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Abstract. The Traveling Salesman Problem (TSP) is a well-known NP-
hard combinatorial optimization problem, for which a large variety of
evolutionary algorithms are known. However, these heuristics fail to find
solutions for large instances due to time and memory constraints. Here,
we discuss a set of edge fixing heuristics to transform large TSP prob-
lems into smaller problems, which can be solved easily with existing
algorithms. We argue, that after expanding a reduced tour back to the
original instance, the result is nearly as good as applying the used solver
to the original problem instance, but requiring significantly less time to
be achieved. We claim that with these reductions, very large TSP in-
stances can be tackled with current state-of-the-art evolutionary local
search heuristics.

1 Introduction

The Traveling Salesman Problem (TSP) is a widely studied combinatorial opti-
mization problem, which is known to be NP-hard [1].

Let G = (V, E, d) be an edge-weighted, directed graph, where V is the set of
n = |V | vertices, E ⊆ V × V the set of of (directed) edges and d : E → R

+

a distance function assigning each edge e ∈ E a distance d(e). A path is a
list (u1, . . . , uk) of vertices ui ∈ V (i = 1, . . . k) holding (ui, ui+1) ∈ E for
i = 1, . . . , k − 1. A Hamiltonian cycle in G is a path p = (u1, . . . , uk, u1) in G,
where k = n and

⋃k
i=1 ui = V (each vertex is visited exactly once except for u1).

The TSP’s objective is to find a Hamiltonian cycle t for G that minimizes the
cost function C(t) =

∑k−1
i=1 d((ui, ui+1)) + d((uk, u1)) (weights of the edges in t

added up). Depending on the distance function d, a TSP instance may be either
symmetric (for all u1, u2 ∈ V holds d((u1, u2)) = d(u2, u1))) or asymmetric
(otherwise). Most applications and benchmark problems are Euclidean, i. e., the
vertices V correspond to points in an Euclidean space (mostly 2-dimensional)
and the distance function represents an Euclidean distance metric. The following
discussion focuses on symmetric, Euclidean problem instances.

Different types of algorithms for the TSP are known, such as exact algorithms
[2,3] or local search algorithms [4]. Among the best performing algorithms are
those utilizing Lin-Kernighan local search within an evolutionary framework such
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as Iterated Lin-Kernighan [5] or memetic algorithms [6,7]. Even exact algorithms
like Branch & Cut rely on these heuristics. The heuristics used in Concorde [8]
to find near-optimum solutions to large TSP instances is essentially a memetic
algorithm using the Lin-Kernighan (LK) heuristics as local search and tour-
merging [9] for recombination [10]. As the TSP is NP-hard, computation time is
expected to grow exponentially with the instance size. E. g. for a TSP instance
with 24 978 cities, even sophisticated heuristic algorithms such as Helsgaun’s
LK (LK-H) [11] require several hours to find solutions within 1% distance to the
optimum. For the same instance, an exact algorithm required 85 CPU years to
prove a known tour’s optimality [12].

The problem of time consumption can be approached by distributing the
computation among a set of computers using distributed evolutionary algorithms
(DEA) [13,14]. Another problem when solving extremely large TSP instances
such as the World TSP [15] is an algorithm’s memory consumption, as data
structures such as neighbor or candidate lists have to be maintained. We address
this problem in this paper by proposing different edge fixing heuristics, which
may reduce the problem to a size suitable for standard TSP solvers. In the
general fixing scheme heuristics select edges of an existing tour for fixing; paths
of fixed edges are merged into a single fixed edge reducing the instance size. Fixed
edges are ‘tabu’ for the TSP solver, which is applied to the reduced instance in
a second step. Finally, the optimized tour is expanded back to a valid solution
for the original problem by releasing fixed edges and paths.

The remainder of this section discusses related work from Walshaw. In Sect. 2
problem reduction techniques based on fixing edges are discussed. A set of TSP
instances is analyzed in Sect. 3 regarding the discussed fixing heuristics. Sect. 4
discusses the results when applying the fixing heuristics to an evolutionary local
search. Sect. 5 summarizes our findings.

