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Abstract. We define a set of measures that capture some different aspects of
neutrality in evolutionary algorithms fitness landscapes from a qualitative point
of view. If considered all together, these measures offer a rather complete picture
of the characteristics of fitness landscapes bound to neutrality and may be used as
broad indicators of problem hardness. We compare the results returned by these
measures with the ones of negative slope coefficient, a quantitative measure of
problem hardness that has been recently defined and with success rate statistics
on a well known genetic programming benchmark: the multiplexer problem. In
order to efficaciously study the search space, we use a sampling technique that
has recently been introduced and we show its suitability on this problem.

1 Introduction

In the context of Evolutionary Algorithms (EAs), Neutrality of fitness landscapes has
been widely studied in the last few years. Nevertheless, many contributions that have
appeared use very different concepts and measures between them to express neutrality.
For instance, in [11], Reidys and Stadler define the family of additive random land-
scapes where both neutrality and ruggedness of fitness landscapes can be tuned; in [14],
Toussaint and Igel talk of the suitability of the design of neutral encodings to improve
the efficiency of EAs; in [3], Collard et al. introduce the concept of synthetic neutrality
and study its effects on the evolvability of Genetic Algorithms (GAs); in [22,20,21],
Yu and Miller show that increasing the search space’s size by artificially introducing
neutral neighbors to some individuals, can help Cartesian Genetic Programming (GP)
to navigate some restricted fitness landscapes, focusing on the choice of the represen-
tation and how it affects the amount of neutral neighborhood in a fitness landscape
(these results have been recently criticized by Collins in [5]). If on the one hand this
multiplicity of different concepts and formalisms has contributed to fortify the belief
that neutrality plays an important role in the search process of EAs from many different
points of view, on the other we think that uniformity in treating neutrality is missing and
we fear that this may lead to ambiguous and sometimes confusing conclusions. In other
words, we strongly agree with Geard [6] that the way in which neutrality is defined is
crucial in determining its role and that the choice of different neutrality frameworks and
formalizations may lead to different, and in some cases even conflicting, conclusions.
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One of the main goals of this paper is establishing a precise set of neutrality measures,
each of which aimed at formalizing a particular aspect of fitness landscapes bound to
neutrality. These measures (some of which already introduced in [16]) are: the aver-
age neutrality ratio, the average Δ-fitness, the non-improvable and “non-worsenable”
solutions ratio and the profitable and unprofitable mutations ratio. Each of them is cal-
culted on neutral networks. None of them brings a sufficient amount of information if
considered alone, since each of them focus only on a particular feature of the landscape,
but the joint analysis of all of them should allow us to have a rather complete picture
of fitness landscapes, especially those related to neutrality. Furthermore, even though a
bound between neutrality and problem difficulty has often been hypothesized, neutral-
ity has never been presented together with other difficulty measures before, in order to
check if the respective results are consistant between each other or not. In this paper,
we compare the qualitative results returned by our neutrality measures with the quan-
titative results returned by the Negative Slope Coefficient (NSC) (a hardness measure
that has recently been proposed in [18,15]) and we hope that the results returned by our
neutrality measures may support and strengthen the ones of the NSC. For our empirical
study, we use two different versions of the multiplexer problem, induced by two dif-
ferent sets of functional operators: {IF} and {NAND}. Finally, as discussed in [15], the
shape and features of the boolean functions fitness landscapes make them hard to study
by means of uniform random samplings and thus more sophisticated sampling methods
are needed. In this paper we use a new, and more elaborate, sampling methodology of
the search space and neighborhood that has been first defined in [16].

This paper is structured as follows: in section 2 we introduce some notions that will
be used in this paper and we present NSC results for the two chosen instances of the
multiplexer problem. Section 3 presents the view of neutrality features of these two
landscapes, as offered by our quantitative neutrality measures. Finally, section 4 dis-
cusses the results, concludes the paper and offers hints for future research activity.

