


Preface

In 2007 the European Conference on Genetic Programming (EuroGP) reached
in its tenth year. What started out as a small workshop in 1998 in Paris has
grown considerably in size over the years both in number of attendees as well
as number of submissions. EuroGP is the only conference worldwide devoted
exclusively to genetic programming and all aspects of evolutionary generation of
computer programs. For the tenth year we came together to exchange our ideas
on the automatic generation of programs inspired by Darwinian evolution. The
main operators are reproduction, variation and selection. In nature, heritable
traits are passed from one generation to the next. Variations are introduced
through accidental mutations or by recombining genetic material from parents.
Selection occurs as a result of limited resources. The very same process is used
when trying to evolve programs using artificial evolution. The desired task for
the programs to perform is specified via the fitness function.

This year we received a record number of 71 submissions. A rigorous, double-
blind, selection mechanism was applied to the submitted papers. We accepted
21 plenary talks (30% acceptance rate) and 14 poster presentations (49% global
acceptance rate for talks and posters). Each submissions was reviewed by at
least three members of the international Program Committee from 19 different
countries. Each reviewer was asked for keywords specifying their own area of ex-
pertise. Submissions were then appropriately matched to the reviewers based on
their expertise using the optimal assignment of the conference management soft-
ware (MyReview) originally developed by Philippe Rigaux, Bertrand Chardon
and colleagues from the Université Paris-Sud Orsay, France. This version of the
MyReview system has been developed with funding from the European Coor-
dinated Action ONCE-CS (Open Network Connecting Excellence in Complex
Systems), funded under FP6 framework by the FET division (contract 15539).
Only small adjustments were then made manually to balance the work load
better.

Papers were accepted for presentation at the conference based on the re-
viewers’ recommendations and also taking into account originality, significance
of results, clarity of representation, replicability, writing style, bibliography and
relevance to the conference. As a result, 35 high-quality papers are included
in these proceedings which address fundamental and theoretical issues such
as crossover bias, issues such as chess game playing, real-time evaluation of
VoIP, multi-objective optimization, evolution of recursive sorting algorithms,
density estimation for inverse problem solving, image filter evolution, predicting
prime numbers, data mining, grammatical genetic programming, layered learn-
ing, expression simplification, neutrality and evolvability, iterated function sys-
tems, particle swarm optimization, or open-ended evolution. The use of genetic
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programming for several different applications shows that the method is a very
general problem-solving paradigm.

The 10th European Conference on Genetic Programming took place during
April 2007 11–13 in Valencia, Spain. The present volume contains all contribu-
tions that were accepted for publication either as talks or posters. All previous
proceedings have been published by Springer in the Lecture Notes in Computer
Science series. EuroGP was co-located with EvoCOP 2007, the seventh Euro-
pean Conference on Evolutionary Computation in Combinatorial Optimization,
and also EvoBIO, fifth European Conference on Evolutionary Computation, Ma-
chine Learning and Data Mining in Bioinformatics, and the series of EvoWork-
shops, focusing on applications of evolutionary computation. Evo* (pronounced
EvoStar) is the new umbrella name for the three co-located conferences and the
EvoWorkshops series, the increasingly important international event exclusively
dedicated to all aspects of evolutionary computing.

Many people helped to make the conference a success. We would like to
express our gratitude to the members of the Program Committee for their thor-
ough reviews of all papers submitted to the conference. Their constructive com-
ments made it possible for the authors to improve their original submissions
for final publication. We also thank the following institutions. The Universidad
Politécnica de Valéncia provided institutional and financial support, as well as
the lending of their premises and also helped with the organization and admin-
istration. The Instituto Tecnológico de Informática cooperated with regard to
the local organization. The Spanish Ministerio de Educación y Ciencia also pro-
vided financial support for which we are very grateful. We are thankful to Marc
Schoenauer, INRIA, France, for managing the MyReview conference manage-
ment software.

We especially thank Jennifer Willies and the School of Computing, Napier
University. Without her dedicated work and continued involvement with the
EuroGP conference from the initial start in 1998 to what now has become Evo*,
this event would not be what it is today.

April 2007 Marc Ebner
Michael O’Neill

Anikó Ekárt
Leonardo Vanneschi

Anna Isabel Esparcia-Alcázar

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Organization

Administrative details were handled by Jennifer Willies, Napier University, School
of Computing, Scotland, UK.

Organizing Committee

Program Co-chairs Marc Ebner (Universität Würzburg, Germany)
Michael O’Neill (University College Dublin, Ireland)
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Verel, Sébastien. University of Nice-Sophia Antipolis, France
Yu, Tina. Memorial University of Newfoundland, Canada

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Table of Contents

A Grammatical Genetic Programming Approach to Modularity in
Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Erik Hemberg, Conor Gilligan, Michael O’Neill, and
Anthony Brabazon

An Empirical Boosting Scheme for ROC-Based Genetic Programming
Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Denis Robilliard, Virginie Marion-Poty, Sébastien Mahler, and
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Genetic Programming Heuristics for Multiple Machine Scheduling . . . . . . 321
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Abstract. The ability of Genetic Programming to scale to problems of
increasing difficulty operates on the premise that it is possible to cap-
ture regularities that exist in a problem environment by decomposition
of the problem into a hierarchy of modules. As computer scientists and
more generally as humans we tend to adopt a similar divide-and-conquer
strategy in our problem solving. In this paper we consider the adoption
of such a strategy for Genetic Algorithms. By adopting a modular rep-
resentation in a Genetic Algorithm we can make efficiency gains that
enable superior scaling characteristics to problems of increasing size. We
present a comparison of two modular Genetic Algorithms, one of which
is a Grammatical Genetic Programming algorithm, the meta-Grammar
Genetic Algorithm (mGGA), which generates binary string sentences in-
stead of traditional GP trees. A number of problems instances are tackled
which extend the Checkerboard problem by introducing different kinds
of regularity and noise. The results demonstrate some limitations of the
modular GA (MGA) representation and how the mGGA can overcome
these. The mGGA shows improved scaling when compared the MGA.

1 Introduction

In the natural world examples of modularity and hierarchies abound, ranging the
biological evolution of cells to form tissues and organs to the physical structure
of matter from the sub-atomic level up. In most examples of problem solving by
humans, regularities in the problem environment are exploited in a divide-and-
conquer approach through the construction of sub-solutions, which may then be
reused and combined in a hierarchical fashion to solve the problem as a whole.
Similarly Genetic Programming provides as components of its problem solving
toolkit the ability to automatically create, modify and delete modules, which can
be used in a hierarchical fashion. The objectives of this study are to investigate
the adoption of principles from Genetic Programming [1] such as modularity
and reuse (see Chapter 16 in [2]) for application to Genetic Algorithms, and to
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2 E. Hemberg et al.

couple these to an adaptive representation that allows the type and usage of
these principles to be evolved through the use of evolvable grammars. The goal
being the development of an evolutionary algorithm with good scaling char-
acteristics, and an adaptable representation that will facilitate its application
to noisy, dynamic, problem environments. To this end a grammar-based Ge-
netic Programming approach is adopted, in which the grammars represent the
construction of syntactically correct genotypes of the Genetic Algorithm. In par-
ticular, we compare the representations and performance of the meta-Grammar
Genetic Algorithm (mGGA) [3] to the Modular Genetic Algorithm (MGA) [4],
highlighting some of the MGA’s representational limitations, and demonstrate
the potential of a more expressive representation in the form of the mGGA to
scale to problems of increasing size and difficulty. Additionally, we consider the
introduction of noise into the Checkerboard problem, in order to assess how the
representations might generalise into noisy, real-world problem domains. The
remainder of the paper is structured as follows. Section 2 provides background
on earlier work in modular GAs and describes the meta-Grammar Genetic Al-
gorithm. Section 3 details the experimental approach adopted and results, and
finally section 4 details conclusions and future work.

2 Background

There has been a large body of research on modularity in Genetic Programming
and effects on its scalability, however the same cannot be stated for the Ge-
netic Algorithm (GA). In this section we present two modular representations
as implemented in the Modular GA [4] and the meta-Grammar GA [3].

2.1 Modular Genetic Algorithm

Garibay et al. introduced the Modular Genetic Algorithm, which was shown
to signficantly outperform a standard Genetic Algorithm on a scalable problem
with regularities [4]. The genome of an MGA individual is a vector of genes,
where each gene is comprised of two components, the number-of-repetitions
and some function which is repeated according to the value of the repetitions
field. For example, if we had a function (one()) that always returned the value 1
when called and another (zero()) that returned the value 0 we have a represen-
tation that can generate binary strings. A sample individual comprised of three
genes might look like: {2, zero()}, {4, one()}, {2, zero()}, which would
produce the binary string 00111100. The MGA was shown to have superior
ability to scale to problems of increasing complexity than a standard GA.

2.2 Grammatical Evolution by Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study is
based is the Grammatical Evolution by Grammatical Evolution algorithm [5],
which is in turn based on the Grammatical Evolution algorithm [6,7,8,9]. This is
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A Grammatical Genetic Programming Approach to Modularity in GAs 3

a meta-Grammar Evolutionary Algorithm in which the input grammar is used
to specify the construction of another syntactically correct grammar. The gen-
erated grammar is then used in a mapping process to construct a solution. In
order to allow evolution of a grammar (Grammatical Evolution by Grammatical
Evolution (GE)2), we must provide a grammar to specify the form a grammar
can take. This is an example of the richness of the expressiveness of grammars
that makes the GE approach so powerful. See [6,10,11] for further examples of
what can be represented with grammars and [12] for an alternative approach to
grammar evolution. By allowing an Evolutionary Algorithm to adapt its repre-
sentation (in this case through the evolution of the grammar) it provides the
population with enhanced robustness in the face of a dynamic environment, in
particular, and also to automatically incorporate biases into the search process.
In this case we can allow the meta-Grammar Genetic Algorithm to evolve biases
towards different building blocks of varying sizes. In this approach we therefore
have two distinct grammars, the universal grammar (or grammars’ grammar)
and the solution grammar. The notion of a universal grammar is adopted from
linguistics and refers to a universal set of syntactic rules that hold for spoken lan-
guages [13]. It has been proposed that during a child’s development the universal
grammar undergoes modifications through learning that allows the development
of communication in their parents native language(s) [14]. In (GE)2 the univer-
sal grammar dictates the construction of the solution grammar. In this study
two separate, variable-length, genotypic binary chromosomes were used, the first
chromosome to generate the solution grammar from the universal grammar and
the second chromosome generates the solution itself. Crossover operates between
homologous chromosomes, that is, the solution grammar chromosome from the
first parent recombines with the solution grammar chromosome from the sec-
ond parent, with the same occurring for the solution chromosomes. In order for
evolution to be successful it must co-evolve both the meta-Grammar and the
structure of solutions based on the evolved meta-Grammar, and as such the
search space is larger than in standard Grammatical Evolution.

2.3 Meta-grammars for Bitstrings

A simple grammar for a fixed-length (8 bits in the following example) binary
string individual of a Genetic Algorithm is provided below. In the generative
grammar each bit position (denoted as <bit>) can become either of the boolean
values. A standard variable-length Grammatical Evolution individual can then
be allowed to specify what each bit value will be by selecting the appropriate
<bit> production rule for each position in the <bitstring>.

<bitstring> ::= <bit><bit><bit><bit><bit><bit><bit><bit>
<bit> ::= 1 | 0

The above grammar can be extended to incorporate the reuse of groups of bits
(building blocks). In this example all building blocks that are mutliples of two
are provided, although it would be possible to create a grammar that adopted
more complex arrangements of building blocks.
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4 E. Hemberg et al.

<bitstring> ::= <bbk4><bbk4> | <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>

<bbk4> ::= <bit><bit><bit><bit>
<bbk2> ::= <bit><bit>
<bbk1> ::= <bit>
<bit> ::= 1 | 0

The above grammars are static, and as such can only allow one building block
of size four and of size two in the second example. It would be better to allow
our search algorithm the potential to uncover a number of building blocks of
any one size from which a Grammatical Evolution individual could choose from.
This would facilitate the application of such a Grammatical GA to:

– problems with more than one building block type for each building block
size,

– to search on one building block while maintaining a reasonable temporary
building block solution,

– and to be able to switch between building blocks in the case of dynamic
environments.

All of this can be achieved through the adoption of meta-Grammars as were
adopted earlier in [5]. An example of such a grammar for an 8-bit individual is
given below.

<g> ::= "<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4t>
"<bbk2> ::=" <bbk2t>
"<bbk1> ::=" <bbk1t>
"<bit> ::=" <val>

<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"

| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>" | 1 | 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::= 1 | 0

In this case the grammar specifies the construction of another generative bit-
string grammar. The subsequent bitstring grammar that can be produced from
the above meta-grammar is restricted such that it can contain building blocks of
size 8. Some of the bits of the building blocks can be fully specified as a boolean
value or may be left as unfilled for the second step in the mapping process. An
example bitstring grammar produced from the above meta-grammar could be:

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>
| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>
<bbk2> ::= 11
<bbk1> ::= 1
<bit> ::= 1 | 0 | 0 | 1

To allow the creation of multiple building blocks of different sizes the following
grammar could be adopted (again shown for 8-bit strings).
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A Grammatical Genetic Programming Approach to Modularity in GAs 5

<g> ::= "<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk4> ::= <bbk4t> | <bbk4t> "|" <bbk4>
<bbk2> ::= <bbk2t> | <bbk2t> "|" <bbk2>
<bbk1> ::= <bbk1t> | <bbk1t> "|" <bbk1>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"

| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>" | 1 | 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::= 1 | 0

An example bitstring grammar produced by the above meta-grammar is provided
below.

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>
| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>

<bbk4> ::= <bit>11<bit> | 000<bit>
<bbk2> ::= 11 | 00 | <bit>1
<bbk1> ::= 0 | 0
<bit> ::= 1 | 0 | 0 | 1

Modularity exists above in the ability to specify the size and content (or partial
content) of a buiding block through its incorporation into the solution grammar.
This building block can then be repeatedly reused in the generation of the phe-
notype. An additional mechanism for reuse is through the Wrapping operator
of Grammatical Evolution. During the mapping process if we reach the end of
the genotype and still have outstanding decisions to make on the construction of
our phenotype we can invoke the wrapping operator to move our reading head
back to the first codon in the genome. This allows the reuse of rule choices if the
codons are used in the same context. Given that the lengths of binary strings
which may need to be represented can grow quite large it is possible to automate
the creation of meta-grammars by simply providing the length of the target so-
lution and creating all possible building block structures that can be used to
create a bitstring of the target length. In this study the target binary strings
are of lengths 60, 90, 120, 180, and 210. The building block sizes incorporated
in their corresponding grammars are therefore all integers that divide into the
target string lengths (i.e., for a target string of length 60 the building blocks
are of sizes 30, 20, 15, 12, 10, 6, 5, 4, 3, 2 and 1). Meta-grammars are of course
not limited to the specification of grammars for binary strings and can be easily
extended to the representation of real and integer strings as well as programs,
or any structure which can be represented in a grammatical form.

3 Experimental Setup and Results

Before detailing the experimental design and setup we first introduce the prob-
lems on which we will benchmark the two representations under investigation.
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3.1 The Checkerboard-Pattern Discovery Problem

Given the lack of suitable benchmark problems in the Genetic Algorithm liter-
ature that consider modularity, Garibay et al., [4] proposed the Checkerboard-
Pattern discovery problem. In this problem a pattern of colours or states is
imposed upon a two dimensional grid called the Checkerboard. There are 2 pos-
sible states adopted for each square on the grid, i.e., black or white, which can
be represented as bit values 1 and 0 respectively. Each candidate solution tries
to recapture the pattern contained in the target Checkerboard. Fitness is simply
measured by summing the number of squares that contain the correct state. In
this study we then normalise fitness to the range 0.0 to 1.0, and standardise fit-
ness such that 0.0 is the best possible fitness where all of the candidate solution’s
squares exactly match the target checkerboard-pattern. It is easily possible to
scale the problem in terms of its complexity, modularity and regularity by in-
creasing the size of the checkerboard, the number of patterns, and changing the
number of components in each pattern, respectively. Example instances of this
problem which are adopted in this study and in [4] are presented in Fig.1, which
illustrates scaled-up versions of a 4X8 pattern to 8X16 and 16X32. Another
problem instance tackled in this study of a 8X16 checkerboard pattern is also
illustrated. A third set of problem instances are examined which add noise to the
state of each sqaure upon the evaluation of each individual. This is implemented
by randomly switching the state of a square with a predefined probability for the
patterns already presented in Fig.1. With the addition of noise to the regular
patterns this makes it more challenging to uncover the underlying patterns and
thus add an additional element of real-world interest to this benchmark problem.
The amount of noise can easily be tuned by altering the probability of error.

Table 1. Performance changes for the mGGA on the standard non-noisy problem
instances. The average best fitness after 500 generations is 0.019792 for 24X8 and
after a 1000 generations 0.019531 for 28X16. The differnece in fitness between the two
generations is 0.000261. The average best fitness after 400 generations for 216X32 is
0.01875. Difference between 24X8 and 216X32 is 0.001042.

Performance drop (% of fitness decrease)
Complexity increase MGA mGGA

from 24X8 to 28X16 3.68% 0.02%
from 24X8 to 216X32 11.38% 0.1%

3.2 Comparing Performance of mGGA and MGA

30 runs on each problem instance were performed with the mGGA using a
population size of 1000, tournament selection (size 3), mutation probability of
0.001 per gene, and crossover probability of 0.7. The number of generations
was selected to reflect the values adopted in Garibay et al’s study [4], i.e. 500
for the 4X8, 1000 for the 8X16 and 2000 generations for the 16X32 problem
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Fig. 1. The original checkerboard-pattern matching problem instances (from left 24X8,
28X16 and 216X32) as presented in [4]. On the far right is a new 28X16 checkerboard-
pattern matching problem checkerboard instance with finer-grained regularity.

Table 2. Performance values for the mGGA on the standard non-noisy problem in-
stances. Average values are for 30 runs. The value in parenthsis is random search for
1000000 tries.

Problem Best fitness Mean fitness Variance(best fit.) Successful Runs
24X8 0.0119 0.0168 0.0017 26/30
28X16 0.0211 (0.164) 0.0265 (0.25) 0.0030 25/30
216X32 0.0188 (0.416) 0.0034 (0.5) 0.0248 27/30

instance. Random initialisation was used, and the fitness values and their vari-
ance reported in the initial population averaged over the 30 runs reflects this
(see e.g. Fig. 2). The results are reported in Fig 2, with the percentage gains in
performance and fitness statistics reported in Tables 1 and 2 respectively. It is
clear that as the problem instances increase in complexity there are economies
of scale to be achieved, with the relative performance of the mGGA improving
significantly with each jump in problem size. An additional problem instance as
portrayed in Fig.1(far right) was examined with the same parameters, with the
results presented in Fig.3. In this case the pattern is of size 1X1 and as such is
much finer grained than the patterns examined earlier. It is difficult for the MGA
to efficiently represent a solution to this problem instance due to the nature of the
pattern. Effectively each squares state must be specified individualy. However,
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Fig. 2. A graph for the mGGA on 24X8 (top left), 28X16 (top right), and 28X32 instances
(bottom)

this is not the case with the mGGA which can encode effectively parameterise
the evolved modules to specify multiple square states with different values.

3.3 mGGA Performance Under Noisy Conditions

In order to gain some preliminary insight into the performance of the mGGA in
a more realistic real-world setting it was decided to conduct experimental runs
incorporating noise into the target patterns. This was achieved by simply flipping
each bit in the target pattern with probability pn. Runs were conducted using the
same parameters as previously described for noise probabilities pn = 0.05, 0.075
on the 2128 sized problem. The results achieved here are presented in Table 3 and
Fig.4. As can be expected, the addition of noise reduced the algorithm perfor-
mance on average, however on inspection of individual runs it was seen that this
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Fig. 3. A graph for the mGGA on 28X16 checkerboard (1X1) (left) and, on the right
the standard 28X16 instance with 2.5% noise
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Fig. 4. A graph for the mGGA on 28X16 with 5% noise (left) and the 28X16 with 7.5%
noise (right)

performance drop was manifest in an increased, but still small, number of runs
which failed to converge to an optimal solution; instead converging prematurely
on areas of very poor fitness. This indicates that the population may be converg-
ing too quickly in the early stages of the algorithm, loosing whatever diversity
was present in the initial population. It is possible that through adjusting param-
eters of the EA better results could be achieved. It may also be wise to examine
the initialization technique as it is possible that the initial population lacks di-
versity. The increase in search space size with the use of both meta-grammar
and solution chromosomes may also be having an impact on performance.
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Table 3. Statistics for performance of the mGGA on the Noisy Checkerboard-Pattern
Discovery instances

Noise level Best fitness Mean fitness Variance(best fit.) Successful Runs
S(1x1) p = 0 0 0.0024 0 30/30
p = 0 0.0195 0.0253 0.0027 25/30
p = 0.025 0.0198 0.0468 0.002 24/30
p = 0.05 0.0664 0.0719 0.0123 22/30
p = 0.075 0.0841 0.0904 0.0098 13/30

4 Conclusions and Future Work

We presented a comparison of the meta-Grammar GA (mGGA) to the Modular
GA (MGA), illustrating the application of evolvable grammars to implement
modularity in Genetic Algorithms. We also introduced a number of variations
to the benchmark Checkerboard-Pattern discovery problem including different
types of regularity and the introduction of noise to bring the benchmark closer
to real-world scenarios. On the problem instances examined there are clear per-
formance advantages for the mGGA when compared to the MGA. In addition to
the application to more benchmark problem instances in particular to those be-
longing to the dynamic class, future work will investigate the effects alternative
grammars and comparisons to other GAs from the literature including the com-
petent GAs. A number of avenues to facilitate the co-evolution of the grammar
and solution, such as different operator probabilities, will also be investigated.
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Abstract. The so-called “boosting” principle was introduced by Schapire
and Freund in the 1990s in relation to weak learners in the Probably Ap-
proximately Correct computational learning framework. Another prac-
tice that has developed in recent years consists in assessing the quality
of evolutionary or genetic classifiers with Receiver Operating Character-
istics (ROC) curves. Following the RankBoost algorithm by Freund et
al., this article is a cross-bridge between these two techniques, and deals
about boosting ROC-based genetic programming classifiers. Updating
the weights after a boosting round turns to be the algorithm keystone
since the ROC curve does not allow to know directly which training cases
are learned or misclassified. We propose a geometrical interpretation of
the ROC curve to attribute an error measure to every training case.
We validate our ROCboost algorithm on several benchmarks from the
UCI-Irvine repository, and we compare boosted Genetic Programming
performance with published results on ROC-based Evolution Strategies
and Support Vector Machines.

1 Introduction

This paper is a cross-bridge between two Machine Learning techniques, namely
boosting and Receiver Operating Characteristics (ROC) based evolutionary
learning. Its first founding stone is the idea of “boosting” i.e. combining the
results of a set of so-called “weak” learners to obtain a powerful combined pre-
dictor, that originates from the work of Schapire and Freund in the 1990s [1,2,3].
Starting from weak learners as they are defined in the Probably Approximately
Correct (PAC) learning framework, i.e. learners that do just a little better than
random guess, Schapire and Freund proved that the boosting procedure can
yield a strong learner able to come as close as desired to perfect precision, in
theory. They also published the AdaBoost algorithm that was able to improve
real learners, such as C4.5, that are not true weak learners. Moreover AdaBoost
proved to be largely resistant, although not immune, to over-fitting in many
practical cases. These achievements raised much interest in the Machine Learn-
ing community, the boosting procedure being even qualified as “best off-the-shelf
classifier” by Leo Breiman [4]. An enlightening analysis of boosting has also been
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c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



An Empirical Boosting Scheme for ROC-Based GP Classifiers 13

produced by Friedman et al. in [5] where its relationship with additive logistic
regression is deeply studied.

The main idea in boosting is to perform several consecutive learning phases,
called rounds, on a training set where every sample is assigned a weight, all
weights forming a distribution and being equal for the first boosting round. At
the end of every round an error (or loss) is computed to derive a confidence value
for the current round hypothesis, and misclassified samples get their weights in-
creased in relation to this confidence. A new learning phase is then started to
generate another hypothesis. Once all learning rounds are finished, we obtain a
combined predictor through a confidence weighted majority vote of all hypothe-
ses. This procedure is summed up in Table 1.

Table 1. Pseudo code for AdaBoost algorithm

let S = {(xi, yi)}, i = 1, . . . , n, xi ∈ X, yi ∈ {1, −1}, be the training samples set.
initialize the weights wi = 1/n, i = 1, . . . , n
for r in 1..t // iterate t boosting rounds

learn hypothesis hr(x) → {−1, 1} using training samples weighted by wi

compute error εr = Σi:hr(xi) �=yi
wi

set confidence cr = log((1 − εr)/εr)
update misclassified samples weights wi:hr(xi) �=yi

= wi:hr(xi) �=yi
ecr

re-normalize so that Σn
i=1wi = 1

end for
let (x, ?) be a test sample with unknown class.
output combined predictor: sign(Σt

r=1crhr(x))

The second founding stone of the paper is ROC-based evolutionary classifiers.
ROC curves are popular for medical data analysis, as they offer an intuitive
representation of the true positive to false positive compromise when setting a
threshold level on a given characteristic to discriminate pathological cases (see
illustration in Fig. 1). ROC curves analysis also allows to bypass the difficulties
associated to predictive accuracy when dealing with highly biased distribution
of positive versus negative samples, or with different costs between misclassified
positive and negative cases. This is why several authors recommend to use the
area under the ROC curve — also known as AUC — rather than predictive
accuracy as a measure for comparing learning algorithm, see [6,7]. In this case,
one tries to maximize the AUC, and since it is a NP-complete problem [8] several
works rely on evolutionary computation to do the optimization job, such as
Mozer et al. [9] or Sebag’s et al. ROGER algorithm [10,11,12].

When choosing to implement a ROC-based learning scheme, one needs to
opt for hypotheses associated to a ROC characteristic such that increasing a
threshold on that characteristic yields a monotonous increase in the rate of both
true positives and false positives. Typical examples are real-valued functions: let
h : X → IR be a predictor on the instances features space X , h induces a set of
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14 D. Robilliard et al.

Fig. 1. Illustration of a ROC curve. The staircase effect is due to the curve being drawn
from a finite number of training samples.

binary classifiers {ht} by using a real threshold value t such that: ht(x) = 1 if
h(x) > t else ht(x) = −1.

In this paper we propose to adapt boosting in order to enhance the per-
formance of ROC-based Genetic Programming (GP) and Evolution Strategies
(ES) learners. For this matter, the RankBoost algorithm from Freund et al. [13]
is a boosting scheme dedicated to combine ranking hypotheses, i.e. hypothe-
ses that try to order a set of samples. It has been shown to boost the AUC
in [14], so it could suit our need, but it constrains the choice of the learner,
that must either output values in {0, 1} or in the [0, 1] interval, or that requires
a numerical search to optimize some internal parameters of the algorithm. We
propose another boosting scheme that lifts these constraints and thus allows
to directly re-use existing real-valued GP or ES classifiers. To accomplish this
goal we need first to take into account the weights distribution into the evo-
lutionary learning procedure, and then to design a weight update scheme. The
easiest way to associate weights to the learning phase consists in performing
a weight biased random re-sampling of the training cases as was done e.g. by
Freund and Schapire for boosting C4.5 [3] or by Iba for boosting Genetic Pro-
gramming [15]. As pointed out by [5] the effects of such re-sampling are still
an open question, and one can rather consider to use weights inside the learn-
ing process. This is the choice we have made here, so the weights are used in
the computation of the area under ROC curve, by slightly modifying the effi-
cient n ∗ log(n) algorithm given in [10]. The second point is the weights update
phase, which is less obvious when dealing with hypotheses that yield a ROC
curve, i.e. we cannot say if a training case is misclassified or not since this de-
pends on the variable threshold to be put on the ROC characteristic. We rather
propose to consider the area above the ROC curve as an error measure of the
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hypothesis, to be partitioned and attributed to each sample case, taking into
account its current weight. This is akin to the RankBoost algorithm but it differs
in that our error measure is independent from the actual learner output (i.e.
only the relative order of output values is used, not the difference between these
values).

Weighted AUC and update procedures (that we call ROCboost for short) are
explained in the next section, validation experiments on instances from the UCI-
Irvine repository1 are detailed in Section 3, then we conclude by a discussion on
the results and drawbacks of the algorithm, and sketch future works.

2 Boosting Evolutionary ROC-Based Learner

In this section we give a detailed description of the two main components of the
ROCboost algorithm. The weighted AUC computation pseudo code is shown in
Table 2 and serves as a fitness function for the evolutionary learner. It is very close
to the one proposed by Sebag et al. in their ROGER experiments [10], except that
the contribution of every learning case to the global area under curve is propor-
tional to its weight. Note that a part of the sorting criterion has been corrected
from [10]: it should be (yi < yj) because the area under curve should not increase
when an hypothesis outputs the same real value for several positive and negative
cases (i.e. the hypothesis should not be awarded for its inability to distinguish
between positive and negative samples). This error was unlikely to be triggered
in the framework used by Sebag et al., but it is not uncommon to meet constant
functions in the first generations of a GP run.

As we are maximizing the AUC, it is quite natural to consider the area above
the curve as a measure of the error (or loss) of the hypothesis. If one exam-
ines the weighted AUC fitness function, one notices that it can also be used to
draw the ROC curve: starting from the origin (0% true positive, 0% false posi-
tive) and reading every case in the sort order, every positive case (xi, 1) draws a
vertical segment of height wi and every negative case (xj , −1) draws a horizontal
segment of width wj . Here we consider the area of the rectangle above a negative
case as its loss (see illustration in Fig. 2), so it amounts to wj ∗Σ(xi,1),j+1≤i≤nwi

(using the sort order and not the initial random order of samples). In the same
way, the loss of a positive case is the area of the rectangle located to the left of its
vertical segment: this amounts to wi ∗Σ(xj,−1),1≤j≤i−1wj . The update procedure
is given in Table 3.

When doing the above computation, note that the area above the ROC curve
would be summed up twice, thus we correct this by dividing each individual loss
by 2. Then it is normalized so that the whole ROC diagram area sums up to 1.
The global cumulative loss is always between 0 (hypothesis can achieve perfect
classification by choosing appropriate threshold) and 1 (there is a threshold
such that every sample is misclassified). This gives us a sensible individual loss
to affect the weight of each case, that is closely related to the fitness value of the
hypothesis.
1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Table 2. Computation of the weighted area under the ROC curve (see also [10])

Function weightedAUC
Input

Data set S = {(xi, yi)}, i = 1 . . . n, xi ∈ X, yi ∈ {1, −1}
Hypothesis h : X → R // e.g. a GP tree in our experiments
Weights set W = {wi}, i = 1 . . . n, wi ∈ [0, 1], Σn

1 wi = 1
Begin

Sort S = {(xi, yi)} by decreasing order, where i > j
iff (h(xi) > h(xj)) or ((h(xi) = h(xj) and (yi < yj)).

p=0
F = 0
for i = 1 to n

if yi = 1 then p=p+wi

else F =F+p∗wi

end for
F = F/(Σ(xi,1)wi ∗ Σ(xj,−1)wj) // normalize F
return F

End

Fig. 2. Illustration of the loss area of a positive and negative cases for the weights
update algorithm

The resulting update formula uses the global and individual losses to com-
pute the confidence value of the hypothesis and to update the weights for the
next boosting round. This is done in the same way as for standard boosting
regression problems see e.g. [16]. The final combined predictor is obtained by
sorting the hypotheses outputs and keeping the one associated to the median of
the cumulative confidences, see Table 4 and also [16,17].
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Table 3. Updating the weights in relation with the area above the ROC curve

Function updateWeights
Input

Data set S = {(xi, yi)}, i = 1 . . . n, xi ∈ X, yi ∈ {1, −1}
Weights set W = {wi}, i = 1 . . . n, s.t. Σn

i=1wi = 1
Hypothesis h : X → R // e.g. a GP tree in our experiments

Begin
loss = 0; // global loss, i.e. area above curve
lossSamples[ ] = 0; // array of loss for each sample
Sort S = {(xi, yi)} by decreasing order, where i > j

iff (h(xi) > h(xj)) or ((h(xi) = h(xj) and (yi < yj)).
// compute area left of positive cases or above negative cases
for i = 1 to n

if yi = 1 then // positive case
lossSamples[i] = wi ∗ Σ(xj,−1),1≤j≤i−1wj

else // negative case
lossSamples[i] = wi ∗ Σ(xj,1),i+1≤j≤nwj

end if
lossSamples[i] = lossSamples[i]/2 // area should not be summed twice
// normalize so that ROC diagram area = 1
lossSamples[i] = lossSamples[i]/(Σ(xi ,1)wi ∗ Σ(xj,−1)wj)

loss = loss + lossSamples[i]
end for
// Update weights
β =loss /(1−loss)
for i = 1 to n

wi = wi ∗ β(1.0−lossSamples[i])

end for
normalize W so that Σn

i=1wi = 1
return log(1/β) // this is the confidence

End

3 Experiments with ROC-Based GP and ES

3.1 Experimental Settings

To validate our ROCboost algorithm, we performed a set of experiments follow-
ing the general framework set in [10] that seems a suitable comparison point
for evolutionary ROC-based learning. We used 8 benchmarks from the Univer-
sity of California – Irvine repository, namely the breast-cancer, german, crx,
votes, promoters, satimage discriminating between classes 3 and 4, vehicles
for classes saab and bus and waveform for classes 1 and 2. Every data set has
been processed as in [10]: we take 11 random splits between learning and test
data, we keep the same proportion of positive and negative cases in learning
and test sets, and we make 21 independent runs on each split, thus yielding 231
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Table 4. Pseudo code for ROCboost algorithm

let S = {(xi, yi)}, i = 1, . . . , n, xi ∈ X, yi ∈ {1, −1}, be the training samples set.
initialize the weights wi = 1/n, i = 1, . . . , n
for r in 1..t // iterate t boosting rounds

learn hypothesis hr(x) → R using training samples weighted by wi

and fitness function weightedAUC
compute confidence cr and update weights using function updateWeights

end for
let (x, ?) be a test sample.

output combined predictor: inf

{
y ∈ {hr(x)}r∈1...n : Σ

t:ht(x)≤y
ct ≥ 1

2 Σ
r∈1...n

cr

}

Table 5. ROCboost parameters for GP

Function set +, -, *

Terminal set ERC in [−2.0, +2.0], {ProblemInputs}
Population size 200

� generations 51

Crossover rate .9

Mutation rate .05

Copy rate .05

Elitism (� individuals) 2

Tournament selection 5

Max tree depth 17

� boosting rounds 100

independent runs on each data set in order to gather some statistical consistency
since we are using stochastic learning. However, we depart from [10] since we
consider both non linear GP trees and linear functions optimized with ES. The
number of boosting rounds was set to 100.

We used the ECJ2 library for all experiments. The parameters for the GP
runs are shown in Table 5 while those for the ES are taken from [10].

For GP we used 3 operators for internal nodes (+,−,∗), ephemeral random
constants (ERC) in the range [−2.0, +2.0], and as many inputs as needed by
the problem at hand. Note that we performed what could be called as “lazy”
data preparation for GP: qualitative features were simply given successive integer
numbers rather than being partitioned in separate boolean features as is common
practice. We chose to do so because we wanted to test the ability of GP to work
with such unrefined data, and also because we felt that medium size or large sets
of terminals implied by separation in boolean features could maybe hamper the
GP process. This last point would need further study in itself.

2 http://cs.gmu.edu/˜eclab/projects/ecj/
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Table 6. The AUC values on the test sets of plain GP, ROCboost GP, ES, ROCboost
ES, ROGER and Support Vector Machines (last two issued from [10]) on eight data
sets from the Irvine Repository (names are abbreviated)

plain ROCboost plain ROCboost ROGER SVMTorch
GP GP ES ES

Breast .647 ± .044 .664 ± .042 .642 ± .052 .650 ± .051 .674 ± .05 .672 ± .05
Crx .862 ± .022 .899 ± .022 .805 ± .028 .839 ± .018 .816 ± .06 .839 ± .04

German .709 ± .013 .746 ± .014 .725 ± .024 .745 ± .023 .712 ± .03 .690 ± .02
Promot. .719 ± .026 .849 ± .06 .797 ± .032 .968 ± .017 .863 ± .07 .974 ± .02
SatImg .921 ± .009 .917 ± .007 .911 ± .013 .918 ± .012 .918 ± .01 .876 ± .02
Vehicle .950 ± .007 .972 ± .007 .946 ± .009 .961 ± .007 .994 ± .005 .993 ± .007
Votes .984 ± .005 .990 ± .005 .983 ± .005 .990 ± .003 .993 ± .004 .989 ± .005
Wave .983 ± .002 .988 ± .002 .986 ± .002 .988 ± .002 .971 ± .004 .963 ± .008

Table 7. Wilcoxon test assessing the improvement brought by ROCboost for GP and
ES on the test sets

� att Nb samples p-value: p-value:
GP ES �Train �Test boosted GP > GP? boosted ES > ES?

Breast Cancer 9 42 189 97 0.995 0.999

Crx 15 47 70 620 0.999 0.999

German 24 24 100 900 0.999 0.999

Promoters 57 228 70 36 0.999 0.999

SatImage 3-4 36 36 139 1237 .021 0.999

Vehicle saab-bus 18 18 125 291 0.999 0.999

Votes 16 32 287 148 0.999 0.998

Waveform 1-2 21 21 211 3131 0.999 0.999

When we perform a boosting experiment, the first round hypothesis is indeed a
plain GP (or ES) run. We have gathered plain GP (respectively ES) and boosted
GP (resp. ES) results on the test set, and we took the median AUC values from
each set of 21 experiments on a given split, then averaging these medians over
the 11 splits for a given problem, to obtain figures comparable to [10].

3.2 Results

The main point of inquiry was whether boosted GP (resp. ES) improves on plain
GP (resp. ES). Results are summed up in Table 6 and the significance is checked
with a paired Wilcoxon statistical test, whose results are shown in Table 7. We
can observe that it is true with a significant probability, except for one case, GP
on satimage.

This behavior is illustrated for GP by average learning curves on the training
and test sets, plotting average AUC versus boosting rounds in Fig. 3. Note that
since we plot the learning curve of the combined predictor, it can decrease on the
training set, even when using elitism for the individual hypothesis. In all but one
cases, 100 rounds of boosting do not over-fit GP nor ES, even with maximum
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Fig. 3. ROCboost GP: average AUC of learning and test samples versus boosting
rounds
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depth 17 trees for GP (i.e. with the possibility to evolve complex hypotheses).
Even for the satimage benchmark, the over-fitted boosted GP hypothesis re-
mains competitive with the other learners.

When it comes to comparison between our results and those from ROGER or
SVMTorch, we urge the reader to take some caution, because:

– GP and boosted GP do not work in the same hypothesis space than ROGER
and SVMTorch (and it would seem artificial to design a GP version that
explores only linear functions);

– even if standard deviations are reported in [10], most often the distribution
of results is not normal according to a Shapiro-Wilk test, thus comparisons
are to be taken as rough indicators; this is emphasized by the “plain ES”
column that ought to yield results similar to ROGER since we used a setting
as close as we could.

Nonetheless we can observe that the performance of plain GP, with the same
number of evaluations than ROGER and ES, is somewhat contrasted: it gives
the worst results on the promoter data set, but also the best on satimage. It also
improves much over ES, ROGER and SVM for the crx benchmark, suggesting
that linear hypotheses are not adequate for this data set.

We can also conclude that boosting GP and ES give competitive performance,
obviously at a much increased cost in computing time, since each boosting round
cost is equivalent to a standard run of the learner. Typical running times for 100
boosting rounds on these experiments ranged from 10 to 30 minutes on a 1,5Ghz
laptop PC.

4 Conclusion

From the previous section results, we see that ROCboost generally improves GP
and ES up to the point of being competitive in terms of performance with the
other heuristics. It avoided to over-fit on all benchmarks but GP on satimage;
even in this case the resulting performance was still comparable to the other
learners. This last point is important, and this is why we purposely worked with
maximum depth 17 trees in order to test complex hypotheses that might have
triggered over-fitting.

We experimented the ROCboost scheme with standard GP and ES and ob-
served similar results, thus showing it allows to perform AUC optimization with
standard evolutionary learners that does not respect the constraints required by
Freund et al.’s RankBoost algorithm. A drawback is the increased computing
time, as with every boosting scheme, since we iterate the learning process.

Although our boosting scheme has shown effective improvements in terms
of AUC optimization on several benchmarks, the paper title emphasizes the
empirical nature of these results since we have no formal proof of the reduction
of the error. This is obviously a goal to achieve in future works.
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Abstract. When researchers make alterations to the genetic program-
ming algorithm they almost invariably wish to measure the change in per-
formance of the evolutionary system. No one specific measure is standard,
but Koza’s computational effort statistic is frequently used [8]. In this pa-
per the use of Koza’s statistic is discussed and a study is made of three
methods that produce confidence intervals for the statistic. It is found that
an approximate 95% confidence interval can be easily produced.

1 Introduction

In Genetic Programming [6], Koza described a statistic to assess the computa-
tional burden of using GP. It calculates the minimum number of individuals that
must be evaluated in order to yield a solution 99% of the time. This statistic,
minimum computational effort, E, was used heavily throughout Koza’s first two
books on GP [6,7] to compare the performance of variations of GP.

Given the cumulative probability of success, P (i), of a number of GP runs,
we can calculate how many runs would be required, R(i, z), in order to find a
solution at generation i with probability z1:

R(i, z) =
⌈

log(1 − z)
log(1 − P (i))

⌉
(1)

The computational effort, I(i, z) (the number of individuals that need to be
evaluated to find a solution with probability z) for generation i with a population
of M individuals is calculated by:

I(i, z) = i × R(i, z) × M (2)

Koza’s minimum computational effort, E, is the minimum value of I(i, z) over
the range of generations from 0 to the maximum in the experiment.

Christensen and Oppacher [3] recommended the ceiling operator (�·�) should
be dropped and indeed Koza himself had done just that up to seven years
earlier [1].

1 As is common, z will be set to 0.99 throughout this work.
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We suggest that the number of runs required should have a lower bound of
one. This means that if the ceiling operator is to be dropped, then

R(i, z) =

{
log(1−z)

log(1−P (i)) if P (i) < z

1 if P (i) ≥ z
(3)

Although the use of the ceiling operator tends to overestimate the computa-
tional burden, Christensen and Oppacher [3] showed that the use of the minimum
operator tends to produce an underestimate of the true computational effort
required.

A number of researchers have commented that, for experiments where cu-
mulative probability of success is low, a small change in the measurement of
the number of successful experiments can have a significant impact on the com-
putational effort calculation [9,8,11]. Thus a lower confidence level should be
associated with computational effort statistics based on low success rates. Un-
fortunately, some quoted minimum computational effort statistics do not state
the number of runs that were successful.

Niehaus and Banzhaf [11] demonstrated that doubling the number of runs
can more than halve the range of observed computational effort values. But
as Angeline [2] pointed out, a key problem with Koza’s computational effort
statistic is that, as defined, it is a point statistic with no confidence interval.
Without a confidence interval, comparisons are inconclusive.

2 Defining Confidence Intervals

2.1 Normal Approximation Method

This section discusses how an approximate 95% confidence interval can be gen-
erated for a computational effort statistic if the true minimum generation is
known. The minimum generation is the generation at which the minimum com-
putational effort occurs. The method used in this section is the textbook “normal
approximation” method.

The cumulative probability of success statistic is calculated from the proportion
of the population that has found a solution at a given generation. We may assume
that this proportion is approximately normally distributed [4] and thus calculate

an approximate 95% confidence interval using p ± e where e = 2
√

p(1−p)
n , p is the

proportion of runs that found a solution by the specified generation and n is the
number of runs performed. Given that cumulative success cannot be below zero
or above one, the confidence interval should be truncated to that range [10].

The minimum and maximum of this confidence interval can be used to gen-
erate an approximate 95% confidence interval for R, the true number of runs
required to find a solution with probability z:

log(1 − z)
log(1 − (p + e))

≤ R ≤ log(1 − z)
log(1 − (p − e))

(4)
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If the minimum and maximum of this range is used in place of R(i, z) in
the formula for computational effort (equation 2), the values can be used as an
approximate 95% confidence interval for the true value of Koza’s computational
effort statistic, I(i), for generation i:

i × M × log(1 − z)
log(1 − (p + e))

≤ I(i) ≤ i × M × log(1 − z)
log(1 − (p − e))

(5)

These confidence intervals are only valid while np > 5 and n(1 − p) > 5 [4]
where p = P (i) and n is the number of runs that were executed.

2.2 Wilson’s Method

This section discusses the replacement of the normal approximation method
with Wilson’s ‘score’ method [10] when constructing confidence intervals for the
computational effort statistic. It is still assumed that the minimum generation
is known.

To calculate a 95% confidence interval for the true but unknown proportion of
successes based on the observed sample proportion of successes, p = r/n, given
r successes from n runs, these formulae [10] may be used (where the standard
normal variable znorm = 1.96):

upper(p, n) =
2np + znorm

2 + znorm

√
znorm

2 + 4np(1 − p)
2(n + znorm

2)
(6)

lower (p, n) =
2np + znorm

2 − znorm

√
znorm

2 + 4np(1 − p)
2(n + znorm

2)
(7)

Robert Newcombe compared seven statistical methods for producing confi-
dence intervals for a proportion [10]. He demonstrated the normal approxima-
tion method suffers from overshoot (where the confidence interval goes below
zero or above one), the possibility of producing zero-width intervals, and that it
has an estimated mean coverage of just 0.88 (compared to the expected 0.95).
Coverage is the term for the percentage of confidence intervals that included
the best estimate of the true value of computational effort. He also showed that
Wilson’s method suffers from neither overshoot nor the possibility of producing
zero-width intervals, and it has an estimated mean coverage of 0.952.

Using the formulae in equations 6 and 7, a confidence interval can be es-
tablished for the proportion of successful runs: the upper bound is given by
upper(P (i), n) and the lower bound is given by lower (P (i), n). Just as was done
in the previous section, the minimum and maximum of this range can then be
used to calculate a maximum and minimum for the number of runs required to
obtain a solution with probability z. These numbers can then be used with the
known value for the population size, M , to find a 95% confidence interval for
the true computational effort, I(i), at a given generation i:

i × M × log(1 − z)
log(1 − upper (p, n))

≤ I(i) ≤ i × M × log(1 − z)
log(1 − lower(p, n))

(8)
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When the minimum generation is known, Wilson’s method produces a valid
confidence interval irrespective of the number of runs or the probability of
success.

2.3 Resampling Statistics Method

Keijzer et al. [5] are the only group we have found who attempted to generate
a confidence interval for Koza’s computational effort statistic. We implemented
a bastardised version of their method (see table 1). When the true minimum
generation is known, the minimum computational effort is calculated for the
selection as the selection’s computational effort at the true minimum generation.
The resampling method always finds a confidence interval irrespective of the
number of runs and the probability of success.

Table 1. Algorithm for the Resampling method

1. Obtain n independent runs. Label these as the source set.
2. Repeat 10,000 times:

(a) Select, with replacement, n runs from the source set.
(b) Calculate the minimum computational effort statistic for the selection. If zero runs

succeeded, the computational effort is infinite.
3. Find the 2.5% and 97.5% quantiles of the 10,000 computational effort statistics. These

provide an upper and lower range on a 95% confidence interval for the true minimum
computational effort.

3 When Minimum Generation Is Known

3.1 Testing the Validity of the Three Methods

In order to empirically test the validity of these three methods to generate confi-
dence intervals, we ran experiments based on datasets where very large numbers
of runs had been executed2. The four datasets were:

– Ant : Christensen and Oppacher’s 27,755 runs [3] of the artificial ant on
the Santa-Fe trail; panmictic population of 500; best estimate of the true
computational effort 479,344 at generation 183; P (18) = 2421

27755 = 0.0872
– Parity: 3,400 runs of even-4-parity without ADFs [6,7]; panmictic population

of 16,000; best estimate of true computational effort 421,074 at generation
23; P (23) = 3349

3400 = 0.985

2 The datasets and complete results are available for download from
www.massey.ac.nz/∼mgwalker/CompEffort.

3 This occurred at generation 18 as, like Koza, we have counted the first generation
as generation 0, whereas Christensen and Oppacher labelled it generation 1.
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– Symbreg: Gagné’s 1,000 runs4 of a symbolic regression problem (x4 + x3 +
x2 +x) [6]; panmictic population of 500; best estimate of true computational
effort 33,299 at generation 12; P (12) = 593

1000 = 0.593
– Multiplexor : Gagné’s 1,000 runs5 of the 11-multiplexor problem [6]; panmic-

tic population of 4,000; best estimate of true computational effort 163,045
at generation 25; P (25) = 947

1000 = 0.947

The computational effort calculations for each dataset (utilising every run)
were treated as a best estimate of the true minimum generation and true mini-
mum computational effort.

For each dataset and for each confidence interval generating method, the fol-
lowing method was applied. A subset of the whole dataset’s runs were randomly
selected (uniformly with replacement). The subset sizes were 25, 50, 75, 100,
200 and 500 runs. These sizes are typical of published work (often 25 to 100
runs, sometimes fewer [6,7]) and recommendations by statisticians (200 to 500
runs [3,11]). 10,000 subsets were selected and for each subset the confidence
interval generating method was applied. This simulated 10,000 genetic program-
ming experiments on each of the four problem domains for each of the six run
sizes.

3.2 Results and Discussion

For each of the four problem domains and each of the three confidence interval
generation methods, table 2 gives the average coverage and the average number of
confidence intervals that were produced from the 10,000 simulated experiments.
Table 3 gives the same statistics but by run size and method.

So, for example, table 2 shows that for the normal approximation method
on the Ant problem domain, an average of 97.1% of the confidence intervals
included the true value of the minimum computational effort (compare that
to the expected result of approximately 95%). This average was produced over
simulated experiment sizes of 25–500 runs. The table also shows that, for the
same setup, an average of 7,049 of the 10,000 simulated experiments produced
valid confidence intervals.

The resampling method had a very poor minimum average coverage of 69.9%
for the Parity domain (see table 2). The Normal method also did poorly for that
domain with a coverage score of 49.4%. In contrast, the Wilson method achieved
very good coverage levels across all domains and all run sizes with a minimum
coverage of 93.3% (on the Parity domain with 100 runs).

The advantage of Wilson’s method over the normal approximation method is
clearly demonstrated by the validity statistics in the Parity problem. Because
the probability of success is so high (0.985 over 3,400 runs), the samples with a
low number of runs (25–200) were often unable to satisfy the normal method’s
validity criteria of n(1−p) > 5. And even when the validity criteria were satisfied,
for the small runs sizes (i.e. 50 and 75 runs), none of the confidence intervals
4 Our thanks go to Christian Gagné for this dataset.
5 Thanks again to Christian Gagné for this dataset.
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Table 2. Average coverage percentages and average validity statistics by problem
domain when the minimum generation is known. Averages are over 25–500 runs.

Method \ Problem Ant Parity Symbreg Multiplexor Average

Normal 97.1% 49.4% 95.3% 79.1% 80.3%
7,049 1,787 9,954 4,752 5,885

Wilson 95.2% 95.3% 94.9% 95.1% 95.1%
10,000 10,000 10,000 10,000 10,000

Resampling 93.2% 69.9% 94.1% 88.9% 86.5%
10,000 10,000 10,000 10,000 10,000

Table 3. Average coverage percentages and average validity statistics by run size when
the minimum generation is known. Averages are over the four problem domains.

Method \ Runs 25 50 75 100 200 500 Average

Normal 48.1% 70.5% 72.9% 98.0% 96.3% 95.9% 80.3%
2,582 3,704 5,007 6,439 7,907 9,674 5,885

Wilson 94.6% 95.7% 95.6% 94.7% 95.5% 94.7% 95.1%
10,000 10,000 10,000 10,000 10,000 10,000 10,000

Resampling 72.0% 82.8% 86.9% 88.8% 94.4% 94.3% 86.5%
10,000 10,000 10,000 10,000 10,000 10,000 10,000

included the best estimate of the true computational effort. Wilson’s method,
on the other hand, produced valid confidence intervals for all 10,000 samples for
every run size and with a coverage of 95.3% for the experiments in that domain.
Where it was fair to make a comparison, the widths of the confidence intervals
were similar.

The Ant domain exemplifies a low probability of success (P (18) = 0.087).
In this case the Normal method had difficulty satisfying its np > 5 criteria,
producing valid confidence intervals for only 6% of the samples with 25 runs and
43% with 50 runs. However, for the confidence intervals that it did produce, the
proportions that included the true value either exceeded or were very close to
the intended 95%. However, yet again the Wilson method was the method of
choice as it produced confidence intervals for every sample and with an average
coverage of 95.2%. Further, for almost every run size Wilson’s method produced
notably tighter confidence intervals.

Finally, the Symbreg domain, with its non-extreme cumulative probability of
success (P (12) = 0.593), levelled the playing field for the Normal method. The
Normal method produced very good average coverage of 95.3% for an average
of 99.5% of the samples. The Wilson method did only slightly better in this
instance, although the widths of its confidence intervals were a little tighter.

The Resampling method did very poorly over lower (25–100) run counts for
the parity problem (coverages of 32%–78%). This was due to the low probability
that a sample of the population would contain a run that did not find a solution
before the minimum generation. For data where the cumulative success rate is
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very high at the minimum generation, it can now be seen that the resampling
method is inappropriate to use.

4 When the Minimum Generation Is Unknown

4.1 Changes to the Methods

Unfortunately, is it extremely unlikely that a researcher will know the number
of generations at which the true minimum computational effort occurs. This
section discusses how confidence intervals can be established using an estimate
of the true minimum generation.

For a sample of genetic programming runs, the minimum generation can be
estimated by using the technique Koza described. That is, by calculating the
computational effort, I(i), for every generation, i, from 0 to the maximum in
the experiment. The estimated minimum generation is the generation where I(i)
is minimal.

For the generation of confidence intervals, the estimated minimum generation
is used in place of the true minimum generation, but otherwise the three methods
remain unchanged.

From a statistical perspective this introduces dependence between the mea-
surements of minimum generation and the minimum computational effort. Kei-
jzer et al. suggested that the runs in a GP experiment could be divided into two
halves; the first half used to estimate the minimum generation and the second
half used to estimate the minimum computational effort. However the cost of a
GP run is typically so expensive that using only half the runs to establish com-
putational effort is not seriously considered. This work follows that pragmatic
approach and accepts the dependence.

Because no effort has been made to account for the increased variability in
the estimated computational effort that is due to estimating the minimum gen-
eration, it should be expected that the confidence intervals produced using these
methods would achieve less than 95% coverage.

4.2 Results and Discussion

For each problem domain and confidence interval generation method, table 4
gives the average coverage and the average number of valid confidence intervals
that were produced. Table 5 gives the same statistics but by run size and method.

Figure 1 depicts box and whisker plots of the width of the confidence intervals
produced using each of the three methods for each of the six run sizes on the Ant
domain. The grey line across each plot indicates the value of the best estimate
of the true computational effort. This line is added to assist understanding of
the magnitude of the widths. The whiskers (indicated by the dashed line) in the
plots extend to the most extreme data point or 1.5 times the interquartile range
from the box, whichever is smaller. In the latter case, points past the whiskers
are considered outliers and are marked with a small circle. The box-plot for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



30 M. Walker, H. Edwards, and C. Messom

Table 4. Average coverage percentages and average validity statistics by problem
domain when the minimum generation is estimated. Averages are over 25–500 runs.

Method \ Problem Ant Parity Symbreg Multiplexor Average

Normal 96.1% 63.8% 94.8% 93.1% 86.9%
7,012 1,892 9,839 3,684 5,606

Wilson 92.9% 94.0% 94.9% 95.7% 94.4%
9,950 10,000 10,000 10,000 9,988

Resampling 92.4% 65.3% 91.2% 72.3% 80.3%
10,000 10,000 10,000 10,000 10,000

Table 5. Average coverage percentages and average validity statistics by run size when
the minimum generation is estimated. Averages are over the four problem domains.

Method \ Runs 25 50 75 100 200 500 Average

Normal 65.1% 72.3% 94.7% 97.3% 96.7% 95.4% 86.9%
2,497 3,770 4,695 5,595 7,212 9,870 5,606

Wilson 93.0% 94.4% 94.7% 93.8% 94.9% 95.3% 94.4%
9,928 9,998 10,000 10,000 10,000 10,000 9,988

Resampling 62.2% 73.9% 80.2% 84.5% 89.0% 91.9% 80.3%
10,000 10,000 10,000 10,000 10,000 10,000 10,000
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Fig. 1. Confidence interval widths for the Ant problem domain when the minimum
generation is estimated. Percentages indicate coverage for the specific configurations.

25 runs using the Resampling method is incomplete as more than 50% of the
simulated experiments produced infinite confidence interval widths.

Surprisingly, the use of an estimated minimum generation had very little neg-
ative impact on the coverage of the three methods. Excluding the Parity domain,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Confidence Intervals for Computational Effort Comparisons 31

the Normal method did well with an average coverage of 94.7% (as against the
intended 95%). Wilson’s method did even better as as, over all problem domains
and run sizes, it dropped only slightly to an average of 94.4% (as compared to
95.2% when the true minimum generation was known). From these results it ap-
pears that, even when an estimated minimum generation is used, the confidence
intervals produced by the Wilson method are a good approximation to a 95%
confidence interval.

It is hypothesised that the use of an estimated minimum generation had so
little negative effect because the computational effort performance curves flat-
ten out around the true minimum generation, and that the use of an estimate
provides a result “good enough” for the production of a confidence interval.

Finally, it is very significant that the median widths of the confidence intervals
are almost always greater than the best estimate of the true value.

5 Further Analysis of Wilson’s Method

Although it is easy to retrospectively apply Wilson’s method to previously pub-
lished results, because it is common for published work to fail to give the cumu-
lative success proportion or the minimum generation at which the computational
effort was calculated, Wilson’s method isn’t always able to be applied. We can
instead consider a “best-case” confidence interval, one that gives the smallest
range of computational effort given the number of runs executed. In this way we
can say that a 95% confidence interval is at least this range.

To calculate the “best-case” for the lower bound, take the minimum defined
value for each run size across the range of possible values for cumulative proba-
bility of success. More formally,

min
p

R(upper(p, n)) − R(p)
R(p)

(9)

where p ranges from 0 to 1; upper is the upper bound of a 95% confidence interval
of a proportion (see equation 6); n is the number of runs; and

R(i, z) =

{
log(1−z)

log(1−P (i)) if P (i) < z

undefined if P (i) ≥ z
(10)

The “best-case” for the upper bound is calculated in a similar way, but with
upper replaced with lower , the lower bound in equation 7. The “best-case” sce-
nario is only valid if upper(P (i), n)) < z.

This approach can be used if a computational effort value, E, has been stated
for a specified number of runs, say 50, but without a value for the cumulative
probability of success. In this case we can use the above formulae to calculate a
“best-case” confidence interval for E , the true minimum computation effort, as
(1 − 0.26)E ≤ E ≤ (1 + 0.45)E. The true 95% confidence interval will be at least
this size.
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6 Conclusions

Wilson’s method is an appropriate way to produce confidence intervals for Koza’s
computational effort statistic. From the empirical results, the use of an estimated
minimum generation has little effect on the coverage and the intervals can be
treated as a very good approximation to 95% confidence intervals.

The Wilson method can often be retrospectively applied to earlier work as only
the number of runs and the success proportion at the generation of minimum
computational effort are required. If the number of runs is known but the success
proportion is not known, then a minimum confidence interval can be generated
using the “best-case” approach. Applying these confidence intervals may cast
doubt on the validity of some published results.

Finally, computational effort may not be the best measurement for comparison
as this study has shown that results that differ by 50% or 100% may, from a
statistical perspective, not be significantly different.
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Abstract. Path length, or search complexity, is an understudied prop-
erty of trees in genetic programming. Unlike size and depth measures,
path length directly measures the balancedness or skewedness of a tree.
Here a close relative to path length, called visitation length, is studied. It
is shown that a population undergoing standard crossover will introduce
a crossover bias in the visitation length. This bias is due to inserting
variable length subtrees at various levels of the tree. The crossover bias
takes the form of a covariance between the sizes and levels in the trees
that form a population. It is conjectured that the crossover bias directly
determines the size distribution of trees in genetic programming. Theo-
rems are presented for the one-generation evolution of visitation length
both with and without selection. The connection between path length
and visitation length is made explicit.

1 Introduction

Nodes in trees are usually distinguished as being either internal nodes, or ex-
ternal nodes. In genetic programming these are named functions and terminals
respectively. Important characteristics of such trees are the internal path length,
defined as the sum of path lengths (number of edges) to reach every internal
node from the root, and the external path length, similarly defined as the sum of
path lengths to reach every external node from the root. Many recurrences and
generative functions are known for these path lengths for trees of a particular
shape, usually binary trees.

In genetic programming, internal nodes and external nodes are simply consid-
ered nodes, and operators are defined in terms of such general nodes. The size
of a tree is defined as the number of nodes, regardless of them being internal or
external. With the notable exception of Koza’s 90/10% rule of selecting internal
nodes over external nodes, many studies assume that node selection for subtree
crossovers and mutations is done by selecting nodes uniformly. This is followed
here: the subtree crossover studied here selects nodes uniformly. This is called
standard crossover here.

In the genetic programming literature, the shape of a tree is usually charac-
terized by its size and depth. Here an alternative measure is examined: a close
relative to the total path length of a tree, called the visitation length. The vis-
itation length gives a natural distinction between balanced and skewed trees of
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X X

X X X

π(T ) = 4 internal path length
ζ(T ) = 12 external path length
f(T ) = 4 number of internal nodes
e(T ) = 5 number of external nodes
s(T ) = 9 size
φ(T ) = 25 visitation length

Fig. 1. Example tree and example values for the various functions defined on the tree
that are used throughout this paper. Circles are internal nodes and crossed boxes
external nodes.

the same size and is directly related to the average size of the subtrees in a tree.
A tree’s visitation length has a number of important analytical properties that
are directly related to the evolution of sizes and shapes in genetic programming.
In particular, it will be shown that a crossover bias is present in the evolution
of this visitation length. This crossover bias is fully determined by a covariance
between sizes and levels in a tree, and it is conjectured that is determines the
distribution of sizes in a population of such trees. The paper presents theorems
for the evolution of visitation length both with and without selection, alongside
some empirical investigations into the effect of crossover bias in genetic pro-
gramming. This paper presents a mathematical foundation for inquiries into the
evolution of tree topology both with and without selection.

2 Sizes and Levels in Trees

Definition 1 (Notation and Size). Given a tree T , the function s(T ) defines
the number of nodes (both external and internal) in the tree. To subtree relation
is defined through the ∈s symbol: t ∈s T is true if and only if tree t is a subtree
of tree T : this defines all subtrees, not only the direct descendants. Uppercase
(T ) will be used to denote a rooted tree (used for selection and variation), while
lowercase (t) is used to designate subtrees. A tree is considered to be a subtree
of itself. To sum over all subtrees in a tree, the notation

∑
t∈sT

will be used.
To determine the direct descendents (immediate subtrees) of a tree T , indexing
will be used, using the c(T ) to define the number of children of T . Internal and
external path length are denoted with π and ζ respectively, while f and e give the
number of internal and external nodes.

Using this notation, the size of a tree can be defined in various ways:

s(T ) =
∑
t∈sT

1 = 1 +
c(T )∑
i=1

s(Ti) = f(T ) + e(T )

Similarly, using the δ function defined to return 1 when the argument is true,
and 0 otherwise, the size of a subtree t from T can be defined as the number of
subtrees that are a subtree of t:
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s(t) =
∑
u∈sT

δ(u ∈s t)

Definition 2 (Level). The level of a subtree t in a particular tree T is defined
as the the number of nodes that need to be traversed to reach the root node,
including itself. Thus the level l(T ) of a root node equals 1, while the nodes
accessible directly from the root will be found at level 2, etc. The level of a
subtree t from a tree T can thus be defined as the number of nodes for which
t is a subtree:

l(t) =
∑
u∈sT

δ(t ∈s u)

Lemma 1 (Symmetry between sizes and levels). The sum of sizes of all
subtrees from T

∑
t∈sT

s(t), is equal to the sum of levels
∑

t∈sT
l(t).

Proof. Using Definitions 1 and 2:
∑
t∈sT

s(t) =
∑
t∈sT

∑
u∈sT

δ(u ∈s t) =
∑
t∈sT

∑
u∈sT

δ(t ∈s u) =
∑
t∈sT

l(t)

��

Definition 3 (Total Visitation Length and Mean Subtree Size). The
sum of the sizes (and equivalently by Lemma 1 the sum of levels) has symmetric
properties and is directly related to the average subtree size. This sum is denoted
here with the function φ, and is called the visitation length:

φ(T ) =
∑
t∈sT

s(T ) =
∑
t∈sT

l(T ) = s(T ) +
c(T )∑

i

φ(Ti)

Using φ, both the mean subtree size s̄ and mean subtree level l̄ of a tree T can
be defined as:

s̄(T ) = l̄(T ) =

∑
t∈sT

s(t)
s(T )

=
φ(T )
s(T )

The visitation length φ measures the total number of nodes that need to be
visited starting at the root. It has a number of important properties, and much
of the remainder of this paper is devoted to the study of φ. The visitation length,
φ, is directly related to the total path length:

Theorem 1 (Total Path Length). The visitation length φ is, for trees, di-
rectly related to the total (internal and external) path length through:

φ(T ) = π(T ) + ζ(T ) + s(T )

Proof. The level of a subtree is the path length to the root plus 1 (Definition 2).
For all internal nodes the sum of levels equals π(T )+ f(T ) while for all external
nodes to ζ(T ) + e(T ). By definition, s(T ) = e(T ) + f(T ). ��
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The definitions of visitation length and path length differ solely in the manner
of counting: nodes (vertices) and edges respectively. The functional φ as defined
on trees has some important properties. For a tree with a given size s, φ will
take on smaller values, the more balanced the tree is. Figure 2 gives an example
of this relation. The visitation length is used by for instance [7] to define an
alternative to size based parsimony pressure in order to steer the population to
small, balanced, trees.
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Fig. 2. Total visitation length for a number of differently shaped trees of size 7. The
less balanced the tree, the larger the visitation length.

3 Empirical Behaviour of φ in Genetic Programming

Although the change in the size of a tree of a population undergoing standard
crossover is zero in the expectation, this does not necessarily hold for the visita-
tion length. φ is related to the both the shape and the size of the tree. A simple
experiment is set up to investigate the behaviour of a population undergoing
only crossover, without selection. A population of 5000 binary trees is created
through one of three methods: grow, ramped-half-and-half and skew1, each gov-
erned by a single parameter, the maximum depth of the tree. For all methods,
when the depth limit of 7 is reached, only terminals are selected.

Figure 3 shows the relationship between the average size of the population and
the average visitation length φ for a number of runs of genetic programming using
different initialization strategies. A clear convergence to a particular relationship
between the two variables is observed. The transient can however be long.

4 Analysis

To study the evolution of the visitation length φ̄ without selection, and to shed
some light on this apparent convergence to a fixed relationship with the average
size, the microscopic mechanics of standard crossover are examined. It is well-
known that this operation on a population does not alter the expected size of
the population in the next generation. However, this is not necessarily the case
for the average visitation length.
1 Skew creates a binary tree with at each node at least one terminal.
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Fig. 3. Phase space plot of φ̄ and s̄. Circles, crosses and plusses depict the beginning
of runs initialized using the grow, skew, and ramped-half-and-half respectively.

Notation. Below, P will be used to denote a population of n trees. T ∈ P
denotes that the rooted tree T is part of the population, summations such as∑

T∈P denote a summation over all trees (not subtrees) in the population. For
summing over all subtrees and levels in a population, the double summation∑

T∈P

∑
t∈sT

will be used.

Definition 4 (Size-Level Covariance). The size-level covariance on a popu-
lation P , is defined as:

Covsl(P ) =
1
n

∑
T∈P

1
s(T )

∑
t∈sT

(s(t) − s̄(P ))(l(t) − s̄(P ))

=
1
n

∑
T∈P

∑
t∈sT

s(t)l(t)
s(T )

− s̄(P )2

With s̄(P ) = 1
n

∑
T∈P

φ(T )
s(T )

Note that due to Lemma 1, this average subtree size is equal to the average level.
The definition thus defines a true covariance.

Lemma 2 (Microscopic interaction). The net effect of inserting a single
(sub)tree t at the place of u in tree U (denoted by u ← t) in the visitation length
φ(U) is given by:

φ(U |u ← t) = φ(U) − φ(u) + φ(t) + (l(u) − 1)(s(t) − s(u))
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Proof. Consider the recursion φ(U) = s(U) +
∑

i φ(Ui) from Definition 3. For
the subtree u from U that is replaced by t, Δφ = φ(t) − φ(u). This term is
transmitted unaltered in the recursion. The change in size Δs = s(t) − s(u) will
affect the size of all parents of the node (i.e., all subtrees v from U , for which
u ∈s v). By definition of the level as one plus the path length to the root node,
exactly l(u) − 1 ancestors are effected, leading to an additional change in φ of
(l(u) − 1)Δs. ��

Theorem 2 (Crossover Bias). The expected value of the visitation length in
a population undergoing standard crossover and without selection is determined
by the average visitation length in the current population minus the covariance
between sizes and levels of the subtrees in the population.

φ̄(P ′) = φ̄(P ) − Covsl(P )

Proof. Averaging over all pairs of trees in a population P consisting of n trees, and
all possible crossover points, using Lemma 2, where the individual terms dependent
on φ, 1/2

∑
T,U∈P (φ(T ) + φ(U)) = φ̄(P ) and 1/2

∑
T,U∈P

∑
u∈sU,T∈sT

(φ(t) −
φ(u)) = 0, leads to a total change in φ(P ) of:

Δφ(P ) =
1
n2

∑
T∈P

∑
U∈P

[∑
t∈sT

∑
u∈sU

(l(u) − 1)(s(t) − s(u))
s(T )s(U)

]

After some algebra (in Appendix), this reduces to:

Δφ(P ) =
1
n2

[∑
T∈P

∑
t∈sT

s(t)
s(T )

]2

− 1
n

∑
T∈P

∑
t∈sT

l(t)s(t)
s(T )

= −Covsl(P ) ��

Although the expected size in the next generation for a population undergoing
standard crossover and no selection is expected to be zero, this is not the case
for the expected visitation length of the trees composing the population. The
size-level covariance Covsl introduces a bias in the expected visitation length,
and evolves this macroscopic quantity toward a region where this bias is no
longer present. When Covsl = 0, this bias disappears. Theorem 2 relates three
quantities: the expected value of the visitation length, the average subtree size
and the product of sizes and levels.

The main effect that is shown here is the effect on the visitation length of insert-
ing variable sized subtrees at various levels in a tree. This effect is captured in the
covariance between sizes and levels in the tree. Lemma 2 shows the microscopic
basis of this covariance, and holds for any replacement of a subtree in a tree. Other
crossovers and mutations that insert variable length subtrees in various locations
in the tree will have a similar derivation associated with them, where the uniform
probabilities are replaced by non-uniform probabilities. At this point it is not clear
which, if any, operator will have no crossover bias. Analyzing other operators and
designing an unbiased operator is left for future work.

The crossover bias is the product of sizes and levels, both compared with
the mean subtree size in the population. For populations consisting of identical
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trees, this quantity appears to be nonzero in general2. If this is the case, to
make the covariance disappear, the mean subtree size in the population needs
to be significantly smaller than the subtree size of the larger trees. To make this
happen, small trees need to be sampled more frequently than large trees.

4.1 Binary Trees and the Catalan Distribution

It is conjectured here that the crossover bias is mainly related to the distribution
of tree size in the population, not to a particular preference for balanced/skewed
trees. As is conjectured elsewhere [3], a population not undergoing selection will
evolve to the most common shapes. Here it is empirically investigated if shape,
as measured by total path length or visitation length, indeed evolves towards
their expected (common) values. If so, crossover bias does not affect the shape
at all, and its full effect must lie in influencing the distribution of sizes in the
population. As short trees have a smaller visitation length than larger trees, the
relationship being non-linear, a particular size distribution can have an effect on
expected visitation length, without changing expected size.

For binary trees, the expected path lengths under the Catalan distribution
can be found in [6], chapter 5:

Theorem 3 (Sedgewick and Flajolet). For a binary tree T with n internal
nodes, selected at random with the Catalan distribution

– E(π(T )) = n
√

πn − 3n + O(
√

n)
– E(ζ(T )) = n

√
πn − n + O(

√
n).

And thus,

Corollary 1. For a binary tree T with n = (s(T )−1)/2 internal nodes, selected
at random with the Catalan distribution:

E(θ(T )) = 2n
√

πn − 2n + 1 + O(
√

n)

Proof. Direct by using Theorem 1 in Theorem 3 ��

The experiment in Figure 4 indicates that a population undergoing standard
crossover apparently samples trees from this Catalan distribution. Given a par-
ticular size of a tree, the expected value of φ of such trees is determined by the
the expected tree shapes, up to a factor of

√
n. The figure shows a close fit given

some indication that the conjecture is true, and that no particular shapes are
preferred by standard crossover. The main effect of the crossover bias would then
be manifested as a preference for a particular limit distribution of tree sizes. Fig-
ure 4 also depicts this distribution of sizes for binary trees without selection as
a histogram. The experiment exhibits a strong preference for trees of small size.
The relationship between crossover bias and size distribution has been examined
2 No proof is available at this point, it is however experimentally verified for all trees

consisting of unary, binary and ternary nodes up to depth 7.
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Fig. 4. Visitation length given size, both measured and expected through Corollary 1
for binary trees, given a particular size. The graph is the result of 100 runs of 5000
trees, operating without selection. Also shown is the distribution of the sizes of the
trees that are sampled, and the visitation length for maximally balanced and skewed
trees.

before [4], albeit for unary trees, and led to the discovery of a limit distribution
for such unary trees in the form of a gamma distribution. For binary trees, a
different distribution is induced, one where small trees, in particular terminals,
are over-abundant.

