given by

μC̃t
(c) = sup

α∈[0,1]
α[1(C̃t)α

(c)], (10)

where (C̃t)α is α-level set of the fuzzy price C̃t at time t. This α-level set is a
closed interval and its left-end point and right-end point are displayed as:

(C̃t)α = [(C̃t)L
α, (C̃t)U

α ]. (11)

From Proposition 3, since the function N(x) is increasing, the α-level set of
Ñ(d̃) is given by

(Ñ(d̃))α = {N(x)|x ∈ d̃α} = {N(x)|x ∈ [d̃L
α, d̃U

α ]} = [N(d̃L
α), N(d̃U

α )]. (12)

Similarly, e−x is a decreasing function and ln(x) is an increasing function.
Then the left-end point (C̃t)L

α and right-end point (C̃t)U
α of the closed interval

(C̃t)α will be displayed as follows by using Proposition 2, 3 and Equation (12):

(C̃t)L
α = (S̃t)L

αe−(r̃F )U
α τN((d̃1)L

α) − Ke−(r̃D)L
ατN((d̃2)U

α ) (13)

(C̃t)U
α = (S̃t)U

α e−(r̃F )L
ατN((d̃1)U

α ) − Ke−(r̃D)U
α τN((d̃2)L

α) (14)

where

(d̃1)L
α =

ln((S̃t)L
α/K) + ((r̃D)L

α − (r̃F )U
α + (σ̃L

α )2/2)τ
(σ̃U

α )
√

τ
(15)

(d̃1)U
α =

ln((S̃t)U
α /K) + ((r̃D)U

α − (r̃F )L
α + (σ̃U

α )2/2)τ
(σ̃L

α )
√

τ
(16)

(d̃2)L
α = (d̃1)L

α − (σ̃U
α )

√
τ , (d̃2)U

α = (d̃1)U
α − (σ̃L

α )
√

τ (17)

4 Computational Method and Triangular Fuzzy Number

Given a European call currency option price c of the fuzzy price C̃t at time t, it
is important to know its belief degree α. If the financial investors are acceptable
with this belief degree, then it will be reasonable to take the value c as the
currency option price at time t. In this case, the financial investors can accept
the value c as the currency option price at time t with belief degree α.

The membership function of fuzzy price C̃t of a currency option at time t is
given in Equation (10). Therefore, given any currency option price c, its belief
degree can be obtained by solving the following optimization problem [4]:

(OP1) maximum α

subject to : (C̃t)L
α � c � (C̃t)U

α

0 � α � 1.
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Since g(α) = (C̃t)L
α is an increasing function of α and h(α) = (C̃t)U

α is a
decreasing function of α, the optimization problem (OP1) can be rewritten as

(OP2) maximum α
subject to : g(α) � c

h(α) � c
0 � α � 1.

Since g(α) = (C̃t)L
α � (C̃t)U

α = h(a), one of the constraints g(α) � c or
h(α) � c can be discarded in the following ways:

(i) If g(1) � c � h(1) then μC̃t
(c) = 1.

(ii) If c < g(1) then h(α) � c is redundant, since h(α) � h(1) � g(1) > c
for all α ∈ [0, 1] using the fact that h(α) is decreasing and g(α) � h(α) for all
α ∈ [0, 1]. Thus, the following relaxed optimization problem will be solved:

(OP3) maximum α
subject to : g(α) � c

0 � α � 1.

(iii) If c > h(1) then g(α) � c is redundant, since g(α) � g(1) � h(1) < c
for all α ∈ [0, 1] using the fact that g(α) is increasing and g(α) � h(α) for all
α ∈ [0, 1]. Thus, the following relaxed optimization problem will be solved:

(OP4) maximum α
subject to : h(α) � c

0 � α � 1.

The optimization (OP3) can be solved using the following algorithm [4].
Step 1: Let ε be the tolerance and α0 be the initial value. Set α ← α0, low← 0,

up← 1.
Step 2: Find g(α). If g(α) � c then go to Step 3 otherwise go to Step 4.
Step 3: If c − g(α) < ε then EXIT and the maximum is α, otherwise set

low← α, α ←(low +up)/2 and go to Step 2.
Step 4: Set up← α, α ←(low + up)/2 and go to Step 2.
For problem (OP4), it is enough to consider the equivalent constraint −h(α)

� −c, since h(α) is decreasing and continuous, i.e., −h(α) is increasing and
continuous. Thus, the above algorithm is still applicable for solving (OP4).

The triangular fuzzy numbers are applied to denote the fuzzy input variables
in G-K model because of their desirable properties [8]. The membership function
of a triangular fuzzy number ã is defined by

μã(x) =

⎧
⎨

⎩

(x − a1)/(a2 − a1), if a1 � x � a2,
(a3 − x)/(a3 − a2), if a2 < x � a3,

0, otherwise.
(18)

which is denoted by ã = (a1; a2; a3). The triangular fuzzy number ã can be
expressed as ”around a2” or ”being approximately equal to a2”. The real number
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a2 is called the core value of ã, and a1 and a3 are called the left- and right-end
values of ã, respectively. The α-level set (a closed interval) of ã is then

ãα = {x|μã(x) � α} = [(1 − α)a1 + αa2, (1 − α)a3 + αa2] (19)

ãL
α = (1 − α)a1 + αa2, ãU

α = (1 − α)a3 + αa2. (20)

5 Empirical Study

In this section, the proposed fuzzy version of the G-K model is tested with the
daily EUR/USD currency option price data. The EUR/USD currency option
price data come from the Finance Times and the British Banker’s Association
websites. The market data cover the period 3-16-2006 to 4-18-2006. The number
of data patterns is 22. This section consists of two parts. In part one, the price of
EUR/USD currency option is studied under fuzzy environment at a given time.
In part two, the price time series of EUR/USD currency option is studied from
3-16-2006 to 4-18-2006.

First, in part one, a European call EUR/USD currency option pricing is stud-
ied on March 16th 2006. The spot exchange rate is around 1.215, the 3-month
volatility is around 9%, the domestic 3-month interest rate is around 4.93%,
the foreign 3-month interest rate is around 2.71%, and the strike price is 1.21
with 3 months to expiry. The market price of this currency option under above
conditions is 0.0274 USD.

The four fuzzy input variables are assumed to triangular fuzzy numbers, and
r̃F =(2.69%; 2.71%; 2.72%), r̃D=(4.91%; 4.93%; 4.95%), σ̃=(7.2%; 9.0%; 10.8%)
and S̃t=(1.2138; 1.2150; 1.2162), respectively. The fuzzy price C̃t of this currency
option can be obtained based on the above fuzzy model. Table 1 gives the belief
degrees μC̃t

(c) for the possible EUR/USD currency option prices c by solving
the optimization problems (OP3) and (OP4) using the computational procedure
proposed above. If this currency option price $0.027 is taken, then its belief
degree is 0.9892. Therefore, if financial investors are tolerable with this belief
degree 0.9892, then they can take this price $0.027 for their later use. If the price
is taken as c = $0.027872, its belief degree will be 1.00. In fact, if St = 1.215,
rF = 2.71%, rD = 4.93% and σ = 9.0%, then this option price will be $0.027872
by Equation (9). This situation matches the observation that c = $0.027872 has
belief degree 1.00.

The α-level closed interval of the fuzzy price is shortening as α-level is rising.
Table 2 gives the α-level closed interval of the fuzzy price of this currency option
with the different α value. For α = 0.95, it means that the currency option price

Table 1. The belief degrees for different currency option prices on 2006/03/16

Option Prices c 2.50 2.60 2.70 2.80 2.90 3.00 3.10

Belief Degrees α 0.9644 0.9768 0.9892 0.9984 0.9860 0.9736 0.9612
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Table 2. The α-level closed interval of the fuzzy price with the different α value

Belief Degrees α 0.90 0.92 0.94 0.96 0.98 0.99 1.00

Left-end (C̃t)
L
α 1.9798 2.1414 2.3028 2.4643 2.6257 2.7064 2.7872

Right-end (C̃t)
U
α 3.5946 3.4330 3.2715 3.1100 2.9486 2.8679 2.7872

will lie in the closed interval [2.3836; 3.1907] with belief degree 0.95. If financial
investors are comfortable with this belief degree 0.95, then they can pick any
value from the interval [2.3836; 3.1907] as the option price for their later use.

In Fig.1, the left diagram shows that the α-level varies with the different
option price from 2.0 to 3.6 by the span 0.01 and the right diagram shows that
the closed interval varies with the α-level from 0 to 1 by the span 0.02.
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Fig. 1. The relation between the α-level and the currency option price

In part two, the experiment was performed based on the historical daily data
of the EUR/USD currency option cover the period 3-16-2006 to 4-18-2006.

Fig.2 illustrates that the market prices lie in the closed interval with belief
degree 90%. Therefore, if financial investors are tolerable with this belief degree
90%, then they can pick the daily market price or any price from this 90%-level
interval as the option price for their later use at any trade date. In the Fig.2,
the right- and left-end of the closed intervals with the different belief degrees are
obtained by Equations (13) and (14). From Fig.2, most of market prices lie in
the closed interval with belief degree 95% and thus the market prices are closer
to the theory prices based on the G-K model with belief degree 1.

Fig.3 illustrates the maximum belief degrees of the currency option market
prices to the theory price. The top diagram illustrates the market prices vary
from 3-16-2006 to 4-18-2006. Correspondingly, the second diagram illustrates
the belief degrees of the market prices. The belief degrees of most of the market
prices are from 0.95 to 1 and the belief degrees of only a few market prices are
between 0.90 and 0.95. Specially, only on April 7th 2006, the market price is
0.0278USD and its belief degree is less than 0.9. Therefore, the fuzzy version of
the G-K model can simulate precisely the actual market prices in most cases.
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6 Conclusions and Limitations

Owing to the fluctuation of international financial market from time to time,
some input variables in the G-K model cannot always be expected in a precise
sense. Therefore, the fuzzy version of G-K model based on fuzzy numbers is then
proposed in this paper and the European call currency option price turns into a
fuzzy number. This makes the financial investors who can pick any option price
with an acceptable belief degree for their later use.

The proposed fuzzy G-K model is tested with the daily EUR/USD option
market prices. The experimental results illustrate that the currency option mar-
ket prices lie in the closed interval with belief degree 90% and most of market
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prices lie in the closed interval with belief degree 95%. Thus, the fuzzy G-K
model can simulate precisely the actual market prices in most cases.

In the usual approach, there are two ways to describe the input variable in the
G-K model. One assumes the variable as a constant, and another one assumes
the stochastic variable. The imprecisely stochastic input variable can be regarded
as a fuzzy random variable. Only the fuzzy input variable is under investigated
in this paper. In fact, it is still possible to take into account the fuzzy random
variable for the options pricing. The study for the fuzzy random variable will be
the future research.

According to Fig. 3, the belief degrees of a few market prices are between
0.90 and 0.95. Specially, on April 7th 2006, the belief degree of the market price
is less than 0.9. Therefore, on one hand, the fuzzy G-K model can simulate the
actual market prices in most cases. On the other hand, owing to the original G-K
model is created under some assumptions, the fuzzy model based on G-K model
may be imprecise when these assumptions are not true. The study for creating
more precise fuzzy currency options pricing model will be future research.
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Abstract. The use of rough set’s theoretic concepts has permitted in this work 
to make the mathematical model on mode decision in deinterlacing system. In 
this paper, a rough set approach based decision making problem is proposed. In 
the literature, some conventional deinterlacing methods provide high 
performance with higher computational burden. On the other hand, some other 
methods give low performance with lower computational burden. Those all 
methods have been reported that interpolate missing pixels indiscriminately in 
the same way. Our algorithm chooses the most suitable method adaptively 
based on rough set theory using four parameters. This deinterlacing approach 
employs a size reduction of the database system, keeping only the essential 
information for the process, especially in the representation of and reasoning 
with vague and/or imprecise knowledge. Decision making and interpolation 
results are presented. The results of computer simulations show that the 
proposed method outperforms a number of methods presented in the literature.      

1   Introduction 

Recently, the several format based digital broadcast and progressive display system, 
like HDTV, requires the deinterlacing technology. Since the interlaced scanning 
process, such as NTSC, PAL, and SECAM, is applied in current television standards, 
the uncomfortable visual artifacts are produced. In order to solve above issue, many 
deinterlacing techniques have been proposed. Deinterlacing is a technique which 
converse interlaced scanning fields into progressive frames.  

Deinterlacing methods can be roughly classified into three categories: spatial 
domain methods, which use only one field; temporal domain methods, which use 
multiple fields; and spatio-temporal domain methods [1-3]. The most common 
method in the spatial domain is Bob, which is used on small LCD panels [1]. 
However, the vertical resolution is halved, and this causes the image to have jagged 
edges. Weave is the most common method in the temporal domain [1]. However, this 
method gives motion artifacts. There exist many edge direction based interpolation 
methods. Oh et al. propose a spatio-temporal line average (STELA) algorithm [2]. 
STELA was proposed in order to expand the window to include the temporal domain. 
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Jeon and Jeong proposed fuzzy rule based direction oriented interpolation [FDOI] 
algorithm [3]. A line interpolation method that uses an intra- and inter-field edge-
direction detector was proposed to obtain the correct edge information. The proposed 
rough set based deinterlacing algorithm employs four deinterlacing methods: Bob, 
Weave, STELA, and FDOI. 

Generally, various features offer several attributes for the nature of a sequence. 
However, sometimes the attributes become too much to make essential rules. 
Although some rules are decided, even human experts are unable to believe the rules. 
Thus, the conventional deinterlacing method cannot be applied to build an expert 
system. In order to create an expert system, rough set theory is applied to classify the 
deinterlacing method [4]. In this theory, prior knowledge of the rules is not required, 
but rather the rules are automatically discovered from a database. Rough set theory 
has many interesting applications. It is turned out to be methodologically significant 
to artificial intelligence and cognitive science, especially in the representation of and 
reasoning with vague and/or imprecise knowledge, machine learning, knowledge 
acquisition, decision analysis, knowledge discovery from databases, expert systems 
and pattern recognition [5-14]. It seems of particular importance to decision support 
systems and data mining. Sugihara and Tanaka proposed a new rough set approach 
which deals with ambiguous and imprecise decision [15]. The deinterlacing technique 
causes a mode decision problem, because the mode decision method may affect 
interpolation efficiency, complexity, and objective and subjective results. We propose 
the study involving deinterlacing systems that are based on Sugihara’s rough set 
theory.  

This paper presents a decision making algorithm that is based on rough set theory 
for video deinterlacing. The operation of a decision in the deinterlacing method is 
intrinsically complex due to the high degree of uncertainty and the large number of 
variables involved. In Section 2, the background and definition of information system 
with ambiguous decision in evaluation problems are discussed. In Section 3, both of 
conventional deinterlacing methods and the proposed rough set based deinterlacing 
method are described. In Section 4, the experimental results and performance analysis 
are provided to show the feasibility of the proposed approach. These results are 
compared to well-known, pre-existing deinterlacing methods. Finally, conclusions are 
presented in Section 5. 

2   Background and Definition of Information System with 
Ambiguous Decisions in Evaluation Problems  

In the conventional rough set theory, it is assumed that the given values with respect 
to a decision attribute are certain. That is, each object x has only one decision value in 
the set of decision values. However, there exist some cases in which this assumption 
is not appropriate to real decision making problems. Sugihara and Tanaka considered 
the situations that decision values d(x) are given to each object x as interval values 
[15].  

Let Cln (n=1,…,N), be the n-th class with respect to a decision attribute. It is 
supposed that for all s, t, such that t>s, each element of Clt is preferred to each 
element of Cls. The interval decision classes (values) Cl[s,t] are defined as  
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[ , ] [ ]s t r
s r t

Cl Cl
≤ ≤

= ∪  
(1) 

It is assumed that the decision of each x∈U belongs to one or more classes, that is, 
d(x)=Cl[s,t]. By Cl[s,t], a decision maker expresses ambiguous judgments to each object 
x. Based on the above equations, the decisions d(x) with respect to the attribute set P 
can be obtained by the lower and upper approximations as follows.  

The lower bounds { ( )}P d x  and the upper bounds { ( )}P d x  of d(x) are defined as  

( )

{ ( )} ( )
Py R x

P d x d y
∈

= ∩  
(2) 

{ ( ) ( ), ( )| ( )}

{ ( )} ( )
Pd z d y d y y R x

P d x d z
⊇ ∈

= ∩  
(3) 

{ ( )}P d x  means that x certainly belongs to common classes which are assigned to all 

the element of the equivalence classes RP(x). { ( )}P d x  means that x may belong to the 

classes which are assigned to each element of the equivalence classes RP(x), 
respectively. It is obvious that the following inclusion relation 

{ ( )} ( ) { ( )}P d x d x P d x⊆ ⊆ . Equations (2) and (3) are based on the concept of greatest 

lower and least upper, respectively.  

3   Applied Example: Rough Set Based Deinterlacing System  

3.1   Conventional Deinterlacing Methods  

Bob is an intra field interpolation method which uses the current field to interpolate 
the missing field and to reconstruct one progressive frame at a time. Let x(i,j-1,k) and 
x(i,j+1,k) denote the upper reference line and the lower reference line, respectively. 
The current pixel xBob(i,j,k) is then determined by:  

( , , ) { ( , 1, ) ( , 1, )} 1Bobx i j k x i j k x i j k= − + + >>  (4) 

Inter-field deinterlacing is a simple deinterlacing method. The output frame 
xWeave(i,j,k) is defined as (5), 

( , , ), mod 2 mod 2
( , , )

( , , 1),Weave

x i j k j n
x i j k

x i j k otherwise

=⎧
= ⎨ −⎩

 (5) 

where (i,j,k) designating the position, x(i,j,k) the input field defined for 
mod 2 mod 2j n=  only, k is field number. It is well-known that the video quality of 

the inter-field interpolation is better than that of intra-field interpolation in a static 
area. However, the line-crawling effect occurs in areas of motion. The STELA 
algorithm performs the edge-based line averaging on the spatio-temporal window [3]. 
In order to alleviate the interpolation error caused by high horizontal frequency 
component, a directional-based interpolation method is applied to the low-pass 
filtered signal. The FDOI algorithm is based on line interpolation method that uses an 
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intra- and inter- field edge-direction detector was proposed to obtain the correct edge 
information.  

RSD employs four deinterlacing methods: Bob, Weave, STELA, and FDOI. Bob 
exhibits no motion artifacts and has minimal computational requirements. And this 
method requires only 3 % of computational CPU time than that of FDOI. However, 
the input vertical resolution is halved before the image is interpolated, thus reducing 
the detail in the progressive image. And it causes staircase artifacts in edge region. 
Weave results no degradation in static images. However, the edges exhibit significant 
serrations, which is an unacceptable artifact in a broadcast or professional television 
environment. From Table 1, it can be seen that the processing requirements for Weave 
are almost same or slightly less than that of Bob method, 27.93% of STELA method, 
and 2.85% of FDOI method. STELA has merits in both of objective and subjective 
quality; moreover it prevents the staircase artifacts. However, STELA is useful on the 
edges with -45o, 0o, and 45o degrees and it cannot be a perfect solution in all time. 
Since STELA method is the extended one from Bob or Weave, STELA guarantees 
the performance of Bob or Weave. From Table 3, we can see that the performance of 
STELA is higher than that of Bob or Weave yet with the disadvantage of higher 
complexity. We select complex method as FDOI which requires lots of computational 
CPU time, but gives best objective and subjective performance.FDOI has about ten 
times higher complexity than STELA, yet it guarantees the best results. 

3.2   Rough Set Based Deinterlacing Method  

Many classification patterns exist for images. In this paper, it is assumed that an 
image can be classified by four main parameters: TD, SD, TMDW, and SDMW. The 
temporal difference (TD) or spatial difference (SD) is the pixel difference between 
two values across the missing pixel in each domain. The TMDW (or SMDW) 
parameter represents the temporal (or spatial) entropy. The characteristics of TMDW 
and SMDW are described in [3].  

Table 1. Comparison of the normalized average CPU time among four deinterlacing methods 
with six above CIF test sequences  

 Sequences RTi 

Method Akiyo  
Hall 

Monitor  
Foreman  News  Mobile  Stefan  Approximated 

average 
Bob 0.0302 0.0326 0.0300 0.0308 0.0262 0.0322 0.03  

Weave 0.0268 0.0303 0.0294 0.0278 0.0259 0.0308 0.03  
STELA 0.1020 0.1053 0.1027 0.1050 0.0924 0.1045 0.10  
FDOI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00  

 
The first step of the proposed algorithm is to redefine the value of the each 

attribute, according to a certain metric. Using 100 frames (2nd to 101st frames) of each 
of the six CIF sequences (Akiyo, Hall Monitor, Foreman, News, Mobile, and Stefan) 
as the training data, the decision making map can be obtained through the training 
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process. Table 1 shows a comparison of the normalized average CPU time among the 
four methods. In case of TD and SD, the numerical range is linearly divided into two 
categories: S (small) and L (Large). In case of TMDW and SDMW, the numerical 
range is linearly divided into three categories: S (small), M (medium), and L (large).  

 Since each sequence has different degrees of spatial and temporal details, it is a 
difficult process to design consistent decision making tables. The detail required to 
determine abcd/U is described in Table 2.  

Table 2. Fuzzy rules for determination of attributes a, b, c, and d  

1 IF TD is smaller than 23 THEN a is S 
 IF TD is larger than 23 THEN a is L 

2 IF SD is smaller than 23 THEN b is S 
 IF SD is larger than 23 THEN b is L 

3 IF TMDW is smaller than 22 THEN c is S 
 IF TMDW is larger than 22 and smaller than 24 THEN c is M 

 IF TMDW is larger than 24 THEN c is L 
4 IF SMDW is smaller than 22 THEN d is S 

 IF SMDW is larger than 22 and smaller than 24 THEN d is M 
 IF SMDW is larger than 24 THEN d is L 

 
The set of all possible decisions are listed in Table 3, which collected through 

several training sequences. The proposed information system is composed of 
R=[a,b,c,d,m|{a,b,c,d}→{m}] as shown in Table 3. This table is a decision table in 
which a, b, c, and d are condition attributes, whereas m is a decision attribute. Using 
these values, a set of examples can be generated. The attribute m represents selected 
method which is the decision maker’s decision: Bob assigned to B, Weave assigned to 
W, STELA assigned to T, and FDOI assigned to F.  

It is assumed that the average absolute difference between the real value and the 
Bob method utilized the interpolated value as ADB as shown in Table 3. In the same 
manner, ADW, ADT, and ADF are obtained.  

Since each method has its own merits and demerits, RSD method is based on 
variable deinterlacing mode technique. And this technique causes a mode decision 
problem, because the mode decision method may affect interpolation efficiency, 
complexity, and objective and subjective results. As rate-distortion optimization 
(RDO) of reference software in H.264, we proposed a rule to select the suitable 
methods in each condition. This rule has been applied to various video sequences and 
supplies good performance in terms of PSNR and complexity. The goal of the rule is 
to select the mode which has minimum average cost in which given computational 
CPU time.  

i i iC AD RTκ= + ⋅  (6) 

where i∈{B, W, T, F}, Ci is the cost in each method i, ADi is the average absolute 
difference, RTi is the expected required computational CPU time, and the parameter κ 
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Table 3. Set of the selected method corresponding to each pattern  

abcd(U) P ADB ADW ADT ADF CB CW CT CF m 
SSSS 35.14% 1.33 1.64 1.15 1.06 2.05 2.36 2.65 4.06 B 
SSSM 11.17% 2.50 3.24 2.12 2.08 3.22 3.96 3.62 5.08 B 
SSSL 0.97% 6.12 6.19 4.25 4.15 6.84 6.91 5.75 7.15 T 
SSMS 2.76% 2.85 2.92 2.31 2.23 3.57 3.64 3.81 5.23 B,W 
SSMM 5.37% 3.09 3.83 2.74 2.72 3.81 4.55 4.24 5.72 B 
SSML 1.59% 5.66 6.41 4.11 4.07 6.38 7.13 5.61 7.07 T 
SSLS 0.07% 6.40 4.05 3.90 3.63 7.12 4.77 5.40 6.63 W 
SSLM 0.35% 7.06 5.27 4.69 4.47 7.78 5.99 6.19 7.47 W 
SSLL 1.67% 5.04 7.42 4.57 4.49 5.76 8.14 6.07 7.49 B 
SLSS 3.60% 7.64 4.39 3.72 3.58 8.36 5.11 5.22 6.58 W 
SLSM 3.51% 10.17 5.70 5.45 5.39 10.89 6.42 6.95 8.39 W 
SLSL 1.45% 14.46 9.46 7.97 7.84 15.18 10.18 9.47 10.84 T 
SLMS 0.88% 10.05 6.00 5.90 5.79 10.77 6.72 7.40 8.79 W 
SLMM 2.44% 9.38 6.80 6.86 6.47 10.10 7.52 8.36 9.47 W 
SLML 1.88% 12.57 10.04 7.23 6.83 13.29 10.76 8.73 9.83 T 
SLLS 0.15% 16.86 8.98 8.05 7.99 17.58 9.70 9.55 10.99 T 
SLLM 0.60% 15.39 8.58 7.91 7.91 16.11 9.30 9.41 10.91 W 
SLLL 2.15% 11.27 11.27 7.17 6.42 11.99 11.99 8.67 9.42 T 
LSSS 1.50% 4.88 9.76 4.14 3.38 5.60 10.48 5.64 6.38 B,T 
LSSM 2.03% 6.29 12.08 5.55 5.12 7.0 12.80 7.05 8.12 B,T 
LSSL 0.58% 7.25 25.26 7.02 6.62 7.97 25.98 8.52 9.62 B 
LSMS 0.69% 6.25 9.73 5.03 4.30 6.97 10.45 6.53 7.30 T 
LSMM 1.90% 6.48 10.82 5.74 5.62 7.20 11.54 7.24 8.62 B,T 
LSML 0.92% 7.31 17.40 6.63 6.07 8.03 18.12 8.13 9.07 B 
LSLS 0.09% 9.12 7.72 5.43 4.88 9.84 8.44  6.93 7.88 T 
LSLM 0.36% 9.11 10.87 6.80 6.20 9.83 11.59 8.30 9.20 T 
LSLL 1.10% 8.10 15.30 7.55 7.06 8.82 16.02 9.05 10.06 B 
LLSS 1.15% 14.44 19.41 9.89 8.34 15.16 20.13 11.39 11.34 F,T 
LLSM 2.06% 11.66 19.93 9.39 8.76 12.38 20.65 10.89 11.76 T 
LLSL 1.34% 12.48 28.10 11.37 10.62 13.20 28.82 12.87 13.62 T 
LLMS 0.79% 14.74 16.61 10.24 8.31 15.46 17.33 11.74 11.31 F 
LLMM 2.48% 13.38 18.67 10.34 8.87 14.10 19.39 11.84 11.87 T,F 
LLML 2.49% 13.10 23.06 10.94 10.60 13.82 23.78 12.44 13.60 T 
LLLS 0.22% 19.35 17.72 11.59 8.77 20.07 18.44 13.09 11.77 F 
LLLM 1.01% 18.91 16.38 11.93 11.43 19.63 17.10 13.43 14.43 T 
LLLL 3.54% 12.84 19.64 10.11 9.73 13.56 20.36 11.61 12.73 T 

average 100.0% 9.54 11.41 6.66 6.16      

 
is determined before experiment (simulation results presented for κ=1.5). It is 
assumed that the method which has the least cost is chosen as the selected method in 
each condition. However, it is difficult to choose the suitable method in some 
conditions, such as rules SSMS, LSSS, LSSM, LSMM, LLSS, and LLMM), because 
the difference of cost between two best methods is too small (less then 0.1).  

Table 4 shows the extracted 42 evaluation rules in deinterlacing system. The 
system designer assigns the suitable methods: Bob, Weave, STELA, and FDOI.  
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Table 4. The information system (evaluation rules)  

Staff a b c d m Staff a b c d m 
1 S S S S B 22 L S S M B 
2 S S S M B 23 L S S M T 
3 S S S L T 24 L S S L B 
4 S S M S B 25 L S M S T 
5 S S M S W 26 L S M M B 
6 S S M M B 27 L S M M T 
7 S S M L T 28 L S M L B 
8 S S L S W 29 L S L S T 
9 S S L M W 30 L S L M T 

10 S S L L B 31 L S L L B 
11 S L S S W 32 L L S S F 
12 S L S M W 33 L L S S T 
13 S L S L T 34 L L S M T 
14 S L M S W 35 L L S L T 
15 S L M M W 36 L L M S F 
16 S L M L T 37 L L M M T 
17 S L L S T 38 L L M M F 
18 S L L M W 39 L L M L T 
19 S L L L T 40 L L L S F 
20 L S S S B 41 L L L M T 
21 L S S S T 42 L L L L T 

 
where  

U={1, 2, 3, …, 40, 41, 42} 
C={a (TD), b (SD), c (TMDW), d (SMDW)} 
VTD=VSD={S, L} 
VTMDW=VSMDW={S, M, L} 
{d}={B, W, T, F} 

 

From the indiscernibility relations, the lower bounds of the decisions d(x) and the 
upper bounds of the decisions d(x) for each object x are obtained as follows: 
 

{ (4)} , { (4)} [" , "]

{ (5)} , { (5)} [" , "]

{ (20)} , { (20)} [" , "]

{ (21)} , { (21)} [" , "]

{ (22)} , { (22)} [" , "]

{ (23)} , { (23)} [" , "]

P d P d B W

P d P d B W

P d P d B T

P d P d B T

P d P d B T

P d P d B T

φ
φ

φ
φ
φ
φ

= =

= =

= =

= =

= =

= =

 

{ (26)} , { (26)} [" , "]

{ (27)} , { (27)} [" , "]

{ (32)} , { (32)} [" , "]

{ (33)} , { (33)} [" , "]

{ (37)} , { (37)} [" , "]

{ (38)} , { (38)} [" , "]

P d P d B T

P d P d B T

P d P d F T

P d P d F T

P d P d T F

P d P d T F

φ
φ
φ
φ
φ
φ

= =

= =

= =

= =

= =

= =

 
(7) 

 
If f(x,qTD)=“S,” f(x,qSD)=“S,” f(x,qTMDW)=“M,” and f(x,qSMDW)=“S” then exactly Ø.  

(Supported by 4, 5) 
If f(x,qTD)=“S,” f(x,qSD)=“S,” f(x,qTMDW)=“M,” and f(x,qSMDW)=“S” then possibly d(x)=[“B, W”].  

(Supported by 4, 5) 
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The other rules have crisp decision, e.g.,  
 

{ (1)} { (1)} [" "]

{ (2)} { (2)} [" "]

{ (3)} { (3)} [" "]

P d P d B

P d P d B

P d P d T

= =

= =

= =
i i i

 { (40)} { (40)} [" "]

{ (41)} { (41)} [" "]

{ (42)} { (42)} [" "]

P d P d F

P d P d T

P d P d T

= =

= =

= =

i i i

 
(8) 

 

The priority of rule 4 and rule 5 are the same, thus we can use any method in those 
condition (in our simulation, priority order is given F, T, W and B). The final results, 
presented in Table 4, can be rewritten as a minimal decision algorithm in normal form 
which based on original rough set theory [4]. Combining the decision rules into one 
decision class provides the following decision algorithm.    

( ( ))

( (( ( )) ) )

(( ( )) ( ( )))

L L S M M F

S S S M M M L L L L B

S S S L L S S M M S L S L L M W

T

if a b d c d m

else if b c d d c d c d a d m

else if d a b c b c a c d a c a b b c m

else m

∨
∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨

 
(9) 

4   Experimental Results  

In this section, we compare the subjective, objective quality and computational CPU 
time of our proposed method with other methods. The proposed algorithm was 
implemented on a Pentium IV/3.20 GHz computer. For the objective and subjective 
performance evaluation, four 1920*1080i HDTV video sequences were selected to 
challenge the five algorithms for Bob, Weave, STELA, FDOI, and the proposed 
method. Table 5 shows the comparison result of different deinterlacing methods for 
various sequences. The results show that the proposed method demonstrates the 2nd 
best objective performance compared to the other conventional methods, in terms of 
PSNR.  

 

  

(a) (b) (c) (d) 

Fig. 1. Four 1920*1080i test sequences that are used: (a) Mobcal, (b) Parkrun, (c) Shields, and 
(d) Stockholm 

Fig. 2 shows the subjective quality by the methods mentioned above. The superior 
performance is obvious especially at the outline of the characters. Mobcal sequence 
has following characteristics; Mobcal sequence has high spatial detail and medium 
amount of motion. The camera pans vertically (top to bottom). Because the sequence 
has a lot of motion, the information comes from inter fields is not good enough to be 
used. Therefore, Bob method provides almost the same performance with FDOI. Our 
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proposed algorithm gets more pleasing visual quality and significantly improves edge 
flicker, interline flicker, and line crawling by accurately assigning the most suitable 
deinterlacing methods. Computational CPU time for various methods is shown in 
Table 5 as well.  

Table 5. Results of different deinterlacing methods for four interlaced HDTV sequences 

 Sequences (PSNR, computational CPU time) (Unit = dB, ms) 
Method Mobcal Parkrun Shields Stockholm 

Bob 32.2072 0.140 21.2252 0.187 24.1377 0.172 26.4087 0.125 
Weave 26.8416 0.125 19.1426 0.172 21.4058 0.125 24.0388 0.140 
STELA 30.4403 0.672 21.3727 0.547 24.2633 0.563 26.5745 0.625 
FDOI 32.5208 15.383 21.5598 14.937 24.5898 14.719 26.7630 15.680 

Proposed  32.3435 0.843 21.3927 0.765 24.2717 0.750 26.5808 0.937 
 

 

  
(a) Original picture (b) Bob 

  
(c) Weave (d) STELA 

  
(e) FDOI (f) Proposed method 

 

Fig. 2. Subjective quality comparison of the 109th Mobcal 1920*1080i HDTV sequence 

5   Conclusion  

This paper describes an application of rough set to decision making problems in 
deinterlacing. In decision making problems, there are several cases where the decision 
maker’s judgments are uncertainty. Using rough set theory, the deinterlacing system 
with ambiguous decisions which given by a decision maker is dealt with. The 
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different method from the conventional rough set analysis is illustrated on the 
assumption that the decision values are comparable. Decision making and 
interpolation results are presented. The results of computer simulations show that the 
proposed method outperforms a number of methods in literature. 
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Abstract. A clonal selection algorithm (Clonalg) inspires from Clonal Selection 
Principle used to explain the basic features of an adaptive immune response to 
an antigenic stimulus. It takes place in various scientific applications and it can 
be also used to determine the membership functions in a fuzzy system. The aim 
of the study is to adjust the shape of membership functions and a novice aspect 
of the study is to determine the membership functions. Proposed method has 
been implemented using a developed Clonalg program for a single input and 
output fuzzy system. In the previous work [1], using genetic algorithm (GA) is 
proposed to it. In this study they are compared, too and it has been shown that 
using clonal selection algorithm is advantageous than using GA for finding op-
timum values of fuzzy membership functions. 

1   Introduction 

Fuzzy logic is used to solve a lot of problems related wide range of area because of 
providing flexible solutions. Designing fuzzy system contains fuzzy sets which are 
defined by rule table and membership functions. When the fuzzy sets have been es-
tablished, how best to determine the membership function is the first question that has 
to be tackled. For solving this problem, some methods such as genetic algorithms 
(GA), self-organizing feature maps (SOFM), tabu search (TS) etc. can be used. 

GA was used by Karr [10] in determination of membership functions. Karr applies 
GA to design of fuzzy logic controller (FLC) for the cart pole problem. Meredith et al. 
[12] have applied GA to the fine tuning of membership functions in a FLC for a heli-
copter. Lee and Takagi [11] also tackle the cart problem. They take a holistic ap-
proach by using GA to design the whole system. Cheng et al. [2] have chosen the im-
age threshold via minimizing the measure of fuzziness. For selecting the bandwidth of 
fuzzy membership functions, they use peak locations which are chosen from the his-
togram using the peak selection criterion. Bağiş [3] presents a method for the deter-
mination of the membership functions based on the use of Tabu Search algorithm. 
Cerrada et al. [4] proposed an approach permits incorporate the temporal behavior of 
the system variables into the fuzzy membership functions. Simon [5] employed H∞ 

state estimation theory for the membership function parameter optimization. He made 
some modifications on the H∞  filter with addition of state constraints so that the re-
sulting membership functions are sum normal. Yang and Bose [6] described a method 
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for generating a fuzzy membership functions with unsupervised learning using self-
organizing feature map. They applied this method to pattern recognition.  

In the previous work, proposed a new method for determination of fuzzy logic 
membership functions implemented using a genetic algorithm program for single in-
put and output system. Due to space limitation in this paper, how the membership 
functions compute using GA didn’t explained. Details of it can be found in the earlier 
work [1]. In this work the same method was performed using an artificial immune 
system algorithm: Clonalg. This algorithm is inspired from Clonal Selection Principle 
used to explain the basic features of an adaptive immune response to an antigenic 
stimulus. Both of these algorithms were coded and acquired results were compared.  

This paper is organized as follow. In Sect. 2, basic principles and features of Clon-
alg are explained. In Sect. 3, how the membership functions that are in a given shape 
can be suitably placed using clonal selection algorithm has discussed. The experimen-
tal results and the discussion of them have been given in Sect. 4. Finally, in Sect. 5, 
we present our conclusions. 

2   Clonal Selection Principle and Clonalg Algorithm 

Clonal selection is the theory used to explain the basic properties of an adaptive  
immune response to an antigenic stimulus. It establish the idea that only those cells 
capable of recognizing an antigenic stimulus will proliferate and differentiate into ef-
fector cells, thus being selected against those that do not. The mainly features of the 
clonal selection principle are affinity proportional reproduction and mutation. The 
higher affinity, the higher number of offspring generated. The mutation suffered by 
each immune cell during reproduction is inversely proportional to the affinity of the 
cell receptor with the antigen. The standard genetic algorithm doesn’t account for 
these immune properties [9].  

De Castro& Von Zuben proposed a Clonal selection algorithm named Clonalg, to 
fulfill these basic processes involved in clonal selection principle. It will be initially 
proposed to perform machine-learning and pattern recognition tasks, and then adapted 
to be applied to optimization problems [8]. The algorithm of it for the optimization 
task is given below. 

1. Generate j antibodies randomly. 
2. Repeat a predetermined number of times: 

a. Determine the affinity of each antibody (Ab). This affinity corre-
sponds to the evaluation of the objective function.  

b. Select the n highest affinity antibodies. 
c. The n selected antibodies will be cloned proportionally to their af-

finities, generating a repertory C of clones: the higher affinity the 
higher number of clones and vice versa. 

d. The clones from C are subject to hypermutation process inversely 
proportional to their antigenic affinity. The higher affinity, the 
smaller mutation, and vice versa. 

e. Determine the affinity of the mutated clones C. 
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f. From this set C of clones and antibodies, select the j highest affinity 
clones to compose the new antibodies’ population. 

g. Replace the d lowest affinity antibodies by new individuals gener-
ated at random. 

