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Abstract. This paper makes two contributions: (i) it presents a scheme
for classifying and identifying Internet traffic flows which carry a large
number of packets (or bytes) and are persistent in nature (also known
as the elephants), from flows which carry a small number of packets (or
bytes) and die out fast (commonly referred to as the mice), and (ii)
illustrates how non-parametric Parzen window technique can be used to
construct the probability density function (pdf) of the elephants present
in the original traffic stream. We validate our approach using a 15-minute
trace containing around 23 million packets from NLANR.

1 Introduction

There are two main aspects to the problem of Internet traffic flow characteri-
zation: (i) how to efficiently collect the flows, and (ii) how to accurately infer
overall traffic behavior from the collected data. Due to limitations in hardware
capabilities, it has been illustrated in [7] [22] how exhaustively collecting all pack-
ets of a flow does not scale well at high link speeds (OC-48+). Thus, current
approaches to flow characterization are either based on: (i) statistical sampling
of the packets [5][6], or (ii) inferring traffic characteristics primarily based on
flows which carry a large number of packets (or bytes) and are long-lived in na-
ture) (i.e., the elephants) while ignoring flows which carry very small number of
packets (or bytes) and are short-lived in nature (i.e., the mice) [10], or (iii) using
appropriate estimation algorithms on lossy data structures (e.g., bloom filters,
hash tables) [7][17] for recovering lost information. However, even in sampled
traffic, separation of elephants and mice is a cumbersome task [8] since there
exists no standard approaches to drawing the line between the two.

In this paper, we show that it is indeed possible to provide an analytical
framework for identifying and classifying packets as elephants or mice by apply-
ing Asymptotic Equipartition Property (AEP) from Information Theory [18]. It
is based on the observation that all mice die young and are large in number ;
while the proportion of elephants is small in number (around 1% − 2% of the
traffic volume) and they have average longevity varying from a few minutes to
days [1]. If the state space of the Internet flows is visualized to be an ergodic
random process, then the existence of typical sequence, as defined by AEP, iden-
tifies the presence of elephants in the traffic volume. Such an approach requires
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no prior knowledge of flow distribution, does not suffer from the side effects of
false positives associated with Bayesian analysis, and involves minimal packet
processing. We compare our approach with the well-known method of identifying
packets as elephants based on the average flow longevity of greater than 15 min-
utes [8]. Our results from initial analysis on a single 15-minute traffic trace from
NLANR [15] indicates that there exists a possibility that using definite values
of longevity as cutoff limits for classifying flows as elephnats might overestimate
the frequency of occurence of such flows. In the second part of the paper, we use
a statistical non-parametric estimation technique based on the Gaussian kernel
function for accurately estimating the density function of the underlying traffic,
considering the probability density function (pdf) of only the elephants.

The remainder of the paper is organized as follows. In Section 2, we present
the theory and online framework for classifying traffic flows into elephants and
mice. This is followed by Section 3 which briefly presents the theory for estimat-
ing the distribution of the elephants. Evaluating the effectiveness of our approach
is carried out in Section 4 with conclusions in Section 5.

2 An Online Framework for Identifying the Elephants

In this work, we define traffic flows to refer to packets with similar attributes.
For example, a flow might be defined to consist of packets having identical val-
ues of five-tuple (source address, destination address, source port, destination
port, protocol) or might be defined to comprise of packets matching specific
payload information (e.g., group of all TCP packets with payload containing the
string “crewman”). Thus, flows can be characterized by packet headers, pay-
loads or a combination of both. The size of a flow is the number of packets
(or bytes) belonging to the flow and the duration of a flow is its lifetime. Let
[F ] = {F1, F2, . . . , Fi, . . . , FN} be a sequence of N FlowIDs {1, 2, . . . i, . . .N},
where each FlowID, Fi, is an index (i.e., a number between 1 and N) used to
identify each flow in the underlying traffic. Denote |Fi| to represent the number
of packets belonging to the flow with FlowID Fi. It is important to note that the
sequence [F ] is sorted by increasing cardinality of the number of packets present
in each FlowID. Under such circumstances, the flow classification problem is to
identify and separate the Fis that define the elephants and the mice. Now let us
now consider an ergodic and discrete random process where each Fi is an inde-
pendent variable drawn from the state space of [F ]. The state space of [F ] con-
sists of all possible FlowIDs. However, the random variables are not identically
distributed. Denote {fi} to be the set of possible outcomes of Fi with f ∈ [F ].
Let us represent the probability mass function (pmf) of the sequence {Fi}N

i=1 by:
P (F1 = f1, . . . , FN = fN ) = p (f1, . . . fN ) Let H(F) = H(F1, F2, . . . , FN ) denote
the joint entropy of the sequence {Fi}N

i=1 and denote H̄F to be the entropy rate
of {Fi}N

i=1. Then, H(F) and H̄F are defined as follows [18]:

H(F) = H(F1, F2, . . . , FN ) =
N∑

i=1

H(Fi|Fi−1, . . . F1) (1)
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H̄F =
1
N

H(F) (2)

Since according to our assumption, the Fis are independent, Equation (1) re-
duces to: H(F) =

∑N
i=1 H(Fi) which is the summation of the individual entropies

of the flow. At this point, it is worth mentioning that it is possible to estimate
H(F) without considering individual flow entropies [13]. However, this is not
considered in this work.