1.1 Related Work

Only limited research regarding the reduction of TSP instances in relation with
evolutionary local search has been done. The primary related work to our concept
is the multilevel approach by Walshaw [16], which has been applied to several
graph problems including the TSP [17]. Basically, multilevel algorithms work as
follows: In the first phase a given graph is recursively coarsened by matching and
merging node pairs generating smaller graphs at each level. The coarsening stops
with a minimum size graph, for which an optimal solution can easily be found.
In the second phase, the recursion backtracks, uncoarsening each intermediate
graph and finally resulting in a valid solution of the original problem. In each un-
coarsening step, the current solution is refined by some optimization algorithm.
It has been reported that this strategy results in better solutions compared to
applying the optimization algorithm to the original graph only. When uncoars-
ening again, the optimization algorithm can improve the current level’s solution
based on an already good solution found in the previous level. As the coarsening
step defines the solution space of a recursion level, its strategy is decisive for the
quality of the multilevel algorithm.



74 T. Fischer and P. Merz

In [17] the multilevel approach has been applied to the TSP using a CLK
algorithm [18] for optimization. Here, a multilevel variant (MLCN/10LK) of CLK
gains better results than the unmodified CLK, being nearly 4 times faster. The
coarsening heuristics applied to the TSP’s graph matches node pairs by adding
a fixed edge in between. In each step, nodes are selected and matched with
their nearest neighbor, if feasible. Nodes involved in an (unsuccessful) matching
may not be used in another matching at the same recursion level to prevent the
generation of sub-tours. Recursion stops when only two nodes and one connecting
edge are left.

2 Problem Reduction by Fixing Edges

To reduce a TSP instance’s size different approaches can be taken. Approaches
can be either node-based or edge-based. At a different level, approaches can be
based only on a TSP instance or using an existing solution, respectively.

A node-based approach may work as follows: Subsets of nodes can be merged
into meta-nodes (cluster) thus generating a smaller TSP instance. Within a
meta-node a cost-effective path connecting all nodes has to be found. The path’s
end nodes will be connected to the edges connecting the meta-node to its neigh-
bor nodes building a tour through all meta-nodes. Problems for this approach
are (i) how to group nodes into meta-nodes (ii) how to define distances between
meta-nodes (iii) which two nodes of a cluster will have outbound edges. In an
edge-based approach, a sequence of edges can be merged into a meta-edge, called
a fixed path. Subsequently, the inner edges and nodes are no longer visible and
this meta-edge has to occur in every valid tour for this instance. Compared to the
node-based approach, problems (ii) and (iii) do not apply, as the original node
distances are still valid and a fixed path has exactly two nodes with outbound
edges. So, the central problem is how to select edges merged into a meta-edge.
Examples for both node-based and edge-based problem reductions are shown in
Fig. 1.

Edges selected for merging into meta-edges may be chosen based on instance
information only or on a tour’s structure. The former approach may select from
an instance with n nodes any of the n(n−1)

2 edges for a merging step, the latter
approach reuses only edges from a given tour (n edges). The tour-based ap-
proach’s advantage is a smaller search space and the reuse of an existing tour’s
inherent knowledge. Additionally, this approach can easily be integrated into
memetic algorithms. A disadvantage is that the restriction to tour edges will
limit the fixing effect especially in early stages of a local search when the tour
quality is not sufficient.

Walshaw’s multilevel TSP approach focuses on an edge-based approach con-
sidering the TSP instance only. In this paper, we will discuss edge-based ap-
proaches, too, but focus on the following tour-based edge fixing heuristics:

Minimum Spanning Tree (MST). Tour edges get fixed when they occur in a
minimum spanning tree (MST) for the tour’s instance. This can be motivated
by the affinity between the TSP and the MST problem [19], as the latter
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(a) (b) (c) (d) (e)

Fig. 1. Examples of node-based and edge-based problem reductions. Starting from the
original problem instance (a), the node-based approach assigns node sets to clusters
(marked by dashed boxes) and defines a spanning path within each cluster (b). Subse-
quently, in (c) only representatives of the clusters have to be considered (black nodes,
here arbitrarily located at each cluster’s center), whereas the original nodes (white) can
be ignored. For the edge-based approach, edges to be fixed have to be selected (dotted
lines in (d)). Subsequently, paths can be merged to single edges and inner path nodes
(white) may be ignored (e).

one can be used to establish a lower bound for the TSP. However, global
instance knowledge in form of an MST (complexity of O(m + n log n) for m
edges using Fibonacci heaps) has to be available in advance.