3. End repeat [7].  

3   Computation of the Membership Functions Using Clonalg 

The most appropriate placement of membership functions with respect to fuzzy vari-
ables can be found for a fuzzy system whose rules table and shape of membership 
functions were given previously. There are no restrictions for shape of membership 
functions. They can be generally used but it can be mathematical function whose 
model is known. Then, the issues to be determined are the parameters that define the 
model. Because of this, the membership optimization problem can be reduced to pa-
rameter optimization problem. How the membership functions compute as a parame-
ter optimization problem using Clonalg is descried bellow for single input-output  
system . 

It is assumed that there are two different membership functions for input and out-
put of considered system and their shapes are right triangle. The membership func-
tions are called input(x) and output(y); x uses slow and fast; y uses easy and difficult. 
In this case, the linguistic rules are as follows: 

Rule 1: If x is slow then y is easy Rule 2: If x is fast then y is difficult 
If the range of input variable x as [0-7] and the range of output variable y as [0-49] 

are assumed, then the membership functions of fuzzy system for input and output 
variables will be as shown in Fig. 1.  

 

Fig. 1. The membership functions of a fuzzy system for input and output 

Input    :  xi = {1, 3, 5, 7} Output : yi = {1, 9, 25, 49},  i=1, 2, 3, 4 
Expected from a Clonalg is to find the base lengths of right triangles. If the base 

length of each membership function is represented by 6-bit, the genes 
Base1Base2Base3Base4 containing solution of problem has 6*4=24 bits. In this case 
the maximum value each base can take is 26−1=63. The domain intervals for input 
and output variables are [0-7] and [0-49], respectively. The base values are reflected 
under these values. This is formulated in (1). 
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L is the length of related variable (in this case, it is Antibody- Ab ) in bits, d is the 
decimal value of this variable, Xmin is the minimum value of region to be transformed, 
and Xmax is the maximum value of this region, then Xi is the transformed figure of that 
variable. 

Thereafter, the necessary thing to be done is to create the initial antibody popula-
tion-Ab with 10 antibodies randomly, and let begin Clonalg process. Table 1 ex-
presses the initial antibody population. Columns 2-5, are the decimal values of lengths 
of related antibodies. Columns 6-9 are the cases of these lengths reflected to domain 
intervals. Before the computation of affinity, total error is calculated in (2).  
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Where yi is the output of ith reference input; yClonalgi which is obtained by Clonalg, is 
output for ith reference input. The aim is to approximate the total error to zero as close 
as possible. Affinity function is converted to 4480-Total_Error, in this way; minimi-
zation process is also converted to maximization process (Column 10). In order to 
prevent affinity function from getting negative values, the maximum number 4480 is 
used and this number is also maximum error at the same time. It is evaluated 
by∑ =

−4

1

2)49(
i iy ; where 49 is the biggest output value for : 

   Base1<First Ref. Input(x=1) and (7 − Base2)<First Ref. Input(x=1) and Base4=0. 

Table 1. Initial Ab Population 

1 2 3 4 5 6 7 8 9 10 11 

Antibodies B1 B2 B3 B4 B1 
ref 

B2 
ref 

B3 
ref 

B4 
ref 

Affinty Cl.
Nm. 

010100110010111010001000 (Ab1) 20 50 58 8 2,2 5,5 45,1 6,2 2372,3 0 

010111100001101001101000 (Ab2) 23 33 41 40 2,5 3,6 31,8 31,1 4217,8 1 

111110110001100100000100 (Ab3) 62 49 36 4 6,8 5,4 28 3,1 4438,5 3 

101001101001011011111010 (Ab4) 41 41 27 58 4,5 4,5 21 45,1 4449,2 5 

100010111010110110011001 (Ab5) 34 58 54 25 3,7 6,4 42 19,4 3461,8 0 

010111110100011011111011 (Ab6) 23 52 27 59 2,5 5,7 21 45,8 4294,3 2 

111111011001010001011110 (Ab7) 63 25 17 30 7 2,7 13,2 23,3 2946,1 0 

011110010010010101001010 (Ab8) 30 18 21 10 3,3 2 16,3 7,78 4169,1 1 

100011111010011011011110 (Ab9) 35 58 27 30 3,8 6,4 21 23,3 4127,9 1 

010110011011110111010001(Ab10) 22 27 55 17 2,4 3 42,7 13,2 3896,2 0 

 
The solution of first antibody is seen in Fig. 2 for initial population. The base val-

ues for x are 2.22 and 5.56. In the same way, the base values for y are 45.11 and 6.22. 
In this case, output is evaluated for any input reference such that, grade of member-
ship of input is 0.549 for assumed input reference at x = 1. At given fuzzy system 
rules, “If x is slow then y is easy" is seen. If y value is directly assumed as defuzzifica-
tion processes, according to this case, y point of easy membership function, whose 
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Fig. 2. The solution of the first chromosome in the initial population 

degree is 0.549 is found, that is, it is 20.32 whereas the real output value is 1. So, er-
ror at this point is (1−20.32)2 = 373.26. Other error values are calculated and all of 
them are accumulated. Then this accumulation is subtracted from 4480 for acquired 
the affinity value. 

After acquiring the all affinity values, they are sorted descending order. Assume 
that the parameter n is 8. Then the n highest affinity elements are selected and number 
of clones of Abi is calculated proportionally to their affinity (Column 11) using the 
given formula: ∑ =

= n

ic iNroundN
1

).(β . This implements the affinity proportional re-

production; the higher the affinity, the higher the number of clones.  While Ab4 in the 
forth row which has the maximum affinity value in the population is cloned five time, 
no clone is generated of the Ab5 in the fifth row.  

 

Fig. 3. The membership function shape of the optimal solution 

After cloning process, new Ab population is mutated. The inverse of an exponential 
function can be used to establish the hypermutation rate α(.) described in [9]. For ex-
ample each of the Ab4 and its clones suffer a two bit mutation. But Ab5 and its clone 
suffer a six bit mutation. After 20 iteration completed, the individual whose fitness or 
affinity is maximum has been accepted as optimal solution.  

The optimal solution of this optimization problem obtained from Clonalg is given 
in the Table 2 and its membership function shape is depicted in Fig. 3. 

Table 2. The Optimal Solution 

Antibodies B1 
ref 

B2 
ref 

B3 
ref 

B.4 
ref 

y1 

(x=1) 

y2 

(x=3) 

y3 

(x=5) 

y4 

(x=7) 

Affinity 

100110100001001111111001 4,22 3,65 11,67 44,33 2,763 8,289 24,82   49 4476,4 
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4   Experimental Results 

In this section, Clonalg and GA used to optimize the fuzzy membership functions 
were implemented by Matlab 7.1 R14 and compared empirically. Results showed that 
CLOANLG was more effective method than GA for determining the membership 
functions. For showing the results weren’t obtained by coincidentally, 20 different 
groups were generated. A group consisted of 10 different initial populations and a 
population consisted of 10 Ab individuals. The algorithms were set to run for 20 gen-
erations on each population in the groups, respectively. Then the results are compared 
group by group.  

Because of two different algorithms performed on the same populations, a paired 
data test has been used to compare them statistically. If distributions of population in-
dividuals were normal, the parametric paired t-test could be used. But we didn’t have 
enough knowledge about distributions of population. So, the Wilcoxon Signed-Rank 
Test for Paired Data which is a nonparametric alternative to the paired t-test was used 
to compare them. It examined the truth of the H0 hypothesis according to its p value 
for a definite significance level. For example, if p test value is bigger than 0.05, then 
H0 is accepted for the significance level %95. For this work H0 was constructed as fol-
low: “There is no statistical significant difference between Clonalg and GA for the 
significance level %95” The test performed on each groups and the p values acquired 
from tests were showed in Table 3. As shown, H0 hypothesis was accepted for only 
one group in the tenth column. For others, it was rejected. So we could say clearly, 
there was a statistical significant difference between them for the significance level 
%95 for this work. 

Table 3. p values of Wilcoxon Signed-Rank Test for Paired Data according to groups 

Gr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

  p ,009 ,001 ,02 ,02 ,001 ,02 ,003 ,005 ,02 ,08 ,001 ,001 ,04 ,003 ,01 ,02 ,001 ,02 ,001 ,04 
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Fig. 4. Some descriptive statistics of groups: Stand. Deviation (left plot) and Mean (right plot) 

Via the Wilcoxon Test, it was showed that the algorithms were different but still it 
wasn’t known which one was better than the other. For understanding that, some de-
scriptive statistics –standard deviation and mean value- was used. In the left sides of 
Fig. 4, standard deviations of the groups were depicted. As seen that Clonalg’s stan-
dard deviation of groups were lower than the GA’s for all groups. In addition that its 
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Fig. 5. Fitness/Affinity functions value of a population (left plot) and Max affinity/fitness val-
ues of the each group (right plot)  

mean values of groups are higher than the GA’s for all groups too. The higher mean 
value was a satisfactory case, because it was a maximization problem. According to 
these knowledge, it could be said that using CLOANLG was advantageous than using 
GA for finding optimum values of fuzzy membership functions. 

These algorithms were also compared from a different aspect without using a  
statistical test. Left plot of the Fig. 5 showed that fitness/affinity values of algorithms 
according to generation number of a population. As seen from that plot, Clonalg con-
verged to optimum solution faster than GA and its affinity values were more stable, 
also. In the right side of the Fig. 5, max affinity or fitness values of the each group 
were depicted. According to them, it was clearly seen that Clonalg was more success-
ful than GA to find the optimum solutions. Because GA converged to the max value 
of this problem in six groups from these 20 groups and only in two of them, it suc-
ceeded to generate better solutions than the Clonalg’s solution, in the others it found 
the same values as Clonalg’s. As for the 14 groups rest, Clonalg found the best solu-
tions. Than it was straightforward to say the Clonalg represented a good performance 
while finding the optimum base distance of a fuzzy membership functions. 

5   Conclusion 

The most appropriate placement of membership functions with respect to fuzzy vari-
ables can be found for a fuzzy system whose rules table and shape of membership 
functions were given previously. There are no restrictions for shape of membership 
functions. They can be generally used but it can be mathematical function whose 
model is known. Then, the issues to be determined are the parameters that define the 
model. Because of this, the membership optimization problem can be reduced to pa-
rameter optimization problem. How the membership functions compute as a parame-
ter optimization problem using Clonalg was descried in this work. 

Clonalg used to optimize the fuzzy membership functions was implemented by 
Matlab 7.1 R14. Then GA was coded too in the same conditions for comparing with 
clonal selection algorithm. Firstly, 20 different groups were generated for showing the 
results weren’t obtained by coincidentally. A group consisted of 10 different initial 
populations and a population consisted of 10 Ab individuals. The algorithms were set 
to run for 20 generations on each population in the groups, respectively. Then the ac-
quired results are compared group by group. 
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For 20 groups, the Wilcoxon Signed-Rank Test examined a H0 hypothesis con-
structed as follows: “H0: There is no statistical significant difference between Clonalg 
and GA for the significance level %95”. This hypothesis was rejected for 19 groups. 
So, we could say clearly, there was a statistical significant difference between Clonalg 
and GA for significance level %95 for this work. For understanding which one was 
better than the other, some descriptive statistics –standard deviation and mean value- 
was used. It was found that Clonalg’s standard deviations of groups were lower than 
the GA’s and its mean values of groups were higher than the GA’s for all groups. 
Also, it converged to optimum solution faster than GA and found the optimum solu-
tions more successfully. 

As a conclusion, it is shown that Clonalg can be used while determining optimum 
values of membership functions for a fuzzy system whose rule table and model of 
membership function’s shape are known and using of it is advantageous than using 
one of the best global search algorithm GA. 
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Abstract. This paper introduces novel methodology for the clustering
of data represented as leaf-labelled trees on the same leaf-set. We define
an abstract term - the representative tree, which can be represented
with a variety of trees, depending on applications. The quality of tree-
clustering is based on Information Gain, which measures the increase of
information contained by representative trees of the resulting clusters
compared to a single representative tree of the whole dataset. Finally,
we propose the k-best algorithm the objective function of which is to
maximize the information gain. We show how it can be constructed for
two different representative trees, well- known in phylogenetic analysis.
Developed algorithms yield very promissing results.

1 Introduction

Existing data mining techniques concerning clustering concentrate on tabular
(attribute-value) data. However, many data or processes from various fields of
interests i.e. bioinformatics, telecommunications, text mining or image process-
ing are represented as trees. Thus there is a need to adopt data-mining techniques
(including clustering algorithms) to be applicable to tree data in such a way that
they provide reliable results. Some aspects of tree mining were already discussed
in literature, among others: mining frequent patterns in trees [11] and optimal
partitioning of a tree, called ”clustering on trees” [3].

This paper is part of a work in progress devoted to the clustering of data
represented as trees. The single work devoted to the problem of clustering of
data represented as trees was presented by [10]. The authors concentrated on
phylogenetic trees, which are a special case of leaf-labelled trees, because they are
binary. The authors discussed various clustering algorithms and measure their
quality for the clustering of phylogenetic trees. The quality measure provided
by authors is based on statistical criteria and is only applicable for phylogenetic
trees.

We develop the general approach for trees which are not necessarily binary
trees, and can also be extended to trees with a different set of leaves, which
increases the potential applicability of our technique. However, in this paper we
� The research has been partially supported by grant No 3 T11C 002 29 received from

Polish Ministry of Education and Science.
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focus only on those with the same leaf set. The leaf-labelled trees may be used
where the partition of problem space needs to be represented.

Our quality measure is based on structural properties of trees rather than on
a distribution probability criterion specific for particular problem. Our approach
stays at the same time as general as possible and allows the modifications towards
any specific dataset. It is achieved thanks to an abstract representative tree
term, which can be selected freely depending on a problem being analyzed. The
quality of tree clustering is based on Information Gain. It measures the increase
of information contained by the representative trees of resulting clusters with
respect to a single representative tree of the whole dataset. Finally we propose the
k-best algorithm the objective function of which is to maximize the information
gain. We show how it can be constructed for two different representative trees
which are well-known in phylogenetic analysis.

2 Basic Notions

Leaf-labelled trees are trees with labels attached to their leaves. Trees may be
either rooted, if there is one distinguished node called root, or unrooted which is
the more general case. If a tree has assigned an order to its nodes it is called an
ordered tree, otherwise it is unordered, which is the more general case. Unrooted
trees may be represented by a set of splits with respect to each edge. Rooted
trees are often represented with clusters of leaves.
Split/Bipartition of a tree T with leafset L with respect to edge an edge e
is a partition of leafset L into two sets A and B that occur when the edge e
is removed. A|B is a bipartition (split) of L corresponding to edge e. If |A| or
|B| is equal to 1, the split is trivial. For a tree from Fig. 1 a) the splits are:
a|bcdef, b|acdef, c|abdef, d|abcef , e|abcdf, f |abcde, ab|cdef, abc|def, abcd|ef

Due to lack of space we do not discuss a variety of distance measures. We
describe here Robinson - Fould’s Distance as best-suited for leaf-labelled trees
with the same leaf-set.

Robinson - Fould’s distance originated from phylogenetic analysis. It is
defined as the proportion between the number of splits not shared by compared
trees. As it was proposed for phylogenetic trees, it is defined for leaf-labelled
trees with the same leaf-set. R-F distance between two trees T1 and T2 with set
of splits S1 and S2 respectively is as follows:

dR−F (T1, T2) = |S1 ∪ S2| − |S1 ∩ S2|. (1)

For the trees presented on Fig. 1 dR−F (T1, T2) = 2.
The R-F distance can be normalized with number of leaves, however for leaf-
labelled trees on the same leafset it is not necessary, therefore it will be omitted
due to the clearance of presentation.

The strict consensus tree is defined in terms of splits. Strict consensus
tree is a tree constructed of all splits common to all trees in a given profile of
trees. Fig. 1 presents two trees together with their strict consensus tree. The
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Fig. 1. Two leaf-labelled trees together with their strict consensus tree

common splits of those trees, that build the strict consensus tree are as follows:
a|bcdef, b|acdef, c|abdef, d|abcef, e|abcdf, f |abcde, ab|cdef, abc|def .
Because the concept of a consensus tree is very strict, for many trees, a consensus
tree can easily become a star (a tree built only of trivial splits). In order to deal
with this problem, many variations of consensus trees were proposed, among
others, a majority rule consensus tree. Majority rule consensus tree is built
of splits that occur in the majority of trees.

3 Clustering Quality Assessment

Quality measures, designed for tabular data, cannot be used for assessing tree-
clustering. Therefore we define our measure on the basis of structural information
contained in trees. Our measure is based on the belief that it is required that the
examples belonging to the same cluster share common, retrievable knowledge.
This way it provides a good and useful clustering. The basis of our approach is
the representative tree and its informativity.

Definition 1. Representative tree - a tree that shares common knowledge of all
trees in a cluster. The representative tree is built on a superset of splits of all
trees in a group. The representative tree may not introduce any new information,
besides that contained by input trees:

SR = f(S1, ..., Sn) SR ⊆
⋃

i∈C

Si, (2)

where Si is a set of splits of tree Ti and SR is a set of splits of a representative
tree.

Note that this term is as general as possible and does not imply a method of
construction of such a tree. We decided to provide such a term in order to stay
independent of any particular application of a clustering approach. In this paper
we discuss a strict consensus tree and a majority rule consensus tree as the
possible representative trees, however, we neither select the best of them nor
limit the possible choice to them. In order to assess the quality of clustering
we, as the simplest approach, measure the amount of common information in
each cluster, i.e. the amount of information located in the representative trees.
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In order to measure the amount of information (the informativity of trees), we
use a measure presented in [6].

Definition 2. Informativity of the tree T is the number of non-trivial splits
contained by this tree:

I(T ) = |Snt|, (3)

where |Snt| is the amount of non-trivial splits

Because in leaf-labelled trees on the same leafset, the number of trivial splits
in each tree is constant, we will omit it in all of the equations for the clarity of
presentation. In order to illustrate the term of informativity of a tree, we have
to recall a strict consensus tree construction procedure. If the split that was not
present in all the trees it was not inserted into a strict consensus tree. This way
the information contained in the non-trivial split was lost. In the pessimistic
case of there being no information between trees, the strict consensus tree will
be a perfect star I(TC) = 0. Basing on the informativity of a tree we define the
quality measure.

Definition 3. Cluster Information Loss. The amount of information, that is
lost when we replace the cluster of trees, with one representative tree:

ΔICx =
l∑

i=1

|Si ÷ SR|. (4)

The information loss defined has following properties:

1. It has a value of 0, if all trees in a cluster are identical and replaced by the
same tree. Additionally, it reflects the frequency of removed splits.

2. It does not judge the input data. If the input trees contain no informative
trees, but are identical, the information loss will still be 0.

3. If any particular input tree has fewer splits than representative tree, it is
also considered a loss.

If we choose strict consensus tree as representative tree it can be shown that the
information loss can be formulated as follows:

ΔICx = (
l∑

i=1

I(Ti)) − l ∗ I(TC), (5)

where l is the number of trees assigned to a cluster.

Definition 4. Clustering Information Loss - sum of information losses in all
clusters

ΔI =
k∑

i=1

ΔICi (6)

For the comparison of the efficiency of algorithms on a single dataset, the in-
formation loss is sufficient measure, but if multiple datasets are involved, we
have to measure the quality with respect to the input data. Therefore we define
information gain.
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Definition 5. Information Gain

IG =
ΔIC0 − ΔI

ΔIC0

, (7)

where ΔIC0 is the information loss of replacing whole profile of trees with one
representative tree.

4 K-Best Tree Clustering Algorithm

Here we define the k-best problem and provide algorithms for two most intuitive
representative trees: a strict consensus tree and a majority rule consensus tree.

Definition 6. K-best problem is the problem of finding the partition of dataset
on k clusters, (where k is a given value), in such a way that this partition max-
imizes Information Gain towards a given type of a representative tree.

4.1 K-Best for Majority Rule Consensus Tree as Representative
Tree

Here we show that k-mean algorithm maximizes Information Gain with respect
to the majority rule consensus tree. In order to apply k-mean algorithm to tree
data we must provide a distance measure between two trees and a centroid tree
for a group of trees. Centroid by definition is the point that minimizes average
dissimilarity to all points in a cluster. [4] shows that the majority rule consensus
tree is in fact a median tree (which has the same definition as centroid but
defined for trees). Therefore the majority rule consensus tree has to be taken as
centroid in order to use k-mean algorithm. The authors in [10] used the strict
consensus tree as the Centroid. However, such an approach cannot be justified
as this tree does not meet the conditions for centroid. The objective function of
k-mean algorithm is defined as follows:

min
C,{yk}K

k=1

K∑

k=1

∑

C(i)=k

d(xi, yk) = min
C,{TMk

}K
k=1

K∑

k=1

∑

C(i)=k

d(Ti, TMk
), (8)

where TM is majority rule consensus for a given cluster, and C(i) is a function
that assigns tree i to a cluster:

ΔI(TM ) =
K∑

k=1

∑

C(i)=k

|Si ÷ SMk
|, (9)

and because Si ∩ SMk
⊆ Si ∪ SMk

,

ΔI(TM ) =
K∑

k=1

∑

C(i)=k

d(Ti, TMk
). (10)
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So this modified k-mean minimizes the information loss and because ΔIC0 is
the constant value for a given input data this algorithm also maximizes Infor-
mation Gain, i.e. quality measure. Therefore the objective function of k-mean
with majority rule consensus tree as a centroid tree is to solve k-best problem
with respect to the majority rule consensus tree as a representative tree.

4.2 K-Best for Strict Consensus Tree as Representative Tree

For k-mean algorithm, it can be shown that replacing centroid tree with strict
consensus causes, that in general, algorithm does not converge to local opti-
mum. Therefore we present a solution for solving k-best problem with respect to
strict consensus tree, with the usage of agglomerative clustering. We make two
significant changes in the agglomerative clustering algorithm:

1. Replace the most popular merging strategies: minimum, maximum or com-
plete linkage with our minimum-loss linkage, which is realized with modifi-
cation of R-F distance measure.

2. We represent a cluster with only strict consensus tree and a number of trees
assigned. We can do this because the information loss requires only a strict
consensus tree to be counted. We can obtain consensus tree of a cluster that
originated from merging due to the following property:

TC(TC(T1, Tn−1), Tn) = TC(T1, , Tn), (11)

where TC is a strict consensus tree.

Our goal is to minimize ΔI, and because this value is counted on the basis
of strict consensus tree here, we represent clusters as strict consensus trees. In
each iteration of algorithm, we merge two clusters together. Each merging causes
that information loss of a given clustering is getting worse, which is normal. Our
goal is to choose clusters to merge in each iteration in such a way it minimizes
the information lost after merging. Counting information loss for all possible
mergings in each iteration is highly inefficient. Therefore we just count the delta
because it allows to reduce the problem to the comparing of only two clusters
at a time, as the sum of information in uninvolved clusters remains the same.
Therefore the merging condition is:

arg min
Ci,Cj

ΔI ′ − ΔI, (12)

ΔI ′ − ΔI = (
∑

C(i)=z I(Ti) − lz ∗ I(TCz))−
((

∑
C(i)=x I(Ti) − lx ∗ I(TCx)) + (

∑
C(i)=y I(Ti) − ly ∗ I(TCy))), (13)

Because the cluster z is the one that emerged from clusters x, y and because of
the property of strict consensus tree: (2)

ΔI ′ − ΔI =
lx ∗ I(TCx) + ly ∗ I(TCy) − lz ∗ I(TCz) =

lx ∗ |SCx | + ly ∗ |SCy | − lz ∗ |SCz | =
lx ∗ |SCx | + ly ∗ |SCy | − (lx + lz)(|SCx ∩ SCy |) =

lx ∗ (|SCx | − |SCx ∩ SCy |) + ly ∗ (|SCy | − |SCx ∩ SCy |).

(14)
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So in order to make the best merging decision in each step we need to minimize
the expression (14), where each cluster is represented by only one tree. In subse-
quent iterations we need only to keep the actual strict consensus trees for each
cluster and the number of trees assigned to it. Algorithm stops when it reaches
the given k number of clusters.

5 Results

We have performed clustering for two datasets of phylogenetic trees kindly pro-
vided by Li-San Wang. The first dataset pevcca1 contains 168 trees, the other
camp contains 216 trees. Both datasets contain trees that are very similar. In
first experiment we have used the majority rule consensus tree as a representa-
tive tree and compared the results of k-mean, the objective function of which is
to maximize information gain with hierarchical clustering with three well-known
strategies: minimum(Agg-min), maximum(Agg-max) and complete(Agg-compl)
linkage. In the other experiment we have used the strict consensus tree as a
representative tree. We have compared our minimum loss strategy(Agg-min) of
hierarchical clustering with min, max and complete-linkage, additionally we have
compared it with k-mean approach, where we replace the middle tree with the
strict consensus tree(k-str) as in [10]. Both of the discussed algorithms perform
extremely well on both datasets. On the larger dataset(camp) the minimum loss
strategy occurred to be at minimum 11% and up to 92% better than other al-
gorithms. The k-mean algorithm occurred to be at minimum 44% and up to

Table 1. Results of clustering with proposed algorithms

majority rule consensus strict consensus
K K-mean Agg Agg Agg Agg Agg Agg Agg K-str

min max compl inf min max compl

pevcca1

2 0.37 0.36 0.36 0.36 0.36 0.33 0.33 0.33 0.31
3 0.57 0.57 0.57 0.57 0.63 0.63 0.63 0.63 0.63
4 0.61 0.65 0.65 0.65 0.67 0.67 0.67 0.67 0.66
5 0.68 0.66 0.66 0.66 0.71 0.70 0.70 0.70 0.69
6 0.69 0.67 0.68 0.67 0.75 0.72 0.72 0.73 0.70
7 0.71 0.68 0.71 0.69 0.77 0.72 0.75 0.74 0.73
8 0.74 0.69 0.72 0.69 0.78 0.75 0.77 0.75 0.73

camp

2 0.08 0.00 0.02 0.00 0.03 0.00 0.01 0.00 0.00
3 0.25 0.00 0.04 0.01 0.06 0.00 0.03 0.00 0.00
4 0.25 0.01 0.06 0.04 0.09 0.01 0.06 0.00 0.04
5 0.27 0.01 0.09 0.08 0.11 0.01 0.07 0.00 0.08
6 0.27 0.02 0.12 0.12 0.14 0.01 0.11 0.00 0.04
7 0.29 0.02 0.14 0.15 0.16 0.02 0.12 0.02 0.10
8 0.32 0.03 0.16 0.18 0.18 0.03 0.14 0.07 0.08
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99% better then the other algorithms. On the smaller dataset(pevcca1) all the
compared algorithms have similar results, however in most cases our algorithms
were slightly better. Only in one case (for k-mean) our algorithm was at most
6% worse than the others. It occurred that for improper k-mean, (where a strict
consensus is used), algorithm may sometimes never stop, but for the proper
usage (with majority consensus) it behaves perfectly, which confirms our the-
ory. Neither of the discussed algorithms finds the global optimum, and no other
algorithm, but they provide excellent results.

6 Discussion

In this paper we have defined the quality measure and k-best problem. We
have provided two algorithms that solve that problem for different representative
trees and achieved excellent results. We have focused on leaf-labelled trees on
the same leaf-set, which is a part of a larger approach of clustering tree data.
The unrooted, unordered trees were used in our reasoning as it is the most
general case, however, rooting and ordering can be easily included. In future,
the approaches of clustering leaf-labelled trees on any leaf-set, and node-labelled
trees will be presented. The works on generalized k-best algorithm are also in
progress. Moreover, those methods need to be verified on a larger set of real-life
problems.
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Abstract. We model populations of classifiers which are aimed to function in 
permanently varying environments, adapt to unexpected changes, to comply fit-
ness function and survive. A failure to fulfill survivability condition is resulting 
in unsuccessful agents being removed from the agent society and be replaced by 
newborns which inherit some upbringing learning information from parent 
agents. We split the agent population into groups and suggest storing agent’s 
gains accumulated during most recent periods, distort randomly training signals 
and a level of survival threshold. A presence of optimal number of groups and a 
necessity of small groups with mutually collaborating agents is demonstrated.  

1   Introduction 

The necessity to adapt rapidly to changes of environments becomes one of most im-
portant obligations while developing modern robots and intelligent computer pro-
grams [1]. In analysis of social, trade and industry problems we face classification 
tasks and the need of fast adaptability too. Different combinations between artificial 
neural networks (ANN’s) and evolutionary algorithms, including using latter algo-
rithms to evolve ANN connection weights, architectures, learning rules, and input 
features often are used simultaneously [2]. The combination of evolution and learning 
may induce better results, desirably reaching global optima [2], [3], [4], [5].  

Assortment, or the degree of segregation of different types of individuals into dif-
ferent groups, plays a central role in social evolution [6]. Different mathematical 
frameworks for studying social evolution use different terminology, but all agree on 
the central role of assortment [6], [7], [8], [9] [10], [11], [12]. In major part of simula-
tion studies, the intelligent agents are not adaptive. Single, static pattern recognition 
(PR) task is used to train decision making algorithms regularly. One of few excep-
tions is a series of conference papers [13], [14], [15], [16] where sequences of large 
number of different PR tasks with diverse characteristics were used to train the popu-
lations of the classifiers. In order to understand basic regularities of adaptation in 
changing environments, at first the simplest training methods have to be investigated 
in situations where PR tasks are alternating for a long time.  

In present paper we model intelligent adaptive agents as nonlinear single layer per-
ceptrons (SLPs) trained by total gradient algorithm. Following general assertion of 
chaos theory claiming that many phenomena in micro and macro worlds follow the 
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same fundamental relationships, we believe that such simple model like SLP would 
provide opportunity to formulate various general statements, since it has many traits 
of universality [17]. In [13] two different PR tasks model was suggested to analyze 
aging problems of intelligent adaptive agents, individuals, groups of individuals or 
even social groups. In [14] it was shown that a difference between desired outputs 
(target values) of the perceptron (called “a stimulation”) affects training speed: with 
an increase in stimulation strength, training speed increases at first, saturates and then 
starts decreasing. In [15] a feedback chain used to control magnitude of the stimula-
tion was interpreted as “synthetic emotions” which if correctly determined speeds up 
adaptation process. In [16] long-lasting sequences of numerous alternating pattern 
recognition tasks were considered. Each time, training process started from previous 
weight vector. It was shown that corrupted training signals assist in faster adaptation 
of the agents to the PR tasks changes. An artificial population paradigm, where differ-
ent agents possess diverse levels of a noise injected to training signals was introduced. 
To help artificial populations of the classifiers to withstand lengthy series of sudden 
environmental changes, we are investigating the agent populations with offspring and 
inheritance. This study confirmed that optimal values of the noise level are following 
alterations of strengths of the PR task changes.  

An objective of present paper is the analysis of training speed of the population of 
the classifiers in situations where pattern recognition tasks are changing permanently 
and the agents are organized into the groups where they help each other, and do not 
allow other groups to pass away during “hard times”. Effects of distribution of the 
agents among the groups and impacts of randomly fluctuating survivability threshold 
and storing the agents’ earnings accumulated during latest time periods are taken into 
account. Analysis of or the degree of segregation of different types of individuals into 
different groups has been performed in a number of previous research papers [6], [7], 
[8], [9] [10], [11], [12]. Our novelty is investigation of these problems in the context of 
permanent pattern recognition task changes.  

2   Different Classification Tasks Model 

The SLP as the agent’s model. Environmental changes. We consider standard 
nonlinear SLP with sigmoid activation function, output =1/(1+exp (- sum)), where 
weighted sum of inputs, sum = wT w x +  w0 [18], [19]. Note that a slope (incline) of 
function output = f(sum) is the highest where sum = 0. If sum moves toward ± infinity, 
the slope diminishes and approaches zero [13], [19]. Environmental changes are mim-
icked by altering the pattern recognition tasks that the artificial agents have to solve. 
Simplicity sake, the classification tasks considered are two-class two-dimensional 
(2D) Gaussian classes, N(μ1, Σ), N(μ2, Σ). We consider a sequence of smax pattern 
recognition tasks, PRT1, PRT2, …, PRTsmax,. The power of the changes is varying according 

to a priori definite rule. We are changing only matrix Σ: Σ=T 1 0.98

0.98 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

T, where 

T= 0

0 t

⎡ ⎤ρ
⎢ ⎥

Β( )⎢ ⎥⎣ ⎦
 and Β(s)=β(s)(−1)s, s = 1, 2, …, smax. Thus, in turn, after each tchange batch 

iterations, the data are rotated counter clockwise and after another tchange iterations − 
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clockwise. To have the agents behavior somewhat different, each single agent is trained 
with its own data set where each time, a small Gaussian noise is added to components of 
mean vectors, μ1 = - μ2 and parameter ρ=1. 

To find weights, w0, w, we use a sum of squares cost function with targets t1=0, 
t2=1 and gradient descent algorithm in a batch mode. In training, magnitudes of the 
weights are increasing [13], [19]. Analytical calculations show that if the weights are 
small, the gradient is large. If the weighs become large, the gradient becomes small. 
So, if the SLP has learned to solve its task properly and the weights are already large, 
the perceptron is unable to re-learn a new task quickly. The weights increase and 
subsequent decelerating of training process are key aspects of our analysis. 

We suppose that the single layer perceptron (the agent) has a limited number of 
epochs, tmax, to adapt to PR task change in order to solve new PR task correctly: to 
diminish classification error until Pgoal, a priori defined survivability threshold. If the 
agent fails to fulfill this requirement, it perishes. A new agent (offspring) takes its 
place in the population of agents. The two different pattern classification tasks model 
[13] was established on two distinct pattern recognition tasks, PRT1 and PRT2. Ini-
tially, the perceptron is trained with data of PRT1. The weight vector ws is obtained. 
At some time instance, the PR task is changed. At this point, the perceptron is trained 
with data PRT2, starting from weight vector ws. If the first training was successful, the 
components of the weight vector, ws, became large. Large starting weights, ws, may 
be deleterious for efficient training with data PRT2. If training time is limited, the 
perceptron may fail while attempting to learn solving the task PRT2.  
 
Means to increase the survivability. Accumulation of “earnings”. In order to en-
sure fast training with new, the changed data, one needs to control the growth of the 
weights while training the perceptron. The weight growth may be held back if a noise 
is injected into the targets, i.e. the perceptron is trained with partially incorrect targets. 
We may use other regularization techniques for perceprton training, e.g. a weight 
decay term [18], [19]. We assume that αi is specific to each agent. In analysis of social 
systems, however, a noise injected to targets, αi, a fraction of incorrect training sig-
nals, possibly, could be interpreted as criminality, changes of laws, consequences of 
differences in value systems, “minor” environmental catastrophes, economy crises. A 
noise level, αi, is affecting the agent’s re-training speed and its ability to survive sud-
den PR task changes. At the start of each experiment, for all m agents in the popula-
tion we assigned different values of parameter αi. Artificial training set (comprising 
50 training vectors from each class) is supplied to each agent. Diverse values of αi 
lead to various “learning styles” of different adaptive agents and the death of certain 
agents who fail to learn fast enough to satisfy survival threshold, an upper limit on 
classification error, Pgoal after the tmax training epochs. When the agent perishes, it is 
replaced with the offspring that inherits its parent’s noise intensity. Most successful 
agents are given a right to produce the offspring. A necessary condition to become the 
parent agent is its small classification error, i.e. 
  

                           Pclassif < ηchild× Pgoal,   (ηchild < 1).  (1) 

We calculated Pclassif analytically since decision boundary is a hyperplane and the data is 
Gaussian with known parameters. To increase a speed of genetic adjustments to 
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strengths of the PR tasks changes, a random variable ε ~ N(0, 2

mutationσ ) is added to pa-

rameter αi each time through a mutation process. Inheritance and mutations result that 
during the PR task changes, values of noise intensity, αi, are varying in time [16]. 

Learning of the offspring starts from zero initial weights. The offspring is given 
newborn

maxt =tmax+ tchild training epochs before first survival test is applied.  

Earlier experiments showed that small fraction of the agents were dying if envi-
ronmental changes were of moderate size. In that case, we had rather slow adaptations 
of noise injection intensities, αs, to alterations in the strengths of environmental 
changes (variation of parameter β). To make adaptation of the noise intensity easier 
we need to force more agents to die. Inspired by observations from biology and social 
life, in present research we made survival threshold, Pgoal, a random variable. So, in 
each single survival test, to Pgoal we added a random variable uniformly distributed in 
interval [-εg, εg]. Subsequent experiments confirmed that such strategy increased the 
population’s resistance to strong environmental changes.  

To increase their survivability in difficult time periods, many living beings are ac-
cumulating their earnings acquired during “good times”. Therefore, we allowed the 
agents storing their “earnings” (a self-support chain): 

new

gain
( )jΔ = previous

gain
( )jΔ × (1-γstore)+(Pgoal - Pclassif (j))× γstore,  

if survivability condition Pclassif (j) < Pgoal was satisfied. Thus, a part of the earnings, 
new

gain
( )jΔ , accumulated by the j th agent during previous tests, are stored. A fraction 

γgain of this sum is used to modify the agent’s individual survivability condition 

                  Pclassif (j) <  
goal

*
( )jP = Pgoal + Δgain (j) × γgain. (2) 

An inclusion of the self-support chain constitutes one of the novelties of this paper in 
comparison with previous versions of evolution models reviewed in the Introduction. 
Subsequent experiments have shown that accumulation of the earnings increases the 
ability of the agent population to adapt to severe environmental changes. 
 
Social organizing of the agents into the groups. As shown in recent studies in the 
multi-agent system research, the compromises may facilitate coalition formation and 
increase agent utilities [6]-[12]. In this paper, we investigate rather simple cooperation 
model, tailored to situations where environmental changes are powerful.  

Consider a strategy where most successful agents transmit their genetic code (pa-
rameter αi) only to agents of the same group. During a sequence of most powerful 
environmental changes, it can happen that in some groups there are no agents that 
could become the parents. In such situations, the size of this group is diminishing. It 
can happen that all members of the group will die during long sequence of powerful 
changes. Therefore, in such experiments we observed extinction of the populations. 

Let the most successful agents of large groups may transmit their inheritance code, 
parameter αi and its group label, to an offspring of almost dying group. Simulation 
studies have shown that such strategy causes a death of majority of agent groups and 
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establishment of two or even one group in the population. In a presence of one or two 
groups, we observed subsequent decrease in survivability of the agent population 
during further environmental changes. In order to avoid destruction of the multi-group 
system, in this paper we considered mutiagent systems (MAS) wehere the agents’ 
associations to the groups were fixed a priori. Emulating the animal and human social 
behavior, in this agent society model, we assumed that only the best agents that sat-
isfy condition 

                         Pclassif (j) < ηelite ×ηchild× Pgoal, (3) 

are composing “an elite subgroup”. In such a way, we are imitating the cooperation 
between the agents: the elite agents are “altruistic”, i.e, they equalize their success: 

elite elite
classif classif( ) ( ) j

j

P j P j / n=∑ .                                          (4) 

Therefore, the agents’ excellence estimate depends on an excellence of its partners: 

    )()()1()( elite
classifaltruismclassifaltruism

elite
classif jPjPjP ×η+×η−= . (5) 

Survival conditions are not modified for the elite group. If a number of agents satisfy-
ing condition (1) in the r-th group is less than naid = 2, the s-th agent from other group 
can transfer its “genetic code”, αs, to the offspring. This agent is randomly chosen 
from a pool of candidate agents that satisfy condition (1). The parent’s group label, 
integer s, is not transmitted to offspring, only a noise level, αj. Altruistic strategy 
inside the elite group and tiny beneficial help of other groups are increasing the resis-
tance of the agent populations to most powerful environmental changes.  