5 Size-Level Covariance and Fitness

Because the effect of crossover on φ is non-zero in general, this can be expected to
have an effect on the composition of a population undergoing selection. Following
Altenberg [1,2] the effect of fitness on an evolving population can be studied using
a canonical genetic algorithm. The expected value of any measurement function
F in such a canonical algorithm can be formulated as:

F̄ ′ =
∑

x

p(x)′ =
∑

x

∑
y,z∈P

F (x)T (x ← y, z)
w(y)w(z)

w̄2
p(y)p(z) (1)

where p(x) measures the frequency of genotype (tree) x in the next genera-
tion, based on current frequencies, fitness w, and the transmission function T
that gives the probability of creating genotype x based on y and z. This equa-
tion is directly related to Price’s Covariance and Selection Theorem [5] (see
Altenberg [1] for a complete derivation).
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Theorem 4 (Visitation Length and Fitness). The expected size of the visi-
tation length φ in a population undergoing standard crossover and selection over
one generation is given by:

φ̄(P ′) = φ̄(P ) + Cov(φ(T ),
w(T )

w̄
)︸ ︷︷ ︸

Fitness/φ covariance

−
∑ w(T )

∑
(s(t) − s̄(P )) (l(t) − s̄(P ))

w̄s(T )|P |︸ ︷︷ ︸
Crossover bias

Proof. in Appendix ��

This result on visitation length translates directly to total path length:

Corollary 2 (Path length and Fitness). The evolution of the total path
length p(x) = π(x) + ζ(x) under standard crossover and selection is given by:

p̄(P ′) = φ̄(P ′) − s̄(P ) − Cov(s(T ), w(T )/w̄)

Proof. This is direct by using Theorems 1 and 4 and Price’s Covariance and
Selection theorem applied to size. ��

As can be expected, the bias induced by standard crossover without selection
gets transmitted when using selection. The evolution of visitation length is deter-
mined by the crossover bias without selection from Theorem 2, and covariances
between both fitness and visitation length, and fitness and the product of size
and level of individual trees.

To investigate the effect of crossover bias on a population undergoing selection,
an experiment is performed. The problem is defined by a terminal set consisting
of the constant 1, a function set consisting of the unary minus operator −, and
the binary addition operator +. The goal of the problem is to find an expression
that evaluates to the value 0. The smallest solution for this problem are two
trees consisting of 4 nodes: 1 + −1 and −1 + 1. To keep bloat under control
and to make the smallest solutions global optima, a small amount of parsimony
pressure is used. The population performs proportional selection with crossover
only (thus no reproduction), using a population of size 50, 000. The fitness value
used in proportional selection is w(T ) = e−eval(T )2 × 2−1/1000×|T |. Initialization
is ramped-half-and-half, and invariably leads to finding the global optimum after
initialization. With the global optimum already found, failed runs are effectively
eliminated and the transient to the equilibrium state of maximal average fitness
can be studied.

Figure 5 depicts the evolution of the population towards equilibrium. Al-
though the optimum is a four-node solution, the mean size of the trees in the
population grows. First slowly, but when a critical value of approximately 20
nodes is reached, the population undergoes a rapid growth until at 50 nodes,
equilibrium is reached due to parsimony pressure. Elongated runs do not show
any growth after this point is reached. Interestingly, bloat does occur, even when
there is a fitness disadvantage for larger trees. Depicted is also the balance that
is achieved between the covariance of fitness w and visitation length φ on the
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Fig. 5. Transient to the equilibrium for a population that already found a global op-
timum for 100 runs. Depicted are the mean size of the trees in the population, the
covariance between fitness and φ alone, the additional terms induced by the crossover
bias, and finally the resulting change in φ, Δφ. 95% confidence intervals are included.

one hand, and the crossover bias on the other. The experiment consistently
shows that the fitness function w is correlated with individuals of lower visita-
tion length. In particular, this holds when the population is truly converged and
the expected size differential becomes zero.

It can however not be concluded that the fitness function indicates that bal-
anced trees are preferred by the fitness function and that crossover bias hinders
this. Although lower visitation length indicates more balanced trees, this only
holds for trees of the same size. Smaller trees usually have a smaller visitation
length than larger trees. This relationship is non-linear: the experimental ob-
servation can then simply be an indication that the fitness function prefers a
different size distribution, crossover bias hindering this.

The experiment does show however that the crossover bias is not necessarily
aligned with the information obtained by measuring fitness. A dynamic balance
is found for the expected visitation length φ̄ during the run and the covariance
between φ and w is counteracted exactly by the size-level covariance. It can
be expected that such a conflict of forces has an effect on the optimization
capabilities of an evolving population. At this point, a clear view on the exact
effect of the crossover bias in an evolving population is unavailable.

6 Conclusion

This work examines the one generation evolution for path length and visitation
length in genetic programming for standard crossover, both with and without

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Crossover Bias in Genetic Programming 43

selection. A crossover bias is derived that works against the covariance between
fitness and visitation length. The crossover bias takes the form of a covariance
between the sizes and levels in the tree. Theorems are presented for the exact
effect this crossover bias has on the evolution of shape, both with and without
selection.

It is hypothesized that this crossover bias mainly introduces a preference for
a particular size distribution as empirical evidence indicates that no preference
for a particular visitation length is induced by crossover. The paper gives a
theoretical foundation for further inquiry into these matters.
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Appendix

Proof of Theorem 2

Δφ(P ) =
1
n2

∑
T∈P

∑
U∈P

[
1

s(T )s(U)

∑
t∈sT

∑
u∈sU

(l(u) − 1)(s(t) − s(u))

]

=
1
n2

∑
T∈P

∑
U∈P

1
s(T )s(U)

∑
t∈sT

∑
u∈sU

[s(t)l(u) − l(u)s(u)]

=
1
n2

∑
T∈P

∑
U∈P

1
s(T )s(U)

[∑
t∈sT

∑
u∈sU

[s(t)l(u)] − s(T )
∑

u∈sU

l(u)s(u)

]

=
1
n2

∑
T∈P

∑
U∈P

∑
t∈sT

s(t)
∑

u∈sU
l(u)

s(T )s(U)
−

∑
u∈sU

l(u)s(u)
s(U)

=
1
n2

∑
T∈P

∑
U∈P

∑
t∈sT

s(t)
∑

u∈sU
s(u)

s(T )s(U)
− 1

n

∑
U∈P

∑
u∈sU

l(u)s(u)
s(U)

=
1
n2

[∑
T∈P

∑
t∈sT

s(t)
s(T )

]2

− 1
n

∑
T∈P

∑
t∈sT

l(t)s(t)
s(T )

Proof of Theorem 4 Insert Theorem 2, into Equation 1:

φ̄(P ′) = 1/2
∑

T,U∈P

w(T )w(U)/w̄2
[
φ(T ∪ U) + Covsl(T ∪ U)

]

= 1/|P |
∑
T∈P

w(T )/w̄φ(T ) +

1/2
∑

T,U∈P

w(T )
s(T )w̄

∑
t∈sT

(s(t) − s̄(T ∪ U))(l(t) − s̄(T ∪ U)) +

w(U)
s(U)w̄

∑
u∈sU

(s(u) − s̄(T ∪ U))(l(u) − s̄(T ∪ U))

= φ̄(P ) + Cov(φ(T ), w(T )/w̄) +
∑ w(T )

∑
(s(t) − s̄(P )) (l(t) − s̄(P ))

w̄s(T )|P |
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Abstract. This paper addresses the resolution, by Genetic Programming
(GP) methods, of ambiguous inverse problems, where for a single input,
many outputs can be expected. We propose two approaches to tackle this
kind of many-to-one inversion problems, each of them based on the esti-
mation, by a team of predictors, of a probability density of the expected
outputs. In the first one, Stochastic Realisation GP, the predictors outputs
are considered as the realisations of an unknown random variable which
distribution should approach the expected one. The second one, Mixture
Density GP, directly models the expected distribution by the mean of a
Gaussian mixture model, for which genetic programming has to find the
parameters. Encouraging results are obtained on four test problems of dif-
ferent difficulty, exhibiting the interests of such methods.

1 Introduction

One of the main application of Genetic Programming (GP) is for the approx-
imation of unknown functions, a task known as Symbolic Regression [7]. To
construct a such approximator, a GP system is trained on a given dataset that
consists of pairs of inputs and desired outputs, representative of an unknown
function. This is a direct problem.

While a direct problem describes a Cause-Effect relationship, an Inverse Prob-
lem (IP) consists in retrieving the causes responsible of some observed effects.
For example, inferring gene regulatory networks from gene activity data or de-
riving some water constituants from the ocean colour are actually IP. GP has
already been introduced as a method for solving IP, such as in [4,3,11,5]. How-
ever, IP are often far more difficult to solve than direct problems, since different
causes may produce the same effect, i.e. the solution of an IP may be not unique.
In that case, the IP is said to be redundant or ambiguous or, in a more formal
way, ill-posed1. In the context of learning from datasets, a redundant IP corre-
sponds to a Many-To-One mapping inversion, i.e. to a given input yi, a set of
outputs Xi is expected. The purpose of this study is to enhance the inversion

1 In fact, there are three sufficient conditions for ill-posedness which are the existence,
the continuity and the redundancy of the solutions.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 45–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of Many-To-One mappings with GP. Here, the set of expected outputs Xi is
seen as a set of realisations of a random variable with an unknown probability
density which has to be estimated. We propose two different ways to estimate
the probability density of these answers and both are based on the possibility of
producing multiple outputs with GP.

The section 2 highlights the limits of the classical Symbolic Regression ap-
proach for ambiguous IP and reviews the possibilities of producing multiple
outputs with GP. Then, two original methods to tackle the redundancy problem
are proposed in section 3 and tested on four benchmark problems in section 4.
Finally, the application of this work and the possible further developments are
discussed in the conclusion.

2 Inverse Problem and GP

2.1 Learning with Redundancy

With few hypothesis on the instructions set used to build programs, GP is an
universal approximator [13] that can learn an arbitrary target function t : X �→ Y
from a dataset Dt = {(x1, y1) . . . (xN , yN )}. Here, we consider the pairs (xi, yi)
as the realisations of two random variables x and y and we note f the function
implemented by a GP program. When training a GP system to approximate
an unknown mapping defined by Dt, an error function, such as for example
the classical Root-Mean-Square Error, is minimized. It is known that in the
theoretical case, this process leads to find the optimal answer f∗(x) which is the
conditional mean E(y|x), see [1] for details.

When solving an IP, the dataset Dt used can always be seen as the set of the
N reversed pairs (yi, xi). If the direct function t is not injective, the learning
of Dt corresponds to a Many-To-One mapping inversion. Hence, for each yi a
set of of outputs Xi is expected, and the single answer f(yi) given by GP can
be very poorly adapted. Indeed, during the training phase, f tends to converge
towards the theoretical optimal answer f∗(x) = E(x|y), which is, in the better
case, only one of the expected answer.

To illustrate this, we have created a dataset Dd from the target function d :
� �→ � such that y = sin(x2)+ ε, with ε a random variable with normal distribu-
tion N (0, 0.2). An (nearly good) approximation of the corresponding theoretical
f∗(x) is given by a standard GP system from Dd with N = 500 learning exam-
ples in the range [−2, 2], see Figure 1. In a same way, in Figure 2, the output of GP
corresponding to the inversion of d is plotted2. We can see that GP has produced
a very unstable function that highly overfits the dataset Dd.

2.2 Multiple Outputs

In the GP field, several studies are related to IP solving (see for example [4,3,11,5])
but very few of them have investigated the question of the redundancy. However a
2 The evolutionary parameters settings of the direct case were kept here.
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noticeable exception can be found in [9] and will be discussed further. To overcome
the non-uniqueness of the solution, instead of predicting the conditional mean, one
way is to ensure that the output of an inverse model is at least one of the expected
solutions [6]. A second idea is to produce a reduced list of illustrative examples [8]
and a third possibility consists in approximating the distribution of the plausible
solutions, that is the conditional probability density p(x|y) as explained in [1].
In this study, we are interested in the latter two possibilities, namely, those that
require for GP to produce multiple outputs.

A lot of previous work in GP deals with multiple outputs. Probably the
most straightforward way of doing this is by implementing sophisticated sys-
tems evolving programs able to manipulate a complex data structure such as a
vector or a matrix [10]. Thus, one single GP program is responsible of producing
multiple outputs. In [9], a technique based on boosting, that usually creates a
posteriori mixtures of potential solutions, was extended to handle the ambiguity
problem. Similarly, with the Parisian approach, used also to tackle an IP in [4],
a subset of the population is selected to build the final answer. In these two
previous examples, some GP programs are optionally associated to form a set of
multiple outputs. Conversely, it is also possible to definitely link together several
programs as being the co-operative members of a team and then, to make the
whole team evolve [2,5]. In what follows, we will see how the multiple outputs
of a team of programs can be used to estimate a probability density.

3 Density Estimation with GP

3.1 From Team to Probability Distribution

Practically, to solve an IP, a dataset D consisting of pairs (yi, xi) is used and for
a given input yi, the goal is to approximate the distribution of the associated
outputs Xi. In the statistical inversion theory (see [12]), the pairs (yi, xi) are
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considered as the joint realisations of two random variables y and x and the
solution of an IP has the form of a conditional probability density p(x|y). We
propose two different ways to approximate the subsequent distribution.

In the first approach, called Stochastic Realisation GP (SR-GP), for each input
yi, we consider the n outputs of a GP team T as the n realisations of an unknown
random variable. We note fj , the function implemented by the jth member of
T . With SR-GP, the evolutionary system try to find teams which outputs fj(yi)
report distributions similar to the distributions p(x|y = yi) for all the yi of the
dataset.

The second approach is called Mixture Density GP (MD-GP). Here, a para-
metric model, namely the finite Gaussian Mixture Model (GMM), is used as
explained in [1]. An unknown density p(x|y) can always be represented as a
finite sum of G Gaussian densities such as :

p(x|y) =
G∑

g=1

wg(y) φg(x|y)

with φg(x|y) a normal density N (μg(y), σg(y)). In MD-GP, each of the n = 3×G
members of a team T approximates one of the functions φg , μg and σg that
actually tune the GMM. It is worth noticing that, except for the means μg, the
parameters of a GMM are constrained for a given yi, since the deviations σg(yi)
are positive real numbers, and since the weights wg(yi) are also positive numbers
but with

∑
wg(yi) = 1. We note W and S, two functions that transform the

team outputs into respectively valid wg(yi) and σg(yi) parameters for GMM3.
So, for a given input yi, the answer of a team T is :

T (yi) =

⎧⎨
⎩

w1(yi) = W ( f1(yi) ) . . . wG(yi) = W ( fn−2(yi) )
μ1(yi) = f2(yi) . . . μG(yi) = fn−1(yi)
σ1(yi) = S( f3(yi) ) . . . σG(yi) = S( fn (yi) )

⎫⎬
⎭

Hence T (yi) is directly used to tune the GMM from which a set of r realisations
can be produced (with usually r >> n). With MD-GP, the evolutionary system
tries to find teams tuning GMM, so that the GMM realisations according to yi

report distributions similar to the distributions p(x|y = yi).
Intuitively, we understand that in SR-GP, a huge number of parameters have

to be retrieved, since the size of the teams have to be big enough to produce a
sufficient number of realisations (probably more than 103) so that the subsequent
distributions can be significantly tested. However, one can presume that with this
representation, the search space is “smooth” since the modification of one team
member only affects one realisation and so slightly modify the distribution. At
the contrary, with MD-GP, fewer parameters have to be retrieved to properly tune
the GMM (less than 30 in this paper) and so to produce significant results but
it is clear that the modification of only one team member can induce important
consequences on the fitness of the whole team.
3 In this paper, S(σg(yi)) is simply the absolute value |σg(yi)| and similarly

W (wg(yi)) = |wg(yi)|/
∑

|wg(yi)|.
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3.2 Construction of Target Distributions

The conditional probability density p(x|y) is unknown and only pairs (yi, xi) are
available in a dataset D. However, illustrative training distributions are required
to properly educate the GP system. So for each input yi, we have to build the
probability distribution p(x|y = yi). Our idea is that even if a given value yi is
more likely present at most once in the dataset, many comparable values can be
found. Thus here, for each value yi, a set of k-nearest neighbours {yi . . . yj} is
computed. Then, for each value yi of the dataset, the set {xi . . . xj} is turn into
binned data, by grouping the events into C specific ranges and so binned distri-
butions are computed. The underlying assumption being that the distribution
of the {xi . . . xj} is similar to p(x|y = yi).

The dataset Dd presented section 2.1 is extended to hold N = 105 pairs and
in Figure 3, we have plotted three sets of the k = 1000 pairs (yi, xi) . . . (yj , xj)
corresponding to yi = −0.93, −0.19 and 0.49. In Figure 3, three binned distri-
butions are drawn for C = 50. Each of them represents an approximation of the
theoretical conditional probability p(x|y = yi) for yi=-0.93, -0.19 and 0.49.
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Fig. 3. Examples of pairs (yi, xi) corre-
sponding to the k-nearest neighbours of
yi=-0.93, -0.19 and 0.49
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3.3 Fitness Function

In this paper, only the fitness of the teams are computed and no effort have been
made to estimate the fitness of the team members. Either with SR-GP or MD-GP, a
team will be considered as a good team, if the set of the realisations produced for
each yi tested report a binned distribution comparable to the binned distribution
obtained from a dataset D, as explained above. To measure the distance between
distributions, φ-divergences can be used, as for example the chi-square distance.
Let be U(yi) the expected binned distribution computed from D for a given yi

and V (yi), the distribution produced by a team of programs for the same yi.
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We note Uc(yi) and Vc(yi), the number of events in the bin c of the two distri-
butions. The total number of events #U(yi) is actually independent of yi in this
study and corresponds to the value k defined in section 3.2. Here, the partial
fitness of a team T for one sample yi is

ET (yi) =
1

#U(yi)

C∑
c=1

(Uc(yi) − Vc(yi))2

Uc(yi) + Vc(yi)

and the total fitness is simply the average of the ET (yi) for all the yi of a dataset
D.

4 Experiments

In this section, we aim to verify the ability of the SR-GP and MD-GP systems to ap-
proximate conditional probabilities and so to solve an IP. The linear stack-based
GP implementation described in [5] is used to run the experiments but any other
GP implementation suitable for Symbolic Regression can be used instead. The
number of members in the teams is static and fixed a priori, see [2] for details.
Different settings for the fitness function and the genetic operators but also var-
ious options for the representation and the conversion of teams are investigated.
For each experiment, we perform 30 independent runs and a statistical unpaired,
two-tailed t-test with 95% confidence determines if results are significantly dif-
ferent. Populations of teams are randomly created and the maximum creation
size of the teams members is 50. The instruction set contains: the four arithmetic
instructions ADD, SUB, MUL, DIV, the input variable Y and one stack-based GP
specific instruction DUP which duplicates the top of the operand stack. We add
also into the instructions set, two Ephemeral Random Constants noted ERC1
and ERC2, as described in [7], respectively in the ranges [−100, 100] and [−1, 1].
The evolution is achieved with elitism, 4-tournament selection and steady-state
replacement. Recombination is performed by the standard crossover operator
with a rate of 0.7 and mutation with a rate of 1.0, meaning that each program
involved in reproduction will undergo, on average, either one insertion or one
deletion or one substitution.

Four problems Pa, Pb, Pc, Pd are tested. The corresponding datasets consist
of N = 105 samples from which 100 binned distributions are computed as ex-
plained in section 3.2 and 80 are dedicated to the training phase. In fact, the
two first test problems Pa and Pb do not correspond to the inversion of a direct
function, but for Pa, the GP system has to approximate a bimodal distribution4

1
2N

(
1
10yi

3 − yi
2 + yi + 9, 0.1

)
+ 1

2N
(
5(yi

3 − 3yi
2) ∗ e−yi − 3, 0.1

)
and for Pb,

for each input yi we have N
(
yi, 2.3yi

2 − 1.7yi − 5.4
)
. With an increasing dif-

ficulty, Pc and Pd are true IP that correspond respectively to the inversion of
the function c(x) = x + 0.3sin(2πx) + ε with ε, a random variable with uniform
distribution in the range [−0.1, 0.1] and to the inversion the function d described

4 This problem is strongly inspired by the work of Paris et al. [9]
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Fig. 5. Density estimation : four test problems

Table 1. Average fitness of the best programs found on the four test problems

GP Type Pop. Size Team Size Max Size No Gen. k Real. Train Fit. Test Fit.

Problem Pa

MD-GP 9.102 2 × 3 2.102 102 10 0.43σ=0.16 0.49σ=0.24

SR-GP 2 0.22σ=0.09 0.25σ=0.09

Problem Pb

MD-GP 9.102 4 × 3 102 102 103 0.21σ=0.11 0.23σ=0.14

SR-GP 104 103 1.24σ=0.21 1.43σ=0.34

Problem Pc

MD-GP 9.102 5 × 3 102 2.102 103 0.55σ=0.11 0.58σ=0.14

SR-GP 104 103 1.02σ=0.18 1.03σ=0.24

Problem Pd

MD-GP 9.102 6 × 3 102 102 103 0.28σ=0.06 0.35σ=0.07

SR-GP 104 103 104 0.42σ=0.15 0.51σ=0.14
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Fig. 7. Example of Gaussian Mixture
Model settings as a function of y with
G = 5 for the problem Pd

section 2.1. The training samples of the four test problems, are plotted (gray
points) in Figure 5, respectively part (a), (b), (c) and (d). The outputs (reali-
sations) of representative of the best density estimations performed by our GP
systems are also superimposed (in black).
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We note from Table 1 that SR-GP is the best approach for tackling Pa even
if we allow more generations to SR-GP. Actually, solving Pa consists more in
retrieving two different functions than in a density estimation, and we think
this is exactly the reason why SR-GP is more adapted. Conversely, MD-GP per-
forms better on the three others problems. To figure out the quality of density
estimation given by MD-GP, we have plotted for Pd, three examples of expected
and retrieved distributions corresponding to yi = 0.49, −0.93 and −0.19, (see
fig. 6), and we think that a good agreement has been obtained. The retrieved
distributions are produced by three Gaussian mixtures with G = 5. The outputs
of the corresponding GP team, consisting of 15 programs, is plotted in Figure 7.
We can see (middle part), the expected ’Σ’ shape realized by the 5 functions
μg controlling the means of the Gaussian. Actually, the unwanted null-function
has no influence in the model outputs since the corresponding weight Φg in the
mixture is also null in the top part of Figure 7. We note that there are two
different ways of almost “switching-off” a Gaussian since fixing a deviation σg

to zero is another possible option for the system. This possibility should also be
investigated for the approximation of non-continuous function with teams.

5 Conclusion and Perspectives

In many scientific domains, solving IP is now a major concern and the question
of their redundancy requires particular answers. A wide range of methods can
be used. Often based on a Bayesian approach, they actually report very good
performances compared the two GP variants presented here, so that no inter-
comparisons were made. However, this paper is a promising proof of concept. In-
deed, we note that Symbolic Regression has been introduced probably more as a
benchmark problem than as a true potential application for GP, but after more
than a decade of improvements, the best programs found by GP are now compet-
itive with others methods, which is very encouraging for SR-GP and MD-GP.

One of the difficulty in comparing with published work is that, for the two al-
ternatives presented here, the fitness function used is a φ-divergence, very useful
for computing distance between two distributions but unusual in GP. As far as
we know, the only previous GP work addressing explicitly the redundancy prob-
lem [9], is much more appropriated for functions decomposition, as the problem
Pa, than for more complex IP. Our SR-GP system can also easily solve Pa, while
MD-GP is much more suitable to tackle IP where complex densities have to be
estimated. So a broad variety of redundant IP can be addressed with SR-GP and
MD-GP and we think that, for a given IP, preliminary statistical analysis of the
dataset, will help to decide which method is adapted but also to a priori tune
the systems parameters. Moreover, a lot of improvements can be made. We think
that further work should address the possibility of : assigning a partial fitness
to the team members, producing a variable number of realisations according to
the inputs and designing genetic operators appropriate to teams, in particular
to teams which members have different semantics in the system as the weights,
the means and the deviations of the Gaussian Mixture Model.
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Abstract. Researchers have attempted to explain the power of Genetic
Programming (GP) search using various notions of schema. However em-
pirical studies of schemas have been limited due to their vast numbers
in typical populations. This paper addresses the problem of analyzing
schemas represented by tree-fragments. It describes a new efficient way
of representing the huge sets of fragments in a population of GP pro-
grams and presents an algorithm to find all fragments using this efficient
representation. Using this algorithm, the paper presents an initial anal-
ysis of fragments in populations of up to 300 programs, each up to seven
nodes deep. The analysis demonstrates a surprisingly large variation in
the numbers of fragments through evolution and a non-monotonic rise
in the most useful fragments. With his method, empirical investigation
of the GP building block hypothesis and schema theory in realistic sized
GP systems becomes possible.

1 Introduction

Since the original work done by Holland [1], many researchers have sought to
explain the power of evolutionary search using the notion of schemas and their
propagation through evolution. A schema is a set of points in search space
that share some syntactic characteristics; in a population of genetic programs,
a schema refers to a set of programs that have some common genetic material.

A schema may be an useful way to characterize sets of programs if we assume
that programs that share significant amounts of genetic material are likely to
have similar outputs and fitnesses. Good schemas are those where the common
material predisposes programs in the schema to have good fitness; finding these
good schemas may allow us to narrow the GP search space to those programs
likely to have better fitness.

Further, study of schemas may give us insight into genetic search. In 1975,
Holland [1] proposed that, while searching for a good chromosome to solve a
problem, the genetic search of Genetic Algorithms (GAs) was also performing a
larger search for good schemas, a process he called inherent parallelism. Later,
Goldberg [2] proposed his building block hypothesis (BBH) predicting the prop-
agation of small, fit schemas he called building blocks. While this foundation
research dealt with GAs, there has been much research attempting to trans-
fer the results to GP. However, very little of this research empirically analyzes
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practical GP evolutions. The reason for this is simple: when using useful notions
of GP schema, a typical population of programs contains a massive number of
individual schemas, and naive methods to identify them all are often doomed
to failure. Thus, empirical analysis of GP schemas has almost exclusively been
restricted to small populations and/or programs.

This paper describes a new tool which vastly expands the ability of GP re-
searchers to empirically analyze fragment schemas in real-sized populations. The
tool divides the space of all fragment schemas into groups in such a way that
the size of the problem is reduced without unnecessarily restricting analysis.

The paper proceeds as follows: the following section presents an overview
of related research, section 3 presents definitions used in the paper, section 4
describes the concept of maximal fragment, section 5 introduces a new algorithm
which is used in section 6 to analyze GP evolutions, finally section 7 presents
conclusions and directions for future research.

2 Related Work

2.1 Schema Theory and Analysis in GAs and GP

In the 1970s, researchers looked to explain the power of GAs. A persuasive
argument was presented by John Holland in [1]: while searching for good chro-
mosomes, GAs also perform a parallel meta-search of the patterns common to
chromosomes; these patterns he called schemata (schemas in this document).

When a chromosome is assessed for fitness, doing so obtains new information
about the fitnesses of all schemas the chromosome is in. This simultaneous pro-
cessing of a large number of schemas was given the name inherent parallelism.
Holland [1] presented the GAs Schema Theorem, which gives a lower bound on
the expected number of chromosomes belonging to a schema in the next gener-
ation in terms of information available in the current generation.

Research applying the GAs schema theorem to GP started in the early 1990’s
(for example [3,4,5,6,7]). There are few reports of empirical studies of schemas;
even in a single small population of small programs the number of distinct
schemas is potentially massive, making tracking and analyzing all schemas in
all but trivial populations difficult. Some work in the area includes Rosca’s ex-
traction of the values of important terms in his schema theorem from actual
populations [6]. In 1997, Poli and Langdon [8] performed empirical experiments,
tracking creation and transmission of all hyperschemas in populations of fifty
boolean programs limited to three or four nodes deep. Langdon and Banzhaf
[9] presented an analysis of schema repetition in best-of-run genetic programs
from evolutions on two benchmark problems. Wilson and Heywood [10] built
on the work of Langdon and Banzhaf, analyzing repeated blocks of instructions
in linear genetic programs. Majeed [11] constructed fragments by generalizing
those subtrees, of a set maximum depth, that occurred in at least half of the
population in the last generation of evolution.
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2.2 The Building Block Hypothesis

Building on Holland’s research, Goldberg [2] proposed his ambitious Building
Block Hypothesis (BBH) which predicts the propagation of so-called building
blocks, and proposes that GAs work in part by combining these building blocks
into larger schemas of potentially higher fitness. The theorem proved highly
controversial.

Researchers (for example [4,12,13,14]) have analyzed the predictions of the
BBH when applied to the new representation of individuals in GP. There are
reasons to believe building blocks propagate in GP populations in the way pre-
dicted by the BBH. However, there are also several persuasive arguments why
GP could not support such building blocks. There continues to be a lack of solid
evidence for or against the existence and nature of building blocks in GP.

2.3 Forms of GP Schema

For bit-string chromosomes in GAs there is a widely accepted way of representing
schemas in terms of strings from {0,1,*}, where * is a “don’t care”. There is no
such agreement on the form of a schema in GP. Koza [15] defined a schema as
the programs which contain a specified set of subtrees. O’Reilly and Oppacher [4]
defined a schema more generally as the programs which contain a specified set of
fragments at specified frequencies. Whigham [7] used partial derivation trees as
schemas for his Context-Free-Grammar based Genetic Programming. Rosca and
Ballard [16] defined a schema as the programs which contain a specified fragment
at the root. Poli and Langdon [5] modified the schema of Rosca and Ballard by
making use of the = node, a “don’t care” which takes the place of any single node.

3 Fragment Schemas

The algorithm presented in this paper identifies schemas represented by tree-
fragments (or fragments). We assume that the programs are represented by
rooted trees, where the internal nodes are functions and the leaves are terminals
(for example features and constants). A subtree at a node n in a program is the
connected set of nodes including n and the nodes below n.

A fragment of a program tree is defined as a connected set of nodes from the
program tree. A rooted fragment of a program tree is defined as a connected set
of nodes from the tree that includes the root of the tree. The set of fragments
of a set of programs is the same as the set of rooted fragments of the set of
all subtrees of the programs. We will use “fragment” exclusively to refer to the
rooted fragments of the programs’ subtrees.

A fragment schema is defined as the set of all programs containing a specified
fragment at some point in the program tree. A fragment f is said to contain
another fragment g if the root of g is the root of f and the nodes of g are all in
f . A fragment is said to be a containing fragment of the fragments it contains
(other than itself), which are said to be its contained fragments.

Figure 1 shows a small program tree, its subtrees, and its fragments.
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4 Maximal Fragments

This paper introduces a method for performing analysis on the set of all frag-
ments contained in a population of genetic programs. The critical problem that
must be addressed is how to represent and how to construct such sets.

For small populations of small programs, naive methods that simply enumer-
ate all fragments are tractable. However, as the sizes or number of the programs
increase, the scale of the problem quickly becomes massive, and the naive meth-
ods impractical. There are O(22d

) distinct fragments contained in a single, full,
binary program tree of depth d, and even a single small program of depth 6 could
contain over 1011 distinct fragments, too many for a typical modern computer
to store or work with.

If a fragment is contained in a subtree (or set of subtrees) then all its contained
fragments are also contained in the subtree (or set of subtrees). Therefore, we can
use a fragment to represent a set of fragments. The key observation that makes
tractable analysis of the fragments in GP populations possible is that the set of
fragments contained in a population of genetic programs can be represented by
a far smaller set of maximal fragments, while still allowing the desired analysis.
A fragment f is maximal with respect to a particular set of subtrees S if no
containing fragment of f is contained by the same subset of S as the fragment;
thus, such a subset of S for any containing fragment of a maximal fragment will
always be smaller than the subset for the maximal fragment itself. Given any
subset of S, the largest fragment contained in all subtrees in the subset is always
maximal with respect to S.

Each maximal fragment f represents a set of fragments; this set includes f and
all fragments that are contained in f , that are not also contained in a maximal
fragment that is itself contained in f . Therefore, any fragment represented by f
must be contained in exactly the same set of subtrees as f . By this mechanism,
the set of maximal fragments of a population represents the set of all fragments.

To produce the set of maximal fragments, the method first extracts the set
of subtrees from a set of programs. The TripS algorithm, to be described in
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the next section, then identifies the maximal fragments rooted at the subtrees.
The set of maximal fragments can then be analyzed in various ways to identify
properties of the set of all fragments. Section 6 illustrates this analysis process
by constructing a histogram of the sizes of all fragments.

5 The TripS Algorithm

TripS
1 is a recursive algorithm that is passed a maximal fragment f to explore

and a set of maximal fragments found so far. It will find all containing fragments
of f that are maximal fragments, add them to the maximal fragments found so
far, and recurse on the new fragments. The key to its efficiency is that it repre-
sents maximal fragments by a set of subtrees, and only constructs the fragments
explicitly when needed.

Given a subset S of the set S0 of all subtrees, there is always one largest rooted
maximal fragment (possibly the empty fragment) that is in all the subtrees in
S; this fragment can be represented by S. TripS is initially called with the
maximal fragment represented by the input set of subtrees S0: Trips(S0, {S0}).

Given a maximal fragment, f , to expand, TripS first constructs the explicit
representation of the fragment, considers each possible way of extending the
fragment with a single node, and then constructs the set of subtrees containing
the extended fragment. This set must be a proper subset of the set representing
f because f is maximal. This set must also correspond to a maximal fragment.
It therefore adds this fragment to the list of fragments found so far, and recurses
(unless the fragment has already been found). The TripS algorithm is given in
figure 2 as pseudocode.

TripS(set of subtrees S, set of sets of subtrees MaxFragSets)
Fragment f = constructExplicitFragment(S)
for each single-step extension to f and resulting fragment f ′

S′ = containingSubtrees(S, f ′)
*
if S′ /∈ MaxFragSets

add S′ to MaxFragSets
MaxFragSets =TripS(S′,MaxFragSets)

Return MaxFragSets

Fig. 2. The TripS algorithm: Finding maximal fragments given a set of subtrees

Note, the actual algorithm also stores the Directed Acyclic Graph (DAG)
of contained fragments and containing fragments. An edge between S (con-
tained fragment) and S′ (containing fragment) is added to this DAG at the
point marked * in the algorithm.

1 From “Subtree-Set-Splitter”.
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6 Analysis of GP Using TripS

Because the set of maximal fragments is a concise representation of the set of all
fragments, it can be tricky to perform analyses on the set of all fragments with-
out explicitly reconstructing all the fragments. Different analyses may require
different techniques. Here, we illustrate how statistics on the set of all fragments
can be obtained directly from the compact representation.

The algorithm in figure 3 finds a histogram of the number of all fragments
of each size that are represented by a set of maximal fragments. The algorithm
works as follows: for each maximal fragment f in the set, ContainedFrag-

ments (see appendix A) finds a histogram by size of all fragments contained in
f . The function then subtracts from this histogram the counts of fragments which
are represented by maximal fragments that are themselves contained fragments
of f . By examining fragments of increasing size, the algorithm ensures that the
histograms for these maximal contained fragments were previously calculated.

RepresentedFragments(set of fragments MaxFrags)
For each f ∈ MaxFrags by topological sort from small fragments to large

f.repf =ContainedFragments(f)
For each fragment f ′ ∈ MaxFrags that is a contained fragment of f

For each i: f.repf[i] = f.repf[i] − f ′.repf[i]

Fig. 3. Finding counts of fragments represented by a set of maximal fragments

Since all the fragments counted in the histogram for a maximal fragment
are contained in exactly the same set of subtrees as the maximal fragment, the
histograms allow us to group the set of all fragments by size and by the sets of
containing subtrees.

6.1 Experimental Setup

We used the algorithm to investigate the behaviour of fragments in runs of
evolution for a typical binary classification problem (breast-cancer-wisconsin
dataset [17] obtained from the University of Wisconsin Hospitals, Madison by Dr.
William H. Wolberg. This dataset has 9 features and 699 patterns). The functions
used were the four basic mathematical operations (+, −, ×, protected÷) each
with a fixed arity of two. The terminals used were numeric terminals (normally
distributed with μ = 0, σ = 1), and feature terminals drawn from the dataset
after scaling to [-1,1]. The dataset was divided equally into training, test and
validation sets. The population size was kept constant through evolution, with
the initial population being generated using the ramped half-and-half method.
The genetic operators used were reproduction (10%), subtree mutation (30%),
and subtree crossover (60%).
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6.2 Experiment 1: Numbers of Fragments Sampled

The first set of experiments focused on the numbers of the different sizes of
fragments that exist in a population of programs, and how these numbers change
over a run of evolution. The population was made up of 300 programs limited
to between three and seven nodes deep.

Figure 4(a) displays a histogram of the numbers of fragments, according to
size, contained in each generation of a run of evolution. For a particular size and
generation, the height of the graph gives the number of distinct fragments of
that size, contained in that generation. (The height is plotted on a log scale.)
The dotted line seen along the top of the curve at each generation shows how
the most numerous size of fragment changes through evolution.

Figure 4(b) displays the same graph seen from above, showing clearly changes
from generation to generation of the maximum size of fragment and (dotted line)
the most numerous size of fragment.

Figure 4(c) displays the same graph seen from the front, showing the number
of fragments of the most numerous size, for each generation.

(b)

Size

Generation
 0  5  10  15  20  25  30

 0
 20
 40
 60
 80
 100
 120
 140

(c)

Number

 0  5  10  15  20  25  30

 1
 100000
 1e+10
 1e+15
 1e+20
 1e+25

(a)

 0  5  10  15  20  25  30Generation  0  20  40  60  80 100 120 140

Size

 1
 100000
 1e+10
 1e+15
 1e+20
 1e+25

Number

Fig. 4. Histogram of fragments. (a) Height of graph for a particular size and generation
shows the number of distinct fragments of the size in the generation (log scale). (b)
shows the same graph from above. (c) shows the same graph from the front. The dotted
line shows the most frequent size in each generation.

The distribution of each generation’s fragments is as expected - few very small
or very large fragments, and great numbers (at times over 1022) of middle-sized
fragments. It is perhaps of more interest to see how the distribution changes
through evolution. We see that the most frequent size of fragments changes from
generation to generation, and the total number of fragments sampled by the
population varies drastically; for example, the fourteenth generation contained
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less than 10−12% as many fragments as the initial population, dropping from
8 × 1022 to 3 × 108 fragments. In a single step, the number of fragments in the
population may rise or fall many orders of magnitude. This is due to the huge
increase in the number of fragments a program contains with an increase in the
program size; a single large program may contain many times the number of
fragments as a population of small programs.

6.3 Experiment 2: Rise in Popularity of Most Frequent Fragments

The second set of experiments focused on the fragments that were most frequent
in late stages of the run. The population was made up of 100 programs limited
to between three and seven nodes deep.

For each size from three to ten, the most frequent fragments of the size in
the sixty-eighth generation were identified. These fragments were then identified
in previous generations; The graphs in figure 5 show their frequencies in each
generation up to the sixty-eighth. Figure 5 displays two different views of the
same graph. For a particular size and generation, the height of the graph gives
the number of instances in the generation of the fragment that was the most
frequent fragment of the size in the final generation.
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Fig. 5. Retrospective frequency trend of popular fragments showing two views of the
same graph: The height of the graph for a particular size and generation reflects the
number of subtrees in the generation that contain the the most frequent fragment of
the size in the last generation

We see from the graph that the most popular fragments in the final generation
had already emerged in the sixth generation. Their sampling frequency then
increased, independently of size, to peak in the twenty-ninth generation. After
falling briefly, the fragments’ popularity increased again, but this time with the
smaller fragments becoming significantly more popular than the larger ones. It
may be that the evolution went through two phases: the first being an increase
in the frequency of these good fragments, and the second being the manipulation
of the (now common) fragments in the converged population.

While the analysis here is very preliminary, we hope that this kind of analysis
will shed light on the accuracy of predictions made by the GP building block
hypothesis, and GP schema theory.
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6.4 Experiment 3: Number of Maximal Fragments

The third set of experiments focused on how the number of maximal fragments
changes over the course of a run, and from run to run. Evolution was run to
generation 100 twenty-five times, with a population size of 100. In each genera-
tion in each run the TripS algorithm was used to find the number of maximal
fragments in the population. The distribution of the numbers at each generation
for the twenty-five runs are plotted in figure 6. The figure shows the number
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Fig. 6. Distribution of the number of maximal fragments, over 25 evolutions, for each
generation up to 99. Shown are the 0th, 25th, 50th, 75th and 100th percentiles. The
population size is 100 programs. The vertical axis is on a log scale.

of maximal fragments on the vertical axis (log scale), and generation number
on the horizontal axis. The figure shows clearly that the number of maximal
fragments varies widely from run to run. Interestingly, while the median number
of maximal fragments increases with generation, the maximum number of max-
imal fragments fluctuates widely from generation to generation, but does not
increase on average. It should be noted that the algorithm failed to finish, and
was stopped at 10 million maximal fragments, on a single problematic popula-
tion. The next greatest number of maximal fragments from the 2500 populations
was 2.6 million.

By generation 99, the median number of maximal fragments has risen to a
modest 33 thousand. The median number of maximal fragments rises steadily
with generation, but does not do so at an exponential rate.

TripS Algorithm Complexity. This section uses the results from the pre-
viously described experiment for simple empirical analysis of the complexity of
the TripS algorithm. From the algorithm, it is immediately clear that there
is exactly one call to the TripS function for each maximal fragment. During
this experiment we also measured how often the inner loop of the algorithm was
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Table 1. Distribution over 2500 populations, each with 100 programs, of: number of
maximal fragments, number of inner loop iterations, ratio of inner loop iterations to
TripS function calls, and the time taken to run the TripS algorithm

Percentile

0% 10% 25% 50% 75% 90% 100%

Num Maximal Fragments 1,048 2,181 4,578 12,131 43,243 141,289 >10,000,000
Runs of inner loop 3,733 17,194 58,997 245,198 1,046,222 4,016,326 94,959,119
Runs of inner loop per call 3.54 8.04 12.95 19.42 28.85 25.05 41.01
Time for TripS (ms) 10 50 150 710 3480 14300 —

iterated (marked with a star in figure 2). Table 1 shows this and other data
gained from these experiments.

At times the inner loop is called forty times for each fragment made. Improve-
ments to the algorithm will reduce this ratio significantly. The median time to
find all maximal fragments for populations of 100 programs was under one sec-
ond (on a standard 2.8GHz Pentium IV PC), however, occasionally this increases
substantially.

In summary, the algorithm’s complexity is closely related to the number of
maximal fragments in the population it is run on. Where this number is small,
as is found in 95% of the populations tried, the algorithm is efficient. At times,
however, the number of maximal fragments is very large, and the algorithm can
take a long time to finish.

7 Conclusions

A population of one hundred programs, each 7 deep can easily have trillions of
fragment schemas of interest, making impractical any approach that constructs
or identifies all fragments explicitly. For this reason, previous attempts to em-
pirically analyze schemas in GP populations have been restricted to very small
populations, small programs or restrictive forms of schema.

We have developed the TripS algorithm for finding a set of maximal fragments
for an input set of programs, which compactly represents the set of all fragments
contained in the programs. We have shown the use of another algorithm to
derive statistics on the number and sizes of the fragments represented by each
maximal fragment, without having to construct all fragments explicitly. The
method allows analysis of all fragment schemas in relatively large (300 program)
populations of relatively large (over 150 node) tree-based genetic programs.

We present two simple analyses made possible by the method. In the first, a
histogram of fragments by size and generation, we see that the number of frag-
ments in the population undergoes massive changes from generation to gener-
ation. In the second analysis presented, a plot showing the increasing frequencies
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of selected good fragments of different sizes, we see that as well as increasing,
the frequency of good fragments can also decrease.

In a third set of experiments we analyzed further the complexity of the al-
gorithm. The results suggest that the number of maximal fragments tends to
rise during evolution, but for typical runs remains small. Some rare populations
however produce very large numbers of maximal fragments. At all times in the
number of maximal fragments remains tiny compared to the total number of
fragments.

This method enables many analyses of fragment schemas in real-sized GP
populations over and above the two simple examples presented here. Some areas
to be looked at in future research include:

– Fitness correlations between programs that share fragments;
– How fragments of different sizes and estimated fitnesses propagate through

evolution, specifically looking for and studying building blocks;
– Accuracy of fragment schema theory in practice;
– Origins of the fragments that make up the best-in-run program;
– Further analysis of the algorithm complexity and numbers of maximal

fragments;
– Analysis of rooted fragments; and
– Modification of the algorithm to GP hyperschemas and GA schemas.
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A Algorithm to Find Histogram of Sizes of Contained
Fragments

The function ContainedFragments, shown in figure 7, is given a maximal
fragment f and finds a histogram of the sizes of all fragments contained in f . In
the returned array, c[i] is the count of such fragments of size i.

The function recurses once for each node in the fragment.
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ContainedFragments(fragment f)
c:Array of counts of fragments of size 0..|f |
c[0] = 1
if the root node of f is a function

For each child node n′ of the root node of f
f ′ = the fragment of nodes from f including n′ and nodes below n′

c′=ContainedFragments(f ′)

For i = |c′| + |c|to 0, step -1: c[i] =
∑i

j=0 c[j] ∗ c′[i − j]

For each i in c: c[i + 1] = c[i]
c[0] = 1
Return c

Fig. 7. Finding the number and sizes of fragments contained in a given fragment
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Abstract. In this paper we present an empirical comparison between evolution-
ary representations for the resolution of the inverse problem for iterated func-
tion systems (IFS). We introduce a class of problem instances that can be used
for the comparison of the inverse IFS problem as well as a novel technique that
aids exploratory analysis of experiment data. Our comparison suggests that rep-
resentations that exploit problem specific information, apart from quality/fitness
feedback, perform better for the resolution of the inverse problem for IFS.

1 Introduction

The inverse problem for IFS is an open problem that has applications to Fractal Image
Compression, Modelling, Computer Graphics, Shape Representation, as well as appli-
cations in Art and Design. Several publications exist that employ EAs for the resolution
of the inverse problem for IFSs [9], [8, 11], [4, 12]. Different types of EA have been
used for the resolution of the inverse IFS problem. In each case different represen-
tations, fitness functions, population structures, and selection schemes were adopted.
Different types of IFSs, linear and non-linear, were also tried out. The variety of EA
methods applied to the resolution of the inverse problem has produced some promising
results, however it is difficult to compare and contrast the efficacy and effectiveness of
different approaches. This is made especially hard as there is no set of test or training
shapes consistently used throughout the literature. In most cases experiments employed
differing amounts of processing power over different sets of images or shapes. In most
empirical studies a small number of shapes (sometimes only one or two shapes) were
used making it difficult to arrive at general conclusions or allow for comparisons.

Here we concentrate on the comparison of evolutionary representations for the res-
olution of the inverse IFS problem. This is achieved by selecting a class of fractal im-
ages that are representative of the type of shapes often modelled using IFS. We use
this set of “classic” IFS fractals as a benchmark for the effectiveness of various tech-
niques/representations and test these under the same processing power and population
structure(s).

Presentation of mean performance graphs and frequency distribution graphs of best
of run individuals, as well as parametric tests such as ANOVA or z/t-tests [6] for the
comparison of mean performance provide empirical evidence as to which represen-
tation performs best. Such analysis is very useful, however more often than not it
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does not provide good indications as to why performance varies between representa-
tions/techniques. In order to answer this question we visualise the resulting data off-
line. This is achieved by drawing the best of generation individuals for each run, which
in turn, allows for visual analysis of the models generated by the EA runs. The idea
is that we don’t simply study the best solutions evolved, we also study the series of
mutations or the differences between best individuals across generations. Keeping track
of the variation between best of generation individuals in a run provides clues as to
the “strategy” or the type of evolutionary paths selected by different representations.
In biology, especially in the study of development [3], visual qualitatively analysis of
mutations that occur in nature is a standard procedure, here it is used for the analysis of
the behaviour of the EA.

2 Iterated Function Systems

Iterated functions systems (IFS) provide an elegant mathematical description and a
method for generating a large variety of fractal shapes and models. IFS were origi-
nally conceived by Hutchinson [5], and made popular by Barnsley [2] who applied IFS
to computer graphics and image compression.

In this paper we work with affine IFS. An affine IFS consists of a finite set of n
contractive affine transformations w. A contractive transformation w is a transformation
that when applied onto a shape will scale that shape down. That is, if it is applied
repeatedly on a shape α, with αi = w(αi−1), then α will be transformed to a single
point in space. This point is referred to as the fixed point of the transformation w. The
fixed point of w is invariant, that is, if w it is applied onto its fixed point then it will
transform the fixed point onto itself.

To describe an IFS we define the function W (α) =
n⋃

i=1

wi(α). The result of W is

often referred to as a collage, that is, W transforms shape α to a union or collage of
scaled down versions of α. It can be shown that, given a set of n contractive transfor-
mations w, W is also contractive [7]. That is, if W is applied repeatedly onto a shape α,
with αi = W (αi−1), then it will transform α onto a fixed shape. This shape is referred
to as the fixed point of the transformation W .

Given an arbitrary shape α, we want to find the function W whose fixed point is α.
This is referred to as the inverse or inference problem for IFS. One way of attacking the
problem is using Barnsley’s [2] collage theorem, which states that in order to find W
we need to find a collage of scaled down versions of α whose union is α. For detailed
description of IFS fractals and fractal image compression techniques look at [2, 7].

3 The Training Set

In order to test the effectiveness of algorithms for the resolution of the inverse IFS prob-
lem we select eight (8) well known affine IFS attractors. The attractors are selected so
they are made of self-similar shapes of various degrees of complexity, different types
of symmetry, with shapes bound by convex and concave polygons, and have different
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topologies, i.e. shapes that contain holes and gaps and shapes that don’t. The images in
the training set fall into (4) four pairs of similar looking shapes:

– The square-triangle pair: contains a square shape and the shape of an equilateral
triangle. Both figures are simple polygonal compact shapes with axial symmetry
along the vertical. For these shapes we require transformations composed only of
translation and scaling in order to form solutions to the inverse problem.

– The non-compact pair: contains the well known fractal shape of the Sierpinski Tri-
angle and the shape of a crystal-like figure also known as Sierpinski’s Pentagons.
Both shapes demonstrate axial symmetry along the vertical, and require transfor-
mations composed only of translation and scaling in order to form solutions to the
inverse problem. The topology of the non-compact pair contains many gaps and
holes.

– The leaf pair: contains the well known fractal shape of Barnsley’s Fern and a maple
leaf. Both shapes do not demonstrate strict axial symmetry. Both shapes require
transformations that contain a composition of scale, rotation, skew, and translation,
as well as singular transformations.

– The branching pair: contains shapes that are branching recursive structures. Such
shapes are well known and well studied fractals. They are made, typically, of many
lines or elongated rectangular components. They require transformations composed
of translation, rotation, and scaling for the resolution of the inverse problem, and
do not demonstrate strict axial symmetry.

All of the above shapes, which we refer to as the training set, have well known affine
IFS codes, here their attractors lie within [−0.5, +0.5]2 the unit square centred at the
origin. Each member of the training set is a 128 × 128 black and white bitmap that
approximates the equivalent IFS attractor. The training set is depicted in the rightmost
part of Figure 1.

4 Representations of the Inverse Problem for IFS

We introduce three representations of the inverse problem, which we apply and evaluate
throughout the rest of the paper. Each representation considers the inverse problem from
a different perspective, or emphasises a different aspect of the problem.

– The first representation is based on a combinatorial approach to the resolution of the
inverse problem. It derives from the fact that the most general linear transformation
can be generated by composition of a scaling with a rotation and a skew. Equiv-
alently any transformation can be decomposed into three steps: scaling, skewing,
and rotating. It is possible therefore to use a small set of primitive maps in order
to generate by composition any workable mapping. This allows hierarchical struc-
ture and the composition of affine maps as hierarchical Lisp symbolic expressions
(S-expressions). Based on this idea we devise a hierarchical S-expression based
representation using GP. For implementation details look at [11].
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Fig. 1. In the column to the left we display the best individuals evolved using the combinator-
ial representation, the second column from the left holds the best individuals evolved using the
parameter optimisation representation, and the column third from the left illustrates the best indi-
viduals evolved using the partitioning representation. Finally, the right hand column depicts the
training set.

– The second representation considers a parameter optimisation perspective. This
representation is based on an encoding of an IFS as variable-length list of real-
valued vectors. This is implemented using GP, where we allow for Evolution Strate-
gies (ES) mutation on GP terminals based on the work on ES by Back [1] and
Schwefel [14]. For implementation details look at [12].

– The third representation views the inverse problem as a segmentation or partition-
ing problem, and exploits problem specific data in order to reduce the search space
of the problem. In this case we view the solution of the inverse problem as a parti-
tioning or segmentation task, where (overlapping, or non-overlapping) partitions of
a given shape correspond to transformations of that shape as a whole. 1 It is known
that in some cases such an approach can reduce the size of the search space for the
inverse IFS problem considerably [10]. For implementation details look at [13].

In all three cases the EA algorithm of choice is Genetic Programming which allows
for flexible variable length encoding of the problem in hand.

4.1 Population Structure and Fitness Functions

We run experiments for all shapes in the training set, and for each shape we perform runs
with 3 different fitness settings. The fitness functions are based on the pixel difference of
an in individual’s attractor, or an individual’s collage with the appropriate target shape.
In the third case the niches fitness the population is separated into two niches each of
which uses either collage or attractor fitness. For all shapes and all three fitness settings

1 That is, we are asked to discover a set of horizontal vertical (HV) partitions for a given shape,
each of which is a scaled down transformation of that shape.
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we perform 31 independent runs. Each run uses a population of 1000 individuals for 60
generations. That is we process 1.860.000 individuals in the span of 31 independent
runs. The population structure is demic using tournament selection, with the number
of tournament contestants set to 7. The size of each deme is 3x4 grid squares and the
toroid width is 40.

We apply three fitness functions based on the pixel difference of the target shapes and
evolved individuals. The attractor fitness is calculated as the pixel difference between
the target and the attractor of evolved IFS. The collage fitness is calculated as the pixel
difference between the target and the shape generated by the collage of the transforma-
tions of the target as specified by the evolved IFS. As the attractor is invariant, if we
have found the correct solution the target and collage should be identical. Finally we
use a niches fitness where the population is separated in two niches one using collage
fitness the other attractor fitness.

5 Results

Figure 4 shows the progress of runs for different representations and different target
shapes. All representations seem to perform very well for the simple square-triangle
pair. The partitioning based representation performs the best for the non-compact pair,
and has a good overall performance for the leaf pair. Figure 4 also suggests that the
collage fitness function provides the most successful solutions, however as we’ll see
in the following section collage fitness can be deceptive and often leads to local min-
ima. Table 1 displays Student’s t scores for the difference between independent sam-
ple means of the performance of representations. We compare mean performance for
the shapes in the training set using the three fitness functions described. We test the
segmentation/partitioning based representation against the combinatorial and parame-
ter optimisation based representations, each time performing one-tailed tests. The re-
sulting scores indicate that average performance of the partitioning representation is
higher for most shapes in the training set. However in the case of collage fitness and the
comparison between the partitioning and combinatorial representations the results for
the tree, and maple leaf appear to be inconsistent with the visual comparison between
the best shapes evolved as shown in Figure 1. The same inconsistencies appear between
the results depicted in the progress graphs of figure 4, and the visual comparison of best
solutions in figure 1. These inconsistencies can be explained by closer inspection of the
results. In the following section we point to deceptive strategies #1 #2 which allow for
relatively high fitness scores especially in the case of collage fitness.

6 Visual Analysis

In order to understand why performance is better using the partitioning representation
and to resolve inconsistencies we go through the process of visual inspection of the
best of generation individuals for each run. We visualise the (sixty) best of generation
individuals in a run using a grid of small 128 × 128 images. The best individual of the
first generation is at the top left, and the last individual is placed at bottom right hand
corner. The image-grid is read from top to bottom row by row, each row is read from
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Table 1. Differences in mean performance between representations for all target shapes. Scores
≥ 1.697 indicate differences with 95% confidence, scores ≥ 2.457 show differences with 99%
confidence. We are interested in one-tailed comparison, where Segµ stands for the mean perfor-
mance of the segmentation/partitioning approach, Combµ stands for mean performance of the
combinatorial representation, and finally Optmµ stands for mean performance of the optimisa-
tion based representation.

t-scores Comparison using Attractor Fitness

Squar Trian Sierp Crys Fern Maple Tree Twig

Segµ > Combµ 8.85 10.03 135.15 23.43 17.68 22.93 5.43 40.82
Segµ > Optmµ 29.18 15.06 132.42 21.36 11.48 14.98 9.87 50.17

t-scores Comparison using Collage Fitness
Squar Trian Sierp Crys Fern Maple Tree Twig

Segµ > Combµ 1.07 -4.93 41.43 10.66 3.26 -2.50 -21.27 21.53
Segµ > Optmµ 10.88 4.09 41.29 11.70 3.34 3.20 -6.15 18.10

t-scores Comparison using Niches Fitness
Squar Trian Sierp Crys Fern Maple Tree Twig

Segµ > Combµ 80.20 3.69 56.62 20.75 18.04 8.44 -5.84 28.49
Segµ > Optmµ 16.28 7.16 43.01 16.60 6.58 7.01 0.30 17.50

left to right. In this way, it is possible to inspect all of the best of generation individuals
at a glance. Clearly not all individuals are important and many are very similar to one-
another, especially in the generations near the end of a run. One could realisticly spend
4 or 5 seconds looking at each grid of images, allowing a quick overview of shapes
that hold the phenotypes of sixty related individuals, which means one could inspect all
individuals of an experiment in few minutes.

6.1 Deceptive Strategy #1

The grid of images in the left of Figure 2 shows the best of generation individuals of
the best run for the maple leaf, using the combinatorial representation. For each best of
generation individual one could also view the corresponding set of affine transforma-
tions that make up the IFS, see the grid of images on the right of Figure 2. Figure 2
provides a clear example of one of the deceptive “strategies” intended by the EA to re-
solve the inverse problem, and which typically leads to a local minimum. Even though
the best individual using this strategy (shown in Figure 2) achieves an accuracy of 93%.
It seems that runs, using collage fitness, for the shapes in the training set and the maple
leaf, under the combinatorial representation, fall very often into this trap. That is, GP
tries to solve the problem using many scale and mirror transformations, where only one
scale transformation (and three transformations using rotation and/or skew) is required
for the known optimal solution. We observe that out of 31 runs only 9 runs contain best
of generation individuals with a majority of transformations that use rotation and/or
skew components in the last 3 generations.

The probability of selecting a scale transformation out of a set made out of scale,
rotation, and skew at random is 1/3. A variable X which is the number scale trans-
formations appear with majority in the last three generations, out of 31 runs, can be
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Fig. 2. The grid of images on the left side of the figure contains the best of generation individuals
of the best run for the resolution of the inverse problem for the maple leaf using the combinatorial
approach and collage fitness. To the right side of the figure the grid of boxes contains the list of
affine transformations of the best of run individual for the maple leaf using the combinatorial ap-
proach and collage fitness. The last image, on the bottom, drawn in light grey is the collage/union
of all the transformations.

modelled by a binomial distribution. Given the null hypothesis H0 : a majority of scale
transformations appear with probability P = 1/3 at random sampling of runs, and the
alternative hypothesis H1 : P > 1/3. We reject the null hypothesis with a significance
level of 1%.

6.2 Deceptive Strategy #2

Other deceptive strategies can be discovered this way, Figure 3 provides another exam-
ple, it depicts the transformations of two individuals, that solve the Sierpinski triangle
using the parameter optimisation representation and collage fitness. Each individual is
depicted as a grid of images. The individual in the left side is made out of a grid of
two transformations, and the individual on the right side is made out of a grid four
transformations. Where black pixels draw the target shape and grey pixels draw the

Fig. 3. Two best of generation individuals for the Sierpinski triangle

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Empirical Comparison of Evolutionary Representations of the Inverse Problem 75

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Tree

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Twig

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Sierpinski Pentagon

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Sierpinski Triangle

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Square

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Triangle

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Barnsley Fern

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60

Le
ve

l o
f A

cc
ur

ac
y

Generations

Inverse Problem for the Maple Leaf

 C-Cmb
 A-Cmb
 N-Cmb
 C-Num
 A-Num
 N-Num
 C-Seg
 A-Seg
 N-Seg

Fig. 4. These graphs show the progress of runs for different representations and different target
shapes. They display the average performance of best of generation individuals over 31 runs. The
prefix C stands for collage fitness, A stands for attractor fitness, and N for niches fitness. The
suffix Cmp refers to the combinatorial representation, Num refers to the numerical optimisation
representation, and Seg refers to the segmentation/partitioning representation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



76 A. Sarafopoulos and B. Buxton

transformed image of the target. The last image on each grid depicts, in light-grey, the
collage or union of transformations superimposed onto the target.

Figure 3 highlights a strategy adopted very often. The EA, using the parameter op-
timisation representation, encourages a search that is quite oblivious to the fact that a
solution to the inverse problem requires the whole target shape to be covered. It seems
that in many cases a local minimum is reached by covering accurately a small part of
the target shape, and at same time avoiding other equally important segments of the tar-
get. Runs using collage fitness, for the Sierpinski triangle, fall very often into this trap.
The parameter optimisation representation attempts to solve the inverse problem for the
Sierpinski triangle by using only part of the actual shape. Out of 31 runs 12 contain best
of generation individuals with transformations that cover more than 2/3 of the target in
the last three generations of a run.

The probability of selecting an IFS with a collage of transformations covering (0,
1/3], (1/3, 2/3], or (2/3, 3/3] of a target shape using chance alone should be equal,
and the chance of each event occurring equal to 1/3. Given the null hypothesis H0 :
the collage of transformations of evolved best of generation individuals in the last 3
generations of a run cover more than 2/3 of the target with probability P = 1/3 at
random sampling of runs, and an alternative hypothesis H1 : P > 1/3, we find that
we can not reject the null hypothesis with an acceptable significance level. In contrast,
when using the segmentation based representation to solve the same problem all runs
have best of generation individuals whose collages cover > 2/3 of the target shape.

7 Conclusions

We have introduced a “training set” of fractal images that can be used as a benchmark
for the resolution of the inverse IFS problem. The method for analysis of the results
presented in this paper is based on visual inspection of a series of best of generation
individuals in EA runs. This method is well suited to the inverse IFS problem, but
it could be applied in problems that involve modelling or development of geometric
forms. Keeping track of the history of best of generation individuals in a run provides
clues as to the “strategy” or the type of evolutionary paths selected by different represen-
tations or other EA input parameters. It allows to make simple but important statistical
observations that, in this case, indicate the nature of a number of deceptive strategies.
Visual inspection of best of generation individuals in EA runs can complement para-
metric statistical tests and point to reasons for differences in performance of complex
input parameters (such as the fitness function) or between variations of EAs.

It seems that the combinatorial and parameter optimisation representations lead to
search strategies that often fall into local minima. The segmentation representation pro-
vides a reduction of the search space and exploits problem specific information other
than quality feedback and therefore performs better in most cases. The approach that
appears the weakest of the three in terms of overall results is the parameter optimisa-
tion representation. It presents a direct encoding of problem parameters. Of the three
representations the other two make obvious use of embedded knowledge about the prob-
lem. It is not surprising that embedded knowledge leads to better results. However the
segmentation approach apart form the fact that it embeds knowledge in terms of the
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application of the collage theorem, it also allows the search to proceed by inspecting
and using information derived from the target shapes (and therefore of the problem in
hand) other than fitness feedback. For example partitions of the shape are made using
information directly derived from it, and constrains applied to partitions allow for suc-
cessful reduction of the search space. It suggests that this indirect feedback allows for
better performance.
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Abstract. We propose an approach for developing efficient search algo-
rithms through genetic programming. Focusing on the game of chess we
evolve entire game-tree search algorithms to solve the Mate-In-N prob-
lem: find a key move such that even with the best possible counterplays,
the opponent cannot avoid being mated in (or before) move N . We show
that our evolved search algorithms successfully solve several instances of
the Mate-In-N problem, for the hardest ones developing 47% less game-
tree nodes than CRAFTY—a state-of-the-art chess engine with a ranking
of 2614 points. Improvement is thus not over the basic alpha-beta algo-
rithm, but over a world-class program using all standard enhancements.

1 Introduction

Artificial intelligence for board games is widely based on developing deep, large
game trees. In a two-player game, such as chess or go, players move in turn,
each trying to win against the opponent according to specific rules. The course
of the game may be modeled using a structure known as an adversarial game
tree (or simply game tree), in which nodes are positions in the game and edges
are moves [10]. The complete game tree for a given game is the tree starting
at the initial position (the root) and containing all possible moves (edges) from
each position. Terminal nodes represent positions where the rules of the game
determine whether the result is a win, a draw, or a loss.

When the game tree is too large to be generated completely, only a partial
tree (called a search tree) is generated instead. This is accomplished by invoking
a search algorithm, deciding which nodes are to be developed at any given time,
and when to terminate the search (typically at non-terminal nodes due to time
constraints) [17]. During the search, some nodes are evaluated by means of an
evaluation function according to given heuristics. This is done mostly at the
leaves of the tree. Furthermore, search can start from any position, and not just
the beginning of the game.

In general, there is a tradeoff between search and knowledge, i.e., the amount
of search (development of the game tree) carried out and the amount of knowl-
edge in the leaf-node evaluator. Because deeper search yields better results but
takes exponentially more time, various techniques are used to guide the search,
typically pruning the game tree. While some techniques are more generic and
domain independent, such as alpha-beta search [14] and the use of hash tables
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(i.e., transposition and refutation) [2], other methods rely on domain-specific
knowledge. For example, quiescence search [12] relies on examining capture move
sequences in chess (and relevant parts of the game tree) more thoroughly than
other moves. This is derived from empirical knowledge regarding the importance
of capture moves. Theoretically speaking, perfect domain knowledge would ren-
der the search futile, as is the case in solved endgames in chess [3]. However,
constructing a full knowledge base for difficult games such as chess is still far
from attainable.

While state-of-the-art chess engines integrate both search and knowledge the
scale is tipped towards generic search enhancements, rather than knowledge-
based reasoning [15]. In this paper we evolve a search algorithm, allowing evo-
lution to “balance the scale” between search and knowledge. The entire search
algorithm, based on building blocks taken from existing methods, is subject to
evolution. Some such blocks are representative of queries performed by strong
human players, allowing evolution to find ways of correctly integrating them
into the search algorithm. This was previously too difficult a task to be done
without optimization algorithms, as evidenced by the authors of Deep Blue [5].
Our results show that the number of search-tree nodes required by the evolved
search algorithms can be greatly reduced in many cases.

2 Previous Work

Our interest in this paper is in evolving a search algorithm by means of ge-
netic programming. We found little work in the literature on the evolution of
search algorithms. Brave [4] compared several genetic-programming methods on
a planning problem involving tree search, in which a goal node was to be found
in one of the leaves of a full binary tree of a given depth. While this work con-
cluded that genetic programming with recursive automatically defined functions
(ADFs) outperforms other methods and scales well, the problems he tackled
were specifically tailored, and not real-world problems.

Hong et al. applied evolutionary algorithms to game search trees, both for
single-player games [10], and for two-player games [11]. Each individual in the
population encoded a path in the search tree, and the entire population was
evolved to solve single game positions. Their results show considerable improve-
ment over the minimax algorithm, both in speed and accuracy, which seems
promising. However, their system required that search trees have the same num-
ber of next-moves for all positions. Moreover, they did not tackle real-world
games.

Gross et al. [7] evolved search for chess players using an alpha-beta algorithm
as the kernel of an individual which was enhanced by genetic-programming and
evolution-strategies modules. Thus, although the algorithmic skeleton was prede-
termined, the more “clever” parts of the algorithm (such as move ordering, search
cut-off, and node evaluation) were evolved. Results showed a reduction in the num-
ber of nodes required by alpha-beta to an astonishing 6 percent. However, since the
general framework of the algorithm was determined beforehand, the full power of
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evolution was not tapped. Moreover, there is no record of successfully competing
against commercial programs, which are known to greatly outperform alpha-beta
(with standard enhancements) on specific game-playing tasks.

Previously [9], we evolved chess endgame players using genetic programming,
which successfully competed against CRAFTY, a world-class chess program
(rated at 2614 points, which places it at the human Grandmaster level), on var-
ious endgames. Deeper analysis of the strategies developed [8] revealed several
important shortcomings, most of which stemmed from the fact that they used
deep knowledge and little search (typically, they developed only one level of the
search tree). Simply increasing the search depth would not solve the problem,
since the evolved programs examine each board very thoroughly, and scanning
many boards would increase time requirements prohibitively.

And so we turn to evolution to find an optimal way to overcome this problem:
How to add more search at the expense of less knowledgeable (and thus less
time-consuming) node evaluators, while attaining better performance. In the
experiment described herein we evolved the search algorithm itself. While previ-
ous work on evolving search used either a scaffolding algorithm [7], or searching
in toy problems [4], we present a novel approach of evolving the entire search
algorithm, based on building blocks taken from existing methods, integrating
knowledge in the process, and applying our results to a real-world problem.

We consider all endgames, as opposed to our previous set of experiments [9], in
which we only considered a limited subset of endgames. However, an important
limit has been imposed: Since efficiently searching the entire game (or endgame)
tree is an extremely difficult task, we limited ourselves for now to searching only
for game termination (or mate positions) of varying tree depths, as explained in
the next section.

3 The Mate-In-N Problem

The Mate-In-N problem in chess is defined as finding a key move such that even
with the best possible counterplays, the opponent cannot avoid being mated
in (or before) move N , where N counts only the player’s moves and not the
opponent’s. This implies finding a subtree of forced moves, leading the opponent
to defeat in (2N − 1) plies (actually, 2N plies, since we need an additional ply
to verify a mate). Typically, for such tactical positions (where long forcing move
sequences exist), chess engines search much more thoroughly, using far more
resources. For example, Deep Blue searches at roughly half the usual speed in
such positions [5].

Allegedly, solving the mate problem may be accomplished by performing ex-
haustive search. However, because deep search is required when N is large, the
number of nodes grows exponentially, and a full search is next to impossible.
For example, finding a mate-in-5 sequence requires searching 10 or 11 plies, and
more than 2∗1010 nodes. Of course, advanced chess engines search far less nodes
due to state-of-the-art search enhancements, as can be seen in Table 1. Still, the
problem remains difficult.
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Table 1. Number of nodes required to solve the Mate-in-N problem by CRAFTY—
a top machine player—averaged over our test examples. Depth in plies (half-moves)
needed is also shown.

Mate-in 1 2 3 4 5
Depth in plies 2 4 6 8 10

Nodes developed 600 7K 50K 138K 1.6M

A basic algorithm for solving the Mate-In-N problem through exhaustive
search is shown in Figure 1. First, we check if the search should terminate:
successfully, if the given board is indeed a mate; in failure, if the required depth
was reached and no mate was found. Then, for each of the player’s moves we
perform the following check: if, after making the move, all the opponent’s moves
lead (recursively) to Mate-in-(N −1) or better (procedure CheckOppTurn), the
mating sequence was found, and we return true. If not, we iterate on all the
player’s other moves. If no move meets the condition, we return false.

Mate-In-N?(board, depth)

procedure CheckOppTurn(board, depth)

//Check if all opponent’s moves lead to Mate-in-(N-1)
for each oppmove ∈ GetNextMoves(board)

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MakeMove(board, oppmove)
result ← Mate-In-N?(board, depth− 1)
UndoMove(board, oppmove)
if not result
then return (false)

return (true)

main
if IsMate(board)
then return (true)

if depth = 0
then return (false)

for each move ∈ GetNextMoves(board)

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MakeMove(board, move)
result ← CheckOppTurn(board, depth)
UndoMove(board, move)
if result
then return (true)

return (false)

Fig. 1. A basic algorithm for solving the Mate-In-N problem through exhaustive search

This algorithm has much in common with several algorithms, including alpha-
beta search and proof-number (pn) search [1]. However, as no advanced schemas
(for example, move-ordering or cutoffs) are employed here, the algorithm be-
comes infeasible for large values of N .

In the course of our experiments we broke the algorithmic skeleton into its
component building blocks, and incorporated them, along with other important
elements, into the evolving genetic-programming individuals.
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4 Evolving Mate-Solving Algorithms

We evolve our mate-solving search algorithms using Koza-style genetic program-
ming [13]. In genetic programming we evolve a population of individual LISP ex-
pressions, each comprising functions and terminals. Since LISP programs may
be readily represented as program trees, the functions are internal nodes and
the terminals are leaves. (NB: There are two types of tree involved in our work:
game search tree and the tree representing the LISP search algorithm.)

Since we wish to develop intelligent—rather than exhaustive—search, our
board evaluation requires special care. Human players never develop the entire
tree, even when this is possible. For example, Mate-in-1 problems are typically
solved by only developing checking moves, and not all possible moves (since non-
checking moves are necessarily non-mating moves, there is no point in looking
into them). As human players only consider 2–3 boards per second yet still solve
deep Mate-in-N problems fast (for example, Grandmasters often find winning
combinations more than 10 moves ahead in mere seconds), they rely either on
massive pattern recognition or on intelligent pruning, or both [6].

Thus, we evolved our individuals (game search-tree algorithms) accordingly,
following these guidelines: 1) Individuals only consider moves adhering to certain
conditions (themselves developed by evolution). 2) The amount of lookahead is
left to the individual’s discretion, with fitness penalties for deep lookahead (to
avoid exhaustive search). Thus, we also get evolving lookahead. 3) Development
of the game tree is asymmetrical. This helps with computation since we do not
need to consider the same aspects for both players’ moves. 4) Each node exam-
ined during the search is individually considered according to game knowledge,
and move sequence may be developed to a different depth.

4.1 Basic Program Architecture

Our individuals receive a chessboard as input, and return a real-valued score
in the range [−1000.0, 1000.0] , indicating the likelihood of this board leading
to a mate (higher is more likely). A representation issue is whether to evolve
boards returning scores or moves (allowing to return no move to indicate no mate
has been found). An alternative approach might be evolving the individuals as
move-ordering modules. However, the approach we took was both more versatile
and reduced the overhead of move comparison by the individual—instead of
comparing moves by the genetic programming individual, the first level of the
search is done by a separate module. An evolved program thus receives as input
all possible board configurations reachable from the current position by making
one legal move. After all options are considered by the program, the move that
received the highest score is selected, and compared to the known solution for
fitness purposes (described in Section 4.3).