Nearest Neighbor (NN). As already exploited by the nearest neighbor tour
construction heuristics, edges between a node and it’s nearest neighbor are
likely to occur in optimal tours thus being promising fixing candidates, too.
Determining nearest neighbor lists may be computationally expensive (com-
plexity of O(n2 log n)), but can be sped up e. g. by using kd-trees [20,21].

Lighter than Median (<M). Edges that length is below the median over all
edges’ lengths in a tour are selected, as it is beneficial to keep short edges
by fixing them and leaving longer edges for further optimization. The most
expensive operation of this approach is the necessary sorting of all tour edges
(complexity of O(n log n)). There may be tours that have very few different
edge lengths resulting in a small number of edges that are strictly shorter
than the median.

Close Pairs (CP). Here, a tour edge’s length is compared to the lengths of
the two neighboring edges. The edge will be fixed if it is shorter than both
neighboring edges and the edge’s nodes therefore form a close pair. This
approach considers only local knowledge (edge and its two neighbor edges)
allowing it to be applied even on large instances. It is expected to work well
in graphs with both sparse and dense regions.

The actual number of edges selected by one of the above heuristics during a
fixing step depends on the current tour and the problem instance. For the first
two heuristics (MST and NN) it can be expected that more edges will be selected
with better tours. For the lighter than median variant (<M) and the close pairs
variant (CP) at most half of all edges may be selected. In the example in Fig. 2,
solid lines represent tour edges and dotted lines represent edges of the minimal
spanning tree (MST). Out of 7 tour edges, 5 edges are MST edges, too, 4 edges
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Fig. 2. Example tour and minimum spanning tree with different edge properties high-
lighted. Tour and MST edges are drawn in different line styles, properties nearest neigh-
bor (NN), lighter than median (<M), and close pairs (CP) are shown as markings next
to the edges.

connect nearest neighbors (NN), 3 edges connect close node pairs (CP) and 3
edges are lighter than the edge weight median (<M).

For asymmetric TSP (ATSP) instances edge fixation heuristics can be de-
veloped, too, but this approach has not been pursued here. Applying the fixa-
tions heuristics presented here to ATSP instances poses new questions such as
determining the direction when the fixation heuristics is based on undirected
knowledge (e. g. from an MST).

3 Analysis of TSP Instances

The tests in this section were performed to evaluate if the edge selection strate-
gies discussed in this paper are applicable for edge-fixation heuristics. Probabili-
ties of each selection strategy to selected a tour edge and the probabilities if the
selected edge is part of an optimal tour were evaluated. These criteria describe
the quantity and quality, respectively, of a selection strategy.

For our analysis, five TSP instances have been selected: From the TSPLIB
collection [22] instances brd14051, d15112, and d18512 and from a collection
of national TSPs [23] instances it16862, and sw24978 were taken (numbers in
the instances’ names denote the problem size). These instances were selected,
because they are among the largest instances an optimal solution is known for.
The choice of instances was limited by the availability of optimal or at least high
quality tours which were used to to evaluate the tours found in our experiments.
Preferably, larger TSPLIB instances and benchmark instances from the DIMACS
challenge [24] (E series instances) would have been included, too.