2 Definitions and Preliminary Results

Fitness Landscapes and Neutrality. Using a landscape metaphor to gain insight about
the workings of a complex system originates with the work of Wright on genetics [19].
A simple definition of fitness landscape in EAs is a plot where the points in the horizon-
tal plane represent the different individual genotypes in a search space (placed accord-
ing to a particular neighborhood relationship) and the points in the vertical direction
represent the fitness of each one of these individuals [9]. Generally, the neighborhood
relationship is defined in terms of the genetic operators used [17,9,15]. This can be done
easily for unary genetic operators like mutation, but it is clearly more difficult if binary
or multi-parent operators, like crossover, are considered. Formal definitions of fitness
landscape have been given (e.g. in [13]). Following these definitions, in this work a
fitness landscape is a triple L = (S ,V , f ) where S is the set of all possible solutions,
V : S → 2S is a neighborhood function specifying, for each s ∈ S , the set of its neigh-
bors V (s), and f : S → IR is the fitness function. Given the set of variation operators,
V can be defined as V (s) = {s′ ∈ S |s′ can be obtained from s by a single variation}.
In some cases, as for many GP boolean problems, even though the size of the search
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space S is huge, f can only assume a limited set of values. Thus, a large number of
different solutions have the same fitness. In this case, we say that the landscape has a
high degree of neutrality [11]. Given a solution s, a particular subset of V (s) can be
defined: the one composed by neighbor solutions that are also neutral. Formally, the
neutral neighborhood of s is the set N (s) = {s′ ∈ V (s)| f (s′) = f (s)}. The number of
neutral neighbors of s is called the neutrality degree of s and the ratio between neutrality
degree and cardinality of V (s) is the neutrality ratio of s. Given these definitions, we
can imagine a fitness landscape as being composed by a set of (possibly large) plateaus.
More formally, a neutral network [12] can be defined as a graph connected component
(S ,EN ) where EN = {(s1,s2) ∈ S 2|s2 ∈ N (s1)}. Finally, we define the fitness of a
neutral network (or network fitness) as the fitness value shared by all individuals of this
neutral network.

Negative Slope Coefficient. Evolvability of a solution related to an operator [1] can
be studied by plotting the fitness values of individuals against the fitness values of
their neighbours. Such a plot has been presented in [4,2] and called fitness cloud. A
possible algorithm to generate fitness clouds was proposed in [15]. This algorithm es-
sentially corresponds to the sampling produced by a set of n stochastic hill-climbers
at their first iteration after initialisation. The Negative Slope Coefficient (NSC) has
been defined to capture with a single number some interesting characteristics of fit-
ness clouds. It can be calculated as follows: the abscissas of a fitness cloud can be
partitioned into a certain number of separate bins {I1, I2, . . . , Im}. Let X1,X2, . . . ,Xm be
the averages of the abscissas of the points contained in bins I1, I2, . . . , Im, respectively,
and let Y1,Y2, . . . ,Ym be the averages of the ordinates of the points in I1, I2, . . . , Im. The
set of points (Xi,Yi) can be seen as the vertices of a polyline, which effectively repre-
sents the “skeleton” of the fitness cloud. For each of the segments of this, we can define
a slope, Si = (Yi+1 −Yi)/(Xi+1 − Xi). Finally, the negative slope coefficient is defined
as NSC = ∑m−1

i=1 min (0,Si). The hypothesis proposed in [15] is that the NSC should
classify problems in the following way: if NSC= 0, the problem is easy; if NSC< 0 the
problem is difficult and the value of NSC quantifies this difficulty: the smaller its value,
the more difficult the problem. The justification put forward for this hypothesis was
that the presence of a segment with negative slope would indicate a bad evolvability for
individuals having fitness values contained in that segment as neighbours would be, on
average, worse than their parents. Pros and cons of this measure have been discussed
in [18,15].