 
Enumeration of the model’s parameters  

 

- the data dimensionality, training set size, difference in mean vectors, correlations;  
- parameters of SLP training algorithm: learning step, η, targets t1 and t2; 
- a character of environmental changes, most importantly, the intervals between the 

changes, magnitudes of the changes, the speed and other parameters of the character 
of variation of these magnitudes; 

- survivability conditions: Pgoal, interval [-εg, εg], the numbers of epochs, tmax, tchild, 
allowed before survivability tests are applied to mature agents and the offspring,  

- a noise injection intensities, αi: mutations 2

mutation ;σ  

- the offspring producing condition: ηchild; 
- the size of the agents population, m, the number of groups, K and a distribution of a 

number of the agents between the groups; 
- self-support characteristics, γstore, γgain, the helpful aid to nearly dying group, naid; 
- altruistic aid inside the elite groups, ηelite and ηaltruism. 

3   Simulation Experiments 

Below we report results obtained with following set of the model’s parameters: 
m=500, μ1 = (0.15 0.15), tchange=180, tmax=120, tchild=50, ηchild=0.8, Pgoal= 0.1,  εg =0.02, 
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η=1.5, start

minα =0.2, start

maxα  =0.4, σmutation=0.02, naid = 2, ηelite =1.2, γstore = 0.5, γgain = 0.4 

and ηaltruism =0.25. A dynamics of the magnitudes of 250 task changes, parameter, 
β(s), is depicted in Fig. 1a. We were performing survival tests after each 10 training 
sweeps. Accordingly, we had 18 tests between two subsequent PR task changes. 

In the experiments, starting noise injection level values, αi, were distributed ran-
domly in interval [0.2 0.4]. First mα agents composed the first group (mα=m/K). Fol-
lowing mα agents composed the second group, etc. Fig. 1b shows that more than ∼33 % 
of the agents were dying after each survivability test if comparatively high values 
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Fig. 1. Dynamics of  a) -  parameter β(s),  b), d) a number of surviving agents, c) a noise 
injection intensity (bold – a  mean, thin – that of  the 376th agent, α376) 
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of level of environmental changes (β = 3.5) and a noise level parameter (εg=0.02) that 
controls fluctuations of survivability threshold, Pgoal, were used. Thus, after 40 task 
alterations the values of αi, (i= 1, 2, … , m) adapted to strengths of the changes and 
made the agent population robust to the changes.  

In Fig. 1c we see variation of αi, a noise intensity parameter, during 250 changes if 
the agent population was split into two groups. The mean of the noise level is follow-
ing the variability of the strengths of environmental changes (Fig. 1a). It is worth to 
stress that in each group the agents had evolved diverse sets of parameter αi values. 
In our experiments, environmental changes were frequent (tchange=180) in comparison 
with maximal learning time allowed (tmax=120). Therefore, for given set of the model 
parameters, the strongest environmental changes (βmax= 5.6) caused a reduction in the 
noise injection intensity. In experiments with rare environmental changes, we ob-
served an increase in a noise level during most powerful task changes.  

The number or agents survived (Fig. 1b) is following the variation the power of 
environmental changes as depictured in Fig. 1a. The minimal number of agents that 
survived corresponds to a period of the strongest data changes (mmin = 34 agents, after 
the 88th task change). In a case of single agent group in the population (K=1, mα=500), 
only six agent survived, mmin = 6. With an increase in the number of groups in the 
population, the minimal number of agents survived is increasing: in case of K=10 
(mα=50), mmin = 90. When K=25, mmin = 163. When K=50, mmin = 206. If number of 
groups becomes too large, K=100, we have smaller number, mmax = 196. Thus, we 
observed the maximal resistance of the population to environmental changes when we 
had 50 groups, ten agents in each of them. This result confirms that mutual coopera-
tion of agents inside the groups and tiny beneficial aid to weakest groups are advan-
tageous for the agent population survival.  

We performed also several experiments where the number of agents in one group 
could vary and where one group does not help to another one. After long sequences of 
powerful changes, small groups disappear. Only one group remains. Without outside 
help this group is dying too, if a sequence of the PR task changes is lengthy enough. 

One more series of the experiments was performed in order to trace an influence of 
beneficial altruistic cooperation of the agents inside the groups. We have seen above, 
that in the population composed of two groups, mmax = 34, when ηaltruism = 0.25. If 
ηaltruism = 0.5, we had higher resistibility of the population: mmax = 46. If            ηaltruism = 
0.75, the resistibility increased up to mmax = 51. Too high altruism of the agents, how-
ever, reduces the resistibility: for ηaltruism = 0.9, mmax = 14. 

Comparison of survivability dynamics graphs (Figures 1b and 1d) obtained for two 
population models (two groups and 50 ones) suggests that different mechanisms de-
termine the number of agents that survived during strongest environmental changes. 
In both population models, approximately 33% of the agents survived if the changes 
were not very powerful (β(s)=3.5, the 10 th  −  40th data changes). During the period of 
the strongest data changes, almost all agents were dying in the single or two group 
models. In the 50 and more group models, however, the strongest environmental 
changes actually did not reduce the minimal number of agents. Vividly speaking, one 
may say that strongest environmental catastrophes “consolidate” the grouped MAS. 
This fact and other ones that follow from our simulation studies indicate that the  
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multi-group model of adaptive agent populations can create varieties of imitation situa-
tions and be useful in explaining a large quantity of real world observable facts.  

The helpful support to nearly dying group, naid,, and the aid inside the elite groups, 
ηaltruism,  could be interpreted as parameters that encourage altruistic aid to members to 
the agent own group and the agents of foreign groups. Up to now, a presence of “a 
gene of altruism” was not found neither in the Nature nor among mathematical mod-
els used to model population of intelligent agents [6], [8], [20], [21], [22]. We per-
formed a number of experiments with parameter ηaltruism, the altruistic aid inside the 
elite group, used as an inherited variable. If parameter ηaltruism = 0 for all agents at the 
very start, later during thousands of environmental changes it is increasing steadily. 
This result together with above observation that the agent population with naid, =0 is 
less resistant to most powerful pattern recognition task changes suggest that, possibly, 
a “gene of altruism” could exist in the Nature. Therefore, the MAS model of adaptive 
agents acting in changing environments could become a useful instrument in such sort 
of analysis. 

Unequal sized groups. Societal and political groups, religions and economic systems 
are differing in their size. For that reason, we experimented with three 400 agent sys-
tems composed of 100 unequal sized groups. In model “A” we had 35 groups of three 
agents, 26 groups of four agents, etc. (see histogram “A” in Fig. 2). A number of the 
groups of different size were the highest in model “B”. Here among 100 groups we 
had 63 ones composed of three agents, and one large group composed of 18 agents 
(histogram B in Fig. 2). In model “C” we had 25 groups composed of three agents, 50 
groups of four agents and 25 groups of five agents. 
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Fig. 2. A distribution of the number of the groups composed of 3, 4, up to 18 intelligent agents 
in three multi-group population models, A, B and C, composed of 400 agents 

In all three MAS, we observed higher survivability as compared with the MAS of 100 
equal-sized groups. For the same a priori fixed set of the model parameters and fixed 
value of initialization of random number generator used to generate the data, split “C” 
allowed minimum 184 agents to survive. This result is higher as mmin = 173 agents in 
equal-sized grouping. Split “A” gave mmax =180. The “widest split” “B”, which con-
tained only one very large group and large number of very small ones, also resulted 
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rather good survivability, mmax =179 agents. Similar results were obtained in other 
four series of experiments with the 400 agent systems, A, B and C. 

4   Concluding Remarks 

We considered the problem of solving the sequences of PR tasks in changing envi-
ronments when the designer does not know a moment of subsequent task change. We 
analyzed multitude of pattern classifiers that compose the system of intelligent agents. 
In such system we have variety of adaptive pattern recognition rules that stop working 
if do not succeed to adapt to changes rapidly. Most successful rules are transmitting 
their learning style parameters to offspring classifiers. To elucidate core tendencies, 
we tried to use the model as simple as possible. The changes in the environments 
were mimicked by uncomplicated sequences of changes of the PR tasks in 2D feature 
space. Like in our previous papers, the learning style was controlled by degree of 
accidental success and misfortunes in the agent training that were mimicked as ran-
dom distortions of the target patterns.  

In addition to previous findings concerning usefulness of corrupted training signals 
introduced in order to overcome most powerful changes, in present research, we con-
sidered few novelties. We have shown that the split of the agent population into the 
groups of different sizes, restricted beneficial cooperation between them, forming of 
elite subgroups, moderate altruistic behavior of the agents inside their own elite group 
and continuously corrupted survivability conditions are assisting in faster adaptation 
of agent population to unexpected environmental changes. Our analysis paradigm 
gives the hints why the move from powerful environmental changes to milder ones 
weakens well organized agent population sometimes.   

An important conclusion derived from our investigations is:   such simple model as 
structurally organized population of nonlinear SLPs’ trained by total gradient 
equipped with dynamic changes of the PR tasks and corrupted training directives 
already explains variety of important phenomena frequently observed in biology, 
social systems and modern multi-agent systems research. General conclusions ob-
tained from our investigation paradigm could be useful for development of complex 
MASs of swarm intelligence and computerized studies of the social systems where 
instead of simple SLP based classifiers, much more complicated intelligent adaptive 
agents would be considered.  

Our investigation has shown that modeling of adaptive agents acting in changing 
environments could become a useful instrument in studies of human and social altru-
ism. In future research, more comprehensive analysis of beneficial cooperation be-
tween the agents and the agent groups could be examined. 
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Abstract. Predictions computed by a classification tree are usually con-
stant on axis-parallel hyperrectangles corresponding to the leaves and
have strict jumps on their boundaries. Frequently a better approximation
may be expected, if the prediction function of the original tree is replaced
by a continuous approximation. The approximation is constructed using
the same training data on which the original tree was grown and the
structure of the tree is preserved.

The current paper uses the model of trees with soft splits suggested
by Quinlan and implemented in C4.5, however, the training algorithm
is substantially different. The method uses simulated annealing, so it
is quite computationally expensive. However, numerical test with data
derived from an experiment in particle physics shows that besides the
expected better approximation of the training data, also smaller gener-
alization error is achieved.

1 Introduction

Classification trees are suitable for predicting the class in complex distributions,
if a large sample from the distribution is available. The classical parametrical
methods may not succeed in such situations, if they work with a closed formula
describing the density in the whole predictor space. Decision trees and ensambles
of trees are comparable to neural networks and SVM in classification accuracy.
The predictor vector for a tree consists of a fixed number of numerical and
categorical variables. In this paper, we consider single univariate decision trees
with numerical predictors.

A trained classification tree usually does not only provide a discrete classifi-
cation, but also an estimate of the confidence for it on a continuous scale. This
confidence may be an estimate of the conditional probability of the classes, but
this is not necessary. Even if it is not a good estimate of the probabilities, it may
be a reasonable information. In the real world problems, it is frequently plausi-
ble to assume that the function which assigns such a confidence to each point
of the predictor space is continuous. Even if the true distribution has a sharp
boundary between the classes, a limited sample from the distribution does not
provide enough information for a justified construction of a prediction function
with a strict jump.
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Classification trees constructed using the traditional methods like CART [1]
or C4.5 [2] generate trees, whose internal nodes contain conditions of the form
xkj ≤ cj , where xkj is one of the predictors and cj is a threshold value. The result
of the use of such sharp threshold conditions is that the predictions computed by
a classification tree are constant on axis-parallel hyperrectangles corresponding
to the leaves and have strict jumps on their boundaries. Such functions may
badly approximate boundaries of different type. This is the cost, which is paid
for the simplicity of the classifier.

A soft threshold condition means that if the actual value of xkj is close to
cj , then both branches of the tree are evaluated and their results are combined
using weights changing continuously with xkj − cj . Soft splits were suggested
first by Quinlan [2] including the implementation in C4.5. We use exactly the
same extension of the decision tree classifiers, but use a substantially different
technique for training.

Quinlan’s technique determines the soft thresholds in each node separately
using statistical estimation. In our approach, several thresholds corresponding
to a group of nodes close to each other in the tree are adjusted simultaneously.
Hence, the choice of the final thresholds is influenced also by the interactions
between predictors. A nonsoft tree together with the training data used for its
construction, are used as the input to an optimization phase, which tries to find
the values of the parameters of the soft thresholds, which yield the best possible
approximation of the training data. Since the structure of the tree, in particular,
its number of nodes, is fixed during the optimization, overfitting was not observed
in our experiments, although a computationally intensive optimization is used
to tune the soft thresholds.

The goal of the postprocessing of the tree is to reach a smoother function
that fits better the training data. Since the complexity of the classifier does
not increase too much, one may expect to achieve also smaller generalization
error. Besides better approximation in cases, where the unknown conditional
probability function is continuous, we may obtain a better approximation even
if the true value of the conditional probability makes a jump on a boundary
between the regions of different classification, if the boundary is not in axis-
parallel direction. Soft tree may represent a more general function than a nonsoft
tree. In particular, as a consequence of interactions of several predictors, the
prediction function of a soft tree may have gradient vector in a general direction,
while keeping the small number of nodes of the original tree. Approximating this
using a nonsoft tree requires to use a stair like boundary with a large number of
nodes.

The current paper investigates classification accuracy on data from particle
physics (MAGIC gamma telescope1) considered already in [3]. In this compari-
son, ensambles of trees, in particular random forests, provided the best classifiers
for these data. Our experimental results on these data demonstrate that the trees
obtained by introducing soft splits may have substantially smaller generalization
error than individual nonsoft trees.

1 http://wwwmagic.mppmu.mpg.de
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We also compare the soft trees obtained by simulated annealing with soft
trees obtained by C5.02. There is no significant difference in test classification
error between these two types of trees, see section Results, although the trees are
obtained using substantially different principles. C5.0 finds the soft thresholds
by estimating the uncertainty in determining the cut value. This is done by
finding two shifted cut values, one smaller and one larger than the original cut
value, so that the number of errors on the training set in the node increases
by one standard deviation, when using the shifted cut points, see [2]. This is
done in each node separately and frequently increases the training error. On the
other hand, our approach optimizes the soft threshold purely by minimizing the
training error. Our result shows that minimizing training error leads to similar
results as the statistical estimation used in C5.0, at least on the MAGIC data.

A different approach is described in [4], which directly builds a soft decision
tree using local optimization in individual nodes. Building a fuzzy tree defined
using fuzzy set operations is presented in [5].

2 Decision Tree with Soft Splits

Let T be a decision tree with nodes vj for j = 1, . . . , s. We assume that if vj1 and
vj2 are left and right successor of vj , then j < j1 and j < j2. In particular, v1 is
the root. Let Splits(T ) be the set of indices of the internal nodes and Leaves(T )
the set of indices of the leaves. The variable tested in node vj is denoted xkj

and the corresponding threshold value is denoted cj . If C is the number of
classes, then the label (response vector) G(v) of a leaf v is a nonnegative real
valued vector of dimension C, whose coordinates sum up to one. Let T (x) be the
function Rd → RC computed by the tree, where d is the number of predictors.
More generally, let Tj(x) be the function computed by the subtree starting at
vj . In particular, T1(x) = T (x). Note that Tj(x) is defined even in cases, when
the computation of the whole tree T for x does not reach the node vj .

If vj1 and vj2 are left and right successor of vj , then we have Tj(x) = if xkj ≤
cj then Tj1(x) else Tj2(x). If we define I(condition) equal to 1 if condition is
true and equal to 0 if condition is false, then this is equivalent to

Tj(x) = I(xkj ≤ cj)Tj1(x) + I(xkj > cj)Tj2(x).

A tree with soft splits is obtained by replacing this by

Tj(x) = Lj(xkj − cj)Tj1(x) + Rj(xkj − cj)Tj2(x)

for appropriate continuous functions Lj , Rj : R → [0, 1]. It is required that
if both subtrees of Tj return the same output vector, then Tj returns the same
vector as well. Hence, we require Lj(t)+Rj(t) = 1 for all t ∈ R. A natural further
requirement is that Lj be nonincreasing with limits Lj(−∞) = 1 and Lj(∞) = 0.
Hence, we also have that Rj is nondecreasing with limits Rj(−∞) = 0 and
Rj(∞) = 1.
2 http://www.rulequest.com, commercial version of C4.5.
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The functions Lj and Rj used in the current paper are piecewise linear func-
tions interpolating the points in the table

t Lj(t) Rj(t)
−∞ 1 0
−aj 1 0
0 1/2 1/2
bj 0 1
∞ 0 1

where the values aj ≥ 0 and bj ≥ 0 are parameters of the soft splits. If aj > 0
and bj > 0, then the functions Lj , Rj are uniquely determined by the above
table. If some of the values aj, bj is zero, the corresponding function Lj, Rj is
defined as a pointwise limit, which is noncontinuous. The limit function satisfies
Lj(0) = 1/2 or Rj(0) = 1/2 as in any other case.

The tree with soft splits is obtained by replacing the evaluation function in
each internal node by the above one. This requires to specify the parameters
(aj , bj) in all internal nodes. Let θ = {(aj , bj)}j∈Splits(T ). The functions Lj , Rj

defined above depend on θ. So, the correct notation for them is Lj(θ, t), Rj(θ, t).
Moreover, let T (θ, x) and Tj(θ, x) denote the functions computed by the whole
tree and the tree starting at node vj , respectively, if the soft splits determined
by θ are used. We again have T (θ, x) = T1(θ, x).

If xkj = cj , then the soft split always evaluates both subtrees and returns
their arithmetic mean. If xkj �= cj the situation depends on xkj as follows. If
xkj ≤ cj − aj or xkj ≥ cj + bj , then the evaluation function in node vj behaves
in the same way as in the original tree and returns the value of one of the two
subtrees. If xkj ∈ (cj − aj , cj + bj), then evaluating Tj(x, θ) requires to compute
both subtrees and the output is a combination of their values.

Note that T (0, x) behaves similarly to T (x), but there is a difference. If
the computation of T (x) never reaches a node, where xkj = cj , then we have
T (0, x) = T (x). However, if xkj = cj is satisfied at some step of the computation,
the results may differ, since evaluation of T (0, x) combines both subtrees, while
evaluation of T (x) uses only one of them.

For every pair of nodes vj and vj1 such that vj1 is one of the two successors of
vj , let H(θ, vj , vj1)(x) be the weight, with which the subtree in vj1 is considered,
when evaluating Tj(θ, x). We have

H(θ, vj , vj1)(x) =
{

Lj(θ, xkj ) if vj1 is the left successor of vj

Rj(θ, xkj ) if vj1 is the right successor of vj

For every leaf v, let Path(v) be the uniquely determined path from the root to v.
Then an explicit formula for the function computed by a tree with soft splits is

T (θ, x) =
∑

j∈Leaves(T )
(u1,...,uk)=Path(vj )

G(vj)
k∏

i=2

H(θ, ui−1, ui)(x).

The formula may be verified by induction starting at the leaves.
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3 Optimization of the Soft Splits

The method described in this paper assumes that a nonsoft classification tree
T with two classes 0 and 1 is available. Such a tree may be obtained using
a method like CART or C4.5. We used the R implementation of CART. The
response vector is two dimensional in this case. The two coordinates represent
confidence for classification into each of the classes and are assumed to sum up
to one. Hence, each of the coordinates alone carries the full information on the
prediction. Let us denote T ∗(x) the component of the response vector computed
by tree T , which corresponds to class 1. This may be used for classification by
choosing a threshold h and using the rule “predict 1 iff T ∗(x) ≥ h”.

The goal is to find θ such that the error of classification of the softened tree
T (θ, x) on unseen cases is smaller than in the original tree. The same threshold
h and the same rule T ∗(θ, x) ≥ h for classification into class 1 is used as for the
original nonsoft tree. Since the algorithm has access only to the training data,
the method tries to achieve the above goal by minimizing the error of T ∗(θ, x) on
the training data. This error may be measured in different ways. We tested first
simply the classification error, but it appeared to be better to use a continuous
error defined on the data (xi, yi), i = 1, . . . , m by the following formula

f(θ) =
m∑

i=1

eα(|T ∗(θ,xi)−yi|−1), (1)

where α was chosen to be 4.
Since the minimized function f(θ) is not a smooth function and has a large

number of local minima, we used simulated annealing available in R Statistical
Package [6] using method SANN of function “optim”. Since this does not allow to
restrict the range of θ to nonnegative values, we used a large penalty (number of
errors larger than the number of training cases) for θ, which contain a negative
value. The initial value of θ was chosen to be 0, i.e. the optimization starts
approximately at the original nonsoft tree.

The dimension of the optimization problem (the number of parameters of the
minimized function) is two times the number of internal nodes. In order to make
the optimization process independent on the scaling of the data, the optimization
function uses a normalized vector of parameters θ′ = {(a′j , b

′
j)}j∈Splits(T ), where

a′j = aj/aj,0, b′j = bj/bj,0. The normalizing factors aj,0, bj,0 are defined using the
original nonsoft tree.

It appeared to be better to split the minimization into phases, in each of which,
only a small randomly chosen subset of arguments is modified. The arguments
are selected so that they correspond to edges close in the tree. The maximum
number of simultaneously considered edges was 7.

Optimization is performed by a sequence of calls of method SANN of optim.
The initial approximation of each call is the best solution found during the
previous call. The initial temperature for all calls is temp = 10 and the bound
on the number of iterations is maxit = 101 for all calls. One call of optim is
successful, if it succeeds to find a better solution than the initial one. The whole
process stops, when 50 consecutive calls are unsuccessful.
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4 Experimental Setup

We performed 20 runs of the experiment. In each single run of the experiment,
the available data D were split at random in ratio 2:1 into a training set D1 and
a test set D2 and the four classifiers obtained by the following methods were
constructed:

1. CART.
2. Soft tree obtained by the method described in the previous section from

CART trees.
3. C5.0 without softenning.
4. C5.0 with softenning (option “-p”).

More detail is given in subsections below.

4.1 CART

The trainig set D1 was further split in ratio 2:1 into D11 and D12. The larger
part D11 was used for growing the tree, the smaller D12 was used for pruning
as the validation set (cost complexity pruning in CART method). The result
of the pruning is a sequence of trees of different sizes. For our experiment, we
used only the subsequence between the first tree with at least two leaves and
the standard output tree of CART method, which is the one with the smallest
error on the validation set. Accuracy of the trees in this subsequence is reported
for comparison with the other methods. In order to show that the comparison
result does not depend on the selection of the tree in the subsequence (e.g. 1sd
rule), we select the best tree on the test set D2 and report its accuracy. Even
such trees are worse than the soft trees, whose error is measured using standard
methodology.

4.2 Softening Trees from CART

We use the subsequence of pruned trees constructed by CART as described
above. The parameters of the soft splits in these trees were optimized as described
in Section 3. When interpreting the soft tree as a classifier, we used threshold
h = 0.5. This means that the class with the larger confidence (we have two
classes) in the response vector is predicted.

The error of the resulting soft tree is never worse than in the original tree,
however, it is sometimes close to it. Such soft trees are discarded. The optimiza-
tion is considered unsuccessful, if the ratio of the error of the original tree over
the error of the soft tree is less than 1.01. The sequence of trees from CART
contains trees of different sizes. Smaller trees have higher chance to be improved
by one run of the softening procedure. On the other hand, if the softening pro-
cedure succeeds to improve a large tree, the result is usually better than for
small trees. In order to balance between these two effects, we used a strategy
which is splitted into steps numbered by i = 1, 2, . . .. In step i, the softening
procedure tries to improve all of the i largest trees in the sequence. The process
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terminates, when 10 trees successfuly improved by softening are collected. The
resulting classifier is determined as the tree with the smallest classification error
on D1 among the 10 trees obtained by the above strategy. The error of this tree
on D2 is reported.

4.3 C5.0

We used C5.0 release 1.15. The confidence level, which determines the amount
of pruning was chosen 0.01 (option “-c 1”), which appeared to be the best
among several values of the confidence level between 0.003 and 0.1 in a geometric
sequence, which we tried. The chosen value lead to the smallest median of the
error for the 20 tested splits of the data. For each split of the data, C5.0 was
run twice, with and without the option “-p”, which forces that a softened tree
is constructed.

5 Results

For our experiments, we used data simulating registration of gamma and hadron
particles in Cherenkov imaging gamma ray telescope MAGIC [3]. There are 10
numerical predictors and 2 classes. The predictors are numerical values that are
produced by the registration device and characterize the registered particle. Class
signal represents cases, where the registered particle is gamma. Class background
corresponds to hadrons, mostly protons. The number of cases in the dataset is
19020.

The data were created by a complex Monte Carlo simulation [7] that ap-
proximates the development of a shower of particles generated by a high energy
primary particle that reaches the atmosphere. The result of the simulation is
an estimate of the number of Cherenkov ultraviolet photons that reach different
pixels in the focus of an antenna at the ground and form a single registered
event. The 10 predictors are numerical parameters of the geometric form of the
obtained image.

We used 20 random splits of this set in the ratio 2:1 into D1 and D2. For each
of these splits, four classifiers were constructed using the methods described in
the previous section. The classifier was constructed using D1 and its accuracy
was estimated using D2. As mentioned in Section 4.1, the accuracy of nonsoft
CART is the best result among the trees in the considered subsequence obtained
by pruning.

The table in Fig 1 summarizes the test errors on D2 for all four used methods.
The table demonstrates that both types of softening improve accuracy with
respect to the corresponding nonsoft version of the algorithm. Moreover, the
results of the two methods of softening are close to each other. In the following
two paragraphs, we support these two conclusions by further numerical evidence.

The error of the soft tree obtained by simulated annealing was always by at
least 10% smaller (relatively) than that of the corresponding nonsoft tree. In
order to formulate the result in terms of statistical significance, let p be the
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CART CART C5.0 C5.0
non-soft softened non-soft softened

mean 0.1578 0.1380 0.1488 0.1395
sd 0.0052 0.0042 0.0033 0.0028
median 0.1560 0.1381 0.1489 0.1393

Fig. 1. The classification error on the test set for the four considered methods

probability of the event that the error rate of a tree softened using simulated
annealing on the MAGIC dataset is lower than 90 % of error rate of CART tree.
The one-sided lower 0.95 confidence limit for p obtained using the exact binomial
test is approximately 0.86, since we have 20 successes out of 20 trials.

In order to verify that softening using simulated annealing led to soft trees
with similar accuracy on the MAGIC dataset compared to that of C5.0 softened
tree, we use two sided Wilcoxon signed-rank test. The results of simulated an-
nealing are slightly better, but after removing one zero difference, the p-value of
the test was 0.2684 confirming that the difference in errors of the two methods
is not significant.

CART CART C5.0 C5.0
non-soft softened non-soft softened

mean 0.1410 0.1301 0.1141 0.1215
sd 0.0054 0.0035 0.0048 0.0037
median 0.1430 0.1301 0.1142 0.1218

Fig. 2. The classification error on the training set for the four considered methods

The fact that the simulating annealing approach produces results competitive
to C4.5 softening method is interesting, since there is a significant difference
between the two methods. In order to demonstrate this, we present the error of
the four methods on the training set, see Fig 2. The error of nonsoft CART trees
on the training set is larger than the error of nonsoft trees from C5.0, which
is possibly due to the fact that C5.0 required larger trees to achieve the best
accuracy in our experiment. However, for CART trees, softening using simulated
annealing decreases the error on the training set, while softening of the trees from
C5.0 increases the error on the training set. The average ratio of the error of
softened tree over the error of nonsoft tree was 0.927 for simulated annealing
and 1.066 for C5.0.

6 Conclusion

Softening thresholds in decision trees using simulated annealing is competitive
to the method used in C4.5 and C5.0. This shows that minimization of the
error on the training data is a promissing alternative approach for softening.
The difference between the two methods is demonstrated by the fact that in
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our experiment they change the training error in opposite directions. Our tech-
nique is based on minimization of the training error, while the original approach
frequently increases the training error.

Acknowledgement. The first author was supported by Czech Science Founda-
tion (GACR) under the grant No. GD201/05/H014. The second author was par-
tially supported by the “Information Society” project 1ET100300517. Both au-
thors were partially supported also by the Institutional Research Plan
AV0Z10300504.

References

1. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Belmont CA: Wadsworth, 1993.

2. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,
San Mateo — California, 1993.

3. R.K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jǐrina,
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2 Universidad Católica del Uruguay, 11600 8 de Octubre 2738, Montevideo, Uruguay
enferrei@ucu.edu.uy

3 Universidad ORT, 11100 Cuareim 1451, Montevideo, Uruguay
fonseca@ort.edu.uy
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Abstract. This paper1 introduces a novel architecture to efficiently
code in a self-organized manner, data from sequences or a hierarchy of
sequences. The main objective of the architecture proposed is to achieve
an inductive model of the sequential data through a learning algorithm
in a finite vector space with generalization and prediction properties
improved by the compression process. The architecture consists of a hi-
erarchy of recurrent self-organized maps with emergence which performs
a fractal codification of the sequences. An adaptive outlier detection al-
gorithm is used to automatically extract the emergent properties of the
maps. A visualization technique to help the analysis and interpretation
of data is also developed. Experiments and results for the architecture
are shown for an anomaly intrusion detection problem.

1 Introduction

A proper processing of series of sequential data involves the resolution of non
trivial problems related to the interaction and interdependence between the el-
ements of a sequence. In particular, we can outline the following issues [1]:

– the design of mechanisms to capture the sequential correlation (spatial or
temporal) within the data,

– the development of strategies to identify and capture long-term dependences
between the different attributes of a sequence,

– the design of computationally efficient algorithms to implement the mecha-
nisms that solve the previous issues.

A powerful tool to organize, study and capture the properties of a complex sys-
tem is the analysis of the relationship between its elements, parts and the whole
system through the modelling of its emergent properties. Emergence appears in
a system through the properties of the collective behavior of the elements which
1 This research is being funded by the Spanish Ministry of Science and Education

under project ref. DEP2005-00232-C03-03.
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the system is composed of. Looking at the system as a whole, a global emergent
property comes as a new entity of the interdependency of its parts [2].

Considering a sequence of data as a system made of elements and interdepen-
dent parts, obtaining its emergent properties becomes a useful tool to capture
and analyze the sequential correlation between the elements of the sequence, in
particular, long-distance interactions.

Self-organizing maps (SOM) [3] are a common tool used to capture emer-
gent properties as in Emergent Self-Organizing Maps (ESOM) [4], [5]. How-
ever, SOMs work with vectors in a finite dimension space so that, they do not
manage sequential data directly. An alternative to overcome this problem is by
preprocessing, e.g. with sliding windows. Such approaches are usually time con-
suming, bringing about the “curse of dimensionality”, and more important, the
loss of information. There have been several attempts to extend the use of SOM
to sequential data. The more relevant approaches are: Temporal Kohonen Map
(TKM), Recurrent Self-Organizing Map (RSOM), Recursive SOM (RecSOM),
SOM for Structured Data (SOMSD) and Merge SOM (MSOM) [6], [7], [8], [9],
[10]. We observe that MSOM is either computationally more efficient, more flex-
ible, or has theoretical properties more attractive than its predecessors [10]. A
MSOM captures sequence dynamics through an internal distributed representa-
tion called context, that stores activation profiles of recursive substructures in
the map. Each unit of the MSOM has two associated vectors, a weight vector
like a SOM, and a context vector. The context information is learned also by
self-organization using a reference to the winner unit of the previous element
of the sequence. This recursive reference is defined as a linear combination of
the weight and context vectors of the previous winner. The contribution of the
current and previous elements are controlled separately. It has been shown that
the recursive representation explained leads to an efficient fractal encoding of
the sequence [11]. After training, the context vector converges to the fractal en-
coding of the elements of the current sequence. It is important to note that the
optimal context vectors are stable fixed points of the MSOM dynamics (unlike
the TKM case).

The present article extends the concept of ESOM to add recurrence as in
MSOM [10], obtaining a R-ESOM. To capture automatically the emergent prop-
erties in the ESOM, a Local Outlier Factor algorithm (LOF) [12] is implemented.
The structure introduced is called LR-ESOM. The LOF algorithm is also used
to introduce a new method to obtain a visual representation of the map, called
L-Matrix. Finally, the LR-ESOM and L-Matrix are combined in a new architec-
ture to achieve an inductive model for sequential data along with a visualization
method to help analyze and understand the sequences.

2 Proposed Architecture

2.1 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm finds outliers in a multidimensional
dataset [12]. A LOF value is defined for each object in the dataset being studied.
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It is called local since only a restricted neighborhood of the object is used to
compute it. This approach makes it possible to adapt dynamically in the pres-
ence of clusters with different densities as opposed to other global methods. To
compute the LOF the parameter k has to be chosen, which is taken as the num-
ber of nearest neighbors used to define the local neighborhood of an object. For
each object, its LOF is not a binary value. Instead, it represents the degree by
which that object can be considered an outlier. A theoretical property is that a
LOF value close to 1 means the object is deep inside the cluster.

2.2 Recurrent Emergent Self-Organizing Maps with LOF
(LR-ESOM)

Emergence through self organization is a non trivial property of SOMs [4]. For
emergence to appear, the system should consist of simple but highly correlated
elements. Without these correlations, emergence is not possible. A model with
sufficiently rich correlation and order should give global emergence [2]. A SOM
with a small number of units performs like a K-means algorithm with K equal
to the number of units in the map [13]. In this cases, the topology preservation
property of the SOM gives little advantage. Emergence needs a large number of
units, usually in the order of thousands of units. These maps are called Emer-
gent SOMs (ESOM). The considered maps should also have the properties of
borderless (to avoid border effects) and rectangular topology (to reduce projec-
tion errors) [5].

In this paper we introduce R-ESOM, an extension of ESOM to deal with
sequential data. R-ESOM adds an explicit context representation, which modifies
the distance function and learning algorithms according to [10]. Besides the
weight vector wi ∈ Rd, a context vector ci ∈ Rd is added. Given a sequence
input xt, the best matching unit (BMU) It is defined as the neuron i such that
its recursive distance,

di(t) = (1 − α)‖xt − wi‖2 + α‖ct − ci‖2, 0 ≤ α ≤ 1, (1)

to the current input and context is minimum. The descriptor context is defined
as

ct = (1 − β)wIt−1
+ βcIt−1

, 0 ≤ β ≤ 1, (2)

a convex combination of the vectors associated to the BMU of the previous
input of the sequence. A typical value for the merging parameter β is 0.5. The
parameter α is adapted through an entropy driven algorithm, with a small initial
value (e.g. 0.01).

The training algorithm adapts weight and context vectors of all the units to-
wards the current input and context values, weighted by a neighborhood function
h(·) of the distance d of the units to the current BMU.

Δwi = γ1h(d(i, It))(xt − wi) , Δci = γ2h(d(i, T t))(ct − ci), (3)

where γ1, γ2 are the learning rates, usually equal. In this way, the map is trained
with all the subsequences of each sequence of the training set, helping to capture
long-term dependences.



A Novel Architecture for the Classification and Visualization 733

Finally, the R-ESOM network is extended to a LR-ESOM using the LOF
algorithm to capture emergent properties automatically. Once trained, the LOF
values for each unit in the network are computed using only the weight vectors
because the data sequences do not have context vectors. However, the context
information is implicitly used through the training procedure.When a sequence
is classified or used for training, its LOF is computed using the recursive distance
(1) with context explicit information plus the precalculated LOF values for map
units. For a sequence, the following values are stored:

– Llast: the LOF of the last sequence element with respect to the units of the
map,

– Lavg: the mean value of the LOF through the sequence, i.e. the mean value
of the LOF of all sequence elements with respect to the units of the map.

2.3 L-Matrix

The development of a visual tool for the LR-ESOM is an important component
to recognize the structures generated through learning, because humans have a
remarkable capacity to detect 3D patterns in an image. The L-Matrix concept
developed associates to every unit in the LR-ESOM map its LOF value.

The 3D representation of the L-Matrix assigns coordinates (x, y, z) to each
unit, where (x, y) are the position of the unit in the map and z its LOF. The
cloud of points obtained is interpolated using Bi-Cubic Bezier Patches [14] to
generate a smooth surface. In order to take advantage of the LOF theorical
properties, the surface is colored, assigning the same color to units with LOF
inside [0, LINF], with LINF = 1. The color for units with LOF higher than LINF
is calculated using a mapping between a color scale and the range (LINF, LMAX],
where LMAX is the maximum LOF of the units. Changing LINF may be used
as a zoom in/out function of the emergent properties. In our case LOF values
larger than 1.5 can be considered outliers.

2.4 Architecture: Hierarchical Emergent Compression Machine
(H-ECM)

The architecture proposed in this work consists of a hierarchy of N emergent
compression machines (ECM) as shown in Fig. 1.

The main idea behind the ECM is the use of the emergent properties for
information compression. The key structure in the ECM is an emergence self-
organizing map with LOF. If the input data comes from a sequence, a recurrent
ESOM with LOF is used (LR-ESOM), otherwise an ESOM with LOF is used
(L-ESOM). After training the ECM, given a new input S, its BMU can be found
(BS) and a compact codification for S is defined as O =< C, L1, L2, L3 >, where

– C is the codification of the position of BS in the map. The context associated
to BS may be added for more complex sequential data,

– L1 is the LOF associated to BS,
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Fig. 1. Architecture proposed

– if the map is a LR-ESOM, L2 is the Llast value of S, otherwise it is the LOF
value of S with respect to the map,

– if the map is a LR-ESOM, L3 is the Lavg value of S, otherwise is null.

When the ECM map is a LR-ESOM, the O vector may be augmented with a
global attribute vector G, generating the vector E =< O, G >. The components
of G represent those attributes of the sequence S that are independent of the
sequential correlation (spatial or temporal) to be captured by the map.

The number of ECM levels to use depends whether the input S is a simple
sequence or has nested sequences. In the case of a simple sequence, the architec-
ture has two levels. The first level consists in a LR-ESOM map that compacts
the sequence. The second level is a L-ESOM map to capture the emergent prop-
erties of the sequence taking advantage of the compact representation developed
in the first level and the global attributes added at this level.

When the input S is a sequence of sequences, e.g. in the case of biometrics
data, the architecture should have as many levels of ECMs with a LR-ESOM
map as there are levels of sequences. These levels are followed by a level using a
L-ESOM to capture the global emergent properties of the last LR-ESOM as in
the simple case.

The final level of the H-ECM architecture is a supervised learning algorithm (C)
to generate an inductive model of the data given. The type of supervised learning
scheme depends mainly on the application characteristics. We suggest a Support
Vector Machine (SVM) scheme because of its generalization properties [15]. Each
ECM in the architecture has an associated L-Matrix to be able to visualize the
emergent properties at all levels, helping in the interpretation of the results.
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Fig. 2. H-ECM architecture for IDS

3 Architecture Evaluation

A benchmarking problem is used to evaluate the H-ECM architecture: the Intru-
sion Detection problem. In this problem the goal is to detect in the sequence of
TCP/IP packets, the ones which may be harmful to the system. A set of TCP/IP
connections of normal traffic (NT ) and attack traffic (AT ) are provided in the
Intrusion Detection DARPA 1998 problem set 2. For this experiment, HTTP con-
nections are used. The connections are modeled as simple sequences of TCP/IP
packets. Therefore, the H-ECM applied has two levels of ECM (a LR-ESOM
and a L-ESOM) plus the supervised SVM machine for the final classification.
In order to obtain a better representation of NT and AT a separate LR-ESOM
and L-ESOM are used for each class. In this way, the first level has two LR-
ESOM: LRE1-N and LRE1-A, which are trained with NT and AT separately.
In the same way, two L-ESOMs: LE2-N and LE2-A, are used in the second level.
Figure 2 shows the architecture implemented for this problem.