Definition 1. The set of elephants present in a sampled traffic is represented
by the sequence, {F1F2 . . . FN ′ }, where N

′ � N denotes the total number of
elephants.

Definition 1 provides us with the set of all packets which belong to the set
of elephants. Since our aim is to identify the sequence {F1, F2, . . . , FN ′ }, we
need to isolate the sequence of FlowIDs that form the high probability set. If we
visualize the set, [F ], as an information source, then the existence of the above
sequence of FlowIDs is governed by the probability of occurrence of a jointly typ-
ical sequence based on AEP. Note that the results based on AEP hold true only
when the number of FlowIDs present in the sampled traffic volume is very large.
Now considering the fact that there can be several sets of typical sequences, we
have the following lemma for the set of elephants:

Lemma 1. For traffic volumes with large number of FlowIDs (i.e., N → ∞),
the occurrence of the sequence {F1, F2, . . . , FN ′ }, N

′ � N , is equiprobable and
approximately equal to 2−NH̄F .

Lemma 1 follows directly from the property of AEP. In view of the above, we
can say that out of all the possible FlowIDs, that sequence which belongs to the
typical set has the maximum concentration of probability. The sequences outside
the typical set are atypical and their probability of occurrence is extremely low.
As evident from the above lemma, a typical sequence implies that FlowIDs in
the typical set are associated with a large number of packets. If we consider the
distribution of FlowIDs in the Internet traffic, we can easily correlate this prop-
erty with the Zipf distribution of Internet flows. Hence, it is not surprising that
most of the elephants belong to the typical set. However, what is the guarantee
that such a sequence really exists?

Definition 2. The joint entropy, H(F) for a stationary, stochastic process is a
decreasing sequence in N and has a limit equal to its entropy rate.

Definition 2 implies that the probability of correctly identifying elephants in-
creases with the corresponding increase in traffic volume. This observation is of
fundamental nature since it enables us to scalably create an approximate list of
LLFs (i.e., a typical sequence), while avoiding needless complex computation.
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2.1 Algorithm for Flow Classification

Let L {} be the list of empty LLFs and m the number of FlowIDs observed at the
time instant the classification algorithm is being executed. Denote P p

i and P b
i to

indicate the probability of occurrence of FlowID Fi in the sequence F1, . . . , FN ,
when considering the number of packets and payload bytes, respectively. Then,

P p
i = |Fi|/

n∑

i=1

|Fi| and P b
i =

(cumulative payload carried by Fi)
(total bytes observed at time instant t)

(3)

The pseudo-code of the classification algorithm is as follows:

1. Initialize list L {} := null
2. m := number of FlowIDs in current context;
Loop: over all sampled {Fi}

3. calculate probability Pi (Note: if the aim is to identify the set of elephants
based on the number of packets, replace Pi with P p

i . Similarly, for identifying
the set of elephants based on payload size, replace Pi with P b

i , ), for each {Fi}
using Equation 3

4. calculate H(F) and H̄F
5. if p (Fi) ≥ 2−nH̄F

6. add Fi to L
Done
7. List L {} contains the set of traffic flows which are elephants.

3 Estimating the Density of Elephants Flows

We employ the Parzen window [19] technique (explained below) on the set F
for determining the density of the identified elephants. Note that the likelihood
estimator from the coupon collector problem [23] can be employed on the sam-
pled set of all elephants in order to identify the set of all elephants present in
the underlying traffic. However, that aspect is not presented in this work. The
standard method is to choose a well-defined kernel function (e.g., Gaussian) of
definite width and convolve it with the known data points. Let f̂h(x) be the pdf
of the random variable X we are trying to estimate for the set F and be defined
as [19]:

f̂h(x) ≈ 1
Nh

N∑

i=1

ψ

(
x − xi

h

)
(4)

where {xi}N
i=1 are the data points of X and ψ(·) is a suitable kernel smoothing

function of width h, also referred to as the bandwidth of ψ(·). In this approach,
the estimated pdf is a linear combination of kernel functions centered on indi-
vidual xi. In Equation (4), the bandwidth factor h is the most important term
in the estimation process [20]. The optimal value of the kernel window h can
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Fig. 1. On-line classification of traffic streams. The pdf of elephant flows in sampled
traffic stream is estimated using the non-parametric Parzen window technique.

be calculated by minimizing the integrated mean square error (IMSE) between
f(x) (original pdf) and f̂h(x); i.e.,

minimize
{∫ {

f̂h(x) − f(x)
}2

dx

}
.