Genetic Operators and Neighborhood. Standard crossover or subtree mutation [8]
generate very complex neighborhoods. In this paper, we consider a simplified version
of the inflate and deflate mutation operators first introduced in [15,17] (also called struc-
tural mutation operators in those works): (1) Strict deflate mutation, which transforms
a subtree of depth 1 into a randomly selected leaf chosen among its children. (2) Strict
inflate mutation, which transforms a leaf into a tree of depth 1, rooted in a random oper-
ator and whose children are a random list of variables containing also the original leaf.
(3) Point terminal mutation, that replaces a leaf with another random terminal symbol.
This set of genetic operators (already introduced in [16] and called Strict-Structural,
or StSt, mutation operators) is easy enough to study and provides enough exploration
power to GP. For instance, StSt mutations present two important properties: (i) each
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mutation has an inverse: let M be the set of StSt mutation operators and let S be the set
of all the possible individuals (search space). For each pair of individuals (i, j) ∈ S , if an
operator m ∈ M exists such that m(i) = j, then an operator m−1 ∈ M such that m−1( j) = i
always exists; (ii) for each pair of solutions (i, j) ∈ S , a sequence of mutations which
transforms i into j exists. See [16] for the formal proofs of these properties. Thus, the
associated graph (S ,V ) of fitness landscape is undirected (given the (i) property) and
connected (given the (ii) property) graph.

The Multiplexer Problem. The goal of the k-multiplexer [8] problem is to design a
boolean function with k inputs and one output. The first x of the k inputs can be con-
sidered as address lines. They describe the binary representation of an integer number.
This integer chooses one of the 2x (= k − x) remaining inputs. The correct output for
the multiplexer is the input on the line specified by the address lines. The terminals
are the k variable inputs to the function. The fitness function of a GP individual E is
calculated as the number of input data for which E does not return the same value as
the target function. In this paper, the fitness values have always been normalized into
the [0,1] range, by dividing them by 2k, where k is the problem’s order. Thus, from now
on a solution with fitness equal to 0 represents an optimal solution, while 1 is the worst
possible fitness value. In this paper, we have used two different sets of non-terminals:
{IF} (where IF(x,y,z) is a ternary boolean function which returns y if x is true and z
otherwise) and {NAND}. We have chosen these two sets because they are small enough
to limit the cardinality of the search space but rich enough to represent some perfect so-

lutions. These two sets of boolean operators induce two landscapes (indicated by L{IF}
(k,h)

and L{NAND}
(k,h) from now on, where k is the problem order and h is the predetermined

tree depth limit) the first of which is generally easy for GP, while the second is hard.
This fact is confirmed by the experimental results shown in table 1, where the values
of the success rate (SR) for three different mutation rates and NSC are reported for
both landscapes. The success rate results have been obtained by executing 100 indepen-

Table 1. Values of the success rate for three different mutation rates and of the NSC for the
6-multiplexer problem using two different sets of operators to build the individuals. The fitness
landscapes induced by these two sets of operators clearly have different difficulties for GP.

Set Of Operators SR(pm = 0.95) SR(pm=0.5) SR(pm=0.25) NSC
{IF} 1 0.98 0.71 0

{NAND} 0 0 0 -0.21

dent GP runs using the 6-multiplexer problem, maximum tree depth for the individuals
equal to 6 for the landscape induced by {NAND} and to 5 for the landscape induced
by {IF} (the choice of these values for the tree depths are motivated later), population
of size 100, ramped half-and-half population initialization, tournament selection of size
10, StSt mutations as genetic operators. Only one StSt mutation operator has been ap-
plied with a certain probability pm. 100 GP runs have been executed with pm = 0.95
(column 2 of table 1), 100 separate runs have been executed with pm = 0.5 (column 3)
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and 100 further runs have been executed with pm = 0.25 (column 4). The choice of the
particular mutation operator has been done each time uniformly at random between the
three StSt mutations. A run has been considered successful when an individual with a
lower fitness than 0.15 has been found. The results related to the NSC reported in ta-
ble 1 (column 5) have been obtained by generating a sample of 40000 individuals with
the Metropolis-Hastings algorithm and, for each of them, a neighbor by applying one
StSt mutation. Once again, the choice of the particular mutation operator to generate
each neighbor has been done uniformly at random between the three StSt mutations.