4.2 Functions and Terminals

We developed most of our terminals and functions by consulting several high-
ranking chess players.
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Domain-specific functions. These functions are listed in Table 5. Note that
domain-specific functions typically examine if a move the player makes adheres
to a given condition, which is known to lead to a mate in various positions.
If so, this move is made, and evaluation continues. If not, the other child is
evaluated. Also, a more generic function, namely IfMyMoveExistsSuchThat,
was included to incorporate other (possibly unknown) considerations in making
moves by the player. All functions undo the moves they make after evalua-
tion of their children is completed. Since some functions are only appropriate
in MAX nodes (player’s turn), and others in MIN nodes (opponent’s turn),
some functions in the table were only used at the relevant levels. Other func-
tions, such as MakeBestMove, behave differently in MAX nodes and in MIN
nodes.

Sometimes functions that consider a player’s move are called when it is the
opponent’s turn. In this case we go immediately to the false condition (without
making a move). This solution was simpler than, for example, defining a new
set of return types. Some of these functions appear as terminals also, to allow
considerations to be made while it is the opponent’s turn.

Generic functions appear in Table 4. As in [9], these domain-independent
functions were included to allow logic and some numeric calculations.

Chess terminals, some of which were also used used in [9], are shown in Ta-
ble 6. Here, several mating aspects of the board, of varying complexity levels, are
considered. From the number of possible moves for the opponent’s king, through
checking if the player creates a fork attacking the opponent’s king, to one of
the most important terminals—IsMateInOneOrLess. This terminal is used to
allow the player to easily identify very close mates. Of course, repeated applica-
tions of this terminal at varying tree depths might have solved our problem but
this alternative was not chosen by evolution (as shown below). Material value
and material change are considered, to allow the player to make choices involving
not losing pieces.

Mate terminals, which were specifically constructed for this experiment, are
shown in Table 3. Some of these terminals resemble those from the function set,
to allow building different calculations with similar (important) units.

4.3 Fitness

In order to test our individuals and assign fitness values we used a pool of
100 Mate-in-N problems of varying depths (i.e., values of N). The easier 50
problems (N = 1..3) were taken from Polgar’s Book [16], while those with larger
Ns (N ≥ 4) were taken from various issues of the Israeli Chess Federation
Newsletter (http://www.chess.org.il). All problems were solved offline by
CRAFTY.

Special care was taken to ensure that all of the deeper problems could not be
solved trivially (e.g., if there are only a few pieces left on the board, or when the
opponent’s king can be easily pushed towards the edges). We used CRAFTY’s
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feature of counting nodes in the game tree and made sure that the amount of
search required to solve all problems was close to the average values given in
Table 1 (we saved this value for each problem, to use for scoring purposes).

The fitness score was assigned according to an individual (search algorithm’s)
success in solving a random sample of problems of all depths, taken from the
pool (sample size was 5 per N). For each solution, the score was calculated using
the formula:

fitness =
s·MaxN∑

i=1

Correctnessi · 2Ni · Boardsi

with the following specifications:

– i ,N , and s are the problem instance, the depth, and the sample size, respec-
tively. MaxN is the maximal depth we worked with (currently 5).

– Correctnessi ∈ [0, 1] represents the percentage of the correctness of the move.
If the correct piece was selected, this score is 0.5d, where d is the distance (in
squares) between the correct destination and the chosen destination for the
piece. If the correct square was attacked but with the wrong piece, it was 0.1.
In the later stages of each run (after more than 75% of the problems were
solved by the best individuals), this factor was only 0.0 or 1.0.

– Ni is the depth of the problem. Since for larger Ns, finding the mating move
is exponentially more difficult, this factor also increases exponentially.

– Boardsi is the number of boards examined by CRAFTY for this problem,
divided by the number examined by the individual1. For small Ns, this factor
was only used at later stages of evolution.

We used the standard reproduction, crossover, and mutation operators, as in
[13]. We experimented with several configurations finally setting on: population
size – between 70 and 100, generation count – between 100 and 150, reproduction
probability – 0.35, crossover probability – 0.5, and mutation probability – 0.15
(including ERC—Ephemeral Random Constants). The relatively small popula-
tion size helped to maintain shorter running times, although possibly more runs
were needed to attain our results.

5 Results

After each run we extracted the top individual (i.e., the one that obtained the best
fitness throughout the run) and tested its performance with a separate problem
set (the test set), containing 10 problems per each depth, not encountered before.
The results from the ten best runs show that all problems up to N = 4 were solved
completely in most of the runs, and most N = 5 problems were also solved.

1 In order to better control running times, if an individual examined more than 1.5 the
boards examined by CRAFTY, the search tree was truncated, although the returned
score was still used.
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Table 2. Number of search-tree nodes developed to solve the Mate-in-N problem by
CRAFTY, compared to the number of nodes required by our best evolved individual
from over 20 runs. Values shown are averaged over the test problems. As can be seen,
for the hardest problems (N = 5) our evolved search algorithm obtains a 47% reduction
in developed nodes.

Mate-in 1 2 3 4 5

CRAFTY 600 7K 50K 138K 1.6M
Evolved 600 2k 28k 55K 850k

Table 3. Mate terminal set of an individual program in the population. Opp: opponent,
My: player. “Close” means 2 squares or less.

B=IsNextMoveForced() Is the opponent’s next move forced (only 1 pos-
sible)?

F=IsNextMoveForcedWithKing() Opponent must move its king

B=IsPinCloseToKing() Is an opponent’s piece pinned close to the king

F=NumMyPiecesCanCheck() Number of the player’s pieces capable of checking
the opponent

B=DidNumAttackingKingIncrease() Did the number of pieces attacking the oppo-
nent’s king’s area increase after last move?

B=IsPinCloseToKing() Is an opponent’s piece pinned close to the king

B=IsDiscoveredCheck() Did the last move clear the way for another piece
to check?

B=IsDiscoveredProtectedCheck() Same as above, only the checking piece is also
protected

Table 4. Domain-independent function set of an individual program in the population.
B: Boolean, F: Float.

F=If3(B, F1, F2) If B is non-zero, return F1, else return F2

B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise

B=Or3(B1, B2, B3) Return 1 if at least one of B1, B2, B3 is non-zero, 0 otherwise

B=And2(B1, B2) Return 1 only if B1 and B2 are non-zero, 0 otherwise

B=And3(B1, B2, B3) Return 1 only if B1, B2, and B3 are non-zero, 0 otherwise

B=Smaller(B1, B2) Return 1 if B1 is smaller than B2, 0 otherwise

B=Not(B) Return 0 if B is non-zero, 1 otherwise

B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise

Due to space restrictions we do not present herein a detailed analysis of runs
but focus on the most important issue, namely, the number of search-tree nodes
developed by our evolved search algorithms. As stated above, mates can be found
with exhaustive search and little knowledge, but the number of nodes would be
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Table 5. Domain-specific function set of an individual program in the population. B:
Boolean, F: Float. Note: all move-making functions undo the move when the function
terminates.

F=IfMyMoveExistsSuchThat(B, F1, F2) If after making one of my moves B is true,
make that move and return F1, else return
F2

F=IfForAllOpponentMoves(B, F1, F2) If after making each of the opponent’s moves
B is true, make an opponent’s move and re-
turn F1, else return F2

F=MakeBestMove(F ) Make all moves possible, evaluate the child
(F ) after each move, and return the maximal
(or minimal) value of all evaluations

F=MakeAnyOrAllMovesSuchThat(B,
F1, F2)

Make all possible moves (in opp turn) or
any move (my turn), and remember those for
which B was true. Evaluate F1 after making
each of these moves, and return the best re-
sult. If no such move exists, return F2.

F=IfExistsCheckingMove(F1, F2) If a checking move exists, return F1, else re-
turn F2

F=MyMoveIter(B1,B2,F1,F2) Find a player’s move for which B1 is true.
Then, develop all opponent’s moves, and
check if for all, B2 is true. If so, return F1,
else return F2

F=IfKingMustMove(F1, F2) If opponent’s king must move, make a move,
and return F1, else return F2

F=IfCaptureCloseToKingMove(F1, F2) If player can capture close to king, make that
move and return F1, else return F2

F=IfPinCloseToKingMove(F1, F2) If player can pin a piece close to opponent’s
king, make that move and return F1, else re-
turn F2

F=IfAttackingKingMove(F1, F2) If player can move a piece into a square at-
tacking the area near opponent’s king, make
that move and return F1, else return F2

F=IfClearingWayMove(F1, F2) If player can move a piece in such a way that
another piece can check next turn, return F1,
else return F2

F=IfSuicideCheck(B,F1, F2) If player can check the opponent’s king while
losing its own piece and B is true, evaluate
F1, else return F2

prohibitive. Table 2 presents the number of nodes examined by our best evolved
algorithms compared with the number of nodes required by CRAFTY. As can
be seen, a reduction of 47% is achieved for the most difficult case (N = 5).
Note that improvement is not over the basic alpha-beta algorithm, but over a
world-class program using all standard enhancements.
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Table 6. Chess terminal set of an individual program in the population. Opp:
opponent.

B=IsCheck() Is the opponent’s king being checked?

F=OppKingProximityToEdges() The player’s king’s proximity to the edges of the
board

F=NumOppPiecesAttacked() The number of the opponent’s attacked pieces close
to its king

B=IsCheckFork() Is the player creating a fork attacking the opponent’s
king?

F=NumNotMovesOppKing() The number of illegal moves for the opponent’s king

B=NumNotMovesOppBigger() Has the number of illegal moves for the opponent’s
king increased?

B=IsOppKingProtectingPiece() Is the opponent’s king protecting one of its pieces?

F=EvaluateMaterial() The material value of the board

B=IsMaterialChange() Was the last move a capture move?

B=IsMateInOneOrLess() Is the opponent in mate, or can be in the next turn?

B=IsOppKingStuck() Do all legal moves for the opponent’s king advance
it closer to the edges?

B=IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?

6 Concluding Remarks

Our results show that the number of search-tree nodes required to find mates may
be significantly reduced by evolving a search algorithm with building blocks that
provide a-priori knowledge. This is reminiscent of human thinking, since human
players survey very few boards (typically 1-2 per second) but apply knowledge
far more complex than any artificial evaluation function. On the other hand, even
strong human players usually do not find mates as fast as machines (especially
in complex positions). Our evolved players are both fast and accurate.

GP-trees of our best evolved individuals were quite large, and difficult to an-
alyze. However, from examining the results it is clear that the best individuals’
search was efficient, and thus domain-specific functions and terminals play an im-
portant role in guiding search. This implies that much “knowledge” was incorpo-
rated into stronger individuals, although it would be difficult to quantify it.

The depths (Ns) we dealt with are still relatively small. However, as the notion
of evolving the entire search algorithm is new, we expect to achieve better results
in the near future. Our most immediate priority is generalizing our results to
larger values of N , a task we are currently working on. In the short term we
would like to evolve a general Mate-In-N module, which could replace a chess
engine’s current module, thereby increasing its rating—no mean feat where top-
of-the-line engines are concerned!

In the longer term we intend to seek ways of combining the algorithms evolved
here into an algorithm playing the entire game. The search algorithms we evolved
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may provide a framework for searching generic chess positions (not only find-
ing mates). Learning how to combine this search with the evaluation functions
previously developed by [9] may give rise to stronger (evolved) chess players.

Ultimately, our approach could prove useful in every domain in which knowl-
edge is used, with or without search. The genetic programming paradigm still
bears great untapped potential in constructing and representing knowledge.
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Abstract. As is typical in evolutionary algorithms, fitness evaluation
in GP takes the majority of the computational effort. In this paper we
demonstrate the use of the Graphics Processing Unit (GPU) to accelerate
the evaluation of individuals. We show that for both binary and floating
point based data types, it is possible to get speed increases of several
hundred times over a typical CPU implementation. This allows for eval-
uation of many thousands of fitness cases, and hence should enable more
ambitious solutions to be evolved using GP.

Keywords: Genetic programming, Graphics Card Acceleration, Parallel
Evaluation.

1 Introduction

It is well known that fitness evaluation is the most time consuming part of the
genetic programming (GP) system. This limits the types of problems that may
be addressed by GP, as large numbers of fitness cases make GP runs imprac-
tical. In some systems it is possible to accelerate the evaluation process using
a variety of techniques. In this paper we present a method using the graphics
processing unit on the video adapter. We study the evaluation of evolved math-
ematical expressions and digital circuits, as they are typically used to evaluate
the performance of a genetic programming algorithm.

Different approaches have been used in the past for accelerating evaluation.
For example, it is possible to co-evolve fitness cases in order to reduce the number
of evaluations [1,2]. This, however, adds significant complexity to the algorithm,
and does not guarantee an increase in performance under all circumstances. In
other applications, one could select the number of fitness cases, e.g.. by stochastic
sampling or other methods [3]. Should the system need to be tested against
a complete input set, however, this approach would not be suitable. Another
method involves compiling the evolved expression to executable code or even
using binary code directly [4]. Writing expressions as native code or in a similar
vain has many advantages [5]. The compiler or a hand-written algorithm can
perform optimisations, e.g. by removing redundant code, which in addition to
directly running the expression gives a significant increase in performance. The
use of reflection in modern languages such as Java and C� provides for the
possibility to compile and link code to the currently executing application.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 90–101, 2007.
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Under some circumstances it is possible to offload the evaluation to more suit-
able hardware. When evaluating digital circuits, they can be loaded into a field
programmable gate array (FPGA) and then executed on dedicated hardware [6].
This approach can provide large speed increases. However, the downloading of
configurations into an FPGA can be a costly overhead. The biggest drawback to
this approach is that it requires the use of external hardware, which may have
to be specifically developed.

Recently it has become possible to access the processing power of the graphic
processing unit (GPU). Modern GPUs are extremely good at performing parallel
mathematical operations [7]. However, until recently it was cumbersome to use
this resource for general purpose computing. For a general survey on algorithms
implemented on GPUs the reader is referred to [8]. For example, discrete wavelet
transformations [9], the solution of dense linear systems [10], physics simulations
for games, fluid simulators [11], etc., have been shown to be executed faster on
GPUs.

In this paper we demonstrate a method for using the GPU as an evaluator for
genetic programming expressions, and show that there are considerable speed
increases to be gained. Using recent libraries we also show that putting the func-
tions on the GPU to work is relatively painless. As many of these technologies
are new, we include web links to sites containing the most recent information on
the projects discussed.

Because capable hardware and software are new, there is relatively little previ-
ous work on using GPUs for evolutionary computation. For example [12] imple-
ments a evolutionary programming algorithm on a GPU, and finds that there is
a 5-fold speed increase. Work by [13] expands on this, and evaluates expressions
on the GPU. There all the operations are treated as graphics operations, which
makes implementation difficult and limits the flexibility of the evaluations. Yu
et al [14], on the other hand, implement a Genetic Algorithm on GPUs. Depend-
ing on population size, they find a speed up factor of up to 20. Here both the
genetic operators and fitness evaluation are performed on the GPU. Ebner et
al, use human interaction to evolve aesthetically pleasing shader programs[15].
Here, linear genetic programming structures are compiled into shader programs.
The shader programs were then used to render textures on images, which were
selected by a user. However, the technique was not extended into more general
purpose computation.

To our knowledge, this contribution is the first study of general purpose Ge-
netic Programming, executed on a graphics hardware platform. It makes use of
the fact that GP fitness cases are numerous and can be executed in parallel. Pro-
vided there is a sufficient number of fitness cases (large datasets), a substantial
speedup can be reached.

2 The Architecture of Graphics Processing Units

Graphics processors are specialized stream processors used to render graphics.
Typically, the GPU is able to perform graphics manipulations much faster than
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a general purpose CPU, as the processor is specifically designed to handle certain
primitive operations. Internally, the GPU contains a number of small processors
that are used to perform calculations on 3D vertex information and on textures.
These processors operate in parallel with each other, and work on different parts
of the problem. First the vertex processors calculate the 3D view, then the shader
processors paint this model before it is displayed. Programming the GPU is
typically done through a virtual machine interface such as OpenGL or DirectX
which provide a common interface to the diverse GPUs available thus making
development easy. However, DirectX and OpenGL are optimized for graphics
processing, hence other APIs are required to use the GPU as a general purpose
device. There are many such APIs, and section 3 describes several of the more
common ones.

For general purpose computing, we here wish to make use of the parallelism
provided by the shader processors, see Figure 1. Each processor can perform
multiple floating point operations per clock cycle, meaning that performance is
determined by the clock speed and the number of pixel shaders and the width
of the pixel shaders. Pixel shaders are programmed to perform a given set of
instructions on each pixel in a texture. Depending on the GPU, the number of
instructions may be limited. In order to use more than this number of operations,
a program needs to be broken down into suitably sized units, which may impact
performance. Newer GPUs support unlimited instructions, but some older cards
support as few as 64 instructions. GPUs typically use floating point arithmetic,
the precision of which is often controllable as less precise representations are
faster to compute with. Again, the maximum precision is manufacturer specific,
but recent cards provide up to 128-bit precision.

Fig. 1. Arrays, representing the test cases, are converted to textures. These textures
are then manipulated (in parallel) by small programs inside each of the pixel shaders.
The result is another texture, which can be converted back to a normal array for CPU
based processing.
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The graphics card used in these experiments is a NVidia GForce 7300 Go,
which is a GPU optimized for laptop use. It is underpowered compared to cards
available for desktop PCs. Because GPUs are parallel and have very strict pro-
cessing models, the computational ability of the GPU scales well with the num-
ber of pixel shaders. We would therefore expect to see major improvements to
the performance of the benchmarks given here if we were to run it on such a
GPU. According to [16], “an NVIDIA 7800 GTX 512 is capable of around 200
GFLOPS. ATI’s latest X1900 architecture has a claimed performance of 554
GFLOPS”. Since it is now possible to place multiple GPUs inside a single PC
chassis, this should result in TFLOP performance for numerical processing at
low cost.

A further advantage of the GPU is that it uses less power than a typical CPU.
Power consumption has become an important consideration in building clusters,
since it causes heat generation.

3 Programming a GPU

In this section we provide a brief overview of some of the general purpose com-
putation toolkits for GPUs that are available. This is not an exhaustive list, but
is intended to act as a guide to others. More information on these systems can
be found at www.gpgpu.org.

SH: Sh is an open source project for accessing the GPU under C++ [17,18].
Many graphics cards are supported, and the system is platform independent.
Many low level features can be accessed using Sh, however these require knowl-
edge of the mechanisms used by the shaders. The Sh libraries provide typical ma-
trix and vector manipulations, such as dot products and addition-multiplication
operators. In addition to providing general purpose computing, Sh also provides
many routines for use in graphics programming. This feature is unique amongst
the tools described here, and would be useful in visualisation of results.

Brook: Brook is another way to access the features on the GPU [19]. Brook
takes the form of extensions to the C programming language, adding support for
GPU specific data types. Applications developed with Brook are compiled using
a special C compiler, which generates C++ and Cg code. Cg is a programming
language for graphics, that is similar to C. One major advantage of Brook is
that it can target either OpenGL or DirectX, and is therefore more platform
independent than other tools. However, code must be compiled separately for
each target platform. Brook appears to be a very popular choice, and is used for
large applications, such as folding@home.

PyGPU: Another recent library allows the access of GPU functionality from
the Python language [20]. PyGPU runs as an embedded language inside Python.
The work is in its early stages, but results are promising. However it currently
lacks the optimization required to make full use of the GPU. It requires a variety
of extra packages to be installed into Python, such a NumPy and PyGame (which
does not yet support the most recent Python release). Given the rise in popularity
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of Python for scientific computing, this implementation should prove useful in
the future. Python itself, however, appears to have significant performance issues
compared to C++ and JIT languages such as Java or C�1.

Accelerator: Recently a .Net assembly called Accelerator was released that
provides access to the GPU via the DirectX interface [21]. The system is com-
pletely abstracted from the GPU, and presents the end user with only arrays
that can be operated on in parallel. Unfortunately, the system is only available
for the Windows platform due to its reliance on DirectX. However, the assembly
can be used from any .Net programming language.

This tool differs from the previous interfaces in that it uses lazy evaluation.
Operations are not performed on the data until the evaluated result is requested.
This enables a certain degree of real time optimization, and reduces the computa-
tional load on the GPU. In particular, optimisation of common sub expressions,
which will reduce the creation of temporary shaders and textures. The movement
of data to and from the GPU can also be efficiently optimized, which reduces the
impact of the relatively slow transfer of data out of the GPU. The compilation
to the shader model occurs at run time, and hence can automatically make use
of the different features available on the supported graphics cards.

In this paper we use the Accelerator package. The total time required to
reimplement an existing parser tree based GP parser was less than two hours,
which we would expect to be considerably less than using any of the other
solutions presented here. As with other implementations, Accelerator is based
on arrays implemented as textures. The API then allows one to perform parallel
operations on the arrays. Conversion to textures, and transfer to the GPU is
handled transparently by the API, allowing the developer to concentrate on the
implementation of the algorithm. The available function set for operating on
parallel arrays is similar to the other APIs. It includes element-wise arithmetic
operations, square root, multiply-add, and trigonometric operations. There are
also conditional operations and functions for comparing two arrays. The API also
provides reduction operators, such as the sum, product, minimum or maximum
value in the array. Further functions perform transformations, such as shift and
rotate on the elements of the array.

The other systems described here present different variations on these func-
tions, and generally offer functionality that allows different operations to be
applied to different parts of the arrays.

4 Parsing a GP Expression

Typically parsing a GP expression involves traversing the expression tree in a
bottom-up, breadth first manner. At each node visited the interpreter performs
the specified function on the inputs to the node, and outputs the result as the
node output. The tree is re-evaluated for every input set. Hence, for 100 test
cases the tree would be executed 100 times.
1 As usual, available benchmarks may not give a fair reflection to real world

performance.
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Using the GPU we are able to parallelize this process, which means that in
effect the tree only has to be parsed once - with the function evaluation performed
in parallel. Even without the arithmetic acceleration provided by the GPU, this
results in a considerable reduction in computation. Our GP interpreter uses a
case statement at the evaluation of each node to determine what function to
apply to the input values. If run on the GPU, the tree needs only to be executed
once - removing the need for repeatedly accessing the case statement. The use
of the GPU is illustrated in Figure 1. The population and genetic algorithm run
on the CPU, with evaluations run on the GPU. The CPU converts arrays of
test cases to textures on the GPU and loads a shader program into the shader
processors. The Accelerator tool kit compiles each individuals GP expression
into a shader program. The program is then executed, and the resulting texture
is converted back in to an array. The fitness is determined from this output
array.

5 Benchmarks

5.1 Configuration

The GP parser used here is written in C�, and compiled using Visual Studio
2005. All benchmarks were done using the Release build configuration, and were
executed on CLR 2.0 on Windows XP. The GPU is an NVidia GeForce 7300 GO
with 512Mb video memory. The CPU used is an Intel Centrino T2400 (running
at 1.83Ghz), with 1.5Gb of system memory.

In these experiments, GP trees were randomly generated with a given number
of nodes. The expressions were evaluated on the CPU and then on the GPU,
and each evaluation was timed for evaluation purposes. Timing was performed
using calls to Win32 API QueryPerformanceCounter, which returns high preci-
sion timings. For each input size/expression length pair, 100 different randomly
generated expressions were used, and results were averaged to calculate accelera-
tion factors. Therefore our results show the average number of times the GPU is
faster at evaluating a given tree size for a given number of fitness cases. Results
less than 1 mean that the CPU was faster at evaluating the expression, values
above 1 indicate the GPU performed better.

5.2 Floating Point

In the first experiment, we evaluated random GP trees containing varying num-
bers of nodes, and exposed them to varying test case sizes. Mathematical func-
tions +, −, ∗ and / were used. The same expression was tested on the CPU and
the GPU, and the speed difference was recorded. Results are shown in Table 1.
For small node counts and fitness cases, the CPU performance is superior because
of the overhead of mapping the computation to the GPU. For larger problems,
however, there is a massive speed increase for GPU execution.
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5.3 Binary

The second experiment compares the performance of the GPU at handling
boolean expressions. In the CPU version, we use the C� boolean type - which is
convenient, but not necessarily the most efficient representation. For the GPU,
we tested two different approaches, one using the boolean parallel array provided
by Accelerator, the other using float. The performance of these two represen-
tation is shown in Table 2. It is interesting to note that improvements are not
guaranteed. As can be seen in the table, the speed up can decrease as expression
size increases. We assume this is due to the way in which large shader programs
are handled by either the Accelerator or the GPU. For example, the length of
the shader program on the NVIDIA GPU may be limited, and going beyond this
length would require repeated passes of the data. This type of behaviour can be
seen in many of the results presented here.

We limit the functions in the expressions to AND, OR and NOT, which are
supported by the boolean array type. Following some sample code provided with
Accelerator, We mimicked boolean behavior using 0.0f as false, and 1.0f as true.
For two floats, AND can be viewed as the minimum of the two values. Similarly
OR can be viewed as the maximum of the two values. NOT can be performed
as a multiply add, where the first stage is to multiply by -1 then add 1.

5.4 Real World Tests

In this experiment, we investigate the speed up on both toy and real world
problems, rather than on arbitrary expressions. The GP representation we chose
to use here is CGP, but similar results should be obtained from other repre-
sentations. CGP is fully described in [22]. In the benchmark experiments, the
expression lengths were uniform throughout the tests. However, in real GP the
length of the expressions vary throughout the run. As the GPU sometimes results
in slower performance, we need to verify that on average, there is an advantage.

Regression. We evolved functions that regressed over x6 − 2x4 + x2 [23]. We
tested the evaluation difference using a number of test cases. In each instance,

Table 1. Results showing the number of times faster evaluating floating point based
expressions is on the GPU, compared to CPU implementation. An increase of less than
1 shows that the CPU is more efficient.

Test Cases

Expression Length 64 256 1024 4096 16384 65536

10 0.04 0.16 0.6 2.39 8.94 28.34
100 0.4 1.38 5.55 23.03 84.23 271.69
500 1.82 7.04 27.84 101.13 407.34 1349.52
1000 3.47 13.78 52.55 204.35 803.28 2694.97
5000 10.02 26.35 87.46 349.73 1736.3 4642.4
10000 13.01 36.5 157.03 442.23 1678.45 7351.06
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Table 2. Results showing the number of times faster evaluating boolean expressions is
on the GPU, compared to CPU implementation. An increase of less than 1 shows that
the CPU is more efficient. Booleans were implemented as floating point numbers and
as booleans. Although faster than the CPU for large input sizes, in general it appears
preferential to use the boolean representation. Using floating point representation can
provide speed increases, but the results are varied.

Boolean implementation

Test Cases

Expression Length 4 16 64 256 1024 4096 16384 65536

10 0.22 1.04 1.05 2.77 7.79 36.53 84.08 556.40
50 0.44 0.57 1.43 3.02 14.75 58.17 228.13 896.33
100 0.39 0.62 1.17 4.36 14.49 51.51 189.57 969.33
500 0.35 0.43 0.75 2.64 14.11 48.01 256.07 1048.16
1000 0.23 0.39 0.86 3.01 10.79 50.39 162.54 408.73
1500 0.40 0.55 1.15 4.19 13.69 53.49 113.43 848.29

Boolean implementation, using floating point

Test Cases

Expression Length 4 16 64 256 1024 4096 16384 65536

10 0.024 0.028 0.028 0.072 0.282 0.99 3.92 14.66
50 0.035 0.049 0.115 0.311 1.174 4.56 17.72 70.48
100 0.061 0.088 0.201 0.616 2.020 8.78 34.69 132.84
500 0.002 0.003 0.005 0.017 0.064 0.25 0.99 3.50
1000 0.001 0.001 0.003 0.008 0.030 0.12 0.48 1.49
1500 0.000 0.001 0.002 0.005 0.019 0.07 0.29 1.00

Table 3. Results for the regression experiment. The results show the number of times
faster evaluating evolved GP expressions is on the GPU, compared to CPU implemen-
tation. The maximum expression length is the number of nodes in the CGP graph.

Test Cases

Max Expression Length 10 100 1000 2000

10 0.02 0.08 0.7 1.22
100 0.07 0.33 2.79 5.16
1000 0.42 1.71 15.29 87.02
10000 0.4 1.79 16.25 95.37

the test cases were uniformly distributed between -1 to +1. We also changed
the maximum length of the CGP graph. Hence, expression lengths could range
anywhere from 1 node to the maximum size of the CGP graph. GP was run for
200 generations to allow for convergence. The function set comprised of +, −, ∗
and /. In C�, division by zero on a float returns “Infinity”, which is consistent
with the result from the Accelerator library.

Fitness was defined as the sum of the absolute errors of each test case and
the output of the expression. This can also be calculated using the GPU. Each
individual was evaluated with the CPU, then the GPU and the speed difference
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Table 4. Results for the two spirals classification experiment. The results show the
number of times faster evaluating evolved GP expressions is on the GPU, compared to
CPU implementation. The maximum expression length is the number of nodes in the
CGP graph.

Test Cases

Max Expression Length 194 388 970 1940

10 0.15 0.23 0.51 1.01
100 0.38 0.67 1.63 3.01
1000 1.77 3.19 9.21 22.7
10000 1.69 3.21 8.94 22.38

Table 5. Results for the protein classifcation experiment. The results show the number
of times faster evaluating evolved GP expressions is on the GPU, compared to CPU im-
plementation. The maximum expression length is the number of nodes in the CGP graph.

Test Cases

Expression Length 2427

10 3.44
100 6.67
1000 11.84
10000 14.21

recorded. Also the outputs from both the GPU and CPU were compared to
ensure that they were evaluating the expression in the same manner. We did not
find any instances where the two differed.

Table 3 shows results that are consistent with the tests described in previous
sections. For smaller input sets and small expressions, it was more efficient to
evaluate them on the CPU. However, for the larger test and expression sizes the
performance increase was dramatic.

Classification. In this experiment we attempted the classification problem of
distinguishing between two spirals, as described in [23]. This problem has two
input values (x and y coordinates of a point on a spiral) and has a single output
indicating which spiral the point is found. In [23], 194 test cases are used. In
these experiments, we extend the number of test cases to 388, 970 and 1940. We
also extended the function set to include sin, cos,

√
x, xy and a comparator. The

comparator looks at the first input value to the node, and if it is less than or
equal to zero returns the second input, 0 otherwise. The relative speed increases
can be seen in Table 4. Again we see that the GPU is superior for larger numbers
of test cases, with larger expression sizes.

Classification in Bioinformatics. In this experiment we investigate the be-
haviour on another classificationproblem, this time a protein classifier as described
in [24]. Here the task is to predict the location of a protein in a cell, from the amino
acids in the particular protein. We used the entire dataset as the training set. The
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set consisted of 2427 entries, with 19 variables each and 1 output. We investigated
the performance gain using several expression lengths, and the results can be seen
in Table 5. Here, the large number of test cases used results in considerable im-
provements in evaluation time, even for small expressions.

6 Conclusions

This paper demonstrates that evaluation of genetic programming expressions can
strongly benefit from using the graphics processor to parallelise the evaluations.
With new development tools, it is now very easy to leverage the GPU for general
purpose computation. However, there are a few caveats. Here we have tested the
system using Cartesian GP, however we expect similar advantages with other
representations, such as tree and linear GP.

Few clusters are constructed with high performance graphics cards, which will
limit the immediate use of these systems. It will require further benchmarking
whether low end GPUs found in most PCs today provide a speed advantage.
Given the computational benefits and the relatively low costs of fast graphics
cards, it is likely that GPU acceleration for numerical applications will become
widespread amongst lower priced installations.

Many typical GP problems do not have large sets of fitness cases for two rea-
sons: First, evaluation has always been considered computationally expensive.
Second, we currently find it very difficult to evolve solutions to harder problems.
With the ability to tackle larger problems in reasonable time we have to also find
innovative approaches that let us solve these problems. Traditional GP has dif-
ficulty with scaling. For example, the largest evolved multiplier has 1024 fitness
cases [25]. In the same time it would take a CPU implementation to evaluate an
individual with that many fitness cases, we could test more than 65536 fitness
cases on a GPU. This leads to a gap between what we can realistically evaluate,
and what we can evolve. The authors of this paper advocate developmental en-
codings, and using the evaluation approach introduced here we will be able to
test this position.

For small sets of fitness cases, the overhead of transferring data to the GPU
and for constructing shaders results in a performance decrease. It can be imag-
ined that one would want to determine in practical applications when the ad-
vantage of GPU computing kicks in and switch execution to the proper type of
hardware. In this contribution, we have just looked at the most trivial way of
parallelizing a GP system on GPU hardware. More sophisticated approaches to
parallelisation will have to be examined in the future.
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Appendix: Code Examples

To demonstrate the ease of development, we include a small code sample showing
the use of MS Accelerator from C�. The first stage is to make arrays of the data
to operate on. In a GP system these may be the fitness cases.

float[,] DataA = new float[4096, 4096];
float[,] DataB = new float[4096, 4096];

Next, the GPU has to be initialized, and the floating point arrays converted
to parallel arrays:

ParallelArrays.InitGPU();
FloatParallelArray ParallelDataA =
new DisposableFloatParallelArray(DataA);
FloatParallelArray ParallelDataB =
new DisposableFloatParallelArray(DataB);

The parallel arrays are textures inside the GPU memory. Next, the shader
program is specified by performing operations on the parallel arrays. However,
the computation is not done until requested, as the shader program needs to be
compiled, uploaded to the GPU shader processors and executed.

FloatParallelArray ParallelResult =
ParallelArrays.Add(ParallelDataA, ParallelDataB);

Finally, we request that the expression is evaluated, and get the result from
the GPU. The result is stored as a texture in the GPU, which needs to be
converted back into a floating point array that can be used by the CPU.

float[,] Result = new float[4096, 4096];
ParallelArrays.ToArray(ParallelResult, out Result);
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Abstract. FIFTH™, a new stack-based genetic programming language, efficiently 
expresses solutions to a large class of feature recognition problems. This problem 
class includes mining time-series data, classification of multivariate data, image 
segmentation, and digital signal processing (DSP). FIFTH is based on FORTH 
principles. Key features of FIFTH are a single data stack for all data types and 
support for vectors and matrices as single stack elements. We demonstrate that the 
language characteristics allow simple and elegant representation of signal process-
ing algorithms while maintaining the rules necessary to automatically evolve stack 
correct and control flow correct programs. FIFTH supports all essential program 
architecture constructs such as automatically defined functions, loops, branches, 
and variable storage. An XML configuration file provides easy selection from a 
rich set of operators, including domain specific functions such as the Fourier 
transform (FFT). The fully-distributed FIFTH environment (GPE5) uses CORBA 
for its underlying process communication. 

Keywords: Genetic Programming, vectors, linear GP, GP environment. 

1   Introduction 

Genetic programming (GP) is a supervised machine learning technique that searches a 
program space instead of a data space [1]. A crucial factor in the success of a particu-
lar GP application is the ability of the underlying GP language (GPL) to efficiently 
represent solutions in the intended problem domain. For example, Spector [2] ob-
served that PUSH3 was unable to evolve a list sort until the list was stored as an  
external data structure and list access instructions were added to the GPL. Lack of 
language expressiveness is particularly acute for large classes of feature extraction 
problems that arise in many important applications such as time-series data mining 
and digital signal processing (DSP). Feature extraction and related algorithms are 
often most compactly expressed using vectors. 

A fundamental difficulty in applying traditional GP languages to feature extraction 
problems is the mismatch between the data handling capacity of the language and the 
requirements of the applications. When examined from an abstract viewpoint, feature 
recognition algorithms often contain a series of transformations on vector spaces. 
Thus, the GP search should explore functions on vector spaces. Unfortunately, com-
mon GP languages [2-9], whether stack or tree based, do not treat vectors as single 
data elements. Even simple vector operations, such as multiplication of a vector by a 
scalar, require a loop construct with branch and flow control. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 FIFTH™: A Stack Based GP Language for Vector Processing 103 

While there have been a few published applications of GP to signal processing 
problems, the recurring theme has been to circumvent native vector handling rather 
than to increase the expressiveness of the language. For example, to automatically 
classify sound and image databases, Teller [10] designed a GP system that used spe-
cial data access primitives with specific bound constraints rather than using general-
ized vectors. In applying GP to signal processing algorithms, Sharman [11] also 
avoided vector functions by introducing delay nodes and processing time series data 
one point at a time. For pattern recognition, Rizki et al. [12] pre-processed the data to 
reduce dimensionality (feature extraction) prior to applying GP.  

In this paper, we introduce a new Turing complete GP programming language 
called FIFTH with a native vector handling capability that allows functions on vector 
spaces to be expressed in a compact form. FIFTH is a stack-based language (patterned 
after FORTH syntax and early FORTH [13] design considerations) whose linear rep-
resentation supports robust mutation and crossover operations.  

The remainder of this paper is organized as follows. Section 2 presents the details 
of the FIFTH language and discusses its implementation. Section 3 describes the 
GPE5™ distributed execution environment. Section 4 shows two example problems, 
and Section 5 discusses the FIFTH design as well as future work. 

2   The FIFTH Language 

The key features of FIFTH include a syntax that can be easily manipulated, a single 
data stack that allows vectors to be retained intact and treated as single data elements, 
and an internal structure that supports rich program control and new word generation 
as well as the ability to wrap external functions as language primitives. These ingredi-
ents are needed for effective search of the program space for vector problems. 

2.1   Syntax, Operators, and the Data Stack 

A FIFTH program consists of an input stream of tokens separated by white space. 
Tokens are either words (operators found in a dictionary) or numbers. All operations 
take their data from a single data stack and leave their results on this stack in contrast 
to FORTH and PUSH3, which use separate stacks for each data type. The FIFTH 
stack holds “containers” with two principal attributes: shape and type. Shape refers to 
the number of dimensions and the number of elements in each dimension of the data 
in a container. For data types, FIFTH currently supports NUMERIC (integer, real, and 
complex), STRING (UTF-8), and ADDRESS (container and word address), as well as 
arrays in one and two dimensions. 

All operators are expected to “do the right thing” with whatever container types 
they find on the stack. This approach simplifies the syntax for complex vector opera-
tions and significantly reduces the number of structural words in the language, effec-
tively reducing the search space and simplifying genetic manipulation.  

2.2   Core Vocabulary 

Table 1 shows some of the more specialized categories of FIFTH words. The last 
category in the table, Signal Processing, highlights another strong point of FIFTH. 
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Using a simple set of wrapper functions, it is easy to incorporate special purpose ex-
ternal libraries such as the GNU Scientific Library. While GP implementations have 
always tailored their vocabulary to fit the problem, the native vector handling in 
FIFTH greatly extends the range of available options. This also positively affects the 
search space by allowing researchers to apply domain specific knowledge. 

For example, determining the symbol rate of an encoded signal is an important step 
in blind radio signal recognition. The phase derivative algorithm (DPDT) [14] can be 
implemented in several hundred lines of C++ code, but can be expressed compactly in 
FIFTH as: 

x ANGLE UNWRAP DIFF MAGNITUDE  
FFT MAGNITUDE LENGTH 2.0 / SETLENGTH   
LENGTH RAMP 1 + LENGTH Fs SWAP / * 30.0 GT      
* LENGTH SWAP MAXINDEX SWAP Fs SWAP / 2.0 / *  

The token x is an input vector representing the signal, and Fs is the sampling fre-
quency. The first line develops a feature set from the signal vector (x) by taking the 
first difference of the unwrapped phase angle. The second line uses a Fourier trans-
form to develop the periodicity of the feature set, while the third and fourth lines find 
the highest spectral line above 30 Hz and convert its position into a symbol rate using 
the sampling frequency.   

Table 1. Example words in the FIFTH vocabulary 

Category Word Set 

Stack DROP DUP OVER ROT SWAP 

Vector MAX MAXINDEX MIN MININDEX ONES ZEROS 
LENGTH SETLENGTH 

Matrix SHAPE HORZCAT VERTCAT TRANSPOSE FLIP 

Definition and Flow BEGIN UNTIL IF ELSE THEN WORD ENDWORD 
VARIABLE CONSTANT 

Signal Processing FFT IFFT FFTSHIFT ANGLE UNWRAP dBMAG HAM-
MING HILBERT MAGNITUDE 

2.3   Formal Aspects and Validation 

FIFTH is a type safe language with formal type rules [15]. The type system can pro-
vide information to assist the random program generator and genetic manipulator in 
constructing syntactically and operationally correct programs. Filtering out incorrect 
programs reduces the search space and improves run-time performance [16].  

A selection of important typing rules is shown in Fig. 1. By convention, an arbi-
trary FIFTH word is represented W, and a sequence of words by P. The type of an 
individual slot on the stack is expressed with τ, σ, or ρ (with the top of the stack to the 
right), and sequences of slots are represented with φ. The types of FIFTH words are 
expressed as functions from initial stack typings to new stack typings. The type rules  
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ROT :     τ σ ρ σ ρ τΔ →  

1 2 2 3

1 3

:   : 

: 

φ φ φ φ
φ φ

Δ → Δ →
Δ →

W P
W P

COMPOSE  

1 2

1 2

: 

: 

φ φ
θ φ θ φ

Δ →
Δ ⋅ → ⋅

P
P

STACK  

1 2 1 1 2

1 2 2 3 4

1 2 3 4

, : :
, : :

WORD  ENDWORD :

φ φ φ φ
φ φ φ φ

φ φ

Δ → →
Δ → →

Δ →

W
W

W P P
COMPILE

P
P

 

1 2 1 2 , : : φ φ φ φΔ → →W WTAUT  

Fig. 1. Example basic type rules for FIFTH 

assume an environment of mappings from declared words to their type; these are 
represented with Δ. 

The COMPOSE rule allows sequences of FIFTH words to be executed as long as 
each word's ending stack typing matches the beginning stack typing of the next word. 
The STACK rule says that if a sequence has a valid typing, additional slots can be 
added to the bottom of the stack (as long as the top of the stack matches the signature) 
to create new valid typings for that sequence. The COMPILE rule allows new FIFTH 
words to be defined and added to the environment. These can then be used in accor-
dance with the TAUT rule. 

In addition to formal typing, FIFTH includes support for tracing programs and for 
comparing the execution of an algorithm in FIFTH with execution in MATLAB 
through READMAT and WRITEMAT file operations. These operations read and write 
MATLAB [17] revision 4 binary files and are used for data I/O as well as debugging. 
We selected the MATLAB format because it is capable of representing vectors using 
multiple data types including integer, float, and complex representations. These fea-
tures allow us to implement all or parts of an algorithm in both languages and ex-
change data for automatic comparison. 

3   The FIFTH Genetic Programming Environment 

The Genetic Programming Environment for FIFTH (GPE5) consists of three major 
components, as illustrated in Fig. 2. GP5 provides random program generation, ge-
netic manipulation, program interpretation and parsing, as well as an interactive 
FIFTH terminal. DEC5 (Distributed Evaluation Controller) manages the distributed 
evaluation of programs for each generation. One or more DPI5 (Distributed Program  
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Interpreter) components are required to run the programs against the problem data 
sets. Each DPI5 is controlled by the DEC5 through CORBA interfaces. 

All components are written in C++ and have been tested on Windows XP, Solaris, 
and Linux operating systems. Where operating system specific interaction is required, 
the ACE libraries provide an intermediate layer. CORBA communication between the 
distributed components is based on the TAO [18] libraries. 

Problem Configuration
GPE5Config.xml

Problem
Data Sets

GP5
Genetic Programmer in

Fifth

Programs

FIFTH Program
Fragments

DEC5
Distributed Evaluation

Controller

DPI5
Distributed Program

Interpreter

Individual Program
Results

Gen####_Prog###.csv

Generation Results
Gen####_Results.xml

 

Fig. 2. Block diagram for the FIFTH Genetic Programming Environment (GPE5) 

3.1   Random Program Generation 

Another way to reduce the search space in GP is to ensure that only syntactically 
correct programs are allowed into the gene pool. FIFTH was designed so that each 
word in the dictionary has a stack signature that consists of the number and types of 
containers expected on the data stack when it is executed and the number and types of 
containers left on the stack when it finishes. 

The random program generator (RPG) uses a two step approach to creating syntac-
tically correct programs with the desired output signature. After first generating a 
randomly selected fraction of the maximum program size, RPG parses the program to 
identify errors and fixes them by inserting additional words and terminals.  

3.2   Crossover and Mutation in FIFTH 

FIFTH supports crossover, mutation, and cloning as standard genetic manipulations, 
but the infrastructure supports easy addition of any technique that operates on one or 
two parents.  Crossover is performed as follows.  First, select two parent programs.  In 
the first parent, select a random number of sequential words in a random location in 
the program (within configurable constraints) then characterize the input-output effect 
for the sequence.  In the second parent, find all sequences (within configurable con-
straints) that match the input-output effect then randomly select one.  Swapping the 
two compatible sequences completes the operation. Mutation uses the same initial 
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sequence selection and characterization, but the sequence is deleted then replaced by a 
randomly generated sequence that matches the characterization. 

A typical problem with mutation and crossover operations in genetic programming 
is the high probability that the result will destroy the viability of the offspring because 
the program no longer executes correctly after the operation. Tchernev [19] states that 
the destructive effects of crossover can be mitigated in FORTH-like GP languages by 
requiring that the exchanged segments have matching stack signatures. Our imple-
mentation of FIFTH uses a stack signature that tracks not only stack size but also 
branch and loop depth. FIFTH mutation allows a single word or block of words to be 
replaced by a word or block with a matching stack signature. Crossover operations are 
similarly constrained. While this choice limits the search space, it increases the prob-
ability that the result of evolution will not be destructive. 

4   Using GPE5 to Solve a Problem 

As with any GP environment, solving a problem using GPE5 requires a few prepara-
tory steps, most of which involve editing the XML configuration file from which all 
of the components read their control information. The following descriptions are 
reasonably analogous to the preparatory steps outlined by Koza [20].  

4.1   Identify the Terminal Set 

In GPE5, there are two classes of terminals: problem data inputs and ephemeral num-
bers. Problem data inputs may be scalars, vectors, or arrays. For each data set, the 
values are stored as variables in MATLAB V4 .mat file format. The variable names 
are in the configuration file for selection during the initial random program genera-
tion. An inherent part of this preparatory step is the identification and organization of 
the data set files. Each data set must be in a separate .mat file. When read into the 
FIFTH program, each variable in the .mat file becomes a FIFTH CONSTANT. The 
second category consists of numbers that may be selected during random program 
generation. In the configuration file, groups of terminal tokens are assigned separate 
probabilities of selection. 

4.2   Identify the Function Set 

The function set for GPE5 is divided into three categories controlled by the configura-
tion file. Groups of tokens within each category can be assigned an independent prob-
ability of selection. The first category consists of the subset of FIFTH words that are 
appropriate for the problem under consideration. These may be math operations, logi-
cal comparisons, and stack manipulations, as well as domain specific functions such 
as filters and Fourier transforms. 

The second category of functions, unique to GPE5, consists of user user-defined 
FIFTH program fragments. Each fragment is a valid FIFTH program stored in a file. 
If a fragment is selected when randomly generating a program, the fragment code is 
inserted into the program so that it is indistinguishable from the purely random mate-
rial. In subsequent generations, the fragments are subject to genetic manipulation just 
like the random parts of the program. 
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The third category describes the architectural and structural components of a pro-
gram. These include automatically defined words (WORD, ENDWORD), intermedi-
ate storage (VARIABLE, CONSTANT), as well as branch and loop constructs (IF, 
ELSE, THEN, BEGIN, UNTIL). 

4.3   Determine the Fitness Evaluation Strategy 

Fitness is a measure of how well a program has learned to predict the output(s) from 
the input(s). Generally, continuous fitness functions are necessary to achieve good 
results with GP. While fitness can be any continuous measure, GPE5 uses standard-
ized forms where zero represents a perfect fit. These include error, error squared, and 
relative error.  Although relative error is not often encountered in the GP literature, it 
works well for problems where the acceptable deviation from the actual output is 
proportional to the output value. 

To avoid overfitting during program evolution, GPE5 uses a different subset of the 
available data files for each generation.  The number of files included in the subset is 
controlled by a configuration parameter. 

4.4   Select the Control Parameters 

The GPE5Config.xml file provides a mechanism for experimenting with a number of 
control parameters including minimum and maximum number of generations, fitness 
function, fitness target, maximum execution stack depth, and maximum number of 
words to execute for a single program (to avoid endless loops). 

5   Example Problems 

5.1   Polynomial Regression 

We selected polynomial regression for initial testing of the GPE5 to demonstrate its 
ability to solve standard GP test problems. Fig. 3 shows an example run for the quad-
ratic equation y = 0.5x2 + x/3 – 2.2.  Pertinent configuration parameters were: popula-
tion size = 1000, minimum program size = 15, maximum program size = 150, parent 
pool size = 900, and exponential fitness ranking bias = 0.9.  The genetic operations 
included cloning, mutation, and crossover with respective probabilities of 0.05, 0.50 
and 0.45.  Both mutation and crossover used a uniform length selection of between 1 
and 4 program tokens. Table 2 shows the terminal values and functions configured for 
use by the random program generator. 

A typical human generated solution would require about 17 program tokens: 

1.0 2.0 / x * x * x 3.0 / + 1.0 5.0 / 2.0 + -  

A longer (43 tokens) but correct general solution was evolved in 33 generations. 

x x * 1.0  + 1.0  x -2.0  1.0  / - 5.0  - -3.0  -3.0  / -3.0  
+ -4.0 - -5.0  / -5.0  + -3.0  / x + -3.0  / OVER - -4.0  / - 
- - 2.0  / -4.0  - -5.0  + 
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Table 2. Tokens used by the random program generator for polynomial regression problems 

P(selection) Terminals and Functions in the set 

0.20 x (data input) 

0.30 1 2 3 4 5 -1 -2 -3 -4 -5 

0.40 * + - / 

0.10 DUP SWAP OVER ROT 

Fig. 3 shows the evolutionary progress.  The solid line shows the best fitness at 
each generation.  The dotted line shows the fitness of the best ancestor in each genera-
tion for the final program (shown above) that met the fitness termination criteria. 
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Fig. 3. Best fitness progression for an example run of polynomial regression 

5.2   Symbol Rate for Phase Shift Key Modulated Signals 

A problem that better illustrates the vector manipulation capabilities of FIFTH and 
GPE5 is the determination of the symbol rate of phase shift key (PSK) digitally 
modulated signals. Our previous work [21, 22] compared several common symbol 
rate algorithms for PSK signals in the High Frequency (HF) radio bands.  To prepare 
a data set for this problem we selected signal property values that are known to work 
well with the DPDT algorithm presented in section 2.2.  Typical values for these 
properties as well as the specific values used are shown in Table 3. For each unique 
combination of these properties we generated 10 different signals containing random 
sequences of symbols. The resulting data set contained 2550 signals. The sample rate 
was fixed at 8000 complex (In Phase and Quadrature) samples per second, and the 
signal length was fixed at 16384 samples.  Using 1% relative error as the cutoff for a 
correct symbol rate calculation, the DPDT algorithm achieves 100% correct responses 
against the entire test data set. 
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Table 3. Properties of the signals used for the PSK symbol rate example 

Property Typical Values in HF Values Used 

Modulation FSK, MSK, PSK, DPSK, 
OQPSK, QAM, ASK  

Phase Shift Key 

Pulse shape None, raised cosine (RC), 
root RC (RRC), Gaussian  

Raised Cosine 

Excess bandwidth (rolloff) Limit:  0.00 to <1.00. 
Typical:  0.10 to 0.35 

0.1 

Symbol rate Typical: 10 to 2400 sym-
bols per second 

300 to 2400 in incre-
ments of 25 

Symbol states 2, 4, 8, 16 2, 4, 8 

Signal to noise ratio (SNR) Practical range: 0 to 60 dB Infinite (no noise) 

 
A simplified form of this problem evolves only the feature extraction stage as de-

scribed in [21], followed by standard FFT and peak search stages to derive the symbol 
rate.  With the available vector functions in FIFTH, GPE5 quickly produced modified 
forms of two common algorithms (phase derivative and magnitude squared) that 
achieved 100% correct responses. 

Evolving the entire symbol rate algorithm has been more challenging. We are in 
the early phases of experimenting with the wide range of configuration options built 
into GPE5, but initial results are promising. For example, Fig. 4 shows the best fitness 
progress for a run using a configuration consisting of population size = 4000, mini-
mum program size = 40, maximum program size = 400, parent pool size = 3500, 
exponential fitness ranking bias = 0.9, with terminals and functions shown in Table 4.  
The genetic operations included cloning probability = 0.05, mutation probability = 
0.55 with uniform length selection between 1 and 10 tokens, and crossover probabil-
ity = 0.40 with uniform length selections between 1 and 50 tokens. 

The best result from this run achieved a performance of almost 70% correct identi-
fication against the entire training set. 

Table 4. Tokens used by the random program generator for the symbol rate problem 

P(selection) Terminals and Functions in the set 

0.10 x (signal vector) 

0.02 Fs (sample rate) 

0.13 1.0 2.0 3.0 4.0 5.0 10.0 -1.0 -2.0   

0.10 DUP SWAP ROT OVER 

0.05 LENGTH GT MAX MAXINDEX 

0.25 ANGLE UNWRAP DIFF MAGNITUDE FFT SQRT REAL  
IMAGINARY RAMP SETLENGTH MAGSQRD 
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Fig. 4. Best fitness progression for an example run of PSK symbol rate 

6   Discussion 

The FIFTH programming language was motivated by the need to lift genetic program 
search to functions on vector spaces by supporting natural, control-free behavior for 
vector and matrix operations. FIFTH tends to produce mappings from n Ø m or in 
the case of complex values, n Ø m. These manipulations are natural for a large 
class of problems including signal processing applications.  

Allowing vectors and matrices to be primitive data elements dramatically alters the 
search space because it eliminates the control operations needed in scalar languages. 
The probability that such control operations will be damaged during mutation and 
crossover is high. Even if the control operations are maintained, it is unlikely that 
intrinsic sizes of vectors will be correctly preserved as successive transformations are 
performed. 

The design philosophy underpinning FIFTH does not mirror the choices that have 
been made for many linear GPLs and environments. Many authors advocate using 
function sets and data representation that closely resemble the structure of current 
CPU hardware, reasoning that this represents a simple structure with significant exe-
cution speed advantages. We perceive as a disadvantage to this approach that the 
resulting programs are almost incomprehensible to humans without significant effort. 
In addition, for many applications in the feature recognition domain, the performance 
bottleneck occurs in the execution of matrix manipulation operations such as finding 
eigenvalues, performing convolutions and filtering, or calculating FFTs. Highly opti-
mized libraries are available for these types of operations. It is highly unlikely that a 
genetic programming system would ever evolve such complicated operations (opti-
mized or unoptimized) during program evolution. By starting with primitives that 
reflect the best practices of the domain and using the genetic programming environ-
ment as the glue, we are more likely to end up with a working program. In other 
words, instead of trying to evolve a horse from an amoeba, we try to breed a horse 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



112 K. Holladay, K. Robbins, and J. von Ronne 

from a good bloodline. The former process is an example of general evolution, while 
the latter is an example of special evolution [23]. 

The details of data handling and support are also critical. Recent publications using 
stack-based representations have attempted to expand the basic data types available in 
a GPL by adding separate stacks for each data type. This appears to be an extension of 
the direction taken by early stack based languages such as FORTH. However, a sepa-
rate stack design requires adding not only a full set of data manipulation functions for 
each stack but also functions for data transfer between stacks. As previously indi-
cated, this choice adversely expands the dimensionality of the program search space. 

The FIFTH design simplifies the language structure by using a single data stack 
capable of handling multiple data types. This is accomplished by using a stack that 
holds containers. Containers provide strong type safety without requiring explicit type 
annotations or overloaded operations based on explicit data types. Rather, data types 
are either statically inferred or dynamically tagged. This is similar to the data model 
found in MATLAB. One reason that MATLAB is popular with signal processing 
analysts who are not programmers is that variables do not have to be statically de-
clared, and functions automatically determine argument data types at run-time. 
MATLAB’s rich function set together with run-time typing makes the expression of 
many DSP algorithms both shorter and easier to understand than the same algorithm 
written in C or C++. Our vision is that similar programs written in FIFTH will be 
even more compact. 

The main disadvantage to this approach is that data handling is more complex 
since all data, even simple types, must be handled in a structure. Also, since this 
model is not closely aligned with hardware, there will be more execution overhead.  

Our work so far indicates that the FIFTH architecture has the potential of making a 
large class of vector based feature recognition and signal processing algorithms ame-
nable to a genetic programming approach.  
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Abstract. Model checking is a way of analysing programs and program-
like structures to decide whether they satisfy a list of temporal logic
statements describing desired behaviour. In this paper we apply this to
the fitness checking stage in an evolution strategy for learning finite state
machines. We give experimental results consisting of learning the control
program for a vending machine.

1 Introduction

In genetic programming (and similar systems for the induction of program code),
fitness is typically evaluated by running the programs on a sample of test data.
This brings with it a number of difficulties[17], most notably that we cannot
formally have confidence in the performance of the system for any input data that
has not been used in training. In many cases this does not matter; however, in
safety- and mission-critical domains, this is a significant barrier to the adoption
of such techniques.

In this paper we give an example of the use of a formal reasoning technique—
model checking—as a way of assessing fitness in an inductive automatic program-
ming system. Model checking requires the user to specify the desirable qualities
of a system in the form of temporal logic statements about program state; these
properties can then be analysed for all possible program states. The end result
is either a confirmation that the properties always hold, or a counterexample
which demonstrates why the system under test does not satisfy the statements.

The paper is structured as follows. Section 2 reviews the literature on the
application of program analysis techniques to automatic program induction. This
is followed by a section which gives a brief overview of model checking, the
analysis technique that we have used in the experiments in this paper. Section 4
discusses how model checking can be used as a fitness measure, and section 5
describes a novel Evolution Strategy for evolving state machines. Section 6 gives
the problem specifications that are used in the experiments in the paper, and
this is followed by a section which gives results. The paper finishes with some
conclusions and ideas for future work.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 114–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Background - Program Induction with Guaranteed
Behaviour

A number of techniques exist which generate computer programs, or other formal
executable program-like structures (digital circuits, communications protocols,
state machines), by an inductive process which is driven by comparisons be-
tween trial solutions and descriptions of the desired behaviour of the system.
Perhaps the best known of these is genetic programming [2,20]. This technique
applies genetic algorithms to derive executable structures by using a representa-
tion which fits well with evolutionary operators such as crossover and mutation.
Other evolutionary approaches include grammatical evolution [21,22], where the
representation is a simple string of symbols, but this is converted into a complex
structure via a grammar; and evolutionary programming [10,11] where evolution-
ary operators operate directly on a state machine representation. Other heuristic
search techniques, such as simulated annealing [7], have been applied to the in-
duction of executable systems. Overall, this area has been termed search-based
software engineering [6,13].

Typically such techniques measure the quality of the trial solution by running
some instantiations of the system, measuring the results from the system, and
comparing those results to the desired behaviour—essentially testing the system.

A small number of studies have used measures of fitness that are not de-
pendent solely on testing-like measures of performance, but instead on some
form of analysis of the program. In earlier work, these were typically used to
guide the search in areas related to performance or evolvability of the solutions:
for example measuring length of solutions [26] or using a metric for program
complexity [12]. Clearly such measures need to be used alongside a measure of
problem-solving quality.

By contrast, a small number of authors have used techniques based on the
analysis of the candidate programs to measure ability to solve the problem at
hand. Static analysis of programs has been applied to the induction of programs
which solve sorting problems [15] and geometric placement problems [17]. Other
approaches combine static analysis with data-driven analysis: Keijzer [19] uses
static analysis techniques as a preprocessing step, whilst Johnson [18] has applied
static analysis to impose safety constraints on programs that are otherwise data-
driven.

A general motivation for this kind of approach has been suggested by Partridge
and colleagues [23,24]. He notes that problems that are naturally “data-defined”
(e.g. pattern recognition problems) are frequently approached by constructing
an artificial “specification bottleneck” which attempts to give a specification to
a problem that is best described by giving a number of examples. By contrast,
in traditional GP fitness evaluation the opposite problem is sometimes observed:
problems for which there is a clear specification are evaluated crudely by giving
a number of test cases: this could analogously be termed a “data bottleneck”.

The work described in this paper fits into an overall program of work that
attempts to measure fitness in terms of the native representation, be it data
or specification. Furthermore, multicriterion optimization methods can be used
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to solve problems where some aspects of the problem are best described as
specifications, and others as data, as illustrated in [18].

3 Background - Model Checking

Model checking [8,16] is a technique for confirming that a program satisfies a
number of conditions. A model checking system takes as input two things. The
first of these is a description of some aspect of the system being constructed,
expressed as a statement in a temporal logic [9]; that is, statements about how
the variables and states in the program change with time. The second input is a
description of the system which the user believes should satisfy that description:
this might be a computer program, a communications protocol, a state machine,
a circuit diagram, et cetera.

The model checking program constructs an abstracted, symbolic representa-
tion of the system being analysed, and then uses this representation to decide,
in an efficient manner [3], whether the statements always hold in the system,
regardless of the control-flow path that is taken through the system. At the end
of this analysis, the program reports either a positive result (that the system will
always satisfy the statement) or a negative result together with a counterexample
which gives a program path under which the statement is not satisfied.

The description language that we use in this study is CTL (Computation Tree
Logic) [9]. This consists a number of basic “atomic propositions” (in the examples
below, these are labels of states and values of variables in a finite state machine),
which can be combined by standard propositional logic connectives and a set of
temporal connectives which act on propositions (including propositions which
themselves contain temporal connectives).

These temporal connectives consist of two components: a description of the
scope over the future time paths (either A or E) and a description of when the
proposition that is the argument of the temporal operator holds within that scope
(one of G,F,X or U). These have (in informal terms) the following meanings:

A The proposition will hold on All paths starting from the current point.
E There Exists a path on which the proposition will hold.
G The proposition holds all states (Globally) along the path.
F The proposition can be found somewhere (in the Future) along the path.
X The neXt state satisfies the proposition.
U The proposition holds Until a second proposition holds (this is the only

binary operator - the rest are unary).

Here a “path” is a sequence of states in time, starting from the current state.
Some illustrative examples are given in Figure 1.

This languageallows a description of how a processwill changewith time. Model
checking algorithms automatically check whether a particular description of a sys-
tem satisfies a CTL statement describing the system. The model checking algo-
rithm used below is the SMV system (http://www.cs.cmu.edu/~modelcheck/
smv.html), in particular the version used in the Stuttgart Model-Checking Kit
(http://www.fmi.uni-stuttgart.de/szs/tools/mckit/).
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Fig. 1. Illustrative examples of the CTL operators

4 Model Checking as a Fitness Measure

In the experiments below each problem is described as a list of CTL statements
that describe the desired properties of the program being evolved. The fitness
is measured by the number of statements that are satisfied. To help to smooth
out the fitness landscape, some statements are included in the specification lists
below that act as stages on the way to a complete specification.

5 Methods - Induction of Communicating Finite
Automata by an Accumulative Evolution Strategy

In the work in this paper we use Communicating Finite Automata (CFA) [4] as the
description language for the structures that are evolved. We use a (1+λ) Evolution
Strategy with a novel growth-style mutation operator to evolve these structures.

A CFA consists of a number of nodes, which can be labelled from a label-set,
linked by a number of directed edges. These edges can contain conditions and
actions concerned with global variables and communication channels between
automata: e.g. checking whether a variable is set to a particular value or within
a range, whether the value of a variable is changed by executing the transition,
or whether a variable reads/writes its value from/to a communication channel.
Examples are given in Figure 3.

The learning process used in this paper will be referred to as an Accumulative
Evolution Strategy (AES). This starts with very simple structures, and the most
probably moves that can be made at the mutation stage consist of adding items
to the structure. Therefore a solution to the problem is built up by accumulating
substructures, rather than traditional approaches which begin with structures
that are of similar complexity to the final desired structure, and where mutation
is typically converting one structure into another of similar size.

The motivation for this variant on traditional evolutionary algorithms is that
potential solutions that contain large numbers of arbitrarily connected nodes
will fail to satisify any of the fitness conditions. This is because there will as
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a consequence be a large number of routes through the (nondeterministic) au-
tomaton, and therefore there is a large chance that statements such as “X must
always be followed by Y” used in the fitness checking will not be satisfied. The
aim of our strategy is to build up a solution by conservatively adding new parts
to the structure over evolutionary time (a similar point has been made recently
by Petrovic [25].

The AES system runs as follows:

INPUT:
List of labels for nodes
List of variables and channels
User model
List of CTL statements

INITIALISE:
Create an automaton A consisting of one node labelled “start”

LOOP: until solution found or a fixed number of timesteps completed
Generate λ mutations A′

1..λ of A by the following list of processes:
- with a 0.4 probability, add a new (unconnected) node

(0.5 probability of label “blank”,
otherwise labelled with a random label from the label set)

- with a 1.0 probability (always!) add a new link
(this link has a random label)

- with a 0.3 probability delete a (randomly chosen) link
- with a 0.1 probability rename a (randomly chosen) node
- with a 0.2 probability rename a (randomly chosen) link

Run the model checker on each statement on each of A′
1..λ

Count how many statements are satisfied for each of A′
1..λ

Let the new A be the member of A′
1..λwith the most statements satisfied

ENDLOOP
OUTPUT:

The best solution found
The number of generations required to find the best

In the experiments below λ = 20. The probabilities of performing the various
mutations are parameters which have been empirically determined.

No recombination is used in this method at present. This remains an option for
future studies—however, recombination has not been heavily used in applications
of evolution to finite state automata. One significant reason for this is that there
is no clear notion of what a meaningful subroutine is in order to carry our
recombination—by contrast, Koza-style tree-based representations [20] have an
unambiguous notion of what can be readily swapped between trees (though the
actual role of recombination is controversial). Some attempts have been made
[5,1] to automatically identify functionally coherent modules in automata—such
modules could be usefully used as the units of recombination.

6 Methods - Some Example Specifications

In the experiments below we will generate automata that represent the control
systems for coffee vending machines. We use two examples. Each problem consists
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Fig. 2. Automata representing user behaviour: (a) problem 1 (b) problem 2

Table 1. The CTL specification for the coffee machine in problem 1

Variables coin, taking values {0, 1}

States coffee
reset
blank

Statements EF(“coin=1”) 1. We can reach a state where
the coin has been inserted

EF(“coffee”) 2. We can reach a state
labelled “coffee”

EF(“reset”) 3. We can reach a state
which are labelled “reset”

AG(“userStart”→AF(“coffee”)) 4. Once the user process has
started, coffee must be served

EF(“coffee”)&EF(“reset”)& 5. States coffee and reset can
AG(“coffee”→EF(“reset”)) be reached, and whenever coffee has been

reached, the machine can reset.
EF(“coffee”)&EF(“reset”)& 6. States coffee and reset can
AG(“coffee”→AF(“reset”)) be reached, and whenever coffee has been

reached, the machine must reset.
EF(“coffee”)&AG(“coffee”→ 7. Once coffee has been served,
AX(AG(!“coffee”))) we must not serve another coffee
EF(“coin=0”)&EF(“coffee”)& 8. If no coin has been inserted,
AG(“coin=0”→AG(!“coffee”)) we cannot get a coffee

of two parts: an automaton that represents user behaviour, which is fixed for the
given problem; and a specification of the desired machine behaviour, given as a
sequence of CTL statements. The specification is then used to measure fitness in
the learning process, which learns a machine-automaton which, accompanied by
the user-automaton provided, gives a complete description of the system.

6.1 Problem 1

The first problem is a simple machine where the user places a coin into the
machine, receives coffee, and the machine then goes into a reset state.
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Table 2. The CTL specification for the coffee/tea machine in problem 2

Variables coin, taking values {0, 1, 2}

States coffee
tea
reset
blank

Statements EF(“coin=1”) 1. We can reach a state where
one coin has been inserted

EF(“coin=2”) 2. We can reach a state where
two coins have been inserted

EF(“coffee”) 3. We can reach a state labelled “coffee”.
EF(“tea”) 4. We can reach a state labelled “tea”.
EF(“reset”) 5. We can reach a state labelled “reset”.
AG(“userStart”→AF(“coffee”|“tea”)) 6. Once the user has started acting

tea or coffee must be served
AG(“oneCoinSelected”→AF(“coffee”)) 7. Once the user has chosen to insert one coin

coffee must be served
AG(“twoCoinsSelected”→AF(“tea”)) 8. Once the user has chosen to insert two coins

tea must be served
AG(“oneCoinSelected”→AG(!“tea”)) 9. Once the user has chosen to insert one coin

tea must not be served
AG(“twoCoinsSelected”→AG(!“coffee”)) 10. Once the user has chosen to insert two coins

coffee must not be served
EF(“coffee”)&EF(“reset”)& 11. Once coffee has been served
AG(“coffee”→EF(“reset”)) we can reset
EF(“coffee”)&EF(“reset”)& 12. Once coffee has been served
AG(“coffee”→AF(“reset”)) we must reset
EF(“tea”)&EF(“reset”)& 13. Once tea has been served
AG(“tea”→EF(“reset”)) we can reset
EF(“tea”)&EF(“reset”)& 14. Once tea has been served
AG(“tea”→AF(“reset”)) we must reset
EF(“coffee”)&AG(“coffee”→ 15. Once coffee has been served,
AX(AG(!(“coffee”|“tea”)))) no more coffee or tea can be served
EF(“tea”)&AG(“tea”→ 16. Once tea has been served,
AX(AG(!(“coffee”|“tea”)))) no more coffee or tea can be served
EF(“coin=0”)&EF(“coffee”)& 17. If no coin has been inserted,
AG(“coin=0”→AG(!(“coffee”|“tea”))) we cannot get a coffee or tea

The automaton representing user behaviour in this example is very simple
(Figure 2a)—the user can perform one action, putting a coin in the machine,
which is represented by adding a value to a channel (a list which can be read
by other automata), which represents adding a coin into the machine.

The specification of the machine behaviour is given in table 1. Note that some
of the behaviours are staged, e.g. rules 1–3 are concerned with making certain
that certain states are accessible at all, before they are used in specific ways
later on. Similarly, rule 5 is the can version of the must rule in rule 6. The aim
of these is to smooth out the fitness space.

6.2 Problem 2

The second problem is a machine where the user places either one or two coins
into the machine, receives coffee (for one coin) or tea (for two coins), and the
machine then goes into a reset state.
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The automaton representing user behaviour in this example is given in Fig-
ure 2b), and the specification of the machine behaviour is given in table 2.

7 Results

In this section the results of experiments using the Accumulative Evolution Strat-
egy on the two problems are given, and a discussion of the results made.

7.1 Experiment 1

The first experiment consisted of 30 runs of the Accumulative Evolution Strategy
on problem 1 with λ = 20 with the algorithm being stopped after 20 runs if a
solution satisfying all the conditions had not been found.

The algorithm found a solution that satisfied all eight conditions in 25/30
runs; in the remaining runs seven conditions were satisfied. In those cases where
a solution was found, the mean number of generations needed was 6.5 (with
standard deviation 4.4).

A number of examples of successful solutions can be found in Figure 3.

7.2 Experiment 2

The first experiment consisted of 30 runs of the Accumulative Evolution Strategy
on problem 2 with λ = 20 with the algorithm being stopped after 30 runs if a
solution satisfying all the conditions had not been found.

No run found a solution with all (seventeen) conditions satisfied. The mean
number of conditions satisfied was 14 (with a standard deviation of 2). Seven
runs found examples where 16 out of the 17 cases were satisfied.

8 Conclusions and Ongoing Work

We have demonstrated how model checking can be used to measure fitness in the
evolution of state machines. In the future we intend to apply this to a number of
other example problems, including problems which have both specification and
data-driven aspects.

An important area for future work in terms of developing the technique will
be to develop techniques for smoothing out the fitness landscapes. Ideas in this
area include scaling (perhaps dynamically) the fitness contributions of each state-
ment, to encourage the algorithm to search for less well represented statements;
using the counterexamples that are returned from failed statements to measure
how far the current attempt is from a solution; and estimating the number of
paths within the model checking algorithm which do/don’t satisfy the statement
in order to get away from a simple yes/no response (perhaps using a probabilistic
model checking system such as Prism [14]).
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Abstract. Using a geometric framework for the interpretation of
crossover of recent introduction, we show an intimate connection be-
tween particle swarm optimization (PSO) and evolutionary algorithms.
This connection enables us to generalize PSO to virtually any solution
representation in a natural and straightforward way. We demonstrate
this for the cases of Euclidean, Manhattan and Hamming spaces.

1 Introduction

Particle swarm optimisation (PSO) [5] has traditionally been applied to contin-
uous search spaces. Although a version of PSO for binary search spaces has been
defined [4], attempts to extend PSO to richer spaces, e.g., combinatorial spaces,
have not been very successful.

There are two ways of extending PSO to richer spaces. Firstly one can rethink
and adapt the PSO for each new solution representation. Secondly one can de-
fine a mathematical generalisation of the notion (and motion) of particles for a
general class of spaces. This second approach has the advantage that a PSO can
be derived in a principled way for any search space belonging to the given class.
Here we follow this approach.

In particular, we show formally how a general form of PSO (without the
inertia term) can be obtained by using theoretical tools developed for evolu-
tionary algorithms using geometric crossover and geometric mutation. These are
representation-independent operators that generalise many pre-existing search
operators for the major representations, such as binary strings [7], real vectors
[7], permutations [8], syntactic trees [8] and sequences [12].

In Sec. 2, we introduce the geometric framework and introduce the notion of
multi-parental geometric crossover. In Sec. 3, we recast PSO in geometric terms
and generalize it to generic metric spaces. In Sec. 4, we apply these notions to
the Euclidean, Manhattan and Hamming spaces. In Sec. 5, we discuss how to
specialise the general PSO automatically to virtually any solution representation
using geometric crossover. In Sec. 6, we present conclusions and future work.

2 Geometric Framework

Geometric operators are defined using the notions of line segment and ball. These
notions and the corresponding genetic operators are well-defined once a notion

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 125–136, 2007.
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of distance in the search space is defined. Defining search operators as functions
of the search space is opposite to the standard way where the search space is
seen as a function of the search operators employed [3].

2.1 Geometric Preliminaries

The terms distance and metric denote any real valued function that conforms to
the axioms of identity, symmetry and triangular inequality. A simple connected
graph is naturally associated to a metric space via its path metric: the distance
between two nodes in the graph is the length of a shortest path between the
nodes. Distances arising from graphs via their path metric are called graphic
distances. Similarly, an edge-weighted graph with strictly positive weights is
naturally associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is a set of the form B(x; r) = {y ∈
S|d(x, y) ≤ r} where x ∈ S and r is a positive real number. A line segment is
a set of the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are
called extremes of the segment. Metric ball and metric segment generalise the
familiar notions of ball and segment in the Euclidean space to any metric space
through distance redefinition. In general, there may be more than one shortest
path (geodesic) connecting the extremes of a metric segment; the metric segment
is the union of all geodesics.