In general, the process of finding the optimal window size is cumbersome as we
do not know beforehand the nature of the density function that we are trying
to estimate. Since the shape (degree of smoothness) of f̂h(x) is closely related
to the kernel function used, we use the Gaussian kernel function to eliminate
“noises” in the pdf estimation. Thus:

ψ(u) =
1√
2π

exp
(

−u2

2

)
(5)

Corresponding to the Gaussian kernel, the bandwidth h can be approximated us-
ing Silverman’s rule of thumb [21] that satisfies the IMSE criteria. Consequently,

h is defined as: h = 1.06 σ̂ N−1/5 where σ̂ =
√∑ N

i=1(xi−x)2

N denotes the standard
deviation of the sample.

4 Performance Evaluation

In this section, we evaluate the performance of our algorithm using packet traces
obtained from NLANR [15]. We compare our approach with the results of Mori
et al. [8] in the figures) for comparing the number of elephants detected in
the traffic stream. Specifically, we use three traces: (i) 20040130-133500-0.gz,
(ii) 20040130-13400-0.gz, and (iii) 20040130-134500-0.gz. The cumulative
duration of the three files is 900 seconds and contains 23.2 million packets. They
subsequently map to 618, 225 FlowIDs, where each FlowID is defined using the
number of packets.

4.1 Identifying the Elephants

In Figure 2, we plot the number of elephants predicted using our classification
algorithm and compare it with the approach of [8]. We have used the frequency
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Fig. 2. Time series of the occurrence of elephants as estimated using our algorithm
versus as predicted using the approach of [8]

of occurrence of the packets as the basis for calculating the flow probabilities.
Apart from the already known facts that the proportion of elephants are small
in number (0.0035% in our case), two important conclusions can be immediately
drawn from this figure:

– the set of elephants detected during the initial phase (first 5 minutes for
the traffic traces under consideration) of our algorithm identifies FlowIDs
that exhibit bursty behavior. On close analysis of the traffic traces, we found
that this is indeed the case and is due to the fact that such FlowIDs cause
immediate concentration of the probability mass function of the entire traffic
sample.

– the proportion of elephants classified using the frequency of occurrence of
packets (i.e. probability P p

i ) is almost equal in extent to those detected by
considering the volume (bytes) of traffic (i.e. probability P b

i ). Notice that,
using the approach of [8], the number of elephants are estimated at around
85 − 90. If the traffic traces beyond 5 minutes are considered (not shown in
this study), the approach of [8] exhibits a decreasing trend.

The occurrence of mice, however, shows well-established behavior. They are large
in number but grow with the continuation of traffic stream.

4.2 Traffic Distribution: Elephants and Mice

In Figures 3 and 4, we analyze the traffic carried by elephants and mice when
considering the frequency of occurrence of packets and the the volume of traffic
carried by each FlowID as the basis of flow probability calculation. While 99%
FlowIDs carry 70% of network traffic, elephant flows (less than 1%) carry 30% of
the traffic. Such dynamics is unaffected if we choose the frequency or the volume
of traffic as the basic for probability calculation.
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Fig. 3. Traffic Distribution of Elephant Flows considering the frequency of occurrence
of packets in each flow (i.e., P p

i )
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Fig. 4. Traffic Distribution of Elephant Flows considering the volume of traffic in each
flow (i.e., P b

i )

4.3 Entropy Distribution: Elephants and Mice

In Figures 5 and 6, we show the temporal variation of the entropy of the ratio
of entropy between the elephants and mice, where only of the FlowIDs consid-
ered to be mice. During the first 500msecs of input traffic, we observe a dip
in the entropy of the elephant flows. This is due to the presence of bursty ele-
phant flows which causes a temporary increase in the probability of the set of
elephants. However, as the experiment continues, the entropy of the mice in-
creases while the entropy of the elephant flows decreases. Since the entropy of
the typical set is a decreasing sequence with respect to the number of FlowIDs,
the probability and proportion of FlowIDs classified as elephants increases.
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Fig. 5. Ratio of entropy between the elephants and mice
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Fig. 7. Original pdf of the elephants present in the traffic stream
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Fig. 8. Pdf estimated using parzen window technique

This unique trend of entropy variation guarantees conservative, yet accurate flow
classification of high traffic volumes.

Estimating the density function of the distribution. In Figures 7 and 8,
we plot the pdf of the elephants present in the original traffic stream versus
the pdf of elephants identified using our approach based on the Parzen window
technique. Observe that the trend observed is similar in both the cases.

5 Conclusions

In this paper we have focused on classifying and estimating the properties of
elephants and mice based on AEP from Information Theory. Although consider-
able attention has been directed in identifying high and low traffic volumes, we
feel that our approach using typical sequences simplifies the problem to a large
extent and provides a standard yardstick for defining such long-lived-flows. We
have evaluated our algorithm with the approach of [8], and have observed that
our approach is able to identify bursty elephant flows and at the same time does
not overestimate the number of occurrence of the elephants. As part of future
work, we would like to carry out these observations on NLANR trace of more
than one hour duration and see how the classification and estimation algorithms
perform if the input traffic becomes smooth with non-negligent coefficient of
variation [14].
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