A set of attributes extracted from each TCP/IP packet that composes a
connection are the elements of the sequences to feed the architecture. The
attributes selected are: TCP flags (tf), type of service (ts), TCP Windows
(tw), packet size (s), TCP options (to) and Time to Live (tt), forming the
sequence S1 = {< tf, ts, tw, s, to, tt >}. The following global connection at-
tributes are also included: connection total time (tc), total size (st), server IP
address (ips), client IP address (ipc), client port (po), number of packets in the
server (ps) and number of packets in the client (pc), composing the global vector
G1 = {< tc, st, ips, ipc, po, ps, pc >}.

Training. The data set generated S1-NT and S1-AT are used to train LRE1-N
and LRE1-A respectively. Once trained, for a sequence in S1-NT there would be
the compact representations O1 respect to LRE1-N and O′1 respect to LRE1-A.
In the same way we get the compact representations O1 and O′1 for a sequence
in S1-AT. The second level LE2-N map is trained using as input the extended

2 MIT Lincoln Laboratory: http://www.ll.mit.edu/IST/ideval/data/data index.html.
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Fig. 3. Visual representation of LE2-A using the L-Matrix method

Table 1. Detection results obtained compared to other techniques reported in the
literature

Technique Detection Rate(%) False Positive Rate(%)

K-NN 91 8

SVM 98 10

SOM hierarchy 72 2

H-ECM 98 0.6

vector E1 =< O1, O′1, G1 > generated from S1-NT, while LE2-A is trained
with E1 generated from S1-AT. After training, the maps will give a compact
representation O2 and O′2. Finally, the vector O =< O2, O′2 > is used to train
the SVM.

Classification. Given a new sequence S and its global attributes vector G, we
first compute its extended compact representation at level 1, E1 =< O1, O′1,
G >, where O1 comes from LRE1-N and O′1 from LRE1-A. Using E1 as input
to the second level, O =< O2, O′2 > is obtained, which is fed to the SVM to
make the classification.

Implementation notes. The H-ECM maps selected have a thoroidal grid with
50-by-85 units, β = 0.5, α is tuned using the entropy changes in the maps, with
an initial value of 0.01 and an upper bound of 0.7. The learning parameters γ1
and γ2 are taken equal, with an initial value of 0.5 and decreasing linearly to
0.1. The SVM has RBF kernel functions, adjusting the cost parameter ζ and the
RBF radius σ with a Grid-search over 10% of the training pattern, randomly
chosen. A 15-fold cross validation method for each grid point is performed,
resulting in ζ = 1.1017 and σ = 0.0625. Two thirds of the data are used for
training leaving the last third for testing. The H-ECM is implemented in Java
1.5, extending the application Databionics ESOM Tools 3 to include recurrent
features, the LOF algorithm and the L-Matrix 3D visualization. The 3D visual
implementation made, used the OpenGL API through the JOGL library.

3 Databionic ESOM Tools: http://databionic-esom.sourceforge.net
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Results. Table 1 shows the results obtained compare to other techniques used for
Intrusion Detection [16], [17]. H-ECM equals the best Detection Rate value re-
ported and makes a significant improvement in the False Positive Rate achieved.
Figure 3 shows a visual L-Matrix representation of the emergent properties ex-
tracted with H-ECM. Darker areas represent cluster while peaks show outliers.
The tool allows with a mouse click to know the coordinates and LOF value of a
point of interest to the user.

4 Conclusions and Future Work

The performance obtained in such a complex problem as the Intrusion Detec-
tion suggests that H-ECM architecture generates an efficient compression of
sequential data without loosing either the sequential correlation or long-term
dependencies. As stated in [18], the use of compression improves the generaliza-
tion and prediction properties of the inductive model obtained by the supervised
learning algorithm. The L-Matrix visualization process also helps in analyzing
the properties of the model obtained.

The algorithms are not very demanding in terms of computations. This is
mainly due to two factors. First, the architecture does not require a complex
preprocessing phase. Secondly, the most costly operations can be done efficiently,
e.g. using Search Trees for BMU searching and, the use of values computed during
trainning in the LOF value calculation of a sequence in the classification phase.

The H-ECM architecture is very flexible. Being a hierarchy of functional blocks
(ECMs), it may be combined in several ways to match the actual problem struc-
ture and needs. It is also possible to use this architecture to process more complex
structures than a sequence, such as trees, using approaches similar to the ones
presented in [9].

Further research is necessary to understand the emergence phenomena that
occur in an ECM, with particular attention to sequential correlation and long-
term dependency mechanisms. It is also important to investigate the use of
explicit context information in the LOF calculation of the map units after the
training phase.
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Abstract. Density based clustering methods allow the identification of arbitrary,
not necessarily convex regions of data points that are densely populated. The
number of clusters does not need to be specified beforehand; a cluster is defined
to be a connected region that exceeds a given density threshold. This paper in-
troduces the notion of local scaling in density based clustering, which determines
the density threshold based on the local statistics of the data. The local maxima of
density are discovered using a k-nearest-neighbor density estimation and used as
centers of potential clusters. Each cluster is grown until the density falls below a
pre-specified ratio of the center point’s density. The resulting clustering technique
is able to identify clusters of arbitrary shape on noisy backgrounds that contain
significant density gradients. The focus of this paper is to automate the process
of clustering by making use of the local density information for arbitrarily sized,
shaped, located, and numbered clusters. The performance of the new algorithm is
promising as it is demonstrated on a number of synthetic datasets and images for
a wide range of its parameters.

1 Introduction

Clustering is the process of allocating points in a given dataset into disjoint and mean-
ingful clusters. Density based clustering methods allow the identification of arbitrary,
not necessarily convex regions of data points that are densely populated. Density based
clustering does not need the number of clusters beforehand but relies on a density-based
notion of clusters such that for each point of a cluster the neighborhood of a given radius
(ε) has to contain at least a minimum number of points (℘). However, finding the correct
parameters for standard density based clustering [1] is more of an art than science.

This paper introduces the locally scaled density based clustering (LSDBC) algo-
rithm, which clusters points by connecting dense regions of space until the density
falls below a threshold determined by the center of the cluster. LSDBC takes two input
parameters: k, the order of nearest neighbor to consider for each data point for den-
sity calculation and α, which determines the boundary of the current cluster expansion
based on its density. The algorithm is robust to background noise and density gradients
for a wide range of its parameters.

Density based clustering in its original form, DBSCAN [1], is sensitive to minor
changes in its parameters known as the neighborhood of a given radius (ε) and the
minimum number of points that need to be contained within the neighborhood (℘). We
discuss density based clustering and identify some of its drawbacks in Sect. 2. Although
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using different parameters for the radius of the neighborhood and the number of points
contained in it appear to give some flexibility, these two parameters are actually depen-
dent on each other. Instead, the LSDBC technique employs the idea of local scaling.
We order points according to their distance to their kth neighbor. This gives an approx-
imate measure of how dense the region around each point is. Then, starting with higher
density points, we cluster densely populated regions together. The resulting clustering
technique does not require fine tuning of parameters and is more robust. OPTICS [2]
also bases its clustering decisions on the local density by using kNN type density esti-
mation (differences are explored in Sect. 6).

The local scaling technique, previously employed successfully by spectral cluster-
ing [3], makes use of the local statistics of points to separate the clusters within the
dataset. The idea is to scale each point in the dataset with a factor proportional to its
distance to its kth neighbor. Section 3 discusses local scaling and how it can be used for
clustering purposes. We show that when local scaling is used in density based cluster-
ing, it creates more robust clusters and allows the automatic creation of clusters without
any need for parameters other than k, the order of nearest neighbor to consider, and α,
which decides when the drop in the density is necessary for the cluster change.

Density based clustering is important for knowledge discovery in databases. Its prac-
tical application aresas include biomedical image segmentation [4], molecular biology
and geospatial data clustering [5], and earth science tasks [1].

The following lists the contributions of this paper. We introduce locally scaled den-
sity based clustering (Sect. 4), which correctly ignores background clutter and identifies
clusters within background noise. LSDBC is also robust to changes in the parameters
and produces stable clusters for a wide range of them. LSDBC makes the underlying
structure of high-dimensional data accessible. The problems we deal with include: (1)
finding appropriate parameter values, (2) handling data with different local statistics, (3)
clustering in the presence of background clutter, and (4) reducing the number of para-
meters used. Our results show better performance than prominent clustering techniques
such as DBSCAN, k-means, and spectral clustering with local scaling on synthetic
datasets (Sect. 5). Our results on image segmentation tasks also show that LSDBC is
able to handle image data and segment it into meaningful regions. Related work and
density estimation are discussed in Sect. 6 and the last section concludes.

2 Density Based Clustering

Density based clustering differentiates regions which have higher density than its neigh-
borhood and does not need the number of clusters as an input parameter. Regarding a
termination condition, two parameters indicate when the expansion of clusters should
be terminated: given the radius of the volume of data points to look for, ε, a minimum
number of points for the density calculations, ℘, has to be exceeded.

Let d(p, q) give the distance between two points p and q; we give the basic termi-
nology of density based clustering below. ε neighborhood of a point p is denoted by
Nε(p) and is defined by Nε(p) = {q ∈ Points | d(p, q) ≤ ε}, where Points is the set
of points in our dataset. A core point is defined as a point above the density threshold
wrt. ε and ℘, i.e. |Nε(p)| ≥ ℘. A border point is defined as a point below the threshold
but that belongs to the ε neighborhood of a core point.
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Definition 1 (Directly density-reachable). A point p is directly density reachable
from a point q wrt. ε and ℘, if p ∈ Nε(q) and |Nε(q)| ≥ ℘ (core point condition).

Definition 2 (Density-reachable)
A point p is density reachable from a point q wrt. ε and ℘, if there is a chain of points
p1, p2, ..., pn, p1 = q, pn = p such that pi+1 is directly density reachable from pi.

Definition 3 (Density-connected)
A point p is density connected to a point q wrt. ε and ℘, if there is a point r such that
both p and q are density reachable from r wrt. ε and ℘.

A cluster C wrt. ε and ℘ is a non-empty set of points such that ∀p, q ∈ C, p is density
connected to q wrt. ε and ℘.

Selecting appropriate parameters, ε and ℘, is difficult in DBSCAN and even in the
best setting, the results may not be good. Figure 1 gives representative results using our
synthetic datasets. Note that minor changes in the parameters ε and ℘ creates spurious
clustering results. In all of the following graphics, gray points are considered as noise.

Ester et al. [1] suggest that the user will look at the sorted 4-dist graph (plot of points’
distance to their 4th nearest neighbor in descending order) and select a threshold point,
which will divide the points into two sets: noise and clusters. The selected threshold,
4NNDist value, can be used for determining the parameters as in: ε = 4NNDist and
℘ = 4. However, for some datasets, the threshold point may not be easy to pick, it may
not be unique if there is variance in the density, k = 4 may not be the ideal setting, and
this approach assumes user intervention.

DBSCAN, Eps:0.17 MinPts:5 DBSCAN, Eps:0.17 MinPts:6 DBSCAN, Eps:0.16 MinPts:5 DBSCAN, Eps:0.16 MinPts:5 DBSCAN, Eps:0.17 MinPts:4

Fig. 1. Density based clustering is sensitive to minor changes in ε and ℘

3 Local Scaling

Zelnik-Manor and Perona [3] successfully applied local scaling to spectral clustering.
Local scaling is a technique which makes use of the local statistics of the data when
identifying clusters. This is done by scaling the distances around each point in the
dataset with a factor proportional to its distance to its kth nearest neighbor. As a re-
sult, local scaling finds the scale factors for clusters with different densities and creates
an affinity matrix in which the affinities are high within clusters and low across clusters.

Given two points xi and xj from a dataset, X , let Axi,xj denote the affinity between
the two points, showing how similar two objects are. Based on [6], ∀xi, xj ∈ X , let the
following properties hold:

Axi,xj ∈ [0, 1], Axi,xi = 1, Axi,xj = Axj ,xi . (1)
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We could define Axi,xj as:

Axi,xj = exp(−d2(xi, xj)
σ2 ), (2)

where d(xi, xj) is any distance function (such as the Euclidean (||xi − xj ||2) or the
cosine between feature vectors) and σ is a threshold distance below which two points
are thought to be similar and above which two points are considered dissimilar. A single
scaling parameter, σ, may not work for the whole dataset when clusters with different
densities are present. Instead, a local scaling parameter σi can be calculated for each
data point xi such that the affinity between a pair of points, xi and xj , is given by:

Âij = exp(−d2(xi, xj)
σiσj

), (3)

where d(xi, xj) corresponds to the distance from xi to xj . When selecting the local
scaling parameter σi, local statistics of the neighborhood of point xi is considered. The
choice in [3] is:

σi = d(xi, x
k
i ), (4)

where xk
i is the kth closest neighbor of point xi and k is chosen to be 7. Thus, σi =

7NNDist(xi) in spectral clustering with local scaling.

4 Locally Scaled Density Based Clustering

Locally scaled density based clustering algorithm clusters points by connecting dense
regions of space until the density falls below a threshold determined by the center of
the cluster. LSDBC takes two input parameters, k, the order of nearest neighbor to
consider for each point in the dataset for density calculation and α, which determines
the boundary of the current cluster expansion based on its density.

The LSDBC algorithm first calculates the ε values for each point based on their
kNN distances. ε allows us to order points based on their density. Smaller ε values
correspond to denser regions in the dataset. The set of points are then sorted in ascend-
ing order of their ε. Algorithm 1 presents the main method of LSDBC. The function
kNNDistVal takes a point and a number k and returns the distance of the point to its
kth nearest neighbor, ε, as well as the set of its k nearest neighbors. localMax function
ensures that the selected point is the most dense point locally in its neighborhood.

The ExpandCluster procedure, given in Algorithm 2, expands the cluster of a given
point, p, by exploring neighboring points and placing them into the same cluster as p

when their density is above density(p)
2α . The initial point p is called the center point of

the cluster. The α parameter prevents the expansion of a given cluster into regionsof
points with a density smaller than a factor of 2−α relative to the center. The density of
a given point p is calculated as:

density(p) =
k

εn
, (5)
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Input: D: Distance matrix, k: input to kNN-dist function, n: number of dimensions, α.
Output: Allocation of points to clusters.

for p ∈ Points do
p.class = UNCLASSIFIED;
[p.Eps, p.neighbors] = kNNDistVal(D, p, k);

end
Points.sort(); /* Sort on Eps */
ClusterID = 1;
for p ∈ Points do

if p.class == UNCLASSIFIED and localMax(p) then
ExpandCluster(p, ClusterID, n, α);
ClusterID = ClusterID + 1;

end
end

Algorithm 1. LSDBC: Locally Scaled Density Based Clustering Algorithm

where n corresponds to the dimensionality of the dataset. A point p′ is defined as a core
point if its density exceeds the density of the center point for the cluster multiplied by
2−α:

k

2αεn
p

≤ k

εn
p′

. (6)

Therefore,
εp′ ≤ 2α/nεp. (7)

Equation (7) provides us a cutoff point when expanding cluster regions.
In the final clustering scheme of LSDBC, we need only two parameters: the k value,

which is a parameter corresponding to up to which closest neighbor we should look for
when clustering points, and α which takes role in identifying a cutoff density for the
cluster expansion. The focus of this paper is to automate the process of clustering by
making use of the local density information for arbitrarily sized, shaped, located, and
numbered clusters. LSDBC enjoys good clustering results for a wide range of values
for k and α. An obvious advantage of LSDBC is that it is not sensitive to background
density variations and therefore, it can be used with a wide range of clustering problems.

Computational Complexity. kNNDistVal operates in O(n) time. As it was suggested
in [1], if we use a tree-based spatial index, k nearest neighbors can be retrieved in
O(log n) time. Therefore, the run-time complexity of LSDBC algorithm is O(n log n),
which is the same as DBSCAN’s run-time complexity.

5 Experiments

We compared our algorithm, LSDBC with (1) the original density based clustering algo-
rithm, DBSCAN, (2) spectral clustering with local scaling, and (3) k-means clustering.
The results show that LSDBC’s performance is superior to these three clustering tech-
niques on the problems we analyzed. Spectral clustering with local scaling achieves
comparable performance on some of the synthetic datasets. LSDBC produces robust
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Input: point, ClusterID, n: number of dimensions, α.

point.class = ClusterID;
Seeds = point.neighbors;
for currentP ∈ Seeds do

if currentP.class == UNCLASSIFIED then
currentP.class = ClusterID;

else
Seeds.delete(currentP);

end
end
while Seeds.length > 0 do

currentP = Seeds.first();
if currentP.Eps ≤ 2α/n × point.Eps then

Neighbors = currentP.neighbors;
for neighborP ∈ Neighbors do

if neighborP.class == UNCLASSIFIED then
Seeds.append(neighborP);
neighborP.class = ClusterID;

end
end

end
Seeds.delete(currentP);

end

Algorithm 2. ExpandCluster: Expands the cluster of a given point

clusters for a broad range of values for k and α. The robustness of LSDBC for different
values of k can be seen in Fig. 2.

In this set of experiments, we compare the results of LSDBC with the clustering tech-
niques of DBSCAN, k-means, and spectral clustering with local scaling. For each dataset,
k-means and spectral clustering methods accept the number of clusters as input where
k = 20 is the number of ideal clusters for the given dataset. Therefore, for the clustering
methods that we compare, including DBSCAN, we chose the best possible setting for
the clustering. In Fig. 3, we compare their performance on a more complex dataset. In
all of these examples, the performance of LSDBC is superior to others in terms of its
ability to respect the boundaries of closely located and similarly populated regions. The
difference between LSDBC’s results is that when k = 6 or k = 7, the background clut-
ter is divided into 3 and 2 clusters respectively whereas when k = 8, they form a single
cluster. When we look at the results of k-means and spectral clustering with local scaling,
even under the best settings, we can see that they divide densely populated regions into
separate clusters and merge regions with different densities together whereas DBSCAN
classifies regions with lower density below a threshold as noise.

Apart from generating unnatural clusters in some datasets, another drawback of spec-
tral clustering and k-means is their requirement of the number of clusters as input,
whereas LSDBC can discover clusters of arbitrary size, shape, location, and number
without any knowledge of the number of clusters in the data.
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Fig. 2. Robustness of LSDBC for different values of k and α

In our next set of experiments, we deal with the task of image segmentation. The
results can be seen in Figs. 4, 5, 6, and 7. LSDBC is able to decipher transparency in
the images. For instance, the background seen through the handle hole in the still life
image (Fig. 4) and the background itself is clustered into the same cluster. The resulting
clusterings can be used to summarize images as well as compress them. As can be seen
from the resulting clusterings, LSDBC provides an adequate separation of the original
images, which makes it useful for the task of filtering trees [7] (see Fig. 5).

6 Related Work and Density Estimation

In Ester et al. [1], density based clustering (DBSCAN) was presented as a clustering
technique which can discover clusters of arbitrary shape. Hinneburg and Keim [8] in-
troduced a new density based clustering technique as DENCLUE, which sums the den-
sity impact of a data point within its neighborhood. In effect, density based clustering
methods estimate the density of points in a given dataset to cluster and differentiate
densely populated regions. Two methods are commonly used for density estimation:
Parzen windows and k-nearest neighbor (kNN) estimation [9]. In Parzen windows, we
assume the existence of a d dimensional hypercube with volume V = εd, where ε is
the length of an edge of the hypercube. Then, the number of points falling within this
volume gives an estimate of the density (pick a radius and count the number of neigh-
bors). Problems arise when choosing ε, which determines the volume, V , also known
as the problem of finding the best window size. In kNN, we choose k nearest neighbors
and grow the corresponding ε and volume V until it encloses the k + 1 points (pick a
number of neighbors and compute the radius).

Density based clustering algorithms can also be divided into two types based on how
they estimate the density: Parzen window type and kNN type. Among the Parzen win-
dow type approaches, we can count DBSCAN [1], DENCLUE [8], and CLIQUE [10].
Most of these algorithms suffer from the problem of choosing the best window size.
LSDBC and OPTICS [2] are both kNN type density based clustering algorithms. OP-
TICS focuses on providing a representation of data (e.g. reachability plots) that enables
different clusterings to be implemented and generates an ordering of points based on
the order in which they are explored by the subroutine ExpandClusterOrder. LSDBC
starts with a density based ordering and performs cluster expansions starting with the
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DBSCAN, r=0.04, density=5:
Only highly dense regions are recognized.

LSDBC, k=6, α=3:
Background clutter is divided into 3 clusters.

k-means, k=20:
Densely populated regions are divided.

LSDBC, k=7, α=3:
Background clutter is divided into 2 clusters.

Spectral with local scaling, k=20:
Densely populated regions are divided,

diversely populated regions merged.

LSDBC, k=8, α=3:
Background clutter is classified as a single

cluster.

Fig. 3. Comparison of clustering performance on a dataset with different local statistics
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Flowers in vase LSDBC: k=7, α=6 k=22, α=3 k=13, α=5

Fig. 4. Segmentation of a still life image. Notice the identification of the same transparent regions,
which can be seen through the handle of the vase

Trees (original) LSDBC: k=17, α=5 k=7, α=4 k=13, α=9

Fig. 5. Segmentation of a group of trees and the sky

Oludeniz (original) LSDBC: k=12, α=5 k=10, α=6 k=13, α=6

Fig. 6. Segmentation of an image of a seaside, Oludeniz

Ataturk (original) LSDBC: k=10, α=7 k=10, α=8 k=6, α=5

Fig. 7. Segmentation of an image of Ataturk
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densest available point. Also, the cut-off for clusters in OPTICS is decided based on
the density gradient of the edges of clusters, whereas LSDBC bases its cut-off on the
density of the center of the cluster, which we believe to be more robust and noise free.

7 Conclusion

We have introduced the locally scaled density based clustering method. LSDBC discov-
ers local maxima of density using a k-nearest-neighbor density estimation method and
grows each cluster until the density falls below a pre-specified ratio of the center point’s
density. The resulting clustering technique is able to identify clusters of arbitrary shape
on noisy backgrounds that contain significant density gradients. The performance of the
new algorithm is demonstrated on a number of synthetic datasets and real images and
shown to be promising for a broad range of its parameters.

LSDBC can be effectively used as a tool for summarizing the inherent relationships
within the data. We have shown that LSDBC’s performance in differentiating between
densely populated regions is better than other clustering algorithms that we considered.
LSDBC can also be used to summarize and segment images into meaningful regions.
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Abstract. A system of rule extraction out of a complex hierarchical
classifier is proposed in this paper. There are several methods for rule
extraction out of trained artificial neural networks (ANN’s), but these
methods do not scale well, i.e. results are satisfactory for small problems.
For complicated problems hundreds of rules are produced, which are hard
to govern.

In this paper a hierarchical classifier with a tree-like structure and
simple ANN’s at nodes, is presented, which splits the original problem
into several sub-problems that overlap. Node classifiers are all weak (i.e.
with accuracy only better than random), and errors are corrected at
lower levels. Single sub-problems constitute of examples that were hard to
separate. Such architecture is able to classify better than single network
models.

At the same time if–then rules are extracted, which only answer
which sub-problem a given example belongs to. Such rules, by introduc-
ing hierarchy, are simpler and easier to modify by hand, giving also a
better insight into the original classifier behaviour.

1 Introduction

A classifier in machine learning is a model built to reflect the implicit rules
hidden in a training file [1,2]. A classifier has to assign correct classes (from a
finite set of them) to examples previously unseen, i.e. such that were not used
during the training phase. Several methods are used, one of them being artificial
neural networks. ANN’s show a high rate of generalisation, i.e. the ability to
correctly classify previously unseen examples, but at the same time give no clues
as to the possible structure of the problem, and do not answer why a given class
was selected, i.e. have low low explanatory power [2,3]. At the same time, ANN’s
usually require a lot of training just to find the correct network architecture.

This paper shows how a hierarchical classifier (HC) can be built automatically
(its’ scheme was proposed earlier by the author in [4]), and how a set of if–

then rules can be extracted that would reflect the classifier behaviour. The main
objectives are, first, to show that an HC can be easily built out of weak classifiers,
then that rules can be extracted that would reflect the problem structure. This
� Research was funded by Jagiellonian University’s grant “Hierarchical classifiers”.
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c© Springer-Verlag Berlin Heidelberg 2007



750 I.T. Podolak

approach puts the classifier in the line of other committee machines, such as the
Hierarchical Mixture of Experts or AdaBoost models [2,5].

The paper is divided as follows: first a definition of the hierarchical classifier
is given, then its construction is given in more detail, after that the task of rule
extraction is defined followed by the description of the algorithm used, and the
structure of the rules. Experiments and discussion follow.

2 Definition of the Problem and Model

Definition 1. For a given training data example pairs from set X = {(xk, ck)},
where xk ∈ R

p is an input vector, and ck ∈ C, from a finite set C = {Ci}K
i=1, is

a nominal value, then a classifier Cl is a mapping

Cl : X �−→ C (1)

One of the main methods to build such a model is to use the feed-forward network
paradigm. Main problem is that one cannot say which architecture will fit the
problem at hand best. There are no clear clues as to how many neurons should be
used, therefore the network designer usually has to use either a network pruning
technique, or try several networks. Both approaches are costly.

In the presented solution, the classifier has a tree-like structure, with weak
networks at each node. Root node classifier node is trained to solve the whole
problem, but because of its weak nature, the responses found are only a little
(but significantly) better than of a classifier, which assigns the most frequent
class to all examples [6,2]. It needs to be observed that the incorrect answers
are not random. The hypothesis is that if Ci is returned as an incorrect answer,
it probably is a class, that is similar to the true class, a class that the classifier
finds most similar. Therefore groups of such similar classes constitute natural
sub-problems.

After introductory training, clusters of classes that are frequently mistaken
with each other are identified, and a new sub-problem is formed out of each one.
Then a new ANN node is trained for each of the sub-problems. In the presented
model the clusters overlap, which helps to achieve a better overall accuracy.

2.1 Detailed Description

The proposed model has a tree-like structure with classifiers Cli : X i �−→ Ci at
nodes, which map examples from X i ⊂ X into a subset of classes Ci ⊂ C (for
the root C ≡ C). Classes are combined into clusters of classes that are frequently
mistaken, e.g. classes Ca and Cb are in the same cluster, if Cli frequently gives
Ca as the result when Cb is the true class, and the opposite. In such case it is said
that classes Ca and Cb are Cl-similar. This grouping is accomplished through
simple clustering of the Ci’s classifier confusion matrix, modified for the case of
overlapping clusters. In other words, a set of m clusters

Qi = {Qi
j} j = 1, . . . , m (2)
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Fig. 1. An example original classifier Cl and a modified one Clmod

is found, where a single cluster Qi
j consists of classes frequently mistaken

Qi
j = {Ci

l ∈ Ci|l = 1, . . . , nQi
j
} (3)

where nQi
j

is the number of classes in cluster Qi
j.

The already trained classifier Cli is modified into classifier Climod : X �−→ Qi,
i.e. one that returns the cluster to which the true class belongs to (see Fig. 1).
Individual node classifiers are weak and have low accuracy, but there is a high
chance that the correct cluster of classes is found, therefore narrowing down the
possible answers. A notion of generalised accuracy is introduced

Definition 2. The generalised accuracy is the rate of examples which are as-
signed by classifier Cl into a cluster including examples’ true classes.

Individual classifiers may have low standard accuracy, i.e. the ratio of correctly
identified examples, but high generalised accuracy. E.g, in one model built for
the UCI vowel problem [7], the root classifier, with only 2 hidden nodes achieves
only a 38.38% standard accuracy rate, but at the same time a 99.90% gener-
alised accuracy. This shows that the heuristic about similarity of true and in-
correct classes is true. The whole 3 level hierarchical classifier achieves a 96.26%
accuracy!

The cluster construction is equivalent to problem partitioning into overlapping
sub-problems. Only these examples that have true classes from the given cluster
are used, therefore the problem gets smaller at each level. Addition of consecutive
layers continues up to the moment when the accuracy of solution is satisfactory.
Therefore, the proposed model frees the classifier developer from a “trial-and-
error” approach where several of different architectures need to be checked.

2.2 Clusters and Combination of Individual Results

Each cluster has less than half of the parent node classes. The clusters are found
by inspecting the classifier’s confusion matrix and clustering classes that are
frequently mistaken.

The clusters are found so that they overlap, that is a class Ci
l ∈ Ci may belong

to more than one cluster, or there may exist k and l, k �= l, such that the
intersection Qi

k ∩ Qi
l �= ∅. If the clusters were crisp, then if a wrong was selected

(i.e. one that does not include the true class), then there would be no chance to
correct the initial answer at a lower level. Since the clusters overlap, the chances
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are much higher. This is very important if individual node networks are very
simple, e.g. have a very low number of hidden neurons, since such classifiers
frequently do not return as output all of the classes. For example, in the above
mentioned model built for the vowel problem, the root classifier recognised only 4
classes out of all 11 (usually these that are the most frequent). This is important
when the classifiers are weak – at first steps of learning neural networks return
only the most frequent classes, especially if the network resources, e.g. number
of hidden neurons, are scarce. A new child classifier is built for each cluster, until
a maximum level is reached, there are less than three classes in the cluster, or
the accuracy is satisfactory.

The hierarchical classifier works in 2 phases: first the calculation of consecu-
tive layers, then a step of combining bottom-level results. If classifier Cli is an
ANN, then its normalised output can be regarded as individual classes posterior
probabilities P (Cl|x), where x is the input vector of features. If Cli recognises
nQi clusters Qi

j , then for each cluster a sum

PQ(Qi
j|x) =

∑

Ci
l∈Qi

j

P (Ci
l |x) (4)

can be computed, and a renormalised vector P (Qi|x) = [P (Qi
1|x), . . . , P (Qi

nQi

|x)] can be treated as individual clusters posterior probabilities given input x.

Fig. 2. The complete hierarchical classifier architecture for the zoo problem

This process is repeated at each tree, and after the “forward” run individual
class and cluster probabilities at each node are found. After reaching the leaf
level, the results are “back-propagated” recursively using the following formula
(for a two-level classifier, for simplicity, and root cluster Q ≡

⋃
j Qj)

P (Cl|x) =
nQ∑

i=1

P (Qi|x)PQi (Ci
l |x) (5)

where nQ is the number of clusters of the root classifier, P (Qi|x) is the probabil-
ity of cluster Qi, and PQi(Ci

l |x) are the individual posterior class probabilities in
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cluster Qi found by classifier Cli. This methodology is similar to other committee
machines [8,9]. An example classifier architecture is shown in Fig. 2.

3 Hierarchical System of Rules

ANNs achieve high accuracy rates, but frequently have low generalisation rate in
cases when number of parameters exceeds the number of training examples, also
have low self-explanatory power. It is also hard to include some prior knowledge
about the problem into the network design [10,11,12].. Therefore extraction of
rules may come to rescue.

Several methods are used for extraction of if–then rules out of trained
ANN’s. In case of large training sets and hard problems with several output
classes, the extracted rules are not easily readable. The algorithms which give
clear rules for simple problems such as iris [7], but for a more complicated prob-
lem give a large set of complicated rules. I.e. the extraction methods do not
scale well with the growing number of input attributes and output classes. The
proposed hierarchical architecture, together with a rule extraction system is fit
for such tasks.

The system proposed here utilises a modified Setiono’s FERNN algorithm
[3,4,12] (in the version used here the network training algorithm was changed
to Resilient Propagation). A FERNN algorithm trains ANNs pruning to arrive
at a simple network with low number of connections, therefore low number of
rules. The trained ANN is then examined to generate rules of the general form

IF Pred(x) THEN Class(x) = Ci (6)

where Pred(x) is some logical predicate over the input feature vector x.
In the proposed architecture two kinds of rules are extracted out of each node

classifier Cli: first rules which give that network’s prediction of the final class

IF Recognised(Qi) ∧ PredClassCli
k (x) THEN Class(x)=Ci

l ∈
⋃

j

Qi
j : Qi

j ∈ Qi

(7)
where Recognised(Qi) is a predicate stating that the output class is one of
classes included in

⋃
j Qi

j , PredClassCli
k (x) is some class predicate, and Cl ∈ Qi

is some class recognised by classifier Cli ∈
⋃

j Qi
j , then other rules which predict

clusters of classes

IF Recognised(Qi) ∧ PredClusterCli
m (x) THEN Cluster(x) = Qi

n ∈ Qi (8)

where PredClusterCli
m (x) is some classifier recognising a cluster. The value of

PredClusterCli
m (x) is computed by a parent level classifier. Both predicates

PredClassCli
k (x) and PredClusterCli

m (x) are computed only if the final class
is probably in cluster Qi.

For the zoo [7] problem (animal classification), apart from the rules finding
final classes, a set of cluster rules is obtained, e.g.
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if(+3.03*"eggs" -2.14*"milk" -1.0*"legs" +3.84*"tail" <= 1.7) {
if(-2.23*"feathers" +3.56*"eggs" -2.26*"milk" +2.55*"aquatic" -1.0 *"catsize" <= 2.88)
{

cluster = "mammal OR sea animal"
} else {

if( ... another expression ...) {
cluster = "fish OR insect"

} else {
cluster = "reptile OR mollusk"

}
}

} else {
. . .

}

There are much less rules for clusters, then there are for individual classes.
After minimisation of the logical expressions, there are about half as many cluster
rules, as there are simple class rules. The cluster rules include much more general
information which may be corrected by hand to include some prior-knowledge on
the given problem, information which is complicated and hardly readible when
simple neural networks are used.

4 Experiments

A number of experiments were performed to compare the accuracy of the original
hierarchical classifier, and the accuracy of the derived set of if–then rules. To
accomplish that, a number of classifiers were trained using training sets from
the UCI machine learning repository [7,13], all of which have a high number of
output classes, therefore especially fit for the proposed classifier architecture.
All the classifiers were set to use at most 3 levels of classifiers (including the
root classifier level). To show that classifiers can be built even with very small
individual networks, only 1 to 5 hidden feed-forward networks were used.

To extract rules, stratified example sets were constructed for each network,
then hidden neurons’ activations recorded, and decision trees built for such train-
ing sets, separately for class and cluster predictions (an oracle approach [11]).
Because of such approach, the extracted rules reflect the nueral network’s actual
performance (previously only activations for correct classifications were used [4]).
The rules where additionally pruned to minimise their number. To mimic a rule
expert system, the rules where rewritten into the Jess language, and checked
with the Jess inference engine (a Rete algorithm) [14].

The main objective was to compare the accuracy of extracted system of rules
with the original classifier. A comparison of hierarchical classifier, extracted
rules, and Setiono’s N2CS2 [3] single network with optimised number of neurons
accuracies is given in Table 1. It can be seen that that the hierarchical classifier
compares very well with single ANN’s with optimised number of hidden neu-
rons [4,15]. The proposed classifier makes it possible to quickly build a network
architecture, combined of small and weak classifiers, and with equal or superior
accuracy. The graphs are shown in figure 3.

It can be seen that even for networks with 1 hidden neuron, the proposed
architecture is able to give better than expected results, e.g. the one built for
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Table 1. Experiment results for some training sets from the UCI Repository [7,13]
compared with results (last column) of Setiono’s N2CS2 optimised algorithm [3]. Means
out of 10 runs each are given for 1 to 5 hidden individual ANN’s, and for rule systems
extracted. All accuracies are in percentages.

1 hidden 2 hidden 3 hidden 4 hidden 5 hidden Setiono
HC rules HC rules HC rules HC rules HC rules train

audiology 59.3 30.9 85.6 47.2 92.6 44.2 95.0 71.5 95.7 84.4 95.5
primary-tumor 35.1 24.8 53.7 37.5 65.6 44.9 70.0 47.2 73.3 48.8 62.1
vowel 44.4 13.7 88.8 67.7 95.3 84.6 97.0 88.1 97.9 90.5 94.3
zoo 82.8 63.0 93.4 86.8 99.4 96.9 99.7 99.5 99.7 99.7 100

Fig. 3. Accuracy graphs for the hierarchical classifier and derived systems of rules
trained for zoo, primary tumor, audiology and vowel problems [7,13]. The classifiers
were built using networks of 1 to 5 hidden neurons. Classifiers were built 10 times per
each number of hidden neurons, and standard deviations are shown.

vowel problem (with 11 output classes with equal prior probability) achieves a
44% accuracy over the training set, and even 80% for the zoo problem. This
happens even though the root classifiers may have only a base level accuracy,
frequently predicting only two out of all classes. Thanks to the hierarchical
architecture and overlapping clusters, this is enough to separate the problem
into several simpler sub-problems, where the small networks are able to discern
examples. Classifiers with only few hidden neurons at each node give comparable
or superior results. Even for such a complicated task as the primary-tumor [7,13],
for which neural networks very rarely achieve a level above 60%, the HC achieved
significantly better accuracy of over 70%.

The rule derived rule systems for classifiers with small hidden layers have much
lower accuracy (and with high deviation), but for larger single node networks the
accuracy is only 10−20% lower, even equalling that of base classifier for simpler
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problems (zoo). One must remember that this are only base rule systems which
may be extended by inclusion of prior knowledge. Accuracy for a complicated
problem like primary-tumor is much lower here since individual node classifiers
are very weak. For such problems and rule extraction, the individual classifiers
need to have better accuracy – this follows from the fact that with weak classifiers
selection of output class is made from a small subset of classes.

The whole software was written in a Weka machine learning environment [16].
Since the individual nodes at each level are in dependable, the parallelisation of
the program was straightforward, speeding up calculations.

5 Discussion

The hierarchical classifier achieves very good results, thanks to the combination
of weak classifiers. Clusters constructed reflect the problems each ANN had with
the problem given, therefore automatically giving a problem partition. It is also
possible to extract a hierarchical system of if–then rules, where the problem
and its partition are reflected. A standard expert system may be built, ready for
inclusion of some prior knowledge available.

The rule system still has lower accuracy than the original hierarchical classi-
fier. This is easily seen, especially when the number of hidden neurons is very
low (e.g. only 1 hidden neuron). It still is a problem of the accuracy of rule
extraction, as well as the construction of the whole rule system.

There is still much to do: better ANN training algorithm, especially for low
number of neurons and its increased cooperation with the clustering algorithm,
better construction of the rule system, experiments with larger data sets. It still
remains to be proved, that such methodology gives a universal classifier, that is
able give accuracies better than a given ε.
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Abstract. The purpose of this work is to demonstrate that it is possi-
ble to cluster contact maps for pairs of alpha helices such that each of
the clusters corresponds to a group of pairs of alpha helices with similar
properties. The property of the configuration of helix pairs that was cho-
sen for study is the packing attribute. The contact maps are compared to
one another using a novel contact map comparison scheme based upon
the locations of contacts in the contact maps. A k-nearest neighbours
technique is used to perform the clustering, and the cosine between vec-
tors corresponding to contact map regions was the distance metric. The
clustering of contact maps to determine whether maps corresponding to
similar packing values are placed into the same clusters yielded promising
results.