For each TSP instance 20 nearest-neighbor tours were constructed. Each of
these tours was optimized to a local optimum by the local search heuristics
2-opt, 3-opt, Lin-Kernighan (LK-opt), and LK-Helsgaun (LK-H), respectively.
For Helsgaun’s LK parameter MAX TRIALS was set to 100 (instead of number
of cities). Totally, 600 tours were constructed to test the fixing heuristic when
applied to tours of different quality levels.
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Table 1. Probabilities (in percent) for edges in a tour to match certain criteria. The
data is grouped by TSP instance and tour type. The eight left most columns contain the
original and the conditional probabilites for the four edge fixation heuristics discussed
in this paper.
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0
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NN 59.12 70.44 73.22 58.29 74.82 54.64 71.07 40.11 71.68
2-opt 65.13 73.58 75.78 60.39 77.33 53.28 74.67 38.49 75.70
3-opt 70.49 76.20 78.47 62.73 79.70 52.17 77.77 37.14 78.83
LK-opt 77.93 77.53 83.07 62.99 83.99 52.16 82.78 35.03 83.55
LK-H 92.44 76.59 93.93 61.18 94.08 48.61 93.45 31.75 93.88
optimal 100.00 75.33 100.00 59.43 100.00 47.83 100.00 30.34 100.00

d
1
5
1
1
2

NN 61.21 71.33 74.09 59.16 75.89 54.86 71.73 39.88 73.37
2-opt 66.06 73.69 75.99 60.58 77.73 54.22 74.36 38.50 76.24
3-opt 71.07 76.04 78.61 62.99 79.91 53.67 77.63 37.70 79.07
LK-opt 77.50 77.01 82.63 63.12 83.71 52.38 82.03 35.83 83.09
LK-H 92.11 76.15 93.51 61.33 93.83 50.65 93.05 32.59 93.67
optimal 100.00 74.70 100.00 59.61 100.00 49.79 100.00 31.25 100.00

i
t
1
6
8
6
2

NN 61.35 72.20 74.44 60.06 76.04 52.60 70.59 32.56 73.59
2-opt 66.72 74.66 76.64 61.90 78.10 53.82 74.34 30.56 76.29
3-opt 71.87 76.94 79.33 64.34 80.37 54.63 79.06 29.08 79.34
LK-opt 77.91 77.64 83.07 64.23 84.03 53.35 83.12 27.14 83.28
LK-H 91.56 76.58 93.10 62.52 93.22 51.16 92.70 24.07 93.29
optimal 100.00 75.07 100.00 60.59 100.00 49.92 100.00 22.89 100.00

d
1
8
5
1
2

NN 60.68 71.58 73.99 59.19 75.71 55.22 72.11 39.14 73.05
2-opt 65.88 74.18 76.01 60.77 77.62 53.83 75.06 37.94 76.13
3-opt 70.80 76.68 78.40 63.05 79.74 53.23 77.94 37.15 78.88
LK-opt 77.95 77.76 82.95 63.15 83.97 52.94 82.73 35.05 83.38
LK-H 92.70 76.66 94.08 61.16 94.22 50.03 93.67 31.72 94.01
optimal 100.00 75.34 100.00 59.41 100.00 49.06 100.00 30.34 100.00

s
w
2
4
9
7
8

NN 65.39 76.00 75.24 65.38 75.78 42.56 74.30 24.96 74.83
2-opt 68.18 75.47 76.95 64.14 77.67 41.14 75.22 25.04 76.94
3-opt 72.26 76.91 79.09 65.45 79.67 41.82 77.55 24.30 79.11
LK-opt 77.22 77.00 82.38 64.46 83.08 41.19 80.97 23.18 82.45
LK-H 90.33 76.01 92.06 62.90 92.13 40.31 90.66 20.54 92.56
optimal 100.00 74.38 100.00 60.85 100.00 39.15 100.00 19.36 100.00

Each heuristics’ selection scheme was applied to the set of 600 tours. Average
values over each set of 20 tours with the same setup were taken and summarized
in Tab. 1. Here, the first column sets the instance under consideration. The
‘Type’ column determines in which local optimum the tours are located. Column
‘P(OPT)’ shows for a local optimal tour the percentage of edges that also occur
in the known global optimal tour. Columns ‘P(MST)’, ‘P(NN)’, ‘P(<M)’, and
‘P(CP)’ contain the probability that a edge from a local optimal tour matches
the given property. Columns ‘P(OPT|MST)’, ‘P(OPT|NN)’, ‘P(OPT|<M)’, and
‘P(OPT|CP)’ contain conditional probabilities, that an edge in a local optimal
tour is part of the global optimal tour, given that it matches the properties MST,
NN, <M, or CP, respectively.