Sampling Methodology. In [9] uniform random samplings have been used for studying
boolean function landscapes. In [15] importance sampling techniques such as Metropo-
lis and Metropolis-Hastings [10] have been proposed. Even though the resuls obtained
were satisfactory for the purposes of those works, still those samples did not capture
some important characteristics of the fitness landscape (see [16] for a detailed discus-
sion). In this paper, we use a methodology aimed at generating samples containing trees
of many (possibly all) different fitness values and forming connected neutral networks,
if possible. This technique is composed by three steps: modified Metropolis, vertical
expansion and horizontal expansion. Modified Metropolis generates a sample S of in-
dividuals with as many different fitness values as possible. The vertical expansion tries
to enrich S by adding to it some non-neutral neighbors of its individuals. Finally, the
horizontal expansion tries to enrich S by adding to it some neutral neighbors of its in-
dividuals. This methodology has been presented in [16] and it is not described here to
save space.

3 Neutrality Results

In this section we present a study of neutrality of L{NAND}
(6,6) and L{IF}

(6,5) , which are the
largest search spaces respectively induced by {NAND} and {IF} that we have been able
to study with our computational resources. The difference in the tree depth limit for the
two landscapes is due to the fact that NAND is an operator with arity 2 while IF is an
operator of arity 3. Thus, given a fixed tree depth, the trees that can be built with IF are
on average larger than the ones that can be built with NAND. Figure 1 shows the fitness

distributions (that is the frequence of fitness value) of the samples of L{NAND}
(6,6) and

L{IF}
(6,5) that we have generated with Metropolis-Hasting sampling technique. For L{IF}

(6,5) ,

all the sampled fitness values are included into the range [0,0.7]; in other words, no bad
individual has been sampled. This is probably a characteristic of the complete search
space (and it is not due to a bias of our samplig technique); in fact, we have exhaustively

generated all the possible individuals of L{IF}
(3,2) and we have observed that no tree with

fitness larger than 0.7 exists also in that (similar, although much smaller) search space.

On the other hand, for L{NAND}
(6,6) large part of the sampled individuals have a bad fitness

value (included into the range [0.75,1]). Also this characteristic is analogous to what

happens in the similar, but smaller, search space L{NAND}
(3,3) that we have been able

to exhaustively generate, where the largest number of individuals had fitness equal to
0.75 and the majority of the individuals had bad fitness values. Finally, we point out
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Fig. 1. Fitness distribution of L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

that with our sampling technique we have been able to generate individuals with many
different fitness values, which is quite unusual for boolean landscapes (as pointed out,
for instance, in [15]). Figure 2 reports the average neutrality ratio of neutral networks

scatterplots for L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part) as a function of fitness value.
The average neutrality ratio, r̄ is defined as the mean of the neutrality ratios (as defined
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Fig. 2. Scatterplot of the average neutrality ratio in L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

in section 2) of all the individuals in a network. High values of r̄ (near to 1) correspond

to a large amount of neutral mutations. As figure 2 clearly shows, L{IF}
(6,5) has a higher

neutrality ratio than L{NAND}
(6,6) , in particular for networks at good fitness values. In other

words, L{IF}
(6,5) is “more neutral” than L{NAND}

(6,6) in good regions of the fitness landscape.
In this figure, as in all the subsequent ones, to guide the eye, a gray line is drawn,
joining all the average points for each considered fitness value. These averages have
been weighted according to the size of networks representing each point. Furthermore,
points at the same coordinates have been artificially (slightly) displaced, so that they
can be distinguished.