1 Introduction

The aim of this research is to demonstrate that there are more tools available to
augment those being used for protein structure prediction. The contact map is
an abstract representation of the structure of a protein. People have attempted
to recover the three dimensional structure of a protein from the contact map
in the past [12], but the success has been limited. If specific properties of the
three-dimensional structure of a protein may be predicted from the contact map,
then we are given a useful tool. This prediction could be used in combination
with other approaches to improve protein structure prediction techniques. Of
course, the prediction of contact maps from amino acid sequences are in the
early stages at present [5,10,11], but results are improving. For the purpose of
this research, it is being assumed that the results of contact map prediction
will be highly accurate at some later stage. A suitable challenge at present is to
use an empirically determined contact map to determine the three-dimensional
configuration of a pair of alpha helices.
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2 Contact Maps

This research pursues a slightly different tack from the conventional, by using
contact maps as a fundamental tool. A contact map is an N × N matrix, where
N is the number of amino acids in the given protein, and entry Cij in the matrix
is a boolean, indicting whether amino acid i is in contact with amino acid j. A
threshold distance between atoms is the conventional definition of a contact; our
group uses 10Å between Cα atoms, as for our purposes it provides the most useful
information. If the threshold is too high, more contacts will be introduced into
the map, and many of the contacts will be meaningless for predictive purposes.
If there are too few contacts, there is insufficient information for clustering.

Since we are working with pairs of alpha helices rather than entire proteins,
it is necessary to isolate the contact maps associated with a particular pair
of proteins. Further, we will be interested in isolating the interface region of
the contact map for the pair as this is where potential interaction is occurring
between the helices. This concept is shown in Figure 1.

Fig. 1. (a) This is the contact map for protein 1a0a from the Protein Data Bank (PDB).
The red rectangle indicates the area occupied by two helices, shown in (b). The contact
map represents all of the amino acids for one alpha helix along the vertical axis and the
other along the horizontal. This has been further refined to the interface area, shown in
(c). The contact map interface is found by isolating the smallest rectangle containing
all of the contact points from the contact map for the helix pair.

3 Methods

To test the hypothesis, we must first determine how we are to compare contact
maps, as we need a distance metric for the comparisons. This problem is a field
of study aside from the task at hand, so only a brief outline of the challenges will
be given here. Once we have the comparison method, we can perform clustering
and determine whether clusters of similar contact maps correspond to groups of
helix pairs with similar packing attributes.
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3.1 Distance Metrics

To begin the discussion, assume for the time being that we are comparing apples
to apples: the contact maps that we are comparing are all of the same size and
of similar orientations. If we have two contact maps C1 and C2, then similar
values at C1(i, j) and C2(i, j) indicate a similarity between the maps. If the
maps we are comparing are of size k by l, the maps may also be represented
as strings or vectors of length n = k × l. We have the choice of many distance
metrics for comparing these strings. The näıve choice would be to use Euclidean
distance, which is the 2 norm distance between the strings. However, there are
other metrics that are better suited to data of this type [3]. Euclidean distance
has the property that true values and false values for attributes carry the same
weight, and this does not work well for contact maps, which are generally sparse.
Ertöz et al. [3] assert that when dealing with sparse data sets in high dimensions,
it is often the case that the presence of an attribute is more significant than its
absence. Therefore, the metrics chosen to measure distance should reflect this
property. The Jaccard distance (or Jaccard coefficient or Jaccard index) is given
by [7]:

dJ =
C11

C11 + C10 + C01
,

where C11 is the number of contacts shared by both contact maps, C10 is the
number of contacts in the first map not found in the second, and vice versa for
C01. Another metric with similar properties to the Jaccard distance is the cosine
distance, which is given by the dot product between the normalized vectors
corresponding to each contact map:

dcos =
C1 · C2

‖C1‖‖C2‖
.

Of course, contact maps from pairs of alpha helices are seldom the same size,
and so we must manipulate the maps so that we can use these distance metrics.
The comparison of contact maps involves first aligning the contact maps, so that
a contact in one map has a similar meaning to a contact in another map. The
proper alignment of contact maps is an open research problem, known as the
Contact Map Overlap (CMO) problem [1]. Different visual techniques may be
used to measure the similarity of the maps; these are discussed in detail in [9].
Another approach is to use graph theory and Lagrangian relaxation [1]. The
nature of the data being used in the present application permits a simplified
approach, since we are not dealing with contact maps for entire proteins. The
challenge is to properly align the contact maps; this problem yielded a solution
which involves dividing the contact maps into sub-classes.

3.2 Contact Map Classes

The easiest maps to align will be those maps with contacts in a corner of the
map, as the corner provides a natural alignment point. Therefore, the first class
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of contact map is any map with a contact in a corner of the map. For this
application, the corners were treated as 2 × 2 areas in each corner. This makes
sense, since this corresponds to the end of the helix. At the third residue, a turn
around the axis is nearly complete, so it is not really at the end of the helix.
However arbitrary, this threshold is effective, as will be demonstrated shortly.

The next class of contact maps is edge contacts; specifically any that have
a contact within the outer two rows or columns around the perimeter of the
contact map, but not in a corner. These maps can be aligned by the contacts
present in the perimeter area, based upon the center of mass of the contacts in
the perimeter.

Finally, the third class is the central contacts, which would be those maps that
have no contacts within the outer perimeter. These maps are fairly difficult to
align. The maps could be aligned again by their center of masses, but with two
dimensions now factoring into the calculation, there is more room for error. Alter-
natively, one of the tools mentioned earlier for solving the contact map alignment
problem could be used. Fortunately, the alignment of these maps is not an issue
for the present problem, as will be shown. This classification process is performed
greedily in the order presented here (corner → edge → central), so that any map
belonging to a corner class is placed there first. Instances where maps could poten-
tially belong to both the corner and edge classes are thus all considered instances
of the corner class. Once all corner and edge maps have been removed from the
source list, the central maps are what remain. Figure 2 shows the different classes
of contact map schematically, and examples of each class are provided in Figure.

Fig. 2. The different classes of contact map for comparison. Corner contacts have
contacts in a 2× 2 corner of the map. Edge contacts have contacts along the perimeter
of the map, but not in a corner. Central contacts have no contacts in the outer two
rows or columns of the map.

3.3 Determination of Packing Values

The packing values for the pairs of alpha helices are found by first determining
the axis for each helix using a rotational least squares method. Next, the packing
attribute is found by locating the points of closest approach on each axis by
applying the rotations calculated previously to both helices. If the line of closest
approach between the axes is perpendicular to both axes, then there is packing.
Otherwise, the packing attribute is considered false. This algorithm is presented
in detail in [6].
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Fig. 3. Each row of the figure illustrates a pair of helices characteristic of each class.
The left image is looking down the line of closest approach, the middle image shows
the view down the axis of one of the helices, and the right image is the contact map for
the pair at 10Å. The top row is an example of the corner class, notice that the closest
points between the helices are at the ends of each. In this case, the helices are in an
acute conformation; the opposite case would be contact at the end of each helix and
they are angled away from each other. The middle row illustrates an example of the
edge class, where the end of one helix is in contact with the middle of the other. This
is a special case where both helices have such a contact. The bottom row shows a pair
of helices in the central class. The helix pairs used from the top are helices 4 and 7
from PDB file 1A0A, 4 and 5 from 1A0A, and 4 and 9 from 1A28. All graphics were
produced using the Hippy visualization software package [4].
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4 Source Data

The data used for this study consists of 1078 pairs of alpha helices, collected from
the Protein Data Bank (PDB) files of 171 proteins. The files were all alpha-helix
only proteins with low homology. These helix pairs were selected such that all
helices were of length at least 6, and that the contact interface for the pair
was at least 2 × 2. The central class contained 112 contact maps, and all maps
corresponded to packing pairs of helices. Since all instances have a true value
for packing, we can consider this to be one class. Since all instances have the
same packing value, no further analysis is necessary. Both of the edge and corner
classes contain instances of both values for the packing however, so clustering
may be necessary.

The edge contact maps are challenging since there is no clear point of origin
to use for the alignment step. However, as with the central maps, the task is not
required for this application. We obtain 535 contact maps in this class. Of these
maps, only 4 do not correspond to packing helix pairs, so it is fair to decide
that these maps are outliers. Thus, contact maps with edge contacts generally
correspond to packing pairs of alpha helices.

The corner maps, as mentioned earlier, are easy to align as they share a
common origin. In addition, each contact map can be used as two data points
since they can be reflected about a diagonal line through the origin. We can then
transform each corner contact map such that all have a common origin through
a series a flips. By these operations, we obtain a data set of 862 contact maps
oriented in the corner. 794 of these maps correspond to packing pairs of helices,
while 68 correspond to non-packing pairs. Now we have to modify the contact
maps so they are all the same size. This has been accomplished in this study
by simply taking the 15 × 15 square map rooted in the corner containing the
contacts. This size has been chosen arbitrarily, but it is large enough to include
most contacts for each map. If the map is smaller than this square in either
dimension, the map is simply padded with zeroes. Now we have a collection of
aligned maps of the same size that may be compared with a distance metric.
The nature of the test data is summarized in Table 1.

Table 1. The characteristics of the contact maps used for clustering are summarized
here. For each class of contact map, the number of instances in the source data set
is given, as well as the number of corresponding pairs of alpha helices that exhibit
packing or otherwise.

Contact Map Class Total Instances Packing Non-packing
Central 112 112 (100%) 0 (0%)
Edge 535 531 (99.3%) 4 (0.7%)
Corner 431 397 (92.1%) 34 (7.9%)
Doubled Corner 862 794 (92.1%) 68 (7.9%)
All Maps 1078 1040 (96.5%) 38 (3.5%)
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5 Clustering Analysis

Now we may proceed to cluster the corner contact maps, and determine whether
clusters of maps share the same value for the packing attribute. Throughout this
discussion, a contact map will often be referred to as a point, since that is what
the clustering algorithm is working with. A 15 × 15 contact map which has
been converted to a vector of length 225 is now being treated as a point in 225
dimensional space. The algorithm to be used to perform the clustering is a shared
nearest neighbour approach, as outlined by Ertöz et al. [3]. The implementation
of the algorithm is presented step by step.

Step 1 - Construction of the similarity matrix. The similarity matrix was
constructed using both the Jaccard coefficient and the cosine distance in turn.
Both yielded similar results in the final clustering, so the cosine distance was
arbitrarily selected as the measure to be used for the remainder of the study.
Given n contact maps to be clustered, the similarity matrix S is size n×n, where
entry S(i, j) is the cosine distance from contact map i to j.

Step 2 - Sparsification of the similarity matrix. The similarity matrix is
sparsified using k nearest neighbours (k-nn) sparsification. k nearest neighbours
is a simple concept: it is simply that for some value k, find the k points closest to
each point using the chosen distance metric. This is accomplished by first finding
the k smallest distances in each row of the similarity matrix; the provides the
k-nn for each point. To sparsify, we next check the members of the lists for each
point to ensure mutuality. Suppose that point j is a member of the k-nn list for
point i. Now we check the k-nn list for j to see if i is a member. If it is not, we
remove j from the k-nn list for point i. The selection of an appropriate value for
k is a trial and error process; the effectiveness depends on the size of the data
set, the nature of the data being clustered, and the number of desired clusters in
the outcome. For the corner contact maps, values between 4 and 15 were tested,
and 12 produced the best results.

Step 3 - Construction of the shared nearest neighbour graph. We use
a weighting scheme introduced by Jarvis and Patrick [8] to determine how well
connected points are. This is done by finding the number of nearest neighbours
two points share and how well connected they are. The strength of a connection
between two points i and j is given by:

str(i, j) =
pt∑

p1

(k + 1 − m) × (k + 1 − n)

where
im = jn, ie. some third point p in both lists;
t is the number of shared nearest neighbours.

This sum is over every instance of a shared nearest neighbour in the lists for
the points i and j. The shared nearest neighbour graph is an n × n matrix Snn,
where entry Snn(i, j) is defined by str(i, j).
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Steps 4 through 8 - Formation of the clusters. The next step is to find
the connectivity of each point, con(i), which is found by taking the sum of the
strength of all of its connections:

con(i) =
n∑

j=1

Snn(i, j)

The connectivity of a point is used to determine how the clusters form. Points
that have a connectivity higher than some threshold are chosen as representative
points, and are used to nucleate clusters. Connectivity values were normalized
to values between 0 and 1, and 0.6 was found to produce good clustering in
this study. In the original Ertöz et al. [3] study, they removed all points with
connectivity values below a given threshold and removed all links from the con-
nectivity graph with weights below another threshold to eliminate noise. For the
purposes of this study, the effects of these noise removal steps were minimized
as it was desirable to consider all data as good data. As a result, 0.001 was used
as the threshold for both steps. Finally, the clusters are formed by taking the
representative points and all of the points that they are connected to as clusters.

Table 2. The clustering results are listed. There were 11 clusters of packing pairs, 2
of non-packing pairs, and 5 were mixed.

Type Cluster Number Packing Non-Packing
Packing 1 21 0

2 21 0
3 18 0
4 26 0
5 16 0
6 20 0
7 37 0
8 16 0
9 29 0
10 8 0
11 18 0

Mixed 12 8 4
13 30 2
14 83 4
15 13 4
16 20 4

Non-Packing 17 0 14
18 0 14

6 Clustering Results

The best results, as mentioned previously, were obtained by using a value of 12
for k when using the corner contact maps data set. A summary of the clustering
results are presented in Table 2.
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7 Conclusions and Future Work

Since the results of the clustering analysis showed promise, it could be concluded
that the packing configuration of a pair of alpha helices could be predicted from
the contact map. This is the first study to demonstrate that properties of the
three-dimensional structure of a pair of alpha helices correspond to patterns in
contact maps.

It is worth exploring other properties of alpha helices to determine how well
clustering may predict these properties as well. These properties include the
interhelical or interaxial angle, and the interhelical or interaxial distance for the
pair. Finally, it will be interesting to see how these findings may be used to
improve the accuracy of protein structure prediction techniques.
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Abstract. In this paper we look at a dynamic method for analysing
data, called a data probe. The probe flies through the data space and
is affected by the proximity and number of data points. The trajectory
followed by the probe provides information about how the data are or-
ganised geometrically. We apply a state feedback method to the probe
equations to make the probe search out certain data values.

1 Introduction

The inspiration for this work comes from an exiting new area of research called
data sonification [2]. In data sonification sound is generated from data to add
a new dimension to it and improve the data analysis task. We are not directly
interested in generating sound from our data, but the model based method of
data sonification presented in [2] provides the basis for our data probe.

We are particularly interested in data clusters [1], where data points are lo-
cally grouped together into clusters. Within a cluster, the data have some sort
of homogeneous property, or, because we are dealing with real data, nearly ho-
mogeneous. We are working with data belonging to a Euclidian space, we do not
consider the case of discrete data.

2 Data Probe Dynamics

The basic analogy is a comet flying through a solar system. If the comet doesn’t
fly near any planets then it will just fly on without changing its trajectory.
However, if it flies near to a massive object like a planet then it will be deviated
from its trajectory. If you are able to observe the trajectory, but not the planets,
then you will be able to deduce the presence and size of the massive object by
the comet’s new trajectory. We consider data points to be massive objects and
use Newton’s equations of motion to describe the dynamics of the probe (comet).
The full details of these equations are presented in [2].

We assume that the data are supplied in pairs (xk, yk) for k = 1, . . . , m, where
the xk ∈ IRn are taken to be inputs and the yk ∈ IR outputs. It is also assumed
that there exists a mapping from inputs to outputs π : IRn → IR that satisfies
π(xk) = yk for all the supplied data. The fundamental hypothesis is that the

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 767–771, 2007.
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data are organised into clusters and that for any xi, xj belonging to the same
cluster then π(xi) = π(xj) = y0, or what is more reasonable π(xi) ≈ π(xj) ≈ y0.

We denote the data points as

dk =
[
yk

xk

]

then we define the following attraction function

φ(y, x) =
m∑

k=1

exp(−α‖
[
y
x

]
− dk‖2) (1)

where α > 0 is a parameter related to the radius of influence of each data point.
The Newtonian equations of motion include acceleration, velocity and resis-

tance terms and so we need to augment the dimension of the system from IRn+1

to IR2(n+1) in order to recover an autonomous set of differential equations. So,
we define the following vector

z =

⎡

⎢⎢⎣

z1
z2
z3
z4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

y
x
ẏ
ẋ

⎤

⎥⎥⎦ (2)

where ẏ = dy
dt etc. Using (1) and (2) the equation of motion of the probe is then

given by the following

ż =

⎡

⎢⎢⎣

ż1
ż2[
ż3
ż4

]

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

z3
z4

∇φ(z1, z2) − γ

[
z3
z4

]

⎤

⎥⎥⎦ (3)

where γ is a positive scalar parameter and

∇φ(z1, z2) =

⎡

⎢⎣

∂φ
∂z1

...
∂φ

∂zn+1

⎤

⎥⎦

note that the partial derivatives are up to ∂
zn+1 because, by definition, xn = zn+1.

We note also that this equation is slightly different to the model presented in [2]
because we have not included any masses, we assume that all the data points
have unit mass.

3 Guiding the Probe

The system (3) is autonomous and the only parameters that can be changed are
α, γ and the initial point z(0). The objective that we seek to achieve in this
paper is to get the probe to search out a particular value of the output variable
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y. In this way, we want the probe to end up in a part of the data space where
this particular value of the output variable is predominant, i.e. a cluster. To do
this we introduce a feedback term in the system (3). First of all we define an
output function for (3)

h(z) = z1 − y0 (4)

y0 is the target value for z1 = y.
Clearly, to achieve our aim, from (4) we need to calculate a trajectory z(t),

t > 0 that will satisfy h(z(t)) = 0. In control theory parlance this is referred
to as output zeroing [3]. In the simple output zeroing algorithm z(0) has to be
chosen to satisfy h(z(0)) = 0. However, we would like to have free choice of z(0)
to let the probe explore the space. For this reason, we apply the more general
and powerful method of asymptotic output zeroing. This is where z(t) converges
to a trajectory that satisfies h(z(t)) = 0 even if the initial part of the trajectory
doesn’t.

We do not present the full details of the method in this paper, the inter-
ested reader is advised to consult [3]. Basically, we modify the system (3) by
introducing a feedback term into the line corresponding to ż3 by setting

ż3 =
∂φ(z1, z2)

∂z1
− γz3 + u(z) (5)

where u(z) is the feedback term.
Following [3], it can be shown that setting the feedback term to the following

value

u(z) = −∂φ(z1, z2)
∂z1

+ γz3 − c0(z1 − y0) − c1z3 (6)

leads to the desired result. By this we mean that if we define an error function
as follows

e(t) = h(z(t))

then e(t) satisfies the following linear differential equation

c1ė(t) + c0e(t) = 0

and so it suffices to choose the values of the two parameters c1 and c0 so that
e(t) → 0. This will be the case, for example, if we set c1 = 1 and c0 > 0.

4 Simulation

We produced some simulated data by calculating 20 examples of each of three
clusters based on the points

[
1 1 1

]T ,
[
−1 1 −1

]T and
[
0 −1 −1

]T plus random
noise. For our preliminary investigations we set α = γ = 0.5 in (3) and chose an
initial point z(0) =

[
1.5 1.5 1.5 0 0 0

]T
. First of all we integrated the system (3)
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Fig. 1. Trajectory without feedback
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using a standard Runge-Kutta routine with no feedback term, i.e. with u = 0 in
(6). The result can be seen in figure 1, note that we only plot the first three coor-
dinates of z(t), i.e. (y(t), x(t)) but not the derivatives. The probe circles around
and converges to a point near to a cluster, but not exactly a cluster centre.

Then, we brought in the feedback term by setting c1 = 1, c0 = 0.5 in (6)
and integrating (3) this time with feedback. We carried out three trial runs by
setting successively y0 = 1, y0 = −1 and y0 = 0 (the three theoretical output
values of the clusters). The results can be seen in figures 2, 3 and 4. We can see
that the trajectories encircle the clusters before converging to the centre of the
cluster in each case.
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Fig. 4. Trajectory with y0 = 0

5 Conclusion

In this paper, we have presented a method of data analysis based on a dynamic
data probe. By combining this method with another coming from control the-
ory, we have shown that it is feasible to guide the probe to seek out particular
output values and thus to seek out particular data clusters. We are currently
investigating the influence of the various parameters in our model.
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Abstract. The problem of classifying chemical compounds is studied in
this paper. An approach based on minimal contrast and common topo-
logical patterns discovered from compounds dataset is presented. The al-
gorithm is strongly associated with the classical emerging patterns tech-
niques known from decision tables. We tested the proposed algorithm on
real classification problems. Results show that it provides better classi-
fication accuracy than other existing algorithms. Another advantage of
the introduced classifier is that it has a simple, understandable structure
and can be easily extended by the expert knowledge.

1 Introduction

Classification problems have been deeply researched due to variety of applica-
tions. They appear in different fields of science and industry and may be solved
using different techniques: e.g. neural networks, rough sets, etc. Sample appli-
cations in medicine/chemistry may include detecting mutagenicity or carcino-
genicity of chemical compounds for a given organism.

Chemical molecules have various representations depending on their dimen-
sions and features. Basic representations are: (1D) strings expressed in SMILES
language, (2D) topological graphs of atoms and bonds, (3D) geometrical struc-
tures containing coordinates of atoms. This paper concentrates on 2D topologi-
cal graphs (atoms correspond to labelled vertices and bonds to labelled edges).
These graphs are typically quite small (in terms of number of vertices and edges)
and the average number of edges per vertex is usually slightly above 2.

The problem of classifying chemical compounds has been recently deeply stud-
ied. Two major approaches have been developed. The first one, quantitative
structure-activity relationships (QSAR) concentrates on physico-chemical prop-
erties derived from compounds while the other one searches directly structure of
the compound. The former requires genuine chemical knowledge while the latter
does not. Moreover the second approach is not limited to chemical applications
only: it was successfully applied in other areas (eg. cellphone reviews classifica-
tion). Its main idea is to discover small, significant substructures (patterns, frag-
ments) from the original structures which discriminate between different classes.
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Many techniques were used to achieve this goal, like Support Vector Machines
or Frequent Patterns.

This paper makes a few important contributions. The concepts of contrast
and common subgraphs are extended and used for building a Contrast Common
Patterns Classifier (CCPC). Some typical emerging patterns ideas are adapted to
improve classification results. Results for real chemical compounds classification
problems obtained by using the considered classifier are provided.

2 Preliminary Terminology

In this section we introduce some basic concepts and definitions [18], [3] that
will be used in the subsequent sections.

All discussed graphs are assumed to be undirected, connected (any two ver-
tices are linked by a path), labelled (both vertices and edges posses labels) and
simple (without loops and parallel edges). By the size of a graph we mean the
number of its edges. Capital letters (G, S, ...) denote single graphs while calli-
graphic letters (G, N , P , ...) denote sets of graphs.

Definition 1. Labelled graph G is a quadruple (V, E, α, β), where V is a non-
empty finite set of vertices, E ⊆ V ×V is a non-empty finite set of edges and α,
β are functions assigning labels to vertices and edges, respectively.

Definition 2. A graph S = (W, F, α, β) is a subgraph of G = (V, E, α, β) (writ-
ten as S ⊆ G) if: (1) W ⊆ V and(2) F ⊆ E ∩ (W × W ).

Definition 3. Let G be a set of graphs, G′ = (V ′, E′, α′, β′) and G =(V, E, α, β).
We say that G′ is isomorphic to G (written as G′ � G) if there is an injective
function f : V ′ −→ V such that: (1) ∀e′ = (u′, v′) ∈ E′ ∃e = (f(u′), f(v′)) ∈ E,
(2) ∀u′ ∈ V ′, α′(u′) = α(f(u′)) and (3) ∀e′ ∈ E′, β′(e′) = β(f(e′)). If f : V ′ −→
V is a bijective function then G′ is automorphic to G (written as G′ = G). If
G′ is not isomorphic to G then we write G′ 	� G.

A graph G′ is G-isomorphic (written as G′ � G) if: (1) ∃G ∈ G : G′ � G. A
graph G′ is not G-isomorphic (written as G′ 	� G) if: (1) ∀G ∈ G : G′ 	� G.

Definition 4. Given the sets of graphs P, N and a graph MPN . MPN is a
common subgraph for P and N if: (1) MPN � P and (2) MPN � N . Set of
all common subgraphs for P and N will be denoted by MPN . Set of all minimal
(with respect to size i.e. containing only one edge and two vertices) common
subgraphs for P and N will be denoted as MMin

PN .

Definition 5. Given the sets of graphs N and a graph P . A graph CP→N is a
contrast subgraph of P with respect to N if: (1) CP→N � P and (2) CP→N 	� N .
It is minimal (with respect to isomorphism) if all of CP→N ’s strict subgraphs are
not contrast subgraphs. Set of all minimal contrast subgraphs of P with respect
to N will be denoted as CMin

P→N .
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Definition 6. Given the sets of graphs P = {P1, ..., Pn} and N . Let CMin
Pi→N be

the set of all minimal contrast subgraphs of Pi with respect to N , where i ∈ 〈1, n〉.
CMin
P→N is a set of all minimal contrast subgraphs of P with respect to N if: (1)

∀C ∈ CMin
Pi→N ∃J ∈ CMin

P→N : J � C, for i ∈ 〈1, n〉, (2) ∀J1 ∈ CMin
P→N ¬∃J2 ∈

CMin
P→N \ J1 : J2 � J1.

CMin
P→N contains all minimal subgraphs (patterns) which are present in P (i.e.

each subgraph in CMin
P→N is isomorphic to at least one graph from P) and are

not present in N (i.e. each subgraph in CMin
P→N is not isomorphic to any graph

from N ). What is more CMin
P→N contains only minimal (with respect to size and

isomorphism) subgraphs.

Definition 7. Given the sets of graphs G, N , P and a graph G. Let S = {G′ ∈
G : G � G′}. Support of graph G in G is defined as follows: suppG(G) = card(S)

card(G) ,
where card(G) denotes the cardinal number of set G. Growth rate of graph G in
favour of P against N is expressed as follows: ρP→N (G) = suppP(G)

suppN (G) .

3 Related Work

In this section we review the state of the art in the areas associated with mining
contrast and common patterns.

Contrast patterns are substructures that appear (appear frequently) in one
class of objects and don’t appear (appear infrequently) in other classes. In data
mining patterns which uniquely identify certain class of objects are called jump-
ing emerging patterns (JEP). Patterns common for different classes are called
emerging patterns (EP). Concepts of jumping emerging patterns and emerging
patterns [11], [4], [5] have been deeply researched as a tool for classification
purposes.

The concept of contrast subgraphs was studied in [18], [1]. Ting and Bailey [18]
proposed an algorithm (containing backtracking tree and hypergraph traversal
algorithm) for mining all disconnected contrast subgraphs from dataset.

Another relevant area to review is mining frequent structures. Frequent struc-
ture is a structure which appears in samples of a given dataset more frequently
than the specified treshold. Agarwal and Srikant proposed an efficient algorithm
for mining frequent itemsets in the transaction database called Apriori. Simi-
lar algorithms were later proposed for mining frequent subgraphs from graphs
dataset: [9], [12]. They were also used for the classification purposes [2].

Mining patterns in graphs dataset which fulfil given conditions is a much more
challenging task than mining patterns in decision tables (relational databases).
The most computationally complex tasks are isomorphism and automorphism.
The first problem is proved to be NP -complete while the complexity of the
other one is still not known. All the algorithms for solving the isomorphism
problem present in the literature, have an exponential time complexity in the
worst case but polynomial solution has not been yet disproved. A universal
exhaustive algorithm for both of these problems was proposed in [19]. It operates
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on the matrix representation of graphs and tries to find a proper permutation
of nodes. Search space can be greatly reduced by using nodes invariants and
iterative partitioning [7]. Moreover multiple graph isomorphism problems can
be efficiently performed with canonical labelling [14], [7]. Canonical label is a
unique representation (code) of a graph such that two isomorphic graphs have
the same canonical label.

Another important issue is generating all non-isomorphic subgraphs of a given
graph. The algorithm for generating DFS (Depth First Search) code [20] can used
to enumerate all subgraphs and reduce the number of required isomorphism
checking.

One of the most popular approaches for graph classification is based on SVM
(Support Vector Machines). SVMs have good generalization properties (both
theoretically and experimentally) and they operate well in high-dimensional
datasets. Numerous different kernels using all three compound representations
were designed for this method [17], [10].

4 Classifier

In this section we propose a classification algorithm called: CCPC (Contrast
Common Patterns Classifier). We present only the general concept without im-
plementation details.

The concept of contrast subgraph is directly associated with the concept of
jumping emerging pattern (JEP). They both define a pattern (either subgraph or
set of items) exclusive for one class of objects. Similarly, the common subgraphs
are associated with emerging patterns (EP) i.e. patterns that are present in
both classes of objects. Measures for classical emerging patterns designed for
classification purposes are mainly based on the support of a pattern in different
classes of objects. This section adapts some classical scoring schemes to be used
with contrast and common subgraphs.

Let G be a set of training graphs (graphs used for the learning of a classifier)
and G be a test graph (graph to classify). Let G be divided into two decision
disjoint classes: positive P and negative N , G = N ∪ P . Let CMin

P→N be the set of
all minimal contrast subgraphs of P with respect to graph set N and CMin

N→P be
the set of all minimal contrast subgraphs of N with respect to P . Let MMin

PN be
the set of all minimal common subgraphs for P and N .

Let us now define a few score routines used for classification. Score is obtained
using contrast subgraphs according to the following equations:

scConAP(G) =
∑

K∈K
suppP(K), K = {K : K ∈ CMin

P→N ∧ K � G} (1)

scConAN (G) =
∑

K∈K
suppN (K), K = {K : K ∈ CMin

N→P ∧ K � G} (2)

scConBP(G) =
1

λP
∗

∑

K∈K
suppP(K), K = {K : K ∈ CMin

P→N ∧ K � G} (3)
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scConBN (G) =
1

λN
∗

∑

K∈K
suppN (K), K = {K : K ∈ CMin

N→P ∧ K � G} (4)

where λP , λN are scaling factors. They are median values from statistics of the
contrast scores (1, 2) determined for each graph from both classes: P , N .

Score is also calculated using common subgraphs according to the following
equations:

scComAP(G) =
∑

K∈K
suppP(K), K = {K : K ∈ MMin

PN ∧ K � G} (5)

scComAN (G) =
∑

K∈K
suppN (K), K = {K : K ∈ MMin

PN ∧ K � G} (6)

scComBP(G) =
∑

K∈K
ρP→N (G), K = {K : K ∈ MMin

PN ∧ K � G} (7)

scComBN (G) =
∑

K∈K
ρN→P(G), K = {K : K ∈ MMin

PN ∧ K � G} (8)

In (5) and (6) score depends directly on the support of the subgraphs, whereas
in (7) and (8) score depends on the growth rate of certain patterns.

Classification process looks as follows. First scores based on contrast sub-
graphs are calculated for each class. We can choose between presented scoring
schemes:

– scConA - we calculate scConAP(G) and scConAN (G) from eqs. (1) and (2),
– scConB - we calculate scConBP(G) and scConBN (G) from eqs. (3) and (4).

Test example G is assigned to a class with a higher score. If both scores are
equal then G remains unclassified and scores based on common subgraphs are
calculated. Again we can choose one of the two approaches:

– scComA - we calculate scComAP(G) and scComAN (G) eqs (5) and (6),
– scComB - we calculate scComBP(G) and scComBN (G) eqs (7) and (8).

Test sample is assigned to a class with a higher score. If both scores are equal
then G remains unclassified.

5 Experiments

We performed a set of experiments on two popular chemical compound datasets
(Table 1) to measure performance and properties of our classification algorithms.
Later we compared the results with those achieved by other approaches.

Dataset MUTAG [16] reports mutagenicity of 188 chemical compounds in
Salmonella typhimurium. PTC (Predictive Toxicology Challenge) [15], [8] reports
carcinogenicity of several hundred compounds for female mice (FM), female rats
(FR), male mice (MM) and male rats (MR). In the case of mutagenicity one
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classification problem is considered while in the PTC four ones, i.e. for FM, FR,
MM, MR. In each problem there are two decision classes: negative and positive.

The performance of classifiers (ability to assign the correct class to a com-
pound) was evaluated using leave-one-out cross-validation procedure. Accuracy
of a classifier is expressed as the percentage of correctly classified molecules. Ad-
ditionally we plotted ROC curves [13] which display performance of classifiers

Table 1. Detailed information on MUTAG and PTC datasets

Dataset
Number of compounds (%) Average number of Max. number of

Total Negative Positive
Atoms Bonds Atoms Bonds

in a single compound

MUTAG 188 63 (33.5) 125 (66.5) 17.9 19.8 28 33
PTC-FM 349 206 (59.0) 143 (41.0) 14.1 14.5 64 71
PTC-FR 351 230 (65.5) 121 (34.5) 14.6 15.0 64 71
PTC-MM 336 207 (61.6) 129 (38.4) 14.0 14.4 64 71
PTC-MR 344 192 (55.8) 152 (44.2) 14.3 14.7 64 71

Table 2. Average cardinality of contrast and common subgraphs sets for different
datasets (MUTAG, PTC) and maximal contrast subgraph sizes (1, 4, 7(8)). Average cal-
culated over all iterations performed during leave-one-out cross-validation procedure.

Average MUTAG PTC-FM PTC-FR PTC-MM PTC-MR
card. of set 1 4 8 1 4 7 1 4 7 1 4 7 1 4 7

CMin
N→P 2 38 272 19 182 946 29 187 944 23 184 910 13 156 849

CMin
P→N 2 39 550 11 97 589 3 88 572 11 86 585 14 106 659

MMin
PN 14 14 14 32 32 32 32 32 32 29 29 29 31 31 31

Table 3. Leave-one-out cross-validation results (accuracy and ROC score in %) for
the MUTAG dataset using different contrast and common subgraph scorings (scConA,
scConB, scComA, scComB) with maximal contrast subgraph sizes (1 - 8). Bold face
indicates highest values of accuracy and ROC score for each dataset

Dataset scConA scConA scConB scConB
(Maximal contrast scComA scComB scComA scComB

subgraph size) Acc. ROC Acc. ROC Acc. ROC Acc. ROC

MUTAG

1 17.0 0.0 74.5 62.7 17.0 0.0 74.5 62.7
2 19.1 26.6 76.1 65.1 19.1 26.6 76.1 65.1
3 27.7 34.2 78.2 70.6 28.2 34.6 78.7 71.0
4 33.0 40.2 83.0 79.3 36.7 43.7 86.7 82.9
5 47.3 52.5 84.0 81.7 51.6 56.1 88.3 85.3
6 72.3 72.9 87.2 84.5 76.6 77.3 91.5 88.9
7 80.9 76.5 84.6 80.5 87.8 84.9 91.5 88.9
8 81.9 76.6 84.0 79.3 90.4 87.3 92.6 90.1
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without regard to class distribution. The ROC curve plots the number of true
positive predictions as a function of the number of false positive predictions,
changing together with the change of a chosen parameter of the method. ROC
score is expressed as a normalized area under the ROC curve.

CCPC classifier is a discrete classifier (it generates only class label for each
test object). Such a classifier is characterized by a pair (false positive rate and

Table 4. Leave-one-out cross-validation results (accuracy and ROC score in %) for
the PTC dataset using different contrast and common subgraph scorings (scConA,
scConB, scComA, scComB) with maximal contrast subgraph sizes (1 - 7). Bold face
indicates highest values of accuracy and ROC score for each dataset.

Dataset scConA scConA scConB scConB
(Maximal contrast scComA scComB scComA scComB

subgraph size) Acc. ROC Acc. ROC Acc. ROC Acc. ROC

PTC-FM

1 61.3 54.5 41.3 45.2 61.6 54.9 41.5 45.6
2 60.7 54.2 43.3 46.5 62.2 55.8 44.7 48.0
3 59.9 53.6 48.4 50.0 62.8 56.7 51.3 53.1
4 61.9 56.4 59.0 58.7 66.8 61.6 63.9 63.9
5 61.3 56.3 61.0 59.3 69.6 65.1 69.3 68.0
6 59.6 54.8 58.7 56.0 73.1 69.2 72.2 70.4
7 59.9 55.8 58.7 56.0 79.1 76.6 77.9 76.8

PTC-FR

1 62.4 49.8 36.2 42.9 63.2 50.6 37.0 43.7
2 63.0 51.0 36.8 43.9 64.1 52.2 37.9 45.2
3 64.7 53.3 46.7 51.9 65.8 54.5 47.9 53.2
4 66.4 55.7 56.4 57.3 71.8 62.0 61.8 63.6
5 65.0 54.9 57.5 56.1 73.8 64.9 66.4 66.1
6 62.7 53.9 58.4 55.9 74.4 66.7 70.1 68.8
7 63.2 55.7 59.5 56.6 78.6 71.9 74.9 72.8

PTC-MM

1 62.5 57.2 36.6 40.8 62.8 57.4 36.9 41.1
2 61.3 56.2 39.0 41.7 62.2 56.9 39.9 42.4
3 63.1 58.5 45.2 47.1 64.0 59.2 46.1 47.8
4 58.9 53.7 50.6 49.7 62.8 57.8 54.5 53.8
5 57.4 52.8 54.5 52.1 66.4 62.2 63.4 61.5
6 58.9 55.1 56.8 54.3 71.7 68.6 69.6 67.8
7 58.0 54.8 55.4 53.1 75.9 74.0 73.2 72.3

PTC-MR

1 54.9 49.6 42.2 46.2 55.2 49.9 42.4 46.5
2 54.7 49.7 44.5 48.3 54.9 50.0 44.8 48.7
3 55.8 51.2 48.8 52.0 56.7 52.0 49.7 52.9
4 56.1 52.1 53.2 54.6 59.0 55.1 56.1 57.6
5 52.9 49.1 54.1 54.2 61.0 57.6 62.2 62.7
6 50.6 47.6 52.9 52.8 66.0 63.2 68.3 68.3
7 52.9 50.5 55.2 55.0 71.5 69.2 73.8 73.7
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true positive rate) which corresponds to a single point in ROC space. Our ROC
curve is created by connecting this point to (0, 0) and (1, 1) [6].

As it was mentioned earlier, subgraph isomorphism is a computationally chal-
lenging task. In our experiments we restricted the sizes of contrast graphs to eight
(MUTAG) and seven (PTC) and performed a set of tests to present pattern size
influence on classification results.

Table 2 shows cardinality of contrast and common sets of subgraphs for both
datasets depending on maximal size of contrast graphs. Values were calculated
as an average over all iterations performed during leave-one-out cross-validation
procedure. Number of contrast subgraphs increases with maximal contrast sub-
graph size while number of common subgraphs remains constant.

Table 3, 4 show classification results for the examined datasets and maximal
contrast subgraph sizes gained by CCPC classifier using different combinations of
scoring routines. It can be observed that generally classification quality measures
increase with maximal contrast subgraph size.