We assign a structure to the solution set by endowing it with a notion of
distance d. M = (S, d) is a solution space and L = (M, g) is the corresponding
fitness landscape.

A family X of subsets of a set X is called convexity on X if: (C1) the empty set
∅ and the universal set X are in X , (C2) if D ⊆ X is non-empty, then

⋂
D ∈ X ,

and (C3) if D ⊆ X is non-empty and totally ordered by inclusion, then
⋃

D ∈ X .
The pair (X, X ) is called convex structure. The members of X are called convex
sets. By the axiom (C1) a subset A of X of the convex structure is included in
at least one convex set, namely X . From axiom (C2), A is included in a smallest
convex set, the convex hull of A: co(A) =

⋂
{C|A ⊆ C ∈ X}. The convex hull

of a finite set is called a polytope. The axiom (C3) requires domain finiteness of
the convex hull operator: a set C is convex iff it includes co(F ) for each finite
subset F of C. The convex hull operator applied to set of cardinality two is
called segment operator. Given a metric space M = (X, d) the segment between
a and b is the set [a, b]d = {z ∈ X |d(x, z) + d(z, y) = d(x, y)}. The abstract
geodetic convexity C on X induced by M is obtained as follow: a subset C of X
is geodetically-convex provided [x, y]d ⊆ C for all x, y in C. If co denotes the
convex hull operator of C, then ∀a, b ∈ X : [a, b]d ⊆ co{a, b}. The two operators
need not to be equal: there are metric spaces in which metric segments are not
all convex.

2.2 Two-Parent and Multi-parent Geometric Crossover

Definition 1. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.
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The definition is representation-independent and, therefore, crossover is well-
defined for any representation. Being based on the notion of metric segment,
crossover is only function of the metric d associated with the search space.

This class of operators is really broad. For example, it includes: various types
of blend or line crossovers, box recombinations, and discrete recombinations
[7]; homologous crossovers [7,9]; PMX, Cycle crossover and merge crossover [8];
homologous GP crossovers [11]; and several others [12,7,8,10].

We now provide the following extension:

Definition 2. (Multi-parental geometric crossover) In a multi-parental geomet-
ric crossover, given n parents p1, p2, . . . , pn their offspring are contained in the
metric convex hull of the parents co({p1, p2, . . . , pn}) for some metric d.

Theorem 1. (Decomposable three-parent recombination) Every recombination
RX(p1, p2, p3) that can be decomposed as a sequence of 2-parental geometric
crossovers GX and GX ′ under the same metric, so that RX(p1, p2, p3) =
GX(GX ′(p1, p2), p3), is a three-parental geometric crossover.

Proof. Let P be the set of parents and co(P ) their metric convex hull. By defini-
tion of metric convex hull, for any two points a, b ∈ co(P ) their offspring are in
the convex hull [a, b] ⊆ co(P ). Since P ⊆ co(P ), any two parents p1, p2 ∈ P have
offspring o12 ∈ co(P ). Then any other parent p3 ∈ P when recombined with o12

produces offspring o123 in the convex hull co(P ). So the three-parental recombi-
nation equivalent to the sequence of geometric crossover GX ′(p1, p2) → o12 and
GX(o12, p3) → o123 is a multi-parental geometric crossover.

3 Geometric PSO

3.1 Basic, Canonical PSO Algorithm and Geometric Crossover

Consider the canonical PSO in Algorithm 1. It is well known that one can write
the equation of motion of the particle without making explicit use of its velocity.

Let x be the position of a particle and v be its velocity. Let x̂ be the current
best position of the particle and let ĝ be the global best. Let v′ and v′′ be the
velocity of the particle and x′ = x + v and x′′ = x′ + v′ its position at the
next two time ticks. The equation of velocity update is the linear combination:
v′ = w1v + w2(x̂ − x′) + w3(ĝ − x′) where w1, w2 and w3 are scalar coefficients.
To eliminate velocities we substitute the identities v = x′ − x and v′ = x′′ − x′

in the equation of velocity update and rearrange it to obtain an equation that
expresses x′′ as function of x and x′: x′′ = (1+w1−w2−w3)x′−w1x+w2x̂+w3ĝ.

If we set w1 = 0, which corresponds to setting ω = 0 (i.e., the particle has no
inertia), x′′ becomes independent on its position two time ticks earlier x. The
equation of motion becomes:

x′′ = (1 − w2 − w3)x′ + w2x̂ + w3ĝ. (1)

In these conditions, the main feature that allows the motion of particles is the
ability to perform linear combinations of points in the search space. As we will see
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in the next section, we can achieve this same ability by using multiple (geometric)
crossover operations. This makes it possible to obtain a generalisation of PSO
to generic search spaces.

Algorithm 1. Standard PSO algorithm
1: for all particle i do
2: initialise position xi and velocity vi

3: end for
4: while stop criteria not met do
5: for all particle i do
6: set personal best x̂i as best position found so far by the particle
7: set global best ĝ as best position found so far by the whole swarm
8: end for
9: for all particle i do

10: update velocity using equation

vi(t + 1) = ωvi(t) + φ1U(0, 1)(ĝ(t) − xi(t)) + φ2U(0, 1)(x̂i(t) − xi(t)) (2)

11: update position using equation

xi(t + 1) = xi(t) + vi(t + 1) (3)
12: end for
13: end while

3.2 Geometric Interpretation of Linear Combinations

If v1, ..., vn are vectors and a1, ..., an are scalars, then the linear combination of
those vectors with those scalars as coefficients is : a1v1+a2v2+a3v3+ · · ·+anvn .
A linear combination on n linearly independent vectors spans completely an n-
dimensional space but not a higher dimensional one. So, the linear combination
of three linearly independent points spans a 3-dimensional space but not a 4-
dimensional one.

An affine combination of vectors v1, ..., vn is a linear combination
∑

i ai · xi

in which
∑

i ai = 1. When a vector represents a point in space, the affine combi-
nation of 2 independent points spans completely the line passing through them;
the affine combination of 3 points spans completely the plane (2D line) passing
through them; increasing number of linearly independent points span completely
higher dimensional “lines”.

A convex combination is an affine combination of vectors where all coefficients
are non-negative. It is called “convex combination”, since, when vectors represent
points in space, the set of all convex combinations constitutes the convex hull.

A special case is n = 2, where a point formed by the convex combination will
lie on a straight line between two points. For three points, their convex hull is
the triangle with the points as vertices.
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Theorem 2. In a PSO with no inertia (ω = 0) and where learning rates are
such that φ1 + φ2 ≤ 1, the next position of a particle x′ is within convex hull
formed by its current position x, its local best x̂ and the swarm best ĝ.

Proof. As we have seen in Sec. 3.1, when ω = 0, a particle’s update equation
becomes the linear combination in equation (1). Notice that this is an affine
combination since the coefficients of x′, x̂ and ĝ add up to 1. Interestingly, this
means that the new position of the particle is coplanar with x′, x̂ and ĝ. If we
restrict w2 and w3 to be positive and their sum to be less than 1, equation (1)
becomes a convex combination. Geometrically this means that the new position
of the particle is in the convex hull formed by (or more informally, between) its
previous position, its local best and the swarm best.

In the next section, we generalize this simplified form of PSO from real vectors
to generic metric spaces. Mutation will be required to extend the search beyond
the convex hull.

3.3 Convex Combinations in Metric Spaces

Linear combinations are well-defined for vector spaces, algebraic structures en-
dowed with scalar product and vectorial sum. A metric space is a set endowed
with a notion of distance. The set underlying a metric space does not normally
come with well-defined notions of scalar product and sum among its elements.
So a linear combination of its elements is not defined. How can we then define
a convex combination in a metric space? Vectors in a vector space can easily be
understood as points in a metric space. However, the interpretation of scalars
is not as straightforward: what do the scalar weights in a convex combination
mean in a metric space?

As seen in Sec. 3.2, a convex combination is an algebraic description of a
convex hull. However, even if the notion of convex combination is not defined
for metric spaces, convexity in metric spaces is still well-defined through the
notion of metric convex set that is a straightforward generalization of traditional
convex set. Since convexity is well-defined for metric spaces, we still have hope
to generalize the scalar weights of a convex combination trying to make sense of
them in terms of distance.

The weight of a point in a convex combination can be seen as a measure
of relative linear attraction toward its corresponding point versus attractions
toward the other points of the combination. The closer the weight to one, the
stronger the attraction to its corresponding point. The point resulting from a
convex combination can be seen as the equilibrium point of all the attraction
forces. The distance between the equilibrium point and a point of the convex
combination is therefore a decreasing function of the level of attraction (weight)
of the point: the stronger the attraction, the smaller its distance to the equilib-
rium point. This observation can be used to reinterpret the weights of a convex
combination in a metric space as follows: y = w1x1 + w2x2 + w3x3 with w1, w2

and w3 greater than zero and w1 + w2 + w3 = 1 is generalized to mean that y is
a point such that d(x1, y) ∼ 1/w1, d(x2, y) ∼ 1/w2 and d(x3, y) ∼ 1/w3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



130 A. Moraglio, C. Di Chio, and R. Poli

This definition is formal and valid for all metric spaces but it is non-
constructive. In contrast a convex combination, not only defines a convex hull,
but it tells also how to reach all its points. So, how can we actually pick a point in
the convex hull respecting the above distance requirements? Geometric crossover
will help us with this, as we show in the next section.

The requirements for a convex combination in a metric space are:

1. Convex weights: the weights respect the form of a convex combination:
w1, w2, w3 > 0 and w1 + w2 + w3 = 1

2. Convexity: the convex combination operator combines x1, x2 and x3 and
returns a point in their metric convex hull, or simply triangle, under the
metric of the space considered

3. Coherence between weights and distances: the distances to the equilibrium
point are decreasing functions of their weights

4. Symmetry: the same value assigned to w1, w2 or w3 has the same effect
(so in a equilateral triangle, if the coefficients have all the same value, the
distances to the equilibrium point are the same).

3.4 Geometric PSO Algorithm

The generic Geometric PSO algorithm is illustrated in Algorithm 2. This differs
from the standard PSO (Algorithm 1) in that: there is no velocity, the equation
of position update is the convex combination, there is mutation and the param-
eters w1, w2, and w3 are non-negative and add up to one. The specific PSO
for the Euclidean, Manhattan and Hamming spaces use the randomized convex
combination operators described in Sec. 4 and space-specific mutations.

Algorithm 2. Geometric PSO algorithm
1: for all particle i do
2: initialise position xi at random in the search space
3: end for
4: while stop criteria not met do
5: for all particle i do
6: set personal best x̂i as best position found so far by the particle
7: set global best ĝ as best position found so far by the whole swarm
8: end for
9: for all particle i do

10: update position using a randomized convex combination

xi = CX((xi, w1), (ĝ, w2), (x̂i, w3)) (4)

11: mutate xi

12: end for
13: end while
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4 Geometric PSO for Specific Spaces

4.1 Euclidean Space

Geometric PSO for the Euclidean space is not an extension of the traditional
PSO. We include it to show how the general notions introduced in the previous
section materialize in a familiar context. The convex combination operator for
the Euclidean space is the traditional convex combination that produces points
in the traditional convex hull.

In Sec. 3.3, we have mentioned how to interpret the weights in a convex
combination in terms of distances. In the following we show analytically how the
weights of a convex combination affect the relative distances to the equilibrium
point. In particular we show that the relative distances are decreasing functions
of the corresponding weights.

Theorem 3. In a convex combination, the distances to the equilibrium point
are decreasing functions of the corresponding weights.

Proof. Let a, b and c be three points in R
n and x = waa+wbb+wcc be a convex

combination. Let us now decrease wa to w′a = wa−Δ such that w′a, w′b and w′c still
form a convex combination and that the relative proportions of wb and wc remain
unchanged: w′

b

w′
c

= wb

wc
. This requires w′b and w′c to be w′b = wb(1+Δ/(wb+wc)) and

w′c = wc(1+Δ/(wb+wc)). The equilibrium point for the new convex combination
is x′ = (wa −Δ)a+wb(1+Δ/(wb +wc))b+wc(1+Δ/(wb +wc))c. The distance
between a and x is |a − x| = |wb(a − b) + wc(a − c)| and the distance between a
and the new equilibrium point is |a−x′| = |wb(1+Δ/(wb +wc))(a− b)+wc(1+
Δ/(wb + wc))(a − c)| = (1 + Δ/(wb + wc))|a − x|. So when wa decreases (Δ > 0)
and wb and wc maintain the same relative proportions, the distance between
the point a and the equilibrium point x increases (|a − x′| > |a − x|). Hence
the distance between a and the equilibrium point is a decreasing function of wa.
For symmetry this applies to the distances between b and c and the equilibrium
point: they are decreasing functions of their corresponding weights wb and wc,
respectively.

The traditional convex combination in the Euclidean space respects the four
requirements for a convex combination presented in Sec. 3.3.

4.2 Manhattan Space

In the following we first define a multi-parental recombination for the Manhattan
space and then prove that it respects the four requirements for being a convex
combination presented in Sec. 3.3.

Definition 3. (Box recombination family) Given two parents a and b in
R

n, a box recombination operator returns offspring o such that oi ∈
[min(ai, bi), max(ai, bi)] for i = 1 . . . n.
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Theorem 4. (Geometricity of box recombination) Any box recombination is ge-
ometric crossover under Manhattan distance

Theorem 4 is an immediate consequence of the product geometric crossover
theorem.

Definition 4. (Three-parent Box recombination family) Given three parents a,
b and c in R

n, a box recombination operator returns offspring o such that oi ∈
[min(ai, bi, ci), max(ai, bi, ci)] for i = 1 . . . n.

Theorem 5. (Geometricity of three-parent box recombination) Any three-parent
box recombination is geometric crossover under Manhattan distance.

Proof. We prove it by showing that any multi-parent box recombination
BX(a, b, c) can be decomposed as a sequence of two simple box recombinations.
Since simple box recombination is geometric (Theorem 4), this theorem is a simple
corollary of the multi-parental geometric decomposition theorem (Theorem 1).

We will show that o′ = BX(a, b) followed by BX(o′, c) can
reach any offspring o = BX(a, b, c). For each i we have oi ∈
[min(ai, bi, ci), max(ai, bi, ci)]. Notice that [min(ai, bi), max(ai, bi)] ∪
[min(ai, ci), max(ai, ci)] = [min(ai, bi, ci), max(ai, bi, ci)]. We have two
cases: (i) oi ∈ [min(ai, bi), max(ai, bi)] in which case oi is reachable by the
sequence BX(a, b)i → oi, BX(o, c)i → oi; (ii) oi 
∈ [min(ai, bi), max(ai, bi)]
then it must be in [min(ai, ci), max(ai, ci)] in which case oi is reachable by the
sequence BX(a, b)i → ai, BX(a, c)i → oi

Definition 5. (Weighted multi-parent Box recombination) Given three parents
a, b and c in R

n and weights wa, wb and wc, a weighted box recombination
operator returns offspring o such that oi = waiai + wbibi + wcici for i = 1 . . . n,
where wai , wbi and wci are a convex combination of randomly perturbed weights
with expected values wa, wb and wc.

The difference between box recombination and linear recombination (Euclidean
space) is that in the latter the weights wa, wb and wc are randomly perturbed
only once and the same weights are used for all the dimensions, whereas the
former one has a different randomly perturbed version of the weights for each
dimension.

The weighted multi-parent box recombination belongs to the family of
multi-parent box recombination because oi = waiai + wbibi + wcici ∈
[min(ai, bi, ci), max(ai, bi, ci)] for i = 1 . . . n, hence it is geometric.

Theorem 6. (Coherence between weights and distances) In weighted multi-
parent box recombination, the distances of the parents to the expected offspring
are decreasing functions of the corresponding weights.

The proof of theorem 6 is a simple variation of that of theorem 3.
In summary in this section we have introduced the weighted multi-parent box

recombination and shown that it is a convex combination operator satisfying
the four requirements of a metric convex combination for the Manhattan space:
convex weights by definition (Definition 4), convexity (geometricity, Theorem
5), coherence (Theorem 6) and symmetry (self-evident).
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4.3 Hamming Space

In the following we first define a multi-parental recombination for binary strings
that is a straightforward generalization of mask-based crossover with two par-
ents and then prove that it respects the four requirements for being a convex
combination in the Hamming space presented in Sec. 3.3.

Definition 6. (Three-parent mask-based crossover family) Given three parents
a, b and c in {0, 1}n, generate randomly a crossover mask of length n with
symbols from the alphabet {a, b, c}. Build the offspring o filling each position
with the bit from the parent appearing in the crossover mask at the position.

The weights wa, wb and wc of the convex combination indicate for each position
in the crossover mask the probability of having the symbols a, b or c.

Theorem 7. (Geometricity of three-parent mask-based crossover) Any three-
parent mask-based crossover is geometric crossover under Hamming distance.

Proof. We prove it by showing that any three-parent mask-based crossover can
be decomposed as a sequence of two simple mask-based crossovers. Since simple
mask-based crossover is geometric, this theorem is a simple corollary of the
multi-parental geometric decomposition theorem (Theorem 1).

Let mabc the mask to recombine a, b and c producing the offspring o. Let
mab the mask obtained by substituting all occurrences of c in mabc with b and
mbc the mask obtained by substituting all occurrences of a in mabc with b. Now
recombine a and b using mab obtaining b′. Then recombine b′ and c using mbc

where the b’s in the mask stand for alleles in b′. The offspring produced by the
second crossover is o, so the sequence of the two simple crossovers is equivalent
to the three-parent crossover. This is because the first crossover passes to the
offspring the all genes it needs to take from a according to mabc and the rest of
the genes are all from b; the second crossover corrects those genes that should
have been taken from parent c according to mabc but were taken from b instead.

Theorem 8. (Coherence between weights and distances) In weighted three-
parent mask-based crossover, the distances of the parents to the expected offspring
are decreasing functions of the corresponding weights.

Proof. We want to know the expected distance from parent p1, p2 and p3 and
their expected offspring o as a function of the weights w1, w2 and w3. To do
so, we first determine, for each position in the offspring, the probability to be
the same as p1. From that then we can easily compute the expected distance
between p1 and o. We have that

pr{o = p1} = pr{p1 → o}+pr{p2 → o} ·pr{p1|p2}+pr{p3 → o} ·pr{p1|p3} (5)

where: pr{o = p1} is the probability of a bit of o at a certain position to be
the same as the bit of p1 at the same position; pr{p1 → o}, pr{p2 → o} and
pr{p3 → o} are the probabilities that a bit in o is taken from parent p1, p2 and p3,
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respectively (these coincide with the weights of the convex combination w1, w2

and w3); pr{p1|p2} and pr{p1|p3} are the probabilities that a bit taken from p2 or
p3 coincides with the one in p1 at the same location. These last two probabilities
equal the number of common bits in p1 and p2 (p1 and p3) over the length of
the strings n. So pr{p1|p2} = 1 − H(p1, p2)/n and pr{p1|p3} = 1 − H(p1, p3)/n
where H(·, ·) is the Hamming distance. So equation (5) becomes

pr{o = p1} = w1 + w2(1 − H(p1, p2)/n) + w3(1 − H(p1, p3)/n). (6)

Hence the expected distance between the parent p1 and the offspring o is:
E(H(p1, o)) = n ·(1−pr{o = p1}) = w2H(p1, p2)+w3H(p1, p3). Notice that this
is a decreasing function of w1 because increasing w1 forces w2 or w3 to decrease
since the sum of the weights is constant, hence E(H(p1, o)) decreases. Analo-
gously, E(H(p2, o)) and E(H(p3, o)) are decreasing functions of their weights w2

and w3, respectively.

In summary in this section we have introduced the weighted multi-parent mask-
based crossover and shown that it is a convex combination operator satisfying
the four requirements of a metric convex combination for the Hamming space:
convex weights by definition (Definition 5) , convexity (geometricity, Theorem
7), coherence (Theorem 8) and symmetry (self-evident).

5 Towards a Geometric PSO for GP and Other
Representations

Before looking into how we can extend geometric PSO to other solution repre-
sentations, we will discuss the relation between 3-parental geometric crossover
and the symmetry requirement for a convex combination.

For each of the spaces considered in section 4, we have first considered, or
defined, a three-parental recombination and then we proved that it is a three-
parental geometric crossover by showing that it can actually be decomposed into
two sequential applications of a geometric crossover for the specific space.

However, we could have skipped altogether the explicit definition of a three-
parental recombination. In fact to obtain the three-parental recombination we
could have used two sequential applications of a known two-parental geometric
crossover for the specific space. This composition is indeed a three-parental re-
combination, it combines three parents, and it is decomposable by construction,
hence it is a three-parental geometric crossover. This, indeed, would have been
simpler than the route we took.

The reason we preferred to define explicitly a three-parental recombination is
that the requirement of symmetry of the convex combination is true by construc-
tion: if the roles of any two parents are swapped exchanging in the three-parental
recombination both positions and respective recombination weights, the result-
ing recombination operator is equivalent to the original operator.

The symmetry requirement becomes harder to enforce and prove for a three-
parental geometric crossover obtained by two sequential applications of a two-
parental geometric crossover. We illustrate this in the following. Let us consider
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three parents a, b and c with positive weights wa, wb and wc which add up to one.
If we have a symmetric three-parental weighted geometric crossover ΔGX , the
symmetry of the recombination is guaranteed by the symmetry of the operator.
So, ΔGX((a, wa), (b, wb), (c, wc)) is equivalent to ΔGX((b, wb), (a, wa), (c, wc)),
hence the requirement of symmetry on the weights of the convex combination
holds. If we consider a three-parental recombination defined by using twice a
two-parental genetic crossover GX we have:

ΔGX((a, wa), (b, wb), (c, wc)) = GX((GX((a, w′a), (b, w′b)), wab), (c, w′c)) (7)

with the constraint that w′a and w′b are positive and add up to one and wab

and w′c are positive and add up to one. It is immediate to notice the inherent
asymmetry in this expression: the weights w′a and w′b are not directly comparable
with w′c because they are relative weights between a and b. Moreover there is the
extra weight wab. This makes the requirement of symmetry problematic to meet:
given the desired wa, wb and wc, what values of w′a, w′b, wab and w′c do we have
to choose to obtain an equivalent symmetric 3-parental weighted recombination
expressed as a sequence of two two-parental geometric crossovers?

For the Euclidean space, it is easy to answer this question using simple al-
gebra: ΔGX = wa · a + wb · b + wc · c = (wa + wb)( wa

wa+wb
· a + wb

wa+wb
· b) +

wc · c. Since the convex combination of two points in the Euclidean space is
GX((x, wx), (y, wy)) = wx · x + wy · y and wx, wy > 0 and wx + wy = 1
then ΔGX((a, wa), (b, wb), (c, wc)) = GX((GX((a, wa

wa+wb
), (b, wb

wa+wb
)), wa +

wb), (c, wc)). This question may be less straightforward to answer for other
spaces, although we could use the equation above as a rule-of-thumb to map
the weights of ΔGX and the weights in the sequential GX decomposition.

Where does this discussion leave us in relation to the extension of geomet-
ric PSO to other representations? We have seen that there are two alternative
ways to produce a convex combination for a new representation: (i) explicitly
define a symmetric three-parental recombination for the new representation and
then prove its geometricity by showing that it is decomposable into a sequence
of two two-parental geometric crossovers, or (ii) use twice the simple geometric
crossover to produce a symmetric or nearly symmetric three-parental recombi-
nation. In this paper we used the first approach, but the second option is also
very interesting because it allows us to extended automatically geometric PSO
to all representations we have geometric crossovers for, such as permutations,
GP trees, variable-length sequences, to mention a few, and virtually any other
complex solution representation.

6 Conclusions and Future Work

We have extended the geometric framework with the notion of multi-parent
geometric crossover that is a natural generalization of two-parental geometric
crossover: offspring are in the convex hull of the parents. Then, using the geo-
metric framework, we have shown an intimate relation between a simplified form
of PSO, without the inertia term, and evolutionary algorithms. This has enabled
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us to generalize in a natural, rigorous and automatic way PSO for any type of
search space for which a geometric crossover is known.

We have specialised the general PSO to Euclidean, Manhattan and Hamming
spaces, obtaining three instances of the general PSO for the specific spaces.

In future work we will consider geometric PSO for permutation spaces and
spaces of genetic programs, for which several geometric crossovers exist. We will
also test the geometric PSO experimentally.
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Abstract. This work details an auction-based model for problem de-
composition in Genetic Programming classification. The approach builds
on the population-based methodology of Genetic Programming to evolve
individuals that bid high for patterns that they can correctly classify. The
model returns a set of individuals that decompose the problem by way of
this bidding process and is directly applicable to multi-class domains. An
investigation of two auction types emphasizes the effect of auction design
on the properties of the resulting solution. The work demonstrates that
auctions are an effective mechanism for problem decomposition in clas-
sification problems and that Genetic Programming is an effective means
of evolving the underlying bidding behaviour.

1 Introduction

Genetic Programming (GP) is a population-based search algorithm that clas-
sically produces a single ‘super’ individual by way of a solution [5]. This is a
natural effect of the survival of the fittest mechanism implicit in GP and is
supported by various theoretical models [7]. The success of a single individual,
however, may be limited in scenarios where progress cannot be made without
effective problem decomposition. Attempts have been made to encourage GP to
provide multiple solutions where these have typically taken the form of diversity
maintenance schemes such as niching [10] and coevolution [11]. In this work we
take a different approach motivated by the use of market mechanisms in machine
learning, and in particular, the Hayek framework of Baum [1] [2]. However, it is
apparent that the sheer number of problem-specific parameters endemic to the
Hayek model results in a system that is very difficult to replicate [6].

The motivation of the current work is therefore to revisit the market-based
approach for problem decomposition with the objective of keeping the model
as simple as possible. We begin by considering the problem domain to be dis-
crete, in this case, binary and multi-class classification problems. This implies
that actions are also discrete so that individuals may concentrate on identifying
an appropriate bidding strategy. Such a strategy need only be profitable, thus
individuals are free to identify the subset of training exemplars on which they
will concentrate their resources. Key to encouraging the identification of bidding
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strategies that facilitate problem decomposition is the definition of an appropri-
ate auction mechanism. To this end we concentrate on the design of the auction
model where the auction is central to establishing the credit assignment process;
if the auction is effective in instigating the relevant reward mechanism then the
learning problem as a whole should also be more straightforward.

Auctions have successfully been applied to other problem domains such as
the coordination of teams of robots [4]. This work demonstrates that a market-
based framework using auctions can also be applied to the machine learning
problem of classification. In particular, it is shown that GP is an effective means
of producing the underlying bidding behaviour with minimal a priori knowledge.

This paper is organized as follows. The following section discusses related
systems and motivates the need for a simplification to the Hayek model. Section
3 describes the proposed approach including the two types of auctions that
are investigated. Section 4 summarizes model performance on four real-world
datasets (two binary and two multi-class), and concluding remarks are made in
Section 5.

2 Related Work

The proposed approach is motivated by the market-based Hayek model [1][2]
originally applied to a blocks world problem (i.e., reinforcement learning). Hayek
was found to be exceptional because it discovered generic solutions capable of
producing long chains of actions. In contrast, GP augmented with hand-crafted
features was able to solve problems limited in size to at most five blocks [5].

Hayek employs auctions in which individuals bid for the right to act on the
environment. Because individuals must pay out their bid, good behaviours will
tend to extract sufficient reward and therefore earn wealth while poor behaviours
will tend to lose wealth; wealth is therefore treated as a fitness measure and
used to guide the search. The key differences between Hayek and the proposed
approach are as follows:

1. In Hayek, an individual always bids the same amount (limited only by the
individual’s wealth) yet its choice of action is a function of the input. In-
dividuals in the proposed approach may bid different amounts, are always
associated with a single action, and may posses negative wealth.

2. The Hayek population is of a variable size. Individuals are created when ex-
isting individuals accumulate enough wealth and removed when their wealth
falls below a threshold. In the proposed approach, the population size is fixed
and the poorest individual is always removed so that survival of the fittest
is reinforced and the overhead of maintaining large populations is reduced1.

3. In Hayek, when a child is created it receives a fraction of its parent’s wealth.
In return, the offspring must periodically pay to its parent a constant amount
plus a fraction of its profit. In the proposed approach, there are no such
transfers of wealth thus avoiding the associated problems of parameterizing
the payoff feedback loop.

1 Populations with tens of thousands of individuals were encountered in Hayek.
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4. The Hayek framework taxes each individual in proportion to its size and
the total computational overhead incurred by the system. The proposed
approach does not use taxation. However, a fixed-size population with a
steady-state selection policy ensures that the worst performing individuals
do not linger in the population.

The Hayek framework was found to be complex and sensitive to a large number of
paremeter setings making it difficult to reproduce previous results [6]. The design
of the proposed approach results in a simpler model enabling us to concentrate
on establishing the contribution of specific system components (e.g., auctions).
In addition, as a starting step and to make the analysis more manageable, here
the approach is applied to classification problems only.

The approach presented in this work is also related to Learning Classifier
Systems [8]. Whereas classifier systems evolve populations of condition-action-
strength rules, in the proposed approach the condition and strength component
has been replaced by the bid procedure. This has several implications, for ex-
ample, it makes the behaviours of each individual deterministic as it does not
depend on any dynamic parameters such as strength. Furthermore, in the pro-
posed approach the action set always consists of a single individual making
allocation of credit more straightforward. Finally, compared to some popular
classifier system formulations, in the proposed approach an individual’s fitness
is not solely a function of its bid accuracy [14]. Instead, individuals may survive
in the population so long as their ratio of the gains made on profitable auctions
to the losses sustained during unprofitable auctions is sufficiently high.

3 Methodology

A population of individuals each defining a bid and an action is evolved. The
view is taken that only the bidding behaviour needs be represented as a pro-
gram. The corresponding action is defined by a scalar selected a priori over the
range of class labels, i.e., the set of integers {0, ..., n − 1} in an n-class classifi-
cation problem. Given that a market model will be utilized as the methodology
for problem decomposition, wealth should reflect the success of an individual’s
bidding behaviour. Thus, when new individuals are initialized in the population,
they assume the same wealth as the poorest individual in the population. Such
a view is taken in order to avoid injecting disproportionally high volumes of
wealth into the market. Moreover, the initial population possesses zero wealth.
This does not preclude individuals from bidding as negative wealth is possible.
Thus, wealth is used as a relative measure of performance as opposed to having
any monetary properties.

The following sections describe the generic auction model, two specific auction
types, and the form of GP employed.

3.1 Generic Auction Model

The population is of a fixed size. During initialization, Step 1 of Algorithm 1,
individuals generated with uniform probability are added to the population until
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Algorithm 1. Generic auction-based evolutionary training algorithm.
1. while less than the population size limit do

(a) seed = newRandomIndividual();
(b) seed.wealth = 0;
(c) population.insert(seed);

2. for each epoch do
(a) for each training exemplar ‘p’ do

i. auction(population, p);
(b) population.delete(findPoorestIndividual(population));
(c) parent = selectRandomIndividual(population);
(d) child = newChild(parent);
(e) child.wealth = findPoorestIndividual(population).wealth;
(f) population.insert(child);

the population limit is reached. Initial wealth values are set to zero. Following
initialization, the training algorithm proceeds in a series of epochs, Step 2. In
the first stage of an epoch, an auction is held for each pattern in the training
dataset, Step 2(a)i. During the auction, agents compete for the ownership of
the pattern and wealths are adjusted to reflect the outcome of this competition.
Reproduction takes place once the auctions have completed. At this time, the
individual with the least amount of wealth is replaced. A single parent is selected
with uniform probability from the population, Step 2(c), and a child is created
from this parent through the application of mutation operators. The wealth of
the poorest agent in the remaining population is determined, with the wealth of
the child taking this value, Step 2(e). The child is then added to the population.
If the new individual is profitable, its ranking with respect to wealth should
‘bubble up’ relative to the performance of the population in successive epochs.

The goal of training is to produce a population where each individual wins a
subset of the training exemplars for which its action is suitable (e.g., in classifi-
cation, suitable means that the label of the exemplar matches the action of the
individual). Following training, the aggregate bidding behaviour of the popula-
tion will determine how the system acts on an unseen exemplar.

3.2 Auction Types

Two types of auctions, Step 2(a)i of Algorithm 1, were investigated. The first
represents a vanilla first-price auction in which the winning agent pays the dif-
ference between its bid and the reward resulting from its action. The second
auction model explicitly encourages individuals representing different actions to
minimize their bid values when their actions do not match that of the class label.

First-Price (FP). An exemplar is presented and each individual submits an
associated bid. The individual with the highest bid is selected as the auction
winner and must pay its bid to the environment (i.e., a payment is made
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but never collected). The winner’s action is then compared to the exemplar
label. When the the two match, the winner receives a reward of 1, otherwise,
the winner receives a reward of 0.

Second-Price (SP). Individuals again submit a bid for each exemplar and
the highest bidder is selected as the auction winner. The winner’s action is
compared to that of the exemplar, and the FP scheme followed if the winner’s
action does not match that of the label. If the winner’s action matches
the label, then the highest bidder is identified from individuals representing
alternative actions. The winner does not pay out its bid (to the environment)
but rather the bid of this runner-up. In addition, the runner-up pays its bid
(to the environment). Since the winner’s action matched the class of the
pattern, the winner receives a reward of 1.

In both auctions, an individual can profit only by winning auctions for pat-
terns whose class is the same as its action without overbidding. As such, the
goal is to evolve winning bids that reflect the reward associated with individu-
als’ actions on each pattern. In addition, the SP auction is designed to increase
the winner’s profit (especially during the later stages of training when high bids
are expected) and produce more robust behaviours by driving down bids of non-
winning classes.

3.3 Linear Genetic Programming

Bid procedures were evolved using a linear GP representation [3]. The Sigmoid
function f(y) = (1−e−y)−1 was used to obtain a bid over the unit interval given
a raw (real-valued) GP output y. Since the possible reward values were restricted
to the set {0, 1}, an individual could overbid only for instances of the wrong class.
A null-initialized set of registers was made available for storing intermediate
results and the final output was extracted from a predefined register. Denoting
registers by R, inputs by I, and operations by op, the instructions themselves
could be of the form Rx ← op Rx Ry or Rx ← op Rx Iy. Both unary and binary
operators were allowed, and in the cases where op was unary it was applied to
the y operand.

Five stochastic search operators were used to mutate a parent to generate a
child of which the first four affected the bid program: (1) bid delete removed
an instruction at an arbitrary position, (2) bid add inserted an arbitrary in-
struction at a randomly chosen position, (3) bid mutate flipped a random bit
of an instruction at an arbitrarily chosen position, (4) bid swap exchanged the
positions of two arbitrarily chosen instructions, and (5) action mutate changed
the action associated with an individual to a randomly chosen value. Each of
these operators was applied with a specified probability and the application of
the operators was not exclusive.

During initialization, the individual bid program sizes were selected from a
predefined range with uniform probability (i.e., a fixed length representation).
The bid delete and add operators were therefore included to allow change to the
complexity of a program. The bid swap operator was added for situations when
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a program had the right instructions but in the wrong order. Finally, the action
mutate operator was employed in case individuals appeared that exhibited the
right bidding behaviour but for the wrong class. In addition, this operator proved
useful for ensuring an action always had a chance of appearing in the population
(e.g., in situations where all individuals advocating an action were extinct).

4 Evaluation and Results

4.1 Datasets and Parameterization

Four real-world datasets from the UCI Machine Learning Repository [12] were
used to evaluate the approach, Table 1. The test partitions were generated by
randomly selecting instances from the entire dataset to approximately preserve
class distributions. With the exception of the BCW dataset where a 50/50 split
was used to reduce training times, in all cases one-quarter of all the patterns
were held out for testing. BCW refers to the Wisconsin Breast Cancer dataset
with patterns containing missing attributes removed. BUPA is the liver disorders
databases. Classes 1, 2, and 3 in the Iris dataset correspond to flowers iris-setosa,
iris-versicolor, and iris-virginica respectively. Finally, Housing refers to a three-
class version of the Boston Housing dataset [9]. The BUPA and Housing datasets
are considered to be representative of the more difficult classification problems.
It should be noted that individuals in the population were initialized with a
single action selected a priori from the set of possible class labels, Table 1, with
uniform probability.

Table 1. Datasets used in evaluating the proposed approach. Distribution refers to
the number of patterns of each class and is given in the same order as the class labels
in the ‘Labels’ column. All labels are shown as they appear in the original datasets.

Train Test
Dataset Features Labels Patterns Distribution Patterns Distribution
BCW 9 <2, 4> 342 <222, 120> 341 <222, 119>
BUPA 6 <1, 2> 259 <108, 151> 86 <37, 49>
Iris 4 <1, 2, 3> 113 <37, 37, 39> 37 <13, 13, 11>
Housing 13 <1, 2, 3> 380 <123, 140, 117> 126 <44, 33, 49>

The parameters used in all of the experiments are given in Table 2. Thirty
different initializations were performed for each configuration to account for the
dependence of the algorithm on the starting conditions.

After training, individuals that won zero auctions on the training data were
marked as inactive and not used on the test partition. Results were then com-
piled in terms of the number of active individuals, classification accuracy, and
bidding behaviour. The results shown are averaged over the thirty initializations
performed for each pairing of auction type and dataset.
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Table 2. Parameter values used in the experiments

Parameter Value
Minimum program size 1
Maximum program size 256

Bid delete/add/mutate/swap probability 0.5
Action mutate probability 0.5

Number of registers 4
Function set {+, ×, −, ÷, cos, sin, exp, log}

Population size 100
Epochs 100 000

Number of initializations 30

4.2 Results

Figure 1 summarizes the number of active individuals. Compared to the SP
auction, the FP auction uses more individuals one the easier datasets and fewer
on the difficult ones. Conversely, the SP auction allocates more resources to the
more difficult problems and less to the easier problems. Both approaches assign
significantly more resources to the more difficult BUPA and Housing datasets.

As seen in the summary of the accuracy results on the test data, Figure 2,
there is no clear preference for either auction type. In addition, neither approach
is seen to be superior with respect to consistency (i.e., spread of test accuracies).
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Fig. 1. Active individual counts. The box boundaries denote the first and third quar-
tiles, the thick horizontal line the median.
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Fig. 3. Per class accuracies on the test data. Each bar shows the accuracy of the FP
or SP approach on the class denoted on the x-axis.
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Fig. 4. Bidding behaviour on the training data. Each bar shows the maximum mean
bid (height of the bar) and the mean bid (segment crossing the area of the bar) for the
FP or the SP approach. The bars are grouped by bidding scenarios.

Even though the overall accuracy of the FP and SP approaches appears to be
similar, the two differ with respect to their per class accuracies, Figure 3. In the
case of the BCW and Iris datasets, the task appears to be straightforward as
all classes are represented with a high degree of precision under both auction
schemes. On the more difficult BUPA and Housing datasets, however, the SP
approach yields more balanced results (i.e., the SP approach is more effective at
profiling all classes). This suggest that the SP approach will be less biased in
situations where the class distributions are unbalanced.

Figure 4 shows aggregate bidding behaviour on the training data. For each
case, the mean bid value is calculated by considering the bids of all individuals of
a given action on all patterns of a given class. The mean maximum bid is calcu-
lated in a similar fashion except that for each pattern only the winning individual
is considered (from all individuals advocating a given action). For individuals of
action x bidding on instances of class y, the desired behaviour corresponds to
bidding high only if x = y and low otherwise. This corresponds to individuals
bidding high for patterns that match their actions and low otherwise. Desirable
behaviour does not necessarily imply that the mean bid is high whenever x = y.
Given a class x, certain individuals of action x may bid high only for some of the
patterns of class x thus identifying a subclass within a single class (as labeled in
the dataset).
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Figure 4 shows that the SP approach yields better bidding behaviour. Using
the FP approach, the maximum bid always tends to be high; individuals bid high
even for patterns associated with the wrong class. This is best illustrated on the
BCW dataset where the mean maximum bid using the FP approach is always
virtually unity regardless of the true class of the pattern. Using the SP approach,
if a pattern does not match the individual’s action then that individual’s bid
tends to be significantly lower. This behaviour appears to be a direct result of
the penalty applied to the runner-up in the SP wealth adjustment process and
suggests more robust decision boundaries.

4.3 Comparison with C5.0

To summarize and to put the difficulty of the learning task into context, Table 3
shows a comparison of the results obtained using the FP and SP auction types
and C5.0 [13]. C5.0 is an established data mining algorithm that can be used
to build classifiers in the form of decision trees. In setting up C5.0, all BCW
attributes were defined as ordered discrete, the ‘CHAS’ Housing attribute was
defined as discrete, all other attributes were defined as continuous, and default
learning parameters were used. The table shows that the proposed approach
typically outperforms C5.0.

Table 3. Test accuracies (in percent) of the FP and SP schemes compared to C5.0

BCW BUPA Iris Housing
Best Mean Best Mean Best Mean Best Mean

FP 96 94 67 58 100 96 77 67
SP 97 95 70 59 100 96 78 70
C5.0 94 - 67 - 97 - 75 -

5 Conclusion

A market-based model for decomposing classification problems between multi-
ple GP individuals was presented. The central mechanism in this model is the
auction where an individual can profit only by correctly classifying a problem
instance. The proposed approach requires a single population to be evolved and
can be directly applied to problems with more than two classes.

Two auction types were examined and the SP formulation found to be supe-
rior for several reasons. First, it allocated more resources to the more difficult
problems and fewer resources to the easier problems. Second, it yielded more
balanced per class classification accuracies. Finally, it produced a wider margin
between correct and incorrect bids suggesting more robust decision boundaries.

This work demonstrates that auctions are an effective means of partitioning
the instance space in classification problems and that they can be tailored to
achieve desired system behaviour. By using bids to associate individuals with
patterns, problem decomposition can be achieved. In addition, GP was shown to
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be able to successfully evolve the bidding behaviour underlying every auction.
In this regard, wealth was shown to be an effective measure of individual fitness.

As demonstrated by Hayek, the idea of using an auction to select an appropri-
ate action given an input is also applicable to reinforcement learning scenarios.
One obstacle in this problem domain is the high number of possible test in-
stances. Future work should therefore focus on incorporating active learning to
select a manageable and informative subset of test cases during training.
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Abstract. Layered learning is a decomposition and reuse technique that has 
proved to be effective in the evolutionary solution of difficult problems.  
Although previous work has integrated it with genetic programming (GP), 
much of the application of that research has been in relation to multi-agent  
systems. In extending this work, we have applied it to more conventional GP 
problems, specifically those involving Boolean logic. We have identified two 
approaches which, unlike previous methods, do not require prior understanding 
of a problem’s functional decomposition into sub-goals. Experimentation  
indicates that although one of the two approaches offers little advantage, the 
other leads to solution-finding performance significantly surpassing that of both 
conventional GP systems and those which incorporate automatically defined 
functions. 

1   Introduction 

A key obstacle to the more widespread application of evolutionary computing 
techniques is that although they are often successful in small, clearly-defined domains, 
they do not always extend well to more complex problems. The issue is often one of 
scalability, in that evolutionary methods capable of finding solutions to a low-order 
problem may not prove fruitful when applied to harder versions of the same problem. In 
an effort to address this, many researchers have investigated ways in which problems 
may be decomposed into smaller and simpler sub-tasks, the evolved solutions to which 
can then act as building blocks to solve the original, higher-level problem. 

In the field of genetic programming (GP), the most well-known approach to 
hierarchical evolution is Koza’s automatically defined functions (ADFs) [1-3]. In this, 
the structure of program trees is defined in such a way that each comprises a set of 
parameterised function branches and a main branch that may invoke those functions. 
The main branch and the function branches are all subject to the same evolutionary 
operators, so that they evolve in parallel. Koza and others (e.g. Rosca and Ballard [4]) 
have provided extensive evidence that problems are often solved more readily by 
using ADFs than they are without them. 

An alternative to the use of ADFs is the technique of Module Acquisition 
introduced by Angeline and Pollack [5,6]. In this approach, portions of individuals are 
randomly encapsulated as modules that are protected from the effects of the usual 
evolutionary operators. Modules are stored in a library, their value being determined 
by how often they are used by evolving individuals. 
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Other approaches are more systematic (i.e. less random) in the modularisation 
decisions that are made. The Adaptive Representation through Learning (ARL) 
algorithm [7], for example, identifies and extracts subroutines from offspring which 
exhibit the best improvements on the fitness of their parents. Similarly, Roberts et al 
[8] describe a two-stage scheme in which module selection is based on sub-tree 
survival and frequency. 

The importance of modularisation has also been recognised for genetic 
programming systems that use representations which differ from the tree structure 
conventionally employed. In his work on Cartesian Genetic Programming (CGP), 
Miller has described bottom-up techniques for building hardware circuits from simpler 
‘cells’ [9], and for encapsulation of modules in evolving CGP programs [10, 11]. 

In all of the work described above, the emphasis is on structure. That is, problem 
decomposition is enabled by providing environments that allow portions of program 
structures to be encapsulated as modules which can then be reused. A very different 
philosophy would be one in which the focus is on learning, whereby decomposition is 
guided by evolutionary pressure to solve pre-specified sub-problems, the genetic 
material so evolved then forming the foundation for solving the original problem. In a 
sense, what the system ‘learns’ from solving the simpler tasks equips it to deal with 
harder problems. Such a philosophy is embodied in the layered learning approach. 

In this paper, we investigate the use of layered learning in the context of genetic 
programming. The work we describe differs from previous research in at least two 
ways. Firstly, much of the existing work on layered learning has been performed with 
regard to its application in multi-agent systems. We wish to appraise its use in more 
conventional GP problems, in particular those involving Boolean logic. Secondly, 
layered learning as it is conventionally described involves pre-determination of the 
sub-task skills that should be useful in solving the higher-level problem; i.e. it 
necessitates some intelligent understanding of the problem domain and how it may be 
decomposed. By contrast, we aim to explore more mechanistic approaches which do 
not require such knowledge. 

In Section 2 we present a more detailed look at layered learning, and suggest a 
number of ways in which it may be realised in the context of GP. Sections 3 and 4 
describe our experimentation and results for two of these suggested layered learning 
approaches. These are followed by some conclusions and suggestions for further 
work. 

2   Layered Learning 

The layered learning paradigm as described by Stone and Veloso [12] has its roots in 
earlier work by researchers such as deGaris [13] and Asada et al [14]. Intended as a 
means for dealing with problems for which finding a direct mapping from inputs to 
outputs is intractable with existing learning algorithms, the essence of the approach is 
to decompose a problem into subtasks, each of which is then associated with a layer 
in the problem-solving process. The idea is that the learning achieved at lower layers 
when solving the simpler tasks directly facilitates the learning required in higher 
subtask layers. Stone and Veloso presented this paradigm in a domain-independent 
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general form, and then showed how it could be applied to the specific domain of 
simulated robotic soccer. 

Subsequent research showed how layered learning could be integrated with genetic 
programming (GP). In particular, the work of Gustafson and Hsu [15-17] has 
investigated how this combined approach performs when applied in the domain of keep-
away soccer, itself a sub-problem of robotic soccer. More recent work has employed the 
term incremental reuse using easy missions rather than layered learning [18]. 

In layered learning GP (LLGP), evolution begins in a first layer that proceeds 
towards the solution of a sub-task of the overall problem. The stopping criterion for 
this may be, say, that a solution for the sub-task is found, or that a certain number of 
generations has elapsed. The evolutionary process is then ramped up to the next layer, 
using the genetic material of the previous layer as the initial population to evolve 
towards the solution of the original high-level problem. Again, there are various ways 
in which genetic material may be propagated from one layer to the next. The 
population as it stands at the end of layer one may simply be re-cast as generation 
zero of the next layer; or the best individuals from the lower layer may be used 
exclusively to seed the higher layer. It may also be appreciated that the two-layer 
approach we have outlined could, in principle, be extended to multiple layers. 

The use of layered learning necessitates a prior step of decomposing a problem into 
tasks to be associated with the lower layers. There are at least three ways in which this 
can be done: 

1. Based on the original problem specification, identify a component sub-task. 
2. Make use of a subset of the test cases normally used to evaluate the fitness of 

individuals. 
3. Attempt to solve a lower-order form of the same problem. 

Much of the work described thus far in the literature adopts the first of these 
approaches. For example, in the research on keep-away soccer mentioned above, the 
high-level problem of keeping the opposing team from gaining possession of the ball 
assumes that it is useful in the lower layer to evolve accurate passing between team-
mates without an opposing player present. However, prior decomposition of a 
problem in this way requires an intelligent understanding of the problem at hand, plus 
at least some insight into the components that would be useful in forming a solution. 
For the work we describe here, we are more interested in the other two approaches 
enumerated above, not only because they have received comparatively little attention 
to date, but also because the means for realising them is far more mechanical. The 
next two sections will explore each of these two techniques in turn. 

Existing work on layered learning also tends to have a focus in the area of multi-
agent systems. We wish to stray from this by concentrating on more ‘conventional’ 
GP problems. Again, this seems a largely unexplored area for layered learning, 
although a related layer-based system has recently been described for solving 
symbolic regression problems [19]. The focus of our experimentation in the next 
sections will be on the even-parity and majority-on Boolean GP problems. These have 
been chosen not only because they are well-known and extensively studied, but also 
because scalability is a key issue in such problems: although low-order versions are 
relatively easy to solve, they become rapidly less tractable as the order increases. 
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3   Layered Learning Using Testing Subsets 

In the even-4 parity problem, the aim is to evolve a Boolean design which returns a 
TRUE output if the number of logic one values on its 4 inputs D0-D3 is even, FALSE 
otherwise. The function set for the problem is F={AND, OR, NAND, NOR}. In our 
GP implementation we have used steady state evolution with 5-candidate tournament 
selection. The population size is 500 and is initialised using the ramped half-and-half 
approach [1] with no duplicates. The probability of crossover is 0.9, and there is no 
mutation. 

As mentioned in the Introduction, the most common approach to decomposition 
and reuse in genetic programming is Koza’s automatically defined functions (ADFs), 
and this provides an additional benchmark against which to test the effectiveness of 
layered learning. In implementing ADFs, we have followed Koza’s precept [1] of 
enabling the evolution of one subroutine for each of the arities from 2 up to n-1, 
where n is the size of the terminal set. Hence, for the even-4 parity problem, we allow 
for one subroutine with 2 parameters, and a second with 3 parameters (although not 
all formal parameters need be used within the body of these functions). 

In comparing approaches, we make use of the success rate at finding solutions over 
100 runs, each of 50 generations. We also make use of Koza’s metric of 
computational effort [1], defined as the minimum number of individuals that must be 
processed to achieve a 0.99 probability that a solution will be found. Table 1 
compares each of these figures for a standard GP system and an ADF-based GP 
system in solving the even-4 parity problem. 

Table 1. Performance figures for standard GP and ADF-based GP in solving even-4 parity 

Approach Success rate (%) Comp. Effort 
Standard GP 14 700,000 
ADF GP 43 97,500 

 
In the first of our approaches to layered learning, we divide the evolutionary 

process into two layers, the first of which attempts to solve the even-4 parity problem 
for a subset of the available test cases, the second layer then using this genetic 
material to work towards solving the problem on all test cases. In moving from one 
layer to the next, the whole of the population at the end of layer 1 becomes the initial 
population of the upper layer. No ADFs are involved in the adapted system. 

For even-4 parity, exhaustive testing using all combinations of the four inputs {D0, 
D1, D2, D3} requires 16 test cases. For our first attempt at layered learning, the lower 
layer will work towards evolving solutions for just 4 of these test cases. Moreover, 
this subset corresponds to the 4 combinations of values on D0 and D1, so that any 
solution produced in layer 1 is in fact a solution to the even-2 parity problem on the 
two inputs {D0, D1}. 

One of the first things that experimentation revealed was that the solution of the 
layer 1 problem requires very little effort. Indeed, programs that pass all 4 test cases 
were often found in the initial population. The consequence of this is that the initial 
population for layer 2 was often very similar to that which would have been obtained 
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had layered learning not been in place. This was reflected in the performance of the 
layered learning system, which hardly differed from that of the conventional GP 
system. To combat this, the system was altered so that evolution in layer 1 proceeds 
until a given saturation level of solutions is obtained in the population. Layer 2 
remains unchanged in that it is terminated when a single solution to the even-4 parity 
problem is found. Table 2 gives the performance of the layered learning GP (LLGP) 
system for a range of layer 1 solution saturation levels. 

Table 2. Performance of LLGP system on even-4 parity, solving for 4 test cases in layer 1 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

1 19 440 10 14 560 
2 17 486 20 9 975 
3 12 637 30 7 1632 
4 15 506 40 5 2070 
5 15 460 50 6 988 

 
It can be seen from this table that, when layer 1 is allowed to continue until 

relatively small saturation levels of solutions are obtained (less than 10%) we achieve 
modest improvements over the conventional GP approach. The best figures occur at 
the 1% saturation level, where the probability of success is 19% rather than 14%, and 
the computational effort is 440,000 rather than 700,000. For saturation levels above 
10%, the layered learning approach fares rather more poorly than standard GP. 
Moreover, in comparison to the ADF approach, the performance is markedly worse 
for all saturation levels. 

In a further set of experiments, the amount of work performed in layer 1 was 
increased, so that instead of finding programs working for just 4 test cases, a total of 8 
cases were applied, the aim being to get even closer to a full solution at the end of 
layer 1. The inputs used covered all combinations of inputs for {D0, D1, D2}, so that 
solutions in layer 1 corresponded to even-3 parity programs for those inputs. To avoid 
spending too much time in the lower layer, a cap of 15 generations was placed on it. 
Table 3 shows the performance results for a range of layer 1 saturations. 

Again, the lower saturation percentages resulted in better performance than higher 
levels, but the figures were nowhere near as good as the ADF results, and were in fact 
mostly worse than those achieved in the standard GP approach. 

Table 3. Performance of LLGP system on even-4 parity, solving for 8 test cases in layer 1 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

1 12 814 10 6 1620 
2 10 924 20 8 1232 
3 14 576 30 6 1462.5 
4 12 780 40 7 1200 
5 9 1232 50 7 1130 
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Although the lower layer is generally used to solve a single sub-task, there is no 
reason why it cannot be used to evolve programs for more than one sub-problem 
simultaneously. When decomposition is based on a subset of the available test cases, 
it is possible to have several such subsets, and to work towards evolving given 
saturation levels of programs for each of those subsets. In the next set of experiments 
we have done precisely that. Dividing the 16 test cases for even-4 parity into two, we 
evolve half the population towards solutions for the lower 8 test cases, and the other 
half of the population towards programs that handle the other 8 test cases. As before, 
a 15-generation cap is applied. The two halves of the population are then combined to 
give the initial population for the upper layer. At this stage, it would in principle be 
possible to bias the selection of mates according to their complementary strengths 
[20], although we have chosen instead to allow evolution in layer 2 to proceed in the 
usual way. The results are summarised in Table 4. 

Table 4. Performance of LLGP on even-4 parity, with test cases divided into two subsets 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

1 8 960 10 9 992 
2 6 1650 20 7 1632 
3 12 560 30 6 1620 
4 14 744 40 10 1012 
5 10 1029 50 9 1127 

 
Again the results are disappointing. In general, the dual sub-task approach 

performs worse than the standard GP approach without layered learning, and 
considerably worse than the ADF-based GP system. 

In the majority-on problem, the aim is to evolve a program that is capable of 
determining whether the majority of its Boolean inputs are set to logic-one. Thus, in 
the 5-input version, a solution will deliver TRUE if three or more inputs are logic-
one, and FALSE otherwise. The function set for the problem is F={AND, OR, NOT}. 
All other parameters for the problem as we have implemented it are the same as those 
given for the even-parity problem. In creating the ADF version of the GP code, we 
have again used Koza’s rule of thumb, so that for the majority-5-on problem there are 
three ADFs, with arities 2, 3 and 4. Table 5 compares the performance of standard GP 
with the ADF version. As can be seen, an unusual characteristic of this problem is that 
the performance of the ADF version is substantially worse than that of the 
conventional GP approach. 

Table 5. Performance figures for standard GP and ADF-based GP in solving majority-5-on 

Approach Success rate (%) Comp. Effort 
Standard GP 62 49,000 
ADF GP 7 945,000 
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Table 6 shows the performance results obtained when layered learning is 
introduced, with layer 1 solving for 8 out of the 32 test input cases. As with even-
parity, layered learning with test case subsets seems to offer nothing in the way of 
improving performance. Only two of the saturation levels (2% and 5%) give a higher 
probability of success than the standard GP system, but in each case the solutions are 
found later in the runs, and therefore require greater computational effort. 

Table 6. Performance of LLGP system for majority-5-on, solving for 8 test cases in layer 1 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

L1 Sat 
level (%) 

Success 
rate (%) 

Comp effort 
(x1000) 

1 57 63 10 58 70 
2 67 63 20 58 64 
3 58 72 30 46 119 
4 60 52.5 40 45 119 
5 72 63 50 42 117 

4   Layered Learning Using Simplified Problems 

The second approach to layered learning we wish to consider involves the 
simplification of problems in such a way that layer 1 attempts to solve a lower-order 
version of the original problem. In effect, it directly confronts the scalability issue 
mentioned in the Introduction. For Boolean problems of the nature we are 
investigating in this paper, such lower-level learning is readily defined. In the case of 
the even-4 parity problem, evolution in layer 1 can work towards solving either the 
even-2 or even-3 parity problems; for majority-5-on, layer 1 can be devoted to solving 
the simpler majority-3-on problem. 

A follow-up issue is how best to handle the transfer of genetic material from layer 1 
to layer 2, and here we have chosen to take a different path from that used in the 
previous section. In the experiments described in that section, working solutions to a 
subset of test cases could not in general be parameterised to make them work for other 
test subsets. By contrast, when we solve, say, the even-2 parity problem, we evolve a 
general solution that could apply to any pair of inputs. An even-2 parity program that 
is correct on {D0, D1} can be turned into an even-2 parity program for {D0, D3} 
simply by replacing all occurrences of D1 in the program by D3. In other words, we 
can regard layer 1 as solving the even-2 problem for the arbitrary inputs {PAR0, 
PAR1} where PAR0 and PAR1 can be regarded as formal parameters. This in turn 
suggests that an appropriate mechanism for layer transfer might be to encapsulate the 
layer 1 solution as a parameterised module that can be handed on to layer 2 for 
possible invocation. A further implication is that layer 1 can be terminated as soon as 
one solution to the lower-order problem is found, since there is little point in trying to 
evolve multiple modules that are structurally different and yet functionally identical. 

In more detail, the layered learning process we propose works like this. The initial 
population is defined in such a way that each member consists of a single function 
branch and a main execution branch. In layer 1, evolution focuses solely on  
the function, with the aim being to evolve a solution to a lower-order version of the 
problem (e.g. even-2 parity or majority-3-on). As soon as a solution is found, the 
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resulting function is propagated to all other individuals in the population and we enter 
layer 2. In this upper layer, evolutionary effort shifts entirely to the main execution 
branch of the programs, which are free to make use of the function as evolution 
proceeds towards generating a solution to the higher-order problem (e.g. even-4 parity 
or majority-5-on). 

Table 7 shows the performance results for the even-4 parity problem. The table 
compares the results obtained from using the layered learning approach we have just 
outlined with those obtained from both standard GP and GP with ADFs. Two versions 
of the layered learning system were tried: one in which the lower layer works on the 
even-2 parity problem, and one in which the lower layer evolves an even-3 parity 
solution. It should be noted that the computational effort for the layered learning 
approaches is calculated over both layers, and not just the upper layer. 

Table 7. Comparison of LLGP with unlayered (monolithic) GP for even-4 parity 

Approach Success rate (%) Comp. Effort 
Monolithic GP 14 700,000 
Monolithic GP with ADFs 43 97,500 
LLGP using even-2 95 12,000 
LLGP using even-3 78 45,000 

 
It is clear that the layered learning approach using simplified problems 

dramatically out-performs conventional and ADF-based GP. When even-2 parity is 
used as the sub-problem to be tackled in layer-1, the success rate is almost 7 times 
greater than that achieved for standard GP, and more than twice as great as that 
attained for ADF-based GP; moreover, the computational effort is less than 2% of that 
required for conventional GP, and only about 12% of that required for GP with ADFs. 

The success of the approach for even-4 parity encouraged us to try it for the more 
difficult even-5 parity problem. The only changes to the problem parameters are an 
additional input D4, and an increase in population size from 500 to 2000. As before, 
we experimented with versions of the layered learning approach using both even-2 
and even-3 parity in the lower layer. The results are compared in Table 8. 

Table 8. Comparison of LLGP with monolithic GP for even-5 parity problem 

Approach Success rate (%) Comp Effort 
Monolithic GP 0 - 
Monolithic GP with ADFs 32 864,000 
LLGP using even-2 92 48,000 
LLGP using even-3 64 168,500 

 
Like Koza [1], we found that discovering a solution to the even-5 parity problem 

using standard GP is extremely difficult. By incorporating an ADF mechanism we 
were able to get much better results, with a success rate of 32%. Again, however, the  
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layered learning system using lower-order sub-tasks performs even better. This is 
particularly so where even-2 parity is solved in layer 1, leading to a success rate that 
is almost triple that of the ADF-based GP system, and a computational effort ratio of 
just 5.5%. 

The trend continues with higher orders. Table 9 shows the results for the even-6 
parity problem, using a population size of 2000. For the ADF-based GP approach, the 
number of ADFs has been restricted to three. This approach still finds solutions, but is 
beginning to struggle. As before, both versions of the layered learning approach 
perform much better.  

Table 9. Comparison of LLGP with monolithic GP for even-6 parity problem 

Approach Success rate (%) Comp Effort 
Monolithic GP 0 - 
Monolithic GP with ADFs 16 1,056,000 
LLGP using even-2 70 120,000 
LLGP using even-3 36 570,000 

 
Jumping ahead slightly to the even-8 parity problem, the ADF approach fails to 

find any solutions when the population size remains at 2000, while the LLGP system 
which solves for even-2 parity in the lower layer goes on to find even-8 parity 
solutions at a rate of 25%, and even-9 parity programs with a success rate of 15%. 

For the majority-5-on problem, the lower layer was configured to solve the 
majority-3-on problem. The performance results are given in Table 10. For ease of 
comparison, the figures for standard GP and ADF-based GP in Table 5 are repeated 
here. 

Table 10. Comparison of LLGP with monolithic GP for majority-5-on problem 

Approach Success rate (%) Comp Effort 
Monolithic GP 62 49,000 
Monolithic GP with ADFs 7 945,000 
LLGP using maj-3 100 6,000 

 
Again, the performance improvement is dramatic. Using the layered learning ap-

proach on simplified problems, every single run evolved a solution to the majority-5-
on problem. Moreover, 97% of the solutions were found before generation 7, resulting 
in a computational effort that is very small in comparison to the other approaches. 

As we did with even-parity, we have also tried the approach with a higher order 
version of the majority-on problem – this time based on 7 inputs, with the lower layer 
solving majority-3-on. Because of the poor showing of the ADF-based GP system on 
the majority-5 problem, this method was not attempted again, but Table 11 shows the 
performance of the layered learning system against standard GP for the majority-7-on 
problem using a population size of 1000. 
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Table 11. Comparison of LLGP with monolithic GP for majority-7-on problem 

Approach Success rate (%) Comp Effort 
Monolithic GP 18 1,176,000 
LLGP using maj-3 90 54,000 

5   Conclusions 

In this paper we have investigated the application of layered learning techniques to 
Boolean logic problems. The two approaches we have tried are both reasonably 
mechanistic, in that they require no deep a priori analysis of the problem’s 
decomposability. The first of these approaches, which involves attempting to solve 
subsets of the fitness test cases to provide a population base from which to solve the 
original problem, appears to be disappointing in its effects on genetic programming 
performance. The second approach, in which solutions to a lower-order version of the 
problem are solved and encapsulated as modules for use in solving the original 
problem, seems a lot more promising, and the results yielded by the experiments we 
performed show impressive performance gains. 

There are a number of possible reasons why layered learning with simplified 
problems performs so well in comparison to the standard ADF approach. Firstly, in a 
conventional ADF-based system, the architecture of solutions is largely guesswork. It 
is not known in advance how many functions may be useful, nor how many 
parameters they require. By contrast, the layered learning approach considers 
populations in which every individual has precisely one function branch for which the 
arity is pre-determined by the nature of the sub-task being solved in the lower layer. 
Secondly, the only evolutionary pressure in an ADF-based GP system is that which 
pertains to the fitness of the individual as a whole, and any evolutionary changes to 
functions have to be evaluated within that wider context. In layered learning, on the 
other hand, evolutionary pressure is applied at a more focused level, with the function 
itself receiving individual guidance towards a solution. Thirdly, the computational 
effort in an ADF system may be thinly spread, with the main execution branch and 
the function-defining branches evolving in parallel. This means that evolutionary 
operations may be applied to functions which are never invoked or never develop into 
anything useful, or they may involve changes to the main branch for which evaluation 
is meaningless since they involve calls to functions which are not yet fully formed. 
Again, the situation for layered learning is different: all of the computational effort is 
firstly directed at the single function until it evolves into something potentially useful, 
and then it is directed exclusively at the main branch. 

Despite this success for at least one of the two layered learning approaches, the 
experimentation we have performed so far has been limited to the domains of the 
even-parity and majority-on problems. For the future, we plan to investigate its 
efficacy on other types of problem, including those which are not so obviously 
scalable (e.g. navigation problems such as the Santa Fe artificial ant trail). We also 
plan to examine the effects of extending the approach to include multiple functions 
for handling several sub-tasks, and multiple layers for computationally difficult 
problems. 
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Abstract. A Genetic Programming based boosting ensemble method
for the classification of distributed streaming data is proposed. The ap-
proach handles flows of data coming from multiple locations by building
a global model obtained by the aggregation of the local models coming
from each node. A main characteristics of the algorithm presented is its
adaptability in presence of concept drift. Changes in data can cause seri-
ous deterioration of the ensemble performance. Our approach is able to
discover changes by adopting a strategy based on self-similarity of the
ensemble behavior, measured by its fractal dimension, and to revise itself
by promptly restoring classification accuracy. Experimental results on a
synthetic data set show the validity of the approach in maintaining an
accurate and up-to-date GP ensemble.

1 Introduction

Ensemble learning algorithms [1,5,2,8] based on Genetic Programming (GP)
[11,16,12,3,7] have been gathering an increasing interest in the research commu-
nity because of the improvements that GP obtains when enriched with these
methods. These approaches have been applied to many real world problems
and assume that all training data is available at once. However, in the last
few years, many organizations are collecting a tremendous amount of data that
arrives in the form of continuous stream. Credit card transactional flows, tele-
phone records, sensor network data, network event logs are just some examples
of streaming data. Processing these kind of data poses two main challenges to
existing data mining methods. The first is relative to the performance and the
second to adaptability.

Many data stream algorithms have been developed over the last decade for
processing and mining data streams that arrive at a single location or at multiple
locations. Some of these algorithms, known as centralized data stream mining
(CDSM) algorithms, require that the data be sent to one single location before
processing. These algorithms, however, are not applicable in cases where the
data, computation, and other resources are distributed and cannot or should
not be centralized for a variety of reasons e.g. low bandwidth, security, privacy
issues, and load balancing. In many cases the cost of centralizing the data can
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be prohibitive and the owners may have privacy constraints. Unlike the tradi-
tional centralized systems, the distributed data mining (DDM) systems offer a
fundamental distributed solution to analyze data without necessarily demanding
collection of the data to a single central site. Typically DDM algorithms involve
local data analysis to extract knowledge structures represented in models and
patterns and the generation of a global model through the aggregation of the
local results.

The ensemble paradigm is particularly suitable to support the DDM model.
However, to extract knowledge from streaming information the ensemble must
adapt its behavior to changes that occur into the data over time.

Incremental or online methods [9,18] are an approach able to support adaptive
ensembles on evolving data streams. These methods build a single model that
represents the entire data stream and continuously refine their model as data
flows. However, maintaining a unique up-to-date model might preclude valuable
information to be used since previously trained classifiers have been discarded.
Furthermore, incremental methods are not able to capture new trends in the
stream. In fact, traditional algorithms assume that data is static, i.e. a concept,
represented by a set of features, does not change because of modifications of the
external environment. In the above mentioned applications, instead, a concept
may drift due to several motivations, for example sensor failures, increases of
telephone or network traffic. Concept drift can cause serious deterioration of the
ensemble performance and thus its detection allows to design an ensemble that
is able to revise itself and promptly restore its classification accuracy.

Another approach to mine evolving data streams is to capture changes in data
by measuring online accuracy deviation over time and deciding to recompute the
ensemble if the deviation has exceeded a pre-specified threshold. These methods
are more effective and allow to handle the concept drift problem in order to
capture time-evolving trends and patterns in the stream.

In this paper we a propose a distributed data stream mining approach based
on the adoption of an ensemble learning method to aggregate models trained
on distributed nodes, and enriched with a change detection strategy to reveal
changes in evolving data streams. We present an adaptive GP boosting ensemble
algorithm for classifying data streams that maintains an accurate and up-to-
date ensemble of classifiers for continuous flows of data with concept drifts.
The algorithm uses a DDM approach where not only data is distributed, but
also the data is non-stationary and arriving in the form of multiple streams.
The method is efficient since each node of the network works with its local
data, and communicate the local model computed with the other peer-nodes
to obtain the results. A main characteristics of the algorithm is its ability to
discover changes by adopting a strategy based on self-similarity of the ensemble
behavior, measured by its fractal dimension, and to revise itself by promptly
restoring classification accuracy. Experimental results on a synthetic data set
show the validity of the approach in maintaining an accurate and up-to-date GP
ensemble.
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The paper is organized as follows. The next section recall the ensemble tech-
nique. Section 3 presents the adaptive GP ensemble method, and the technique
proposed for change detection. In section 4, finally, the results of the method on
a synthetic data set are presented.

2 Ensemble for Streaming Data

An ensemble of classifiers is constituted by a set of predictors that, instead of
yielding their individual decisions to classify new examples, combine them to-
gether by adopting some strategy [2,8,5,1]. Boosting is an ensemble technique in-
troduced by Schapire and Freund [8] for boosting the performance of any “weak”
learning algorithm, i.e. an algorithm that “generates classifiers which need only
be a little bit better than random guessing”. The boosting algorithm, called
AdaBoost, adaptively changes the distribution of the training set depending on
how difficult each example is to classify. Given the number T of trials (rounds) to
execute, T weighted training sets S1, S2, . . . , ST are sequentially generated and T
classifiers C1, . . . , CT are built to compute a weak hypothesis ht. Let wt

i denote
the weight of the example xi at trial t. At the beginning w1

i = 1/n for each xi.
At each round t = 1, . . . , T , a weak learner Ct, whose error εt is bounded to a
value strictly less than 1/2, is built and the weights of the next trial are obtained
by multiplying the weight of the correctly classified examples by βt = εt/(1− εt)
and renormalizing the weights so that Σiw

t+1
i = 1. Thus “easy” examples get

a lower weight, while “hard” examples, that tend to be misclassified, get higher
weights.

In the last few years many approaches to processing data streams through
classifier ensembles have been proposed. Street and Kim [17] build individual
classifiers from chunks of data read sequentially in blocks. They are then com-
bined into an ensemble of fixed size. When the ensemble is full, new classifiers
are added only if they improve the ensemble’s performance. Concept drift is
treated by relying on the replacement policy of the method. Wang et al. [19]
propose a framework for mining concept drifting data streams using weighted
ensemble classifiers. The classifiers are weighted by estimating the expected pre-
diction error on the test set. The size K of the ensemble is maintained constant
by considering after each block of data the first top K weighted classifiers. Chu
and Zaniolo [4] present a boosting algorithm modified to classify data streams
able to handle concept drift via change detection. The boosting algorithm trains
a new classifier on a data block whose instances are weighted by the ensemble
built so far. Changes are discovered by modelling the ensemble accuracy as a
random variable and performing a statistical test. When a change is detected the
weights of the classifiers are reset to 1 and the boosting algorithm restarts. The
ensemble is updated by substituting the oldest predictor with the last created.

As regards Genetic Programming, to the best of our knowledge, there is not
any approach in the literature that cope with the extension of GP ensemble
learning techniques to deal with streaming data. In the next section our adaptive
GP boosting ensemble method is described.
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3 Adaptive GP Boosting Ensemble

In this section the description of the algorithm StreamGP is given. The method
builds an ensemble of classifiers by using, at every round of the boosting proce-
dure, the algorithm CGPC [6] on each node to create a population of predictors.
The ensemble is then used to predict the class membership of new streams of data
and updated only when concept drift is detected. This behavior has a twofold
advantage. The first is that it saves a lot of computation because the boosting
algorithm is executed only if there is a significant deterioration of the ensem-
ble performance. The second is that the ensemble is able to promptly adapt
to changes and restore ensemble accuracy. Change identification is handled at
every block. This means that each data block is scanned at most twice. The
first time the ensemble predicts the class label of the examples contained in that
block. The second scan is executed only if the ensemble accuracy on that block
is below the value obtained so far. In such a case, in fact, the boosting algorithm
is executed to obtain a new set of classifiers to update the ensemble.

3.1 StreamGP

StreamGP is an adaptive GP boosting ensemble algorithm for classifying data
streams that applies the boosting technique in a distributed hybrid multi-island
model of parallel GP. The hybrid model modifies the multi-island model by
substituting the standard GP algorithm with a cellular GP algorithm. In the
cellular model each individual has a spatial location, a small neighborhood and
interacts only within its neighborhood. In our model we use the CGPC algorithm
in each island. CGPC generates a classifier as a decision tree where the function
set is the set of attribute tests and the terminal set are the classes. When a tuple
has to be evaluated, the function at the root of the tree tests the corresponding
attribute and then executes the argument that outcomes from the test. If the
argument is a terminal, then the class name for that tuple is returned, otherwise
the new function is executed. CGPC generates a classifier as follows. At the
beginning, for each cell, the fitness of each individual is evaluated. The fitness
is the number of training examples classified in the correct class. Then, at each
generation, every tree undergoes one of the genetic operators (reproduction,
crossover, mutation) depending on the probability test. If crossover is applied,
the mate of the current individual is selected as the neighbor having the best
fitness, and the offspring is generated. The current tree is then replaced by the
best of the two offsprings if the fitness of the latter is better than that of the
former. After the execution of the number of generations defined by the user,
the individual with the best fitness represents the classifier.

