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Abstract. Model checking is a way of analysing programs and program-
like structures to decide whether they satisfy a list of temporal logic
statements describing desired behaviour. In this paper we apply this to
the fitness checking stage in an evolution strategy for learning finite state
machines. We give experimental results consisting of learning the control
program for a vending machine.

1 Introduction

In genetic programming (and similar systems for the induction of program code),
fitness is typically evaluated by running the programs on a sample of test data.
This brings with it a number of difficulties[17], most notably that we cannot
formally have confidence in the performance of the system for any input data that
has not been used in training. In many cases this does not matter; however, in
safety- and mission-critical domains, this is a significant barrier to the adoption
of such techniques.

In this paper we give an example of the use of a formal reasoning technique—
model checking—as a way of assessing fitness in an inductive automatic program-
ming system. Model checking requires the user to specify the desirable qualities
of a system in the form of temporal logic statements about program state; these
properties can then be analysed for all possible program states. The end result
is either a confirmation that the properties always hold, or a counterexample
which demonstrates why the system under test does not satisfy the statements.

The paper is structured as follows. Section 2 reviews the literature on the
application of program analysis techniques to automatic program induction. This
is followed by a section which gives a brief overview of model checking, the
analysis technique that we have used in the experiments in this paper. Section 4
discusses how model checking can be used as a fitness measure, and section 5
describes a novel Evolution Strategy for evolving state machines. Section 6 gives
the problem specifications that are used in the experiments in the paper, and
this is followed by a section which gives results. The paper finishes with some
conclusions and ideas for future work.
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2 Background - Program Induction with Guaranteed
Behaviour

A number of techniques exist which generate computer programs, or other formal
executable program-like structures (digital circuits, communications protocols,
state machines), by an inductive process which is driven by comparisons be-
tween trial solutions and descriptions of the desired behaviour of the system.
Perhaps the best known of these is genetic programming [2,20]. This technique
applies genetic algorithms to derive executable structures by using a representa-
tion which fits well with evolutionary operators such as crossover and mutation.
Other evolutionary approaches include grammatical evolution [21,22], where the
representation is a simple string of symbols, but this is converted into a complex
structure via a grammar; and evolutionary programming [10,11] where evolution-
ary operators operate directly on a state machine representation. Other heuristic
search techniques, such as simulated annealing [7], have been applied to the in-
duction of executable systems. Overall, this area has been termed search-based
software engineering [6,13].

Typically such techniques measure the quality of the trial solution by running
some instantiations of the system, measuring the results from the system, and
comparing those results to the desired behaviour—essentially testing the system.

A small number of studies have used measures of fitness that are not de-
pendent solely on testing-like measures of performance, but instead on some
form of analysis of the program. In earlier work, these were typically used to
guide the search in areas related to performance or evolvability of the solutions:
for example measuring length of solutions [26] or using a metric for program
complexity [12]. Clearly such measures need to be used alongside a measure of
problem-solving quality.

By contrast, a small number of authors have used techniques based on the
analysis of the candidate programs to measure ability to solve the problem at
hand. Static analysis of programs has been applied to the induction of programs
which solve sorting problems [15] and geometric placement problems [17]. Other
approaches combine static analysis with data-driven analysis: Keijzer [19] uses
static analysis techniques as a preprocessing step, whilst Johnson [18] has applied
static analysis to impose safety constraints on programs that are otherwise data-
driven.

A general motivation for this kind of approach has been suggested by Partridge
and colleagues [23,24]. He notes that problems that are naturally “data-defined”
(e.g. pattern recognition problems) are frequently approached by constructing
an artificial “specification bottleneck” which attempts to give a specification to
a problem that is best described by giving a number of examples. By contrast,
in traditional GP fitness evaluation the opposite problem is sometimes observed:
problems for which there is a clear specification are evaluated crudely by giving
a number of test cases: this could analogously be termed a “data bottleneck”.

The work described in this paper fits into an overall program of work that
attempts to measure fitness in terms of the native representation, be it data
or specification. Furthermore, multicriterion optimization methods can be used
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to solve problems where some aspects of the problem are best described as
specifications, and others as data, as illustrated in [18].