Column ‘P(OPT)’ shows the percentage of edges from a local optimal tour
occurring in the global optimal tour. The better a tour construction and improve-
ment heuristics works, the more edges the resulting tour has in common with
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the optimal tour. Whereas tours constructed by a nearest neighbor construction
heuristics share about 60–65% of all edges with optimal tours (depending on
the instance), tours found by subsequently applied local search algorithms are
better, ranging from 65–70% for 2-opt to more than 90% for LK-H-opt tours.

As each edge selection strategy has different criteria how to select edges, they
differ in the number of optimal edges. The most edges get chosen by the MST
strategy (column ‘P(MST)’) selecting about 70–80% of all tour edges. Other
strategies select less edges: From NN with 60–65% down to <M and CP with 45–
55% and 25–40% of all edges, respectively. Interestingly, the number of selected
edges decreases for all instances and all selection strategies when applied to high
quality tours such as ‘LK-H’ and optimal tours.

However, the quantity (number of edges selected for fixing) is not the only
criterion to rate a selection strategy. Selected edges were checked whether they
occur in the corresponding known optimal tour, too. When applying a fixing
heuristics to a sub-optimal tour, a good heuristics should more likely select edges
that occur in the optimal tour, too, rather than edges that do not occur in the
optimal tour. Therefore we were interested in the probability that a sub-optimal
tour’s edge selected by a edge selection strategy would actually be contained in
an optimal tour (‘true positive’) rather than being a ‘false positive’.

Edge selection strategies tend to be more successful for better tours. For every
selection strategy, the percentage of correctly selected edges (edges that occur in
the optimal tour, too) increases with the tour quality. E. g. for nearest neighbor
tours of instance it16862, only about 74.4% of all selected edges are optimal tour
edges, too, but for LK-H optimal tours, the percentage of selected edges is much
higher (93.1%). Comparing selection strategies, the nearest neighbor selection
strategy (NN) has the best probability values for all combinations except for
three cases, where the close pairs strategy (CP) is more likely to find the right
edges for LK-H tours. Especially for lower quality tours (NN and 2-opt), selection
strategies <M and CP have the lowest conditional probabilities, but this effect
disappears with higher quality tours.

4 Experimental Setup and Results

For the experimental evaluation, the fixing heuristics have been integrated into
a simple TSP solver written in Java. The solver works as follows: Each tour
was reduced using one of the fixing heuristics and subsequently improved by
an iterated local search (ILS) algorithm. In each iteration of the algorithm the
current tour was perturbed and locally optimized by an LK implementation,
which is able to handle fixed edges. For the perturbation a variable-strength
double-bridge move (DBM) was used increasing the number of DBMs each two
non-improving iterations. At the end of each iteration the new tour was compared
to the previous tour and discarded if no improvement was found, otherwise
kept for subsequent iterations. The iterations would stop after 2 non-improving
iterations. Finally, the improved tour was expanded back to a solution for the
original TSP instance. For comparison, all tours were optimized by the iterated
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local search algorithm without any reduction, too. This solver was not designed
to compete with state-of-the-art solvers, but merely to evaluate our fixation
heuristics. Each parameter setup was tested by applying it to the tours described
in Sec. 3; average values were used for the following discussion. Computation
times are utilized CPU time on a 2.8 GHz Pentium 4 system with 1 GB memory
running Linux.

Table 2 holds the results for the different setups applied to the ILS and is
structured as follows: Rows are grouped by instance (brd14051 to sw24978)
and by starting tour for the ILS (‘NN’ to ‘LK-H’). The instances are ordered
by number of cities, the starting tours are ordered by descending tour length.
Columns are grouped into blocks, where the first block summarizes an ILS setup
without any fixation and the subsequent blocks summarize ILS setups with each
fixation heuristics (‘MST’ to ‘Close Pairs’). Each column block consists of four
columns: Improvement found when applying the ILS, required CPU time until
termination, size of the reduced instance (normalized number of cities), and
fraction of edges that are fixed (tabu for any ILS operation).