The boosting schema is extended to cope with continuous flows of data and
concept drift. Let M be the fixed size of the ensemble E = {C1, . . . , CM}. Once
the ensemble has been built, by running the boosting method on a number
of blocks, the main aim of the adaptive StreamGP is to avoid to train new
classifiers as new data flows in until the performance of E does not deteriorate
very much, i.e. the ensemble accuracy maintains above an acceptable value.
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Given a network constituted by p nodes, each having a streaming data set
1. E = ∅
2. F = ∅
3. for j = 1 . . . p (each island in parallel)
4. while (more Blocks)
5. Given a new block Bk = {(x1, y1), . . . (xn, yn)}, xi ∈ X

with labels yi ∈ Y = {1, 2, . . . , d}
6. evaluate the ensemble E on Bk and let fk be the fitness value obtained
7. if | F |< H
8. F = F ∪ fk

9. else F = {F − {f1}} ∪ fk

10. compute the fractal dimension Fd of the set F
11. if (Fd(F ) < τ)
12. Initialize the subpopulation Qi with random individuals
13. Initialize the example weights wi = 1

n
for i = 1, . . . , n

14. for t = 1, 2, 3, . . . , T (for each round of boosting)
15. Train CGPC on the block Bk using a weighted fitness

according to the distribution wi

16. Learn a new classifier Cj
t

17. Exchange the p classifiers C1
t , . . . , Cp

t obtained among the p processors
18. Update the weights
19. E = E ∪ {C1

t , . . . , Cp
1 }

20. end for
21. if (| E |> M) prune the ensemble E
22. end if
23. end while
24. end parallel for

Fig. 1. The StreamGP algorithm

To this end, as data comes in, the ensemble prediction is evaluated on these
new chunks of data, and augmented misclassification errors, due to changes in
data, are detected by using the notion of fractal dimension, described in the
next section, to the set F = {f1, . . . , fH} containing the last H fitness values
obtained by evaluating the ensemble on the blocks. When an alarm of change
is revealed, the GP boosting schema generates new classifiers, thus a decision
on which classifiers must be discarded from the ensemble, because no longer
consistent with the current concepts, has to be done. A simple technique, often
adopted in many existing method, and also in our approach, is to eliminate the
older predictors and substitute them with the most recent ones.

The description of the algorithm in pseudo-code is shown in figure 1. Let a
network of p nodes be given, each having a streaming data set. As data continu-
ously flows in, it is broken in blocks of the same size n. Every time a new block
Bk of data is scanned, the ensemble E obtained so far is evaluated on Bk and
the fitness value obtained fk is stored in the set F (steps 5-6). F = {f1, . . . , fH}
contains the last H evaluations of E on the data blocks, that is the fitness value
set on which the fractal dimension Fd(F ) is computed (step 10). If Fd(F ) is
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below a fixed threshold value τ (step 11), then it means that a change in data
is detected, thus the ensemble must adapt to these changes by retraining on
the new data set. To this end the boosting standard method is executed for
a number T of rounds (steps 12-20). For every node Ni, i = 1, . . . , p of the
network, a subpopulation Qi is initialized with random individuals (step 12) and
the weights of the training instances are set to 1/n, where n is the data block
size (step 13). Each subpopulation Qi is evolved for T generations and trained
on its local block Bk by running a copy of the CGPC algorithm (step 15). Then
the p individuals of each subpopulation (step 16) are exchanged among the p
nodes and constitute the ensemble of predictors used to determine the weights
of the examples for the next round (steps 17-19). If the size of the ensemble is
more than the maximum fixed size M , the ensemble is pruned by retiring the
oldest T × p predictors and adding the new generated ones (step 21).

3.2 Change Detection

An important step of the above described algorithm is the detection of changes
in the data distribution that causes significant deterioration of the ensemble ac-
curacy. In this section we propose to use the notion of fractal dimension to dis-
cover concept drift in streaming data. Fractals [14] are particular structures that
present self-similarity, i. e. an invariance with respect to the scale used. The frac-
tal dimension of fractal sets can be computed by embedding the data set in a
d-dimensional grid whose cells have size r and computing the frequency pi with
which data points fall in the i-th cell. The fractal dimension D [10] is given by
the formula D = 1

q−1

log
∑

i pq
i

log r . Among the fractal dimensions, the correlation di-
mension, obtained when q = 2 measures the probability that two points chosen
at random will be within a certain distance of each other. Changes in the corre-
lation dimension mean changes in the distribution of data in the data set, thus
it can be used as an indicator of concept drift. Fast algorithms exist to compute
the fractal dimension. We applied the FD3 algorithm of [15] that implements the
box counting method [13]. In order to employ the fractal dimension concept to
our approach, we proceed as follows. Suppose we have already scanned k blocks
B1, . . . , Bk and computed the fitness values {f1, . . . , fk} of the ensemble on each
block. Let F = {f1, . . . , fH} be the fitness values computed on the most recent H
blocks, and Fd(F ) be the fractal dimension of F . When the block Bk+1 is exam-
ined, let fk+1 be the fitness value of the GP ensemble on it. If Fd(F ∪{fk+1}) < τ ,
where τ is a fixed threshold, then the fractal dimension shows a decrease. This
means that data distribution has been changed and the ensemble classification
accuracy drops down. This approach has been shown to be very effective experi-
mentally. In the next section we show that when the misclassification error of the
ensemble increases, the fractal dimension drops down.

4 Experimental Results

In this section we study the effectiveness of our approach on a synthetic data set
with two classes introduced in [4]. Geometrically the data set is a 5-dimensional
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unit hypercube, thus an example x is a vector of 5 features xi ∈ [0, 1]. The class
boundary is a hyper-sphere of radius r and center c. If an example x is inside
the sphere then it is labelled class 1, class 0 otherwise. Furthermore, the data
set contains a noise level of 5% obtained by flipping randomly the class of the
tuples from 0 to 1 and viceversa, with probability 0.05.

The experiments were performed using a network composed by 5 1.133 Ghz
Pentium III nodes having 2 Gbytes of Memory, interconnected over high-speed
LAN connections. On each node a data set consisting of 360k tuples was gen-
erated by using as center the point (0.5, 0.5, 0.5, 0.5, 0.5) and radius 0.25. The
algorithm receives blocks of size 1k. Every 40k tuples the data set is perturbed
by moving the center of 0.15 in a randomly chosen direction. This generates the
migration of many points from class 0 to class 1 and viceversa. Thus, at blocks
40, 80, 120, 160 and so, i.e. each 40 blocks, concept drift is forced by provok-
ing a deterioration of the ensemble performance that should be restored by our
algorithm.

On each node a population of 100 predictors is evolved with a probability
of 0.1 for reproduction, 0.8 for crossover and 0.1 for mutation. The maximum
depth of the new generated subtrees is 4 for the step of population initialization,
17 for crossover and 2 for mutation. We used T=5 rounds for the boosting, each
round executing for 100 generations. Thus CGPC is trained on each block for
500 generations. At the end of the 5 rounds, each node produces 5 predictors,
one for round, thus, since we have 5 nodes, 25 new classifiers are generated every
time the fractal dimension diminishes below the threshold τ . This means that
the oldest 25 classifiers are substituted by these new ones.

The experiments aimed at evaluating the ability of the approach in discov-
ering concept drift and in restoring classification accuracy. Figure 2 reports the
fitness, i.e the classification accuracy, and the value of the fractal dimension re-
spectively when an ensemble of size 100 (on the left) and 200 (on the right) are
used. The figure points out the abrupt deterioration of classification accuracy
every 40 blocks of data (solid lines) and the corresponding decrease of the frac-
tal dimension (dotted lines), thus allowing to reveal the change and to retrain
the ensemble on the new block. Figures 2(a),(c),(e),(g) and (b),(d),(f),(h) show
the effect of different values of the threshold τ , i.e. 0.80, 0.85, 0.87, 1.0, when the
ensemble size is 100 and 200 respectively. The horizontal solid line on each figure
indicates the τ value. The figures point out that, independently the value of τ ,
a larger ensemble is able to restore classification accuracy more quickly. Fur-
thermore, higher the value of τ , faster the detection of change and more quickly
the ensemble performance fixed up. In fact, every time the fractal dimension is
below τ , the algorithm executes the boosting method, steps 12-21 in figure 1,
and updates the ensemble with the new classifiers obtained by retraining CGPC
on the new data set. If τ = 1 the retraining is executed at each block, that is it
is assumed that changes occur at each new data block. Thus a higher value of τ
implies a heavier computational load for the algorithm but a better classification
accuracy. Its choice must take into account the trade-off between these two fac-
tors. In table 1 the percentage of blocks on which the boosting phase is executed
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Fig. 2. Fitness (solid lines) and Fractal Dimension (dotted lines) with ensemble size
100, on the left, and 200 on the right, for different thresholds of Fd (a),(b): 0.80, (c),(d):
0.85, (e), (f): 0.87 and (g), (h): 1.0
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and the corresponding mean classification accuracy are reported. For example, a
0.80 value for τ permits to save about 50% of computation, maintaining a good
accuracy. An ensemble of 200 classifiers ulteriorly reduces the computational
load since the retraining is executed for nearly the 35% of blocks. It is worth to
note that the gain in accuracy when the boosting method is executed for each
new block (last row of table 1) is marginal. For example, an ensemble of 200
predictors that is retrained at each block obtains an accuracy of 84.78, while
if it is retrained on about the half of blocks, the accuracy is 84.37. This result
substantiate the validity of the approach proposed.

Table 1. Percentage of blocks used in the training phase for different values of fractal
threshold, and average classification accuracy

100 classifiers 200 classifiers
τ Blocks Accuracy Blocks Accuracy

0.80 47.21 % 83.28 % 34.90 % 83.73 %
0.85 82.72 % 84.18 % 54.84 % 84.37 %
0.87 93.69 % 84.36 % 82.11 % 84.69 %
1 100.0% 84.42% 100.0% 84.78 %

5 Conclusions

The paper presented a GP boosting ensemble method for the classification of dis-
tributed streaming data that comes from multiple locations. The method is able
to handle concept drift via change detection. Changes are discovered by adopt-
ing a strategy based on self-similarity of the ensemble behavior, measured by its
fractal dimension. This allows the ensemble to revise itself and promptly restore
classification accuracy. Experimental results on a synthetic data set showed the
validity of the approach in maintaining an accurate and up-to-date GP ensem-
ble. Future work aims at studying parameter tuning and to test the approach
on real streaming data sets.
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Abstract. TCP is one of the fundamental components of the Internet.
The performance of TCP is heavily dependent on the quality of its round-
trip time (RTT) estimator, i.e. the formula that predicts dynamically the
delay experienced by packets along a network connection. In this paper we
apply multi-objective genetic programming for constructing an RTT esti-
mator. We used two different approaches for multi-objective optimization
and a collection of real traces collected at the mail server of our University.
The solutions that we found outperform the RTT estimator currently used
by all TCP implementations. This result could lead to several applications
of genetic programming in the networking field.

1 Introduction

Genetic programming is a powerful framework for coping with problems in which
finding a solution is difficult but evaluating the performance of a candidate solu-
tion is reasonably simple [12,5]. Many engineering problems exhibit this feature
and may thus greatly benefit from genetic programming techniques. Real-world
engineering problems, on the other hand, can only be solved based on a trade-
off amongst multiple and often conflicting performance objectives. Several ap-
proaches for such multi-objective optimization problems have been proposed in
evolutionary computing [7], mostly for genetic algorithms [10,16,15] and more
recently also for genetic programming [9,14].

In this paper we apply two techniques for multi-objective optimization in
genetic programming to an important real-world problem in the Internet domain:
the construction of a round-trip time (RTT) estimator for TCP [11,4,13]. TCP
(Transmission Control Protocol) is a fundamental component of the Internet as
it constitutes the basis for many applications of utmost importance, including
the World Wide Web and the e-mail just to mention only the most widely known.
The TCP implementation internally maintains a dynamic estimator of the round-
trip time, i.e., the time it takes for a packet to reach the other endpoint of a
connection and to come back. This component has a crucial importance on the
overall TCP performance [11,4]. The construction of an RTT estimator is a
particularly challenging problem for genetic programming because, as we shall
see in more detail, an RTT estimator must satisfy two conflicting requirements,
there are many solutions that are optimal for only one of the two requirements
and any such solution performs poorly for the other one.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 170–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Multi-objective Genetic Programming 171

We construct RTT estimators via multi-objective genetic programming and
evaluate their performance on real traces collected at the mail server of our
University. The formulas that we found outperform the RTT estimator used in
all existing TCP implementations [11] — including those in Windows 2000/XP,
Linux, Solaris and so on. We believe this result is particularly significant and
could lead to several interesting developments and applications of genetic pro-
gramming in the networking field.

The outline of the paper is as follows. The next section presents in a first part
the RTT estimation problem in detail and introduces the fundamental concepts
and techniques in multi-objectives optimization in a second part. Section 3 de-
scribes several multi-objective strategies used on our problem. Section 4 presents
the experimental procedure used to discover new formulas which estimate RTT.
Section 5 discusses the behavior of the different multi-objectives policies as well
as the performances of the formula found by Genetic Programming. Finally con-
clusions are drawn.

2 RTT Estimation Problem

The Transmission Control Protocol (TCP) provides a transport layer, base of
many other protocols used in the most common Internet applications, like HTTP
(i.e., the Web), FTP (files transfer) and SMTP/POP3 (e-mail). TCP was defined
in [1,2]. We provide in the following only the necessary background for this
work. More details on the TCP implementation can be found in many places,
for example, in [3].

TCP provides applications with a reliable and connection-oriented service.
This means that two remote applications can establish a connection between

Fig. 1. An example of retransmission for the case (i)
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them and that bytes inserted at one end will reach the other end reliably, that
is, without losses, in order and without duplicates.

To ensure reliable delivery of packets in spite of packet losses, that may occur
at lower levels of the Internet protocol stack, the TCP implementation employs
internally a retransmission scheme based on acknowledgments as follows. Con-
sider a connection between hosts A and B. Whenever either of them, say A,
sends a packet S to the other, it sets a retransmission timeout (RTO). When-
ever B receives a packet S, it responds with another packet ack(S) for notifying
the other end that S has been indeed received. If A does not receive ack(S)
before RTO expires, then A resends S. Note that when RTO expires only one of
the following is true, but A cannot tell which one: (i) S has been lost; (ii) S was
received by B but ack(S) is lost; (iii) neither S nor ack(S) was lost and RTO
expired too early. The fact that A resends S whenever RTO expires means that
the TCP implementation assumes that case (i) always holds. The three cases
described above are illustrated in Figure 1 and 2.

Fig. 2. Examples of retransmission for case (ii) and (iii)

Each TCP implementation selects RTO on a per-connection basis based on a
formula that depends on the round-trip time (RTT) time, i.e., the time elapsed
between the sending of a packet S and the receiving of the corresponding ac-
knowledgment ack(S). RTO should be larger than RTT to not incur in case (iii)
above too often, which would waste resources at the two endpoints and within
the network. On the other hand, RTO should not be much larger than RTT,
otherwise it would take an excessively long time to react to case (i) which would
result in a high latency at the two connection endpoints.

RTT varies dynamically, due to the varying delays experienced by packets
along the route to their destination. Moreover, when sending packet Si the cor-
responding RTT value measuredRTTi is not yet known. The TCP implementa-
tion thus maintains dynamically, on a per-connection basis, an estimated RTT
and selects RTO for Si based on the current value for estimatedRTTi. This
component of TCP has a crucial importance on performance of TCP [4].

Virtually all the TCP implementations – including those in Linux, Windows
2000/XP, Solaris and so on – maintain estimatedRTTi according to an algorithm
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due to Jacobson [11]. This algorithm constructs estimatedRTTi based on the pre-
vious estimate estimatedRTTi−1 and the previous value actually observed
measuredRTTi−1:

estimatedRTTi = (1 − k1) estimatedRTTi−1 + k1 measuredRTTi−1 (1)

Constant k1 is set to 1
8 allowing an efficient implementation using fixed-point

arithmetic and bit shifting. Initially, estimatedRTT is set to the first available
measuredRTT . Another component of the Jacobson algorithm, not shown here
for space constraints, constructs RTOi based on estimatedRTTi.

In this work we are concerned with RTT estimation only, i.e., we seek for
methods for estimating RTT that are different from formula 1 and hopefully
better. The construction of estimatedRTT has two conflicting objectives to op-
timize. One would like to minimize the number of underestimates (which may
cause premature timeout expiration) while at the same time minimizing the av-
erage error (which may cause excessive delay when reacting to a packet loss). The
problem is challenging because optimizing the former objective is very simple
— any very large estimation would work fine — but many excellent solutions
from that point of view are very poor from the point of view of the average
error.

Fig. 3. Sample of RTT values for consecutive connections

An example of the sequence of RTT values measured in TCP connections is
given in Figure 3 above. It is easy to realize that predicting the next value of RTT
based on the past measurements, with a small error and few underestimates, is
hard. A more complete characterization of real RTT traces can be found, for
example, in [3].
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3 Multi-objective Approaches for RTT Estimation

3.1 Multi-objective Optimization

We denote by Ω the space containing all candidate solutions to the given prob-
lem, RTT estimation in our case. In a multi-objective optimization problem
(MOP) we want to find a candidate solution −→x ∈ Ω which optimizes a vec-
tor of k objective functions: −→

f (−→x ) = [f1(−→x ), f2(−→x ), . . . , fk(−→x )]. The very same
nature of a MOP implies that there may be many points in Ω representing
practically acceptable solutions. It is often the case that the objective functions
conflict with each other [8], e.g., a solution −→x could be better than another so-
lution −→y for some of the k objectives while the reverse could be true for the
remaining objectives.

An important definition for reasoning about solutions of a MOP is the Pareto
dominance relationship:

Definition 1 (Pareto dominance). A solution −→u ∈ Ω is said to dominate
−→v ∈ Ω if and only if:

∀i ∈ {1, 2, . . . , k} , fi(−→u ) ≤ fi(−→v ) and ∃i ∈ {1, 2, . . . , k} , fi(−→u ) < fi(−→v ) (2)

In other words, a solution −→u dominates another solution −→v (denoted −→u �
−→v ) if −→u is better than −→v on at least one objective and no worse than −→v on
all the other objectives. The Pareto optimal set Ps consists of the set of non
dominated solutions: a solution −→u belongs to Ps if there is no other solution
which dominates −→u . A Pareto optimal front Pf contains all objective function
values corresponding to the solutions in Ps (i.e., each point in Ps maps to one
point in Pf ). Of course, in this paper we only consider an approximation of the
Pareto optimal set since Ps is not known. In the following we will not mention
any further that our notions of Ps and Pf are approximations of their unknown
optimal counterparts.

With respect to our RTT estimation problem, we define two objective
functions:

1. We define ObjectiveF itness1(−→u ) as the average of the absolute distances
between the sequence of estimatedRTT constructed by solution −→u and the
corresponding sequence of the measuredRTT actually observed.

2. We define ObjectiveF itness2(−→u ) as the number of times in which the estimat-
edRTT constructed by −→u is lower than the corresponding measuredRTT .

Both functions are evaluated on a set of training data collected as described in
section 4.2. The ideal value for each of the two objective functions is zero. In the
following subsections we describe the approaches that we have applied to this
MOP.

In all the approaches we kept the nondominated solutions found during the
evolutionary search. That is, at each generation we perform the following steps:
(i) store in an external archive all the individuals nondominated by any other
individual in the current population; (ii) drop from the archive individuals dom-
inated by some other member of the archive.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Multi-objective Genetic Programming 175

3.2 Scalarization

This approach consists in combining the k objective functions in a single scalar
objective Fws to be minimized. The combination consists of a weighed sum of
the objective functions with weights fixed a priori [7]:

Fws =
k∑

i=1

wi · fi (3)

Since the relative importance of the objectives cannot be determined univocally
— i.e., with one single choice of weights — we explored several combinations of
weights between [0.0, 2.0] varied in steps of 0.25. In the extreme cases we give
weight 2 to one of the objectives and weight 0 to the other. Note that the sum
of weights is equal to the number of objectives.

3.3 Pareto Dominance

We applied the Pareto dominance technique with a tournament selection scheme
close to that in [9]. In the cited paper an individual is randomly picked from the
population and then compared with a comparison set. Individuals that dominate
the comparison set are selected for the reproduction. We modified this scheme
according to the classical tournament selection, in which a group of n (n ≥ 2)
individuals is randomly picked from the population and the one with the best
fitness is selected. Our scheme works as follows:

1. A tournament set of n (n ≥ 2) individuals is randomly chosen from the
population.

2. If one individual from the set is not dominated by any other individual, then
it is selected.

3. Otherwise an individual is chosen randomly from the tournament set.

4 Experimental Procedure

4.1 RTT Traces

We collected a number of RTT samples on the mail server of our University.
This server handles a traffic in the order of 100.000 messages each day (see
http://mail.units.it/mailstats/). We intercepted the SMTP traffic at the
mail server for 10 minutes every 2 hours for 12 consecutive days (SMTP is
the application-level protocol for sending email messages). The tcpdump soft-
ware intercepted the network packets. The output of this tool was processed by
the tcptrace software which constructed the measuredRTT data for each con-
nection. We then dropped connections with less than 5 RTT values. The tools
that we used are freely available on the web, at http://www.tcpdump.org/ and
http://www.tcptrace.org/ respectively.

The resulting trace consists of 396109 RTT measures in 41521 TCP connec-
tions. These data are grouped in 78 files, for convenience. We chose one of these
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files as training set, consisting of 5737 RTT measures on 611 TCP connections.
The file selected as training set exhibits a large variety of scenarios: small and
large variations, abrupt changes and so on. We used the remaining files, consist-
ing of 390372 RTT measures on 40910 TCP connections, as cross validation set.
The generalization capabilities of the solutions found on the training set have
been evaluated on the cross validation set.

4.2 On Setting the GP Process

The terminal set and the function set is shown in Table 1. We used only arith-
metic operators and a power of 2 as constant in order to obtain formulas that
can be computed efficiently (this is a key requirement in TCP implementations
and is necessary for fair comparison with the RTT estimator developed by Ja-
cobson that is currently used). We allow the resulting formula to include the last
measured RTT (measuredRTTi−1) and the last estimation (estimatedRTTi−1).
We did not include values more far away in the past because the autocorrelation
of RTT traffic is known to decrease very quickly [13].

Table 1. Terminals and functions set

Terminals set 1
2 , 1, measuredRTTi−1, estimatedRTTi−1

Functions set +, −, /, ×

Table 2. Parameter settings

Parameter Setting
Population size 500
Selection Tournament of size 7
Initialization method Ramped Half-and-Half
Initialization depths 2-6 levels
Maximum depth 6
Internal node bias 90% internals, 10% terminals
Elitism 5
Crossover rate 80%
Mutation rate 20%

For the first multi-objective approach we performed 25 independent executions
for each combination of weights for a total of 225 runs, for the Pareto tournament
scheme we performed the same amount of runs in order to carry out a fair
comparison. Each execution starts with a different seed for the random number
generator. We allocate 50 generations for each test. All others parameters are
summarized in the Table 2. We used Sean Lukes Evolutionary Computation
and Genetic Programming Research System (ECJ15) which is freely available
on the web at http://cs.gmu.edu/~eclab/projects/ecj/. We modified and
extended the original API for our needs.
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5 Results

5.1 Comparison of the Multi-objective Approaches

In this section we compare the Pareto fronts generated by multi-objective genetic
programming searchbased on the scalarizationmethod and the Pareto-basedtour-
nament selection. A thorough comparison between the two approaches would
require several indicators as those described in [18,6]. We use a much simpler com-
parison for lack of space and because both approaches exhibit significantly better
performance than our baseline solution — the original algorithm by Jacobson.

We evaluated the performance on the cross validation dataset of the Jacob-
son algorithm and of each solution found with GP and belonging to the Pareto
set. The results are summarized in Figure 4. The most important result is that

Fig. 4. Pareto front generated with the nondominated solutions for each multi-
objective approach

GP found 84 solutions that outperform the Jacobson algorithm, 40 have been
found with the scalarization method and 34 with the Pareto based tournament
selection. This result is particularly significant because it demonstrates the po-
tential effectiveness of GP in an important application domain. Interestingly,
the scalarization method generates solutions that dominate those found with
the Pareto-based tournament for a large range of values of the error average
(from 21.125 to 24.125) except for one solution. Pareto based tournament pro-
vide better solutions in terms of the number of underestimated RTTs.

5.2 Comparison of the RTT Estimators

To gain further insights into the quality of the solutions, in particular regarding
the improvements that can be obtained with respect to the Jacobson algorithm,
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we analyzed the performance on each single file of the cross validation dataset.
We present the results for the Jacobson algorithm and for two solutions located
at the two extremes of the Pareto front: the one giving the best results in terms
of underestimated RTTs (located bottom-right in Figure 4) and the one giving
the best results in terms of average error (located top-left).

Fig. 5. Number of underestimated RTT for each trace file. Best formula found by GP
in terms of average error (left) and in terms of number of underestimated RTTs (right)

Figure 5 describes the results in terms of underestimated RTTs. Each point
in the X-axis corresponds to one file of the cross validation dataset, whereas the
Y-axis is the improvement with respect to Jacobson, in percentage. The hori-
zontal line represents the average improvement across the entire cross validation
dataset. Figure 5-left shows the result for the best formula found by GP in terms
of average error. It can be seen that the average improvement over the Jacobson
algorithm is small (approximately 2%) and that in some files the average error
is worse. Figure 5-right shows the result for the best formula found by GP in
terms of number of underestimates. This case is much more interesting because
the formula found by GP largely outperforms the Jacobson algorithm, with a
56% average improvement (34% of RTTs are underestimated by Jacobson and
only 15% by the formula found by GP). Moreover, a remarkable improvement
can be observed in every trace file.

Figure 6 describes the results in terms of average error, with the same notation
as above. It can be seen the best formula in terms of average error (left figure)
exhibit a 15% average improvement over Jacobson (corresponding to 4.7 ms) and
that some improvement can be observed in every trace file. The best formula
in terms of underestimated RTTs (right figure) exhibits instead essentially the
same performance as that of Jacobson.
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Fig. 6. Error average for each trace file. Best formula found by GP in terms of average
error (left) and in terms of number of underestimated RTTs (right)

6 Concluding Remarks

We applied two radically different multi-objective approaches on an important
real-world problem. We used an a priori method which combines all the objec-
tives into a single one by weighting each objective in advance, and an a posteriori
approach based on a Pareto tournament selection. The quality of the solutions
provided by the two approaches is similar, although solutions obtained with
Pareto-based tournament tended to be more effective in terms of the number
of underestimated RTTs (a particularly critical issue for TCP performance).
The effectiveness of the simple scalarization method was rather surprising and
is probably due to the small number of objectives: covering a sufficiently wide
set of weights remains computationally acceptable.

While this is an interesting result itself, the most significant result consists
in the performance of the formulas found with multi-objective GP: they are
significantly better than those exhibited by the RTT estimator used in all TCP
implementations. This result could lead to several interesting applications of GP
in the networking field — e.g., tailoring RTT estimators to individual hosts,
rather using the same estimator for all hosts; differentiating the estimator based
on the application using TCP, whether web navigation or transmission of email;
and so on.

Acknowledgments

The authors are grateful to Stefano Catani from the Centro Servizi Informatici
di Ateneo (CSIA) for his technical help. This work is supported by the Marie-
Curie RTD network AI4IA, EU contract MEST-CT-2004-514510 (December
14th 2004).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



180 C. Fillon and A. Bartoli

References

1. RFC 793, “Transmission Control Protocol,”, Sept. 1981.
2. RFC 1122, “Requirements for Internet Hosts - Communication Layers,” Oct. 1989.
3. J. Aikat, J. Kaur, F. D. Smith, K. Jeffay, “Variability in TCP round-trip times,”

in IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet mea-
surement, pp. 279–284, 2003.

4. M. Allman, V. Paxson, “On estimating end-to-end network path properties,” in
ACM SIGCOMM Comput. Commun. Rev., Vol. 29, pp. 263-274, Oct. 1999.

5. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, “Genetic Programming - An
Introduction; On the Automatic Evolution of Computer Programs and its Appli-
cations,” Morgan Kaufmann, dpunkt.verlag, 1998.

6. P. A. N. Bosman, D. Thierens, The Balance Between Proximity and Diversity
in Multiobjective Evolutionary Algorithms, in Evolutionary Computation, IEEE
Transactions, Vol. 7, no. 2, pp. 174-88, Apr. 2003.

7. C. A. Coello Coello, “An Updated Survey of GA-based Multiobjective Optimiza-
tion Techniques,” in ACM Computing Surveys, Vol. 32, No. 2, Jun. 2000.

8. C. A. Coello Coello, D. A. Van Veldhuizen, G. B. Lamont, ”Evolutionary Algo-
rithms for Solving Multi-Objective Problems,” Kluwer Academic Press, 2002.
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Abstract. The role of population size is investigated within a neutrality
induced local optima free search space. Neutrality decouples genotypic
variation in evolvability from fitness variation. Population diversity and
neutrality work in conjunction to facilitate evolvability exploration whilst
restraining its loss to drift, ultimately facilitating the evolution of evolv-
ability. The characterising dynamics and implications are discussed.

1 Introduction

Evolutionary search is traditionally depicted as taking place on a multi-modal
landscape: If population diversity can be maintained, then the search will
progress towards optimal fitness along the gradients of many optima simulta-
neously, leaving local optima in its wake. Accompanying this depiction are the
difficulties of diversity maintenance and sensitivity to the starting conditions,
both of which remain prominent issues within the EC research community.

However, neutrality [13] proponents argue a different perspective on evolu-
tionary search. In the neutralist depiction, neutral networks alleviate local op-
tima and the loss of diversity is of little concern. For example, Ebner et al. [9]
find that redundant representations increase accessibility between phenotypes
through neutral walk. Harvey & Thompson [10] show that evolution can progress
satisfactorily in a small, genetically converged population for an evolutionary
hardware task. Barnett [2] goes further still and argues that a non-population
based approach is optimal. Studies employing RNA models have been partic-
ularly influential [12,17,11], the structure of RNA spaces apparently exhibiting
the purported properties more readily than artificial representations. The po-
tential of neutrality has been further recognised in [20,21], though others voice
more sceptical or cautionary notes [16,15,19].

So, what is the role of population diversity in a neutrality-induced local op-
tima free search space? While the search space is proven to be free of local
optima for the EA and problems employed for this investigation [6], it is clearly
not uni-modal in the intuitive sense of a hill with a single peak. The space is
highly neutral and perforated by massively connected neutral networks. Should
population diversity be considered beneficial in such a space, or should a non-
population based approach be preferred as it would be in the intuitive idea of a
single-peaked space? These are the questions addressed by this study.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 181–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The conclusions identify neutrality and population diversity working in con-
junction to facilitate the evolution of evolvability in a three step process:

1. Neutral mutations create evolvability discrepancies whilst conserving fitness.
2. Population size facilitates evolvability exploration, but also restrains drift

away from favourable evolvability characteristics.
3. Selection acts indirectly, through fitness, on evolvability, propagating the

more favourable evolvability characteristics.

This depiction promotes evolvability as the principal beneficiary of genotypic
variation and selection. Whilst selection acts directly on fitness, it is evolvability
that is the ultimate target [5, Appendix]. Effectively, fitness becomes evolvabil-
ity’s selection surrogate, the expression of evolvability’s latent potential, expos-
ing to selection that which evolvability, by itself, cannot. In this, evolvability can
emerge, and the evolution of evolvability be witnessed.

In contrast, Barnett [2] found that a variety of hill-climber, not a population-
based approach, proved optimal; and Smith et al. [19] found that evolvability
was not evolving during neutral evolution. The reason for these contradictory
conclusions is not examined here, but differences in the representations and
operators are likely to be primarily responsible. What makes the representation
employed in this paper so different in its search characteristics is the subject of
ongoing investigation.

In this paper, evolvability is considered a primarily genotypic property, and is
defined as “the heritable potential to acquire increased fitness through random
mutation”. Evolvability as a property of the population as a whole, epitomised
by Altenberg’s [1] definition, is also relevant in this paper, though secondary.

Sections 2 & 3 review the representation and EA employed. Section 4 elu-
cidates the potential of the evolution of evolvability. Sections 5 & 6 examine
the effects of losing diversity, concluding the employment of greedy selection.
Sections 7 & 8 investigate the potential of diversity and neutrality on functions
contrasting in their evolvability potential.

2 Binary Decision Diagrams

An ordered BDD (OBDD) is a rooted directed acyclic graph representing a
function of the form f(V ) : B

n −→ B. Each non-terminal is labeled with a
Boolean variable v ∈ V and has a then child and an else child, reflecting the fact
that each non-terminal represents an if-then-else operation on v. Terminals are
labeled from B. A total ordering is imposed on the appearance of non-terminal
labels along all paths with π, the variable ordering. Thus, π = [v1, v2, . . . , vn],
an ordered list of variables, and i < j must hold for each vi followed by vj along
any path. It is not necessary that all v ∈ π appear in a path.

Redundancy in an OBDD can be removed by removing any non-terminals that
have both child edges pointing to the same vertex, or by merging two vertices
that have both the same label and the same respective children. A reduced OBDD
(ROBDD) is an OBDD that cannot have its complexity reduced further by these
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reductions. Bryant [4] has shown ROBDDs to be canonical forms ; meaning that
each function has a unique ROBDD representation for a given π, reachable by
the above reductions.

The variable ordering, π, can have a dramatic impact on the complexity of
resulting ROBDD: In this paper, the complexity of an π-ROBDD is the number
of nonterminals it contains. For example, the best π for the 11-bit multiplexer
produces an ROBDD having complexity 15; the worst, 509: For the 20-bit mul-
tiplexer the best π produces an ROBDD having complexity 31; the worst, over
130,000. For the n-bit multiplexer, the complexity grows linearly for the best
π and exponentially for the worst. Generally, the variable ordering problem is
known to be NP-complete in both optimal and approximate solutions [3,18].
Refer to Bryant [4] for further details on BDDs.

3 Algorithm

The EA for evolving BDDs is now reviewed and its relevant characteristics dis-
cussed: From hereon it will be referred to by the acronym EBDDIN after the title
of the paper that introduced it [6]. A recent enhancement to EBDDIN exhibits
the emergence of good variable orderings for the multiplexer problem [7], and
this property will be exploited in later sections.

EBDDIN is built on the following mutations on genotypes in OBDD space,
five of which are explicitly neutral and one of which is potentially adaptive. The
neutral mutations are derived from established OBDD theory; the functionally
modifying mutation is a natural and intuitive one for graph-based representa-
tions. Further details can be found in [6,7,8].

Definition 1. Let N1 be the neutral mutation of removing a redundant test.

Definition 2. Let N1′ be the neutral mutation of inserting a redundant test,
the inverse of N1.

Definition 3. Let N2 be the neutral mutation of removing a redundant non-
terminal, merging two (or more) nonterminals.

Definition 4. Let N2′ be the neutral mutation of creating a redundant non-
terminal, splitting a non-terminal.

Definition 5. Let N3 be the neutral mutation of swapping adjacent variables
while maintaining overall function.

Definition 6. Let A1 be the ‘potentially’ adaptive mutation of changing one of
the children of a non-terminal, to another vertex.

Firstly, note that, because neutral mutations are defined explicitly, the function
evaluation can be circumvented where a child is generated from a neutral muta-
tion. Only one mutation is ever used to produce an offspring [8], so many offspring
will be neutral, the number of which is dependent on the relative frequency of ap-
plying the different mutations. Effectively, this results in an effortless neutral walk
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Fig. 1. (a) Comparison of fixed ISC categories for a fixed ordering (i.e. no N3 muta-
tion). π are categorised by ISC value. Rapidly increasing AES against increasing ISC
is observed. *No AES value could be obtained for ISC = 509. (b) Fitness curves re-
sulting from the evolution of evolvability. An almost constant rate of fitness increase is
maintained for the duration of the run as evolvability emerges in the form of low ISC.

where effort is determined by the number of evaluations required to generate the
target function.

Secondly, performance is highly dependant on the nature of the target func-
tion with regard to its ROBDD complexity. The relationship between evolvabil-
ity and π was investigated in [7] for a number of functions. The effort required
to solve a problem, in terms of the Average number of Evaluations to a Solu-
tion (AES), grew super-linearly in the implied solution complexity (ISC) of π
for a fixed ordering: ISC is the complexity of ROBDD induced by a given π
for a given target function [7]1. For example, the parity function always evolves
rapidly because ISC is constant and linear in the number of variables for all π;
the multiplier function always evolves poorly because ISC is exponential in the
number of variables for all π. See figure 1(a) for how evolvability on the mul-
tiplexer function changes with varying ISC. When dynamic variable reordering
is introduced through the N3 mutation good π will emerge for the multiplexer
[7]. Thus, evolvability is dependant on π, and good π with low ISC values can
emerge where discrepancies in ISC exist for a function. The contrasting proper-
ties of the parity and multiplexer functions in this respect will be exploited in
the experiments discussed in the following sections.

Finally, the search space for this representation, under these mutations, for a
minimal mutation rate, and for the type of target functions employed, is known
to be free of local optima where local optima is defined in terms of accessability
[6]. It should also be noted that each function is associated with a single, fully-
connected neutral network of genotypes, none of which are functionally isolated:
1 ISC is calculated using a representation of the target function. The target function

has its variables reordered to match a given π or the ordering of a candidate solution.
The number of non-terminals in the ROBDD representing the target then provides
the ISC for that variable ordering.
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That is, for every function in OBDD space, all the genotypes representative of
a given function are connected via a neutral walk, but each genotype also has
mutational neighbours (through A1) which differ in function, making the neutral
networks highly intertwined.

4 The Evolution of Evolvability: The Promise

The promise offered by the evolution of evolvability is now elucidated by the
presentation of some linear fitness curves using the 11-bit multiplexer as the
target function. The curves are plotted alongside ISC to provide an indication
of how evolvability and fitness correspond. A (7, 12) ES is employed and the
population initialised with individuals having worst possible ISC. See figure 1(b).

What is impressive about these fitness curves is that they maintain an almost
linear fitness increase for a prolonged period, and do so in a gradualistic manner.
It is the evolution of evolvability that facilitates this behaviour. The simultaneous
increase in evolvability indicated by the emerging lower ISC values maintains
the rate of fitness improvement against a search space becoming increasingly
sparse in superior solutions. The fact that such curves can be induced at all
is something not readily seen in EC, and it is indicative of sustainable and
progressive evolution.

5 Constraining Diversity

The constraining of diversity and its influence on performance is now investi-
gated. Three experiments are conducted on both the 10 parity and 11-bit multi-
plexer functions. A population of 30 is first generated and written to disk. The
results are plotted in figure 2(a).

For the first experiment, the population is read from disk and the number of
evaluations required to solve the problem plotted over 30 runs. For the second
experiment, the population is initialised to clones for each of the 30 runs, one
run for each of the individuals on disk. For the final experiment, the setup is
similar to that described for the second experiment but, additionally, diversity is
periodically removed every 50 generations by only breeding one parent for that
generation. A (15 + 30) ES is employed. The setup facilitates comparison of a
population that is not prevented from maintaining initial diversity, a population
that has no initial diversity, and a population that has diversity periodically
eliminated.

For both problems and all configurations a 100% success rate is maintained.
Furthermore, the effect on the number of evaluations required from the loss of
diversity is negligible; it is slightly accentuated for mux where the population is
initialised to be diverse, but this can be attributed to the higher probability of
having better evolvability (i.e. lower ISC values) present in at initialisation rather
than having to wait for it to emerge. These results suggests a certain uniformity
in the search space and the search can be considered highly independent of the
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Fig. 2. (a) Comparison of performance with various restrictions on diversity. diverse -
initial population of unique individuals; clones - initial population of clones; converge -
periodically remove diversity every 50 generations. (b) How greedy selection compares
against standard truncation selection.

starting configuration. Furthermore, the genotypic convergence accompanying a
fitness improvement step can be considered benign.

6 Fitness Conservation and Generation Lag

Given that temporary loss of diversity has negligible effect on performance
(section 5), maximising selection pressure can be considered. Altenberg [1] has
emphasised the importance of strong parent to offspring fitness correlation for
evolvability; achieving this through neutral mutation and selecting only the
fittest individuals to be parents has great appeal. This type of greedy selection
will be denoted (0, λ) or (0 + λ) in the style of ES for generational algorithms.
The μ = 0 indicates that the number of parents is not specified explicitly but
depends on the the number of individuals currently exhibiting the equal highest
fitness, which may vary between 1 and λ.

Figure 2(b) examines how a (0, 30) ES compares against standard selection,
and the former is found to be favourable. Thus, the benefits of not breeding
suboptimal solutions outweighs any loss in genotypic diversity from fitness di-
versity, emphasising the potential of neutrality to decouple genotypic variation
from fitness variation, the significance of which is well-recognised [20,11,17].

The effects of generation lag must also be recognised when using AES as the
performance measure. Generation lag occurs at the fitness improvement step dur-
ing the generation of the child population. A fitness improvement early in the
production of the child population is not available for breeding until the follow-
ing generation, resulting in the breeding of suboptimal solutions until the child
population is fully populated. The cost increases with population size and must
be balanced against any beneficial effects of a larger population. In the following
experiments generation lag will be recognised as a consequence of a generational
algorithm, or eliminated with a steady-state variant where indicated.
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Fig. 3. (a) Effects of population size on performance (100 runs). Where there is po-
tential for evolvability variation (mux), population diversity can improve performance,
but generation lag taints the results. (b) Trace on population sizes averaged over 10
runs using greedy steady-state selection (no generation lag). A larger population is
better able to maintain low ISC.

7 Evolvability Discrepancies

The effect of evolvability discrepancies is now investigated, and an evolvability
error threshold postulated. The objective is to identify population diversity as
a promoter of favourable evolvability characteristics rather than maintaining
gross genotypic diversity from initialisation. Whilst the former can easily arise
gradually from a population of clones through only a minor mutation severity,
the latter cannot.

Recall that low ISC indicates greater evolvability and the multiplexer function
exhibits significant discrepancies in evolvability as a result of π (figure 1a). The
parity function, however, exhibits no such discrepancies because it is a symmet-
ric function, exhibiting constant ISC for all π. Figure 3(a) shows the difference
in performance characteristics that result from the presence of evolvability dis-
crepancies for different population sizes. From the figure, it is clear that the
parity function exhibits an increasing AES against population size. The increase
appears roughly linear, and can be attributed to generation lag. For mux, a per-
formance gain is observed up until a population size of around 5, at which point
performance takes a downturn. Clearly, where there are evolvability discrepan-
cies to be attained, a larger population appears to offer some benefit, but the
presence of generation lag taints the results. Thus, in the following experiments,
steady-state selection is employed.

Figure 3(b) shows a trace averaged over 10 runs using greedy steady-state
selection. The figure shows that a larger population is better able to maintain
evolvability (low ISC values), and this corresponds to more rapid fitness im-
provement. The distribution of ISC for mux is heavily skewed, with an expecta-
tion of approximately 50, so the consequence on fitness of losing ISC is not great
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Fig. 4. The effect on performance of population size for varying degrees of neutrality.
(a) Parity - increasing population size has negligible effect on performance due to
the absence of discrepancies in evolvability. More neutrality improves performance; (b)
Multiplexer - increasing population size has a sometimes positive effect on performance,
particularly where a higher degree of neutrality is present. See text for a full discussion.

(refer to figure 1). A function having a differing ISC distribution, however, would
have adaptation much more grossly impaired.

Thus, an evolvability error threshold can be postulated, at which point evolv-
ability is lost to drift. Huynen et al. [12] discuss genotypic versus phenotypic
error thresholds, stating that it is the latter at which adaptation breaks down.
However, these results suggest adaptation can also be stifled at the evolvability
threshold whilst maintaining the phenotype.

8 Population Size and Neutrality

The relationship between diversity and neutrality is now investigated. Figure 4
shows the effect of varying both population size and the degree of neutrality
for both the parity and mux functions. Again, a greedy steady-state selection
is employed. The degree of neutrality is influenced by the ratio of adaptive to
neutral mutations which, in turn, is controlled by introducing a mutation bias:
A bias of 2.0 means that it is twice as likely that the adaptive A1 mutation is
chosen for application than it would be otherwise; a bias of 0.5 means that A1
is half as likely to be chosen. Thus, a lower bias means a lower ratio of adaptive
to neutral mutations and, therefore, more neutral offspring. In the figures, the
size of the bias is reflected by heavier lines, so lighter lines reflect the fact that
comparatively more neutral drift is present. The population is initialised to clones
to eliminate any diversity oriented initialisation benefit for larger populations;
refer to figure 2(a) for an indication of how this can affect performance.

For the parity function, figure 4(a), increasing population size has negligible
effect on performance and variance in AES is around 5%. This behaviour is ex-
pected given that there are known to be no discrepancies in evolvability resulting
from exploration of π; one individual is just as evolvable as another. However,
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an increase in neutral drift through a lower mutation bias improves performance
independently of population size: More neutral drift means greater exploration
generally and less effort re-sampling familiar areas of the space.

In contrast, for the multiplexer function, figure 4(b), trends against popula-
tion size are discernable and variance in AES is much greater. Increasing popu-
lation size results in a decrease in AES followed by an increase in AES in most
cases: Too large a population stifles neutral drift and, therefore, exploration. At
the smallest population size, more neutrality consistently results in poorer per-
formance, favourable π being more readily lost to neutral drift. At the largest
population, however, the situation is completely reversed; it is able to tolerate
greater neutrality-induced exploration while maintaining evolvability, resulting
in overall better performance where neutrality is higher. This result suggests a
certain synergy in increasing both neutrality and population size with the graph
exhibiting most neutrality approaching monotonic.

9 Discussion

It should be noted that these results are particularly dependent on the AES
performance measure and EBDDIN’s capability for effortless neutral walk; the
cost of evaluating neutral offspring would have to be balanced against the ben-
efits otherwise. This advantage makes EBDDIN more akin to natural systems
than less so. In nature, the evaluation of a population’s fitness is highly parallel,
and a greater propensity for neutral offspring can be reflected in an expanding
and subdividing population. In contrast, evaluation of a population in artificial
evolution is typically done serially, as reflected by the AES performance mea-
sure, and the population size and number is also typically fixed. Thus, there
is a serial evaluation deficiency associated with artificial evolution. EBDDIN’s
capability to circumvent the evaluation cost of many offspring alleviates some of
this deficiency.

Repeating these experiments with other representations may be difficult, but
this does not detract from the generality of the results. For EBDDIN, a sig-
nificant degree of evolvability has been identified as being associated with the
quality of the variable ordering. This allows evolvability to be monitored during
a run via ISC, and varied randomly along that dimension via neutral mutation.
For other representations identifying such a feature of the genotype that is as-
sociated with evolvability is not so easy, perhaps. However, that does not mean
that evolvability cannot emerge in a similar way; it means only that evolvability
cannot be targeted and observed so readily. Indeed, contemporary evolutionary
thinking suggests that evolvability did emerge: For example, Kirschner & Ger-
hart’s [14] theory of “facilitated variation” claims that core processes emerged
early in the origin of life, and that these constrain variation to maintain high
offspring viability and the variational aspect of evolvability. It is reasonable to
assume that evolvability can emerge in artificial representations too, irrespec-
tive of whether or not particular genotypic features that are important to, or
indicative of, evolvability can be readily identified.
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The generality of these results may further be questioned because they are
conducted in a local optima free search space. However, regardless of the modal-
ity in the search space, evolvability discrepancies within a population are clearly
significant and a prerequisite for the evolution of evolvability, a property con-
sidered fundamental in the evolution of complex systems. Indeed, who is to say
that, for a lineage to progress satisfactorily towards ever-greater complexity, local
optima sparsity, neutrality-induced or otherwise, is not a prerequisite? Perhaps,
rather than pursuing efforts to maintain diversity in highly-modal and deceptive
spaces, the EC community might better focus on transforming the search space
of a problem, with the aid of neutrality, into one more susceptible to gradual
evolution? This work provides insights into the role of population diversity in
such spaces and will aid those researchers adopting such an approach.

10 Summary

Where the target function exhibits attainable discrepancies in evolvability (i.e.
mux), a larger population is better able to exploit them. Where there are no such
discrepancies (i.e. parity), a larger population offers no benefit, but no detriment
either when steady-state selection is employed. Population size serves the dual
role of facilitating evolvability exploration and restraining its loss to drift. The
effectiveness with which these two roles are satisfied depends on the degree of
neutrality present.

Current and future research focuses on enhancing EBDDIN by: evolving the
relative frequency of applying the different mutations for even greater attain-
ments in evolvability; and employing a wider variety of variable reordering op-
erators to tackle a more diverse range of problems. The question of what makes
one genotype more evolvable than another is also under investigation.
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ECAL 2001, volume 2159 of Lecture Notes in Computer Science, pages 272–281,
Berlin Heidelberg, 2001. Springer-Verlag.

20. Marc Toussaint and Christian Igel. Neutrality: A necessity for self-adaptation.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002),
pages 1354–1359, 2002.

21. Tina Yu and Julian Miller. Neutrality and the evolvability of boolean function
landscape. In Julian F. Miller, Marco Tomassini, Pier Luca Lanzi, Conor Ryan,
Andrea G. B. Tettamanzi, and William B. Langdon, editors, Genetic Programming,
Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 204–217, Lake Como,
Italy, 18-20 April 2001. Springer-Verlag.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On the Limiting Distribution of Program Sizes
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Abstract. We provide strong theoretical and experimental evidence
that standard sub-tree crossover with uniform selection of crossover
points pushes a population of a-ary GP trees towards a distribution of
tree sizes of the form:

Pr{n} = (1 − apa)

(
an + 1

n

)
(1 − pa)(a−1)n+1 pn

a

where n is the number of internal nodes in a tree and pa is a constant.
This result generalises the result previously reported for the case a = 1.

1 Introduction

For most problems the ratio between the size of the search spaces and the number
of acceptable solutions grows exponentially with the size of the problem. So,
even with today’s powerful computers, for many problems one can hope to find
solutions with a particular search algorithm only if the algorithms is biased in
such a way to sample preferentially the areas of the search space where solutions
are denser. This situation is often informally referred to as an algorithm being
well-matched to a problem.

Having a full characterisation of the search biases of a search algorithm is a
precondition to understand whether or not the algorithm is well-matched to a
problem. (The second precondition is the availability of a characterisation of the
problem, e.g., information on the distribution of solutions in the search space.)

In evolutionary algorithms this requires understanding the biases of the
genetic operators. These biases are fairly well understood for mutation and
crossover in the case of fixed-length representations (e.g., binary GAs) [4,16]
and for selection (which is representation independent) [5,1,2,11]. However, the
situation is much sketchier for variable-length representations. In particular, ex-
cept for the limiting case of linear-trees (built only using arity-1 primitives and
terminals) [12,15,13,14], we still know very little about the search biases of stan-
dard GP crossover.

In this paper we provide an exact characterisation of the limiting distribution
of tree sizes towards which sub-tree crossover, when acting on its own, pushes
the population. As we will see, obtaining this type of result is complex, and
so we will limit our attention to the case where the primitive set includes only
terminals and primitives of one other arity.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 193–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The paper is organised as follows. In Section 2 we summarise results from
branching processes theory. In Section 3 we develop a formulation for the fixed-
point distribution of tree sizes under repeated crossover. In Section 4 we derive an
equation that describes how the distribution of tree sizes changes generation after
generation under the effects of crossover. The distribution proposed in Section 3
is one of the two elements of such an equation, when evaluated at its fixed-
point. In Section 5 we develop an explicit formulation for the second element:
the distribution of subtree sizes. In principle these ingredients would allow one
to check mathematically whether the proposed size distribution is indeed a fixed
point for crossover-based evolution. Proving this result is, however, beyond our
mathematical capabilities. Therefore, to corroborate our conjecture we present
strong empirical evidence and numerical integrations of the tree-size distribution
evolution equation in Section 6. We make some final remarks in Section 7.

2 Mathematical Preliminaries

2.1 Branching Processes and Lagrange Distribution

In probability theory, a discrete-time branching process [17] is a Markov process
that models a population in which each individual in a generation produces
some random number of descendants, and where the probability of generating a
successors, p(a), is fixed. This leads to a (family) tree.

Branching processes have at least one application in GP: if no limit is imposed
on tree size or depth, the tree shapes produced by the “grow” method, often used
to initialise GP populations and to perform sub-tree mutation, obey a branching
process. In this case a is the arity of primitives and pa is the probability of using
primitives of arity a when choosing nodes in the “grow” method.

The distribution of tree sizes for a branching process follows a Lagrange dis-
tribution [3,6]. More precisely, the probability of the process leading to a total
of � individuals being generated is

Pr{L = �} =

{
0 if � = 0,
1
� C(t�−1)

{
(g(t))�

}
for � = 1, 2, 3, · · · ,

(1)

where g(t) =
∑

a pa ta is the probability generating function of the distribution
pa and C(tm) denotes “the coefficient of tm in”.

If one considers a process where only nodes of arity a and 0 are allowed (i.e.,
p0 + pa = 1), then g(t) = p0 + pata. So, for � > 0 we have

C(t�−1)
{
(g(t))�

}
= C(t�−1)

{
(p0 + pata)�

}
= C(t�−1)

{
�∑

k=0

(
�

k

)
p�−k
0 pk

a t ak

}

Since C(t�−1) will pick out the coefficient of the power of t for which � − 1 = ak,
i.e., k = �−1

a , we then have

Pr{L = �} =

{
1
�

(
�

�−1
a

)
(1 − pa)�− �−1

a p
�−1

a
a if � − 1 is a multiple of a,

0 otherwise.
(2)
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Note that, since only arity 0 and arity a primitives are allowed, a tree with
� − 1 nodes has n = �−1

a internal nodes and � = an + 1. So, we can rewrite the
previous equation in terms of internal nodes as

Pr{N = n} = CT (a, n) (1 − pa)(a−1)n+1 pn
a , (3)

where

CT (a, n) =
1

an + 1

(
an + 1

n

)
(4)

is a generalised Catalan number [7]. The Catalan number is the number of dif-
ferent trees with n internal nodes of arity a (and, of course, (a − 1)n + 1 leaves).
This can be interpreted as saying that in a branching process all trees of a par-
ticular size have a probability of being created which depends only on how many
nodes/primitives of each kind the tree contains. It also means that the different
parts of the trees created by a branching process are uncorrelated.

2.2 Moments of the Tree-Size Distribution in a Branching Process

It is possible to compute the moments of Lagrange distributions starting from
the the cumulants gi of the probability density functions generated by power
series in t of g(t) [6,3]. The mean progeny produced by a branching process is:

E[L] =
1

1 − g1
(5)

and the variance is
V ar[L] =

g2

(1 − g1)3
, (6)

where g1 = E[A] and g2 = V ar[A], A being a stochastic variable representing
a node’s arity. Since trees contain only arity 0 and arity a nodes, we can easily
compute these two cumulants:

g1 =
∑

k

kpk = apa (7)

g2 = E[A2] − (E[A])2 = a2pa − (apa)2 = a2pa(1 − pa) (8)

So, the mean tree size in our branching process is

E[L] =
1

1 − apa
(9)

and the variance is

V ar[L] =
a2pa(1 − pa)
(1 − apa)3

. (10)

From these two, we then obtain the second non-central moment

E[L2] = V ar[L] + (E[L])2 =
(a − 1)apa − a2p2

a + 1
(1 − apa)3

(11)

Note that (9) matches the formula for the means size of programs built by
the “grow” method reported in [10] and that (9) is a special case of it.
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3 The Distribution of Tree Sizes Under Crossover

In the absence of selection, if a population of GP trees undergoes repeated
crossovers, the population tends to a limiting distribution of sizes and shapes.
This is the result of the specific bias of subtree crossover.1 Effectively after a
while, every node in every individual in the population will have been placed
at its particular position as a result of one or multiple crossover events. So, any
correlations present in the shapes in the initial generation will have been broken
by crossover.

As we saw in the previous section, complete decorrelation in the different
parts of a tree is a characteristic of branching processes. Within the class of trees
of a given size, each shape is equally likely. So, we postulate that the limiting
distribution of tree sizes under repeated crossover will be one where this happens.
That is, we assume that at the fixed-point, the shape distribution is

Pr{Shape with n nodes of arity a} = w(n, a) (1 − pa)(a−1)n+1 pn
a (12)

where w(n, a) is an appropriate sequence of weights to be determined and pa is
a parameter, also to be determined. So, the probability of picking a tree with n
internal nodes from the population is

Pr{n} = CT (a, n)w(n, a) (1 − pa)(a−1)n+1 pn
a (13)

What constraints do we have on the parameters w(n, a) and pa? Firstly, they
must be such that the distribution of shapes is indeed a probability distribution.
In particular we require ∑

n≥0

Pr{n} = 1. (14)

Secondly, it is well-known that on average subtree crossover does not alter the
mean size of program trees in a population [14]. So, we also require that

∑
n≥0

(an + 1)Pr{n} = μ0, (15)

where μ0 is the average size of the individuals in the population at genera-
tion 0. Thirdly, we require (13) to be a generalisation of the results reported in
[12,15,13,14] for arity 1 functions, which we here rewrite as

Pr{�} = �r�−1(1 − r)2, (16)

where
r = (μ0 − 1)/(μ0 + 1). (17)

We can do this by setting a = 1 in (13) and � = n + 1 and so Pr{�} in (16) is
the same quantity as Pr{n} in (13). Equating the results we obtain

w(n, 1) (1 − p1) pn
1 = (n + 1)(1 − r)2rn (18)

1 Naturally, stochastic effects such as drift mean that in any finite population there is
still random variation. However, in large populations these effects can be neglected.
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since CT (1, n) = 1. The most natural match between r.h.s. and l.h.s. of (18)
appears to be one where p1 = r and w(n, 1) = (n + 1)(1 − p1).

This last constraint completely rules out that w(a, n) be constant, indicating
that the length distribution under subtree crossover cannot be purely the result
of a branching process (i.e., it is not Lagrangian). Instead, it suggests that Pr{�}
is the product between the frequency provided by a branching process and the
length � of programs. So, we postulate that in general

w(a, n) = (an + 1)f(pa) (19)

where f(pa) is a function of pa to be determined.
With this assumption, we impose (14), i.e., that probabilities sum to 1,

obtaining:

f(pa) =
1∑

n≥0(an + 1)CT (a, n) (1 − pa)(a−1)n+1 pn
a

. (20)

The denominator of this equation is (by definition) E[aN + 1] =∑
n(an + 1)Pr{N = n}, where Pr{N = n} is given in (3). So, it is the ex-

pected length of the trees generated by a branching process where arity a nodes
are used with probability pa and arity 0 nodes used with probability 1 − pa. So,
from (9) we have

f(pa) = (1 − apa), (21)

and so w(a, n) = (an + 1)(1 − apa). As a result, we can now explicitly write the
tree-size distribution at the crossover fixed-point:

Pr{n} = (1 − apa)
(

an + 1
n

)
(1 − pa)(a−1)n+1 pn

a (22)

where we used the explicit expression of CT (a, n) in (4). This is the fixed-point
tree-size distribution we were looking for. This distribution belongs to a family of
distributions called Lagrange distributions of the second kind [9,8], which, until
now, have never been related to branching processes and trees.

We can now impose constraint (15), i.e., equality of means, to infer the value
of pa:

μ0 =
∑
n≥0

(an + 1)Pr{n}

=
∑
n≥0

(1 − apa)(an + 1)2CT (a, n) (1 − pa)(a−1)n+1 pn
a

= (1 − apa)
∑
n≥0

(an + 1)2 Pr{N = n}

= (1 − apa)E[L2] (by definition),

and so, from (11),

μ0 =
(a − 1)apa − a2p2

a + 1
(1 − apa)2

. (23)
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By solving this equation for pa we obtain

pa =
2μ0 + (a − 1) −

√
((1 − a) − 2μ0)

2 + 4(1 − μ2
0)

2a(1 + μ0)
(24)

which, encouragingly, for a = 1 collapses to the familiar pa = μ0−1
μ0+1 (see (17)).

4 Evolution of the Tree-Size Distribution

Let us term supertree the part of a tree remaining after the removal of a subtree
rooted at a particular crossover point. The size, L, of a tree after crossover is
a stochastic variable obtained by adding the size X of a supertree randomly
drawn from the population with the size Y of a subtree also randomly drawn
from the population. I.e., L = X +Y . It follows that the probability distribution
of L is the convolution of the subtree size distribution with the supertree size
distribution. That is:

Pr{L = �} =
�∑

i=0

Pr{X = i} Pr{Y = � − i} (25)

For the case where internal nodes of arity a only are allowed, effectively a su-
pertree always contains ja nodes and a subtree always contains ka + 1 nodes,
where j and k are suitable non-negative integers. Therefore, (25) can be rewrit-
ten in terms of internal nodes. So, if N is the number of internal nodes of the
tree, NX the internal nodes in the supertree and NY the internal nodes in the
subtree

Pr{N = n} =
n∑

i=0

Pr{NX = i} Pr{NY = n − i} (26)

Naturally we have can interpret Pr{NX = i} as a marginal and, so,

Pr{NX = i} =
∑

k

Pr{NX = i, N = k} =
∑

k

Pr{NX = i|N = k} Pr{N = k}

(27)
where Pr{NX = i|N = k} is the probability of extracting supertrees of size i
from individuals of size k and Pr{N = k} is the distribution of tree sizes in the
population. Of course, Pr{NX = i|N = k} = 0 for k < i, and so

Pr{NX = i} =
∑
k≥i

Pr{NX = i|N = k} Pr{N = k} (28)

We can similarly decompose Pr{NY = n − i} obtaining

Pr{NY = n − i} =
∑

k≥n−i

Pr{NY = n − i|N = k} Pr{N = k} (29)
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Naturally, standard GP crossover is symmetric, and, therefore, the probability of
extracting a supertree of size i from a tree of size k is identical to the probability
of extracting a subtree of size k − i from a tree of size k, i.e., Pr{NX = i|N =
k} = Pr{NY = k − i|N = k}. So, we have

Pr{NX = i} =
∑
k≥i

Pr{NY = k − i|N = k} Pr{N = k}. (30)

By substituting (29) and (30) in (31) we finally obtain our size-distribution
evolution equation:

Pr{n}new =
n∑

i=0

∑
k1≥i

p(k1 − i, k1) Pr{k1}
∑

k2≥n−i

p(n − i, k2) Pr{k2} (31)

where we used the shorthand notation p(a, b) = Pr{NY = a|N = b} and Pr{a} =
Pr{N = a}.

If the size distribution we propose in (22) is indeed the limiting distribution
of sizes obtained by crossover in the absence of selection, then when one replaces
Pr{ki} with (22) in the r.h.s. of the previous equation, upon simplification one
should obtain (22) again. This requires, however, the specification of the distri-
bution of subtree sizes p(a, b). In the next section we will obtain this distribution
for the case where the limiting distribution of shapes follow the second assump-
tion we used to derive (22), i.e., that within each class of tree sizes, all possible
tree shapes are equally likely.

5 Subtree Distribution at the Crossover Fixed-Point

Let s(n, k) be the expected number of subtrees with k internal nodes in trees
with n internal nodes (where we draw trees of a particular size with uniform
probability). Naturally, s(n, n) = 1. Also, under the assumption that only a-ary
nodes and leaves can be used in the tree, we also have s(n, 0) = (a − 1)n + 1.

Let us consider all trees of size n > 0. These must all have a a-ary root node
(a > 0). Let ni be the size of child i of the root (naturally,

∑
i ni = n − 1).

Then we can divide up the space of trees of size n into groups based on the
values of ni. In each group there are

∏
i CT (a, ni) trees and, so, the probability

of randomly drawing a tree belonging to a specific group when sampling trees of
length n is given by

∏
i CT (a,ni)

CT (a,n) . So, for example, the first group is characterised

by n1 = 0, n2 = 0, · · · , na = n − 1 and contains (CT (a, 0))a−1
CT (a, n − 1) =

CT (a, n − 1) trees. So, the probability of randomly obtaining a member of this
group is CT (a, n − 1) /CT (a, n) = an+1

a(n−1)+1

(
a(n−1)+1

n−1

)
/
(
an+1

n

)
.

Let si(ni, k) be the expected number of subtrees of size k for child i of the
root. We assume that we know these quantities and we want to compute s(n, k)
on the basis of the si(ni, k). Clearly, for most values of k and ni, s(n, k) is simply
going to be the sum of the si(ni, k)’s, i.e., the number of trees of a given size in
our tree is just the sum of the trees of that same size in all the children of the
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root note. There are, however, special cases where we need to be more careful.
In particular, if k > ni, then si(ni, k) = 0 and, therefore, si(ni, n) = 0. However,
s(n, n) = 1. So, there is one exception to the summation rule.

Below we will formalise the rule. However, before we do that, let us consider
the effect of our assumption that within each length class all possible tree shapes
happen with equal chance. This assumption leads to the fact that both trees and
subtrees must follow the same subtree distribution, i.e., we have that si(ni, k) =
s(ni, k). Also, in order to compute s(n, k) we need to sum over all possible ways
in which we can draw the ni’s ensuring that the correct probability for each is
considered. All this is accounted for in the following recursion:

s(n, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if n < k,
1 if n = k,

∑
∑

ni=n−1

(∏
i CT (a, ni)
CT (a, n)

) (∑
i

s(ni, k)

)
otherwise.

(32)

So, the probability of drawing a tree with k internal nodes out of the class of
trees of n nodes is given by

p(n, k) =
s(n, k)∑
k s(n, k)

=
s(n, k)
an + 1

(33)

since, rather obviously,
∑

k s(n, k) is the total number of nodes in a tree with n
internal nodes of arity a. As a result we can write

p(n, k) =
δ(k = n)
an + 1

+ δ(k < n)
∑

∑
ni=n−1

(∏
i CT (a, ni)
CT (a, n)

) ∑
i

(
ani + 1
an + 1

)
p(ni, k)

(34)
where δ(x) = 1 if x is true, 0 otherwise.

6 Conjecture or Theorem?

In principle we now have all the ingredients to prove that (22) and the re-
lated distribution (34) are the fixedpoint for the tree-size-distribution evolution
equation (31). However, the recursive nature of (34) and the complexities of
simplifying sums of products of Catalan numbers make proving the result ex-
traordinarily difficult (except for the case a = 1, since this leads directly to the
result already proven in [12,15,13,14]).

To corroborate our result, we have therefore followed two alternative
approaches. Firstly, we have collected empirical data on the size distributions
obtained with different initialisations and for primitives of different arities in
populations under the effect of crossover only. Secondly, we have performed a
numerical integration of the r.h.s. of (31) at the assumed fixed point (for dif-
ferent values of a and μ0) to verify if the resulting values for the l.h.s. matched
the theoretical prediction. We describe the results of our tests in Sections 6.1
and 6.2.
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6.1 Empirical Validation

We performed runs of a GP system in Java, with populations of 100,000 indi-
viduals, run for 500 generations. We used such large population sizes to reduce
stochastic effects such as drift of the mean program size and to ensure that
enough programs in each length-class were available. Similarly we performed a
large number of generations to ensure that the initial conditions (see below) were
completely washed out.

Only terminals and primitives of arity a (for a = 1, 2, 3, 4, 5) were allowed.
Initialisation was performed using the “full” method. With this method, initial
trees included μ0 = d + 1 primitives for a = 1 and μ0 = 1−ad+1

1−a primitives for
a > 1. Initial depth was 3, 4, or 8 (the root node being at depth 0).

During our runs we recorded histograms of program sizes, one for each gener-
ation, for sizes between 1 and 1000. Note that, because of the large population
sizes and the particular objective of our runs (i.e., the study of size distribu-
tions), there was no need to collect data in multiple independent runs (as it is
customary for other types of empirical studies).

In all cases the match between theoretical predictions and empirical data is
striking. Compare, for example, the theoretical predictions and the empirical
results shown in Figures 1–3.

6.2 Numerical Integration

The exact numerical integration of the r.h.s. of (31) at the assumed fixed point
would require performing infinite sums, which is clearly impossible. So, we chose
to limit sums over tree sizes to limit = 5μ0, effectively assuming that Pr{n} = 0
for n > limit. Naturally, this leads to some integration errors, but these turned
out to be negligible for the purpose of confirming whether or not the resulting
values for the l.h.s. matched the theoretical prediction.
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Fig. 1. Comparison between empirical and theoretical program size distributions for
binary trees (a = 2) initialised with full method (d = 4, initial mean size μ0 = 31,
mean size after 500 generations μ = 27.26044)
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Fig. 2. Comparison between empirical and theoretical program size distributions for
ternary trees (a = 3) initialised with full method (d = 4, initial mean size μ0 = 121,
mean size after 500 generations μ = 109.10284)
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Fig. 3. Comparison between empirical and theoretical program size distributions for
quaternary trees (a = 4) initialised with full method (d = 4, initial mean size μ0 = 341,
mean size after 500 generations μ = 361.73052)

We performed the integration for tree sizes (internal nodes) between 0 and
limit inclusive, and for a variety of a’s and μ0’s. In all cases, the output distri-
bution computed via (31) was effectively indistinguishable from (22).

As an example of the degree of accuracy in the match between input and out-
put size distributions, we show in Figure 4 a comparison between our conjectured
program size distributions for binary trees and the output produced by (31). The
plots of the distributions overlap almost perfectly. Indeed, absolute errors range
between −2.8781 × 10−5 and −6.7263 × 10−7, corresponding to relative errors
between −0.023% and −0.049%.
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Fig. 4. Comparison between the program size distributions conjectured in (22) and
output produced by (31) for binary trees (a = 2) of mean size μ = 27.26044, as in
Figure 1

7 Discussion and Conclusions

We have provided very strong theoretical and empirical evidence that the dis-
tribution of tree sizes towards which crossover pushes a population of unary,
binary, ternary, etc. GP trees is a Lagrange distribution of the second kind. This
result generalises results previously reported in [12,15,13,14].

Naturally, there are important consequences of this result. As was done in
[12], we can now compute, for example, the expected resampling probability for
programs of different sizes. In particular, let us imagine that our GP system
operating on a flat landscape is at the fixed point distribution and let F and
T be the sizes of the function and terminal sets, respectively. Since, there are
FnT (a−1)n+1 different programs with n internal nodes in the search space, it is
now possible to compute the average probability psample(n) that each of these
will be sampled by standard crossover, namely

psample(n) =
(1 − apa)

FnT (a−1)n+1

(
an + 1

n

)
(1 − pa)(a−1)n+1 pn

a . (35)

It is easy to study this function and to conclude that, for a flat landscape,
standard GP will sample a particular short program much more often than it will
sample a particular long one. For example, when μ0 = 27.26044 as in Figures 1
and 4, GP will heavily resample short programs, e.g., the same program of length
1 is resampled on average every 16 crossovers, every 89 crossovers for programs
of length 3, and every 448 crossover for length 5. However, as program size grows
the sampling probability drops dramatically. For example, the resampling rate
for programs of length 21 is 1 in over 77 million.

In future work we intend to extend the results reported here to the case where
primitives of different arities are used in a run. Also, we will attempt to find a
mathematical proof that (22) is a fixed-point for (31).
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Abstract. Prime generating polynomial functions are known that can
produce sequences of prime numbers (e.g. Euler polynomials). However,
polynomials which produce consecutive prime numbers are much more
difficult to obtain. In this paper, we propose approaches for both these
problems. The first uses Cartesian Genetic Programming (CGP) to di-
rectly evolve integer based prime-prediction mathematical formulae. The
second uses multi-chromosome CGP to evolve a digital circuit, which
represents a polynomial. We evolved polynomials that can generate 43
primes in a row. We also found functions capable of producing the first
40 consecutive prime numbers, and a number of digital circuits capable
of predicting up to 208 consecutive prime numbers, given consecutive
input values. Many of the formulae have been previously unknown.

1 Introduction

There are many questions relating to properties of primes numbers that have
fascinated mathematicians for hundreds of years [1]. It is well known that no
formulae have ever been produced that can map the sequence of natural num-
bers into the sequence of primes. However there exists many simple polynomials
that can map quite long sequences of natural numbers into a sequence of dis-
tinct primes (long is generally measured with respect to the so-called Euler’s
polynomial x2 − x + 41 [2] which produces distinct primes for values of x from
1 ≤ x ≤ 40). Euler’s polynomial continues to produce many primes for larger
values of x.

Legendre found a similar polynomial x2 + x + 41 which produces prime num-
bers for 0 ≤ x ≤ 39, and it is this polynomial which, oddly, is referred to as
Euler’s polynomial [3,1]. In this paper we present evolved polynomials that can
generate long sequences of primes (including re-discovering Euler’s and Legen-
dre’s polynomials). Recently there has been renewed interest in the mathematics
of prime-producing polynomials [4]. In evaluating the quality of prime-producing
polynomials we must observe that there can be many criteria for deciding on the
fecundity of prime-producing polynomials. Since polynomials can produce posi-
tive or negative quantities, some discovered polynomials are particularly fecund
at generating positive or negative primes. Other polynomials can produce long
sequences of primes, however prime values may be repeated. The most sought
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after quality of prime-producing polynomials appears to be the longest sequence
of positive distinct primes [5]. Last year there were many computational at-
tempts at producing prime-producing polynomials and a polynomial of degree
five was found to be particularly good (though not at producing distinct, positive
primes) [6].

Ulam discovered that there are many integer coefficients, b and c, such that
4x2 + bx + c generates a large number of prime numbers [1]. The polynomial
41x2 + 33x + 43321 has also been shown to produce prime numbers for ninety
value of x, when 0 ≤ x ≤ 99, but only twenty six of the primes are consecu-
tive [1]. A high asymptotic density of primes is often considered to be an im-
portant criterion of the fecundity of prime-producing polynomials [7]. Gilbert
Fung announced his discovery of two polynomials 103x2 − 3945x + 34381 and
47x2 − 2247x + 21647 which produces prime numbers for 0 ≤ x ≤ 43. However,
the best polynomial found so far is 36x2 −810x+2753, which was discovered by
Ruby (immediately after hearing Fung’s announcement), and produces primes
numbers for 0 ≤ x ≤ 44 [5]. The interested reader may consult [8] and [9] for more
recent mathematical findings on the subject. Since polynomials of fixed order can
be easily transformed by translation operations, there are in fact infinitely many
quadratics that have ’Euler-fecundity’. The most important mathematical quan-
tity characterising the essential behaviour of prime-producing polynomials is the
polynomial discriminant which for a quadratic of form ax2 + bx + c is b2 − 4ac.
Mollin gives tables of polynomials with particular discriminants that produce
long sequences of primes [5].