3 Background - Model Checking

Model checking [8,16] is a technique for confirming that a program satisfies a
number of conditions. A model checking system takes as input two things. The
first of these is a description of some aspect of the system being constructed,
expressed as a statement in a temporal logic [9]; that is, statements about how
the variables and states in the program change with time. The second input is a
description of the system which the user believes should satisfy that description:
this might be a computer program, a communications protocol, a state machine,
a circuit diagram, et cetera.

The model checking program constructs an abstracted, symbolic representa-
tion of the system being analysed, and then uses this representation to decide,
in an efficient manner [3], whether the statements always hold in the system,
regardless of the control-flow path that is taken through the system. At the end
of this analysis, the program reports either a positive result (that the system will
always satisfy the statement) or a negative result together with a counterexample
which gives a program path under which the statement is not satisfied.

The description language that we use in this study is CTL (Computation Tree
Logic) [9]. This consists a number of basic “atomic propositions” (in the examples
below, these are labels of states and values of variables in a finite state machine),
which can be combined by standard propositional logic connectives and a set of
temporal connectives which act on propositions (including propositions which
themselves contain temporal connectives).

These temporal connectives consist of two components: a description of the
scope over the future time paths (either A or E) and a description of when the
proposition that is the argument of the temporal operator holds within that scope
(one of G,F,X or U). These have (in informal terms) the following meanings:

A The proposition will hold on All paths starting from the current point.
E There Exists a path on which the proposition will hold.
G The proposition holds all states (Globally) along the path.
F The proposition can be found somewhere (in the Future) along the path.
X The neXt state satisfies the proposition.
U The proposition holds Until a second proposition holds (this is the only

binary operator - the rest are unary).

Here a “path” is a sequence of states in time, starting from the current state.
Some illustrative examples are given in Figure 1.

This languageallows a description of how a processwill changewith time. Model
checking algorithms automatically check whether a particular description of a sys-
tem satisfies a CTL statement describing the system. The model checking algo-
rithm used below is the SMV system (http://www.cs.cmu.edu/~modelcheck/
smv.html), in particular the version used in the Stuttgart Model-Checking Kit
(http://www.fmi.uni-stuttgart.de/szs/tools/mckit/).

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
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Fig. 1. Illustrative examples of the CTL operators

4 Model Checking as a Fitness Measure

In the experiments below each problem is described as a list of CTL statements
that describe the desired properties of the program being evolved. The fitness
is measured by the number of statements that are satisfied. To help to smooth
out the fitness landscape, some statements are included in the specification lists
below that act as stages on the way to a complete specification.

5 Methods - Induction of Communicating Finite
Automata by an Accumulative Evolution Strategy

In the work in this paper we use Communicating Finite Automata (CFA) [4] as the
description language for the structures that are evolved. We use a (1+λ) Evolution
Strategy with a novel growth-style mutation operator to evolve these structures.

A CFA consists of a number of nodes, which can be labelled from a label-set,
linked by a number of directed edges. These edges can contain conditions and
actions concerned with global variables and communication channels between
automata: e.g. checking whether a variable is set to a particular value or within
a range, whether the value of a variable is changed by executing the transition,
or whether a variable reads/writes its value from/to a communication channel.
Examples are given in Figure 3.

The learning process used in this paper will be referred to as an Accumulative
Evolution Strategy (AES). This starts with very simple structures, and the most
probably moves that can be made at the mutation stage consist of adding items
to the structure. Therefore a solution to the problem is built up by accumulating
substructures, rather than traditional approaches which begin with structures
that are of similar complexity to the final desired structure, and where mutation
is typically converting one structure into another of similar size.

The motivation for this variant on traditional evolutionary algorithms is that
potential solutions that contain large numbers of arbitrarily connected nodes
will fail to satisify any of the fitness conditions. This is because there will as
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a consequence be a large number of routes through the (nondeterministic) au-
tomaton, and therefore there is a large chance that statements such as “X must
always be followed by Y” used in the fitness checking will not be satisfied. The
aim of our strategy is to build up a solution by conservatively adding new parts
to the structure over evolutionary time (a similar point has been made recently
by Petrovic [25].