Results obtained with the scConB scoring scheme are more accurate than
those obtained with scConA. According to Table 2 for the PTC datasets, the
number of contrast graphs for negative class is always greater than that for
the positive ones (for graph sizes greater than 1). In this case normalization of
scores for both classes by dividing them by median score for each class improve
classification results.

As far as common subgraphs scoring is concerned results obtained with
scComB (using the growth rate) are better than scComA (using only support).

Table 5 shows comparison of accuracy and ROC score for different classifiers.
We compare the results of our classifier (CCPC) with the following algorithms:
SVM [17], [2]; Subdue [2]; SubdueCL [2]; Frequent Sub-Structure Based Approach
[2]; Frequent Sub-Structure Based Approach with Sequential Rule Covering [2].
Our algorithm outperformed other approaches in both quality measures.

Table 5. Leave-one-out cross-validation results (accuracy and ROC score in %) for
the MUTAG and PTC datasets using different algorithms. Best results for each quality
measure are in bold face and second best are in italic face. NA indicates that certain
value was not available.

Algorithm MUTAG PTC-FM PTC-FR PTC-MM PTC-MR

Accuracy

CCPC 92.6 79.1 78.6 75.9 73.8
SVM 89.1 64.5 67.0 66.4 65.7

ROC score

CCPC 90.1 76.8 72.8 74.0 73.7
SVM NA 59.3 45.4 60.2 55.0

Subdue NA 64.2 58.5 61.9 57.4
SubdueCL NA 63.3 60.8 63.5 59.6
Freq. Sub. NA 67.3 63.4 65.5 62.6

Freq. Sub. Seq. Cov. NA 69.6 66.3 66.7 68.0
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6 Conclusions

In this paper we presented a new approach for solving chemical compounds clas-
sification problem. Our algorithm (CCPC - Contrast Common Patterns Clas-
sifier) uses concepts of contrast and common subgraphs as well as some ideas
characteristic for emerging patterns technique.

The results show that our algorithm outperformed the existing schemes. What
is more, construction and structure of our classifier is simpler than approaches
based on support vector machines (SVM). This feature lets the domain expert
to modify the classifier with professional knowledge by adding new patterns to
contrast or common subgraphs sets or by modifying their supports.

The main concept of our classifier is domain independent so it can be used to
solve classification problems in other areas as well.
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Abstract. This paper deals with power-quality (PQ) event detection,
classification and characterization using higher-order sliding cumulants
to examine the signals. Their maxima and minima are the main features,
and the classification strategy is based in competitive layers. Concretely,
we concentrate on the task of differentiating two types of transients (short
duration and long duration). By measuring the fourth-order central cu-
mulants’ maxima and minima, we build the two-dimensional feature mea-
sured vector. Cumulants are calculated over high-pass digitally filtered
signals, to avoid the low-frequency 50-Hz signal. We have observed that
the minima and maxima measurements produce clusters in the feature
space for 4 th-order cumulants; 3 rd-order cumulants are not capable of
differentiate these two very similar PQ events. The experience aims to
set the foundations of an automatic procedure for PQ event detection.

1 Introduction

Power quality event detection and classification is gaining importance due to
worldwide use of delicate electronic devices. Things like lightning, large switching
loads, non-linear load stresses, inadequate or incorrect wiring and grounding or
accidents involving electric lines, can create problems to sensitive equipment, if it
is designed to operate within narrow voltage limits, or if it does not incorporate
the capability of filtering fluctuations in the electrical supply [1,2].

The solution for a PQ problem implies the acquisition and monitoring of long
data records from the energy distribution system, along with an automated de-
tection and classification strategy which allows to identify the cause of these
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voltage anomalies. Signal processing tools have been widely used for this pur-
pose, and are mainly based in spectral analysis and wavelet transforms. These
second-order methods, the most familiar to the scientific community, are based
on the independence of the spectral components and evolution of the spectrum in
the time domain. Another tools are thresholding, linear classifiers and Bayesian
networks. The goal of the signal processing analysis is to get a feature vector from
the data record under study, which constitute the input to the computational
intelligence modulus, which has the task of classification.

Some recent works bring a different strategy, based in higher-order statistics
(HOS), in dealing with the analysis of transients within PQ analysis [2] and other
fields of Science [3]. Without perturbation, the 50-Hz of the voltage waveform
exhibits a Gaussian behavior. Deviations from Gaussianity can be detected and
characterized via HOS. Non-Gaussian processes need third and fourth order
statistical characterization in order to be recognized. In order words, second
order moments and cumulants could be not capable of differentiate non-Gaussian
events.

The situation described matches the problem of differentiating between a
transient of long duration named fault (within a signal period), and a short
duration transient (25 per cent of a cycle). This one could also bring the 50-Hz
voltage to zero instantly and, generally affects the sinusoid dramatically. By the
contrary, the long-duration transient could be considered as a modulating signal
(the 50-Hz signal is the carrier). These transients are intrinsically non-stationary,
so it is necessary a battery a observations (sample registers) to obtain a reliable
characterization.

The main contribution of this work consists of the application of higher-order
central cumulants to characterize PQ events (could be see as a complement of
[2]), along with the use of a competitive layer as the classification tool. Results
reveal that two different clusters, associated to both types of transients, can
be recognized in the 2D graph. The successful results convey the idea that the
physical underlying processes associated to the analyzed transients, generate
different types of deviations from the typical effects that the noise cause in the
50-Hz sinusoid voltage waveform.

The paper is organized as follows: Sect. 2 summarizes the main equations of
the cumulants used in the paper. Sect. 3 recalls the competitive layer’s foun-
dations, along with the Kohonen learning rule. The experience is described in
Sect. 4, and the conclusions are drawn in Sect. 5.

2 Higher-Order Cumulants

High-order statistics, known as cumulants, are used to infer new properties about
the data of non-Gaussian processes [4,5,6].

The relationship among the cumulant of r stochastic signals, {xi}i∈[1,r], and
their moments of order p, p ≤ r, can be calculated by using the Leonov-Shiryaev
formula [4,5,7,8]
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Cum(x1, ..., xr) =
∑

(−1)p−1 · (p − 1)! · E{
∏

i∈s1

xi}

· E{
∏

i∈s2

xj} · · ·E{
∏

i∈sp

xk}
(1)

where the addition operator is extended over all the partitions, like one of the
form (s1, s2, . . . , sp), p = 1, 2, · · · , r; and (1 ≤ i ≤ p ≤ r); si is a set belonging
to a partition of order p, of the set of integers 1,. . . ,r.

Let {x(t)} be an rth-order stationary random process. The rth-order cumu-
lant is defined as the joint rth-order cumulant of the random variables x(t),
x(t+τ1),. . . , x(t+τr−1),

Cr,x(τ1, τ2, . . . , τr−1)
= Cum[x(t), x(t + τ1), . . . , x(t + τr−1)].

(2)

Considering τ1 = τ2 = τ3 = 0 in Eq. (2), we have some particular cases:

γ2,x = E{x2(t)} = C2,x(0) (3a)

γ3,x = E{x3(t)} = C3,x(0, 0) (3b)

γ4,x = E{x4(t)} − 3(γ2,x)2 = C4,x(0, 0, 0) (3c)

Eqs. (3) are measurements of the variance, skewness and kurtosis of the distri-
bution in terms of cumulants at zero lags (the central cumulants). Normalized
kurtosis and skewness are defined as γ4,x/(γ2,x)2 and γ3,x/(γ2,x)3/2, respectively.
We will use and refer to normalized quantities because they are shift and scale
invariant.

3 Competitive Layers: A Brief Summary

The neurons in a competitive layer distribute themselves to recognize frequently
presented input vectors. The competitive transfer function accepts a net input
vector p for a layer (each neuron competes to respond to p) and returns neuron
outputs of 0 for all neurons except for the winner, the one associated with the
most positive element of net input. If all biases are 0, then the neuron whose
weight vector is closest to the input vector has the least negative net input and,
therefore, wins the competition to output a 1.

The winning neuron will move closer to the input, after this has been pre-
sented. The weights of the winning neuron are adjusted with the Kohonen learn-
ing rule. Supposing that the ith-neuron wins, the elements of the ith-row of the
input weight matrix (IW) are adjusted as shown in Eq. (4):

IW1,1
i (q) = IW1,1

i (q − 1) + α
[
p (q) − IW1,1

i (q − 1)
]
, (4)
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where p is the input vector, q is the time instant, and α is the learning rate
parameter. The Kohonen rule allows the weights of a neuron to learn an input
vector, so it is useful in recognition applications. Thus, the neuron whose weight
vector was closest to the input vector is updated to be even closer. The result is
that the winning neuron is more likely to win the competition the next time a
similar vector is presented. As more and more inputs are presented, each neuron
in the layer closest to a group of input vectors soon adjusts its weight vector
toward those inputs. Eventually, if there are enough neurons, every cluster of
similar input vectors will have a neuron that outputs 1 when a vector in the
cluster is presented, while outputting a 0 at all other times. Thus, the competitive
network learns to categorize the input vectors it sees.

4 Experimental Results

The aim is to differentiate between two classes of transients (PQ events), named
long-duration and short-duration. The experiment comprises two stages. The
feature extraction (classification) stage is based on the computation of cumu-
lants. Each vector’s coordinate corresponds to the local maximum and minimum
of the 4th-order central cumulant. And the classification stage is based on the
application of the competitive layer to the feature vectors, in order to obtain
two clusters in the feature plane. We use a two-neuron competitive layer, which
receives two-dimensional input feature vectors in this training stage.

We analyze a number of 16 1000-point (roughly) real-life registers during the
feature extraction stage. Before the computation of the cumulants, two pre-
processing actions have been performed over the sample signals. First, they have
been normalized because they exhibit very different-in-magnitude voltage levels.
Secondly, a high-pass digital filter (5th-order Butterworth model with a charac-
teristic frequency of 150 Hz) eliminates the low frequency components which are
not the targets of the experiment. This by the way increases the non-Gaussian
characteristics of the signals, which in fact are reflected in the higher order
cumulants.

After filtering, a 50-point sliding battery of central cumulants (2nd, 3rd and
4th order) are calculated. The window’s width (50 points) has been selected
neither to be so long to cover the whole signal nor to be very short. The algo-
rithm calculates the 3 central cumulants over 500 points, and then it jumps to
the following starting point; as a consequence we have 98 per cent overlapping
sliding windows (49/50=0.98). Thus, each computation over a window (called a
segment) outputs 3 cumulants.

Fig. 1 and Fig. 2 show an example of signal processing analysis of two
sample registers corresponding to a long-duration and a short-duration events,
respectively.

The 2nd-order cumulant sequence corresponds to the variance, which clearly
indicates the presence of an event. Both types of transients exhibit an increasing
variance in the neighborhood of the PQ event, that presents the same shape,
with only one maximum. The magnitude of this maximum is by the way the
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Fig. 1. Long duration transient analysis. From top to bottom: the original data record,
the filtered sequence, 2nd-3rd-4th-order central cumulants sliding windows, respectively.
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only available feature which can be used to distinguish different events from the
second order point of view. This may suggest the use of additional features in
order to distinguish different types of events.

For this reason the higher-order central cumulants are calculated. An unbi-
ased estimator of the cumulants has been selected. Third-order diagrams don’t
show quite different clusters if we consider a bi-dimensional space (2 coordinates
for each feature vector) because maxima and minima are similar. It is possible
to differentiate PQ events from the 3 rd-order perspective if we consider more
features in the input vector, like the number of extremes (maxima and minima),
and the order in which the maxima and the minima appear as time increases. In
this paper we have focussed the experience on a bi-dimensional representation
(2-dimensional feature vectors) because we obtain very intelligible 2-D graphs.

Fourth-order sliding cumulants exhibit clear differences, not only for the shape
of the computation graph (the bottom graph in Figs. 2 and 1), but also for the
different location of minima, which suggest a clustering for the points.

Fig. 3 presents the results of the training stage, using the Kohonen rule.
The horizontal (vertical) axis corresponds to the maxima (minima) value. Each
cross in the diagram corresponds to an input vector and the circles indicate
the final location of the weight vector (after learning) for the two neurons of
the competitive layer. Both weight vectors point to the asterisk, which is the
initializing point (the midpoint of the input intervals).
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Fig. 3. Competitive layer training results over 20 epochs
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The separation between classes (inter-class distance) is well defined. Both
types of PQ events are horizontally clustered. The correct configuration of the
clusters is corroborated during the simulation of the neural network, in which we
have obtained an approximate classification accuracy of 97 percent. During the
simulation new signals (randomly selected from our data base) were processed
using the method described.

The accuracy of the classification method increases with the number of data.
To evaluate the confidence of the statistics a significance test have been con-
ducted. This informs if the number of experiments is statistically significant
according to the fitness test [2]. As a result of the test, the number of measure-
ments is significatively correct.

5 Conclusion

In this paper we have proposed a method to detect and classify two PQ tran-
sients, named short and long-duration. The method comprises two stages. The
first includes pre-processing (normalizing and filtering) and outputs the 2-D fea-
ture vectors, each of which coordinate corresponds to the maximum and mini-
mum of the central cumulants. The second stage uses a neural network to classify
the signals into two clusters. This stage is different-in-nature from the one used
in [2] consisting of quadratic classifiers. The configuration of the clusters is as-
sessed during the simulation of the neural network, in which we have obtained
an acceptable classification accuracy.
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Pod Vodárenskou Věž́ı 2, 18207 Praha 8, Czech Republic

vejmelka@cs.cas.cz
2 Commission for Scientific Visualization, Austrian Academy of Sciences

Donau-City Str. 1, A-1220 Vienna, Austria
katerina.schindler@assoc.oeaw.ac.at

Abstract. We focus on the recently introduced nearest neighbor based
entropy estimator from Kraskov, Stögbauer and Grassberger (KSG) [10],
the nearest neighbor search of which is performed by the so called box
assisted algorithm [7]. We compare the performance of KSG with respect
to three spatial indexing methods: box-assisted, k-D trie and projection
method, on a problem of mutual information estimation of a variety of
pdfs and dimensionalities. We conclude that the k-D trie method is sig-
nificantly faster then box-assisted search in fixed-mass and fixed-radius
neighborhood searches in higher dimensions. The projection method is
much slower than both alternatives and not recommended for practical
use.

1 Introduction

Shannon differential entropy H(S) of random variable X with a continuous
density μ(x) is defined as (Shannon, [16]):

H(X) =
∫ ∞

−∞
μ(x) log(x)dx, (1)

where log is natural logarithm. The mutual information I(X, Y ) between two
random variables X with marginal pdf pX(x) and Y with marginal pdf pY (y) is
[16])

I(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
μ(x, y) log

μ(x, y)
pX(x)pY (y)

. (2)

and can be computed as
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I(X, Y ) = H(X) + H(Y ) − H(X, Y ). (3)

Since the introduction of Shannon entropy in 1948 [16], there have been a
variety of parametric and non-parametric methods developed for entropy esti-
mation (for a review of non-parametric estimators, see e.g. Beirlant [1]. Mutual
information (MI) is important to many areas and is difficult to be estimated
[13]. The most widespread method to approximate MI is the histogram method,
which suffers from the curse of dimensionality and has systematic errors as well
as Parzen window estimator [12]. Kozachenko and Leonenko developed a consis-
tent entropy estimator (KL) based on nearest neighbor search [9], [6]. Kraskov
et al. in [10] modified their algorithm into the so called KSG algorithm and
improved its performance on a variety of pdfs, as well as its applicability in
higher dimensional spaces. Compared to other methods in multivariate spaces
(Van Hulle [18]), KSG showed a very good precision also for non-Gaussian pdfs
(important e.g. for Independent Components Analysis [8]). To summarize, KSG
seems to be currently the most promising entropy and mutual information es-
timator. The authors of KSG selected the box assisted algorithm ([15]) as the
main search method. In this paper we focus on analyzing the box-assisted al-
gorithm and recommending fast and simple alternatives for performing spatial
queries in higher dimensions.

Section 2 presents the idea of the KSG method. The box-assisted algorithm
is described in Section 3. Section 4 presents the k-D trie algorithm and Section
5 the projection method. The setup and results of our experiments are analysed
in Section 6. Section 7 summarizes our results.

2 Estimators of Entropy and Mutual Information Using
Nearest Neighbor Search

First we shortly mention the entropy estimator KL introduced by Kozachenko
and Leonenko in [9], necessary for understanding the KSG method. For a detailed
derivation of both methods see [10] or [11]. For reasons of simplicity, we consider
the KL estimator in R2. The idea is, for each point zi = (xi, yi) ∈ R2 to rank
its neighbors by distance di,j = ‖zi − zj‖ : di,j1 ≤ di,j2 ≤ . . ., supposing ‖.‖ be a
metrics) and then to estimate H(X) from the average distance to the k−nearest
neighbor, averaged over all xi. Shannon entropy (1) can be understood as an
average of log μ(x) and then log μ(xi) ≈ ψ(k) − ψ(N) − mE(log ε) − log cm,
which leads to the KL entropy estimator

Ĥ(X) = −ψ(k) + ψ(N) + log(cm) +
m

N

N∑

i=1

log ε(i). (4)

Let Z = (X, Y ) be a random variable. The estimator of H(Z) differs from (4)
in that x is replaced by z, d is replaced by dZ = dX + dY and cd by cdX cdY :

Ĥ(X, Y ) = −ψ(k) + ψ(N) + log cdX cdY − ((dX + dY )/N)
N∑

i=1

log ε(i). (5)
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Formula (3) can be applied for the same k. This would however mean that dif-
ferent distance scales would be effectively used in the joint and marginal spaces.
However, the biases of formula (4) resulting from the nonuniformity of the den-
sity in marginal spaces would be different for the estimates H(X), H(Y ) and
H(X, Y ) and would not cancel. To avoid this, Kraskov et al. recommend not to
use fixed k for marginal entropy estimation. Two estimators are proposed for
dimension m, but here we consider only the first one (for simplicity reasons).
Assume that the k-th neighbor of xi is on one of the vertical sides of the square
of size ε(i) (in two dimensions). Then if there are altogether nx(i) points within
the vertical lines (xi − ε(i)/2, xi + ε(i)/2), then ε(i)/2 is the distance to the
(nx(i) + 1)-th neighbor of and xi and the KSG entropy estimator is

Ĥ(X) = − 1
N

N∑

i=1

ψ[nx(i) + 1] + ψ(N) + log cdX +
dX

N

N∑

i=1

log ε(i). (6)

The first m-dimensional MI KSG estimator in [10] can be written as:

I(1)(X1, . . . , Xm) = ψ(k) − (m − 1)ψ(N)− < ψ(nx1) + . . . + ψ(nxm) >, (7)

where < . . . >= (1/N)
∑N

i=1 E[. . . (i)] and nxi is the number of points xj so
that ‖xj − xj‖ < ε(i)/2. More details, including some hints for selection of
parameter k, influencing the precision of approximation, can be found in [10].
According to the authors, the above estimator has a very small bias. The KSG
algorithm spends most of its time in spatial queries. The steps necessary for the
computation of a single point contribution to the MI estimate are the following:

1. In the space Z, find the distance to the k-th nearest neighbor ε(k) from the
given reference point (fixed-mass-search),

2. In the spaces X and Y, find out how many points are in the hypersphere
of radius ε(k) centered around the projection of a reference point to the
respective subspace (fixed-radius-search).

Let us note here, that the fixed-mass-query is always performed in the space Z,
having the highest dimensionality; this query will take most of the computation
time. It is of utmost importance to find the best spatial indexing strategy for all
three cases. In this paper, we examine possible algorithms and give conditions
under which it is advantageous to apply a given spatial index. We base our
analysis on the maximum (L∞) norm. This is however not a requirement of the
KSG algorithm itself.

3 The Box Assisted Algorithm

Here we describe the box-assisted algorithm as presented by Schreiber in [15],
developed by Grassberger in [7] and associated with the KSG algorithm in [10]
and [11]. The basic idea of the box spatial indexing structure is to select two
dimensions and cover the projection space with equally sized boxes (squares).
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Any point of the observation space can be projected into exactly one of the
boxes. All of the points can be sorted into the boxes in O(N) time. It is possible
to use an array to store the sets of points contained in each box as a linked list
of indices. Schreiber [15] recommends using pointers but this is computationally
very expensive unless advanced allocation techniques are employed. When a fixed
range search is required, first the box containing the reference point is found;
secondly, the boxes that must be searched around can be efficiently identified
from the query radius ε > 0. If the query radius is known, then the boxes
should have the size of the query radius . In this way, only 9 boxes need to
be searched around a reference point regardless of the dimensionality of the
observation space. If a k-nearest neighbor search is required then it is necessary
to proceed from the box with the reference point along a (two dimensional)
Peano curve [14] (generally a ’spiral’ entirely filling an m-dimensional space).

The time complexity of the accelerated box-assisted algorithm (see [15]) is
O(N log N).

4 k-D Trie

This method is a recursive space-partitioning data structure for organizing points
in an k-dimensional space proposed by Friedman et al. [5]. A k-D trie is a varia-
tion on the k-D tree that only stores points in the leaf nodes, sometimes in small
collections called bins or buckets. Technically, the k in k-D trie refers to the
number of dimensions; however the designation k-D trie is usually used what-
ever the dimension of the observation space. In the following we will use k to
refer to the number of neighbors to be consistent with the authors of the KSG
algorithm.

A k-D trie is a structure that partitions the m-dimensional observation space
using m − 1 dimensional hyperplanes. The simplest procedure of constructing a
k-D trie has only one parameter min-points-before-split and can be described as
follows, for details please refer to [5].

The algorithm begins with gathering the points and sorting them along their
first coordinate. Then the median is found and its first coordinate is stored as
the pivot coordinate. The set is split into two subsets - one smaller than the
pivot and the second one larger. Tries can be broken arbitrarily and the pivot
may be assigned to either one. The above procedure is repeated on each of the
subsets while cycling through the coordinates of the points. If at any time a
subset has a smaller number of elements than min-points-before-split, the set is
not split anymore, but is stored as belonging to the current node and the node is
denoted as a leaf node. The result of this construction procedure is a tree which
stores groups of data points in each of its leaf nodes. The construction procedure
can be improved at the costs of programming and run-time complexity. Here we
will work only with the basic procedure described above. The cost of the above
tree construction has complexity O(N log N). The search procedure for k-nearest
neighbors briefly follows (for a detailed reference, please refer to [5]): Basically, it
is necessary to find the leaf node of the tree which contains the reference point.
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One searches all the points in that node and recurses back up the descended
path while searching other subtrees if it is determined that they could contain
some closer points. Fixed range search is performed similarly but the criterion
for descending into subtrees is different. The test condition is whether the region
to be searched overlaps with the part of the observation space partitioned by
that subtree. Both of the above tests can be implemented efficiently.

5 Projection Method

The idea of the projection method (Friedman et al., [4]) is to find the best pro-
jection axis in Rm minimizing the number of distance computations. In other
words, for a given test point, to find the axis with the smallest density of proto-
types around the test point. The algorithm can be applied with any Minkowski
metrics for 1 ≤ p ≤ ∞.

Basic Procedure. The preprocessing for this algorithm consists basically of or-
dering the data points on the values of one of the coordinates. For each test
point, the data points are examined in the order of their projected distance from
the test point on the sorted coordinate. When this projected distance becomes
larger than the distance (in the full dimensionality) to the k closest point of
those data points already examined, no more data need to be considered. The k
closest points of the examined points are those for the complete set.

Full Procedure. The points are ordered on several or all of the coordinates and
the one with the smallest local projected density in the neighborhood of the test
point is chosen. For each test point, the local projected sparsity on each axis
is estimated as si = |Xi,pi+ q

2
− Xi,pi− q

2
|, where Xi,j is the i-th coordinate of

the j-th ordered data point and pi is the position of the test point in the i-th
projection (q is the number of prototypes over which the sparsity is averaged on
each projection). The prototype ordering on that particular coordinate, for which
si is maximum, is chosen. Parameter q should correspond to a distance of about
2E[rm]. The computational time of the projection method is O(k1/mN1−1/m)
and preprocessing has O(N log N) complexity. The storage of qN additional
memory locations and for q = m, doubles the memory over that required by the
naive method.

6 Experiments

The results of experiments of Schreiber ([15] comparing the box assisted algo-
rithm to k-D trees for m ≤ 4 (implementation from Bingham and Kot [3]) and
to the naive algorithm were for fixed ε slightly better for box-assisted algorithm
than for k-D trees (by factors at most 1.75 times). We obtained similar results
for these dimensions and k-D trie; however when one extends the tests to the
higher dimensions, the behavior of each method differs widely. In all cases, the
size of the data set was 10000 samples, connected to the estimation of MI of
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various pdf’s. We focused on those sizes of 0 < ε � 1 for which the box assisted
algorithm achieved the fastest speed. In our experiments, we compared the com-
putational effectiveness of conducting k-nearest neighbor and fixed range queries
for various pdfs with the box-assisted algorithm, k-D trie, projection method and
naive search algorithm. We studied the dependence of the computational time on
the neighborhood size (fixed-radius-search), as well as on the number of neigh-
bors k (fixed-mass-search) in various space dimensions (m = 2, 3, 8, 16, 32). The
considered pdfs were the uniform, N(0, 1), exponential(1), Poisson(1) and the
Gamma(2,2). All data points were scaled to fit into the unit hypercube in Rm.
In the following we summarize the relative speed improvements of each method
against the naive search.

6.1 Fixed Radius Search

In the fixed range tests the box-assisted algorithm tends to be better than the
k-D trie for the dimensions m up to 4 (Fig. 1(a)); however the relative speed-
up is small, the maximum is a factor of 2. For higher dimensions, the k-D trie
is clearly better with a much larger relative speed-up, in tens and sometimes
even hundreds. An exception is the uniform distribution, where the box-assisted
search is still competitive in 8 dimensions for small ε neighborhoods. The box
assisted search was designed with the uniform distribution in mind, so one can
expect that the method works well with this pdf. Furthermore, uniform pdf does
not require the algorithm to adapt to the data as the point density is similar in
all parts of the space. The projection (Friedman) method often produces relative
speed-ups in units, which is theoretically a good result, however the method is
too slow to be applied in practice and inappropriate for large data sets such as
the ones tested. For most pdfs, none of the methods produces any reasonable
speed advantage over naive search in the 32-dimensional problems but sometimes
a significant speed-up is achieved even in higher dimensions (Fig. 1(b)).

(a) (b)

Fig. 1. Fixed radius neighborhood search relative speed-ups w.r.t. naive algorithm



796 M. Vejmelka and K. Hlaváčková-Schindler

6.2 Fixed Mass Search

When a fixed number of nearest neighbors is sought, the k-D trie method is
significantly faster in almost all of the cases except for 2-dimensional problems;
in this case, all the methods are comparable in efficiency for 1 or 2 neighbors. An
exception to the rule is the uniform distribution where the box method is about
3 times faster than k-D trie in 2 dimensions for k = 1. However there are also 2
dimensional settings where the k-D trie technique can be one much faster than
the box assisted search (Fig. 2(a)). For 32 dimensions, there almost no speed-
up in any of the methods. The projection method is completely inappropriate
for k ≥ 4 because the repeated neighbor searches are very time-consuming.
The improvement of the k-D trie method over the box assisted search is more
significant when a higher number of neighbors is sought (Fig. 2(b)).

(a) (b)

Fig. 2. Fixed mass neighborhood search relative speed-ups w.r.t. naive algorithm

7 Conclusion

In conclusion, we would like to evaluate the soundness of the motivations for
selection of the box-assisted algorithm for the KSG method. Some improvements
of this method have been published to date. For example, Theiler [17] reduced
the speed of the box-assisted algorithm to O(N) but only for dimensions m ≤ 3
under assumption that the data set is not too singularly distributed (a criterion
for this phenomenon was however not given). Schreiber [15] suggests a method
for coarsening the grid size ε by a linear factor greater than 1. The overall
conclusion in [15] was that the differences between the box assisted and and the
kD-tree algorithm are not pronounced enough to prefer one of the methods in
general (k-D trie algorithm was not by Schreiber considered). We consider the
basic version of the k-D trie algorithm to be very simple to code. Schreiber [15]
states that the box-assisted algorithm is faster than the simple kD-tree method
for fixed radius searches in data sets with lower dimensionality. Our numerical
experiments indicate that when comparing box-assisted search against a k-D
trie method, the last statement holds for the dimensions up to 3; the k-D trie
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tends to be significantly more efficient for dimensions greater than 3. In higher
dimensions, we recommend using the k-D trie method both for scanning fixed-
mass neighborhoods and for scanning fixed-radius neighborhoods.
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Abstract. Identifying bacterial promoters is an important step towards 
understanding gene regulation. In this paper, we address the problem of predicting 
the location of promoters in Escherichia coli. Language of bacterial sequence can 
be described using formal system such a context-free grammar, and problem of 
promoter region recognition replaced by grammar induction. The accepted 
method for this problem is to use grammar-based classifier system (GCS).  

1   Introduction 

Since a biological sequence is usually represented as a text that consists of a finite set 
of characters that represent nucleotides or amino acids, designing models based on 
formal languages have been constantly proposed since the early era of bioinformatics. 
Formal biosequence linguistic research has used finite-state automata, stochastic 
grammars based on hidden Markov models [5], and grammars based on 
computational logic [27-30]. The logic grammar approach to DNA language analysis 
involved mainly representing structures of a biological sequence in Definite Clause 
Grammar (DCG) and Prolog [23], [3], [25] or in systems of equivalent 
representational power to DCGs [16]. Formulation of DNA patterns in any formal 
grammar requires support of human (time consuming, as well as error prone method) 
and/or machine learning methods, such as knowledge-based neural network [31], 
[34], [16] or grammatical inference methods [26]. It is worth mention that the last 
approach concentrated mainly on the estimation of probability parameters of 
stochastic grammars while the problem of learning the structure of grammars remains 
a difficult task with a few positive results on biological sequences. 

In this paper a new grammatical inference approach to learning formal grammar 
for DNA sequence is proposed. It is also assumed that that language of biological 
sentences is expressed by (non stochastic) context-free grammar (CFG). CFG is 
induced by grammar-based classifier system (GCS), a new model of learning 
classifier system. 

The use of GCS will be demonstrated in recognition of Escherichia coli promoter 
sequences, which are probably the most studied and cited sequences in molecular 
biology.  
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CFG induction problems are sketched in second paragraph. Third section contains 
description of learning classifier systems, GCS preceded by short introduction to 
context-free grammars is presented in fourth paragraph. Fifth section contains 
biological preliminaries and presents the testbeds. Sixth section shows experimental 
results in promoter region recognition, whereas seventh section is a short summary. 

2   Context-Free Grammar Induction 

The process in which a system produces a grammar given a set of corpora is known as 
grammatical inference or grammar induction [6]. In general, the corpora may contain 
both positive and negative examples from the language under study, which is 
described most often by CFG. There are very strong negative results for the 
learnability of CFG. The main theorems are that it is impossible to evolve suitable 
grammar (each of the four classes of languages in the Chomsky hierarchy) only from 
positive examples [6], and that even the ability to ask equivalence queries does not 
guarantee exact identification of context-free language in polynomial time [1]. 
Effective algorithms exist only for regular languages, thus construction of algorithms 
that learn context-free grammar is critical and still open problem of grammar 
induction [7]. The approaches taken have been to provide learning algorithms with 
more helpful information, such as negative examples or structural information; to 
formulate alternative representation of CFGs; to restrict attention to subclasses of 
context-free languages that do not contain all finite languages; and to use Bayesian 
methods [16]. Grammar induction can be considered as a difficult optimization task. 
Evolutionary approaches are probabilistic search techniques especially suited for 
search and optimization problems where the problem space is large and complex. 
Many researchers have attacked the problem of grammar induction by using 
evolutionary methods to evolve (stochastic) CFG or equivalent pushdown automata 
[41], [40], [9], [4], [19], [13], [18], [10], [32], [11], [12], [35], but mostly for artificial 
languages like brackets, and palindromes. Grammar-based classifier system can be 
considered as a new evolutionary model. For surveys of the non-evolutionary 
approaches for CFG induction see [18].  

3   Learning Classifier Systems 

An ordinary Learning Classifier System (LCS), proposed by Holland [8], consists of 
three main elements: production system, rule rewarding system, and genetic algorithm 
(GA) – the discovery component. LCS learns by interacting with an environment. 
Production system receives a message from input detectors and posts a new one using 
output effectors. All messages are stored in a message list. A finite population of 
“condition-action” rules – classifiers – are kept to represent the current state of the 
system’s knowledge. These rules are used to accept incoming message and generate 
the new ones. Messages have the form of the binary vectors. Each classifier consists 
of the action part – which is also in the form of the binary vector – and the condition 
part – which is the ternary vector with elements in {0, 1, #} where # is a “don’t care” 
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symbol. Classifier matches message if there are matching symbols in all vector 
positions. The “don’t care” symbol matches both 0 and 1 in the message vector. 

In every production cycle each message from the message list is compared with the 
condition part of the classifiers. Matching rules are chosen to bid in the auction. The 
bids are proportional to the strength of the classifiers. Winner rule is “activated” 
which means that it posts its action to the message list. Rule rewarding system (also 
known as the reinforcement component) distributes the bids among the classifiers that 
were activated. The reward increases the classifiers strength. 

The discovery component is triggered every number of production cycles. GA 
chooses randomly, with the probability proportional to their fitness, two classifiers 
from the population. It applies crossover and mutation generating two new classifiers. 

For many years the research on LCS was done on Holland’s classifier system. All 
implementations shared more or less the same features which can summarized as 
follows (i) some form of a bucket brigade algorithm was used to distribute the 
rewards, (ii) evolution was triggered by the strength parameters of classifiers, (iii) the 
internal message list was used to keep track of past input [14]. 

During the last years new models of Holland’s system have been developed. 
Among others, two models appear particular worth to mention. The XCS classifier 
system [39] uses Q-learning to distribute the reward to classifiers, instead of bucket 
brigade algorithm; the genetic algorithm acts in environmental niches instead of on 
the whole population; and most important, the fitness of classifiers is based in the 
accuracy of classifier predictions, instead of the prediction itself. Stolzmann’s ACS 
[33] differs greatly from other LCS models in that ACS learns not only how to 
perform a certain task, but also an internal model of the dynamics of the task. In ACS 
classifiers are not simple condition-action rules but they are extended by an effect 
part, which is used to anticipate the environmental state. 

4   Grammar-Based Classifier System 

The GCS was widely described in previous works [36-38]. The system operates 
similar to the classic LCS but differs from them in (i) representation of classifiers 
population, (ii) scheme of classifiers’ matching to the environmental state, (iii) 
methods of exploring new classifiers. 

Population of classifiers has a form of a context-free grammar rule set in a 
Chomsky Normal Form. This is not a limitation actually because every CFG can be 
transformed into equivalent CNF. Chomsky Normal Form allows only production 
rules in the form of A→α or A→BC, where A, B, C are the non-terminal symbols and 
a is a terminal symbol. The first rule is an instance of terminal rewriting rule. These 
ones are not affected by the GA, and are generated automatically as the system meets 
unknown (new) terminal symbol. Left hand side of the rule plays a role of classifier’s 
action while the right side a classifier’s condition. System evolves only one grammar 
according to the so-called Michigan approach. In this approach each individual 
classifier – or grammar rule in GCS – is subject of the genetic algorithm’s operations. 
All classifiers (rules) form a population of evolving individuals. In each cycle a 
fitness calculating algorithm evaluates a value (an adaptation) of each classifier and a 
discovery component operates only on a single classifier. 
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Automatic learning CFG in GCS is realized with so-called grammatical inference 
from text [6]. According to this technique system learns using a training set that in 
this case consists of sentences both syntactically correct and incorrect. Grammar 
which accepts correct sentences and rejects incorrect ones is able to classify unseen so 
far sentences from a test set. Cocke-Younger-Kasami (CYK) parser, which operates 
in Θ(n3) time [42], is used to parse sentences from corpus. 

Environment of classifier system is substituted by an array of CYK parser. 
Classifier system matches the rules according to the current environmental state (state 
of parsing) and generates an action (or set of actions in GCS) pushing the parsing 
process toward the complete derivation of the sentence analyzed. 

The discovery component in GCS is extended in comparison with standard LCS. In 
some cases a “covering” procedure may occur, adding some useful rules to the 
system. It adds productions that allow continuing of parsing in the current state of the 
system. This feature utilizes for instance the fact that accepting 2-length sentences 
requires separate, designated rule in grammar in CNF. 

Apart from the “covering” a GA also explores the space searching for new, better 
rules. First GCS implementation used a simple rule fitness calculation algorithm 
which appreciated the ones commonly used in correct recognitions. Later 
implementations introduced the “fertility” technique, which made the rule fitness 
dependant on the amount of the descendant rules (in the sentence derivation tree) 
[37]. In both techniques classifiers used in parsing positive examples gain highest 
fitness values, unused classifiers are placed in the middle while the classifiers that 
parse negative examples gain lowest possible fitness values. 

GCS uses a mutation of GA that chooses two parents in each cycle to produce two 
offspring. The selection step uses the roulette wheel selection. After selection a 
classical crossover or mutation can occur. Offspring that are created replace existing 
classifiers based on their similarity using crowding technique, which preserves 
diversity in the population and extends preservation of the dependencies between 
rules by replacing classifiers by the similar ones. 

5   Biological Preliminaries and Experimental Testbeds 

During the last years many prokaryotic genomes have been sequenced, including that 
of Escherichia coli [2]. The gene content of these genomes was mostly 
computationally recognized. However, the promoter regions are still undetermined in 
most cases and the software able to accurately predict promoters in sequenced 
genomes is not yet available in public domain. Promoter recognition, the 
computational task of finding the promoter regions on a DNA sequence, is very 
important for defining the transcription units responsible for specific pathways 
(because gene prediction alone cannot provide the solution) and for analysis of gene 
regulation. A promoter enables the initiation of a gene expression after binding with 
an enzyme called RNA polymerase, which moves bidirectionally in searching for a 
promoter and starts making RNA according to the DNA sequence at the transcription 
initiation site following the promoter [20], [17]. The most significant patterns in 
E.coli promoter sequences are the −10 and −35 regions, which are approximately at 
the region of 10 bases and 35 bases before the transcription initiation site. The spacing 
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(gap) between the −10 and −35 regions is not fixed, ranging from 15 to 19 bases. The 
−35 and −10 sequences together are the contact region for RNA polymerase.  

The genome is treated by GCS as a string composed of letters {A, C, T, G}. The 
goal is, given an arbitrary potential promoter region to be able to find out whether it is 
true or false promoter region. As the learning set the database contributed by M. 
Noordewier and J. Shavlik to UCI repository [21] was used. The database consists of 
53 positive instances and 53 negative instances, 57 letters each. Negative learning 
sentences were derived from E. coli bacteriophage T7 belived to not contain any 
promoter sites. In order to get an estimate of how well the algorithm learned the 
concept of promoter, the test set consisting of unseen 36 instances including 18 
positive and 18 negative examples was prepared. Positive test instances were prepared 
by mutating the bases of the randomly chosen positive learning sentences in non-
critical positions, negative test instances by mutating in any positions of randomly 
chosen negative learning sentences. This method increases the amount of available 
examples and was first proposed in [22]. 