Euler’s polynomial was the inspiration behind one of the GECCO competi-
tions in 2006. The aim of the GECCO Prime Prediction competition (and some
of the work in this paper) was to produce a polynomial f(i) with integer coeffi-
cients, such that given an integer input, i, it produces the ith prime number, p(i),
for the largest possible value of i. For example, f(1) = 2, f(2) = 3, f(3) = 5,
f(4) = 7. Therefore, the function f(i) must produce consecutive prime numbers
for consecutive values of i. The requirement that the polynomial must not only
produce primes for consecutive input values, but also that the primes them-
selves must be consecutive, makes the problem considerably more challenging
than mathematicians have previously considered. The two approaches described
in Section 4.2 were entered in the GECCO Prime Prediction competition and
were ranked second overall. The winning entry evolved floating point co-efficients
of a polynomial using a Genetic Algorithm (GA), where the output of the poly-
nomial was rounded to produce the prime numbers for consecutive values of i.
However, the winning entry was only able to predict correctly a few consecutive
prime numbers (9 in total). Unfortunately, the details regarding this have not
been published.

So far, it seems that no integer polynomial exists, which is capable of pro-
ducing sequences of consecutive prime numbers. In this paper, we are proposing
two approaches to evolve a formula (in one case strictly a polynomial) capable
of producing prime numbers. The first approach treats the consecutive prime
number producing formula as a symbolic regression problem. The technique
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used for these approaches is Cartesian Genetic Programming (CGP)[10]. The
second approach evolves a digital circuit, which can produce consecutive prime
numbers for consecutive input values. Any digital circuit can be represented
as a polynomial expression, as any logic function can be expressed using only
addition, subtraction or multiplication. The technique used to evolve the con-
secutive prime generating digital circuit is an extension of the CGP technique,
known as multi-chromosome CGP [11]. Multi-chromosome CGP has been shown
to significantly improve performance on difficult, multiple-output, digital circuit
problems, when compared with the conventional form of CGP [11].

The discovery of new prime producing formulae (consecutive, or otherwise)
would be of interest to mathematicians, as it is unknown whether such formulae
currently exist. Even if such formulae do exist, they may be too complex for a
human mathematician to discover. Therefore, this paper once again highlights
the use of evolutionary computation as a tool for discovery and design. Also,
we propose that the evolution of prime producing formulae would make an in-
teresting and challenging benchmark for comparing evolutionary computation
techniques, as it proved clear by empirical tests that it is a harder and more
complex problem to solve than many existing GP benchmarks.

The plan for the paper is as follows: section 2 gives an overview of the CGP
technique, followed in section 3 by a description of the multi-chromosome exten-
sion to the CGP technique. The details of our experiments on evolving sequences
of prime numbers are shown in section 4, followed by the results in section 5.
Section 6 gives conclusions and some suggestions for future work.

2 Cartesian Genetic Programming (CGP)

Cartesian Genetic Programming is a form of Genetic Programming (GP) in-
vented by Miller and Thomson [10], for the purpose of evolving digital circuits.
However, unlike the conventional tree-based GP [12], CGP represents a program
as a directed graph (that for feed-forward functions is acyclic). The benefit of
this type of representation is that it allows the implicit re-use of nodes in the
directed graph. CGP is also similar another technique called Parallel Distributed
GP, which was independently developed by Poli [13]. Originally CGP used a pro-
gram topology defined by a rectangular grid of nodes with a user defined number
of rows and columns. However, later work on CGP showed that it was more ef-
fective when the number of rows is chosen to be one [14]. This one-dimensional
topology is used throughout the work we report in this paper.

In CGP, the genotype is a fixed length representation and consists of a list
of integers which encode the function and connections of each node in the di-
rected graph. However, the number of nodes in the program (phenotype) can vary
but is bounded, as not all of the nodes encoded in the genotype have to be con-
nected. This allows areas of the genotype to be inactive and have no influence on
the phenotype, leading to a neutral effect on genotype fitness called neutrality.
This unique type of neutrality has been investigated in detail and found to be ex-
tremely beneficial to the evolutionary process on the problems studied [10,15,14].
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Fig. 1. A CGP genotype and corresponding phenotype for the function x6 − 2x4 + x2.
The underlined genes in the genotype encode the function of each node, the remaining
genes encode the node inputs. The function lookup table is: +(0), −(1), ∗(2), ÷(3).
The index labels are shown underneath each program input and node. The inactive
areas of the genotype and phenotype are shown in grey dashes.

Each node is encoded by a number of genes. The first gene encodes the node
function, whilst the remaining genes encode where the node takes its inputs
from. The nodes take their inputs in a feed forward manner from either the
output of a previous node or from the program inputs (terminals). Also, the
number of inputs that a node has is dictated by the arity of its function. The
program inputs are labelled from 0 to n-1, where n is the number of program
inputs. The nodes encoded in the genotype are also labelled sequentially from n
to n+m-1, where m is the user-defined bound for the number of nodes. If the
problem requires k program outputs, then k integers are added to the end of the
genotype, each encoding a node output in the graph where the program output
is taken from. These k integers are initially set as the outputs of the last k nodes
in the genotype. Fig. 1 shows a CGP genotype and corresponding phenotype for
the function x6 − 2x4 + x2 and Fig. 2 shows the decoding procedure.

3 Multi-chromosome Cartesian Genetic Programming

3.1 Multi-chromosome Representation

The difference between a CGP genotype (described earlier in section 2) and a
Multi-chromosome CGP genotype, is that the Multi-chromosome CGP genotype
is divided into a number of equal length sections called chromosomes. The num-
ber of chromosomes present in a genotype is dictated by the number of program
outputs required by the problem, as each chromosome is connected to a single
program output. This allows large problems with multiple-outputs (normally
encoded in a single genotype), to be broken down into many smaller problems
(each encoded by a chromosome) with a single output. This approach should
make the larger problems easier to solve. By allowing each of the smaller prob-
lems to be encoded in a chromosome, the whole problem is still encoded in a
single genotype but the interconnectivity between the smaller problems (which
can cause obstacles in the fitness landscape) has been removed.
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Fig. 2. The decoding procedure of a CGP genotype for the function x6 − 2x4 + x2.
a) Output A (oA) connects to the output of node 10, move to node 10. b) Node 10
connects to the output of nodes 4 and 9, move to nodes 4 and 9. c) Nodes 4 and 9
connect to the output of node 8 and program inputs 0 and 1, move to node 8. d) Node
8 connects to the output of nodes 4 and 6, move to node 6, as node 4 has already been
decoded. e) Nodes 6 connects to the output of nodes 4 and 5, move to node 5. f) Node
5 connects to program input 1. When the recursive process has finished, the genotype
is fully decoded.

Each chromosome contains an equal number of nodes, and is treated as a geno-
type of an individual with a single program output. The inputs of each node en-
coded in a chromosome are only allowed to connect to the output of earlier nodes
encoded in the same chromosome or any program input (terminals). This creates
a form of compartmentalization in the genotype which supports the idea of remov-
ing the interconnectivity between the smaller problems encoded in each chromo-
some. An example of a Multi-chromosome CGP genotype is shown in Fig. 3.

3.2 Fitness Function and Multi-chromosome Evolutionary Strategy

The fitness function used in multi-chromosome approach is identical to the fit-
ness function used in single chromosome approach, except for one small change.
The output of each chromosome in multi-chromosome approach is calculated
and assigned a fitness value based on the hamming distance from the perfect
solution of a single output, whereas in CGP a fitness values is assigned to the
whole genotype based on the hamming distance from the perfect solution over
all the outputs (a perfect solution has a fitness of zero). Therefore, the multi-
chromosome approach has n fitness values, where n is the number of program
outputs, per genotype. This allows each chromosome in a genotype to be com-
pared with the corresponding chromosome in other genotypes, by using a (1 +
4) multi-chromosome evolutionary strategy.

The (1 + 4) multi-chromosome evolutionary strategy selects the best chro-
mosome at each position from all of the genotypes and generates a new best
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Fig. 4. The (1 + 4) multi-chromosome evolutionary strategy used in Multi-chromosome
CGP. px,g - parent x at generation g, cy - chromosome y, f(px,g, cy) - fitness of chro-
mosome y in parent x at generation g, f(px,g) - fitness of parent x at generation g.

of generation genotype containing the fittest chromosome at each position. The
new best of generation genotype may not have existed in the population, as it
is a combination of the best chromosomes from all the genotypes, so it could be
thought of as a “super” genotype. The multi-chromosome version of the (1 +
4) evolutionary strategy therefore behaves as an intelligent multi-chromosome
crossover operator, as it selects the best parts from all the genotypes. The overall
fitness of the new genotype will also be better than or equal to the fitness of
any genotype in the population from which it was generated. An example of the
multi-chromosome evolutionary strategy is shown in Fig. 4.

4 Evolving a Prime Producing Formulae

4.1 Non-consecutive Prime Producing Formulae

The approach chosen for attempting to evolve integer coefficient polynomials
(e.g. Euler’s) was to assume that the polynomial was quadratic in the index
value with a CGP genotype corresponding to each coefficient. Each genotype
took the index value i as the only input. The primitive functions used were
integer addition, subtraction, multiplication, protected division, and protected
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modulus. The CGP genotype was 300 primitives. One percent of all genes were
mutated to create the offspring genotypes in a 1+4 evolutionary strategy (in
which if any offspring were as fit at the best and there were no fitter genotypes,
the offspring was always chosen). One hundred runs of 20,000 generations were
carried out. The fitness of the polynomial encoded in the genotype was calculated
by adding one for every true prime generated (for index values 0 to 49) that was
bigger than the previous prime generated.

4.2 Consecutive Prime Producing Formulae

The aim of this experiment is to evolve a function f(i), which is capable of pro-
ducing consecutive prime numbers p(i) for consecutive values of i. For example,
f(1) = 2, f(2) = 3, f(3) = 5, f(4) = 7, etc. In this paper, we propose two
approaches to evolving the polynomial f(i); one treats f(i) as an integer based
function, while the other treats f(i) as a binary based function.

An Integer Based Approach to the Prime Producing Polynomial. The
first approach discussed uses CGP in a similar manner found in any symbolic
regression approach [16]. The input of the CGP program is the i value, in the
form of an integer, and the program output is the predicted prime number, p(i),
in the form of an integer. The function set used is similar to that used in many
symbolic regression problems, comprising of addition, subtraction, multiplica-
tion, protected division and protected modulus. The CGP genotype is allowed
200 nodes, which can represent any of the functions in the function set. The
fitness function used awards a point for every number produced which is a prime
number and is in the correct consecutive position for the first 40 consecutive
prime numbers.

A Binary Based Approach to the Prime Producing Polynomial. The
second approach treats the polynomial f(i), as a digital circuit problem, and uses
multi-chromosome CGP to evolve a solution. Technically, the evolved solution
will still be a polynomial, as any logical expression can be expressed in terms of a
number of variables and the operators addition, subtraction and multiplication.
Also, any input value i, when represented as a binary number, also forms a
polynomial, i =

∑
aj2j = an2n + an−12n−1 + ... + a020, where 0 ≤ j ≤ n.

Likewise, any prime number, p(i), produced can also be represented as a binary
number, and also forms a polynomial, p(i) =

∑
bk2k = bm2m +bm−12m−1 + ...+

b020, where 0 ≤ k ≤ m. Therefore, we are trying to evolve a function f(i), which
given the coefficients of the binary number representing i, a0, ..., an, produces
the coefficients of the binary number representing p(i), b0, ..., bm, where n does
not have to equal m. An illustration of the process is shown in Fig. 5.

The function f(i), which maps the coefficients of the input i to the output p(i),
is evolved using multi-chromosome CGP. The evolved program has n program
inputs and m program outputs. In this case, n = 14, as this is the minimum
number of inputs required to accept the number 10,000 in binary format and
m = 17, as this is the minimum number of outputs required to produce the
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Fig. 5. The function mapping between the coefficients of the binary number repre-
senting the input, i, and the coefficients of the binary number representing the prime
number output, p(i)

10,000th prime number. Each program output is taken from a separate chromo-
some in the genotype, therefore the genotype consists of m chromosomes. Each
chromosome is an equal length and contains 300 nodes. The function set for the
experiment simply contains a multiplexer which can choose either input in0 or
input in1, as its output. The mutation rate used was 3% per chromosome.

As the set of test cases supplied for the GECCO competition was very large
(10,000), and there was no guarantee a solution exists for all 10,000 test cases, or
how much computational power would be required to find a solution, an incre-
mental form of evolution was used. The evolved program starts off trying to find
a solution to the first 16 test cases. If a solution is found, the run continues but
the number of test cases is increased to 32. This evolutionary process continues,
incrementing the number of test cases by 16 each time a solution is found, until
a solution is found for all 10,000 test cases (a total of 625 increments).

In this paper, we are not actually benchmarking the performance of any of the
techniques but we are using them for exploratory purposes, to see if any function
can be discovered that is capable of predicting consecutive prime numbers.

5 Results and Discussion

5.1 Non-consecutive Prime Producing Polynomials

In the hundred runs, we obtained 6 Legendre polynomials and 5 Euler polyno-
mials. The most common polynomial found was 2x2 + 40x + 1. This was found
57 times. The polynomial produces 47 primes for index values 0 to 49 but 17
is the longest sequence of primes. The most interesting solution obtained was
the polynomial x2 − 3x + 43. This produces primes for index values 0 to 42.
This is a sequence of primes that is two primes longer than Euler or Legendre’s
polynomials. However, it has two repeats (the sequence begins 43, 41, 41, 43, 47,
for index values 0,1,2,3,4). We could not find this polynomial in the literature
(despite its simple form). When the number of generations was increased we
found that the technique tended to converge on Euler of Legendre polynomials
with much greater frequency (i.e. these polynomials are great ’attractors’).

Further work was carried out in which polynomials were rewarded for having
as large a sum of coefficients as possible (provided that they were equally good
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at producing long sequences of primes). We carried out 1000 runs of 40,000 gen-
erations with 200 primitives in each coefficient producing program (quadratics).
The inputs to the coefficient producing programs were chosen to be 19, 47, 97,
139, and 193 respectively. The Euler polynomial was produced 142 times and the
polynomial 2x2 + 40x + 1 (second best) was discovered 14 times. This approach
was found to produce a much greater variety of polynomials, many of which
produced long sequences of primes. Some examples are 8x2 + 104x + 139 (25)
and 2848x2 + 73478x + 227951 (15), where the figures in brackets represent the
length of the sequence of primes produced.

5.2 The Integer-Based Approach

The symbolic regression approach, was run independently ten times for 100,000
generations. The results of these runs can be shown in Table 1. ¿From the results,
the best individual run was picked with a fitness of 27 out of the first 40 primes
correct. This individual was evolved for a further 10 million generations, by
which it had reached a fitness of 37 after 3,192,104 generations. Once again, the
individual was evolved for a further 20 million generations. This time it had
now reached a fitness of 39 after 16,336,784 generations. The individual still had
not found all 40 consecutive prime numbers, so it was evolved further until it
could correctly produce the first 40 prime numbers consecutively, which took a
further 48,755,397 generations. The solution contained 88 active nodes out of the
original 200 nodes and required 113,176,917 potential solutions to be evaluated
in order to find this solution, indicating the difficulty of this problem.

As an extension to the experiment, the evolved solution was evaluated on the
first 100 prime numbers (60 of which it had never been trained on) to see how well
the solution generalised. The evolved solution found 21 prime numbers out of the
60 prime numbers it had never seen before. Some of the prime numbers found in
the 21 prime numbers were in small groups whilst others were spread out. This
indicates that the evolved solution not only found the first 40 consecutive prime
numbers but also learnt something about what it means to be a prime number.

Table 1. The results of 10 independent runs of CGP trying to find the first 40 con-
secutive prime numbers

Run No. Final Fitness Generation Achieved No. Active Nodes

0 16 8257 48
1 17 5666 36
2 13 2331 37
3 16 4234 34
4 17 4955 37
5 19 6261 42
6 16 3447 41
7 27 9944 57
8 18 6383 57
9 15 7305 52
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5.3 The Binary-Based Approach

The digital circuit approach was run continuously, incrementing the number of
test cases each time a solution was found. Evolved solutions were found for the
first 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192 and 208 consecutive prime
numbers. The evolved solution that produces the first 16 consecutive primes is
shown in Equation 1.

p(i) = b525 + b424 + b323 + b222 + b121 + b020 where (1)

b5 = a0 + a1a2 − 2a0a1a2

b4 = −((a1(2a2 − 1) − a2)(1 + a2(a3a4 − 1)))
+a0(1 − 2a2 + a2

2(2 − 2a3a4) + 2a1(2a2 − 1)(1 + a2(a3a4 − 1)))
b3 = a2(a3 + a4 − 2a3a4) + a1a3(1 + a2(2a3a4 − a3 − a4))
b2 = 1 − a3 − a4 + 2a32a4 − 2a4

2(2a3 − 1)3(a4 − 1)a4

+2a3a
2
4 − 2a2

3a
2
4 − a2

2(2a3 − 1)(a3(2 − 6a4)
+(3 − 2a4)a4 + 6a2

3(a4 − 1)a4) + a3
2(1 − 2a3)2(1 − (1 + 6a3)a4

+(6a3 − 2)a2
4) + a2(2a3

3(a4 − 1)a4 + 2a2
4 + a3(2 + 5a4 − 8a2

4)
+a2

3(1 − 9a4 + 6a2
4) − 1) + a1(1 − a2a3 + a2

2(2a3 − 1))(2a3

+2a4 − 1 − a3a4 − 2a2
3a4 + 2a4

2(2a3 − 1)3(a4 − 1)a4 − 2a3a
2
4

+2a2
3a

2
4 + 2a2

2(2a3 − 1)(a3(2 − 4a4) − (a4 − 2)a4

+3a2
3(a4 − 1)a4) − 2a3

2(1 − 2a3)2(1 − (1 + 3a3)a4 + (3a3 − 1)a2
4)

−a2(a4 − 2 + 2a3
3(a4 − 1)a4 + 2a2

4 + a3(4 + 4a4 − 8a2
4)

+2a2
3(1 − 5a4 + 3a2

4)))
b1 = 1 − a3 + a2

3 − a2a
2
3 − a1(a2(1 + a2

3 + a3(a4 − 3))
+a2

3(1 − 2a4) + a2
2a3(2a3 − 1)(a4 − 1)) − a2

3a4 + a2a
2
3a4

+a2
1(a2 − 1)a2a3(2a3 − 1)(2a4 − 1)

−a0(2a1a2 − 1)(a3 − 1)(1 + (a2 − 1)a3(1 − a4 + a1(2a4 − 1)))
b0 = a2 − a0(a1 − 1)(a2 − 1)(a3 − 1) + a1(a2 − 1)(a3 − 1) + a3 − a2a3

The solution producing 208 consecutive primes contained 400 active nodes
and required 230,881,977 generations. A total of 923,527,909 potential solutions
had to be evaluated, which required approximately three weeks of computing
time on a PC with a single 1.83GHz processor and 448MB RAM. We believe
that with enough computing power it would be possible to find a solution capable
of predicting the first 10,000 prime numbers.

On examining the solutions, it can be observed that the more consecutive
primes a solution can predict, the more active nodes the solution contains. The
majority of the evolved solutions could not be included in this paper, as they were
to large to print. Due to the sheer complexity of the solutions, we believe that
it is highly unlikely that a human would ever devise such a solution, especially
for the solutions producing high numbers of consecutive primes.
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As the evolved solution for the first 16 prime numbers was capable of accepting
inputs up to 31, we decided to extend the experiment to see how the solution
generalised on 15 previously unseen inputs (just as we did with the integer-
based approach). From the 15 unseen inputs, 7 of the predicted 15 outputs were
prime numbers, which is just below 50%, indicating that the solution had learned
something about “primeness” or favoured prime numbers. However, none of the
7 prime numbers produced from the 15 unseen inputs were consecutive.

6 Conclusion and Future Work

In this paper, we have presented an approach for evolving non-consecutive prime
generating polynomials and also two different approaches using CGP for evolving
a function f(i), which produces consecutive prime numbers p(i), for consecutive
input values i. The best non-consecutive prime generating polynomial evolved
produced 43 primes in a row (better than Euler’s). Of the consecutive prime
generating formulae, the symbolic regression approach using CGP, evolved a
function capable of producing 40 consecutive prime numbers for input value i,
where 1 ≤ i ≤ 40. The digital circuit approach using multi-chromosome CGP,
evolved multiple functions for consecutive sequences of prime numbers with in-
creasing length, the longest of which produced 208 consecutive prime numbers,
for input value i, where 1 ≤ i ≤ 208. Although the second approach produced
much larger sequences of prime numbers, the size of the solutions were enormous,
in comparison with those produced by the first approach. In future work, once a
solution is found, we intend to continue the evolutionary process with an altered
fitness function, which minimises the number of nodes used. Therefore, making
the solutions more compact. The downside of this approach is any generality
evolved for solving further test cases could be lost.

The binary approach produced larger numbers of consecutive primes much
easier than the integer-based approach, possibly indicating that by altering the
search space from log10 to log2 has discovered a previously unknown relationship
between the prime numbers. It is possible that by investigating other bases in the
future, such as log8 or log16 could produce further links between prime numbers
and help in discovering a function for prime prediction.

References

1. Wells, D.: Prime Numbers. John Wiley and sons (2005)
2. Euler, L.: Extrait d’un lettre de m. euler le pere a m. bernoulli concernant le

memoire imprime parmi ceux de 1771. Nouveaux Mémoires de l’Académie royale
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Abstract. Speech quality, as perceived by the users of Voice over In-
ternet Protocol (VoIP) telephony, is critically important to the uptake
of this service. VoIP quality can be degraded by network layer problems
(delay, jitter, packet loss). This paper presents a method for real-time,
non-intrusive speech quality estimation for VoIP that emulates the sub-
jective listening quality measures based on Mean Opinion Scores (MOS).
MOS provide the numerical indication of perceived quality of speech. We
employ a Genetic Programming based symbolic regression approach to
derive a speech quality estimation model. Our results compare favorably
with the International Telecommunications Union-Telecommunication
Standardization (ITU-T) PESQ algorithm which is the most widely ac-
cepted standard for speech quality estimation. Moreover, our model is
suitable for real-time speech quality estimation of VoIP while PESQ is
not. The performance of the proposed model was also compared to the
new ITU-T recommendation P.563 for non-intrusive speech quality esti-
mation and an improved performance was observed.

Keywords: VoIP, Non-Intrusive, Speech Quality, GP, Symbolic Regres-
sion, MOS.

1 Introduction

Speech quality estimation for VoIP can be performed either subjectively or objec-
tively. In the former case, speech quality is estimated by averaging the opinions of
a set of suitably trained human subjects [1]. Each of the testers assigns an Opinion
Score – on an integral scale from 1 (unacceptable) to 5 (excellent) – to the speech
signal under test. The opinion scores of the testers are averaged into a MOS. Sub-
jective MOS has been found to be, by far, the most reliable technique of speech
quality estimation. However, it is expensive, time-consuming and laborious.

Recently, objective speech quality assessment has become a very active re-
search area. This is an attempt to circumvent the limitations of subjective test-
ing by simulating the opinions of human testers algorithmically. There are two
distinct approaches to objective testing: intrusive and non-intrusive.

Intrusive speech quality estimation techniques compare the test (i.e., network
distorted) speech signal, as reconstructed by the decoder, to the reference, input

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 217–228, 2007.
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speech, basing their estimation on the measured amount of distortion. ITU-T
P.862 (PESQ) [2] is a popular example of intrusive estimation model.

On the other hand non-intrusive schemes assess the quality of the distorted
signal in the absence of the reference signal. This approach is effective in envi-
ronments where the reference speech signal is not accessible. P.563 is the new
ITU-T Recommendation for non-intrusive evaluation speech quality in narrow-
band telephony applications [3]. Intrusive models are more reliable than the non-
intrusive ones as the former have access to a reference speech signal to compare
the distorted speech signal with.

However, the afore-mentioned models are compute-intensive as they base their
results on the time and/or frequency domain analysis of the speech signal under
test. They also require the test call to be recorded for a considerable duration
before it can be analysed. Hence, they are not suitable for real-time and contin-
uous monitoring of speech quality. This makes non-intrusive models like ITU-T
Recommendation G.107 (E-Model) [4] more attractive for real-time speech qual-
ity estimation as they base their results on networks traffic parameters. Despite
the fact that E-model is a transmission planning tool, it has been deployed in
various commercial applications. First of all a different version of it exists for
various network conditions such as codec type and bursty or non-bursty network
conditions. Moreover, it is restricted to a limited number of codecs and network
conditions due to its reliance on subjective tests [5].

In this paper we have employed Genetic Programming (GP) based symbolic
regression approach to estimate the speech quality as a function of impairments
due to IP network and encoding algorithms. A main advantage of GP is that it
can produce human-readable results in the form of analytical expressions. More-
over, GP deals with the significant input parameters and aids in the automatic
pruning of the irrelevant ones. These features of GP make our results superior
to the past research based on Artificial Neural Networks (ANNs) by Sun and
Ifeachor [6], Mohamed et. al. [7] [8] and on lookup tables by Hoene et. al. [9].
We have used PESQ as a reference for evolutionary modeling. The results of
proposed models show a high correlation with PESQ. Moreover, our models are
suitable for real-time and non-intrusive estimation of VoIP quality.

The rest of the paper is organized as follows: section 2 talks about the VoIP
architecture briefly. To gather the relevant data characterising the speech traffic
we have employed a VoIP simulation as described in section 3. Section 4 elu-
cidates how this data is used to evolve the speech quality estimation models.
Section 5 presents the results and carries out an analysis of the current research.
The paper concludes in section 6 outlining the major achievements and future
ambitions.

2 VoIP

As opposed to traditional circuit switched telephony (PSTN), in VoIP the rout-
ing of voice conversations takes place over the Internet or an IP based network in
the form of packets. The issues related to VoIP communication are governed by
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various signaling and transport protocols. Once digitized, human speech is com-
pressed by using a suitable encoding algorithm such as G.711, G.723.1, G.729
and AMR etc. Various speech codecs (encoder/decoder) differ from each other
in terms of features such as encoding bit-rate (kbps), algorithmic delay (ms),
complexity and, subsequently, speech quality (MOS). After compression and en-
coding into a suitable format the speech frames are packetized. RTP, UDP and
IP packet headers are appended to the frames and the packets are sent to the
receiver. During transmission some packets may be lost due to congestion and/or
(wireless) transmission errors. The receiver processes the packets and presents
them to the playout (dejittering) buffer which is a temporary storage that aims
to accumulate enough packets so that they can be played out to the listener
as a steady stream as opposed to fragmented clips of voice. The playout buffer
seeks to smooth out the variation of the inter-arrival delay (jitter) between the
successive voice packets. If packets arrive too late to be played out on time, they
are regarded as lost. Consequently, the losses as observed by the application are
a superposition of losses due to late arrivals on the losses that occur elsewhere in
the VoIP network. After the playout buffer the speech frames are decoded and
in doing so any lost frames may be camouflaged by the decoder using a packet
loss concealment (PLC) algorithm. Finally the decoded signal is translated in
to its acoustic representation. Fig. 1 shows the steps required for mouth-to-ear
transportation of voice over an IP network. Silence suppression or discontinuous
transmission (DTX) is also supported by VoIP whereby the periods of a conver-
sation when the speaker is silent are not coded or transmitted. DTX is aimed at
bandwidth saving. A voice activity detector (VAD) is used to implement DTX.

Encoder
Playout

Buffer

Depacket-

izer

RTP/UDP/

IP

RTP/UDP/

IP
Packetizer Internet Decoder

Sender Receiver

Fig. 1. VoIP system

3 VoIP Traffic Simulation

A simulation based approach was pursued for this research. Such an approach
has been employed by various authors such as [10][11]. The main advantage
of this approach is that various network distortion scenarios can be emulated
precisely. Moreover, the tests are easily repeatable. This section describes the
VoIP simulation methodology employed in this work. Before proceeding to the
details of actual VoIP simulation environment it is pertinent to discuss the nature
of VoIP packet loss. This is described in the following section along with a
suitable packet loss model.

3.1 Packet Loss Model

VoIP packet loss is bursty in nature as it exhibits temporal dependency. In the
current context the term burst is used to describe the event of a consecutive
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Fig. 2. The Gilbert Model

loss of a number of packets. So, if packet n is lost then normally there is a
higher probability that packet n + 1 will also be lost. ITU-T Recommendation
G.1050 [12], which presents a network model for evaluating multimedia trans-
mission performance over IP, has proposed to use the Gilbert model to capture
temporal dependency. Fig. 2 shows the state diagram of this 2-state Markov
model.

In this stochastic automaton, p is the conditional probability that the packet
numbered n + 1 is lost given that packet n is successfully received and q is the
converse. 1 − q corresponds to the conditional loss probability (clp). Usually
p < 1 − q. Moreover, the Gilbert model reduces to a Bernoulli model if p + q
= 1 . In (1) mlr corresponds to the mean loss rate and mbl corresponds to the
mean burst length.

mlr =
p

p + q
, mbl =

1
q

(1)

The values of p and q can be calculated using the loss length distribution
statistics of a network traffic trace.

3.2 VoIP Simulation Environment

This section describes the network simulation environment and the testbed used
in this study. A schematic of the simulation environment is shown in Fig. 3. The
system includes a speech database, encoder(s)/decoder(s), a packet loss simulator,
a speech quality estimation module (PESQ), a parameter extraction module for
computing the values of different parameters and a GP based speech quality esti-
mation model. Three popular codecs were chosen in the current research, namely;

Speech Database

Model

Evolved By

GP

Paremeter

Extraction

Decoder
Gilbert Loss

Simulator
Encoder

Quality measure

(PESQ)

Reference

speech signal

MOS-LQO
GP

Degraded

speech

 MOS-LQO
PESQ

VoIP Traffic

parameters

Fig. 3. Simulation system for speech quality estimation model
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G.729 CS-ACELP (8 kbps) [13], AMR-NB [14] and G.723.1 MP-MLQ/ACELP
(6.3/5.3 kbps) [15]. All of these are based on Linear Predictive Coding of speech.
LPC is a scheme whereby the spectral envelop of human speech can be represented
in a compressed form. AMR was used in its 7.4 and 12.2 kbps modes whereas
G.723.1 was used in its 6.3 kbps mode only. All of these low-bitrate codecs aim
at VoIP traffic bandwidth saving. These codecs also have built-in VAD and PLC
mechanisms.

The choice of network simulation characteristics was driven by ITU-T Rec-
ommendation G.1050 [12] which describes a model for evaluating multimedia
transmission performance over an IP network. Bursty packet loss was simulated
using the Gilbert model (Fig. 2). It also models packets discarded by the playout
buffer due to late arrivals. Packet loss was simulated for different values of mlr
and clp. Twelve different values for mlr were chosen; 0, 2.5, 5, 7.5, 10, 12.5, 15,
20, 25, 30, 35 and 40%. The peak loss-rate (i.e. 40%) was kept an order of mag-
nitude higher than that specified for an unmanaged network in ITU-T G.1050
(i.e. 20%) so as to gather more representative data for model derivation. For
each value of mlr , clp was set to 10, 50, 60, 70, and 80%.

After subjecting the VoIP streams under test to various network impairments,
they were evaluated using the PESQ algorithm. The PESQ algorithm compares
a degraded speech signal with a reference (clean) speech signal and computes
an objective MOS score ranging between -0.5 and 4.5, albeit for most cases the
output will be between 1.0 and 4.5. It must be mentioned that PESQ simulates
a listening test and is optimized to represent the average evaluation (MOS) of
all listeners. It is statistically proven that the best possible result that can be
obtained from a listening only test is never 5.0, hence it was set to 4.51. The
PESQ algorithm is widely acclaimed for its high correlation with the results of
formal subjective tests for a wide range of network distortion conditions. It is the
current de jure standard for objective speech evaluation. In the current context,
the MOS scores obtained by the PESQ algorithm and the MOS predicted by
the GP based model are differentiated by the abbreviations MOS-LQOPESQ

and MOS-LQOGP respectively. The term MOS-LQO is an acronym for Mean
Opinion Score-Listening Quality Objective and the various subscripts are used to
identify the objective quality estimation models used. This terminology is based
on [16].

Altogether, five VoIP traffic parameters have been chosen in the current anal-
ysis which form the input variables for evolutionary modeling. These parame-
ters are: codec bit-rate (kbps), packetization interval (PI), frame duration (ms),
mlrVAD and mblVAD . A lower value of bit-rate corresponds to a higher compres-
sion of the speech signal, thus resulting in a lower bandwidth requirement at the
expense of quality. The packetization interval, which specifies the acoustic infor-
mation worth a certain duration of time to be contained in a VoIP packet, was
varied between 10 to 60 ms. Considerable bandwidth saving can be achieved by
encapsulating multiple speech frames in one VoIP packet thus reducing the need
for RTP/UDP/IP headers that would have been required for encapsulation and

1 http://www.opticom.de/technology/pesq.html
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transportation of speech frames if they were to be sent individually. However,
higher packetization intervals have certain associated drawbacks too. First, the
end-to-end delay of the VoIP stream is increased as the sender has to buffer
speech frames for a considerable duration before subsequent frames become
available by the encoder. Second, for a large packetization interval, typically
higher than 40 ms, loss of a single packet results in noticeable degradation of
speech quality. Hence, packetization interval presents a trade-off between the
speech quality and bandwidth saving. Frame duration has a similar effect on the
quality as that of packetization interval. Higher frame durations may have other
disadvantages, for instance, in LPC speech signal is assumed to be stationary
(non-transient) for a given frame duration. However, for higher frame durations
this assumption may considerably deviate from the reality. Thus, a codec with
such a feature may obfuscate the final speech content. The parameter extraction
module (Fig. 3) is used to obtain the values of the aforementioned parameters
from the VoIP traffic stream under test. The corresponding MOS-LQOPESQ of
the decoded VoIP stream under test subjected to these network conditions forms
the target output value for training purposes. In actual VoIP applications this
information would be gathered by parsing the RTP headers and bitstreams of
the encoded frames. The information would then be used as an input for the GP
based model to estimate MOS-LQOGP after processing.

Table 1. Common GP Parameters among all simulations

Parameter Value
Initial Population Size 300

Initial Tree Depth 6

Selection Lexicographic Parsimony Pressure Tournament

Tournament Size 2

Genetic Operators Crossover and Subtree Mutation

Operators Probability Type Adaptive

Initial Operator probabilities 0.5 each

Survival Half Elitism

Generation Gap 1

Function Set plus, minus, multiply, divide,sin, cos, log2, log10,
loge, sqrt, power,

Terminal Set Random real-valued numbers between 0.0 and 1.0.
Integers (2-10). mlrV AD, mblV AD, PI , br, fd

4 Experimental Setup

As discussed earlier GP was the machine learning algorithm of choice for de-
riving a mapping between network traffic parameters and VoIP quality. GPLab
was used as the preferred GP environment in this study. GPLab is a Matlab
toolbox developed by Sara Silva 2. A total of 4 GP simulations were conducted.
2 http://gplab.sourceforge.net/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Real-Time, Non-intrusive Evaluation of VoIP 223

The common parameters of all the simulations are listed in Table 1. In all of the
simulations the population size was set to 300. Each simulation was composed
of 50 runs whereas each run spanned 50 generations. Adaptive genetic operator
probabilities were used 3 [18]. Tournament selection with Lexicographic Parsi-
mony Pressure (LPP) [19] was used in all of the simulations. Survival was based
on elitism. The elitist criterion was such that half of the population of a new
generation would be composed of best individuals from both parents and chil-
dren. The other half of the population would be formed of remaining children
on the basis of fitness. This elitism criteria is termed as half elitism in GPLab.

In simulation 1 mean squared error (mse) was used as the fitness function
and tournament size was set to 2. For simulation 2 (and subsequent simulations)
scaled mean squared error (MSEs) was used as the fitness criterion and is given
by equation (2).

MSEs(y, t) = 1/n

n∑
i

(ti − (a + byi))
2 (2)

where y is a function of the input parameters (a mathematical expression), yi

represents the value produced by a GP individual and ti represents the target
value which is produced by the PESQ algorithm. a and b adjust the slope and
y-intercept of the evolved expression to minimize the squared error. They are
computed according to equation (3).

a = t − by, b =
cov(t, y)
var(y)

(3)

where t and y represent the mean values of the corresponding entities whereas var
and cov mean the variance and covariance respectively. This approach is known
as linear scaling and is found to be very beneficial for the symbolic regression
tasks with GP [20]. In simulation 2 (and subsequent simulations) protected func-
tions were not used. Instead any inputs were admissible to all the functions. For
the input values outside the domain of the functions log, sqrt, division and pow,
NaN (undefined) values are generated. This results in the individual concerned
being assigned the worst possible fitness.

The selection criterion in simulations 3 and 4 was based on the notion that
population diversity can be enhanced if mating takes place between two, fitness-
wise, dissimilar individuals, as suggested by Gustafson et. al. [21]. This selection
scheme has been shown to perform better in the symbolic regression domain and,
hence, it was employed in this research. This simple addition to the selection
criterion only requires one to ensure that mating does not take place between
individuals of equal fitness. In simulation 4 the maximum tree depth was changed
from 17 to 7 to see if parsimonious individuals with performance comparable to
those of earlier simulations can be obtained. Statistics pertaining to simulations
and the results are presented in the next section.

3 Adaptive operator probabilities are discussed on page 31 of the GPLab manual.
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5 Results and Analysis

Nortel Networks speech database containing high quality voice signals was used
for analysis. The database contains 240 speech files corresponding to two male
(m1 , m2 ) and two female (f1 , f2 ) speakers. Duration of speech signals in the files
was between 10-12s. A total of 3360 speech files were prepared for various combi-
nations of afore-mentioned values of network traffic parameters. The simulation
parameters include frame duration, bit-rate, packetization interval, mlr and clp.
70% and 30% of the data of distorted speech files corresponding to speakers m1
and f1 were used for training and testing of the evolutionary models respec-
tively. Distorted speech files corresponding to speakers m2 and f2 were used to
validate the performance of the chosen model against speaker independent data.
In other words network traffic parameters and corresponding MOS-LQOPESQ

of 1177, 503 and 1680 speech files were used for training, testing and validation
respectively.

Table 2(a) lists the statistics about the MSE of the training/testing data
and of final tree size (in terms of number of nodes) of the 4 simulations under
consideration. A Mann-Whitney-Wilcoxon test was also performed to decide if
a significant difference exists between the simulations. Its results are tabulated
in Table 2(b). At 5% significance level a ’0’ in the tableau indicates that no
significant difference exists between the two simulations with respect to that
metric (i.e. MSEtr, MSEte or Size). A ’1’ indicates the converse and an ‘x’
marks that the metric is not to be compared with itself.

A keen look at the tables 2(a) and 2(b) shows that simulation 2 (which
used linear scaling) performed significantly better than simulation 1. When we
compare it with simulation 3, we see that simulation 3 produces significantly
smaller trees than simulation 2, albeit with marginally inferior fitness. Finally,
simulation 4 exhibits similar traits, as its fitness is marginally worse again, al-
though its trees are significantly smaller. The objective in the current research

Table 2. Statistical analysis of the GP simulations

(a) MSE Statistics for Best Individuals of 50 Runs for Simulations 1-4

Sim1 Sim2 Sim3 Sim4
Stats MSEtr MSEte Size MSEtr MSEte Size MSEtr MSEte Size MSEtr MSEte Size
Mean 0.0980 0.1083 42.6 0.0414 0.0430 38.8 0.0434 0.2788 28.5 0.0436 0.0436 18.0
Std.
Dev. 0.0409 0.0507 24.1 0.0040 0.0044 21.2 0.0042 1.0986 15.1 0.0037 0.0060 7.1
Max. 0.2135 0.2656 103 0.0543 0.0568 104 0.0519 6.8911 74 0.0520 0.0782 38
Min. 0.0449 0.0464 8 0.0368 0.0370 5 0.0378 0.0390 9 0.0370 0.0387 8

(b) Results of Mann-Whitney-Wilcoxon Significance Test

Sim1 Sim2 Sim3 Sim4
Stats MSEtr MSEte Size MSEtr MSEte Size MSEtr MSEte Size MSEtr MSEte Size
Sim1 x x x 1 1 0 1 1 1 1 1 1
Sim2 1 1 0 x x x 1 0 1 1 1 1
Sim3 1 1 1 1 0 1 x x x 0 0 1
Sim4 1 1 1 1 1 1 0 0 1 x x x
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Fig. 4. Percentage of the best individuals employing various input parameters in the
50 runs of each of the four simulations

was to find fitter individuals with small sizes. Hence, simulation 4 was scavenged
for plausible solutions.

Fig. 4 delineates the significance of various network traffic parameters in terms
of the number of best individuals using them in each of the four GP simulations.
It turns out that mlrV AD had a 100% utility in all of the simulations. Codec
bit-rate (br) and frame duration (fd) were the second and third most frequently
availed parameters respectively. Where as, both PI and mblV AD have shown
advantage in least number of runs of all simulations.

Two of the models derived from this work are shown in this paper by equations
(4) and (5). The MSEs and Pearson’s product moment correlation coefficients
(σ) of equations (4) and (5) are compared with each other in Table 3. Equation
(5) is a function of mlrV AD solely. Whereas equation (4), which was the best
model discovered, additionally has br and fd as independent variables. This was
the best model of all the runs too. Fig. 5 shows the scatter plots of equation (4)
for training and testing data. It is noticeable that equation (5) which is a function
of mlrV AD only, however, has comparable fitness to equation (4). Evaluating a
single variable would be computationally cheap for a real time analysis. In the
light of this and the earlier discussion on Fig. 4 mlrV AD seems to be the most
crucial parameter for VoIP quality estimation.

MOS − LQOGP = −2.46 × log (cos(log(br)) + mlrV AD × (br + fd/10)) + 3.17 (4)

MOS − LQOGP = −2.99 × cos
(
0.91 ×

√
sin(mlrV AD) + mlrV AD + 8

)
+ 4.20 (5)

As stated earlier ITU-T P.563 is the new recommendation for non-intrusive sp-
eech quality estimation. A correlation analysis was done between MOS-LQOPESQ

and the corresponding objective MOS values obtained by ITU-T P.563 (MOS-
LQOP.563). It turned out that the correlation coefficients (σ) varied between 0.65-
0.82 under various network traffic conditions. This also highlights the significance
of current research. It is reiterated to emphasize that ITU-T P.563 is a non-real-
time process as it relies upon complex digital signal processing techniques to es-
timate the quality of the speech signal under test. The proposed models, on the
other hand, are the functions of network traffic parameters that can be gathered
efficiently by parsing VoIP packets.
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Table 3. Performance Statistics of the Proposed Models

Equation (4) Equation(5)
Data MSEs σ MSEs σ

Training 0.0370 0.9634 0.0520 0.9481

Testing 0.0387 0.9646 0.0541 0.9501

Validation 0.0382 0.9688 0.0541 0.9531
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Fig. 5. MOS-LQO predicted by the proposed individual vs MOS-LQO measured by
PESQ for (a) training data and (b) testing data for equation 4

6 Conclusions and Future Work

The problem of real-time quality estimation of VoIP is of significant interest. This
paper has shown an approach for solving this problem by employing GP. One
of the main objectives of this research was to estimate the effect of burstiness
on speech quality. It turned out that burst length was least used by the best
individuals of various runs. This is due to the fact that the PESQ algorithm does
not model the effect of burstiness on speech quality [10] [11]. Hence, the effect of
burstiness can be mapped only by conducting suitably designed formal subjective
tests [22]. Despite this limitation, PESQ is the best objective quality estimation
model and has been used to model the effect of packet loss by various studies.
The proposed models are good approximations to PESQ and computationally
more efficient. Hence, they are useful for real-time call quality evaluation. For
the codecs considered in this study, we have also proposed a model (equation(5))
that is a function of mlrV AD only with performance comparable to the other
models. This is considerable since such a model can be deployed conveniently on
a wide variety of platforms.

Our results are better than the past research both in terms of performance
and nature of the proposed models. For instance, Sun and Ifeachor [6] and Mo-
hamed et. al. [7] [8] proposed ANN based models for VoIP quality estimation
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with the number of input parameters ranging between 4–5. However, a major
limitation of ANNs is that the model interpretation remains an insurmountable
proposition upon successful learning and, as a consequence, there is no direct
method for estimating the significance of various input parameters. As stated
earlier, evolutionary search prunes off the less significant input parameters lead-
ing to simpler models proposed in this paper. Similarly, in their award winning
paper Hoene et. al. [9] present a look-up table based VoIP quality estimation
model. The various MOS and corresponding parameter values would be stored
in a lookup table. In the case the table does not contain a particular value
of a parameter, linear interpolation is used to calculate MOS. Moreover, the
model is not developed against a wider variety of input parameters. Although
codec type is suggested as a network traffic variable in the abstract presenta-
tion of their VoIP quality estimation model, the number of codecs is actually
restricted to 1 (i.e. AMR codec) in the model proposed therein. Our proposed
models are free from such limitations. They can be used to assay the VoIP
quality for any values of the input parameters which fall under the permissible
range. Moreover, our models have been evolved against highly varying network
conditions.

The focus of the current research has been on estimating the effect of those
VoIP traffic parameters that affect the listening quality of a telephone call. A
future objective would be to derive a model for conversational quality estimation
of a call. Conversational quality suffers due to increase in the end-to-end delay
of a call. Clearly, our next objective would be to estimate the combined effect of
VoIP traffic parameters including the end-to-end delay on call quality.
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Abstract. The conversion and extension of the Incremental Pareto-
Coevolution Archive algorithm (IPCA) into the domain of Genetic Pro-
gramming classification is presented. In particular, the coevolutionary
aspect of the IPCA algorithm is utilized to simultaneously evolve a sub-
set of the training data that provides distinctions between candidate
classifiers. Empirical results indicate that such a scheme significantly re-
duces the computational overhead of fitness evaluation on large binary
classification data sets. Moreover, unlike the performance of GP classi-
fiers trained using alternative subset selection algorithms, the proposed
Pareto-coevolutionary approach is able to match or better the classifi-
cation performance of GP trained over all training exemplars. Finally,
problem decomposition appears as a natural consequence of assuming a
Pareto model for coevolution. In order to make use of this property a
voting scheme is used to integrate the results of all classifiers from the
Pareto front, post training.

1 Introduction

Binary classification problems within the context of a supervised learning
paradigm provide the basis for a wide range of application areas under machine
learning. However, in order to provide scalable as well as accurate solutions, it
must be possible to train classifiers efficiently. Although Genetic Programming
(GP) has the potential to provide classifiers with many desirable properties, the
computational overhead in doing so has typically been addressed through hard-
ware related solutions alone [9],[2],[5]. In this work we concentrate on how the
training process can be made more efficient by evaluating classifier fitness over
some adaptive subset of the total training data. To date, the typical approach has
been to utilize an active learning algorithm for this purpose, where the Dynamic
Subset Selection (DSS) family represents one widely used approach [3],[8],[11].

In this work, an alternative approach to the problem is presented in which
the problem is designed as a competition between two populations, one repre-
senting the classifiers, the other the data. Progress has recently been made using
Genetic Algorithms based on a Pareto formulation of the competitive coevo-
lutionary approach, albeit within the context of player behaviours in gaming
environments. To this end, the proposed approach is based on the Incremental

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 229–240, 2007.
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Pareto-Coevolution Archive (IPCA) algorithm, where this has been shown to ad-
dress several potential problems with the competitive coevolutionary paradigm
i.e., relativism, focusing, disengagement, and intransitivity [1].

The algorithm reported in this work, hereafter denoted the Pareto-
coevolutionary GP Classifier (PGPC) is novel in the fact that it extends a
Genetic Algorithm “game-playing” context into the domain of GP classifica-
tion. Furthermore, pruning is utilized to limit the sizes of the IPCA algorithm
archives – the point and learner pareto-fronts – to allow for efficient execution.
This differs from the method employed in the follow-up of the IPCA algorithm,
the Layered Pareto-Coevolutionary Archive (LAPCA) [4], which relies on storing
the top N pareto-layers of the archive, keeping the pareto-front in its entirety.
Additionally, PGPC differs from the methods utilized by various Evolutionary
Multi-Objective Optimization (EMOO) algorithms, which tend to perform clus-
tering on the pareto-front of solutions using the coordinates of candidate solu-
tions to limit the size of the pareto-front [6], [12]. That is to say, the cooperative
coevolutionary case of EMOO is able to maintain limits on the size of the Pareto
front through similarity measures applied pairwise to candidate solutions. In a
GP environment, the design of a suitable similarity metric is not straightforward
as learners take the form of programs. As a consequence, this work investigates
pruning heuristics that make use of structure inherent in the interaction between
learners and training points. Thus, the learner archive is pruned relative to a
performance heuristic defined over the contents of the point archive, and the
point archive is pruned relative to a heuristic quantifying class distribution and
point similarity.

In addition, the GP context requires an alternative approach from those em-
ployed previously when resolving which solution from the pareto-front to apply
under post training conditions. Specifically, an EMOO context does not face this
problem as a individual is identified from the pareto-front of solutions on the
basis of a distance calculation. The solution with minimum distance relative to
the unseen test condition represents the optimal response. Conversely, under a
GP classification context all individuals from the pareto-front provide a label
i.e., only under training conditions are we able to explicitly identify which clas-
sifier is optimal through the associated classification error. Thus, instead of a
single individual representing the optimal strategy for each exemplar, a voting
policy is adopted in which all members of the pareto-front provide labels for
each exemplar under post training conditions.

1.1 Approach

The co-evolutionary approach of the IPCA algorithm will allow for the “binding”
of the learner and training data point subset evolutions, keeping the point subset
relevant to the current set of learners. The pareto-front of learners allows the
system to explore the search space along different attractors present in the data,
and hopefully provide a diverse set of optimal solutions. In regards to the pareto-
front of points, each point is pareto-equivalent to the others in the front, and as
such provides a “distinction” between the learners that is not duplicated in the
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archive. Therefore the pareto-front of points itself is the subset of training data
that provides a learning gradient for the learners [1], [4].

The original IPCA algorithm performed no pruning on the learner and point
archives. Empirically, the learner archive (pareto-front) remained small, and the
point archive which contained the current set of relevant points in addition to
the previously relevant set, grew without bounds [1]. In the case of the proposed
PGPC algorithm, experiments showed that both the learner and point pareto-
fronts grow dramatically on the training data sets, since it may be that each
training point is an underlying objective and provides a distinction between
learners. To retain efficiency, the previously relevant points may not be stored,
nor can the pareto-fronts in their entirety. A pruning method must be adopted
to limit the size of the archives.

Furthermore, in the context of a classification problem, a heuristic is required
to define how the pareto-front of learners is consolidated to return one classifier
per testing point. Since the pareto-front of learners may be diversified to correctly
classify subsets of the data, a method to recognize and utilize any structure
inherent in the front must be developed such that the most appropriate classifier
responds under unseen data conditions. This is generally not a problem within
the context of EMOO as solutions take the form of a point in a coordinate space.
Identifying which individual represent the best solution is resolved through the
application of a suitable distance metric. Under the GP (classification) domain,
solutions take the form of models providing a mapping from a multi-dimensional
input space to a 1-dimensional binary output space. Thus, on unseen data it is
not possible to associate exemplars to models a priori. This problem is addressed
in this work by adopting a simple voting scheme over the contents of the learner
archive.

2 The Pareto-coevolutionary GP Classifier Algorithm

In terms of the GP individuals or learners, a tree-structured representation is
employed, whereas individuals in the point population(s) index the training data.
The classical GP approach for interpreting the numerical GP output (gpOut) in
terms of a class label is utilized, or

IF (gpOut ≤ 0.0) THEN (return class 0), ELSE (return class 1) (1)

The PGPC algorithm utilizes four populations of individuals: (1) a fixed size
learner population which provides the exploratory aspect of the learner evolu-
tion. (2) a learner archive which contains the pareto-front of learners, bound
by a maximum size value. (3) a fixed size point population (point population
<< training exemplar count). (4) a point archive which describes the current
subset of training points relevant to the learner archive, bound by a maximum
size value. Figure 1 summarizes the organization of data dependencies for each
step of the algorithm.
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Fig. 1. The PGPC architecture

The PGPC algorithm consists of the following steps performed at each gen-
eration of evolution:

Step 1: Generate points in the point population: Since the points are
indices within the training data, a crossover operator makes little sense. There-
fore, only mutation was utilized to generate the point population, with mutation
being performed on each population member. Furthermore, to ensure class bal-
ance within the point population, each half of the population is randomly filled
with points belonging to the same class, Figure 1 point 1.

Step 2: Generate learners in the learner population: The canonical tree-
structured model of GP is assumed [7], although the PGPC algorithm could
utilize any standard GP model for the representation and definition of search
and selection operators. In this case fitness proportionate selection is assumed,
with fitness being calculated over the contents of both the point population and
point archive, Figure 1 point 2.

Step 3: The following steps deal with the entry criteria for the point and learner
archives, Figure 1 point 3:

3.a: Compute the set of useful points regarding the learner popula-
tion and archive: As per IPCA; if a newly generated learner is dominated by
the learner archive or contains equal values (evaluated over the point archive),
and the addition of a new point into the evaluation set provides a distinction
such that the generated learner is pareto-equivalent to the archive with no equal
values, the point is inserted into the archive.
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3.b: Compute the set of useful learners regarding the point population
and archive: As per IPCA; any generated learner that is pareto-equivalent to
the archive with no equal values (again, evaluated over the point archive) enters
the archive. Furthermore, if a generated learner is non-dominated, and a gener-
ated point defeats it, they both enter their respective archives.

3.c: Remove duplicates in the learner and point archives and newly-
dominated learners in the learner archive: As per IPCA.

To maintain the efficiency of the algorithm, a limit on the archive sizes is
enforced. This limit may be thought of as a tunable parameter of efficiency vs
accuracy. However the relationship between the two may depend on the classifi-
cation problem, as the number of underlying objectives which the point archive
strives to evolve towards may vary. Moreover, the number of individuals qual-
ifying for inclusion in the point or learner archives is also a dynamic property,
with a significant difference between the number qualifying in early versus later
generations.

Within the context of the pruning algorithm, the first assertion will be that
a newly generated learner or point should enter the archive at the possible cost
of evicting an older member. This assertion will help avoid stagnation within
the archive at the risk of possible regression or forgetting. Alternate insertion
basis may be considered and evaluated in the future. Within this framework,
all that remains is to provide a basis for selection of an archive individual for
replacement.

For pruning the learner archive, the proposed greedy approach consists of re-
moving the learner with the worst performance against the point archive (with
the measure being the number of incorrectly classified instances). Within this
view, a learner to be removed may have entered the archive by simply correctly
classifying one training archive point while misclassifying the remainder, there-
fore removing the “worst” learner deletes some of the explorative diversity of
the archive in favour of increased average accuracy.

For pruning the point archive, the proposed basis utilizes the genotypic infor-
mation of the point co-ordinates to delete one of the two closest points, distance
defined using the Euclidean metric, adhering to the following criteria: the two
points must be of the same class, and that class must be over-represented in the
point archive. This approach will promote class-balanced diversity in the point
archive, while preserving the points which define boundaries between clusters of
points.

Finally, in order to attain a measure of classification performance on testing
data at the completion of training, the learner pareto-front must be interpreted
to provide one class prediction per testing point. To this end an “Average archive
value” voting scheme is used in which each pareto-front learner provides one vote
for their class prediction of the input testing point. The class with the major-
ity of the votes is selected as the system’s prediction for the corresponding data
point. Such a scheme is adopted to make use of the aforementioned learner prun-
ing bias in which learners are rewarded for maximizing the number of correctly
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classified exemplars. Thus, we expect classification by consensus as opposed to
outright specialization, in which case a more sophisticated voting policy might
be required.

3 Experiments

Evaluation of the proposed PGPC algorithm will be performed against canonical
tree-structured GP and three alternative active learning algorithms. Indeed all
methods will share the same canonical GP model. The three active learning
comparison algorithms use a limit on the number of training exemplars to provide
a more accurate comparison with the PGPC classifier. These algorithms will
allow for an evaluation of the IPCA-based dynamics and solution space search
efficiency. They differ from the canonical GP algorithm only in the active learning
algorithm used to identify the subset of training exemplars over which fitness
evaluation takes place. Section 3.2 summarizes the properties of each alternative
algorithm.

Post training evaluation of classification performance is conducted using a
single classification “score”. This is based on a combined equal weighting of
detection and false positive rate, or

Score =
TruePositives

Positives + (1 − FalsePositives
Negatives )

2
(2)

Adoption of such a metric will establish how robust alternative schemes are to
any under representation of the minor class. Algorithm efficiency is measured in
terms of run-time on a common machine under the same conditions.

The classification data sets used in the experiments consist of: Adult, and
KDD991. Each data set is considered a two-class problem, with the training
partition for Adult being set at 75%. The Adult data set consists of 33916 train-
ing points, and 11306 testing points (i.e., exemplars with missing features are
not included); each having a dimension of 14 features. The KDD99 set consists
of 494020 and 311027 training and testing points, respectively; with each point
having a dimension of 41 features. In order to cast the problem as a binary clas-
sification problem we concentrate on separating the class representing ‘normal’
from the other four classes. Both data sets are unbalanced with approximately
20 percent in-class exemplars in KDD99 and 15 percent in-class exemplars in
Adult.

The relevant hardware of the test machine utilized for the run-time experi-
ments consists of: Pentium 4, 2.60GHz HT, 800MHz FSB. 1GB DDR400 RAM.
36GB SATA 10K-RPM Hard Drive. The GP implementation common to all five
methods benchmarked was based on the lilGP2 framework, running on Fedora
Core 3 Linux.
1 Available at:

http://www.ics.uci.edu/∼mlearn/MLSummary.html [Adult]
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html [KDD99]

2 http://garage.cps.msu.edu/software/lil-gp
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3.1 Parameters

The tree-structured GP parameters common to all of the algorithms are sum-
marized in Table 1. The sizes of the populations and archives of the PGPC
algorithm will all be set to a common value of 25.

Although the learner archive is the set of learners constituting an “answer”,
the learner population is still used for exploration and the evolution of the learn-
ers. Therefore the sum of both the archive and population sizes is used to provide
an equivalent limit on the number of learners utilized by the comparison algo-
rithms, Table 2. The same holds true for the point population and archive, since
they are both used in the evaluation of the fitness of a learner, they constitute
the number of points that the algorithm can “access”. Therefore the comparison
subset selection algorithms utilize a subset size set to be the sum of the two,
Table 2.

Due to the stochastic nature of the GP based algorithms, performance is
reported over a total of 30 different population initializations per experiment.

Table 1. GP parameters common to all of the algorithms

Number of generations 500
Individual initialization method Half and half
Individual initialization depth 2-6
Individual maximum nodes 1000
Individual maximum depth 17
Learner breeding phase selection method Fitness Proportionate
Learner breeding phase operators Crossover, Mutation
Learner breeding phase operator frequencies 0.8, 0.2
Function Set *, /, +, -, sin, cos, exp, sqrt

Table 2. Population and Point Subset sizes for comparison algorithms

Model Regular Cycling Random DSS

Learner
Population Size

50 50 50 50

Point
Subset Size

as per original
Training Set

50 50 50

3.2 Comparison Algorithms

Canonical tree-structured GP: The base line comparison algorithm takes
the form of a canonical tree-structured GP classifier [7] (denoted as “Regular”),
consisting of only one learner population. At every generation, the fitness of
each learner is computed using the entire training data set. The absolute switch-
ing function wrapper maps the gpOut value of the individual against the training
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data point class, equation (1), and the number of correct mappings (classifica-
tions) is recorded and normalized into a fitness value (accuracy). The fitness
values of the individuals are used to perform fitness proportionate selection for
breeding the next generation of individuals. Upon completion of the evolution,
the fittest individual is used to classify the testing data using the same switching
function3.

Dynamic subset selection (DSS): This comparison algorithm is an imple-
mentation of the DSS algorithm [3]. Each training exemplar has an associated
age and difficulty value; corresponding to the number of generations elapsed
since that exemplar was last utilized in the subset, and the number of correct
classifications of it when it was utilized. At each generation, a weighing of the
two values is performed to yield a selection probability, or

PointWeightp = Difficulty1.0
p + Age3.5

p (3)

The selected points define a subset over which learners are evaluated in the cur-
rent generation.

Random subset selection: This algorithm is based on the “Stochastic sam-
pling” method described in [10]. Specifically, individuals are evaluated over a
subset of training data points selected randomly with uniform probability and
used to compute the fitness of the individual.

Cycling subset selection: At any evaluation of any individual, a global index
into the training data is incremented. Training points subsequent to the index
are utilized to compute the fitness. Wrap-around is used to resolve the special
case associated with the end of the training data set.

4 Results

Figure 2 illustrates test set performance using first quartile, median, and third
quartile under the ‘score’ metric of equation (2). It is apparent that the PGPC
algorithm matched or bettered all of the comparison algorithms, including the
Regular GP algorithm. This indicates that the proposed algorithm has indeed
provided an effective alternative mechanism for selecting subsets of training ex-
emplars to perform the learner evolution upon. Moreover, although the fitness
metric was based on classification count during training, it is also apparent that
degenerate solutions were successfully avoided in the ensuing solutions (degen-
erates are equivalent to a score of 0.5). Conversely, all three alternative subset
selection algorithms returned performance scores equivalent to degenerate solu-
tions on the Adult data set. DSS performed better on KDD99, although never
as good as PGPC and Regular GP; whereas both random and cycling subset se-
lection performed worse on KDD99 than on the Adult data set. The consistently

3 The score metric of equation (2) is only employed in the post training evaluation of
performance.
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Fig. 2. Test data box plot as evaluated using the ‘score’ metric. Note: the variance of
the Random algorithm on KDD99 is minimal, with the difference between the minimum
and maximum value being 0.005215 percent, yielding an insignificant box plot.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



238 M. Lemczyk and M.I. Heywood

poor behavior of the Random sampling algorithm on KDD99 was associated
with the population being dominated by degenerate solutions that labeled all
exemplars as out of class, where this represents around 400,000 of the 500,000
training exemplars.

Table 3. Median scores and run-times in seconds of the various algorithms upon the
Adult and KDD99 data sets

Median Median Median Median
score time score time

Algorithm (Adult) (Adult) (KDD99) (KDD99)

PGPC 0.736611 41.38 0.918419 56.97
Regular 0.611569 1973.74 0.909291 40347.74
DSS 0.526903 11.29 0.827497 120.87
Random 0.527521 3.63 0.500000 4.20
Cycling 0.520470 3.46 0.501884 2.58

In terms of execution efficiency, Table 3, the PGPC algorithm exhibited a
speedup of 48 (Adult) to 708 (KDD99) with respect to Regular GP. The Random
and Cycling Subset Selection algorithms were naturally the fastest, but also
resulted in degenerate solutions for both data sets. The DSS algorithm was
significantly faster than PGPC under Adult, however, was actually slower than
PGPC under the larger KDD99 data set by a factor of two.

In summary, the PGPC algorithm was able to match (KDD) or better (Adult)
the classification scores of the regular GP algorithm whilst providing a significant
speedup. Moreover, as the size of the training data set increased, the computa-
tional effectiveness of the PGPC algorithm improves, Table 3. Thus, DSS takes
twice as long to provide solutions on the KDD data set than PGPC, for no
improvement in classification score. Conversely, the naive schemes for building
subsets of exemplars, Random and Cycling, are very fast, but do not provide a
useful model for learning, barely reaching a 50 percent classification score i.e.,
degenerate solutions were the norm.

5 Conclusion

An algorithm employing the coevolution of both classifiers and training data sub-
set members within a Genetic Programming environment was presented. Com-
parisons were made to a traditional GP classifier employing the training data in
its entirety, in addition to classifiers using only a subset of the data selected via
either a Random, Cycling, or DSS method.

With regards to classification performance, the PGPC algorithm out-
performed each of the comparison algorithms, indicating that the algorithm
does not compromise classification performance. We conclude that even with
a small subset of training points, the pareto-evolutionary approach to learner
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and point co-evolution may generate superior or equivalent classification per-
formance. Moreover, the PGPC algorithm was particularly effective at avoiding
degenerate solutions; where this is particularly useful on problems described by
large unbalanced data sets.

In the case of training efficiency, the training point subset selection of PGPC
provides a dramatic increase in execution speed, without recourse to specialist
hardware. Moreover, the approach becomes increasingly effective as the number
of exemplars in the data set increases. Finally, we note that as the entire Pareto
front of learners takes part in the solution, problem decomposition is supported
as an additional side effect of adopting a coevolutionary paradigm.

Future work will evaluate the significance of different point and learner archive
pruning schemes, as well as qualify the significance of pruning in practice. The
latter is particularly relevant with regards to the impact of ‘regression’ or ‘for-
getting’ on the behavior of the point and learner archives.
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Abstract. We define a set of measures that capture some different aspects of
neutrality in evolutionary algorithms fitness landscapes from a qualitative point
of view. If considered all together, these measures offer a rather complete picture
of the characteristics of fitness landscapes bound to neutrality and may be used as
broad indicators of problem hardness. We compare the results returned by these
measures with the ones of negative slope coefficient, a quantitative measure of
problem hardness that has been recently defined and with success rate statistics
on a well known genetic programming benchmark: the multiplexer problem. In
order to efficaciously study the search space, we use a sampling technique that
has recently been introduced and we show its suitability on this problem.

1 Introduction

In the context of Evolutionary Algorithms (EAs), Neutrality of fitness landscapes has
been widely studied in the last few years. Nevertheless, many contributions that have
appeared use very different concepts and measures between them to express neutrality.
For instance, in [11], Reidys and Stadler define the family of additive random land-
scapes where both neutrality and ruggedness of fitness landscapes can be tuned; in [14],
Toussaint and Igel talk of the suitability of the design of neutral encodings to improve
the efficiency of EAs; in [3], Collard et al. introduce the concept of synthetic neutrality
and study its effects on the evolvability of Genetic Algorithms (GAs); in [22,20,21],
Yu and Miller show that increasing the search space’s size by artificially introducing
neutral neighbors to some individuals, can help Cartesian Genetic Programming (GP)
to navigate some restricted fitness landscapes, focusing on the choice of the represen-
tation and how it affects the amount of neutral neighborhood in a fitness landscape
(these results have been recently criticized by Collins in [5]). If on the one hand this
multiplicity of different concepts and formalisms has contributed to fortify the belief
that neutrality plays an important role in the search process of EAs from many different
points of view, on the other we think that uniformity in treating neutrality is missing and
we fear that this may lead to ambiguous and sometimes confusing conclusions. In other
words, we strongly agree with Geard [6] that the way in which neutrality is defined is
crucial in determining its role and that the choice of different neutrality frameworks and
formalizations may lead to different, and in some cases even conflicting, conclusions.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 241–250, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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One of the main goals of this paper is establishing a precise set of neutrality measures,
each of which aimed at formalizing a particular aspect of fitness landscapes bound to
neutrality. These measures (some of which already introduced in [16]) are: the aver-
age neutrality ratio, the average Δ-fitness, the non-improvable and “non-worsenable”
solutions ratio and the profitable and unprofitable mutations ratio. Each of them is cal-
culted on neutral networks. None of them brings a sufficient amount of information if
considered alone, since each of them focus only on a particular feature of the landscape,
but the joint analysis of all of them should allow us to have a rather complete picture
of fitness landscapes, especially those related to neutrality. Furthermore, even though a
bound between neutrality and problem difficulty has often been hypothesized, neutral-
ity has never been presented together with other difficulty measures before, in order to
check if the respective results are consistant between each other or not. In this paper,
we compare the qualitative results returned by our neutrality measures with the quan-
titative results returned by the Negative Slope Coefficient (NSC) (a hardness measure
that has recently been proposed in [18,15]) and we hope that the results returned by our
neutrality measures may support and strengthen the ones of the NSC. For our empirical
study, we use two different versions of the multiplexer problem, induced by two dif-
ferent sets of functional operators: {IF} and {NAND}. Finally, as discussed in [15], the
shape and features of the boolean functions fitness landscapes make them hard to study
by means of uniform random samplings and thus more sophisticated sampling methods
are needed. In this paper we use a new, and more elaborate, sampling methodology of
the search space and neighborhood that has been first defined in [16].

This paper is structured as follows: in section 2 we introduce some notions that will
be used in this paper and we present NSC results for the two chosen instances of the
multiplexer problem. Section 3 presents the view of neutrality features of these two
landscapes, as offered by our quantitative neutrality measures. Finally, section 4 dis-
cusses the results, concludes the paper and offers hints for future research activity.

2 Definitions and Preliminary Results

Fitness Landscapes and Neutrality. Using a landscape metaphor to gain insight about
the workings of a complex system originates with the work of Wright on genetics [19].
A simple definition of fitness landscape in EAs is a plot where the points in the horizon-
tal plane represent the different individual genotypes in a search space (placed accord-
ing to a particular neighborhood relationship) and the points in the vertical direction
represent the fitness of each one of these individuals [9]. Generally, the neighborhood
relationship is defined in terms of the genetic operators used [17,9,15]. This can be done
easily for unary genetic operators like mutation, but it is clearly more difficult if binary
or multi-parent operators, like crossover, are considered. Formal definitions of fitness
landscape have been given (e.g. in [13]). Following these definitions, in this work a
fitness landscape is a triple L = (S ,V , f ) where S is the set of all possible solutions,
V : S → 2S is a neighborhood function specifying, for each s ∈ S , the set of its neigh-
bors V (s), and f : S → IR is the fitness function. Given the set of variation operators,
V can be defined as V (s) = {s′ ∈ S |s′ can be obtained from s by a single variation}.
In some cases, as for many GP boolean problems, even though the size of the search
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space S is huge, f can only assume a limited set of values. Thus, a large number of
different solutions have the same fitness. In this case, we say that the landscape has a
high degree of neutrality [11]. Given a solution s, a particular subset of V (s) can be
defined: the one composed by neighbor solutions that are also neutral. Formally, the
neutral neighborhood of s is the set N (s) = {s′ ∈ V (s)| f (s′) = f (s)}. The number of
neutral neighbors of s is called the neutrality degree of s and the ratio between neutrality
degree and cardinality of V (s) is the neutrality ratio of s. Given these definitions, we
can imagine a fitness landscape as being composed by a set of (possibly large) plateaus.
More formally, a neutral network [12] can be defined as a graph connected component
(S ,EN ) where EN = {(s1,s2) ∈ S 2|s2 ∈ N (s1)}. Finally, we define the fitness of a
neutral network (or network fitness) as the fitness value shared by all individuals of this
neutral network.

Negative Slope Coefficient. Evolvability of a solution related to an operator [1] can
be studied by plotting the fitness values of individuals against the fitness values of
their neighbours. Such a plot has been presented in [4,2] and called fitness cloud. A
possible algorithm to generate fitness clouds was proposed in [15]. This algorithm es-
sentially corresponds to the sampling produced by a set of n stochastic hill-climbers
at their first iteration after initialisation. The Negative Slope Coefficient (NSC) has
been defined to capture with a single number some interesting characteristics of fit-
ness clouds. It can be calculated as follows: the abscissas of a fitness cloud can be
partitioned into a certain number of separate bins {I1, I2, . . . , Im}. Let X1,X2, . . . ,Xm be
the averages of the abscissas of the points contained in bins I1, I2, . . . , Im, respectively,
and let Y1,Y2, . . . ,Ym be the averages of the ordinates of the points in I1, I2, . . . , Im. The
set of points (Xi,Yi) can be seen as the vertices of a polyline, which effectively repre-
sents the “skeleton” of the fitness cloud. For each of the segments of this, we can define
a slope, Si = (Yi+1 −Yi)/(Xi+1 − Xi). Finally, the negative slope coefficient is defined
as NSC = ∑m−1

i=1 min (0,Si). The hypothesis proposed in [15] is that the NSC should
classify problems in the following way: if NSC= 0, the problem is easy; if NSC< 0 the
problem is difficult and the value of NSC quantifies this difficulty: the smaller its value,
the more difficult the problem. The justification put forward for this hypothesis was
that the presence of a segment with negative slope would indicate a bad evolvability for
individuals having fitness values contained in that segment as neighbours would be, on
average, worse than their parents. Pros and cons of this measure have been discussed
in [18,15].

Genetic Operators and Neighborhood. Standard crossover or subtree mutation [8]
generate very complex neighborhoods. In this paper, we consider a simplified version
of the inflate and deflate mutation operators first introduced in [15,17] (also called struc-
tural mutation operators in those works): (1) Strict deflate mutation, which transforms
a subtree of depth 1 into a randomly selected leaf chosen among its children. (2) Strict
inflate mutation, which transforms a leaf into a tree of depth 1, rooted in a random oper-
ator and whose children are a random list of variables containing also the original leaf.
(3) Point terminal mutation, that replaces a leaf with another random terminal symbol.
This set of genetic operators (already introduced in [16] and called Strict-Structural,
or StSt, mutation operators) is easy enough to study and provides enough exploration
power to GP. For instance, StSt mutations present two important properties: (i) each
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mutation has an inverse: let M be the set of StSt mutation operators and let S be the set
of all the possible individuals (search space). For each pair of individuals (i, j) ∈ S , if an
operator m ∈ M exists such that m(i) = j, then an operator m−1 ∈ M such that m−1( j) = i
always exists; (ii) for each pair of solutions (i, j) ∈ S , a sequence of mutations which
transforms i into j exists. See [16] for the formal proofs of these properties. Thus, the
associated graph (S ,V ) of fitness landscape is undirected (given the (i) property) and
connected (given the (ii) property) graph.

The Multiplexer Problem. The goal of the k-multiplexer [8] problem is to design a
boolean function with k inputs and one output. The first x of the k inputs can be con-
sidered as address lines. They describe the binary representation of an integer number.
This integer chooses one of the 2x (= k − x) remaining inputs. The correct output for
the multiplexer is the input on the line specified by the address lines. The terminals
are the k variable inputs to the function. The fitness function of a GP individual E is
calculated as the number of input data for which E does not return the same value as
the target function. In this paper, the fitness values have always been normalized into
the [0,1] range, by dividing them by 2k, where k is the problem’s order. Thus, from now
on a solution with fitness equal to 0 represents an optimal solution, while 1 is the worst
possible fitness value. In this paper, we have used two different sets of non-terminals:
{IF} (where IF(x,y,z) is a ternary boolean function which returns y if x is true and z
otherwise) and {NAND}. We have chosen these two sets because they are small enough
to limit the cardinality of the search space but rich enough to represent some perfect so-

lutions. These two sets of boolean operators induce two landscapes (indicated by L{IF}
(k,h)

and L{NAND}
(k,h) from now on, where k is the problem order and h is the predetermined

tree depth limit) the first of which is generally easy for GP, while the second is hard.
This fact is confirmed by the experimental results shown in table 1, where the values
of the success rate (SR) for three different mutation rates and NSC are reported for
both landscapes. The success rate results have been obtained by executing 100 indepen-

Table 1. Values of the success rate for three different mutation rates and of the NSC for the
6-multiplexer problem using two different sets of operators to build the individuals. The fitness
landscapes induced by these two sets of operators clearly have different difficulties for GP.