The AES system runs as follows:

INPUT:
List of labels for nodes
List of variables and channels
User model
List of CTL statements

INITIALISE:
Create an automaton A consisting of one node labelled “start”

LOOP: until solution found or a fixed number of timesteps completed
Generate λ mutations A′

1..λ of A by the following list of processes:
- with a 0.4 probability, add a new (unconnected) node

(0.5 probability of label “blank”,
otherwise labelled with a random label from the label set)

- with a 1.0 probability (always!) add a new link
(this link has a random label)

- with a 0.3 probability delete a (randomly chosen) link
- with a 0.1 probability rename a (randomly chosen) node
- with a 0.2 probability rename a (randomly chosen) link

Run the model checker on each statement on each of A′
1..λ

Count how many statements are satisfied for each of A′
1..λ

Let the new A be the member of A′
1..λwith the most statements satisfied

ENDLOOP
OUTPUT:

The best solution found
The number of generations required to find the best

In the experiments below λ = 20. The probabilities of performing the various
mutations are parameters which have been empirically determined.

No recombination is used in this method at present. This remains an option for
future studies—however, recombination has not been heavily used in applications
of evolution to finite state automata. One significant reason for this is that there
is no clear notion of what a meaningful subroutine is in order to carry our
recombination—by contrast, Koza-style tree-based representations [20] have an
unambiguous notion of what can be readily swapped between trees (though the
actual role of recombination is controversial). Some attempts have been made
[5,1] to automatically identify functionally coherent modules in automata—such
modules could be usefully used as the units of recombination.

6 Methods - Some Example Specifications

In the experiments below we will generate automata that represent the control
systems for coffee vending machines. We use two examples. Each problem consists
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Fig. 2. Automata representing user behaviour: (a) problem 1 (b) problem 2

Table 1. The CTL specification for the coffee machine in problem 1

Variables coin, taking values {0, 1}
States coffee

reset
blank

Statements EF(“coin=1”) 1. We can reach a state where
the coin has been inserted

EF(“coffee”) 2. We can reach a state
labelled “coffee”

EF(“reset”) 3. We can reach a state
which are labelled “reset”

AG(“userStart”→AF(“coffee”)) 4. Once the user process has
started, coffee must be served

EF(“coffee”)&EF(“reset”)& 5. States coffee and reset can
AG(“coffee”→EF(“reset”)) be reached, and whenever coffee has been

reached, the machine can reset.
EF(“coffee”)&EF(“reset”)& 6. States coffee and reset can
AG(“coffee”→AF(“reset”)) be reached, and whenever coffee has been

reached, the machine must reset.
EF(“coffee”)&AG(“coffee”→ 7. Once coffee has been served,
AX(AG(!“coffee”))) we must not serve another coffee
EF(“coin=0”)&EF(“coffee”)& 8. If no coin has been inserted,
AG(“coin=0”→AG(!“coffee”)) we cannot get a coffee

of two parts: an automaton that represents user behaviour, which is fixed for the
given problem; and a specification of the desired machine behaviour, given as a
sequence of CTL statements. The specification is then used to measure fitness in
the learning process, which learns a machine-automaton which, accompanied by
the user-automaton provided, gives a complete description of the system.

6.1 Problem 1

The first problem is a simple machine where the user places a coin into the
machine, receives coffee, and the machine then goes into a reset state.
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Table 2. The CTL specification for the coffee/tea machine in problem 2