For every instance and each fixing heuristics (including no fixing) holds that
the better the starting tour is, the smaller the improvements found by the ILS
are. Applying our TSP solver to nearest neighbor tours (Tab. 2, rows with start
tour type ‘NN’) results in improvements of more than 20% for most setups
(columns ‘Impr. [%]’). For better starting tours, less improvement is achieved,
down to improvements of 0% for starting tours coming from LK-H.

Each fixing ILS setup can be compared with the corresponding ILS setup
without fixing regarding improvement on the given start tour and the required
CPU time. The following observations can be drawn from Tab. 2:

– For non-fixing setups, the CPU time is always higher compared to fixing set-
ups, as the effective problem size is larger for the non-fixing setup. However,
time consumption does not directly map to better tour quality.

– The Close Pairs (CP) fixing heuristics yields in improvements as good as
for non-fixing ILS, but requires significantly less time to reach these quality
levels. E. g. for instance brd14051 starting with 3-opt tours, both the non-
fixing ILS and the CP fixing ILS improve the start tour by about 6.2%, but
the CP-ILS requires only 31.9 s, whereas the non-fixing ILS requires 44.8 s.

– For the other fixing heuristics hold that they consume both less CPU time
and result in lesser improvements. Although this makes comparing the differ-
ent fixing strategies hard, improvements are still competitive while requiring
significantly less CPU time compared to the non-fixing ILS.

– Among all fixation-based ILS setups, the MST heuristics results in both the
smallest improvements and lowest running times compared to the other fixa-
tion heuristics. E. g. for instance sw2978 starting with 2-opt tours, the MST
heuristics results in an improvement of 10.1% consuming 21.8 s, whereas all
other fixation and non-fixation ILS setups find improvements of 11.4% and
better consuming 41.0 s and more.

– Comparing CPU time consumption versus possible improvement, the fixa-
tion heuristics can be put into three groups: Between the expensive, but
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Fig. 3. For each of the five instances using 3-opt starting tours, improvements and
CPU time of the ILS with fixation (MST, NN, <M, and CP) are normalized with the
results from ILS runs without fixation

good CP heuristics and the cheap, but not so good MST heuristics the re-
maining two heuristics NN and <M can be located. These two “medium”
heuristics show similar results both for found tour improvement and CPU
time consumption.

The last observation can be visualized as in Fig. 3, which compares the improve-
ments for each fixing heuristics applied to 3-opt tours. Both time and improvement
are normalized for each of the five TSP instances by the values from the runs with-
out fixing. The CP and the MST heuristics’ values are separated from the central
cluster consisting of NN and <M results. As can be seen, the CP heuristics reaches
improvements as good as the non-fixing ILS (normalized improvement close to
1.0), but requires only 3

4 of the time. NN and <M heuristics find improvements of
about 90% of those from the non-fixing ILS and still demand less than the half of
the time. The MST heuristics reaches about 70% of the non-fixing ILS’s improve-
ment, while consuming only a quarter of the CPU time.

For all fixing heuristics the size of the original instance has been compared to
the corresponding reduced instances’ size (in percent, columns ‘Red. Size [%]’ in
Tab. 2) and the number of free edges within the reduced instance (in percent,
columns ‘Free Edges [%]’).

– For close pairs (CP) fixations holds that the reduced instance’s size equals
always with the original instance’s size, as fixed edges can not have neighbor-
ing edges that are fixed, too, as this would contradict the selection criterion.
Thus, no nodes are redundant.

– For all combinations of instance and start tour, the MST fixing heuristics
is the most progressive one resulting in the smallest instances. Here, fixed
instances have on average less than half the number of cities compared to
the original instances. Within these reduced instances, more than half of the
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edges are free for the local search. E. g. for instance d15112 and 3-opt tours,
only 47.4% of the original nodes are left, whereas the other heuristics leave
54.9% (NN) to 75.7% (<M) (not considering CP).

– The nearest neighbor heuristics reduces all instance types for about the same
level (to 70–75% of the original size) except for instance sw24978, where the
fixed instance reach 66.0% to 72.2% of the original instances’ sizes.