Set Of Operators SR(pm = 0.95) SR(pm=0.5) SR(pm=0.25) NSC
{IF} 1 0.98 0.71 0

{NAND} 0 0 0 -0.21

dent GP runs using the 6-multiplexer problem, maximum tree depth for the individuals
equal to 6 for the landscape induced by {NAND} and to 5 for the landscape induced
by {IF} (the choice of these values for the tree depths are motivated later), population
of size 100, ramped half-and-half population initialization, tournament selection of size
10, StSt mutations as genetic operators. Only one StSt mutation operator has been ap-
plied with a certain probability pm. 100 GP runs have been executed with pm = 0.95
(column 2 of table 1), 100 separate runs have been executed with pm = 0.5 (column 3)
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and 100 further runs have been executed with pm = 0.25 (column 4). The choice of the
particular mutation operator has been done each time uniformly at random between the
three StSt mutations. A run has been considered successful when an individual with a
lower fitness than 0.15 has been found. The results related to the NSC reported in ta-
ble 1 (column 5) have been obtained by generating a sample of 40000 individuals with
the Metropolis-Hastings algorithm and, for each of them, a neighbor by applying one
StSt mutation. Once again, the choice of the particular mutation operator to generate
each neighbor has been done uniformly at random between the three StSt mutations.

Sampling Methodology. In [9] uniform random samplings have been used for studying
boolean function landscapes. In [15] importance sampling techniques such as Metropo-
lis and Metropolis-Hastings [10] have been proposed. Even though the resuls obtained
were satisfactory for the purposes of those works, still those samples did not capture
some important characteristics of the fitness landscape (see [16] for a detailed discus-
sion). In this paper, we use a methodology aimed at generating samples containing trees
of many (possibly all) different fitness values and forming connected neutral networks,
if possible. This technique is composed by three steps: modified Metropolis, vertical
expansion and horizontal expansion. Modified Metropolis generates a sample S of in-
dividuals with as many different fitness values as possible. The vertical expansion tries
to enrich S by adding to it some non-neutral neighbors of its individuals. Finally, the
horizontal expansion tries to enrich S by adding to it some neutral neighbors of its in-
dividuals. This methodology has been presented in [16] and it is not described here to
save space.

3 Neutrality Results

In this section we present a study of neutrality of L{NAND}
(6,6) and L{IF}

(6,5) , which are the
largest search spaces respectively induced by {NAND} and {IF} that we have been able
to study with our computational resources. The difference in the tree depth limit for the
two landscapes is due to the fact that NAND is an operator with arity 2 while IF is an
operator of arity 3. Thus, given a fixed tree depth, the trees that can be built with IF are
on average larger than the ones that can be built with NAND. Figure 1 shows the fitness

distributions (that is the frequence of fitness value) of the samples of L{NAND}
(6,6) and

L{IF}
(6,5) that we have generated with Metropolis-Hasting sampling technique. For L{IF}

(6,5) ,

all the sampled fitness values are included into the range [0,0.7]; in other words, no bad
individual has been sampled. This is probably a characteristic of the complete search
space (and it is not due to a bias of our samplig technique); in fact, we have exhaustively

generated all the possible individuals of L{IF}
(3,2) and we have observed that no tree with

fitness larger than 0.7 exists also in that (similar, although much smaller) search space.

On the other hand, for L{NAND}
(6,6) large part of the sampled individuals have a bad fitness

value (included into the range [0.75,1]). Also this characteristic is analogous to what

happens in the similar, but smaller, search space L{NAND}
(3,3) that we have been able

to exhaustively generate, where the largest number of individuals had fitness equal to
0.75 and the majority of the individuals had bad fitness values. Finally, we point out
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Fig. 1. Fitness distribution of L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

that with our sampling technique we have been able to generate individuals with many
different fitness values, which is quite unusual for boolean landscapes (as pointed out,
for instance, in [15]). Figure 2 reports the average neutrality ratio of neutral networks

scatterplots for L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part) as a function of fitness value.
The average neutrality ratio, r̄ is defined as the mean of the neutrality ratios (as defined
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Fig. 2. Scatterplot of the average neutrality ratio in L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

in section 2) of all the individuals in a network. High values of r̄ (near to 1) correspond

to a large amount of neutral mutations. As figure 2 clearly shows, L{IF}
(6,5) has a higher

neutrality ratio than L{NAND}
(6,6) , in particular for networks at good fitness values. In other

words, L{IF}
(6,5) is “more neutral” than L{NAND}

(6,6) in good regions of the fitness landscape.
In this figure, as in all the subsequent ones, to guide the eye, a gray line is drawn,
joining all the average points for each considered fitness value. These averages have
been weighted according to the size of networks representing each point. Furthermore,
points at the same coordinates have been artificially (slightly) displaced, so that they
can be distinguished.

The second measure we study is the average Δ-fitness of the neutral networks. This
measure is the average fitness gain (positive or negative) achieved after a mutation of
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the individuals belonging to the network. Formally, let N be a neutral network, then its
average Δ-fitness can be defined as:

Δ f̄ (N) :=
1

|N| · ∑
s∈N

[
∑v∈V (s)( f (v)− f (s))

|V (s)|

]

This measure is clearly related to the notions of evolvability [1] and innovation rate
[7]. It also helps to statistically describe the graph (S ,V ). A negative value of Δ f̄ cor-
responds to a fitness improvement (because it reduces the error) while a positive one
corresponds to a worsening (because it increases the error). The average Δ-fitness scat-
terplots are not reported here to save space, but we have studied them and we have

observed that improving good individuals for L{IF}
(6,5) is easier than for L{NAND}

(6,6) , in
fact, for neutral networks at good fitness values, the value of the average Δ-fitness for

L{NAND}
(6,6) is positive and much larger than the one for L{IF}

(6,5) .
Now, we present two measures that we have called Non Improvable (NI) Solutions

ratio and Non Worsenable1 (NW) Solutions ratio. The first one is defined as the number
of non-improvable solutions, or non-strict local optima (i.e. individuals i which cannot
generate offspring j by applying a StSt mutation such that the fitness of j is better than
the fitness of i) that are contained into a network divided by the size of the network.
The second one is the ratio of the individuals i which cannot generate offspring j (by
applying a StSt mutation) such that the fitness of j is worse than the fitness of i. The

scatterplots of NI solutions ratios are reported in figure 3. L{NAND}
(6,6) presents some NI
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Fig. 3. Scatterplot of NI solutions ratio in L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

solutions ratios larger than 0.2 for some good fitness values (see for instance the peaks
at fitness values approximately equal to 0.1, 0.125, 0.375). This indicates the presence

of some trap neutral networks at this fitness values. This is not the case for L{IF}
(6,5) where

NI solutions ratios are always equal to zero, except the obvious case of fitness equal
to zero, where the NI solutions ratio is, of course, equal to one. In other words, for

1 We are aware that the word “worsenable” does not exist in the English dictionary. Nevertheless
we use it here as a contrary of “improvable”, i.e. as something that cannot be worsened.
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L{NAND}
(6,6) some good individuals exist that cannot be improved by means of mutation,

while this is not the case for L{IF}
(6,5) . NW solutions ratios scatterplot are not reported

here to save space. Nevertheless, we have studied them and we point out that neutral

networks in L{IF}
(6,5) contain more NW solutions than for the ones in L{NAND}

(6,6) .

Figure 4 shows the scatterplot of unprofitable mutations ratios: for L{NAND}
(6,6) and

L{IF}
(6,5) : for each neutral network, we have calculated the number of mutations which do
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Fig. 4. Scatterplot of unprofitable mutations ratio in L{NAND}
(6,6) (left part) and L{IF}

(6,5) (right part)

not generate better offspring and divided it by the total number of possible mutations
of the individuals in that network. Values of the unprofitable mutation ratios are higher

for good fitness values in L{NAND}
(6,6) than in L{IF}

(6,5) . In particular, for fitness values be-

tween 0 and 0.25, the majority of the possible mutations in L{NAND}
(6,6) are unprofitable,

while for L{IF}
(6,5) only about half of the possible mutations appear to be unprofitable.

All the neutrality measures that we have studied indicate that L{IF}
(6,5) should be easier

than L{NAND}
(6,6) for GP. Furthermore, separate studies that we have done exhaustively

generating all the possible individuals of the similar but smaller L{IF}
(3,2) and L{NAND}

(3,3)
landscapes lead us to the same conclusions. Thus we hypothesize that our sampling
technique is a suitable one to study our neutrality measures (i.e. the qualitative trends of
our neutrality measures are kept as in the original complete landscape by our sampling
technique).

4 Conclusions and Future Work

Some characteristics of fitness landscapes related to neutrality have been investigated in
this paper for two different versions of the multiplexer problem. In particular, we have
defined: the average neutrality ratio, the average Δ-fitness, the non-improvable and
“non-worsenable” solutions ratio and the profitable and unprofitable mutations ratio of
neutral networks. Each one of these measures, if considered alone, gives too a particular
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vision of the fitness landscape to allow us to draw strong conclusions about its difficulty.
But considered all together, they have allowed us to have a clear and rather complete
picture of the characteristics of multiplexer functions landscapes. In particular, all these
measures have contributed to give an interpretation of the fact that the set of operators
{IF} induces an easier fitness landscape than {NAND} for the multiplexer problem.
This facts have also been experimentally demonstrated by executing 100 independent
GP runs for each one of these problems and calculating the success rate. As a further
confirmation, we have also calculated the value of another GP hardness indicator, called
Negative Slope Coefficient. Another interesting result that we have obtained with our
measures is that the landscapes induced by {IF} appear to be “more neutral” than the
corresponding ones induced by {NAND}, in particular in correspondance of neutral
networks with good (although not optimal) fitness values. In many recent contributions,
a bound between neutrality and GP performance has been hypothesized and neutrality
has been presented as a profitable [14,6,22] or unprofitable [5] characteristic of fitness
landscapes. What may often be misleading in these discussions is, in our opinion, what
kind of neutrality is being considered: many different ways of intending and formalizing
the concept of neutrality may exist and each one of them may lead to different, and
in some cases conflicting, conclusions. Our opinion is that, to study the relationship
between neutrality and difficulty of a fitness landscape, a pool of neutrality measures
is needed. All our results considered, we argue that our measures may be helpful in
studying neutrality and relate it to GP problem hardness. Results shown in this paper
hold both for “small” fitness landscapes, that we have been able to study by exhaustively
generating all the individuals, and for “large” fitness landscapes, obtained by increasing
the problem order and the maximum size of the individuals, and that we have sampled
using a new methodology. This methodology is based on a modified version of the
Metropolis algorithm, enriched by two further algorithms that we have called vertical
and horizontal expansion. By this strategy, it has been possible to generate and to study
a large number of individuals that would not (or would very rarely) have been generated
by means of a uniform random sampling or a standard Metropolis algorithm. Since our
techniques are general and can be used for any GP program space, future work includes
extending this kind of study to other problems and possibly defining new measures of
problem hardness based on neutrality.
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landscape. In R. L. D. Mántaras and L. Saitta, editors, 2004 European Conference on Artifi-
cial Intelligence (ECAI04), pages 973–974, Valence, Spain, 2004. IOS Press.

5. M. Collins. Finding needles in haystacks is harder with neutrality. In H.-G. Beyer et al.,
editor, GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary com-
putation, volume 2, pages 1613–1618, Washington DC, USA, 25-29 June 2005. ACM Press.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



250 L. Vanneschi et al.

6. N. Geard. A comparison of neutral landscapes – nk, nkp and nkq. In Congress on Evo-
lutionary Computation (CEC’02), Honolulu, Hawaii, USA, 2002. IEEE Press, Piscataway,
NJ.

7. M. Huynen. Exploring phenotype space through neutral evolution. J. Mol. Evol., 43:165–
169, 1996.

8. J. R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts, 1992.
9. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, Berlin, Heidel-

berg, New York, Berlin, 2002.
10. N. Madras. Lectures on Monte Carlo Methods. American Mathematical Society, Providence,

Rhode Island, 2002.
11. C. M. Reidys and P. F. Stadler. Neutrality in fitness landscapes. Applied Mathematics and

Computation, 117(2–3):321–350, 2001.
12. P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker. From sequences to shapes and

back: a case study in RNA secondary structures. In Proc. R. Soc. London B., volume 255,
pages 279–284, 1994.

13. P. F. Stadler. Fitness landscapes. In M. Lässig and Valleriani, editors, Biological Evolu-
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Abstract. We propose expression simplification and tree compression as
aids in understanding the evolution of regular structure in Genetic Pro-
gramming individuals. We apply the analysis to two previously-published
algorithms, which aimed to promote regular and repeated structure. One
relies on subtree duplication operators, the other uses repeated evalua-
tion during a developmental process. Both successfully generated solu-
tions to difficult problems, their success being ascribed to promotion of
regular structure. Our analysis modifies this ascription: the evolution
of regular structure is more complex than anticipated, and the success
of the techniques may have arisen from a combination of promotion of
regularity, and other, so far unidentified, effects.

Keywords: Genetic Programming, compression, simplification, ppm.

1 Introduction

Modularity has been heavily studied in Genetic Programming (GP), emphasis-
ing function-call or -expansion models based in Computer Science [1,2,3], such
as Koza’s Automatically Defined Functions. In biological DNA systems, modu-
larity such as in the homeobox complex arises primarily through repetition and
variation of genes [5]. This difference is reflected in terminology, where ’modu-
larity’ in Computer Science implies encapsulation and re-use, but has no such
connotation in Biological Sciences. In this paper, we emphasise the biological
form – repetition and variation of sub-structures (in GP terms, re-use of build-
ing blocks). To reduce confusion, we eschew the term ’modularity’ from this
point.

Our main idea is to use compression algorithms to estimate the regularity
of genotypes. To the best of our knowledge, this has not previously been done,
though there is some hint in Lathrop’s work [6] relating compression depth to
GP behaviour, and in Svangard and Nordin’s [7] use of compression to estimate
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similarity between, rather than self-similarity within, genotypes. Compression
methods (sometimes implicitly) build a model of the structural regularities in
data, then use the model to build a compressed representation of the data. Hence
any regularities that are represented in the model lead to increased compression.
If we measure the compression, we are implicitly measuring the extent of regu-
larity (or at least, the extent to which that regularity matched the model).

It is well-known that GP generates redundant code [8] – expression trees
which may be replaced by smaller trees with the same evaluation. In this study,
we are interested in regularities both in the whole code, and in the effective part
of the code. Regularities may arise in the ineffective code through a variety of
mechanisms, yet have no useful effect on learning. Analogously, DNA sequences
contain huge segments of repeated pairs in non-coding regions, which have no
known effect on the resulting biology. An analysis focusing only on overall mea-
sures of regularity – inevitably statistically dominated by the simple repetitions
– would miss the far more important regularites occurring through repetition of
large segments of coding regions (genes) and equally important, their regularly
structured variation. Hence we are interested in analysing the compression, not
only of trees, but of their effective backbones.

We would like to simplify expression trees to the simplest equivalent form.
For many function domains of interest, this is a known uncomputable problem.
The best we can hope is to reduce the subtrees to a near-minimal form. For
this purpose, we use the Equivalent Decision Simplification (EDS [9]) method,
specialised to the arithmetic domain of our experiments.

The remainder of this section gives a brief introduction to the necessary
background in compression and expression simplification. Section 2 introduces
our compression-based metric for comparing the regularity of trees, and two
previously-studied algorithms in which improvements in performance have been
ascribed to re-use of building blocks. We report on the results of our new analy-
ses in section 3, discussing the ramifications in section 4. In section 5, we present
our conclusions about the effectiveness of compression-based methods to gain
understanding of the behaviour of GP systems.

1.1 Compression

Data compression is the process of encoding information in a form that uses
fewer bits than the raw data. Compression algorithms proceed in two phases,
modelling the original data, and encoding the symbols using the model.

Lossless compression algorithms rely on statistical redundancy, using it to rep-
resent the sender’s data more concisely, but nevertheless perfectly. Thus lossless
data compression will fail if the data doesn’t contain a discoverable pattern –
random strings are incompressible. Conversely, if the data does contain regular-
ity, then a compression algorithm may make use of the regularity to compress the
data. This is the basis of our approach. We apply state-of-the-art tree compres-
sion algorithms, with the aim of detecting regularities – i.e. predictable, repeated
structure – in the data (in this case, trees generated by GP algorithms).
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String vs Tree Compression. Stochastically-based compression algorithms
such as Predict by Partial Match (PPM [10] generally provide higher compression
ratios than the better-known dictionary-based methods such as Ziv-Lempel [11],
but at the cost of speed. Since this study was conducted off-line, speed was not a
primary issue, so stochastic methods were used. XMLPPM [12] extends the PPM
model to compress trees rather than strings. It does so using a stack to record
the context at all branch points. XMLPPM uses XML format to represent the
input trees, rather than more economical tree representations; but this is merely
a technical detail. In our experiments, we record the original tree size in a direct
(inorder) representation, then convert trees to XML format for compression.

1.2 Simplification

Rule-based Simplification. Previous simplification work [13,14,15] used syn-
tactic methods to simplify trees; but finding all syntactic redundancies is un-
decidable. This point is not merely theoretical. If the subtreee T is complex,
syntactic algorithms may find (T − 1) + (1 − T ) difficult to simplify.

Equivalent Decision Simplification. A stronger method, Equivalent Deci-
sion Simplification (EDS), has recently been proposed [9]. In EDS, a tree and its
putative simplification are evaluated over a range of inputs (generally, the inputs
used to define the function to be approximated). When the values of the two
trees are within a predefined error bound, the two trees are judged equivalent.
For this problem domain, EDS found far more simplifications than rule-based
simplification. The results strongly suggested that EDS was finding essentially all
the simplifications available (to be precise, the behaviour of simplified-genotype
entropy, and of phenotype entropy, were virtually identical).

The problem remains, of finding an appropriate tree for substitution. We
solve this by making single terminal nodes the candidates for substitution. By
recursively simplifying each subtree, the whole tree is simplified. EDS is used to
simplify trees in this experiment, so that we can investigate the behaviour of the
effective code.

2 Methods

Using PPM-based tree compression and EDS, we re-analyse data from two pre-
vious sets of experiments which involved hypotheses about the replication of
building blocks. Both were based on the TAG representation [16]. The details of
the representation are unimportant here; its key properties are

– TAG representation is based on labelled trees, as in Koza-style GP
– the system uses subtree crossover and mutation, as in Koza-style GP
– Any rooted subtree of a valid TAG tree, or any consistent extension, is valid

Because of the last property (which we call ’feasibility’), it is possible to extend
TAG3P in many ways. In this paper, we consider two such extensions:

– Extending TAG3P with subtree duplication and truncation operators
– Extending TAG3P with a developmental evaluation process.
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2.1 Compression and Small Trees

While compression algorithms usually compress large objects well, they generally
have a startup cost, with difficulty in compressing small objects. Thus relative
compression of two subtrees of the same size gives useful information about
their relative regularity, but can be misleading for trees of very different sizes.
Instead, we report the relative compression, relative to two extremes. At one
extreme, random trees are incompressible; on the other, XMLPPM is especially
effective at compressing linear trees. We report the relative compressed size of
an individual, relative to random and linear trees. In detail, if a tree of size
S compresses to size C, we first compute the maximum compressed size R of
random trees, and L of linear trees, originally of size S, and we report the ratio
(C − L)/(R − L). The metric has the following desirable properties:

– For trees of a given original size, it is monotonic with the compression (and
by extension, estimates the degree of replication)

– It discounts any size-dependent start-up cost of the compression algorithm

The random trees were generated by half-and-half initialisation. Figure 1 shows
the compressed size (Y axis) vs original size (X axis). Note the high degree of
nonlinearity at small sizes, and the step in compression of random trees at an
original size of between 5,000 and 10,000. The latter is probably an artefact of
the fixed-size context used by PPM algorithms. An alternative algorithm, PPM*,
uses unbounded context, but has never been implemented for tree-compression.
We hope to report on its use in the near future.
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Fig. 1. Compression of Random and Linear Trees (left: small trees; right: large)

While the genotype representations considered here differ widely, all are even-
tually converted to a standard expression tree for evaluation. For comparability,
all compression measurements are performed on expression trees, not on the
primary genotypic representation.

2.2 Duplication/Truncation Operators

In the duplication operator, a random node in the current tree is chosen. The
subtree rooted at that node is copied. A random leaf node in the tree is then
chosen. The copied subtree is attached at that leaf node.
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The duplication operator expands the size of the TAG3P tree. Used alone,
it causes bloat so rapid as to prevent useful evolution. Its use is balanced by
another operator, truncation. Truncation also randomly selects a location in the
current tree. Instead of copying the subtree rooted at that node, truncation
removes it. Duplication and truncation operators were applied at the same rate,
to balance their effects on size. While their interaction with selection is difficult
to analyse, in practice bloating was seen to be roughly similar to that observed
in the basic TAG3P system, and typical of a tree-based GP system. Duplication
was expected to be a useful operator for problems with highly regular forms, such
as the well-known polynomial regression problem, in which GP is used to find a
function fitting 20 points generated by a simple polynomial expression – in this
case, Fn(x) = x+x2+x3+...+xn, for various values of n. The grammar in table 1
defines the solution space. Further symbols may appear after simplification (i.e.
they are not used in the evolutionary process): V is extended with a further non-
terminal CONST , and T with two further terminals, 0, 1, while P is extended
with two additional productions: EXP → CONST and CONST → 0|1.

Table 1. Grammar describing Solution Space

G = V, T, P, S EXP → EXP OP EXP |sin EXP |V AR
S = EXP OP → +| − | ∗ |/
V = EXP, OP, V AR V AR → x
T = x, sin, +, −, ∗, /

Our expectations were borne out in experiments reported in [16]. Duplica-
tion improved performance when used as a mutation operator in TAG3P, and
more substantially when used as a local search operator. However the underly-
ing assumption, that use of duplication had promoted duplicated code segments
appropriate for the domain, was not tested. We compared five algorithms (TAG:
the basic TAG3P system; TAGCROSS: TAG3P with no mutation operator;
TAGM: TAG3P with duplication/truncation as mutation operators; LSTAG10
and LSTAG50: TAG3P with duplication/truncation as local search operators –
10 and 50 steps respectively). All algorithms had a fixed budget of evaluations,
so more local search corresponded to fewer evolutionary generations.

2.3 Developmental Evaluation

Developmental evaluation [17] has been proposed as a mechanism to promote
structural regularity in GP. It uses a typical developmental process, but relying
on the feasibility property of TAG3P, evaluates and selects individuals during
development, in analogy with biological systems. In more detail, individuals
are evaluated on a family of problems of increasing difficulty as they develop,
with performance at earlier stages favoured over performance at later stages.
In experiments using the family of functions F1, ...F9, and the grammar from
table 1, developmental systems achieved excellent performance (two variants
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were used, DEVTAG using a trivial incremental growth process, and DTAG3P,
an L-systems developmental model; in the experiments, they were compared with
standard tree-based GP (DE), TAG3P, and DTAG3PF9ALL: using DTAG3P
L-system representation, but standard evolutionary evaluation). Recently [18],
we reported on comparisons between these systems using direct compression
measurements, and noted the difficulty of comparing compression ratios for trees
of differing sizes. We overcome this with the ratio method from section 2.1.
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Fig. 3. Duplication: Compression Complexity vs Evaluations (∗104) (left: original;
right: effective code)

3 Results

3.1 Duplication/Truncation

Figure 2 shows the success ratio (out of 100 runs) for the different algorithms. As
previously reported, using crossover only, or duplication/truncation as mutation
operators, makes little difference to the overall performance of the underlying
TAG3P algorithm (which performs slightly better than standard GP). Local
search for 10 steps of duplication and truncation substantially improves perfor-
mance, but too much local search degrades it.
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Figure 3 shows the complexity of the fittest individual in each generation, us-
ing our measure. We note that individual complexity tends to decrease through-
out a run, both for the original code and the effective backbone; and that 10
steps of local search give the lowest complexity for either original or effective
code, but 50 steps give the highest for the latter.

3.2 Developmental Evaluation

Previously presented results have shown the very high success rates of the
DTAG3P and DEVTAG algorithms relative to the underlying TAG algorithm
on this problem (around 70% and 30% success respectively, for the same num-
ber of potential evaluations as used in subsection 3.1). For the same budget of
evaluations, standard tree-based GP has essentially zero probability of success.
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inal; right: effective code)

Figure 4 shows the compression-complexity of the algorithms plotted against
generations. We note the very low replication in both overall and effective code
components of standard GP; and the high high replication in both overall and ef-
fective code components of DTAG3P. As far as code complexity is concerned, the
DEVTAG algorithm performs almost identically to the underlying TAG3P al-
gorithm. Finally, L-system development on its own (DTAG3PF9ALL) promotes
code replication at the overall code level, but without developmental evaluation,
this replication is not reflected in the effective code.

4 Discussion

4.1 Duplication/Truncation

The results are partially consistent with our original hypothesis, that code repli-
cation would help to solve the F9 problem. 10 steps of local search with duplica-
tion and truncation improve the probability of success, and increase the amount
of code repetition, both in original and effective code. But this is not the whole
story. 50 steps of local search degrade the effectiveness of the algorithm, but

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



258 J. Shin et al.

not so far as to be worse than the non-local-search versions (perhaps 50 steps
of local search do not allow enough generations of evolutionary search for effec-
tive exploration). Yet 50 steps of local search give the lowest level of effective
code replication. Thus success is not simply correlated with replicated effective
code. This leads on to a range of potential hypotheses. Perhaps truncation is
more important to the success of the success of the duplication/truncation local
search combination than we had supposed. Perhaps what is replicated is more
important than the degree of replication. Compression analysis has opened up a
range of new questions about this matter.

4.2 Developmental Evaluation

Similarly, the Developmental Evaluation results strongly support the underlying
hypothesis, that a developmental process, and evaluation during development,
are both necessary for promoting repetitively structured effective code, such as
arises in DNA. Interestingly, this contrasts strongly with our earlier results (using
simple compression ratios, rather than the more size-independent method used
here), which seemed to disprove this hypothesis. L-system-based development
alone, without developmental evaluation (DTAG3PF9ALL), initially generates
a high degree of regularity, but this regularity is rapidly lost from the effective
code, and more gradually from the overall code.

However this is not the whole story. DEVTAG (which uses a trivial develop-
mental process, but still uses incremental evaluation during development) per-
forms well on this problem – far better than DTAG3PF9ALL – yet incremental
evaluation does not promote regularity at all in this case (the individuals are, if
anything, less regular than those generated by the basic TAG algorithm).

5 Conclusions

In sections 4.1 and 4.2, previously accepted hypotheses about the mode of action
of particular evolutionary systems were tested using the twin tools of EDS and
compression. In both cases, in their broadest outlines, the hypotheses were borne
out by these analyses. In more detail, they raised intriguing new questions. In
both cases, the success of the proposed modifications does seem to reflect in-
creased regularity of the effective code; however this is not the whole story, and
the effectiveness of the systems is due, in part, to causes other than simple
replication of good building blocks. This has opened up new lines of inquiry,
investigating what has allowed these systems to perform so effectively.

We don’t believe this situation is unique to these two specific problems. These
techniques can help to understanding the behaviour of evolutionary algorithms
in any domain where replication of building blocks may be important (and in
particular, to understanding the level of success achieved by modularising ap-
proaches such as ADFs). But we don’t believe the applications stop there. In
these experiments, we compressed individual trees, to determine the level of
replication within trees. It is equally straightforward to compress whole pop-
ulations, and use this compression to estimate the level of replication of code
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segments across the population. Such analyses should allow us to gain a deeper
understanding of the role of building blocks, since any promotion of building
blocks should result in regularities in effective code that compression algorithms
should be able to discover and exploit.

The compression techniques are not problem- or representation- specific, so
they are readily extended to new systems and problem domains. The principle
of EDS is equally extensible, at least to problem domains where a reasonable
definition of ’equivalent decision’ is available – for example to other arithmetic
function sets. However in some domains, it may be unnecessary. in Boolean do-
mains, EDS reduces to model-theoretic (i.e. truth- table) methods, and syntactic
simplification to proof-theoretic methods. For perfect accuracy, the former are
exponential time, while the latter are NP-complete. It is not yet clear which will
yield better performance if some level of missed equivalences is acceptable.

Acknowledgements. This research was financially supported by a Seoul Na-
tional University support grant for new faculty.

References

1. Koza, J.R.: Hierarchical automatic function definition in genetic programming.
In Whitley, L.D., ed.: Foundations of Genetic Algorithms 2, Vail, Colorado, USA,
Morgan Kaufmann (24–29 July 1992) 297–318

2. Spector, L.: Evolving control structures with automatically defined macros. In
Siegel, E.V., Koza, J.R., eds.: Working Notes for the AAAI Symposium on Genetic
Programming, MIT, Cambridge, MA, USA, AAAI (10–12 November 1995) 99–105

3. Woodward, J.R.: Modularity in genetic programming. In Ryan, C., Soule, T.,
Keijzer, M., Tsang, E., Poli, R., Costa, E., eds.: Genetic Programming, Proceedings
of EuroGP’2003. Volume 2610 of LNCS., Essex, Springer-Verlag (14-16 April 2003)
254–263

4. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts (May 1994)

5. Schlosser, G., Wagner, G.e.: Modularity in Development and Evolution. University
of Chicago Press, Chicago, Ill, USA (2004)

6. Lathrop, J.I.: Compression depth and genetic programs. In Koza, J.R., Deb, K.,
Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L., eds.: Genetic Program-
ming 1997: Proceedings of the Second Annual Conference, Stanford University,
CA, USA, Morgan Kaufmann (13-16 July 1997) 370–379

7. Svangard, N., Nordin, P.: Automated aesthetic selection of evolutionary art by
distance based classification of genomes and phenomes using the universal simi-
larity metric. In Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler,
R., Jin, Y., Johnson, C.R., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D.,
Squillero, G., eds.: Applications of Evolutionary Computing, EvoWorkshops2004:
EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC. Volume
3005 of LNCS., Coimbra, Portugal, Springer Verlag (5-7 April 2004) 447–456

8. Blickle, T., Thiele, L.: Genetic programming and redundancy. In Hopf, J., ed.:
Genetic Algorithms within the Framework of Evolutionary Computation (Work-
shop at KI-94, Saarbrücken), Im Stadtwald, Building 44, D-66123 Saarbrücken,
Germany, Max-Planck-Institut für Informatik (MPI-I-94-241) (1994) 33–38

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



260 J. Shin et al.

9. Mori, N., McKay, R., Nguyen, X., Essam, D.: How different are genetic programs:
New methods for studying diversity and complexity in genetic programming. in
preparation (2007)

10. Cleary, J., Witten, I.: Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications 32 (1984) 396–402

11. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24 (1978) 530–536

12. Cheney, J.: Compressing xml with multiplexed hierarchical models. In: IEEE Data
Compression Conference, Snowbird, Utah (2002) 163–172

13. Hooper, D., Flann, N.S.: Improving the accuracy and robustness of genetic pro-
gramming through expression simplification. In Koza, J.R., Goldberg, D.E., Fogel,
D.B., Riolo, R.L., eds.: Genetic Programming 1996: Proceedings of the First An-
nual Conference, Stanford University, CA, USA, MIT Press (28–31 July 1996) 428

14. Ekart, A.: Shorter fitness preserving genetic programs. In Fonlupt, C., Hao, J.K.,
Lutton, E., Ronald, E., Schoenauer, M., eds.: Artificial Evolution. 4th European
Conference, AE’99, Selected Papers. Volume 1829 of LNCS., Dunkerque, France
(3-5 November 2000) 73–83

15. Wong, P., Zhang, M.: Algebraic simplification of genetic programs during evo-
lution. Technical Report CS-TR-06-7, Computer Science, Victoria University of
Wellington, New Zealand (2006)

16. Hoai, N.X., McKay, R.I., Essam, D., Hao, H.T.: Genetic transposition in tree-
adjoining grammar guided genetic programming: The duplication operator. In
Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J.I., Tomassini, M., eds.:
Proceedings of the 8th European Conference on Genetic Programming. Volume
3447 of Lecture Notes in Computer Science., Lausanne, Switzerland, Springer (30
March - 1 April 2005) 108–119

17. Hoang, T., Essam, D., McKay, R., Nguyen, X.: Developmental evaluation in genetic
programming: A tag-based framework. In: Procceedings of the third Asia-Pacific
Workshop on Genetic Programming, VietNam Military Technical Academy, Hanoi,
VietNam (October 12-14 2006)

18. Kang, M., Shin, J., Hoang, T., McKay, R., Essam, D., Mori, N., Nguyen, X.: Code
duplication and developmental evaluation in genetic programming. In: 10th Asia-
Pacific Workshop on Intelligent and Evolutionary Systems, Seoul, Korea (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Changing the Genospace: Solving GA Problems

with Cartesian Genetic Programming

James Alfred Walker and Julian Francis Miller

Intelligent Systems Group, Department of Electronics, University of York,
Heslington, York, YO10 5DD, UK
{jaw500,jfm7}@ohm.york.ac.uk

Abstract. Embedded Cartesian Genetic Programming (ECGP) is an
extension of Cartesian Genetic Programming (CGP) capable of acquir-
ing, evolving and re-using partial solutions. In this paper, we apply for
the first time CGP and ECGP to the ones-max and order-3 deceptive
problems, which are normally associated with Genetic Algorithms. Our
approach uses CGP and ECGP to evolve a sequence of commands for a
tape-head, which produces an arbitrary length binary string on a piece
of tape. Computational effort figures are calculated for CGP and ECGP
and our results compare favourably with those of Genetic Algorithms.

1 Introduction

Embedded Cartesian Genetic Programming (ECGP) is an extension of Carte-
sian Genetic Programming (CGP) incorporating ideas from Module Acquisition
[1], which allows the automatic acquisition, evolution and re-use of partial so-
lutions in the form of modules. Previous work [2] has shown ECGP to be more
computationally efficient than CGP on a range of digital circuit problems and
the speedup grows with problem difficulty.

Recently, CGP and ECGP have been applied to the Genetic Algorithm (GA)
based Hierarchical-if-and-only-if (H-IFF) problem [3]. CGP and ECGP found
solutions to the H-IFF problem more easily than published attempts using a
GA. This paper builds on the work from [3] by applying the same technique to
two GA benchmarks; the one-max problem and the order-3 deceptive problem.

The one-max problem [4] was originally used to test the generality of hill-
climbing search algorithms but is now more commonly used as a GA benchmark
[5]. The objective of the problem is to find a binary string of length n, which
contains all 1’s. The order-3 deceptive problem was proposed by Goldberg [6] and
has also been widely adopted as a challenging problem for GAs. The problem
analyses similarities in a binary string using 3-bit schemata. The aim of the
problem is to find a binary string containing all 1’s, therefore consisting only of
the 3-bit schema containing all 1’s. This schema is associated with the highest
fitness. The only other fitness rewards are associated with schemata containing
all 0’s or a single 1. This leads the GA away from the global optimum and
towards the global minimum, and is the reason why the problem is classed as
deceptive.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 261–270, 2007.
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Some work already exists on evolving GAs using alternate forms of evolu-
tionary computation. Miller and Yu [7] implemented a form of CGP to evolve
binary strings to the one-max problem when they were investigating the proper-
ties and utility of neutrality. Unlike this approach, in this paper the link between
the number of nodes encoded in the genotype and length of the binary string
is indirect and uncorrelated, we anticipate that this will allowing better scaling
on large problem instances. Ryan et al [8] have developed a technique called
GAuGE, which extends Grammatical Evolution (GE) to form a position inde-
pendent GA. GAuGE has been applied to the one-max problem and an extension
of GAuGE called LINKGAuGE, which employs tight linkage between the genes
of the GA [9], has been applied to the order-3 deceptive problem. Another GE
based approach is the meta-Grammar Genetic Algorithm (mGGA) [10], which
allows the construction of small bit-strings that are re-used when forming the
solution bit-string.

The plan for the paper is as follows: Sections 2 and 3 give an overview of
CGP and ECGP. In section 4, we describe our approach of applying CGP and
ECGP to GA problems. The details of our experiments are shown in section 5
followed by the results and comparisons in section 6. Section 7 gives conclusions
and suggestions for future work.

2 Cartesian Genetic Programming (CGP)

CGP is a form of GP based on acyclic directed graphs, which is only modified
by mutation [11]. CGP uses a fixed length representation, where the genotype
consists of a list of integers, encoding the function and connections of each node
in the directed graph. However, the number of nodes in the directed graph (phe-
notype) can vary but is bounded, as every node encoded in the genotype does
not have to be connected. This allows areas of the genotype to be inactive and
have no influence on the phenotype, leading to a neutral effect on genotype fit-
ness called neutrality. This unique type of neutrality has been investigated in
detail [11] and found to be extremely beneficial to the evolutionary process on
the problems studied.

Each node in the directed graph is encoded in the genotype by a number of
genes, determined by the arity of the function the node represents. For each
encoded node, the first gene encodes the node’s function (using values from
a lookup table) and the remaining genes encode the node’s input connections
(using the index label of the node or program input). The nodes take their
inputs in a feed forward manner from either the output of a previous node in
the directed graph or from the program inputs (terminals). The program inputs
are labelled from 0 to n-1 where n is the number of program inputs. The nodes
in the directed graph are also labelled sequentially starting from n to n+m-1
where m is the number of nodes in the directed graph. If the problem requires k
program outputs then k integers are added to the end of the genotype, each one
encoding the index of the node in the directed graph where the program output
is taken from. These k integers are initially set as pointers to the outputs of the
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Fig. 1. CGP genotype and corresponding phenotype for the 8-bit one-max problem.
The underlined genes encode the function of each node using the lookup table: V8A(0),
Frog(1), Progn(2). See Section 4 for function details. The index labels are shown under-
neath each program input and node. The inactive areas of the genotype and phenotype
are shown in grey dashes.

last k nodes encoded in the genotype. Fig. 1 shows a CGP genotype and how it
is decoded for the 8-bit one-max problem.

3 Embedded Cartesian Genetic Programming (ECGP)

ECGP incorporates ideas from Module Acquisition [1] with CGP, to allow the
automatic acquisition, evolution and re-use of partial solutions (referred to as
modules) [2]. Thereby giving CGP a form of Automatically Defined Function
(ADF) [12]. This paper only gives a brief overview of ECGP due to space re-
strictions. For information on the technical details of ECGP, please refer to [2].

ECGP uses a modified CGP genotype making it a bounded variable length
representation (in terms of the number of encoded nodes in the genotype and
the number of genes used to encode each node). The number of nodes encoded
in the genotype decreases when sections of the genotype are encapsulated into
modules (when modules are created by the compress operator) and increases
when modules are expanded back into sections of the genotype (when modules
are destroyed by the expand operator). The number of genes used to encode the
inputs of a node in the genotype can vary as a result of either module mutation
increasing or decreasing the number of module inputs (therefore affecting the
number of genes required to encode the module), or a module being introduced
into the genotype (requiring extra genes to encode all of the module inputs).

Modules are capable of having multiple outputs, but the CGP representation
only encodes nodes with single outputs, therefore each gene is now represented
using a pair of integers rather than just a single integer, as in CGP. For each gene
encoding a node input, the first integer encodes the node index (as in CGP),
whilst the second integer encodes the function output used.

Using a pair of integers to encode each function gene allows the introduction
of node types into the ECGP representation. Node types allow the identification
of nodes encoded in the genotype representing: primitive functions (node type
0), modules that contain an original section of the genotype (node type I) and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



264 J.A. Walker and J.F. Miller

Input 1 gene

fn  i0  i1 fn:nt  i0:o0  i1:o1

in in

Function
fn

Output 
from i0

Output 
from i1

Function
fn

Output o0 

from i0

Output o1 

from i1

Function gene

Input 0 gene

Node inNode in

Phenotype

Genotype

CGP M-CGP

Fig. 2. CGP and ECGP genotypes and corresponding phenotypes for a single node.
The components of each gene are labelled as follows: function (fn), node type (nt),
node indexes that the node inputs are taken from (i0, i1), node outputs that the node
inputs are taken from (o0, o1), index of this node (in).

modules that contain a re-used section of the genotype (node type II). Operators
act differently on the nodes encoded in the genotype depending on their node
type. Node types are encoded as the second integer of the function gene of every
node, the first integer encodes the primitive function (as in CGP) or module
(using values from a lookup table). Figure 2 illustrates the differences between
the CGP and ECGP representations.

Modules are represented using a modified ECGP representation, which also
encodes structural information about the module. Four extra integers are added
to the beginning of the module genotype to encode the module identifier, the
number of inputs and outputs of the module, and the number of nodes the mod-
ule contains. Currently, a module can only contain nodes of type 0, to prevent
bloat inside the module. Once a module is created, it is added to the module list
(a dynamic extension of the function list) and can be re-used whilst the module
remains in the module list, along with the primitive functions. The module list
is updated every generation to contain the module list of the fittest individual
in the population (in accordance with the 1 + 4 evolutionary strategy).

The module genotype can be evolved by the module mutation operators in-
dependently of the ECGP genotype. Either a structural mutation can occur,
which affects the number of module inputs and outputs, or a point-mutation
can occur, which affects the nodes contained in the module (as mutation would
occur in CGP).

4 Applying CGP and ECGP to GAs

One of the main issues faced was deciding how to apply CGP to GA problems.
A method was needed which would scale well for different length bit strings and
would not require changes to the number or type of program inputs. The method
chosen in this paper was heavily influenced by a GP benchmark problem called
the Lawnmower Problem [12]. In the lawnmower problem, GP is used to evolve
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Fig. 3. The three step procedure for producing a GA bit-string from the CGP genotype,
via a set of tape head commands

a set of commands to move a lawnmower around a lawn, which has been divided
into a n x m grid of squares, where n and m denote the width and height of the
lawn respectively. The lawnmower cuts the grass in each square it visits, with a
solution being found when the lawnmower has visited every square of the grid,
therefore cutting all the grass.

In this paper, instead of evolving a set of instructions for a lawnmower on
a 2-dimensional lawn, a set of commands for a moving a tape head on a 1-
dimensional tape is evolved. Similar to the lawn in the lawnmower problem,
the tape is divided into n squares, where n is the number of bits in the GA.
Initially, all squares on the tape are blank, and the tape head is positioned in
the centre square of the tape (similar to the lawnmower starting in the centre
square of the lawn). In a single command, the tape head can move one square or
jump a number of squares in the direction the tape head is facing (left or right).
If the tape head moves off one end of the tape, it re-appears in the square at
the opposite end of the tape (just as the lawnmower would in the lawnmower
problem). When the tape head visits a square, the value of the square is changed
according to the rule:

if(square == blank || square == 1), square = 0 (1)
if(square == 0), square = 1

Therefore, the tape head behaves like the bit-flip operator found in GAs, once
a tape square does not contain a blank. Once the set of commands has been
executed, the tape head will have produced a bit-string of length n containing
the symbols: - (blank), 0 and 1, which can be evaluated as an individual in a
GA. A blank (-) in the bit-string does not contribute towards the fitness score,
as we only want to generate bit-strings containing 0’s and 1’s. An example of
the approach is shown in Figure 3.

Although the proposed approach changes the nature of the GA test problems,
it does allow us to investigate whether the proposed approach can evolve solu-
tions to GAs whilst taking advantage of the benefits of CGP, such as neutral
drift. We believe changing the dimensionality and neutral interconnectedness of
the genotype space may alleviate problems typical of GAs - early convergence
on sub-optima. Due to the nature of the approach, small changes to the genotype
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Table 1. The parameter settings used for CGP and ECGP (* - ECGP only). The
mutation rate is expressed as a percentage of the genotype length. The operator rates
and probabilities are per generation and taken from [2].

Parameter Value

Population size 5
Genotype point mutation rate 3% (18 Genes)

Compress/Expand probability * 0.1/0.2
Module point mutation probability * 0.04

Add/Remove input probability * 0.01/0.02
Add/Remove output probability * 0.01/0.02

Maximum module size * 3 or 5 nodes
Number of independent runs 50

can produce a big change in the bit-string produced on the tape. Thereby acting
like an implicitly defined variable rate mutation operator, which could reduce
the mutation parameter sensitivity associated with GAs.

The CGP program has three program inputs, which are constrained versions
of those used in the lawnmower problem: move - moves the tape head one square
in the direction it is facing and changes the value of the new square according to
Equation 1, turn - alters the direction the tape head travels along the tape from
right to left or vice versa and random constant - a random number, r, chosen at
the start of each independent run, where 0 <= r < n. Both move and turn also
return a constant, 0, so mathematical operations can also be performed on the
program inputs.

The function set used contains the same functions as the lawnmower problem:
progn - a program node, which executes the graph connected to its first input,
followed by the graph connected to its second input and returns the result of the
second input, v8a - performs addition on its two inputs and returns the result,
and frog - moves the tape head by a number of squares specified by its input in
the direction it is facing and changes the value of the new square according to
Equation 1.

5 Experiment Details

The parameter settings used for CGP and ECGP on the 100, 250, 500, 1000,
2000 and 4000-bit one-max problem (using 100 nodes) and the 30-bit order-3
deceptive problem (using 25, 50, 75 and 100 nodes) are shown in Table 1.

The fitness functions used for both problems are the same as those used
by GA researchers. For the one-max problem, the fitness function is the total
number of ones present in the bit-string and for the order-3 deceptive prob-
lem, the fitness function is defined by the schema from [6] shown in Table 2.
Any schema containing a blank(-) is awarded a fitness score of zero.
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Table 2. The schema for the order-3 deceptive problem and their fitness values

String 000 001 010 011 100 101 110 111

Fitness 28 26 22 0 14 0 0 30

6 Results

Computational effort was calculated using the formula from [3] and shown in
Equation 2 with z = 99% . The computational effort figures for CGP and ECGP
applied to the one-max and order-3 deceptive problems are shown in Tables 3
and 4 respectively. Various run statistics are also included in both tables to allow
comparisons with other techniques and to illustrate how computational effort is
a better measure to use than the average number of fitness evaluations, as it is
more resilient to outliers in the data. A modified standard deviation is used, as
the results are not normally distributed. The modified standard deviation is a
statistic in which 68% of all the results lie either side of the mean.

P (M, i) =
Ns (i)
Ntotal

, R (z) = ceil

(
log (1 − z)

log (1 − P (M, i))

)
, I (M, i, z) = MR (z) i+1

(2)

Table 3. Computational effort (CE) figures and various statistics for CGP and ECGP
applied to the one-max problem for bit-strings of various lengths (NB). The statistics
gathered include: average number of evaluations (AE), modified standard deviation
(MSD), the quartiles (Q0-Q4), the limits for mild and extreme outliers (MO and EO)
and the number of each outlier present in the data is shown in brackets.

NB AE MSD Q0 Q1 Q2 Q3 Q4 MO EO CE

C
G

P

100 1,684 1,143 197 583 895 1,906 10,405 3,891(3) 5,875(2) 5,766
250 2,175 1,598 329 659 981 1,876 13,237 3,702(8) 5,527(5) 6,405
500 4,850 4,074 321 869 1,471 5,026 47,013 11,262(4) 17,497(3) 9,606
1000 2,006 1,293 441 818 1,071 1,592 23,405 2,753(6) 3,914(4) 6,120
2000 2,146 1,165 493 1,145 1,455 2,232 15,989 3,863(5) 5,493(3) 7,203
4000 3,340 2,312 593 1,193 1,377 2,186 33,417 3,676(8) 5,165(7) 7,203

E
C

G
P

(3
)

100 5,695 5,210 201 703 1,561 6,645 45,125 15,558(4) 24,471(2) 9,610
250 8,411 7,750 237 1,169 2,589 11,758 71,745 27,642(4) 43,525(2) 16,326
500 6,505 5,117 541 1,405 2,443 5,209 68,429 10,915(5) 16,621(4) 16,326
1000 39,529 37,797 637 1,700 4,665 12,873 1,290,565 29,633(5) 46,392(4) 24,010
2000 14,186 12,151 793 2,101 3,955 10,539 169,021 23,196(7) 35,853(4) 26,888
4000 15,125 12,592 445 2,594 5,227 11,012 256,661 23,639(5) 36,266(4) 30,728

E
C

G
P

(5
)

100 11,472 10,807 301 675 1,593 5,990 220,325 13,963(6) 21,935(4) 10,248
250 16,839 15,762 353 1,254 2,487 10,378 282,553 24,064(8) 37,750(5) 15,368
500 14,061 12,787 701 1,425 3,333 7,778 183,753 17,308(7) 26,837(5) 20,810
1000 22,024 19,676 613 2,064 3,461 7,794 798,149 16,389(5) 24,984(3) 23,527
2000 19,139 17,327 661 2,329 5,407 14,366 129,725 32,422(8) 50,477(6) 32,652
4000 19,417 15,612 873 3,866 6,469 15,577 248,457 33,144(5) 50,710(4) 42,248
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Table 4. Computational effort (CE) figures and various statistics for CGP and ECGP
applied to the 30-bit order-3 deceptive problem for various genotype lengths (ND). The
statistics gathered include: average number of evaluations (AE), modified standard
deviation (MSD), the quartiles (Q0-Q4), the limits for mild and extreme outliers (MO
and EO) and the number of each outlier present in the data is shown in brackets.

ND AE MSD Q0 Q1 Q2 Q3 Q4 MO EO CE

C
G

P

25 3,814 2,898 221 1,078 2,537 5,445 18,697 12,021(4) 18,586(1) 14,088
50 5,998 4,874 249 1,139 2,357 5,032 72,717 10,872(4) 16,711(3) 15,368
75 118,649 117,272 153 1,329 2,535 7,600 3,918,661 17,007(9) 26,413(7) 16,648
100 279,444 278,372 173 1,171 3,037 10,882 9,066,769 25,449(8) 40,015(8) 15,219

E
C

G
P

(3
) 25 10,313 9,176 261 1,036 1,859 5,172 303,133 11,376(6) 17,580(4) 12,005

50 48,374 47,126 401 1,266 2,715 8,049 1,390,337 18,224(9) 28,398(7) 16,648
75 14,571 13,782 201 912 2,155 5,569 301,137 12,555(6) 19,540(6) 12,808
100 64,164 62,735 129 1,629 2,691 7,645 1,315,681 16,669(7) 25,693(6) 15,364

E
C

G
P

(5
) 25 21,548 20,132 385 1,421 2,567 4,755 681,717 9,756(8) 14,757(7) 14,724

50 70,738 69,797 329 899 2,845 8,486 1,572,621 19,867(8) 31,247(6) 14,415
75 16,314 15,649 233 696 1,629 13,016 255,513 31,496(7) 49,976(4) 10,413
100 44,965 43,612 205 1,495 3,651 10,893 1,169,005 24,990(7) 39,087(7) 19,208

For both problems, all fifty independent runs of CGP and ECGP produced
100% successful solutions.

The computational effort figures for the one-max problem show CGP performs
better than ECGP regardless of the maximum module size, for all lengths of bit-
string. As the length of the bit-string increases, the computational effort required
by CGP increases only slightly, indicating that CGP scales particularly well with
problem difficulty. This suggests that CGP may perform comparatively better
on larger bit-strings. In ECGP, the automatic acquisition, evolution and re-use
of modules could be hindering the search performance, possibly due to a lack
of modularity in the problem. Alternatively, the problem could be too simple,
so by the time a useful module has been discovered, CGP has already found a
solution to the problem.

The results in Table 4 show the computational effort figures for CGP and ECGP
are similar, as the number of nodes increases but ECGP is capable of performing
better than CGP, depending on the maximum module size chosen. This suggests
ECGP is exploiting any modularity in the problem that makes it less suscepti-
ble to deception, such as the re-use of a module that creates the schema contain-
ing three ones. However, the average number of evaluations figures contradict the
computational effort figures on a number of occasions. On analysis, the quartiles,
Q0-Q3, for CGP and ECGP show a similar trend to the computational effort fig-
ures. However, the quartile, Q4, is quite erratic as it contains numerous mild and
extreme outliers. The outliers are the reason for the contradiction between the
average number of evaluation and computational effort figures, therefore showing
computational effort is less influenced by the presence of outliers.

In general, the computational effort figures for CGP and ECGP increase with
the number of nodes, suggesting using smaller genotypes produces better results.
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Table 5. The average number of evaluations (AE) for other techniques applied to the
100-bit One-Max and 30-bit Order-3 Deceptive Problems

100-bit One-Max 30-bit Order-3 Deceptive

Technique Gen-GA Simple-GA GAuGE Gen-GA Messy-GA LinkGAuGE
AE 7,714 4,000 4,000 4,484 10,000 20,000

The larger the genotype, the longer the list of commands for the tape head.
Therefore, a small change in a large genotype could drastically alter the number
of commands for the tape head, making it harder to find a solution when you
are only a few bits away.

The results of CGP and ECGP for the two problems are compared with other
techniques found in Table 5. The generational-GA results were taken from [5],
the simple-GA and GAuGE results are approximated from [8] and the messy-GA
and LinkGAuGE results are approximated from [9].

For the 100-bit One-Max problem, CGP performs better than the other three
techniques and ECGP (with a maximum module size of 3) performs better than
the generational-GA but worse than the simple-GA and GAuGE. However, it is
notable that CGP also solves the 4000-bit One-Max problem slightly faster than
the simple-GA and GAuGE on the 100-bit One-Max problem.

Comparing the results of CGP and ECGP (with 25 nodes) and the other tech-
niques on the 30-bit Order-3 Deceptive problem, once again CGP performs better
than the other three techniques and ECGP performs better than LinkGAuGE,
and has approximately equal performance to the messy-GA but is worse than
the generational-GA.

Out of curiosity, the CGP and ECGP solutions found to the One-max problem
were applied to the one-max problem with different length of bit-strings than
those used to evolve the solution. The results showed that the majority of the
solutions found on the original problem solved the One-max problem for all
lengths of bit-string from 1-bit up to the length it was originally trained on,
and also on some longer bit-strings. In one case, a CGP solution to the 100-
bit One-max problem solved all One-max problems up to a length of 264-bits.
This implies the solution had learned something about the form of the general
solution to the One-Max problem. This was also noticed with the solutions to
the order-3 deceptive problem, except that the original solution either solved all
the order-3 deceptive problems up to a length of 30-bits, or it solved the order-3
deceptive problems that were a factor of the 30-bit problem, such as the 3, 6
and 15-bit problems. We intend to investigate this further in future work.

7 Conclusion

We have presented the application of CGP and ECGP to two classic GA prob-
lems: the one-max and order-3 deceptive problems. CGP was shown to perform
better than ECGP on the one-max problem for various length bit-strings and was
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also shown to scale well with problem difficulty. The performance of CGP and
ECGP was similar on the order-3 deceptive problem, however ECGP is capable
of performing better than CGP but is dependant on the relationship between
the maximum module size chosen and genotype length. Comparing CGP, a sim-
ple GA, a generational GA and GAuGE on the one-max problem showed CGP
to perform the best and to scale better on problem size than the others. Com-
paring CGP, a generational GA, a messy-GA and LINKGAuGE on the order-3
deceptive problem also showed CGP to perform the best. This could possibly
indicate that the method employed in this paper not only drastically alters the
search space but also takes advantage of the benefits associated with CGP (such
as neutral drift) and transfers them to the GA.

Preliminary results for initialising the tape with different values (all 0’s or
0’s and 1’s at random) have shown a decrease in the performance of CGP and
ECGP, and will be investigated further in future work. It would be interesting to
see if the approach described in this paper can be modified to produce floating
point numbers and be applied to real-valued optimisation problems associated
with classical evolutionary programming. This approach could also be used in
a variety of real-world problems, such as protein folding and protein sequence
comparison from the field of bioinformatics.
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Abstract. We explore a homeostatic approach to program execution in
computer systems: the “concentration” of computation services is reg-
ulated according to their fitness. The goal is to obtain a self-healing
effect so that the system can resist harmful mutations that could hap-
pen during on-line evolution. We present a model in which alternative
program variants are stored in a repository representing the organism’s
“genotype”. Positive feedback signals allow code in the repository to be
expressed (in analogy to gene expression in biology), meaning that it is
injected into a reaction vessel (execution environment) where it is exe-
cuted and evaluated. Since execution is equivalent to a chemical reaction,
the program is consumed in the process, therefore needs more feedback in
order to be re-expressed. This leads to services that constantly regulate
themselves to a stable condition given by the fitness feedback received
from the users or the environment. We present initial experiments using
this model, implemented using a chemical computing language.

1 Introduction

In a world where computing devices are becoming ubiquitous, it is highly de-
sirable to have systems that are able to operate continuously, adapting to the
environment and tracking changing goals. Ideally, such constant self-optimisation
should occur not only via hard-wired adaptive algorithms but also through evo-
lution of new functionality without human intervention.

With open ended evolution the system evolves in the environment where it
is used. Its fitness must be evaluated online during operation, as opposed to a
a well-protected laboratory setting as the one used in off-line evolution. It is
therefore particularly important to minimise the impact of potentially harmful
genetic operations (mutation, crossover) on the running system. Classical com-
putation models are ill suited for this problem: the typical sequential execution
model leads to brittle programs in which adding, deleting or modifying a single
instruction may have catastrophic effects.

We investigate the potential of artificial chemical computing models [1,2,3,4]
for open ended evolution. In these models, change is a rule rather than an
exception. Their high parallelism and multiset support allow programs to be
expressed in terms of transformations (chemical reactions) applied to their in-
ternal objects (data or the transformation rules themselves, in case of high-order
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models [5]).Chemical models have been shown that are intrinsically robust to
random execution order [6], instruction deletion [7], inherent noise [8,9], and so
on. They have been pointed as suitable for new, autonomic systems able to run
unsupervised [10].

In chemical computing, code and data objects are represented as chemical
substances that may occur at given concentrations in a reaction vessel. The re-
action vessel is often implemented as a multiset, where elements may occur more
than once. The higher the concentration of a given element type, the higher the
probability that it participates in a chemical reaction, i.e. that it gets executed
(potentially in combination with other elements) to produce a result.

Several reaction vessels might be composed in a hierarchical or recursive way
[1,11] and vessels may communicate with each other by exchanging substances
among themselves [11]. Substances react with each other according to specified
reaction rules, and the result of the reaction goes to the multiset as well. Sub-
stances may be consumed in the reaction, or may act as enzymes for reactions
without being consumed in the process.

Computations proceed as chemical reactions, leading to new substances that
in turn react with others, and so on, potentially forming large reaction networks.
These networks must be regulated to produce the desired result, and have been
shown exhibit evolutionary ability [12].

When evolving computational chemical reaction networks online in an open
ended context, it is important to ensure that the resulting program can be safely
executed, or that any undesirable effects of the execution can be reverted. For this
purpose we can take inspiration from biological evolution, which has endowed
organisms with several protection mechanisms that ensure viable offspring with
high probability. These include redundancy mechanisms such as redundant DNA
to protein encoding, diploidy, gene duplication; and self-healing mechanisms such
as the regulatory DNA repair cycle, in which proteins respond to DNA damage
signals by triggering DNA repair mechanisms, or apoptosis (programmed cell
death) when DNA repair is not possible.

We are currently exploring program regulation mechanisms, in which the con-
centrations of computation objects (at several levels of granularity, such as in-
structions, modules, programs, or higher level services) are regulated to produce
a self-healing effect that resists harmful mutations that could happen during
on-line evolution. Fitness evaluation and selection of suitable organisms form
integral parts of such regulation cycles. Alternative program variants are stored
in a repository which represents the organism’s genotype. Code in the reposi-
tory is expressed (in analogy to gene expression in biology) at regular intervals,
meaning that it is injected into an execution environment where it is executed
and evaluated. Since execution is equivalent to a chemical reaction, the program
is consumed in the process.

Code expression happens in response to activation signals coming from the
execution environment. These signals are generated in response to fitness reward
signals coming from the applications evaluating the execution of the program
with respect to its capacity to provide the intended service. On the other hand,
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programs that are not suitable are evaluated with a low fitness, leading to a
punish signal that travels to the repository to activate an inhibition rule which
prevents the corresponding code to be re-expressed.

With such a mechanism, programs that have a higher fitness are expressed
more often, increasing their concentration in the multiset, and therefore end up
with a higher probability of being chosen for running.

Contrary to a classical approach where the presence or absence of a program,
instruction or file is a binary variable, in such a chemical model objects are
present at given concentrations which might increase or decrease in time. When
the concentration reaches zero the object disappears from the system. This ab-
straction lends itself to homeostatic computer systems that constantly regulate
themselves to a stable condition given by the fitness feedback received from the
users or the environment. These systems would be able to adjust to changing
requirements or conditions represented by a change in fitness, since they would
be constantly seeking a fitness reward to survive.

This paper is structured as follows: Section 2 reviews the current state of
the art, and section 3 presents our code regulation approach, with report on
experiments in section 4.

2 State of the Art and Related Work

The term chemical computing refers to two distinct areas [1,3]: natural and ar-
tificial chemical computing. The first one uses real molecules and chemistry
knowledge to build computational devices, e.g. in molecular/DNA computing.
The second one derives computation models inspired by chemistry, which never-
theless run on traditional computers. This paper relates to the second area only.
In this section we give a brief overview of some of the main artificial chemical
computing models and their relation to evolutionary computing.

Artificial chemical computing models have been applied to diverse fields ranging
from basic algorithms, to image processing applications, operating systems, com-
pilers, dynamic software reconfiguration, [13], multi-agent systems, distributed
computing, and, more recently, robotics [8], grid computing [14], and autonomic
computing [15].

In Gamma [5] computations are modelled as interactions among atomic val-
ues that “float” freely in a chemical solution. These values are represented as
elements in a multiset, an unordered set within which elements may occur more
than once. The number of occurrences of a given element within the multiset
is called the multiplicity of the element. The multiset contains the data to be
processed as well as reaction rules of the form condition-action. Computations
replace elements satisfying the condition by those specified in the action. A
computation terminates when no more chemical reactions can take place. More
recently, γ-calculus has been introduced as an extension of the original Gamma
model to a higher-order calculus [5] in which rules are part of the multiset, such
that they can also be transformed.
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In Membrane Computing [1,11] computations (chemical reactions among ob-
jects) occur inside a cell-like membrane structure. Membranes can be recursively
nested. As in Gamma, objects are represented as elements of a multiset. They
can be transformed into other objects and can cross membranes.

In Artificial Chemistries [2] computations are modelled as chemical reaction
networks which can be represented as bi-partite graphs with substrates and re-
action rules as nodes. Contrary to Gamma and Membrane Computing, Artificial
Chemistries do not focus on specific programming aspects, but rather on the
emergent large-scale effects of the interactions among network elements. Chem-
ical organisation theory [16] is used to bridge the gap between the microscopic
behaviour at the code (reaction rule) level and the macroscopic behaviour of the
system as a whole.

Artificial Regulatory Networks have been shown to model the biological reg-
ulatory mechanisms in both natural [9] and artificial systems [12]. In [12] a
regulatory network is represented with a genotype/phenotype binary encoding
in which genes express proteins, which in turn control the expression of genes,
unleashing large reaction networks that evolve by gene duplication and muta-
tions. These networks are able to compute functions, such as a sigmoid and a
decaying exponential.

An Algorithmic Chemistry [6,4] is a reaction vessel in which instructions are
executed in random order. In [6] the power of genetic programming (GP) ap-
plied to an algorithmic chemistry on evolving solutions to specific problems is
shown. The authors point out the importance of the concentration of instruc-
tions, rather than their sequence. They start from a nearly unpredictable system
in which execution of instructions at a random order leads to a random program
output. This system is set to evolve by GP, including crossover and mutation
of instructions placed in registers, obtaining at the end a highly reproducible
output in spite of the random execution order.

Further examples of evolution using artificial chemical systems can be cited,
such as the evolution of a robotic control system by GP [8], study of the emer-
gence of evolution using organisation theory [17], evolution of artificial biochem-
ical signalling networks able to compute functions [18], and so on. While these
approaches show that chemical and evolutionary systems reinforce each other’s
potentials, the problem of open-ended general computing in these systems re-
mains a challenging one.

3 Code Regulation

We have developed a code regulation system based on the fraglets chemical lan-
guage [19]. An interpreter for this language is freely available for download at
[20]. The language has a single structure, called a “fraglet” or “computation
fragment”. A fraglet is a string of symbols [ s1 : s2 : . . . : sn ]k that may en-
code data, reaction rules involving two fraglets, or transformations of a single
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fraglet. A suffix counter k indicates the multiplicity of the fraglet in the reaction
vessel.

The fraglet language has been designed for network protocols. For this purpose
the rule processing engine is based on a “tag matching” system in which fraglets
are processed according to their head symbol, which is consumed in the process.
This is similar to the way protocol headers in an incoming data packet are
processed, consumed and then moved to a higher layer of a protocol stack.

Details on the fraglet language and instruction set can be found in [19]. For our
purpose, only one type of rule is important: the reaction rule, called a match, or
a matchp in its persistent variant. A match rule has the form [match : s : tail1],
and when meeting a fraglet of the form [s : tail2] this results in a chemical re-
action with product [tail1 : tail2], i.e. the two fraglets are concatenated after
eliminating their matching heads. The persistent variant matchp works in the
same way, except that the original matchp rule is not consumed during the re-
action. Using these rules and other simple transformation rules that manipulate
fraglet strings, it is shown that communication protocols and other programs
can be implemented [7,19]. The common point among all the programs shown
in [7,19] is that matchp rules are dominant in the code, which makes it rather
static as opposed to a real dynamic chemical system in which transformations
happen most of the time.

Fig. 1. Code Regulation Scheme

In contrast, we seek a solution in which the concentration of running code is
controlled by activating/inhibiting factors and therefore not fixed in advance.
We rely solely on the match rule and its multiplicity counter for this purpose.
These rules are expressed at regular intervals based on the fitness feedback signals
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received as a result on an execution that is assumed to provide a given service
that can be evaluated during runtime.

Fig. 1 illustrates our code regulation scheme. Rules written as fraglets are
stored in a code repository. The repository is also modelled as a reaction vessel,
but counts on a persistent memory, so rules stored there are of the form matchp.
Actually these rules are guarded by an expn rule expression factor, where n is
the rule number. Rules in this form are said to be “folded”. They can only be
activated (expressed) by the proper [expn] signal, also in the form of a fraglet.
The existence of [expn] in the repository triggers the corresponding [matchp :
expn] reaction that consumes one unit of [expn] and produces a copy of the rule
(free from the [expn] guard, or “unfolded”) which is injected into the reaction
vessel. The rule has the form [match : serv] where serv is the tag corresponding
to the service that the rule implements. Examples of services could be to compute
a function, or to transmit some data reliably to a destination.

The control mechanism consists then in regulating the amount (“concentra-
tion”) of [expn] in the repository according to the reward and punish signals
received during the execution of the corresponding rule. Once inside the execu-
tion environment, the rule is activated when the service it performs is invoked
by an application by injecting a request of the form [serv : . . . parameters . . .].
Note that the matching tag (serv in the example of Fig. 1) for both rules is
identical, since they are alternative implementations of the same service. These
alternative implementations compete for client invocations in the form of fra-
glets with the matching header tag [serv : . . .]. The proportion of competing
[match : serv : . . .] rules, given by their multiplicity counter, determines the
probability of the match reaction to occur involving that rule.

Each rule executed is then either rewarded or punished according to the fitness
feedback received from the application. Note that the application is unaware of
which of the alternative rules executed the service; it sees only the service as a
whole. A service interface is then in charge of translating these generic punish or
reward signals to specific signals for the rule that actually performed the service.
When rule n is punished, an inhibition signal in the form of a [punishn] fraglet
is issued to the repository, which translates it to a [match : expn] fraglet; the
later cancels out one unit of expn expression signal for rule n. When rewarded,
an activation signal [rewardn] is issued for the rule, which translates directly to
one or more [expn] guards, that will then allow the rule to be re-expressed.

This cycle may continue indefinitely. Note however that the reward/punish
signals are only injected by the application, so if there is no demand for a given
service, the concentration of its rules will not change in steady state. A certain
initial concentration of [expn] may be present at the repository, which may cause
a few rules to be expressed without demand at the beginning, in order to kick off
the cycle; after that, the cycle is completely regulated by the feedback from the
application. Since an unfolded rule has the form [match : serv], it is consumed
after providing the service, so the only chance for it to keep being executed
regularly is to provide a good service that will be properly rewarded.
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4 Experiments

We have performed some simulation experiments for code regulation on the
fraglets platform. We used the CDP (Confirmed Delivery Protocol) implemen-
tation provided in the fraglets package [20] and enhanced it with the regulatory
mechanism explained in the previous section.

CDP is a very elementary transport protocol that gets a payload from the
application and transmits it to a given destination node in the network. We
simulate then a network with two nodes, where the application consists of a data
source (co-located with the code repository) and a data sink. Fitness evaluation
is performed by the data source: it issues a reward unit upon confirmation of
correct delivery of its payload, and a punishment unit when an error occurs or
when no confirmation is received.
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Fig. 2. Concentration of rules expressed to the reaction vessel (left) versus concentra-
tion of the corresponding expression signals (right)

Two experiments are shown. In each of them, three rules compete to provide
the CDP service to the user: rule1 is an always-good rule (i.e. transmits all the
packets faithfully), rule3 is always bad (never transmits anything), and rule2

lies in between: it has a 50% probability of successful transmission.
In the first experiment, each reward for correct execution maps to an increase

of a single unit of [expn] in the code repository. Conversely, each punishment
causes the decrease of one [expn] unit, because a [punishn] fraglet translates
into a [match : expn] fraglet which eats up one unit of [expn]. If a rule is good
all the time, it will only receive rewards, so each fired rule will lead to an extra
unit of [expn] being produced, which allows the rule to be re-expressed. On the
other hand, expressing a rule consumes one unit of [expn], so the concentration
of a good rule does not increase in time. So in this experiment, good behaviour
is just a way to stay alive in the system, one does not really get rewarded for it.
Now if a rule is always bad, then it is punished with the decrease of one [expn];
on top of the one that had been used for its expression, it is then expected that
the concentration of bad rules will rapidly decrease with successive punishments.
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Fig. 2 shows the results of the first experiment. The repository is initialised
with 20 [expn] signals for each rule. The left side shows that the first rule reaches
a fixed average concentration (with some oscillation due to the dynamic flow of
signals) after a startup period. This concentration is equivalent to the amount
of [exp1] signals that were initially present in the repository. The concentration
of the third rule rapidly decreases as the reservoir of initial [exp3] gets depleted.
The second rule lies in between, as expected. The relation between [expn] control
signals and expressed rules can be seen by comparing both plots on Fig. 2. For
readability, the right side shows the concentration of [expn] signals for the initial
part of the simulation only, since during the remaining simulation time these
concentrations do not significantly change.
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Fig. 3. Concentration of rules and activation signals, second experiment

In the second experiment, every reward for a well executed service triggers
two activation signals [expn], so the rule is re-expressed (to compensate for its
consumption during execution) and at the same time its concentration is allowed
to increase (due to an excess of activation signals coming from the rewards). This
experiment simulates the situation in which the system provides an incentive for
good services to proliferate in the system, and at the same time is able to kill
bad ones. Fig. 3 shows the results of the experiment. We can now see that the
concentration of rule1 increases as long as it remains in use. Around t = 4000
simulation steps the rule is invoked for the last time, so the concentration of rule1

stops growing. Rule 3 is eliminated early as before, while rule 2 now benefits from
the extra reward to stay longer in the system, so after the service demand stops
there are still around ten rules of type rule2 in the vessel, which remain there
in the absence of further control signals.

4.1 Discussion

Note that rules might not be discarded (reach a zero concentration) even if their
behaviour is not ideal. This happens when feedback ceases, as with rule2 in
the second experiment. This is not necessarily bad, since these “dormant” rules
might represent a useful source of genetic variability which may be helpful for
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evolution. When conditions change, these rules might be reactivated and be-
come useful in another context, where different service requirements or different
environment conditions lead to different performance and resulting fitness.

Currently there is no mechanism to “destroy” rules once they are expressed.
The only way to consume a rule is to fire (use) it. It is therefore difficult to punish
programs not for low performance, but for lack of demand. One possibility would
be to introduce an “aging” mechanism, so that rules that are not invoked for
a long time “decay”. This would be a useful mechanism to deprecate obsolete
software. However, one concern is how to regulate this ageing mechanism itself:
how slow or how fast should a service age? if it ages too quickly, the service
becomes prematurely unavailable, whereas if it ages too slowly the system gets
polluted by obsolete pieces of software (note that this is the situation today, as
this “aging” process is controlled by humans in an ad hoc fashion).

The experiments shown are very simple, and intended to shed light on the
chemical programming mechanism for code regulation. The next step is to extend
them to complex regulation networks in which services are composed of numerous
interconnected modules, each of which must be evaluated and selected. For this
purpose we consider applying concepts from artificial regulatory networks [9,12]
and chemical organisation theory [16] to fraglet code regulation.

5 Conclusions and Outlook

We have shown a regulation mechanism intended to provide resilience to open
ended evolution. This is only one building block for such evolutionary process.
The next step is then to show how evolution would actually happen in this con-
text. We believe that the problem of discontinuity of the search space in genetic
programming (a small change in a program may cause a big leap in fitness) could
be minimised by allowing program or instruction concentrations to be expressed
and controlled, instead of binary presence/absence of a given program. This may
lead to more stable and predictable transformations in which a small change in a
service implementation (which is made of variable concentrations of competing
varieties) could lead to a comparably small leap in fitness from the point of view
of the user. This cannot be easily achieved with conventional programming lan-
guages in which changing a single line of code in an otherwise perfectly working
program may cause it to crash, loop or destroy resources. Chemical systems with
regulated computations could lead to a much more elastic way to handle excep-
tions and therefore to a robust way to support online evolutionary computation
for systems that may be made to run forever uninterrupted.
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Abstract. We have applied a range of data mining techniques to a data
base of log file records created from genetic programming runs on twelve
different problems. We have looked for unexpected patterns, or golden
nuggets in the data. Six were found. The main discoveries were a surpris-
ing amount of evaluation of duplicate programs across the twelve prob-
lems and one case of pathological behaviour which suggested a review
of the genetic programming configuration. For problems with expensive
fitness evaluation, the results suggest that there would be considerable
speedup by caching evolved programs and fitness values. A data mining
analysis performed routinely in a GP application could identify problems
early and lead to more effective genetic programming applications.