6   The Experiments 

Evolution on learning promoter database ran for 5,000 generations, with the following 
genetic parameters: number of nonterminal symbols 19, number of terminal symbols 
4, crossover probability 0.2, mutation probability 0.8, population consisted of 
maximal 150 classifiers where 130 of them were created randomly in the first 
generation, crowding factor 18, crowding size 3. The experiment was repeated 10 
times because GCS uses random classifiers during initialization and learning.  

After each execution four numbers were calculated: True Positives (correctly 
recognized positive examples), True Negatives (correctly recognized negatives), False 
Negatives (positives recognized as negatives), and False Positives (negatives 
recognized as positives). Then the average of these numbers were found and the 
following measures were calculated: Specificity, Sensitivity, and Accuracy. 
Specificity is a measure of the incidence of negative results in testing all the non-
promoter sequences, i.e. (True Negatives/(False Positives + True Negatives)) x 100. 
Sensitivity is a measure of the incidence of positive results in testing all the promoter 
sequences, i.e. (True Positives/(True Positives + False Negatives)) x 100. Accuracy is 
measured by the number of correct results, the sum of true positives and true 
negatives, in relation to the number of tests carried out, i.e. ((True Positives + True 
Negatives/Total) x 100. GCS achieved 74.5% accuracy, 87.5% specificity, and 62.5% 
sensitivity in the learning set. Much more interesting are the results gained during 
generalization tests on the previously unseen examples from test set. Table 1 
compares the results of GCS and two formal system based methods presented in [16]. 

Table 1. Different promoter recognition methods compared 

Method Specificity Sensitivity Accuracy 
KBANN 97 16 56 
WANN 82 69 75 

GCS 94 61 78 
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Leung at all [16] introduced Basic Gene Grammars (BGG) to represent many 
formulations of the knowledge of E.coli promoters. BGG is able to represent 
knowledge acquired from knowledge-based artificial neural network learning 
(KBANN approach [34]), and combination of grammar of weight matrices [24] and 
KBANN (denoted as WANN). Development of BGG is supported by DNA-
ChartParser. The method was tested on 300 E.coli promoters and 300 non-promoter 
random sequences. Authors have not announced what length of sequences was 
examined. GCS achieved better accuracy then individual KBANN grammar and 
combined grammars, and better specificity then WANN approach. 

7   Summary 

GCS was found useful in finding and representing E.coli promoter region. The 
grammar-based classifier system provided comparable or better results to the 
specialized formal system based on human-devised domain theory and knowledge 
discovered by neural network learning. It is worth mention, that proposed approach 
does not break up promoter regions into important or unimportant parts (such as 
contact, conformation, minus_35, minus_10), but treats them as whole entities. 
Therefore this method could be preferable in cases when we have sufficient number 
of known promoter regions, but might not know anything about their composition. 
The results suggest that the information in “unimportant” parts (gaps) might also be 
important for right recognition. 
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Abstract. In this paper we propose a new method for learning Bayesian
network classifiers in an indirect way instead of directly from data. This
new model is a classifier based on dependency networks [1] that is a
probabilistic graphical model similar to Bayesian networks but in which
directed cycles are allowed. The benefits from doing things in this way
are that learning process for dependency networks can be easier and sim-
pler than learning Bayesian networks, with the direct consequence that
learning algorithms could have good propierties about scalability. We
show that it is possible to take advantage of this facility to get Bayesian
networks classifiers without losing quality in classification.

1 Introduction

In this paper we present a new approach to learn Bayesian classifiers from a
representation of data in form of dependency network classifiers rather than
from data directly. This idea is taken from [2], where it is described a method
for learning general Bayesian networks (BNs) from dependency networks. De-
pendency networks (DNs) were proposed in [1] as a new probabilistic graphical
model similar to BNs, but with a key difference: the graph that encodes the
model structure does not have to be acyclic. As in BNs each node in a DN has
a conditional probability distribution given its parents in the graph. Althought
this feature can be observed as the capability to represent richer models, the
price we have to pay is that usual BNs inference algorithms cannot be applied
and Gibbs sampling has to be used in order to recover the joint probability
distribution (see [1]).

Learning a DN from data is easier than learning a BN, specially because re-
strictions about cycles are not taken into account and parents for each variable
can be discovered independently, which produces scalable algorithms. By learn-
ing BNs from DNs we can get two main advantages, as it is shown in [2]: First,
learning a DN is easier and faster than learning a BN from data; and second,
by transforming the obtained DN into a BN, we can use all the range of BNs
inference algorithms instead of using Gibbs sampling, which in general is slower.
When we focus in the task of classification the second advantage does not apply
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because as all the variables are instantiated but the class, there is no difference
in terms of inference between the two models. In spite of this fact, we can take
advantage of ease of learning DNs.

In this work we focus on the comparison of the classifier model KDB (k -
dependence Bayesian classifier [3]) with some proposal of dependency networks
classifiers based on the same idea as the KDB model. For the sake of completeness
we also consider other standard BN classifiers. To do this we have organized the
paper as follows: In Sect. 2 DNs are briefly described. In Sect. 3 we describe the
two-stage process of obtaining BN classifiers from DN classfiers learning from
data. In Sect. 4 we show the experimental results for the proposed algorithms
and compare them with state-of-the-art BN classifiers. In Sect. 5 we present our
conclusions and some open research lines for the future.

2 Preliminaries

A Bayesian network B over the domain X = {X1, X2, · · · , Xn}, can be defined as
a tuple (G,P ) where G is a directed acyclic graph, and P is a joint probability
distribution. Due to the conditional independence constraints encoded in the
model, each variable is independent of its non-descendants given its parents.
Thus, P can be factorized as follows:

P (X) =
n∏

i=1

P (Xi|Pai) (1)

A dependency network is similar to a BN, but the former can have cycles in
its graph. In this model, based on its conditional independence constraints, each
variable is independent of all other variables given its parents. A DN D can be
represented by (G,P) where G is a directed graph not necessarily acyclic, and
as in a BN P = {∀i, P (Xi|Pai)} is the set of local probability distributions,
one for each variable. In [1] it is shown that inference over DNs, recovering joint
probability distribution of X from the local probability distributions, is done by
means of Gibbs sampling instead of the traditional inference algorithms used for
BNs due to the potential existence of cycles.

A dependency network is said Consistent if P (X) can be obtained from P via
its factorization from the graph (Equation 1). This condition is very restrictive,
so in [1] the authors defined general DNs in which consistency is not required.
General DNs are interesting for automatic learning due to the fact that each local
probability distribution can be learned independently, although this local way
of processing can lead to inconsistencies in the joint probability distribution.
Furthermore, structural inconsistencies (Xi ∈ pa(Xj) but not Xj ∈ pa(Xi))
can be found in general DNs. Nonetheless, in [1] the authors argued that these
inconsistencies can disappear, or at least be reduced to the minimum when a
reasonably large dataset is used to learn from. In this work we only consider
general DNs.

With respect to inference, due to the fact that we focus on classification
and under the assumption of complete data (i.e. no missing data neither in the
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training set nor in the test set), Gibbs sampling can be avoided. This result comes
from the fact that we can use modified ordered Gibbs sampling as designed in
[1], where the sampling process for a variable can be avoided if the values taken
by its parents are known. It is clear that this is the case in classification where
MAP hypothesis is used to determine the class for a given instance.

3 Algorithms

In this Section we present our DN-based classifiers, that are based on the well
known KDB classifier [3]. In KDB the idea is to extend the Naive Bayes classifier
by allowing to each predictive variable to have k parents appart of the class
(C). Thus, the algorithm computes the mutual information I(Xi; C) for each
predictive variable, and process them in decreasing order of I(·; ·). Then, when
variable Xi is being processed the algorithm computes I(Xi; Xj |C) for each Xj

already included in the model. The k variables with highest value of I(Xi; ·|C)
are made parents of Xi.

Taking the idea behind of KDB algorithm and with the possibility of using
cycles, we propose the following three DN-based Bayesian classifiers:

KDDN1.- k-dependence network classifier 1 (KDDN1) is our simplest proposal
and it is a direct adaptation of KDB. Thus, for each variable Xi we pick the k
variables with higher I(Xi; ·|C) and make them parents of Xi (see Fig. 1). Notice
that we do not need to sort previously the predictive variables by using I(·; C)
and that by using KDDN1 all the predictive variables have exactly k parents
(with it is not true for the first k variables considered in KDB). With this
algorithm we select the more informative variables (given the class) as parents
for each variable, but it is easy to see that structural inconsistencies can appear.

I n i t i a l i z e s t ru c tu r e to Naive Bayes

For each va r i ab l e Xi

Find k v a r i a b l e s (Xj1 , . . . , Xjk ) with the h ighes t I (Xi ;Xj |C)
Make these k v a r i a b l e s parents f o r Xi

Fig. 1. Pseudo-code for KDDN1 algorithm

KDDN2.- The second proposal, KDDN2, is more complex and tries avoid struc-
tural inconsistencies. To accomplish this, all links are added in pairs, that is,
if Xj → Xi is added then Xi → Xj is also added. Of course, the addition is
allowed only if pa(Xi) < k and pa(Xj) < k, in other case, we discard Xj and
look for the next variable in the ranking I(·, ·|C). Notice that in this case the
order in which variables are analyzed is relevant, so we compute I(Xi, Xj|C) for
each pair (i, j), s.t. i < j and sort them in decreasing order (see Fig. 2).



Learning Bayesian Classifiers from Dependency Network Classifiers 809

I n i t i a l i z e s t ru c tu r e to Naive Bayes
Compute a vec tor with I (Xi ; Xj |C) f o r a l l p a i r s ( i , j ) s . t . i< j
Sort vec tor in decreas ing order

While the re was v a r i a b l e s without k parents AND elements in
vec tor
Get next pa i r (Xi ,Xj ) from vector
I f ( parents (Xi ) < k ) AND ( parents (Xj ) < k )

Add l i n k s Xj −> Xi and Xi −> Xj

Fig. 2. Pseudo-code for KDDN2 algorithm

I n i t i a l i z e s t ru c tu r e to Naive Bayes
Compute vec tor1 with I (Xi ;C) va lue s f o r a l l i =1. . n
Compute vec tor2 with I (Xi ; Xj |C) va lues f o r a l l i , j =1. . n ; i< j
Sort vec tor1 and vector2 decreas ing

For i=1 to n do
Xi ← va r i ab l e in vec tor1 [ i ]
Go to the p o s i t i o n 1 o f vec tor2
While parents (Xi ) < k

Get next pa i r in vec tor2 with Xi ((Xi, Xj) or (Xj , Xi))
Add new l i n k Xj −> Xi

I f ( parents (Xj ) < k ) add new l i n k Xi −> Xj

Fig. 3. Pseudo-code for KDDN3 algorithm

(GD, PD) ← Learn dependency network c l a s s i f i e r from data
GB = GD ← I n i t i a l i z e BN s t ru c tu r e to DN s t ru c tu r e

E = {Ei s.t. link Ei is included in a cycle}
While |E| �= 0 do

For each l ink , Ei ∈ E
Evaluate s t ru c tu r e GB \ {Ei}

Let Emax be the l i n k with the best r e s u l t
Remove Emax from GB and update E

Return (GB , PB)

Fig. 4. Pseudo-code for DN2BN algorithm
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KDDN3.- The third proposal, KDDN3, is between the other two in the sense
that it does not avoid all the structural inconsistencies, but tries to reduce them
to the minimum. The idea is that if we decide to add link Xi → Xj, then we
also add Xj → Xi if possible. Again the order in which variables are considered
is relevant, so we first rank the variables by using I(·, C) (see Fig. 3).

From DN-based Bayesian classifiers to BN classifiers.- Once we have learnt DN-
based classifiers from data it is time to transform them into BN classifiers. The
idea of this algorithm is taken from [2] but our approach is different. The algo-
rithm is just a wrapper algorithm which behaves greedily by removing at each
step the link (from those that belong to any cycle) whose elimination yields the
best classifier. As we have mention our algorithm is a wrapper because the best
classifier is measured in terms of its accuracy by using a cross validation with
k=5 folds (see Fig. 4 for a description of the algorithm).

4 Results

To evaluate the Bayesian classifiers learned from DN classifiers and to measure
their quality, we have selected a set of datasets from the UCI repository [4].
These datasets are described in Table 1. We have preprocessed the dataset in
order to remove missing values (replacing by the mean or mode) and to discretize
continuous variables (Fayyad and Irani [5] algorithm was used) The experimen-
tation process consists on running each algorithm for each database in a 5x2
cross validation as described in [6]. State-of-the-art BN classfiers: KDB [3], with
k=1,2 and 3; TAN [7] and Naive Bayes [8,9]; have been used as control algo-
rithms in order to test our proposals. The results for these models are shown
in Table 2, while Table 3 shows the results for the KDDN models and Table 4
shows the results for the Bayesian classifiers obtained from DN-based classifiers
by using DN2BN algorithm.

Table 1. Description of the datasets used in the experiments

Datasets instances attributes |C| continuous? missing?

australian 690 15 2 yes no

heart 270 14 2 yes no

hepatitis 155 20 2 yes yes

iris 150 5 3 yes no

lung 32 57 3 no yes

pima 768 9 2 yes no

post-op 90 9 3 yes yes

segment 2310 20 7 yes no

soybean 683 36 19 no yes

vehicle 846 19 4 yes no

vote 435 17 2 no yes
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Table 2. Classification accuracy for BN classifiers

KDB

1 2 3 NB TAN

australian 84.6 83.9 84.3 86.3 83.9

heart 81.6 80.7 79.3 84.2 81.9

hepatitis 87.9 86.8 86.5 85.0 85.3

iris 95.1 96.1 95.9 96.3 94.8

lung 48.8 48.1 41.9 52.5 52.5
pima 76.3 76.2 75.5 76.9 77.2

post op 66.2 65.3 65.6 67.3 65.3

segment 94.2 92.7 91.6 90.9 93.7

soybean 91.6 87.0 85.7 90.7 89.9

vehicle 71.2 70.6 69.6 62.7 71.9
vote 93.6 94.9 95.0 90.2 94.5

Table 3. Classification accuracy for the KDDN algorithms (k=1,2 and 3)

KDDN1 KDDN2 KDDN3

1 2 3 1 2 3 1 2 3

australian 81.9 78.1 77.0 84.4 80.0 80.9 81.5 79.1 78.2

heart 80.1 78.0 74.8 79.9 77.4 75.0 81.0 77.6 73.5

hepatitis 85.4 84.3 84.1 85.3 85.3 84.8 84.4 83.9 83.4

iris 93.9 87.6 83.2 94.5 91.3 83.2 94.1 89.1 83.2

lung 51.3 48.8 40.0 46.9 49.4 47.5 42.5 47.5 41.3

pima 75.6 71.9 69.5 76.3 73.8 70.3 74.9 72.3 69.4

post op 62.2 64.4 65.8 64.9 60.7 63.3 62.7 64.9 67.1

segment 93.4 92.6 90.5 93.0 93.9 91.5 93.0 92.7 90.9

soybean 88.8 84.3 81.4 88.7 87.3 86.3 87.6 84.5 82.4

vehicle 70.6 70.6 70.0 68.3 69.7 70.4 71.0 70.7 69.9

vote 9471 9338 9228 9297 9237 9186 9430 9255 9117

4.1 Analysis of the Results

Firstly we start by answering whether the models obtained by DN2BN algorithm
improve the (KDDN) model used as initial point. To accomplish this task we
use the Wilcoxon signed ranks test between each pair of models for each value
of k. The results for these tests are shown in Table 5, and in all cases, but one,
DN2BN algorithm produces significant improvements. The only case in which
the improvement is not statistically significant is the one whose initial model
was KDDN1 with k = 1, but, in spite of that, the model from DN2BN win in
more databases to KDDN1-1. Therefore we can say that the DN2BN algorithm
improves significantly the dependency network classifiers by transforming them
into Bayesian clasifiers.

The second step will be to compare the results obtained by state-of-the-art
classifiers and those obtained by the models induced by DN2BN algorithm. In
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Table 4. Classification accuracy for the BN classifiers learned with the DN2BN algo-
rithm from the KDDN models (k=1,2 and 3)

DN2BNKDDN1 DN2BNKDDN2 DN2BNKDDN3

1 2 3 1 2 3 1 2 3

australian 84.8 83.0 83.0 86.1 86.0 85.5 84.9 85.1 84.2

heart 82.1 81.0 80.0 83.3 82.4 81.5 82.7 81.1 80.7

hepatitis 86.7 85.0 85.7 85.2 86.9 85.8 86.6 85.7 86.3

iris 94.9 95.9 96.0 96.1 95.6 96.0 94.8 95.6 96.0

lung 46.9 47.5 45.6 51.9 45.0 44.4 45.6 47.5 45.6

pima 77.6 76.2 75.4 77.1 77.7 77.0 77.6 75.6 75.2

post op 65.3 65.1 63.8 68.7 69.3 66.0 65.3 64.4 65.3

segment 93.2 93.0 91.2 93.7 94.8 94.8 93.4 93.5 92.9

soybean 90.2 88.1 86.2 92.0 91.4 92.0 90.8 90.8 90.1

vehicle 71.4 70.9 69.8 66.9 69.4 71.0 71.4 70.6 69.9

vote 94.2 94.0 93.8 91.6 92.9 93.2 93.3 94.4 94.5

Table 5. Results (p-values) obtained by the Wilcoxon signed ranks test between each
KDDN model and the one obtained by DN2BN algorithm. We highlight in bold those
values than mean a significant difference (α = 0.05).

KDDN1 vs DN2BN KDDN2 vs DN2BN KDDN3 vs DN2BN

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

0.10 0.01 0.01 0.04 0.03 0.01 0.01 0.01 0.00

Table 6. Algorithms’ distribution obtained by the Nemenyi test

Group 1 DN2BNKDDN2−1, DN2BNKDDN2−2,KDB-1

Group 2 DN2BNKDDN2−3, DN2BNKDDN1−1, DN2BNKDDN3−1

Group 3 DN2BNKDDN1−1, DN2BNKDDN3−1, TAN, Naive Bayes

Group 4 KDB-2, DN2BNKDDN3−2

Group 5 DN2BNKDDN3−3

Group 6 DN2BNKDDN1−2, KDB-3

Group 7 DN2BNKDDN1−3

this case we make a global comparison in order to decide whether or not all the
algorithms compared exhibit the same behaviour (i.e. no significant difference),
by the non-parametric Friedman test. With the results shown in Tables 2 and
4 we get that the statistic value for Friedman test is χ2

F = 24.1742, that is
greater than the critic value 22.3620. Therefore, we must conclude that at least
one model presents results significantly different from the others. To get more
insight we carry out a post-hoc test, the Nemenyi test, which splits algorithms
in groups, placing comparable (i.e. non significangly different) algorithms in the
same group. The distribution obtained by Nemenyi test, ordered by accuracy, is
shown in Table 6. From the statistical analysis we can conclude that two models,
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DN2BNKDDN2−1, DN2BNKDDN2−2, are as good as the best Bayesian classifier
in our experiments, KDB-1, although the former are slightly better.

5 Conclusions and Future Work

We have proposed a two-stage method to learn BN classifiers from data. The
method takes advantage of the fact that learning DNs from data is faster than
learning BNs. Furthermore, the process of learning DNs from data can be easily
parallelized, which is specially useful when dealing with very large datasets.
From our experiments we can conclude that state-of-the-art BN classifiers clearly
outperforms the DN-based classifiers proposed in this paper. In our oppinion this
fact is due to the inconsistencies presented in the DN models. Because of this, we
propose the second step in which BN classfiers are obtained from the DN-based
models. The statistical analysis carried out over the obtained results shows that
DN2BN algorithm can be at least as good as classical BN classifiers.

The main disadvantage of our approach is due to the wrapper process carried
out by DN2BN algorithm, that can be inefficient in time. Therefore we plan to
work on this point by constructing Bayesian classifiers with a new version of the
DN2BN algorithm based on the filter approach.
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Abstract. The longer the input sentences, the worse the syntactic parsing re-
sults. Therefore, a long sentence is first divided into several clauses, and syntac-
tic analysis for each clause is performed. Finally, all the analysis results are 
merged into one. In the merging process, it is difficult to determine the depend-
ency among clauses.  To handle such syntactic ambiguity among clauses, this 
paper proposes two-step clause-dependency determination method based on 
machine learning techniques. We extract various clause-specific features, and 
analyze the effect of each feature on the performance. For the Korean texts, we 
experiment using four kinds of machine-learning methods. Logitboosting 
method performed best and it also outperformed the previous rule-based  
methods. 

1   Introduction 

Syntactic analysis based on a dependency structure is popular in relatively free word-
order languages – such as Korean and Japanese. To construct a dependency structure 
is to find the governor-dependent relation for each word. The longer the input sen-
tences, the worse the syntactic analysis results, since syntactic ambiguity increases 
drastically. So, a long sentence is first segmented into clauses. After segmentation of 
a long sentence, syntactic analysis for each clause is performed. Then, finally all the 
analysis results are merged into one. In the merging process, we must determine the 
dependency relation among clauses. Many ambiguities exist in determining the de-
pendency among clauses, and it is a difficult issue in a dependency structure. There-
fore, this paper proposes two-step clause-dependency determination method. We 
extract clause-specific features in each clause, and employ several machine learning 
algorithms for determining the real governors of clauses. We also analyze which fea-
tures have good effects on the performance, and show that our proposed machine 
learning-based method is effective in the syntactic analysis among clauses.  

This paper is organized as follows. Section 2 presents previous work on 
determining the dependency among clauses. In section 3, the features for machine 
learning will be explained. In section 4, some experimental results will show that the 
proposed machine learning-based method is effective in determining the dependency 
of clauses. Finally a conclusion will be given.  
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2   Previous Work 

Several studies have focused on the dependency problem among clauses [1], [2], [3], 
[4], [5], [6].  In the syntactic analysis, the dependency ambiguity among clauses is a 
serious problem. So, many researches have tried to solve the dependency problem by 
detecting the scope embedding preference of clauses. If the scope of a clause ‘A’ is 
embedded within the scope of a clause ‘B’, then we determine that ‘B’ is the governor 
of the clause ‘A’. 

Shirai[1] manually extracted 54 final function words of Japanese clauses and classi-
fied them into 3 categories according to the embedding relation of their scopes. Based 
on the human linguistic knowledge, he decided the scope of 3 types (type A < type B 
< type C). However, many exceptional cases exist because the categories are too 
coarse.  Noma[4] classified clauses into 10 clause types according to the endings of 
the predicates of clauses. Noma[4] showed the table that indicates the embedding 
possibility between two clauses. For the English language, Roh[5] also applied heuris-
tic rules to determine the dependency among clause. These rules were constructed 
according to the comma and conjunction information.  

Utsuro[6] applied machine learning method for the dependency of clauses. He em-
ployed decision list algorithm using four features -- punctuation, grammatical tag, 
conjugation form of the final conjugative word, and lexicalized form of a clause. It 
showed good performance, but no comparison was shown with the performance of the 
previous rule-based methods. There was also no analysis about the significance of 
features on the performance. 

Kawahara[2] also employed Decision List method for the dependency among sub-
ordinate clauses. He only used two features – surface form of the ending of the final 
word in a clause and comma information. While the previous Shirai[1] and Minami[3] 
classified the surface forms into several classes, Kawahara[2] used the original sur-
face forms as a feature. The reason is the previous classifications were too coarse to 
handle a strength order among classes precisely.  

Previous works usually used rule-based methods. So, they have limits that they 
could not cope with many exceptional cases. Some previous researchers also applied 
machine learning methods. However, they did not show which feature is most effec-
tive on the performance, and which algorithm among machine learning techniques 
works better. Therefore, various experiments using machine learning techniques are 
needed, and the effect of each feature on the performance must be analyzed. 

To determine the dependency among clauses, we propose two-step clause-
dependency determination method based on machine learning techniques. We use 
various features including semantic and clause-specific features. We also compare our 
performance with those of previous methods. 

3   The Procedure to Determine the Dependency Among Clauses  

The dependency among clauses is determined through two steps.  In the next subsec-
tion, we explain these two steps in detail. 
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Table 1. Surface form types that cannot be the governor of a dependent clause 

Types of governor candidate clauses 
Surface 
form of 
the
ending of 
a clause 

~ha-
mye-
on-
seo
(whi-
le)

~had
- aga 
(whil
e)

~hae-
seo
(be-
cause)

~ha-
my-
eon
(if)

~han-
ika
(be-
cause)

~hae-
do
(thoug
h)

~ha-
ji-
man 
(but) 

~han-
unde
(and)

~ha-
nun
(whil
e)

~hamyeo 
nseo

X

~hadaga X X 
~haeseo X 
~hamye-    
on

X X X X 

~hanika X X X X X X X 
~haedo X X X X X 
~hajiman X X X X X X X 

Types
of
depen-
dent
clauses

~hanunde X X X X X X X X  
 X : cannot be the governor. 

3.1   Two Steps in Determining the Dependency Among Clauses  

Step 1: Reducing the governor candidates of a clause 
Since Korean is a head final language, the governor of a word is located in the right 
side of the word. So, when we select the governor of a clause, all the clauses in the 
right side of the clause are considered governor candidates. Therefore it needs to 
reduce the number of governor candidates. (From now, we call the clause that will be 
assigned one governor clause ‘dependent clause’.) 

From the rules that Noma[4] introduced,  we collected and modified the informa-
tion of the Korean clause types that cannot embed a certain type of a ‘dependent 
clause’. It means we can recognize the clauses that cannot be the governor of a certain 
‘dependent clause’.  

Table 1 shows the types of the clauses that cannot be the governor of a ‘dependent 
clause’, according to the surface form of the ending of the predicate in a ‘dependent 
clause’. Using the information in Table 1, we first exclude the clauses that cannot be 
the governor of a ‘dependent clause’ from the governor candidates. However, Table 1 
is only for 8 kinds of surface forms of the endings of ‘dependent clause’s. Therefore, 
it does not have a broad coverage.    

Step 2: Machine learning techniques to determine the dependency among clauses 
To determine the dependency among clauses, we apply various machine learning 
algorithms --such as Decision trees, Support vector machines, and two boosting 
methods.  Decision tree induction algorithms have been successfully applied to NLP 
problems, such as parsing [7], discourse analysis[8], and word segmentation[9]. SVM 
has also been used in many NLP applications [10], [11], [12]. SVMs have good char-
acteristics to cope with the data sparseness problem and achieve high generalization 
even with training data of a very high dimension. Boosting methods also show good 
performance for clause detection[13] and parsing[14]. The dependency decision  
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problem among clauses requires a multi-class classifier. Since SVMs are binary clas-
sifiers, we must extend SVMs to work as multi-class classifiers. As machine learning 
programs, we employed LIBSVM[15] for multi-class. For a decision tree algorithm, 
we employed a C4.5[16] decision tree induction program. For boosting, we used a 
Adaboost.M1[17] based on decision trees and Logitboost[18] using a decision stump 
as a base weak classifier.  

3.2   Features 

Since the head word of a clause is a predicate, we mainly use predicate information 
for the feature set of machine learning techniques. That is, feature extraction is done 
by focusing on predicates of clauses.  

Each clause has 5 features, as shown in Table 2. The 1st feature concerns the POS-
tag for a content word of a predicate.  A content word can be assigned one of 12 kinds 
of POS-tags, as shown in Table 3. The 2nd feature takes the value of the surface form 
of the last ending of a predicate. Korean is an agglutinative language and the ending 
of a predicate indicates the connective function with the next clause. So, the surface 
form of the ending can have an influence on the clause dependency. As a 3rd feature, a 
semantic concept of a predicate is used. A semantic concept expressed by the Ka-
dokawa thesaurus is divided into 1110 semantic classes. The 4th feature is a clause-
specific feature. It indicates whether a clause shares the same subject with a ‘depend-
ent clause’ or not. When clauses require the same subject, the subject appears only 
once in a sentence and clauses share the subject. In many cases, the real governor of a 
‘dependent clause’ is the nearest clause. However, if the nearest clause does not share 
the same subject with a ‘dependent clause’, then the real governor can be a far clause 
that shares the same subject with the ‘dependent clause’. So, the subject-sharing in-
formation is important.  The 5th feature deals with information on whether a predicate 
is followed by a comma or not. The use of a comma to insert a pause in a sentence is 
an important key in determining the embedding scope of clauses. So, it influences the 
dependency among clauses. The detailed values of each feature type are summarized 
in Table 3.  

Table 2. Linguistic feature types used for learning 

1st feature POS-tag for a content word of a predicate 
2nd feature Surface form of the last ending of a predicate 
3rd feature Semantic concept number of a predicate 
4th feature Whether a clause shares the same subject with a ‘dependent clause’ or

not
5th feature Whether comma is followed or not  

 
We use the information of 7 clauses– one is for a ‘dependent clause’, and the other 

6 clauses are for the near clauses on the right side of the ‘dependent clause’. Here, the 
6 clauses mean those that were not extracted from the governor candidates in step 1.  

The class set consists of 6 values (1~6) to indicate the position of the real governor 
clause.  
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Table 3.  Values for each feature type 

Feature type Values

1st common noun, propernoun, dependent noun, person pronoun, reflex-
ive pronoun, cardinal number, ordinal number, referent verb, other 
verb, referent adjective, other adjective, other 

2nd n, ntey, ntul, ncuk, nci, lci, lcini, kena, keniwa, kenmanun, key, ko, na,
nuntey, nunci, ni, nikka, taka, telato, tenci, … (all surface forms of
Korean endings of predicates) 

3rd Kadokawa thesaurus concept numbers
4th 1, 0 
5th 1, 0  

4   Experimental Evaluation 

The experiment to determine the dependency among clauses was evaluated under the 
KIBS1 data set of 23,330 Korean sentences, average 14.08 words/sentence, using 10-
cross validation.  

In our experiment, boosting methods performed better than those just using one 
classifier. Especially Logitboost showed best results among four machine learning 
methods. We think the reason is as follows. When we make training data manually, a 
lot of noise exists because training data size is big and many classes exist. Adaboost is 
weak in class noise. So, Logitboost is more robust than Adaboost [14]. In addition, in 
the multiclass problem, Logitboost is known for showing a better performance than 
Adaboost[5].  In the experiments using one classifier, SVM performed better than 
Decision Trees. As mentioned before, SVMs have good characteristics to cope with 
the data sparseness problem and achieve high generalization even with training data 
of a very high dimension.  

We experimented focusing on the following five things. 
 
1. Our two-step method vs. one-step method(using only 2nd step) 
2. Decision Trees vs. SVM vs. Adaboost vs. Logitboost performance 
3. Performance change when one kind of feature is removed 
4. Using original ‘surface form’ information vs. Classifying ‘surface form’ into 

5 classes (adnominal, final, coordinate, subordinate, quotative) 
5. Previous rule-based methods vs. Our proposed method 
 
In the experiments, we obtained the following results. 
 
1. Two-step clause-dependency determination method by reducing the number 

of governor candidates achieved an improvement in the performance of about 
3%.(see Table 5). 

2. The maximum precision is 85.23% using Logitboosting algorithm. (see Table 
5) 

                                                           
1 Korean Information Base provided by KOTERM/KAIST. 
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3. The most significant feature is the surface form of the ending of a predicate.  
However, the semantic concept and POS-tag information is not effective on 
the performance. (see Table 6) 

4. When we use the 5 class (adnominal, final, coordinate, subordinate, quota-
tive) information instead of surface form information, the performance be-
comes worse.  (see Table 6) 

5. Machine learning-based methods outperformed the previous rule-based 
methods (see Table 4 and Table 5) 

Table 4. Precision of rules in determining the dependency among clauses 

Nearest modifiee 
principle 

Noma[4]’s rule 

Precision 68.62% 73.09%  

Table 5. Precision of Machine learnings in determining the dependency among clauses 

Decision
Trees 

SVM Ada- 
boosting 

Logit- 
boosting 

Precision without Reducing can-
didates(one-step method) 

77.95% 78.33% 80.54% 82.01% 

Precision after Reducing candi-
dates (two-step method) 

80.28% 82.73% 83.85% 85.23% 

 

Table 6. Precision change when one kind of feature is removed 

Features Precision change 
Using all 5 features 0.00% 
4 features without POS-tag +1.06% 
4 features without surface form -2.69 % 
4 features without semantic info. +1.43% 
4 features without subject sharing info. -1.95% 
4 features without comma -2.16% 
5 features (Instead of surface form, using 5 class 
information) 

-2.10% 

 
 

As shown in Table 6, the semantic concept and POS-tag information has bad effect 
on the performance.  In other words, when we determine the dependency among 
clauses, the semantic concept and POS-tag of a content word are not important. How-
ever, the other 3 features – surface form, subject-sharing information, comma – have 
a good influence on determining the dependency among clauses. When using 4 fea-
tures without surface form information, the experiment showed the biggest decrease 
of precision. Namely, the most effective feature is the surface form of the ending of a 
predicate.  As mentioned before, the surface form information indicates the connec-
tive function with the next clause (e.g. ‘umulo(because)’  indicates it functions as a  
reason for the next clause). So, it contributes most significantly to the dependency 
among clauses. 
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To compare our performance with those of the previous methods, we performed 
two other experiments. One is the experiment based on the ‘nearest modifiee princi-
ple’. This principle determines that the governor clause is the right near clause of a 
‘dependent clause’. The other experiment is based on Noma[4]’s rule.  As described 
in Table 4 and Table 5, Machine-learning based methods showed better performance. 

 As shown in the last row of Table 6, the original surface form information is more 
effective than the class information, because classes are too coarse and cause informa-
tion loss.  

5   Conclusion 

This paper described a two-step method to determine the dependency among clauses 
based on machine learning techniques. In the first step, we reduce the number of gov-
ernor candidates. In the second step, the procedure to determine the dependency 
among clauses is performend based on various machine learning methods.  We also 
extracted 5 kinds of features in a clause and analyzed the effect of each feature on the 
performance.  

The experimental results show that the proposed method is effective in determining 
the dependency among clauses, and Logitboosting method shows the best 
performance, with the precision of  85.23 %. We also analyze that surface form of the 
ending of a predicate, comma, and subject-sharing information contribute to the 
performance. However, semantic information and POS-tag features decrease the 
performance.  

We plan to continue our research as followins. First, we will analyze the clause-
dependency errors after applying the proposed method, and try to improve the clause-
dependency performance.  Second, we will apply this method to other languages, 
because most languages have difficulty in determining the dependency among 
clauses.  
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Abstract. Currently the best algorithms for transcription factor binding site 
predictions are severely limited in accuracy. However, a non-linear combination 
of these algorithms could improve the quality of predictions. A support-vector 
machine was applied to combine the predictions of 12 key real valued algo-
rithms. The data was divided into a training set and a test set, of which two 
were constructed: filtered and unfiltered. In addition, a different “window” of 
consecutive results was used in the input vector in order to contextualize the 
neighbouring results. Finally, classification results were improved with the aid 
of under and over sampling techniques. Our major finding is that we can reduce 
the False-Positive rate significantly. We also found that the bigger the window, 
the higher the F-score, but the more likely it is to make a false positive predic-
tion, with the best trade-off being a window size of about 7. 

1   Introduction 

In this paper, we investigate the effect of contextualizing data, within the framework 
of improving the identification of transcription factor binding sites on sequences of 
DNA using a Support Vector Machine (SVM). There are several algorithms to search 
for binding sites in current use [1]. However, most of them are severely limited in 
their accuracy and yield many false positive results.  That imposes a serious problem 
for practicing biologists, as experimentally validating a prediction is costly.   

In [2] we attempted to reduce these false positive predictions using classifications 
techniques employed in the field of machine learning.  Since the data is exceptionally 
skewed (about 93 percent are in one class, not part of a binding site), we further dealt 
with the problem of classification in an imbalanced data set in [3].  Although we con-
textualized the data in previous work [2], the window size was fixed at 7.  In this pa-
per we extend this analysis for different sizes of windows. The change in outcome is 
reflected by a variety of performance metrics.  

2   Problem Domain 

There is currently a considerable research focus towards gaining a functional under-
standing of genomic regulatory control. Many important biological systems are  
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controlled, to some extent, by Gene Regulatory Networks (GRN’s) and an increased 
understanding of their regulation and encoding would be invaluable.  Transcriptional 
control of gene regulation is a fundamental feature of GRN’s, especially so in devel-
opmental GRN’s.  A crucial step for increasing our understanding of processes at this 
level is to be able to predict the short sequences of DNA that bind transcription fac-
tors (TFBS).  These sequences effectively determine the set of proteins which are able 
to influence the expression of a particular gene.  The computational prediction of 
TFBS is a necessary precursor for a genome wide analysis of GRN’s. 

The development of algorithms for the prediction of TFBS is a difficult problem.  
The rules that determine the specific set of sequences which a transcription factor will 
bind strongly with are both non-trivial and still not fully understood.  In spite of con-
siderable improvements in the accuracy of such algorithms in recent years, the high 
number of false positive predictions still severely limits the utility of such algorithms.  
Working on the premise that algorithms with differing algorithmic foundations may 
well be, to some degree, complementary, we have, in previous work, explored the use 
of machine learning methods for integrating 12 prediction algorithms [2]. In this work 
we explore the importance of data contextualization by using a “window” of 
neighbouring predictions as an input vector (see Sects. 3 and 5). In particular we ex-
plore the importance, if any, of the size of the window for improving prediction  
accuracy. 

3   Description of the Data 

The data is a sequence of 68910 nucleotides, each of which may be part of a binding 
site.  For each nucleotide there is a prediction result from each of the 12 base algo-
rithms, which may be either real valued or binary. Each nucleotide also has a label 
denoting whether it is part of a known binding site. The data therefore consists of 
68910 12-ary real vectors, each with an associated label. 

The data set was divided into a training set that consisted of 2/3 of the data, the re-
maining 1/3 was used as the test set. Amongst the data, there are repeated vectors,   
some with the same label (repeated items), and some with contradictory labels (incon-
sistent items). These items are unhelpful in the training set and were therefore re-
moved. The filtered training set is called the consistent training set. However, in the 
case of the test set, both the full set of data and the subset of consistent test items are 
considered. The full data set was called the unfiltered data set, whereas the subset of 
consisted test items was called the filtered data set.  

In the dataset, there are fewer than 10% binding positions amongst all the vectors, 
so this is an imbalanced dataset [4]. An imbalanced dataset imposes a problem for 
supervised classification algorithms, as they are expected to over-predict the majority 
class, namely the non binding site category. One of the techniques to overcome this 
problem is to apply the data based method: under-sampling of the majority class and 
over sampling of the minority class. For under sampling, a subset of data points from 
the majority class is randomly selected. For over sampling, the SMOTE algorithm is 
used [5].  The process of integrating, sampling and classifying the data, is illustrated 
in Fig. 1.  



824 M. Robinson et al. 

1
−1
0.9

0.6
−1

Known binding sites

results

  12

1

−0.47

−1 1 −1 −1−1

Gene sequence

CGA TTC

12 algorithms

−1 1 −11 −1−1

Sampling

Predictions

meta classifer
single

 

Fig. 1. The integration, sampling and classification of the data. For each location in the se-
quence, the prediction results of 12 the algorithms was integrated into one single vector.  The 
data was under and over sampled, and then classified using a meta-classifier. 