– Over all instances and start tour type the nearest neighbor heuristics has a
very stable percentage of free edges, ranging only between 54.2% and 56.2%.

5 Conclusion

In order to extend current memetic algorithms for the TSP to find close to opti-
mum solutions for large TSP instances, we studied several edge-based problem
reduction techniques that can easily be incorporated into an evolutionary local
search framework. We have shown that fixing edges in TSP tours can consid-
erably reduce the computation time of a TSP solver compared to applying the
same solver to the unmodified problem instance. Still, the solutions found when
using fixing heuristics are nearly as good as the solutions found without fixing.
Therefore, edge fixing is a feasible approach to solve tours that are otherwise
too large for solvers regarding memory or time consumption.

When selecting one of the proposed fixing heuristics, a trade-off between ex-
pected solution quality, computation time, or required preprocessing steps has
to be made. E. g. the MST heuristics is expected to consume the least time, but
requires building an MST in advance. The close pairs strategy can be used if no
global knowledge is available, but here too few edges get fixed to decrease an
instance’s size considerably. As a compromise regarding time and quality, either
the nearest neighbor or the lighter than median heuristics can be applied.

Future work will focus on developing fixing heuristics for population-based
EAs and for very large TSP instances. For EAs, the knowledge of which edges
occur in parent tours can be used to select edges in offspring tours. For very large
instances such as the World TSP, fixation heuristics may exploit geographical
properties.
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10. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding Cuts in the TSP (a Prelim-
inary Report). Technical Report 95-05, Rutgers University, Piscataway NJ (1995)

11. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Sales-
man Heuristic. European Journal of Operational Research 126(1) (2000) 106–130

12. Cook, W.J.: Log of SW24978 Computation.
http://www.tsp.gatech.edu/world/swlog.html (2004)

13. Arenas, M.G., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B.,
Preuß, M., Schoenauer, M.: A Framework for Distributed Evolutionary Algo-
rithms. In et al., J.J.M.G., ed.: Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature, PPSN VII. Volume 2439 of Lecture Notes
in Computer Science., Springer, Berlin, Heidelberg (2002) 665–675

14. Fischer, T., Merz, P.: Embedding a Chained Lin-Kernighan Algorithm into a Dis-
tributed Algorithm. In: MIC’2005 – 6th Metaheuristics International Conference,
Vienna, Austria (2005)

15. Cook, W.J.: World Traveling Salesman Problem.
http://www.tsp.gatech.edu/world/ (2005)

16. Walshaw, C.: Multilevel Refinement for Combinatorial Optimisation Problems.
Annals of Operations Research 131 (2004) 325–372

17. Walshaw, C.: A Multilevel Approach to the Travelling Salesman Problem. Oper-
ations Research 50(5) (2002) 862–877

18. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for Large Traveling
Salesman Problems. INFORMS Journal on Computing 15(1) (2003) 82–92

19. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proceedings of the American Mathematical Society 7 (1956)
48–50

20. Friedman, J.H., Baskett, F., Shustek, L.H.: An Algorithm for Finding Nearest
Neighbors. IEEE Transactions on Computers (TOC) C-24 (1975) 1000–1006

21. Sproull, R.F.: Refinements to Nearest-Neighbor Searching in k-Dimensional Trees.
Algorithmica 6(4) (1991) 579–589

22. Reinelt, G.: TSPLIB — a traveling salesman problem library. ORSA Journal on
Computing 3(4) (1991) 376–384 See also http://www.iwr.uni-heidelberg.de/

groups/comopt/software/TSPLIB95/ .
23. Cook, W.J.: National Traveling Salesman Problems.

http://www.tsp.gatech.edu/world/countries.html (2005)
24. Johnson, D.S., McGeoch, L.A. In: Experimental Analysis of Heuristics for the

STSP. Kluwer Academic Publishers (2002) 369–443

http://www.tsp.gatech.edu/world/swlog.html
http://www.tsp.gatech.edu/world/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.tsp.gatech.edu/world/countries.html

	Introduction
	Related Work

	Problem Reduction by Fixing Edges
	Analysis of TSP Instances
	Experimental Setup and Results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