The second measure we study is the average Δ-fitness of the neutral networks. This
measure is the average fitness gain (positive or negative) achieved after a mutation of
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the individuals belonging to the network. Formally, let N be a neutral network, then its
average Δ-fitness can be defined as:

Δ f̄ (N) :=
1

|N| · ∑
s∈N

[
∑v∈V (s)( f (v)− f (s))

|V (s)|

]

This measure is clearly related to the notions of evolvability [1] and innovation rate
[7]. It also helps to statistically describe the graph (S ,V ). A negative value of Δ f̄ cor-
responds to a fitness improvement (because it reduces the error) while a positive one
corresponds to a worsening (because it increases the error). The average Δ-fitness scat-
terplots are not reported here to save space, but we have studied them and we have

observed that improving good individuals for L{IF}
(6,5) is easier than for L{NAND}

(6,6) , in
fact, for neutral networks at good fitness values, the value of the average Δ-fitness for

L{NAND}
(6,6) is positive and much larger than the one for L{IF}

(6,5) .
Now, we present two measures that we have called Non Improvable (NI) Solutions

ratio and Non Worsenable1 (NW) Solutions ratio. The first one is defined as the number
of non-improvable solutions, or non-strict local optima (i.e. individuals i which cannot
generate offspring j by applying a StSt mutation such that the fitness of j is better than
the fitness of i) that are contained into a network divided by the size of the network.
The second one is the ratio of the individuals i which cannot generate offspring j (by
applying a StSt mutation) such that the fitness of j is worse than the fitness of i. The

scatterplots of NI solutions ratios are reported in figure 3. L{NAND}
(6,6) presents some NI
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Fig. 3. Scatterplot of NI solutions ratio in L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

solutions ratios larger than 0.2 for some good fitness values (see for instance the peaks
at fitness values approximately equal to 0.1, 0.125, 0.375). This indicates the presence

of some trap neutral networks at this fitness values. This is not the case for L{IF}
(6,5) where

NI solutions ratios are always equal to zero, except the obvious case of fitness equal
to zero, where the NI solutions ratio is, of course, equal to one. In other words, for

1 We are aware that the word “worsenable” does not exist in the English dictionary. Nevertheless
we use it here as a contrary of “improvable”, i.e. as something that cannot be worsened.
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L{NAND}
(6,6) some good individuals exist that cannot be improved by means of mutation,

while this is not the case for L{IF}
(6,5) . NW solutions ratios scatterplot are not reported

here to save space. Nevertheless, we have studied them and we point out that neutral

networks in L{IF}
(6,5) contain more NW solutions than for the ones in L{NAND}

(6,6) .

Figure 4 shows the scatterplot of unprofitable mutations ratios: for L{NAND}
(6,6) and

L{IF}
(6,5) : for each neutral network, we have calculated the number of mutations which do
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Fig. 4. Scatterplot of unprofitable mutations ratio in L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

not generate better offspring and divided it by the total number of possible mutations
of the individuals in that network. Values of the unprofitable mutation ratios are higher

for good fitness values in L{NAND}
(6,6) than in L{IF}

(6,5) . In particular, for fitness values be-

tween 0 and 0.25, the majority of the possible mutations in L{NAND}
(6,6) are unprofitable,

while for L{IF}
(6,5) only about half of the possible mutations appear to be unprofitable.

All the neutrality measures that we have studied indicate that L{IF}
(6,5) should be easier

than L{NAND}
(6,6) for GP. Furthermore, separate studies that we have done exhaustively

generating all the possible individuals of the similar but smaller L{IF}
(3,2) and L{NAND}

(3,3)
landscapes lead us to the same conclusions. Thus we hypothesize that our sampling
technique is a suitable one to study our neutrality measures (i.e. the qualitative trends of
our neutrality measures are kept as in the original complete landscape by our sampling
technique).