4   Contextualizing the Data 

As the data is drawn from a sequence of DNA nucleotides the label of other near 
locations is relevant to the label of a particular location.  In other words if a specific 
nucleotide is part of a binding site then it is highly likely that its neighbours will also 
be part of the same binding site.  Therefore, adding the neighbouring vectors of a 
particular vector, windowing the vectors, can improve predictions.  In [2] we used the 
location of the 3 nearest sites to either side of a given site, thereby constructing a 
window size of 7, and a consequent vector of 84 (12 times 7), as shown in Fig. 2.  

 

Fig. 2. Contextualising the data. In this example the window size is set to 7. The middle label 
prediction is the label for the windowed input. The length of each windowed input is now 12 ×  
(2K+1). 
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In this work, we used the location of K nearest locations to either side, where K = 
(1, 2, 3, 4, 5, 6). The result is a window size of 2K+1, and a consequent vector of 12 
times (2K+1).  Windowing the vectors has the additional benefit of eliminating most 
of the repeated and inconsistent data. In bigger windows, not only is the training set 
and the test set sizes increased, but also the difference between both test sets de-
creased, as can be seen in Table 1. 

Table 1. The sizes of training-set, testing set and filtered testing set used in this experiment. 
Note that as window size increases, the difference between the unfiltered and filtered test sets 
decreases. 

 
Set 

 
Window 

Size 
Training 

Unfiltered 
testing 

Filtered 
testing 

3 17701 22511 9767 
5 26770 22509 14399 
 7 32595 22507 17233 
9 36670 22505 19093 

11 39503 22503 20277 

13 41400 22501 21064 

5   Classifier Performance 

Classification accuracy rate is not sufficient as a standard measure for a problem do-
main with an imbalanced data. Therefore, several common performance metrics were 
applied, such as Recall (1), Precision (2), FP-rate (3), and an F-score (4) [6], [7]. 
Also, a Receiver Operating Characteristics (ROC) analysis [8] was applied. 

5.1   Performance Metric 

Based on the confusion matrix computed from the test results, several common per-
formance metrics can be defined, where TN is the number of True Negative samples; 
FP is the False Positive samples; FN is False Negative samples; TP is True Positive 
samples.  

Recall = 
FNTP

TP

+
  (1) 

Precision = 
FPTP

TP

+
  (2) 

FP-rate  = 
TNFP

FP

+
  (3) 
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F-score = 2 × Recall × Precision

Recall + Precision
  

(4) 

Note that for all the measures except FP-Rate a high value is desirable. Most of the 
base algorithms have a high Recall by simply over predicting the binding site class 
(predicting every item to be positive gives a recall of 1), and this is problematic.  On 
the other hand Precision is the proportion of the positively categorized samples that 
are actually part of a binding site.  Increasing the Precision of the prediction is one of 
the main goals of our meta-classifier.  However increasing Precision is normally 
accompanied by a decrease in the Recall, so the F-score, which takes into account 
both Recall and Precision, is a useful measure of overall performance.  The FP-rate is 
the proportion of all the negative samples that are incorrectly predicted.  The base 
algorithms generally have a high FP-rate and reducing this is another major goal of 
our classifier. 

5.2   ROC Curves 

In a ROC diagram, the true positive rate (Recall) is plotted on the Y-axis and the false 
positive rate (FP-rate), is plotted on the X- axis.  Often, to measure a classifier per-
formance it is convenient to use the area under an ROC curve (AUC).  The AUC value 
ranges between 0 to 1, where an effective classifier should have an AUC which is 
greater than 0.5.  

6   Experiments 

The classification technique used in this work is a Support Vector Machine [9], and 
the experiments were completed using LIBSVM1 .  The RBF kernel was used.  The 
SVM therefore has two parameters, C (the penalty parameter) and γ (width of the 
kernel). The C values were (5, 20, 50, 100, 300, 1000, 2000) and the γ values were 
(0.01 0.04 0.01 0.001). The window sizes ranged from 1 to 13, in increments of 2. For 
each window size, the performance matrix and ROC curves of the 6 C values and of 
the 4 γ values were computed, both for the filtered test set and for the unfiltered test 
set. For example, for window size 5, there were altogether 48 results: 24 (6 times 4) 
results for the filtered set, and 24 results for the unfiltered set.  

7   Results 

Tables 2a and 2b contain the best results for each window size.  The best results were 
gained when the γ value was fixed to 0.001 for all windows.  The C value differed 
between the window sizes, but ranged from 5 to 300.  In fact, in [10] we showed that 
all 4 best results for each window size were in that range, with the exception of win-
dow size 3.  The results clearly show that the FP-rate decreased dramatically from the 
best algorithm to the single vector (window size 1), and decreased further when “ 

                                                           
1 http://www.csie.ntu.edu.tw/~cjlin/libsvm. 
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windowing” the data.  The lowest FP-rate was 0.005 for window size 3.  Vectoring 
the data is useful for increased Precision as well. The Precision of window size 1 is 
0.377, and higher than that of the best algorithm (0.222).  The Precision of window-
size 3 is the highest (0.649). From window size 3 onward however, the precision 
value slightly decreased as the window size increased.  Thus, window size 3 has the 
lowest false positive rate, with the highest Precision.  The AUC values of all results 
were higher than 0.5, meaning that the classifier preformed better than chance level.  
Another way to determine a good result is by comparing a high F-score to a low FP-
rate.  In accordance with previous experiments, [1], [2], [3], there is a trade off be-
tween F-score and an FP-rate.  When the F-score rises, so does the false positive 
rate. Bigger window sizes generate higher F-scores but also higher FP-rates.  How-
ever, from Fig. 3, window size 7 seems to have a good trade-off between the two 
measures. 

Table 2a. Common performance metrics  calculated from confusion matrices on the unfiltered 
test set.  The selected best parameters for each window size are also shown in the table. 

Window C γ Recall Precision F-score FP-rate  AUC 

Size Unfiltered data      

Best Alg. - - 0.400 0.222 0.285 0.106 - 

1 300 0.001 0.246 0.377 0.297 0.031 0.710 

3 5 0.001 0.111 0.649 0.190 0.005 0.650 

5 100 0.001 0.179 0.504 0.260 0.013 0.640 

7 50 0.001 0.197 0.489 0.280 0.015 0.650 

9 50 0.001 0.226 0.446 0.300 0.021 0.650 

11 20 0.001 0.231 0.443 0.300 0.022 0.660 

13 5 0.001 0.232 0.430 0.300 0.023 0.680 

Table 2b. Common performance metrics calculated from confusion matrices on the filtered test 
set.  The selected best parameters for each window size are also shown in the table. 

C γ Recall Precision F-score FP-rate  AUC  
Window 

Size 
 

Filtered data 
     

1 300 0.001 0.341 0.344 0.342 0.073 0.723 

3 5 0.001 0.132 0.628 0.218 0.008 0.695 

5 100 0.001 0.207 0.511 0.295 0.017 0.675 

7 50 0.001 0.221 0.499 0.307 0.019 0.672 

9 50 0.001 0.245 0.449 0.317 0.024 0.661 

11 20 0.001 0.245 0.444 0.316 0.024 0.668 

13 5 0.001 0.244 0.432 0.312 0.025 0.689 

 
 



828 M. Robinson et al. 

0

0.2

0.4

0.6

0.8

1

Best Alg. 1 3 5 7 9 11 13
Window size

F-Score

FP-rate

 

Fig. 3. Normalized (to have maximum of 1) values for F-score (dots) and FP-rate (triangles) 
for the various unfiltered window sizes. From window size 3 both FP-rate and F-score are 
increasing, as the window size increases. 

8   Conclusions 

An important finding of this study is that by vectoring and later “windowing” the data, 
the FP-rate is significantly decreased, from as much as 10% to as little as 0.5%. That 
has important implications for experimental biologists for whom the high FP-rates 
considerably reduce the utility of these algorithms. All window sizes have a better 
Precision than that of the best base algorithm, and more importantly, a better trade off 
between an F-score and an FP-rate. Window sizes affect the performance of the SVM 
classifier. The bigger the window size, the higher the F-score. However, that comes 
with a cost; the FP-rate is increased accordingly. Arguably, the best trade-off was 
gained for window size 7. The best values for the SVM parameters were fixed with the 
γ value on 0.001, but ranged for the C value from 5 to 300. For window sizes 3 to 7 the 
unfiltered data set had a better trade-off between F-score and FP-rate. However, as the 
window size got bigger, the difference between the test sets’ sizes decreased. Conse-
quently, the similarity between the various performance metrics increased.  
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Abstract. This study tests the sensitivity of input feature space selection on 
credit rating using four classifiers as backpropagation(BP), Kohonen self-
organizing feature map, discriminant analysis(DA), and logistic regression. The 
results of the study are that at individual methods applied, BP network outper-
forms two statistical counterparts while Kohonen network shows the least accu-
racy among the models.  The results also show that the selection of the feature 
spaces to the accuracy outcome may not be very sensitive when we test the four 
methodologies altogether at aggregate level. 

1   Introduction 

Credit rating activities and resulting information seem to be conveyed critical value 
for the financial market participants: for security issuers, a rating affects the level of 
interest they have to pay and, for investors, this assigned rating tends to act as a 
threshold value for decisions about whether to buy the security.  In sum, credit rating 
system serves as an investment “bridge” between different risks and earning levels for 
the security issuing company as well as the market investor [3], [4]. 

In other words, credit rating information provides a succinct index for information 
user to gauge the financial status or creditworthiness of a debt security.  But, provid-
ing such real-time as well as accurate credit judgment to the public is a daunting job 
because these rating decisions themselves pretty much involve in qualitative [3], [6], 
[13].  Moreover, credit rating decisions are, by nature, multi-group classification 
problems, not like dichotomous one such as bankruptcy, making this credit rating task 
even more difficult. 

According to Dutta and Shehker[2], evaluation activities of  credit rating on a secu-
rity (i.e., rating a firm’s financial strength) involve finding the following mapping 
function f such that  

f : F1 × F2 × F3 × … × Fk  → Ri . (1) 
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where F be the k dimensional feature space, F1, F2,…, Fk, and R is set of (exclusive) 
m credit ratings, R1, R2,…., Rm.  The credit rating process can be summarized in two 
successive steps: first, extracting the appropriate feature space (F1 × F2 × F3 × … × 
Fk) and then finding a mapping function f in the Cartesian space (F1 × F2 × F3 × … × 
Fk ) to a rating class (Ri) [2], [8].   In prior research, the feature extraction problem 
has been handled by determining a relevant set of financial variables, and the second 
problem of finding a mapping function has been often done by utilizing contemporary 
statistical classifiers such as discriminant analysis [1], [3]. 

In this paper, we test these two successive processes of credit rating activities us-
ing US security market data described by two most frequently used feature spaces by 
prior researchers, Belkaoui [1], and Horrigan [5] financial variable sets.  Then, we try 
to find a suitable mapping function to a rating class by contrasting the results of accu-
racy measurement of four different classification tools: two from neural network clas-
sifiers as backpropagation(BP) network, Kohonen self-organizing network, and the 
rest two from statistical counterpart as discriminant analysis(DA), and logistic regres-
sion served as benchmarks for neural network classifiers.  Also, it is interesting to see 
how unsupervised neural network such as Kohonen behaves in multi-group classifica-
tion contest. By comparing two widely used financial variables to four different map-
ping functions, it is hoped that we provide better decision making information to the 
field of credit rating community. 

2   Prior Literature 

Table 1 shows a selective research on credit rating.  The credit rating question poses a 
typical classification or clustering problem: transformation of domain information and 
data (inputs) into rating symbols (outputs) using the interpretation of the rating system 
(processes).  Also, the systems outputs (rating symbols) in turn becomes or influences 
on inputs to the financial system so that there is an iterative mapping process among 
its components and the surrounding environment [3], [5], [10], [13].  

Neural network methodologies are first used in credit rating area by Dutta and 
Shehker[2] followed by many neural net researchers [3], [7], [8], [10], [13], mainly 
due to their better performance over their statistical counterparts. In fact, one problem 
of prior research on credit rating is however that their input feature spaces describing 
the underlying securities are often different one other as shown in table 1.  For this 
reason, comparing the accuracy or other measurement results of the previous credit 
rating researches makes it very difficult, oftentimes useless[10], [13]. Moreover the 
selection of their mapping functions frequently is in inconsistency across researchers 
[1], [2], [8], which makes direct comparison of the measurement results across the 
prior studies fairly difficult.  Therefore, we need some sort of common ground frame-
work to compare credit rating research work done.  In this study, we try to make a 
first step toward the consensus building process by comparing the two well-known 
and widely used financial input variable sets, Belkaoui’s [1] and Horrigan’s [5].  
These two financial variable sets have been frequently used in the past credit rating 
literature [1], [2], [5], [7], [12], [13].  These two feature variable sets take somewhat 
different orientation toward their accountability.  6 out of 7 Belkaoui’s variables[1] 
come from a balance sheet while three of the five Horrigan variables are from the  
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Table 1. Selective statistical and neural network applications applied in credit rating  

Name Methodology Independent (measurement) Variables 

Horrigan Logistic  
Total assets 
Working capital over sales 
Net worth over total debt 

Sales over net worth 
Profit/sales 
Subordination 

Belkaoui 
DA 

 

Total assets 
Total debt 
Long-term debt 
Stock price as a book value 

Current ratio 
Fixed charge coverage ratio 
Short-term debt 
Subordination 

Dutta & 
Shehker BP 

Liability/ (Cash+Assets) 
Debt proportion 
Sales/net worth 

Profit/Sales 
Financial strength 
Earning/Fixed Costs 

Nour 
Kohonen 

 

Debt to total assets 
(Pretax income + Interest ) 
to Interest expense 
Cashflow to current liability 
Cash flow to total liabilities 
Total liabilities to invested 
capital 

Interest expense to sales 
Pretax income to net sales 
Income to gross assets 
Sales to gross assets 
Sales to invested capital 
Income to market value 
Sales to market value 

income statement.  So it might say that Belkaoui’s research more focuses on stock 
approach while Horrigan’s emphasizes flow side of the financial status of a debt  
security. 

3   Research Design and Methodology 

For research design and methodologies for this credit rating study, we follow two 
successive processes as: selecting feature space first, describing the attributes of issu-
ing debt securities, and then, applying four different classification methodological 
tools for classification of the debt securities to a certain class.  Dataset, experiment 
design, their description of input feature space, and applied methodologies are de-
tailed below. 

3.1   Data Set and Experiment Design 

The data set consists of the US companies’ bonds in 1994 - 1998, extracted from the 
S&P’s Compustat North America database.  The top four classes (AAA, AA, A, and 
BBB) are only considered since these are called the “investment-grade” that are of 
interest to the investor.  First, 200 bonds in the 1994 – 1997 are selected: 160 of these 
are used for training and the remaining 40 are used for validation.  Then, additional 40 
selected from 1998 are used for prediction accuracy.  All of three sets, training, test-
ing and validation, contain the equal number of samples for each class. This experi-
mental design construction does not resemble the natural distribution of outstanding 
ratings in the real world.  Though, for experimental purposes, many rating studies 
adopt this equal-numbered sample distribution [7], [8], [13]. 
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3.2   Feature Space Selection and Methodologies 

As mentioned earlier, each company’s bond is described by two input variable sets by 
Belkaoui [1] and Horrigan [5].  Belkaoui’s seven variables are: total assets, total debt, 
long term debt/total investment capital, short term debt/total investment capital, cur-
rent assets/current liabilities, net income plus total interest expense, and stock 
price/common equity per share. Horrigan used the following five variables as total 
assets, working capital/sales, net worth/total debt, sales/net worth, and net operating 
profit/sales. Note that Belkaoui used 7 ratios while Horrigan applied only 5. It is 
probably that incorporating more variable numbers in the feature space provides a 
better result.  Thus, our initial guess may be that Belkaoui’s experiment would show a 
better accuracy.  Since we consider the top four rating classes, thus, subordination 
variable (0-1) indicated a legal status of the claim of a bond may not need to be in-
cluded in this study. Data normalization technique will also not be considered because 
of the stated reasons in the bankruptcy prediction section [10], [11]. 

Using this experiment design, we can compare the effectiveness of one variable set 
over the other set directly.  As stated earlier, Belkaoui’s variables are static measure-
ments, 6 out of 7 extracted from a balance sheet while Horrigan’s variables, 3 of 5 
ratios from an income statement, emphasize the flow concept of operating of a com-
pany during a certain period.  Therefore, the comparison of these two variable sets 
together may give an insight which variable set (balance sheet-oriented versus income 
statement-oriented) is better in explaining an assigned rating and thus more accurate 
for classification/prediction results.  In so doing, we try to compare accuracy dimen-
sion of neural net classifiers (BP and Kohonen networks) with more traditional 
benchmarks, statistical counterparts (DA and logistic regression), using Belkaoui’s [1] 
versus Horrigan’s variables [5]. 

4   Experimental Results 

Table 2 gives a summary of accuracy performance of the four classification tech-
niques applied here with the number of correct classification (training result) and the 
number of correct prediction in parenthesis (test result). 

Table 2. Summary of performance of the four classification techniques 

Feature Space BP Kohonen DA Logistic 

Training 
92 

(57.8%) 
70 

(43.8%) 
70 

(43.8%) 
89 

(55.6%) 
Belkaoui 

Test 
19 

(47.5%) 
13 

(32.5%) 
17 

(42.5%) 
18 

(45.0%) 

Training 
78 

(48.8%) 
65 

(40.6%) 
65 

(40.6%) 
74 

(46.3%) 
Horrigan 

Test 
18 

(45.0%) 
16 

(40.0%) 
17 

(42.5%) 
17 

(42.5%) 
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First, for the comparison of the performance of individual classifiers, BP network 
outperforms all three other classification techniques, whether Belkaoui’s or Horri-
gan’s being used. The Kohonen self-organizing feature map shows the worst results, 
even below to the two other statistical benchmarks used here.  Especially, the Koho-
nen self-organizing network applied for the test set using Belkaoui’s shows the worst 
prediction accuracy at 32.5%.    

It might seem that when a classification problem involves more than two clusters, 
the accuracy of the unsupervised learning type such as the Kohonen self-organizing 
network appears to drop significantly.  It is probably because in the unsupervised 
training, the researcher does not incorporate an extra target vector, “the crucial infor-
mation,” thus not only using less information than its supervised counterpart, but also 
not inserting the target vector.  The two statistical classification tools showed a simi-
lar performance picture but the logistic regression gives a bit better result than DA.   

Table 3. χ2 Statistics from 2X2 contingency tables 

Training set Test set Input Vari-
able 

Techniques 
Applied BP Kohonen BP Kohonen 
Kohonen **3.388 - *4.083 - 

DA **3.388 0.000 0.325 ***1.728 
Belkaoui 

Logistic 0.124 ***1.846 0.325 ***1.728 
Kohonen 1.058 - 0.335 - 

DA 1.058 0.023 0.335 0.028 
Horrigan 

Logistic 0.002 1.428 0.876 0.002 
* Significant at the 5%; ** Significant at the 10%; & ***Significant at the 20% levels; 

In Table 3, we compare the performance results among these classification tech-
niques using a non-parametric statistic (χ2).  When Belkaoui’ set is used, the perform-
ance result of the BP network outperforms the Kohonen network and DA in training 
at a 10% significance level.  The BP network is also better than the Kohonen net-
works in terms of the prediction accuracy at a 5% significance level.  In turn, the 
Kohonen networks are less effective in the training set and the test set than the two 
other statistical classifiers at a 20% significance level.  However, when Horrigan set is 
used, there is no significant difference in performance either for the training and test 
results among the four classification choices.  

In sum, the performance of individual classifiers using Belkaoui gives some dis-
criminating power, for example, BP vs. Kohonen, BP vs. DA, and DA vs. Kohonen.  
Also, it is observed that unsupervised Kohonen network does not work very well on 
multi group classification problem such as credit rating.  Also, statistical classifier, 
logistic regression gives a very comparable performance result to BP network. 

When applying Horrigan, there is no discriminating power at all across the indi-
vidual methodologies applied in this study.  Thus, our initial assumption of Belkaoui 
over Horrigan feature sets is in verified. 
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Table 4. Test for the effect of the Belkaoui’s versus Horrigan’s input sets 

F-value or P-value Training Test 
F-value 1.55 .03 
P-value .2599 .8619 

Table 4 shows the ANOVA test for the effect for the input variable set, Belkaoui’s 
versus Horrigan’s across the four methodologies altogether we applied.  In Table 4, it 
fails to show statistical significance in accuracy performance, between Belkaoui’s and 
Horrigan’s.  The F-value for the test set indicates that these two input variable sets 
give almost identical test results. Thus, we cannot differentiate the performance dif-
ference of Belkaoui’s and Horrigan’s results. If we accept this statistical result, we 
can say that Horrigan’s approach is a bit more cost effective, since it incorporated 
fewer variables. 

In sum, for the accuracy performance of individual classifier, BP network, tradi-
tional classifiers, and Kohonen network in that order.  Especially, BP with Belkaoui 
variable set gives the best accuracy result. For the accuracy results between Belkaoui 
and Horrigan feature space, we cannot find the discriminatory power between these 
two variable set.  It seems that Horrigan’s variable set may provide more cost effec-
tive, leading to a parsimony model.  It may lead to the conclusion that Horrigan’s 
income statement approach could be more effective. 

5   Summary and Conclusions 

The accuracy performance of the four classification tools, BP, Kohonen, DA, logistic, 
is tested with two widely used feature space sets, Belkaoui’s vs. Horrigan’s. The sen-
sitivity test of feature space selection in this study fails to identify the discriminatory 
power of the two variable sets at aggregate level when we test the four methodologies 
altogether.  In individual tool level, however, BP network shows the most accurate 
results while Kohonen network give the worst results. Still, applying the unsupervised 
Kohonen algorithm in a multi-group classification task, such as credit rating, looks 
promising even though this particular study does not provide any positive input.  One 
way to test unsupervised classifiers such as Kohonen in credit rating area is that re-
searchers keep the track of financial status of a corporation, in various feature spaces, 
with other firms over time.  In this way, researchers can group these firms in terms of 
their similarities or differences.  
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Abstract. This paper describes an adaptive electronic video store application that 
monitors customers’ actions and provides dynamic movie recommendation. The 
adaptive recommendation is formed based on double stereotypes that have been 
constructed for user modeling. The construction of stereotypes has been based on 
a novel approach that uses an Immune Network System (INS). In particular, the 
INS has been applied on data collected from 150 users of an earlier version of the 
e-commerce application. Specifically, the INS clustered users’ interests as well as 
movies and represented each resulting cluster with corresponding antibodies. The 
double classification (users’ interests – movies) was performed in a hierarchical 
way that resulted in several levels of user stereotypes: These stereotypes are then 
used dynamically by the e-commerce application to infer users’ interests in 
movies based on a small set of observed users’ actions.  

1   Introduction 

E-commerce applications have become very popular since they provide easy access to 
all kinds of products. However, most of existing applications are generic and do not 
address specific needs, preferences and attributes of individual customers. A remedy 
to this problem can be achieved by web personalization techniques. These techniques 
usually involve the construction of user models that are either based on explicit user 
information or on data about the user behaviour that is collected implicitly by the 
system. One powerful way for creating user models is based on stereotypes. 
Stereotypes were originally invented for the system called Grundy [8] that 
recommended books to users based on their preferences. In Grundy, a stereotype was 
defined to represent a collection of attributes that often co-occur in people and thus 
they enable the system to make a large number of plausible inferences on the basis of 
a substantially smaller number of observations.  

The actual construction of stereotypes involves defining the triggering conditions 
(the conditions that enable a specific stereotype) and the inferences (what can be 
assumed for users belonging to the triggered stereotype). As Kay [5] points out there 
are two ways for constructing stereotypes, one is hand-crafted and the other one is 
empirically-based. In the hand-crafted case, the designer of the system makes 
assumptions about the stereotype groups whereas in the empirically-based stereotypes 
there is an important role of machine learning techniques in acquiring them. However, 
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in the majority of the existing commercial personalization systems, the 
personalization process involves substantial manual work and most of the time 
significant effort on the part of the user [7]. Apparently automating the construction 
of user stereotypes still remains an open research problem. 

In view of the above, in our research we have introduced a novel approach of 
constructing user stereotypes based on an artificial immune network [4],[10] which is 
a clustering technique. This approach has been employed in an e-commerce 
application. In particular, we have developed a stereotype-based personalized e-
commerce video store that is called Vision.Com and recommends movies to 
customers. Vision.Com aims at modeling users by silently observing their behavior 
rather than asking many questions to them. In this way the system aims at alleviating 
the users from the burden of specifying their user model by themselves. 

In particular, Vision.Com was developed in two phases. In the first phase, an adaptive 
version of the system was created which did not incorporate any stereotypes. This 
version of Vision.Com was used by 150 users and all their actions within their interaction 
with the system were collected and analyzed by the artificial immune network. As a 
result of this process, in the second phase,  we constructed double stereotypes that were 
then incorporated into the system for improving the initialization and accuracy of the user 
modeling component of Vision.Com. The fact that we constructed Vision.Com in two 
phases has provided the advantage of the construction from scratch of user stereotypes 
based on the clustering algorithm. In contrast, other systems (Schwarzopf [9], Ardissono 
and Torasso [1]) have used clustering algorithms for the revision of initial user models 
that had been created based on hand-crafted stereotypes. 

The most relevant work to Vision.Com concerns the system developed by Cayzer 
and Aickelin [3] and Morrison and Aickelin [6]. That system utilized an Artificial 
Immune System (A.I.S) in order to tackle the task of film and web site 
recommendation by collaborative filtering. In that system there was a movie database 
called EachMovie that was used as a source of votes concerning movies that had been 
seen. These votes were explicitly supplied by each user and were used in order to 
build a recommender system that provided estimation votes for unseen movies. In 
contrast, in our work we obtained the movie preference related data in an implicit 
manner. In our approach we aim at recommending movies to a user based on his/her 
inferred preferences. Individual user preferences are inferred based on users’ 
interaction with the electronic video store. In the Cayzer and Aickelin system there is 
neither a user model nor stereotype-based reasoning. Thus, their system cannot 
recommend movies that have not been seen by any user. In our case the fact that we 
construct user models allows the system to predict user preferences in all kinds of 
movies whether these have been seen by other users or not. Our aim was to develop a 
regulated network of antibodies that corresponded to multidimensional representative 
vectors of the user preferences. User preferences refer to movie attributes such as who 
the director of the film is, who the leading actor is, what kind of film it is etc. 

In our case, the advantage of using an AIS as compared to other clustering 
techniques is that the construction of an Artificial Immune Network (AIN) 
incorporates a mutation process that applies to the customer profile feature vectors. 
More specifically, our work has focused on how a significant amount of redundancy 
within the customer profile dataset can be revealed and reduced, how many clusters 
intrinsic to the customer dataset can be identified and what the spatial structure of the 
data within the identified clusters is. 
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2   Adaptive e-Shop Application 

Vision.Com is an adaptive e-commerce video store that learns from customers’ 
preferences. A screenshot of Vision.Com is illustrated in Fig. 1. Its aim is to provide 
help to customers choosing the best movie for them. Vision.Com operates on top of 
the .net framework technology and uses client server techniques. The web based 
system runs at a local network with IIS (internet information services) playing the role 
of the web server.  

For every user the system creates a different record at the database. In Vision.Com 
every customer can visit a large number of movies by navigating through four movie 
categories. These four movie categories are: social, action, thriller and comedy 
movies. All customers have their own personal shopping cart. If a customer intends to 
buy a movie she/he must simply move the movie into her/his cart by pressing the 
specific button. Users also have the ability to remove one or more movies from their 
cart by choosing to delete them. After deciding which movies to buy a customer can 
easily purchase them by pressing the button “buy”. 

All navigational moves of a customer are recorded by the system in the statistics 
database. In this way Vision.Com saves statistics considering the visits in the different 
categories of movies and movies individually. The same type of statistics is saved for 
every customer and every movie that is moved to the buyers’ cart. The same task is 
carried out for the movies that are eventually bought by every customer. All of these 
statistical results are moderated from one to zero and saved in the statistics database.  

In particular, Vision.Com interprets users’ actions in a way that results in the 
calculation of users’ interests in individual movies and movie categories. Each user’s 
action contributes to the individual user profile by implying degrees of interest into one 
or another movie category or individual movie. For example, the visit of a user into a 
movie shows interest of this user to the particular movie and its category. If the user 
puts this movie into the shopping cart this shows more interest in the particular movie 
and its category. If the user buys this movie then this shows even more interest whereas 
if the user takes it out of the shopping cart before payment then there is not any increase 
in the interest counter. Apart from movie categories that are already presented, other 
movie features that are taken into consideration by Vision.Com are the following: price 
range, leading actor and director. The price of every movie belongs to one of the five 
price ranges: 20 to 25 €€ , 26 to 30 €€ , 31 to 35 €€ , 36 to 40 €€  and over 41 €€ . 

As a consequence, every customer’s interest in one of the above features is recorded 
as a percentage of his/her visits in movie-pages. For example, the degree of interest of 
the customer in a particular movie category is calculated by the equation (1).  

_ _ _

_ _ _

_ _ _

_ _ _ _ _ _

_ _ _ _

_ _ _ _

_ _

Interest in movie category

Visitis in Specific Category

Visits in All Categories

M ovies moved to cart from this category

All movies moved to cart

Bought M ovies from this category

All bought movies

=

= +

+

+

 (1) 
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In this way the provided tables of statistics can be easily combined with statistical 
methods. Moreover, Vision.Com uses an animated agent to inform and help the users 
throughout the system. The animated agent can be seen at the top-left of the 
screenshot illustrated in Figure 1. 

 

Fig. 1. Screen of Vision.Com movie recommendation web page 

3   Data Representation and the AIN Algorithm 

In this section we will discuss the data that we used as input to the artificial immune 
network (AIN) for the construction of users’ stereotypes. In order to collect the data 
an empirical study was conducted. A primary version that did not contain stereotypes 
of Vision.Com was used by 150 users that bought movies using this particular system. 
The system collected data about the users’ behavior.  

The data collected consisted of three parts. Every part is similar to the others. The 
first one contains statistical data of the visits that every user made to specific movies. 
The second part contains data of the cart moves (i.e. which movies the user moved 
into his/her cart). The third part consists of statistical data concerning the preferences 
on the movies bought by every user. Every record in every part is a vector of the same 
80 features that were extracted from the movies’ characteristics and represents the 
references of one user. The 80 features of the vector consist of all the categories, all 
the sets of prices, all the actors and all the directors that are known to the system. 
Every constituent in the 80 – dimensional vector is the mean percentage of the user’s 
interest in this particular feature according to Equation 1. 
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We used these final 80 - dimensional vectors as an input to an AIN algorithm that 
was derived from the artificial immune systems theory. This was done so as to create 
representative antibodies that corresponded to the initial data and eventually create 
stereotype groups by using these antibodies. In the context of Vision.Com, antibodies 
correspond to neighboring user profiles that are represented by the feature vectors. 
Specifically, the immune network system clustered users’ interests as well as movies 
and represented each resulting cluster with corresponding antibodies.  

The neighborhoods that are produced by the AIN algorithm are utilized as the basis 
for the construction of a double stereotype that consists of user and movie stereotypes. 
The stereotypes created, as we will explain in a subsequent section, helped in the 
logical explanation of the results and led to the creation of a new more accurate and 
effective user modeling mechanism. In Fig. 2 we demonstrate the results of the 
application of the AIN algorithm to the data collected during the experimental study. 
In fact, this process resulted into the identification of 22 representative antibodies that 
were clustered in a hierarchical tree as illustrated in Fig. 2.  

 

Fig. 2. Tree diagram of clustering the 22 representative antibodies of 150 users of Vision.Com 

These antibodies are significant vectors of the same set of features as with the 
mean vectors. The antibodies present the propagation in the 150 mean vectors that 
were used as an input to the algorithm. Because every mean vector corresponds to a 
user, we can also see every antibody as a user that represents preferences of a group 
of users from the original set. In order to see clearer results we clustered these 22 
antibodies into 2, 3, 4, 5 and 6 classes accordingly. By clustering these antibodies into 
the above classes we observed more clearly the differences between the different 
preferences in the same feature. The above classes can be seen as stereotypes that can 
be used for the initialization of a user. 
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4   Constructing Double Stereotypes Based on the Immune System 

After constructing the classes, we used them to build stereotypes. The double 
classification (users’ interests – movies) was performed in a hierarchical way that 
resulted in several levels of user stereotypes: At first, there was a coarse classification 
of two stereotypes which was next refined several times to produce a final 
classification of six stereotypes as can be seen in Figure 3. Figure 3 illustrates a brief 
diagram of the hierarchical classification of stereotypes. These stereotypes that have 
been constructed  in the first phase,  are then used dynamically by the e-commerce 
application to infer users’ interests in movies based on a small set of observed users’ 
actions. In fact, for a new system user, modeling is performed based on the first 
classification of users. Then, incrementally and while the user interacts with the 
system, inferences about his/her preferences are drawn from more refined user 
stereotypes of subsequent levels. 

 

Fig. 3. Hierarchical Diagram of Double Stereotypes 

More specifically, at first, on level 1, we created two general stereotypes 
(Stereotype A1 and Stereotype A2) based on the two general classes. The main 
differences between these two classes can be observed mainly in the interest in movie 
categories. In the particular classification, the main difference is in the thriller 
category. Stereotype A1 shows interests divided into the three categories (action, 
comedy and social). On the other hand, Stereotype A2 shows an assembly of users’ 
interest into the thriller movie category. In this way the two stereotypes based on 
these classes focus their differences of preferences in a category of a movie. As we go 
further down in the top-down presentation the differences in the stereotypes extend to 
more features of interest. More specifically, in the stereotypes of the second level of 
the immune system, differences can be seen not only on the movie categories but on 
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the interest in medium and high priced movies feature as well. As we proceed to 
higher levels, stereotypes become more complex and the differences between them 
extend to more features of interest. At level three of specialization, differences in 
stereotypes are extended to leading actors as well. At level four, stereotype 
differences include directors such as Steven Spielberg, Brian de Palma and others. 
These directors are the ones that attracted the highest interest of users in the previous 
levels. The leaves of this hierarchical stereotype tree, at level 5, consist of six 
stereotypes. The differences between them extend to all interest features.  

In view of the above results, we have built the hierarchy of stereotypes not only for 
customers but for movies as well. Whether a customer or a movie belongs or not to a 
stereotype is measured by the Euclidean distance. The measurement process is 
opposite to the top-down presentation that we showed just above. If a customer’s 
distance is very far from the leaves then we proceed to the next level above. If in this 
level the distance is also far we move up to the next. This process is continued until 
we reach the top level or a threshold of distance that is considered close enough. 
When this distance is reached the system follows the same process for movies. The 
movies that are close enough to the customer’s stereotype just measured are 
recommended to the customer through an adaptive hypermedia [2] procedure.   

5   Incremental Initialization of User Model Based on Double  
Stereotypes 

Stereotypes have been widely considered as a very effective technique for initializing 
user models of new users. The answers to the questions concerning which stereotype a 
user belongs to and which recommendation is best for a particular user, are based on 
vector subtraction. The decision process is quite complex but here we will present a 
simpler one because our aim is not to fully explain mathematically this process but to 
present the system recommendation system. When a new user becomes a member to the 
system, the e-commerce application creates a profile, sets all interest values into zero (the 
system assumes that initially the user has no interest in any movie) and starts to monitor 
his/her actions. After the interaction of the new user with the system (visiting few 
movies) the system classifies the new user into a stereotype of the first level of 
specialization. The first level generally considers users’ interest concerning the four 
movie categories. For example, if the new user shows a preference towards thriller 
movies them s/he classified to Stereotype A2 of the first level, as the main difference 
between the two stereotypes lies in this movie category. Otherwise if the new user 
chooses movies from one or more of the other three categories the system classifies the 
new user into the group that belongs to Stereotype A1 of the first level. In the same way, 
the system chooses from movie stereotypes the movies that belong to the corresponding 
movie stereotype. If the user belongs to the first stereotype the system chooses to propose 
movies from any of the three categories except thrillers in a presentation percentage 
similar to the interest in every category. The movies that are most close to this movie 
stereotype are those recommended by the system up to this point of interaction.  

As the user continues with moving movies into his/her cart and buying some of 
them the system moves to the next level of classification that extends stereotypical 
information to the price features. This is so because in this level stereotypes differ 
greatly in the price ranges along with movie categories. For example, if the new user 
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selects movies with medium prices the system chooses to classify him/her to the 
stereotype that has the greatest interest in this price range concerning always the 
interest in movie categories. On the other hand, if the new user chooses many movies 
with high price then the system chooses to classify him/her in a different stereotype 
always taking in mind the movie categories interest. In this way if two users have 
similar interests in movie categories and have little differences in price ranges the 
system will propose similar movie titles to them. Otherwise, if the difference in price 
ranges is high then the system will most certainly change the most recommended 
movies. Level four and five of specialization extend the features of interests into 
interests in leading actors and directors accordingly. In this way, as users show with 
their actions which actor or director they prefer the system easily classifies them into 
the respective stereotypes and selects the right movie stereotypes in order to make 
recommendations. Again if their differences in interest in the actor and directors are 
low the system chooses to group users in same stereotypes thus emulating the 
grouping process into the previous level of specialization. On the other hand if these 
differences are high the users are grouped into different stereotypes of these levels.   

The initialization process is conducted until the user reaches level six of 
specialization. This level represents the leaves in the hierarchical tree of stereotypes and 
extends the differences in all the features of interests. When a user reaches this amount 
of interaction with the system s/he has given a lot of information to the system and s/he 
has been classified in a way that the system knows almost every interest about the user. 
When the system reaches this level of specialization, not only recommends movies in 
the appropriate web page but with the use of adaptive hypermedia [2] predicts the next 
moves of the user and changes the interface dynamically. The specialization in these 
level is very high and even the smallest difference in user’s interest can classify him/her 
to a different stereotype of this specific level.   

6   Conclusions 

This paper has presented a user modeling approach that is based on user-stereotypes 
for an e-commerce application. Our approach has focused on automating the process 
of the construction of user stereotypes based on automatic observation and analysis of 
the interaction of e-shop users. The approach that we have presented is novel because 
it is based on the AIN-algorithm that has not been used for user modeling purposes in 
other recommender applications in the relevant literature.  Moreover, in our approach, 
evidence on user preferences is collected implicitly without interrupting the users. As 
a result, the benefit that we have gained is that our system can provide 
recommendation to all kinds of users (even new ones) on all kinds of movies (even 
those that have not been seen by any user yet). 
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Andrejková, Gabriela I-404
Anisetti, Marco I-684
Arslan, Ahmet I-694

Bae, Hyeon-Deok II-534
Baer, Philipp A. I-167
Ba̧k, Micha�l II-133
Barreira, Noelia I-202
Barrón, Ricardo II-55
Becerra, Carlos II-554
Beliczynski, Bartlomiej II-46
Bellandi, Valerio I-684
Ben Amor, Heni II-641
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Choraś, Micha�l II-407, II-424
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Vélez, Mario I-120
Venkateswaran, Nagarajan I-11
Viet, Nguyen Hoang I-570
Virvou, Maria I-837
Vladutiu, Mircea I-174

Walczak, Krzysztof I-702
Walczak, Zbigniew I-772
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