Variables coin, taking values {0, 1, 2}
States coffee

tea
reset
blank

Statements EF(“coin=1”) 1. We can reach a state where
one coin has been inserted

EF(“coin=2”) 2. We can reach a state where
two coins have been inserted

EF(“coffee”) 3. We can reach a state labelled “coffee”.
EF(“tea”) 4. We can reach a state labelled “tea”.
EF(“reset”) 5. We can reach a state labelled “reset”.
AG(“userStart”→AF(“coffee”|“tea”)) 6. Once the user has started acting

tea or coffee must be served
AG(“oneCoinSelected”→AF(“coffee”)) 7. Once the user has chosen to insert one coin

coffee must be served
AG(“twoCoinsSelected”→AF(“tea”)) 8. Once the user has chosen to insert two coins

tea must be served
AG(“oneCoinSelected”→AG(!“tea”)) 9. Once the user has chosen to insert one coin

tea must not be served
AG(“twoCoinsSelected”→AG(!“coffee”)) 10. Once the user has chosen to insert two coins

coffee must not be served
EF(“coffee”)&EF(“reset”)& 11. Once coffee has been served
AG(“coffee”→EF(“reset”)) we can reset
EF(“coffee”)&EF(“reset”)& 12. Once coffee has been served
AG(“coffee”→AF(“reset”)) we must reset
EF(“tea”)&EF(“reset”)& 13. Once tea has been served
AG(“tea”→EF(“reset”)) we can reset
EF(“tea”)&EF(“reset”)& 14. Once tea has been served
AG(“tea”→AF(“reset”)) we must reset
EF(“coffee”)&AG(“coffee”→ 15. Once coffee has been served,
AX(AG(!(“coffee”|“tea”)))) no more coffee or tea can be served
EF(“tea”)&AG(“tea”→ 16. Once tea has been served,
AX(AG(!(“coffee”|“tea”)))) no more coffee or tea can be served
EF(“coin=0”)&EF(“coffee”)& 17. If no coin has been inserted,
AG(“coin=0”→AG(!(“coffee”|“tea”))) we cannot get a coffee or tea

The automaton representing user behaviour in this example is very simple
(Figure 2a)—the user can perform one action, putting a coin in the machine,
which is represented by adding a value to a channel (a list which can be read
by other automata), which represents adding a coin into the machine.

The specification of the machine behaviour is given in table 1. Note that some
of the behaviours are staged, e.g. rules 1–3 are concerned with making certain
that certain states are accessible at all, before they are used in specific ways
later on. Similarly, rule 5 is the can version of the must rule in rule 6. The aim
of these is to smooth out the fitness space.

6.2 Problem 2

The second problem is a machine where the user places either one or two coins
into the machine, receives coffee (for one coin) or tea (for two coins), and the
machine then goes into a reset state.
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The automaton representing user behaviour in this example is given in Fig-
ure 2b), and the specification of the machine behaviour is given in table 2.

7 Results

In this section the results of experiments using the Accumulative Evolution Strat-
egy on the two problems are given, and a discussion of the results made.

7.1 Experiment 1

The first experiment consisted of 30 runs of the Accumulative Evolution Strategy
on problem 1 with λ = 20 with the algorithm being stopped after 20 runs if a
solution satisfying all the conditions had not been found.

The algorithm found a solution that satisfied all eight conditions in 25/30
runs; in the remaining runs seven conditions were satisfied. In those cases where
a solution was found, the mean number of generations needed was 6.5 (with
standard deviation 4.4).

A number of examples of successful solutions can be found in Figure 3.

7.2 Experiment 2

The first experiment consisted of 30 runs of the Accumulative Evolution Strategy
on problem 2 with λ = 20 with the algorithm being stopped after 30 runs if a
solution satisfying all the conditions had not been found.

No run found a solution with all (seventeen) conditions satisfied. The mean
number of conditions satisfied was 14 (with a standard deviation of 2). Seven
runs found examples where 16 out of the 17 cases were satisfied.

8 Conclusions and Ongoing Work

We have demonstrated how model checking can be used to measure fitness in the
evolution of state machines. In the future we intend to apply this to a number of
other example problems, including problems which have both specification and
data-driven aspects.

An important area for future work in terms of developing the technique will
be to develop techniques for smoothing out the fitness landscapes. Ideas in this
area include scaling (perhaps dynamically) the fitness contributions of each state-
ment, to encourage the algorithm to search for less well represented statements;
using the counterexamples that are returned from failed statements to measure
how far the current attempt is from a solution; and estimating the number of
paths within the model checking algorithm which do/don’t satisfy the statement
in order to get away from a simple yes/no response (perhaps using a probabilistic
model checking system such as Prism [14]).
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