4 Conclusions and Future Work

Some characteristics of fitness landscapes related to neutrality have been investigated in
this paper for two different versions of the multiplexer problem. In particular, we have
defined: the average neutrality ratio, the average Δ-fitness, the non-improvable and
“non-worsenable” solutions ratio and the profitable and unprofitable mutations ratio of
neutral networks. Each one of these measures, if considered alone, gives too a particular
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vision of the fitness landscape to allow us to draw strong conclusions about its difficulty.
But considered all together, they have allowed us to have a clear and rather complete
picture of the characteristics of multiplexer functions landscapes. In particular, all these
measures have contributed to give an interpretation of the fact that the set of operators
{IF} induces an easier fitness landscape than {NAND} for the multiplexer problem.
This facts have also been experimentally demonstrated by executing 100 independent
GP runs for each one of these problems and calculating the success rate. As a further
confirmation, we have also calculated the value of another GP hardness indicator, called
Negative Slope Coefficient. Another interesting result that we have obtained with our
measures is that the landscapes induced by {IF} appear to be “more neutral” than the
corresponding ones induced by {NAND}, in particular in correspondance of neutral
networks with good (although not optimal) fitness values. In many recent contributions,
a bound between neutrality and GP performance has been hypothesized and neutrality
has been presented as a profitable [14,6,22] or unprofitable [5] characteristic of fitness
landscapes. What may often be misleading in these discussions is, in our opinion, what
kind of neutrality is being considered: many different ways of intending and formalizing
the concept of neutrality may exist and each one of them may lead to different, and
in some cases conflicting, conclusions. Our opinion is that, to study the relationship
between neutrality and difficulty of a fitness landscape, a pool of neutrality measures
is needed. All our results considered, we argue that our measures may be helpful in
studying neutrality and relate it to GP problem hardness. Results shown in this paper
hold both for “small” fitness landscapes, that we have been able to study by exhaustively
generating all the individuals, and for “large” fitness landscapes, obtained by increasing
the problem order and the maximum size of the individuals, and that we have sampled
using a new methodology. This methodology is based on a modified version of the
Metropolis algorithm, enriched by two further algorithms that we have called vertical
and horizontal expansion. By this strategy, it has been possible to generate and to study
a large number of individuals that would not (or would very rarely) have been generated
by means of a uniform random sampling or a standard Metropolis algorithm. Since our
techniques are general and can be used for any GP program space, future work includes
extending this kind of study to other problems and possibly defining new measures of
problem hardness based on neutrality.
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13. P. F. Stadler. Fitness landscapes. In M. Lässig and Valleriani, editors, Biological Evolu-
tion and Statistical Physics, volume 585 of Lecture Notes Physics, pages 187–207. Springer,
Berlin, Heidelberg, New York, 2002.

14. M. Toussaint and C. Igel. Neutrality: A necessity for self-adaptation. In Congress on Evo-
lutionary Computation (CEC’02), pages 1354–1359, Honolulu, Hawaii, USA, 2002. IEEE
Press, Piscataway, NJ.

15. L. Vanneschi. Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty
of Sciences, University of Lausanne, Switzerland, 2004.

16. L. Vanneschi, Y. Pirola, P. Collard, M. Tomassini, S. Verel, and G. Mauri. A quantitative
study of neutrality in GP boolean landscapes. In M. Keijzer et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO’06, volume 1, pages 895–902.
ACM Press, 2006.

17. L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue. Fitness distance correlation in
structural mutation genetic programming. In Ryan, C., et al., editor, Genetic Programming,
6th European Conference, EuroGP2003, Lecture Notes in Computer Science, pages 455–
464. Springer, Berlin, Heidelberg, New York, 2003.

18. L. Vanneschi, M. Tomassini, P. Collard, and S. Vérel. Negative slope coefficient. a measure
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