1 Introduction

Using genetic programming to solve a problem is a complex task. There are
many aspects of the configuration that need to be determined and the various
components and parameter values interact with each other in ways that are
not obvious. Typically plots of fitness vs generations are used to monitor the
evolutionary process and it is considered that all is well as long as fitness keeps
improving with generations. However, it is possible that the development process
could be improved if there was more insight into the interactions between com-
ponents and parameters. We suggest that some of this insight can be gained by
using techniques from data mining to analyse log files from genetic programming
runs.

Data mining [1] is a well established approach for extracting useful information
from large volumes of data. Since many run logs comprise a large volume of data
it is reasonable to ask whether data mining techniques can be used to find useful
information in this large volume of data. One metaphor for data mining is a
search for “golden nuggets”. A golden nugget is an interesting, unexpected fact
or relationship that was previously unknown. We want to see if we can find any
golden nuggets in the run log data.

Data mining is relatively mature and there are number of systems available.
We have used one of these, the WEKA system [1]. Weka provides a large number
of algorithms for the data mining tasks of classification, clustering, attribute
selection and visualisation.
Related work: Our work is related to previous work on visualisation in evolution-
ary computing and fitness landscape analysis in genetic programming. In the
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visualisation area, Collins [2] describes an approach to visualising the progress
of a genetic algorithm run at a number of levels of abstraction using specialised
visualisation software. Daida et al. [3] describe a method of visualising the set
of tree shapes that emerge during an evolutionary run. Ekart and Gustafson [4]
present alternative visualisations of tree shapes that emerge during a run and
show that, for their symbolic regression problem, there are differences between
the tree shapes of the best and worst programs. In the fitness landscape area,
early work by Kinnear [5] analysed the fitness landscapes of a number of simple
problems and correlated problem difficulty with a number of properties of the
landscapes. In [6] Langdon and Poli have analysed the Santa Fe ant problem
in detail and have given 3D visualisations of a number of landscape properties.
Vanneschi et al [7] have looked at neutrality, i.e, areas of the fitness landscape
that have the same fitness and shown a number of visualisations.

Most of the previous work tends to focus on one or two problems and uses
specialised visualisation programs. Our approach is quite different in flavour. We
have generated log files of the genetic programming runs for many problems and
performed a data mining exercise, using a standard package, on the these log
files. We have looked for any significant recurring or unusual patterns in the run
logs. Our motivation is that if we can find significant problem patterns we can
perhaps take steps to solve the problems and improve the practice of genetic
programming.

1.1 Research Questions

Our overall aim is to determine whether any significant patterns, or golden
nuggets, can be found in a data warehouse of genetic programming run logs.
In particular we are interested in:

1. Do the data mining techniques of visualization, classification, clustering and
association finding reveal any interesting patterns or golden nuggets.

2. Are there any patterns in the shape, size, depth and fitness of the program
trees generated?

3. How many duplicate individuals are evaluated in a run?
4. Are any improvements to the GP process suggested by the discovered pat-

terns?

2 The Data

We have collected data for a number of toy problems and real world problems.
The toy problems are used extensively in genetic programming research and are
listed in the top half of table 1. For the toy problems, that is, Santa Fe Ant[6],
Max[8], Lawnmower[9], Symbolic Regression[9] and 5Parity[9] we performed runs
using genetic algorithm parameters from the literature. The real world cases in
the bottom half of table 1 represent significant effort on using genetic program-
ming to solve difficult and very difficult problems. For these problems we asked
our colleagues to log their next 5 runs and give us the log files.
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For this paper we have extracted the following data for each of the problems.

1. Run Number. There are 5 runs.
2. Generation number. Maximum number of generations is 100.
3. Fitness. This is a numeric value where 0 indicates the best fitness. Depend-

ing on the problem this could take a small number of integer values or a
large range of real values.

4. Program size. This is the number of nodes in the program tree.
5. Tree depth.
6. Program. This is the full text of the evolved program. The following is an

example program from a run with the Santa Fe ant problem:

(Prog2 (IfFoodAhead (Prog3 (Prog3 turnRight turnRight move)
(IfFoodAhead turnLeft turnLeft) (IfFoodAhead turnRight move))
(Prog3 turnRight move turnLeft)) (IfFoodAhead (Prog2 move
turnLeft) (Prog2 turnLeft turnRight)))

7. Tree Shape. This is the the tree shape corresponding to the program. The
tree shape is obtained by removing all function names from the program
text and replacing all terminal symbols with #. The tree shape of the above
program is:

((((###)(##)(##))(###))((##)(##)))

3 Methodology

From the data preparation step we have 12 files, each containing the seven fields,
or attributes in data mining terminology, described in the previous section. Each
record in a file represents the evaluation of a candidate individual. The data are
from 5 independent runs and the number of records in each file is given by the
“Total Eval” column in table 1.

To perform the data mining functions we have used the WEKA machine
learning system [1]. In some cases a sample of 10,000 was extracted at random
because of memory and computational constraints. Discretization of the numeric
variables was performed as needed.

We began with visualizations of the data and then moved on to the clas-
sification, clustering and association finding functions available in the WEKA
system. The visualizations suggested further specific analysis of duplicate indi-
viduals which was achieved by separate scripts and programs.

3.1 Visualizations

The WEKA system provides two main ways of visualizing the data: (1) The
distribution of values of a single attribute can be visualized as in figure 1, and
(2) Three attributes can be visualized together, one on the x-axis, one on the
y-axis and one as the colour, as in figure 2. In this mode a thumbnail panel of
plots for each pair of attributes makes it quite easy to visually identify interesting
looking patterns for further investigation. We have done these visualizations for
each of the 12 problems.
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3.2 Redundant Computation

The visualizations revealed that a significant number of programs were being
evaluated several times and we decided to look further into this. Redundant
computation occurs when a program whose fitness was evaluated in an earlier
generation is re-generated in a later generation or a logically equivalent program
is generated. This new program must now be re-evaluated, but the fitness will
be the same as before so this computation can be regarded as redundant or
wasted. Two programs are logically equivalent if they perform the same under-
lying computation, for example the programs (+ A B) and (IF (= 1 1) THEN
(+ A B) ELSE C), as are (+ A 1) and (+ A (/ A A)). In general determining
whether two programs are logically equivalent undecidable. However, in some
cases, programs which have the same shape and the same fitness (SSSF ), but
are not string equivalent (SE), will be logically equivalent. In symbolic regres-
sion and classification problems which use just the function set {+,-,*,/}, for
example, {+,*} are commutative. In this case, if two programs have the same
shape and fitness, but are not string identical, it is fairly certain that some of the
same operations are being done in a different order, for example (+ A B) and
(+ B A). Thus SSSF − SE evaluations are most likely of logically equivalent
programs. For problems like the Santa Fe ant, where the operators are not com-
mutative inferences about logically equivalent programs are not possible, but we
have shown data in table 1 for completeness.

3.3 Fraction of Possible Tree Shapes Explored

After looking at the visualizations of the tree shapes and noting the large num-
bers of different shapes generated in the various runs, we became interested in
determining how many of the possible shapes were being explored. Since most
of the problems use binary trees we have used results from [10,11] which give
the total number of different binary trees for a given depth d, d = 1, 2, 3...9. This
sequence is 1, 3, 21, 651, 457653, 2.10E + 11, 4.4E22, 1.9E + 45, 3.7E60. This is a
‘double exponential’ [11] sequence and after a depth of 5 the number of possible
trees becomes massive. The Santa Fe ant problems have one ternary function.
For this problem we have used a depth of 5. The number of possible tree shapes
is thus the number of trees with nodes of degree 3 or 4, for depths up to and
including 5. We have roughly estimated this number as follows: There are 4.5E5
binary trees of depth 5. There are at least this number of ternary trees. So the
number of mixed binary and ternary trees is at least 4.5E5 × 4.5E5 = 2.0E11.
We have used the same approximation for the soccer problem which also has
some ternary functions. The results of this analysis are presented in table 2.

4 Results

4.1 Visualizations

The visualisations of single attributes revealed two unexpected patterns. These
are shown in figure 1.
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Fig. 1. Visualizations of Single Attributes

Golden Nugget 1: Unexpected fitness distribution in the binary image
problem.

In visualizing fitness distributions of the various problems we found the his-
togram in figure 1a. This distribution of fitness was very unexpected. There is a
large spike at a fitness of 0.5. The problem involves a binary image classification
task where circles need to be distinguished from squares. Individual pixels and
blocks of pixels have been manually removed from a solid black circle/square on
a white background leaving irregular objects that a human would readily rec-
ognize as circles or squares, but which is a difficult machine learning problem.
Inspection of the training data revealed that about half of the examples were
quite straight forward and most programs got these quite easily leading to a
local optimum.

There was a similar finding in the soccer problem, all fitness values were 0.
This turned out to be because a “goals-only” fitness function was being used in
the runs and no goals were scored in any of the runs. This finding was not a
surprise to the collaborator who provided the runs.

Golden Nugget 2: Unexpected distribution of tree shapes in the feature
discovery problem.

There were a large number of programs for tree shape ‘#’ for the texture fea-
ture discovery problem. These are single node programs. The histogram is shown
in figure 1b. The number of single node programs being evaluated is very high.
This appears to be an unexpected consequence of using a very limited function
set and a size penalty in fitness evaluation in order to get small, understandable
programs.

After looking at the visualisations of the single attributes we then looked at
the visualisations of combinations of 3 attributes. Some of these are shown in
figure 2. The data have been randomized prior to visualization. The captions for
each figure have the form Problem.Xattribute.Yattribute.C(olour)attribute and
indicate the problem, the attribute shown on the x-axis, the attribute shown on
the y-axis and the attribute rendered as the colour. Figure 2a shows generations,
shape and fitness for the Santa Fe ant problem. For the fitness attribute, orange
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Fig. 2. Visualizations. Code: Problem.Xattribute.Yattribute.C(olour)attribute. Orange
indicates low fitness, blue high fitness1.

indicates low fitness and blue indicates high fitness. Shape is a non numeric
variable and is treated as follows: If a shape occurs in the data it is assigned a
row on the y axis. The order is random. If a particular shape occurs at generation
x an x is printed at the corresponding point on the grid in a colour based on
the fitness value. If there are several occurrences of a shape in that generation,

1 Colour versions of these images can be found at
www.cs.rmit.edu.au/∼vc/papers/eurogp07.pdf.
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the colour is randomly selected. Figure 2a shows that, for this problem, a wide
range of tree shapes is explored, that fitter shapes become more numerous as the
generations increase and that highly fit programs are reasonably well distributed
throughout the different shapes. This pattern is generally expected and was
evident in a number of the problems.

Figure 2b shows a qualitatively different situation to figure 2a. Here, there are
very few fit programs and they are tied to specific shapes. Figure 2b has been
manually enhanced because the high fitness points were so infrequent that they
disappeared when the image was reproduced in reduced size for publication.

Golden Nugget 3: Very few fit programs in the feature discovery search
space.

In the feature discovery problem there are very few programs of high fitness
and they are associated with a very small number of tree shapes. This finding
is supported by figure 2c which shows program size rather than shape on the y
axis.

Figure 2c shows that program size decreases with increasing generations. This
is consistent with the size penalty in the fitness function that is being used in
this problem.

Figure 2d shows a visualization that has been constructed slightly differently
to the previous ones. Here the shapes are not allocated at random on the y-
axis as before, but in the order that they were generated during the runs. The
different runs are clearly evident in the 5 bands. The figure suggests that each
run has mostly explored a new set of shapes. This is confirmed in figure 2e where
the colour now denotes run number. The higher density of points at the bottom
of figure 2e indicates shapes that have been explored in all runs. Figure 2f shows
a bimodal distribution of fitness in the parity problem with high values clustered
around sizes 110 and 225 suggesting a deceptive problem.

4.2 Analysis of Redundant Computation

The results of an analysis of the number of duplicate programs evaluated are
shown in table 1. The table shows the number of string equivalent programs eval-
uated and the number of programs evaluated with the same shape and the same
fitness. For the Santa Fe Ant problem, for example, a total of 211,500 fitness
evaluations were performed. Of these 109,614 (52%) were of string-equivalent
programs, that is 52% of the evaluations were expended on programs that had
been evaluated at least once before. The ‘MFE’ (Most Frequently Evaluated)
column gives the percentage of evaluations accounted for by the individual eval-
uated the most number times, in this case 0.6%. The right hand part of the
table shows the same data for programs that have the same shape and the same
fitness. The LR (Logically Redundant) column is only given cases where, based
on domain knowledge, it is highly likely that programs with the same shape and
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Table 1. Analysis of equivalent individuals over 5 runs. MFEI - Most Frequently
Evaluated Individual, LR - Logically Redundant.

Problem Total String-Equivalent Same Shape/Fitness
Eval Number Pcnt MFEI Number Pcnt LR MFEI

Santa Fe Ant 211,500 109,614 52% 1.3% 163,596 77% 2.3%
Modif Santa Fe Ant 177,000 109,088 62% 2.6% 148,740 84% 2.7%
Max, depth 5 26,200 23,359 89% 22.1% 23,910 91% 2% 22.2%
Lawnmower 252,500 70,575 28% 0.6% 115,469 46% 1.0%
Symbolic Regression 252,500 54,720 22% 0.6% 71,467 28% 6% 0.6%
5Parity 252,500 41,719 16% 2.3% 150,964 60% 44% 2.3%

Binary Image1 46,800 4,565 10% 0.6% 34,506 74% 3.5%
Binary Image2 35,800 6,783 19% 1.2% 23,906 67% 2.6%
Goal Scoring in Soccer 50,500 16,857 33% 1.4% 42,905 85% 4.7%
Cephalometric Landmarks 50,500 14,728 29% 1.5% 33,665 67% 38% 12.2%
Texture Feature Discovery 50,200 39,210 78% 3.2% 39,622 79% 1% 3.2%
Texture Classification 125,000 75,910 61% 0.5% 106,977 85% 24% 19.9%

fitness are logically equivalent. Since elitism is being used, some degree of dupli-
cate evaluation is expected. However, the overall amount of duplicate evaluation
across all of the problems is surprisingly high and there is considerable variation
in the amount of redundant evaluation across the different problems. Inspection
of the table reveals:

Golden Nugget 4: There is a surprisingly high level of redundant compu-
tation in most of the problems.

Golden Nugget 5: There is a large variation in the amount of redundant
computation across the problems

The max problem stands out on all measures of redundant computation. This
is not surprising due to the idiosyncratic nature of the problem. There are only
two functions and one terminal, and the solution is known to be a full tree.

Table 2 provides more details about the tree shapes generated in a randomly
selected run. ME stands for Most Evaluations. For the max problem 274 distinct
tree shapes were evaluated. This is 40.5% of the total number of binary trees
possible at depth 5. Most of the evaluations (78%) were carried out on trees
of depth 5, which is the maximum depth for this problem. Also, most of the
evaluations were carried out on trees containing 23 (s23)nodes. The Santa Fe
ant and ascii soccer problems, while they also have a maximum depth of 5, have
a much larger number of possible shapes as there are some ternary functions. It
is evident from the table that once the tree depth is larger than 5 or 6 only a
very small fraction of the the possible tree shapes will be examined. For most
of the problems, most of the computation is performed on trees of maximum
depth, the last 3 problems are an exception, an unexpectedly large amount of
computation is being performed on single node trees.
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Table 2. Tree Shapes and Most Evaluations (ME), 1 Run. * indicates this is not Max
Depth.

Problem Distinct % of ME at ME at
Shapes Possible Depth Size

Santa Fe Ant 5,403 < 2.7E-6 82% (d5) 22% (s29)
Modif Santa Fe Ant 3,837 < 1.9E-6 78% (d5) 13% (s14)
Max 274 40.5% 78% (d5) 11% (s23)
Lawnmower 17,486 < 9.2E-10 18% (d7) 1% (s75)
Symbolic Regression 22,769 1.2E-41 95% (d8) 6% (s75)
5Parity 9,306 4.8E-42 88% (d8) 19% (s239)

Binary Image 1 2,661 6.0E-20 69% (d7) 11% (s29)
Binary Image 2 1,240 2.8E-08 73% (d7) 14% (s29)
Ascii Soccer 1,844 < 9.2E-7 66% (d5) 11% (s5)
Cephalometric Landmarks 2,432 1.2E-08 *13% (d6) 12% (s1)
Texture Feature Discovery 437 9.9E-21 *46% (d1) 46% (s1)
Texture Classification 3,036 �E-42 *36% (d1) 36% (s1)

The feature discovery problem stands out in table 1. Very few shapes are
explored and the number of single node programs evaluated is very high. This,
together with figure 2b, suggests:

Golden Nugget 6: The texture feature discovery problem has patho-
logical behaviour.

5 Conclusions

Our primary aim was to determine whether any golden nuggets could be found
in genetic programming run logs using data mining tools and methodologies. In
this we have been successful, uncovering six previously unknown patterns that
had a significant effect on the genetic programming solution to a problem. We
performed a large number of experiments involving visualisation, classification,
clustering and association finding. The most productive data mining technique
was visualization. The other techniques did not reveal anything additional to
the visualisations and we have not included the details of the runs and results in
this paper. We found that in most of the problems each run explored a different
set of tree shapes. We also found that there was a surprisingly high amount of
evaluation of duplicate individuals.

In terms of improvements to the genetic programming process our results
suggest three things: (1) For problems in which there is a high computational
cost in fitness evaluation it is worth implementing a program cache. (2) Use of
size penalties in fitness functions needs to be done with caution. If the penalty is
too big, much computation might be spent in unproductive areas of the search
space. (3) This kind of data mining analysis performed routinely in a genetic
programming application could identify problems early and lead to more effective
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genetic programming applications. The additional effort is not high because the
data mining tools now available provide very good visualization and classification
tools.
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Abstract. Object Oriented Evolutionary Programming is used to evolve
programs that calculate some statistical measures on a set of numbers. We
compared this technique with a more standard functional representation.
We also studied the effects of scalar and Pareto-based multi-objective fit-
ness functions to the induction of multi-task programs. We found that the
induction of a program residing in an OO representation space is more ef-
ficient, yielding less fitness evaluations, and that scalar fitness performed
better than Pareto-based fitness in this problem domain.

1 Introduction

The majority of programs currently being developed are written in Object-
Oriented languages such as Java, C++, C# and Smalltalk. The OO paradigm
provides an ingenious, general-purpose conceptual framework for the software
industry to engineer scalable, manageable software. The four major elements
of this model are: Abstraction, Encapsulation, Modularity, and Hierarchy [1].
This conceptual framework and the technology that it encompasses, provides
an excellent software development space for human programmers to design and
implement solutions to complex problems.

The vast majority of evolved programs use a functional expression tree rep-
resentation, and while GP has produced some impressive results, it has signifi-
cant problems with scalability. Most GP evolved programs are simple expression
trees with constant time complexity, rather than being general programs. Cur-
rent GP ignores much of what we know about how to design well structured
software, which to a significant practical degree, means object oriented software.
To quote Langdon [2]: “Genetic programming, with its undirected random pro-
gram creation, would appear to be the anathema of highly organised software
engineering”.

In this paper we propose a hypothesis on the efficiency of evolving programs
specified in an OO programming space. We show that for a particular type of
problem, Object classes with cooperating member methods that inspect and
modify the object’s internal state provide a more appropriate unit of evolution
than the essentially unstructured Koza’s ADF approach to modular program
representation. Of direct relevance to this work is the work of Langdon [2] on
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evolving abstract data types and of Bruce [3] on Object Oriented Genetic Pro-
gramming. Langdon and Bruce independently evolved data types such as stacks,
queues, priority queues, and linked lists.

As a motivating example, we tackle the problem of evolving a program to
calculate some statistical measures on a set of numbers. We compare the effi-
ciency of evolving such a program by allowing the Evolutionary Algorithm (EA)
to operate on two different representation spaces, namely, OO and functional,
and for each method compare performance when using scalar and Pareto-based
fitness functions.

2 Object Oriented Versus Functional Program Spaces

The Statistics program is required to exhibit functionality for querying the num-
ber of values in the statistical sample, calculating the mean, variance, and stan-
dard deviation of the sample. As with most programming problems, there are
many possible implementations and we can encourage the EA to induce a specific
implementation by allowing it to work on a particular programming space. The
interfaces presented in figure 1 show the signatures of the operations that provide
the desirable functionality to model the statistics of a fix of numbers. However,
the implementations of the OOStatistics and FunctionalStatistics inter-
faces reside in the OO and functional programming spaces respectively.

In the class that implements OOStatistics it is not necessary to store all the
numbers of the sample; it is sufficient to keep a running total of how many, their
sum and their sum of squares. Observing the methods of OOStatistics we note
that an additional addSample method is declared to allow the update of instance
variables each time a new value is added to the sample. This is indeed a crucial
characteristic of Class objects, the notion of object state, which encompasses
collectively all the properties of the object along with the current values of each
of these properties. In the case of the Statistics class, the object state consists
of three instance variables, namely, n (the number of values added), sum (the
sum of values), and sum square (the sum of squares of values).

On the other hand, the signatures of the operations composing a functional,
Koza-style, modular program for performing statistics on a sample of values are
presented in the interface FunctionalStatistics. Using Koza’s ADF terminol-
ogy, the statistics program has four result producing branches that allow further
hierarchical references among them. While there exist GP variants that have
been operating in a procedural space, by providing some form of state manipu-
lation via global variables, we intentionally study the pure functional arena that
traditional GP has been widely applied. This space is defined as the set of all
finite mappings from inputs to outputs in a particular problem domain. Here,
we choose to use explicit recursion as a means to iterate over the elements of
the input list passed as a parameter to each function. To avoid the problem of
unending recursion we set the number of allowable recursive calls to be slightly
bigger than the length of the input list.
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public interface OOStatistics{ public interface FunctionalStatistics{
public double addToSample(double d); public double n(NList list);
public double n(); public double mean(NList list);
public double mean(); public double variance(NList list);
public double variance(); public double stdDeviation(NList list);
public double stdDeviation(); }

}

Fig. 1. The interfaces specifying the signatures of the evolvable methods under OO
and functional representation spaces

3 Evolvable Class Representation

Following previous work on the evolution of multi-task programs [2,3] we decided
to represent an evolvable individual using a multi-tree structure. For the sake of
our discussion here we shall call this structure an Evolvable Class. The syntactic
structure of an Evolvable Class couples a linear data structure of class and
instance variables (representing the object state) along with a set of evolvable
methods (using an expression tree representation) that are responsible for the
way an object acts and reacts, in terms of state changes and message passing.

Traditionally, the use of memory within GP takes the form of either scalar or
indexed memory [2]. Object state encompasses those properties that contribute
to making an object uniquely that object. It was felt that the discrete nature of
those properties can be better represented using scalar memory cells.

The evolutionary run initialization performs a random sampling of Evolvable
Class structures. Each Evolvable Class contains a set of expression trees rep-
resenting the methods declared in the OOStatistics interface. Their argument
and return types are specified accordingly. These expression trees are generated
using the ramped-half-and-half algorithm. Subsequently, a series of independent
random choices, using a uniform probability distribution, is made for the number
and type of instance variables that compose the object state. Here, we allow a
maximum of ten instance variables. For instance variable types, it is reasonable
to draw possible useful instances from the programming space under considera-
tion. The yet-to-be-evolved program needs to operate on numeric data values.
Thus, initially, we define Double as the sole type of instance variable.

4 Experimental Methodology

A series of experiments have been conducted to explore the issues of program
representation offered by the OO programming paradigm. We use Koza’s ADF
approach as a benchmark to compare the efficiency of evolving target solutions
specified in OO and functional program spaces respectively. In experiment se-
ries EOO we evolve an object oriented statistics program that enjoys the co-
operative application of instance methods that inspect and modify the object’s
memory. We investigate two different variations of object state organization. In
experiment EOO1 we use a preordained layout of memory, that is we apply our
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knowledge of the problem domain to manually set the number of required state
variables, in this case 3 (n, sum, and sumSquares. In experiment EOO2 we allow
the organization of object state variables to be emergent through an evolution-
ary fitness-driven process. That is, during the evolutionary run initialization we
perform a random sampling of program and object state spaces, discussed in
section 3, causing certain suitably configured Evolvable Classes to prosper in
later generations of the population.

Table 1. Primitive elements for evolving a statistics program under the OO and Func-
tional programming spaces

Method set
Method Argument(s) type Return type Use

add double, double double add(1,2) := 3

sub double, double double sub(4,3) := 1

mul double, double double mul(2,3) := 6

div double, double double div(4,2) := 2

sqrt double double sqrt(4) := 2

power double, double double power(2,3) := 8

setValue Settable, double double setValue(d,4) := d ← 4

increment Settable double d = 1, increment(d) := d ← 2

addAndSet Settable, double double d = 1, addAndSet(d,2) := d ← 3

head NList double a = {1, 2, 3}, head(a) := 1

tail NList NList a = {1, 2, 3}, tail(a) := {2,3}
isEmpty NList boolean a = {1, 2, 3}, isEmpty(a) := false

Conditional
Control flow Argument(s) type Return type -

IF-Then-Else boolean, double, double double -

Terminal set
Terminal Value Type -
Constant 0.0, 1.0 double -

Parameter[0] - double -

Parameter[0] - NList -

Experiment series EFunctional use the ADF methodology, with static determi-
nation of program’s architecture to automatically induce a program that exhibits
the functionality specified in FunctionalStatistics. The only difference is that
there is not a single result producing branch but instead different expression trees
are being devoted for each dimension of the multi-task program. Furthermore,
while Koza employs a simple module naming scheme to avoid the emergence of a
circular hierarchy of calling dependencies, in this work, we impose no constraints
on the hierarchical references between methods and allow each evolvable method
to naturally call each other with no restrictions. It has been shown that GP has
significant problems with scalability so a slightly more difficult problem becomes
very much more difficult for GP. We are also interested in studying the scalabil-
ity of simultaneous induction of the set of methods and we define two versions of
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the original problem. These exhibit an incremental degree of difficulty by allow-
ing only a subset of methods declared in the interfaces of figure 1 to be evolved
in the evolutionary run of the first version. Version V1 requires GP to evolve a
program that computes the number of values in the statistical sample along with
their mean and variance. Version V2 builds on version V1 and requires also the
induction of the method that computes the standard deviation. Additionally, like
in previous research, we treat the problem of automatic multi-task program in-
duction as a multiobjective optimization problem and we employ multicriterion
fitness functions. We perform a comparison between scalar and Pareto-based fit-
ness assignment schemes. For the scalarization of multiple objectives, we employ
no weighting schemes but allow for a plain sum of these. For Pareto-based fitness
function we use the objective vector approach, by separating the performance of
each evolvable method.

The primitive language contained elements that could be used from a hu-
man practitioner to implement a program that performs statistics. These are
collectively presented in table 1. Standard arithmetic operations have been pro-
vided (add, sub, mul, div, sqrt, power), along with state manipulation op-
erations (setValue, increment, addAndSet), list processing operations (head,
tail, isEmpty), and an If-Then-Else statement that allows to control the flow
of execution within a program.

The term Evolutionary Programming is preferred in this work since our EA
uses a mutation-based variation operator to search the space of candidate so-
lutions. Subtree macromutation (MM – substituting a node in the tree with an
entirely randomly generated subtree of the same return type, under depth or size
contraints) is the sole single-offspring variation operator applied to the popula-
tion - no recombination is used. Experiments EOO2 use an additional operator,
creation (CR – a special case of mutation where an entirely new individual is
created in the same way as in the initial random generation). The motivation
for the creation operator lies on the fact that the number and type of instance
variables defined in the initial sampling of Evolvable Class structures cannot be
subsequently modified by the variation operator. Intuitively, CR guards against
the premature loss of specifically configured packages of instance variables. Other
than choosing the tree node to be replaced at random, we devise an additional,
simple node selection scheme that allows us to select nodes at different depth
levels using a uniform probability distribution, with the expectation to render
bigger changes more likely.

Experiments that used a scalar fitness function employed a generational EA
whether experiments with Pareto-based fitness function employed the NSGA-II
algorithm [4]. For both algorithms, population size was set to 100 individuals
and the number of generations was fixed to 1000. Their runs continued until
an individual was generated that achieved a perfect score on the training data
set or until all generations have elapsed. The maximum depth of a tree in the
initial generation was set to 4 whereas the maximum depth resulting from the
application of macromutation was set to 10. For the EA, a tournament size of
4 appeared to give efficient selection pressure and was combined with an elitism
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scheme of 1%. NSGA-II used the non dominated sorting procedure combined
with a binary tournament to perform selection of individuals [4]. In all experi-
ments but EOO2 macromutation was applied with 100% of probability. In EOO2 ,
the creation operator was applied with a probability of 0.05%. Experiment se-
ries EOO used the traditional approach of randomly choosing the tree-node to
replace (choose a node from the whole tree uniformly) whether EFunctional used
a mixture of the traditional approach along with the additional node selection
scheme previously presented. Their probability of application was set to 80% of
selecting a node from within the whole tree and 20% of selecting a node from a
particular depth.

The fitness evaluation of programs implementing the OOStatistics inter-
face begins with the initialization of object state variables (all instance vari-
ables are set to zero). Then, the addToSample method is being invoked that
many times to allow all values of the input data to be gradually passed as argu-
ments to the method invocation. The changes made to the object state variables
are maintained between subsequent addToSample invocations. Once all input
data have been fed to the object the selector methods n, mean, variance, and
stdDeviation are being sequentially invoked and a distance measure between
actual and anticipated return values is computed. The distance measure takes
the form of absolute error normalized over the [0, 1] interval with the value of
zero representing the best possible fitness. On the other hand, the evaluation
of a FunctionalStatistics program requires the sequential evaluation of each
expression tree using the whole list of input data as a parameter. In both cases
of program evaluation, training data consisted of 10 input lists of a maximum
random length of 50. Test cases for generality consisted of 50 input lists of a max-
imum random length of 100. Elements were randomly chosen from the interval
of [0, 1].

Furthermore, there is an additional significant issue that arises when evolving
multi-tree programs, that of selecting which tree to choose to apply the variation
operator. In this work we use a simple brood selection approach. Each time,
macromutation is applied to produce 10 offspring from each evolvable method (i.e
in the case of 5 evolvable methods macromutation would generate 50 offspring).
The selection of points within a single tree is performed as discussed above.
Parent trees that are believed to be correct (i.e have passed all training cases
successfully) are being frozen from further modification.

Having specified our experimental methodology we went on to experiment
with evolving an OO program as described in experiment series EOO1 . Unfor-
tunately OOEP was unable to induce an individual that correctly implements
the statisticts program with best evolved individuals attaining an average train-
ing fitness of 0.11 and an average generalization fitness of 0.31. It was felt that
this failure was part of the general difficulty of simultaneously inducing a set of
methods, associated with an object, that cooperatively inspect and modify its
internal state. Indeed, the successful induction of those methods that inspect the
object state and base their computations on it cannot be performed in an en-
lightened way until the behavior of the state modification method is successfully
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evolved. However, addToSample operates via its side-effects on the object state
variables. Since we cannot measure its fitness directly, it can only be indirectly
tested by observing if the other operations work correctly when called after it. It
seems that, in this problem domain, this time-ordering of modifier and selector
method invocations is not sufficient to successfully induce a modifier method
that organizes the internal object memory in a useful way. To overcome this we
needed to devise a strategy to reward the effect addToSample has on the object
state variables. For this, we applied our knowledge of the problem and decided
to add another two methods in OOStatistics and FunctionalStatistics re-
spectively. These methods compute the sum and sum of squares of the values in
the statistical sample.

For FunctionalStatistics, including the evolution of methods sum(NList
list) and sumSq(NList list) is similarly beneficial as they can be used to
express mean(NList list), variance(NList list), and stdDeviation(NList
list).

In addition, the space of constructible programs under the OO representation
has been limited by placing restrictions upon which primitives could be used by
which evolvable method. It is established good practice of the OO programming
paradigm to classify the instance methods of a class into those that alter the state
of the object and those that simply accesses it. In order to encourage the evolu-
tionary process, the state manipulation primitives, presented in table 1, are only
made available in the function set of the modifier method addToSample(). On
the other hand, the space of selector methods allows for arithmetic computations
based on the inspection of instance variables. The specific design parameters of
each of the experiments are summarized in table 2.

Table 2. Experimental series

Experiment Evolvable methods State variables Primitives used

EOO1−V1

addToSample, n, sum, 3 arithmetic, state manipulation,
sumSq, mean, constants, InstanceVariables,
variance SettableVariables

EOO1−V2

addToSample, n, sum, 3 arithmetic, state manipulation,
sumSq, mean, constants, InstanceVariables,

variance, stdDev SettableVariables

EOO2−V1

addToSample, n, sum, random, max 10 arithmetic, state manipulation,
sumSq, mean, constants, InstanceVariables,
variance SettableVariables

EOO2−V2

addToSample, n, sum, random, max 10 arithmetic, state manipulation,
sumSq, mean, constants, InstanceVariables,

variance, stdDev SettableVariables

EFunctional−V1

n, sum, sumSq, n/a arithmetic, list processing,
mean, variance constants, recursion allowed

EFunctional−V2

n, sum, sumSq, n/a arithmetic, list processing,
mean, variance, constants, recursion allowed

stdDev
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5 Results and Discussion

We performed 100 independent runs on each experiment of table 2 using both
scalar and Pareto-based fitness functions. Table 3 presents the summary of the
experimental results. Figure 3 presents addSample and mean methods from a
sample evolved OO program. Notice how the settable variables are being updated
by addToSample and their values being inspected by mean. First we present the
probability of success (standard error in parentheses) of each different experi-
mental setup. After Koza, Min I(M,i,z) represents a prediction of the minimum
number of individuals that need to be evaluated in order to solve the prob-
lem with a probability of 99%. Average actual evaluations for successful and
failed runs, as these were recorded during the evolutionary runs are also illus-
trated. These values include all evaluations resulting from brood formations.
The average solution size is measured in terms of number of tree nodes in each
successfully evolved individual. Looking at table 3 we observe that searching an
OO programming space yields a higher probability of success. In cases of both
scalar and Pareto-based fitness function this probability seems to be falling as
we move down the table rows, from the experiments with the OO representation
with preset object state, to those with random state and finally those with the
functional representation. This probability is accompanied by the the predicted
search size and the actual fitness evaluations required to yield a successful out-
come. We note that these are being increased as we move from OO to functional
program representation. Not surprisingly, the induction of recursive programs
proved to be computationally more expensive.

Table 3. Summary of experimental results (standard errors in parentheses for prob.
of success, avg. solution size in tree nodes)

Experiment
Prob. Min. Avg. actual Avg. actual Avg.
success I(M,i,z) evals. evals. solution

(%) (success) (failure) size
Scalar Fitness Function

EOO1−V1
4 (1.9) 471, 200 76, 275 2, 121, 860 44

EOO1−V2
3 (1.7) 596, 700 168, 217 3, 256, 274 64

EOO2−V1
2 (1.4) 5, 517, 600 1, 636, 535 2, 312, 276 36

EOO2−V2
2 (1.4) 7, 546, 800 1, 492, 810 3, 456, 551 47

EF unctional−V1 3 (1.7) 6, 201, 600 1, 694, 425 2, 123, 302 75

EF unctional−V2 2 (1.4) 10, 373, 400 1, 915, 855 3, 071, 878 93

Pareto-based Fitness Function
EOO1−V1

4 (1.9) 775, 200 146, 230 2, 318, 375 47

EOO1−V2
5 (2.2) 979, 200 883, 330 3, 384, 328 58

EOO2−V1
1 (0.1) 1, 285, 200 1, 955, 323 2, 612, 850 64

EOO2−V2
1 (0.1) 2, 799, 900 2, 136, 240 3, 512, 008 68

EF unctional−V1 2 (1.4) 2, 019, 600 2, 106, 180 2, 477, 475 85

EF unctional−V2 1 (0.1) 5, 691, 600 2, 358, 160 3, 688, 345 98
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Fig. 2. Average of 100 runs of best-of-generation individuals represented in (a) OO,
and (b) functional representation spaces, using a scalar fitness function

addToSample(Parameter[0]) mean()
(Method:mul (Method:add
(Method:increment (Method:div

SettableVariable[0]) InstanceVariable[5]
(Method:mul InstanceVariable[0]

(Method:addAndSet )
SettableVariable[5] Constant:0.0
Parameter[0]) )

(Method:addAndSet
SettableVariable[1]
(Method:mul Parameter[0] Parameter[0]))))

Fig. 3. Sample evolved expression trees representing addToSample and mean respectively

As expected, the experiments with a fixed layout of object state variables were
several orders of magnitude less computationally expensive than those required
the organization of object state to be emergent throughout the evolutionary run.
In addition, under both the OO and functional representations solving V1 of
the problem under consideration proved easier than solving V2. Contrasting the
performance of the evolutionary algorithm with scalar and Pareto-based fitness
functions we initially observed that in terms of probability of success scalar
fitness did slightly better than Pareto-based fitness for the OO experiments with
a preordained layout of object state variables. The contrary appeared to be true
for OO experiments involving self-organization of object memory and those using
the functional representation. We note that on average the predicted search size
using the Pareto-based fitness function is less than that computed for the scalar
one. Surprisingly though, the actual computational effort required to induce
a successful individual is greater. This means that while Pareto-based fitness
function helps the EA to converge to the target solution in earlier generations,
and so the predicted search size is smaller, it requires more fitness evaluations
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stemming from the process of brood breeding. This excess number of fitness
evaluations could be attributed to the general inefficiency of NSGA-II when
dealing with more than two objectives.

Finally, we found that under an OO representation space, the EA was able
to induce more parsimonious target individuals than the ones evolved under the
functional representation.

6 Conclusions

Our hypothesis is empirically confirmed by comparing the success of the evolu-
tionary search through the programming spaces defined by the object oriented
and functional programming paradigms respectively. The experiments reported
herein show that the simultaneous induction of a program’s components can be
more efficiently realized using the highly expressive representation offered by an
OO program space. Setting the layout of object state in advance significantly in-
creased performance, nevertheless we saw that the cooperative self-organization
was also possible at a higher computational cost. For multiobjective fitness func-
tions we found no significant difference in the probability of success rather than
in the effort required to yield a successful run, rendering the use of scalar fitness
more efficient. The identification of representation space is considered as one of
the major human contributions to the GP learning mechanism. We strongly en-
courage future applications of GP to avoid the use of functional representation,
wherever possible, and operate on an OO space.
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Abstract. A fundamental issue in evolutionary learning is the defini-
tion of the solution representation language. We present the application
of Object Oriented Genetic Programming to the task of coevolving gen-
eral recursive sorting algorithms along with their primitive representation
alphabet. We report the computational effort required to evolve target
solutions and provide a comparison between crossover and mutation vari-
ation operators, and also undirected random search. We found that the
induction of evolved method signatures (typed parameters and return
type) can be realized through an evolutionary fitness-driven process. We
also found that the evolutionary algorithm outperformed undirected ran-
dom search, and that mutation performed better than crossover in this
problem domain. The main result is that modular sorting algorithms can
be evolved.

1 Introduction

A fundamental issue in evolutionary learning is the identification of the solution
representation space. More specifically, given that the Genetic Programming
(GP) paradigm relies on the evaluation of executable structures, the appropri-
ate design of a primitive language is crucial. This language needs to embody a
sufficient level of expressiveness for the desired phenotype to evolve. In tradi-
tional GP systems the representation system is composed of a static alphabet
containing primitive terminal and non-terminal elements.

Traditional GP ignores much of what we know about how to design and im-
plement well structured software, which to a significant practical degree, means
object-oriented software. Indeed, much of the difficulty of high-level software de-
sign lies in the identification of useful abstractions. Building abstractions with
procedures is arguably the main mechanism that conventional programming uses
to address complex problems, and enables solutions to such problems to be spec-
ified as relatively simple compositions of sub-components. Past research has at-
tempted to integrate modularity into the GP paradigm. Several approaches have
been followed, including Automatically Defined Functions [1], Module Acquisi-
tion [2], Adaptive Representation through Learning [3], Automatically Defined
Macros [4] and Structure Abstraction [5].

This paper presents work on coevolving general modular recursive sorting
algorithms along with their representational language within an Object Oriented
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Genetic Programming System (OOGP). Sorting is a challenging problem for GP,
and in general is not solvable with the usual GP-style constant time expression
trees since the evolved algorithm will have to rearrange the comparable elements
of sequences of arbitrary length into order. A literature review [6,7,8,9,10,11]
on sorting algorithm evolution revealed a limited repertoire of attempts in this
problem domain. While previous research on the evolution of iterative sorting has
showed some promise, the evolution of recursive sorting algorithms has received
very little attention from the evolutionary computation community, limited to
the authors’ previous work [7]. That study concentrated on evolving general
recursive sorting algorithms. The time complexity of the successfully evolved
algorithms was measured experimentally in terms of the number of method calls
made, and for the best evolved individuals this was best approximated as O(n×
log(n)). Additionally, we investigated the effects of language design on evolving
implementations of efficient sorting algorithms as well as the proficiency of five
different fitness functions based on measures of sequence disorder.

2 Programming Space Under Exploration

On an intuitive level, the higher the complexity encapsulated in the primitive
alphabet used to construct candidate solutions, the more expanded the class of
problems that can be addressed. This prompts us to investigate a mechanism for
adapting the primitive representational vocabulary by extending it with explic-
itly evolvable building blocks, tailored to the specific environment. This mech-
anism was first introduced in [1], under the name of “evolutionary selection of
program’s architecture” in an attempt to extend the ADF methodology by over-
coming the need of pre-specifying the number of automatically defined functions
(and their arguments), and the hierarchical references among them. Performance
details of the application of this technique to a wide range of application areas
are given in [1]. Here, we extend previous work of [1], under the notion of “evo-
lution of method signatures” by simply adding type information in the return
value and formal parameters of the evolvable member methods.

The evolutionary algorithm (EA) will be exploring the programming space of
sequences of comparable items. For language primitives these are methods and
objects of a simple, general-purpose list processing package presented in Table 1.
Note that list-based classes and methods have been defined (using standard Java
programming techniques). CList is a list of Comparable items, and GreaterThan
and NotGreaterThan are predicates that implement the MyComp comparator in-
terface. This interface declares a Compare method that compares Comparable
items.

3 Evolvable Recursive Functions

It was shown in [7] that it is possible to reliably evolve a range of general recursive
functions within an OOGP system. The recursion mechanism used is general
and in-line with conventional programming’s implementation of recursive calls.
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Table 1. Primitive elements for evolving sorting algorithms

Method set
Method Argument(s) type Return type
Head CList Comparable

Tail CList CList

Append CList, CList CList

Cons Object, Object CList

Compare Comparable, Comparable Boolean

EqualTo Object, Object Boolean

Conditional
Control flow Argument(s) type Return type
IF-Then-Else Boolean, CList, CList CList

Terminal set
Terminal Value Type
Parameter[0] - CList

Parameter[1] - MyComp

Parameter[2] - Comparable

Const: GreaterThan new GreaterThan() MyComp

Const: NotGreaterThan new NotGreaterThan() MyComp

Const: null null Object

It makes no distinction between built-in methods and the evolved method, thus
making the evolved method’s reference available to the method set serving as the
alphabet for constructing the adaptive tree structures. Each evolved method in
the OOGP system looks much like a Java method, with a declaration (signature:
return type and parameter types) and an implementation, which is an expression
tree evaluated with the arguments bound to the parameters. The expressions are
strongly typed and may also invoke any specified methods in the Java API (as
specified by the configuration of each experiment). In order to avoid the problem
caused by non-terminating recursive structures we limited the recursive calls to
between 25 and 10, 500. The upper bound of 10, 500 was chosen to be slightly
larger than the largest number of recursive calls required by our hand-coded
implementation of the most recursively expensive configuration, as discussed in
[7]. In order to allow for the emergence of environment specific modules the
hypothesis representation has been enhanced. The structure being evolved is
now a set of evolved methods, reminiscent of a Class definition. For the sake of
our discussion here we shall call this structure an Evolvable Class. The evaluation
of such an individual begins from a pre-specified member method.

3.1 Evolutionary Selection of Hypothesis Structure

The syntactic structure of an Evolvable Class is dependent upon its constituent
elements. However, in this work, the primitive set of elements is not static but
includes a variable number of coevolving member methods. These methods in
turn have variable signatures. When the initial random population is created,
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it contains Evolvable Classes with different structures. That is, the number of
evolvable member methods, and the number and type of arguments that they
each possess differ from one individual to the other. The different member method
signatures range over various useful instances. Each Evolvable Class is evaluated
for fitness (starting from a pre-determined member method) and selected to
participate in genetic operations using tournament selection.

3.2 Evolutionary Run Initialization

Each Evolvable Class has a pre-specified evolvable method that serves as the
initial point of fitness evaluation. We call this Main Member Method. The sig-
nature of this member method is set a priori according to the signature of the
target solution. The creation of an initial random Evolvable Class begins with
the uniform random selection (from within a pre-specified range) of the num-
ber of the evolvable member methods (other than the Main Member Method)
that will belong to it. Then a series of independent random choices is made for
the number and type of arguments possessed by each member method. All of
these random choices are made within a wide but limited range that includes
every number and type that might be sensible for the problem at hand. We need
to make clear that once the signatures of the evolvable member methods of an
Evolvable Class are specified, they cannot be altered by applying a variation op-
erator. The signature diversity enforced by the creation of the initial population
plays a significant role in the success of the evolutionary run. Each evolvable
member method (including the main one) allow recursive call to itself. Addi-
tionally, each member method is allowed to invoke hierarchically other methods
of the Evolvable Class. A simple naming scheme has been employed to guard
against circular calling dependencies.

3.3 Variation Operators

OOGP uses three main variation operators, namely, macro-mutation (MM —
substituting a node in the tree with an entire randomly generated subtree with
the same return type and a maximum random depth of 4 - subject to depth
constraints), creation (CR — a special case of mutation where an entirely new
individual is created in the same way as in the initial random generation) and
crossover (XO). The motivation for the creation operator lies in the fact that
method signatures are not modified after the creation of the initial population.
CR guards against the premature loss of certain signatures.

The diversity of signatures of member methods among different Evolvable
Classes has a concomitant impact to the mechanism of crossover. In order to
guarantee that this variation operator will produce syntactically correct off-
spring, Point Typing has been used as in [1]. Our single-offspring crossover begins
with the uniform selection of a member method from a contributing Evolvable
Class. Subsequently, a point from the selected member method is uniformly cho-
sen. The distribution of selection of crossover points is set to 90% probability
of selecting interior nodes (uniformly) and 10% probability of selecting a leaf
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node. The point from the receiving parental Evolvable Class is selected under
the constraints of Point Typing. Crossover is then performed in the standard way.
The resulting Evolvable Class inherits the member methods’ signatures from the
receiving Evolvable Class. During this process, as in [1], member methods coe-
volve with the Main Member Method resulting to the emergence of environment
specific building blocks, advantageous to the composition of the final solution.

4 Experimental Context

Control parameters were specified as follows. Population size was set to 25, 000
individuals and the number of generations was fixed to 100. The maximum depth
of a tree in the initial generation was set to 4 whereas the maximum depth
resulting from the application of a variation operator was set to 10. We used
three different search regimes to search the space of candidate solutions. The first
regime, XO-Regime, used 95% XO, 4% MM and 1% CR. The second regime, MM-
Regime, used 99% MM and 1% CR. Tournament selection (tournament sizes of 3
and 7 for XO-Regime and MM-Regime respectively) along with elitism (1%) was
used as the selection scheme. Previous work [12] on the evolution of recursive and
iterative algorithms has raised scepticism as to the degree that the performance
of an evolutionary algorithm is not merely a result of a random exploration of
the fitness landscape. It has been argued [13] that the space of algorithms is
very discontinuous as to the space of functions, resulting in difficult to search
landscapes, able to coerce the evolutionary learning process to be degenerated
in a needle-in-a-haystack problem. In order to ensure that the ability to sort
within our setup is not essentially a result of random search we are fixing an
additional comparison between the EA and random search. This third regime,
RS-Regime, used random search (RS) (i.e no selection pressure), but arranged in
generations of purely random individuals (with a random maximum tree depth
of 10) in order to plot the fitness on the same graphs as for the other search
regimes.

The range of potentially useful numbers of member methods within a Class
definition cannot be predicted with certainty for an arbitrary problem. The same
holds for the range of their number of arguments. Here, we arbitrarily choose to
use the number of 3 member methods, allowing a maximum of 4 evolvable mem-
ber methods (including the main method) to be defined in an Evolvable Class. We
set a sensible number of maximum arguments to an evolvable member method
by inspecting the average number of arguments defined in methods from the Java
API and also by inspecting a modular hand-coded recursive sorting algorithm
implementation presented in [7]. Thus, we allow a maximum of three arguments
to each method. For argument types, it is reasonable to draw possibly-useful in-
stances from the programming space under consideration. Here we define the set
Sargs of possible argument types to be Sargs = {CList, Comparable, MyComp}.

Five fitness functions based on different measures of sequence disorder were
used as in [7]. These are: (a) Mean Sorted Position Distance (MSPD), (b) Mean
Inversion Distance (MID), (c) Minimum Number of Exchanges (MNE), (d)
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Number of Step Downs (NSD), (e) Number of Elements to Remove (REM).
The training cases consisted of 10 random lists of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
unique elements respectively. Elements were randomly chosen from the range of
{0, . . . , 250}. Test sets measured the ability of an evolved solution to generalize
to unseen data and recognized the success of a run. Test cases for generality con-
sisted of 200 random lists (no element uniqueness requirement) with a maximum
random length of 100. It is noteworthy that successfully evolved individuals were
making no reference to the length of the input sequence and were subsequently
tested correct with lists of up to 1000 elements in order to be evaluated for time
complexity.

(sort(CList l) (EvolvableMethod(CList l, MyComp comp,
(EvolvableMethod Comparator x)

(IF-Then-Else (If-Then-Else
(EqualTo (l.Tail()) null) (comp.Compare(l.Head()) x)
(l.Tail()) (Cons x l)
(sort (l.Tail())) (Cons (l.Head())

) (IF-Then-Else
Object: GreaterThan (EqualTo l null)
(l.Head()) (Cons x l)

) (EvolvableMethod (l.Tail()) comp x)
) )

)))

Fig. 1. Sample simplified evolved sorting algorithm

5 Evaluating the Generality of the Experimental Setup

On a practical level we want to ensure that the experimental setup is general
and not biased toward sorting algorithms. For this purpose we used two sup-
plementary experiments in order to evaluate the generality of the setup. The
target functions were chosen to be those of (a) reversing a list (i.e. (reverse ’(1
2 3) = (3 2 1)) and (b) duplicating each element in a list (i.e. (duplicate ’(1 2
3) = ’(1 1 2 2 3 3))). These recursive functions have the same signature as the
sorting algorithm (accept a CList as an argument and return a CList). The idea
is that by using the same primitive terminal and non-terminal sets but varying
the fitness function and the training data we can lead the system to learn dif-
ferent target functions. Experiments used a population of 1000 individuals and
50 generations. MM (99%) and CR (1%) was the search regime employed. The
fitness function was based on the sum of the positional distances between the
same elements of the induced list and the target list, averaged over the length of
the target list. Training and test set sizes, numbers of member methods, argu-
ments, and argument types were set as above. We found that the probability of
evolving target solutions for the list reversal problem was 94% (standard error:
2.4), resulting in a computational effort curve I(M,i,z) that reaches a minimum
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value of 110, 000 individuals in generation 5. Given that 10 fitness cases were
used during training the number of fitness evaluations required is 1, 100, 000.
Analogously, for the list element duplication problem, we got a probability of
success of 81% (standard error: 3.9), resulting in an effort curve that reaches a
minimum value of 400, 000 (4, 000, 000 fitness evals.) by generation 9.

Table 2. Summary of results for each search regime on each fitness function (bold face
indicates best performance on a given fitness function, standard errors in parentheses
for prob. of success)

Prob. of Success (%) Minimum I(M,i,z) Fitness Evaluations

MSPD XO 6 (2.4) 138,750,000 1,387,500,000
MM 7 (2.5) 78,400,000 784,000,000
RS 0 (-) - -

MID XO 1 (0.1) 378,675,000 3,786,750,000
MM 4 (1.9) 67,800,000 678,000,000
RS 0 (-) - -

MNE XO 1 (0.1) 309,825,000 3,098,250,000
MM 4 (1.9) 98,800,000 988,000,000
RS 0 (-) - -

NSD XO 1 (0.1) 321,300,000 3,213,000,000
MM 1 (0.1) 229,500,000 2,295,000,000
RS 0 (-) - -

REM XO 1 (0.1) 413,100,000 4,131,000,000
MM 1 (0.1) 252,450,000 2,524,500,000
RS 0 (-) - -

6 Results and Discussion

We performed 100 independent runs, using each different search regime, in or-
der to get statistically meaningful results. The computational effort I(M,i,z)
was computed in the standard way, as described in [1]. Figures 2(a), 2(b),
and 2(c) show the best-of-generation individuals of 100 independent runs using
XO-Regime, MM-Regime, and RS-Regime respectively. Figures 2(d) and 2(e)
provide a comparison of the cumulative probabilities of success between the
different fitness functions under XO-Regime and MM-Regime respectively. Fig-
ure 2(f) presents a comparison of the average depth and size (in terms of number
of nodes) of the successfully evolved individuals for the different fitness functions
under XO and MM search regimes. Random search could not find any target
solutions under any of the five fitness functions considered. Thus, in each run,
2, 500, 000 individuals (given 10 fitness cases results in 25, 000, 000 fitness evalu-
ations) were processed without producing a general sorting algorithm.

Table 2, shows that the fitness function based on sequence disorder MSPD,
performed consistently better under both variation operator regimes. This is
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Fig. 2. (a) Best-of-generation individuals using MSPD and XO-Regime; (b) Best-of-
generation individuals using MSPD and MM-Regime; (c) Best-of-generation individu-
als using MSPD and RS-Regime; Comparison of Cum. Prob. of success between differ-
ent fitness functions using (d) XO-Regime and (e) MM-Regime; (f) Comparison of the
average depth and size (in terms of number of nodes) of the successfully evolved sorting
algorithms for the different fitness functions under XO and MM search regimes.
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in-line with the previous results in [7] where MSPD and MID performed sig-
nificantly better under that experimental setup. We also note that for MSPD,
macro-mutation performed slightly better than crossover, however, the difference
in their probability of success is rather insignificant. The important difference
lies in the computational effort required to yield a successful outcome. Looking
at the minimum error histograms in figures 2(a) and 2(b) we observe that the
population under macro-mutation converges more rapidly, and this has a direct
implication on the required fitness evaluations. The results presented in table 2
show that the superiority of macro-mutation in terms of parsimony in fitness
evaluations is a general phenomenon as it remains essentially constant over all
different fitness functions considered, and it becomes particulary significant in
MID and MNE. Figures 2(d) and 2(e) present the performance curves under dif-
ferent variation operators. Looking at those graphs, we note that for XO-Regime
most runs tend to stagnate after approximately generation 40 with the consis-
tently better performance of MSPD stagnating after about generation 75. For
MM-Regime we see a wider distribution of generation values for run stagnation,
with MNE continuing evolution almost approximately up to generation 72. Ob-
serving the depth and size comparison we note that on average macro-mutation
resulted in smaller solutions, mainly due to the additional depth constraint im-
posed during its application (the implanted subtree is not allow to grow past
the depth of 4). Figure 1 presents a simplified sample evolved solution. We eval-
uate its efficiency in terms of method invocations required to sort sequences of
up to 1000 elements. This is best approximated to O(n2), having a close fit to
F (n) = 1.255 × n2. The coefficient (1.255) has been chosen that minimizes the
mean squared error between F (n) and estimated method invocations, for n being
the length of the input sequence. We found that the algorithmic complexity has
increased from O(n × log(n)) in [7] to O(n2). Although we make no attempt to
fully explain the results on a theoretical level, an intuitive understanding on the
differing time efficiency of the evolvable recursive sorting algorithms under the
three different experimental setups (as these are presented in [7] and the present
paper) can be gained by considering two very important issues that were ini-
tially raised in [7]. First, this drop down in time efficiency could well hint at the
inherent difficulty of inducing multi-tree structures. A second, most important
issue, is related to the programming space explored by GP. This space is defined
over all programs that can be constructed with the human-supplied primitive al-
phabet. The careful design of special language constructs, as done in [7], greatly
enhanced the process of evolution and allowed GP to induce sorting algorithms
of O(n × log(n)) complexity. We empirically confirmed that in the absence of
these special language constructs the time complexity of the successfully evolved
algorithms was increased.

7 Conclusions

OOGP was successfully applied to the task of evolving modular recursive sorting
algorithms. The evolved individuals were trained on small samples of data and
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generalized perfectly. Evolution significantly outperformed random search. The
feasibility of the process for automatically inducing the signatures of the repre-
sentational building blocks was empirically justified. For that, a fitness function
based on the positional distance between actual and sorted state performed the
best. Beyond that, we believe that OOGP is an area with immense possibilities,
including the evolution of complete classes, and cooperating sets of classes.
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Abstract. This work analyzes fitness landscapes for the image filter
design problem approached using functional-level Cartesian Genetic Pro-
gramming. Smoothness and ruggedness of fitness landscapes are investi-
gated for five genetic operators. It is shown that the mutation operator
and the single-point crossover operator generate the smoothest land-
scapes and thus they are useful for practical applications in this area. In
contrast to the gate-level evolution, a destructive behavior of a simple
crossover operator has not been confirmed.

1 Introduction

Cartesian Genetic Programming (CGP) was introduced by J. Miller and P.
Thomson in 1999 [6]. In contrast with a standard genetic programming, CGP
represents candidate programs as bounded u × v-node directed graphs (rather
than as trees), utilizes only a mutation operator and operates with a small po-
pulation – to mention main differences.

In the connection with CGP, several issues have been discussed in the recent
years, for example, the role of neutrality (which is implicit to the CGP represen-
tation) [2, 19], the role of bloat [9], modularity in CGP [17] and the usefulness
of the search strategy which is based on a simple mutation [14, 8, 10]. While the
standard GP benefits from crossover operators, it seems that a crossover is not
useful for CGP at all (at least for the problems approached by CGP up to now).
In other words, nobody has proposed a useful operator for CGP so far.

Techniques of fitness landscape analysis were utilized to obtain an information
about CGP fitness landscapes in the digital circuit design task [14, 8, 16]. The
structure of fitness landscapes has been studied in terms of their smoothness,
ruggedness and neutrality on a time series obtained by sampling fitness values on
a random walk. Easy problems are supposed to have smooth landscapes, while
hard problems are supposed to be caused by rugged landscapes. It was recognized
that the crossover is not a useful operator for evolving logic circuits using CGP,
since the corresponding landscapes are extremely rugged. On the other hand, the
mutation landscapes appear to be relatively smooth, and therefore, the mutation
is more feasible for evolutionary circuit design [14].

In order to evolve more complicated digital circuits, CGP has been extended
to operate at the functional level [12, 13]. Instead of simple gates, CGP works
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with high-level components, such as adders, comparators, k-bit logic functions
etc. This approach is especially well suited for the evolution of image operators,
such as smoothing filters and edge detectors. It was reported in several case
studies that the resulting operators are human-competitive [13, 5].

Similarly to the gate-level CGP, only a mutation operator was utilized for the
functional-level CGP in mentioned applications. The problem investigated in this
paper is whether a crossover operator is suitable for image operator evolution at
the functional level using CGP. The motivation for investigating this problem
comes from the following ideas: It seems that the image filter design problem is
easier for CGP than, let us say, 3-bit multiplier design problem. Experimental
results show that while approx. 30k generations are needed to find a good image
filter [5], 5M generations are needed to find a good multiplier [15].1

The reason is that in case of gate-level circuit evolution, all possible input
combinations are generated for a candidate circuit in order to obtain its fitness
value. If only a subset of input combinations were considered, a vast majority
of resulting circuits would not be fully functional and thus useful for real-world
applications. On the other hand, the fitness function used in the image operator
design problem utilizes only a subset of all possible combinations of image pixels.
As human eyes are not able to see all the details in images, sufficiently good
(not necessarily perfect) image operators are acceptable. It also seems that the
mutation operator is more destructive for the multiplier evolution than for the
filter evolution. This higher flexibility in resulting acceptable circuits and less
destructive mutations indicate that corresponding fitness landscapes could be
much smoother for the image filter evolution than for the gate-level evolution of
multipliers.

The goal of this work is to perform the fitness landscape analysis for image
filter design problem which is approached by the functional-level CGP. Various
mutation and crossover operators will be compared in terms of fitness landscape
analysis with the aim of identifying a suitable genetic operator for this particu-
lar problem. Regarding the previous analysis, our assumption is that a crossover
operator can be identified which could help to make the resulting search algo-
rithm more efficient than the original mutation-based approach.

2 Fitness Landscapes

The metaphor of fitness landscape, introduced in biology, expresses the idea
that evolution can be viewed as a population flow on a surface in which the
altitude of a point indicates how well the corresponding organism is adapted to
an environment [18]. In the field of evolutionary computing, fitness landscapes
are investigated in order to learn how difficult a particular problem is for a given
search algorithm [4, 1, 8, 11]. On the basis of results of the fitness landscape
1 Note that although the image filter evolution requires fewer generations, it takes

much more time than the multiplier evolution, because the fitness value calculation
is much more time consuming (e.g. 256 times more consuming for a training image
of 128×128 pixels vs. a 3-bit multiplier with 64 test cases).
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analysis, an original search algorithm is usually modified in order to improve its
performance. Note that for GP, some authors have shown that the landscape
metaphor may be deceptive [3].

A population moving on the fitness landscape creates a path which is called
a walk on a fitness landscape. A walk {ft}n

t=0 can be described as a time series
of n + 1 fitness values which we acquired by using a reproduction operator.

Similarly to [14, 8] and in order to represent the changes made to the fitness
value, we can introduce a string of marks which represent corresponding changes
to the fitness value. Let F = f0f1 . . . fn be a series of n + 1 fitness values we
have sampled during n generations from the initial population 0. This series
can be represented by a string of symbols S = s1s2 . . . sn over the alphabet
si ∈ Σ = {1̄, 0, 1}, which can be formalized by the function

Ψft(i, ε) =

⎧⎨
⎩

1̄, fi − fi−1 < −ε
0, |fi − fi−1| ≤ ε
1, fi − fi−1 > ε

(1)

so that
si = Ψft(i, ε) (2)

for any constant ε [8]. For the fitness landscape L [8], the parameter ε is a
real number from the interval 〈0, lf 〉, where lf is the greatest value on the fitness
landscape. The parameter ε is used as an magnifying glass. The function Ψft(i, 0)
is very sensitive to the changes made to the fitness value during the walk and
thus the string S(0) is set with the maximum accuracy. Contrariwise, the string
S(lf ) consists only of zeros.

By using the S(ε) string, we can introduce two information characteristics
called entropic measures. While the first entropic measure (FEM) is defined as

H(ε) = −
∑
p�=q

P[pq] log6 P[pq], (3)

the second entropic measure (SEM) is defined as

h(ε) = −
∑
p=q

P[pq] log3 P[pq]. (4)

The first measure rates the ruggedness of a landscape; the second measure es-
timates the smoothness of a landscape walk. The parameter P[pq] denotes the
probability of the occurrence of the string pq in the string S(ε). Smaller values
of the measures mean neater walks.

Our goal is to evaluate different genetic operators by means of FEM and SEM.
For the creation of the S(ε) string we use a series of fitness values, which cor-
respond to the fitness values of the best population member in each generation.
As the parameter ε is set to 0, we can obtain the best resolution for the fitness
landscape analysis.
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3 CGP at the Functional Level for Image Filter Evolution

3.1 Cartesian Genetic Programming

In CGP, a candidate graph (circuit) is modeled as an array of u (columns)
× v (rows) of programmable elements (gates). The number of circuit inputs,
ni, and outputs, no, is fixed. Feedback is not allowed. Each gate input can be
connected to the output of a gate placed in the previous L columns or to some
of circuit inputs. The L parameter, in fact, defines the level of connectivity and
thus reduces/extends the search space. For example, if L=1 only neighboring
columns may be connected; if L = u, the full connectivity is enabled. Each gate
is programmed to perform one of functions defined in the set Γ . Figure 1 shows
an example and a corresponding chromosome. Every individual is encoded using
u × v × 3 + no integers.

0

1

2

1
31

2
50

2
70

1

41
0

0
60 81

0

Fig. 1. An example of a 3-input circuit. CGP parameters are as follows: L = 3, u = 3,
v = 2, Γ = {AND (0), OR (1)}. Gates 5 and 7 are not utilized. Chromosome: 1,2,1,
0,0,1, 2,3,0, 3,4,0 1,6,0, 0,6,1, 6, 8. The last two integers indicate the outputs of the
circuit.

CGP operates with the population of λ individuals (typically, λ = 5). The
initial population is randomly generated. Every new population consists of a
parent (the fittest individual from the previous population) and its mutants. In
case that two or more individuals have received the same fitness score in the pre-
vious population, the individual which did not serve as a parent in the previous
population will be selected as a new parent. This strategy is used to ensure the
diversity of population. The mutation operator modifies some randomly selected
genes of an individual.

3.2 Image Filter Evolution

As introduced in [12, 13], every image operator will be considered as a digital
circuit of nine 8-bit inputs and a single 8-bit output, which processes gray-
scaled (8 bits/pixel) images. Fig. 2 shows that every pixel value of the filtered
image is calculated using a corresponding pixel and its eight neighbors in the
processed image. Each of circuit nodes can be programmed to perform one of
functions given in Table 1. Recall that all functions operate with 8-bit operands
and generate 8-bit outputs.

The goal of CGP is to propose a filter which minimizes the difference between
filtered image I2 and a reference image Ir which must exist for a particular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Fitness Landscape Analysis and Image Filter Evolution 315

Image
FilteredImageInput

Fig. 2. Example of the image operator (u = v = 4). The output pixel value is calculated
using the corresponding pixel and its eight neighbors in the input image.

Table 1. Functions used in circuit components. All functions have 8-bit operands and
8-bit outputs.

ID Function Description ID Function Description

0 x ∨ y binary or 4 x +sat y addition with saturation

1 x ∧ y binary and 5 (x + y) >> 1 average

2 x ⊕ y binary xor 6 Max(x, y) maximum

3 x + y addition 7 Min(x, y) minimum

corrupted input image I1. Suppose that the corrupted image and the reference
image are of the size K × L pixels. Then the filtered image has the size of
(K − 2) × (L − 2) pixels. The quality of the evolved image filter is evaluated by
the fitness function

fitness = 255 · (K − 2) · (L − 2) −
K−2∑
i=1

L−2∑
j=1

|I2(i, j) − Ir(i, j)|. (5)

Papers [13, 5] show that this approach leads to very good image filters even
in case that only a single image is utilized in the fitness function. As suitable
image sizes, K = 128 and L = 128 are considered.

4 Proposed Genetic Operators

This section briefly introduces one mutation operator and four crossover opera-
tors we tested for image filter evolution. Please notice that operators that differ
only in the number of offspring inserted into the new generation have quite
significant differences in entropic measures.

Mutation Operator: CGP, as it is defined, uses only a mutation as the genetic
operator. This operator selects the best-scored individual from the previous po-
pulation. Its copies are mutated and inserted into the new population. Elitism
is enabled. Diversity of the population is maintained according to the strategy
described in Section 3.1.
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do
copy the best member into the new population
mutate the just copied member in the new population

until the new population is not full

Single-Point Crossover (1): This is a standard one-point crossover operator
which operates at the level of integer chromosomes. However, only one offspring
of the crossover operation is mutated and included into the new population.

do
choose two different best members of the previous population
make one point crossover over its copies
copy one offspring into the new population and mutate it

until the new population is not full

Single-Point Crossover (2): In comparison with the previous operator, this
one copies the both offspring into the new population and mutates them.

Multi-point Crossover (1): This operator is an example of a multi-place
crossover operator. This operator selects two (different) best members from the
previous population. These two chromosomes are mutually combined in the way
that they switch their functional blocks wiring; however, nodes’ functions remain
unchanged. Only one offspring is moved into the new generation. Then it is
mutated.

do
choose two different best members of the previous population
make a multi-point crossover over its copies
copy one offspring into the new population and mutate it

until new the population is not full

Multi-point Crossover (2): In comparison with the previous operator, this
one copies the both offspring into the new population and mutates them.

5 Experimental Results

In order to estimate the smoothness and ruggedness of fitness landscapes, we
measure the entropic measures h and H for each operator and parameters setting.
Note that elitism is not utilized in our experiments.

The experiments are divided into two groups. While the first group operates
with 7 × 4-node graphs (circuits) and 8-member population, the second group
operates with 8 × 5-node graphs and population sizes 1, 2, 4 and 8 individuals.
The mutation probability is set to 3% and L-parameter is set to 1 in both cases.
A 128 × 128-pixel Lena image containing a random shot noise is utilized as a
training image.

As these experiments are very time consuming, we use only 1000 generations
in the first series of experiments (denoted as the short run in following figures).
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In order to obtain more precise results, 100000 generations are performed in the
second series of experiments (denoted as the long run in following figures). The
first series is repeated 600 times; the second series is repeated 10 times.

Figure 3 shows average values of H(0) (FEM) and h(0) (SEM) for five genetic
operators and for CGP with 7 × 4 nodes, i.e. for the first group of experiments.
The lower average values the neater walk on the fitness landscape. Figures 4 and
5 show average values of H(0) and h(0) for the same genetic operators and CGP
with 8 × 5 nodes. These figures are parameterized by the size of population.

Fig. 3. Average values of H(0) and h(0) measures for five genetic operators and for
CGP with 7 × 4 nodes

Fig. 4. Average values of H(0) and h(0) measures for five genetic operators and for
CGP with 8 × 5 nodes. Results are given for short runs and population sizes 1, 2, 4
and 8 individuals (denoted as p1 – p8).

6 Discussion

For the first group of experiments, where the population contains 8 individ-
uals, the mutation operator generates the smoothest fitness landscapes. Fig. 3
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Fig. 5. Average values of H(0) and h(0) measures for five genetic operators and for
CGP with 8 × 5 nodes. Results are given for long runs and population sizes 1, 2, 4 and
8 individuals (denoted as p1 – p8).

Fig. 6. Left – Lena image corrupted by the shot noise. Middle – resulting image for the
multi-point crossover operator (1). Right – resulting image for the mutation operators.

also shows that Single-point Crossover (1) produces practically identical results.
Other crossover operators generate more rugged fitness landscapes.

For the second group of experiments, we can observe that the shape of bars
remains practically unchanged (for the population size of 8 individuals) when
compared with the shape obtained for the first group. However, the average
values of H(0) and h(0) are slightly higher, which is caused by using more nodes
in CGP. By increasing the number of generations, the average values of the
entropic measures slightly decrease; however, only when the population consists
of 8 individuals. The number of generations does not influence the average values
of H(0) and h(0) for remaining genetic operators significantly.

We can observe that the population size is the parameter which significantly
contributes to the average values of the entropic measures. The mutation ope-
rator produces the smoothest landscapes for the population of 8 individuals.
For smaller populations, crossover operators are becoming more valuable, pro-
bably because they are able to introduce more diversity to the search process.
Recall that standard version of CGP usually operates with the population of 5
individuals. Our results confirm that the use of four or less individuals is not
advantageous. We can also observe different behaviors of crossover operators we
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have investigated. For the search process it is beneficial when the single point
crossover provides only one mutated offspring to the new population; on the other
hand, the both offspring should be used in case of the multi-point crossover.

Examples of resulting Lena images (see Fig. 6) were obtained by the mutation
operator and the multipoint crossover (1) operator, with an 8-member popula-
tion and after 100000 generations. Note that the best filters reported in [13] are
able to remove this type of noise perfectly.

Approx. 22 hours of computation of a 1.3 GHz CPU are needed to finish a
single run of CGP (100000 populations were produced on the topology of 8 × 5-
node graphs, for 128 × 128-pixel images and with 8-member population).

7 Conclusions

A fitness landscape analysis was performed for the image filter design problem
approached using functional-level CGP. Smoothness and ruggedness of fitness
landscapes were measured for five genetic operators. It was shown that the mu-
tation operator and the single-point crossover operator generate the smoothest
landscapes and thus they are useful for practical applications in this area. In
contrast to the gate-level evolution, a destructive behavior of a simple crossover
operator was not confirmed. As the mutation operator is easy to implement, it
remains the most useful operator for image filter evolution using CGP.
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Abstract. In this paper we present a method for creating scheduling
heuristics for parallel proportional machine scheduling environment and
arbitrary performance criteria. Genetic programming is used to synthesize
the priority function which, coupled with an appropriate meta-algorithm
for a given environment, forms the priority scheduling heuristic. We show
that the procedures derived in this way can perform similarly or better
than existing algorithms. Additionally, this approach may be particularly
useful for those combinations of scheduling environment and criteria for
which there are no adequate scheduling algorithms.

1 Introduction

Scheduling is concerned with the allocation of scarce resources to activities with
the objective of optimizing one or more performance measures, which can as-
sume minimization of makespan, job tardiness, number of late jobs etc. Due
to inherent problem complexity and variability (most of the real-world schedul-
ing problems are NP complete), a large number of scheduling systems employ
heuristic scheduling methods. Given different performance criteria and user re-
quirements, the question arises as to which heuristic to use in a particular envi-
ronment? The problem of selecting an appropriate scheduling policy is an active
area of research [1][2] and a considerable effort is needed to choose or develop
the algorithm best suited to the given environment. An answer to this prob-
lem may be provided using machine learning methods to create problem specific
scheduling algorithms.

The combinatorial nature of most scheduling problems allows the use of search
based and enumerative techniques [1], such as genetic algorithms, branch and
bound, simulated annealing, tabu search etc. These methods usually offer good
quality solutions, but at the cost of a large amount of computational time. Search
based techniques are hence not applicable in dynamic or uncertain conditions
where there is a need for frequent schedule modification or reaction to changing
system requirements (i.e. resource failures or job parameter changes). Scheduling
with fast heuristic algorithms is therefore highly effective, and the only feasible
solution, in many instances.

In this paper we describe a methodology for evolving scheduling heuristics
with genetic programming (GP). Genetic programming has rarely been employed

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 321–330, 2007.
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in scheduling, mainly because it is impractical to use to search the space of poten-
tial solutions (i.e. schedules). It is, however, very suitable for searching the space
of algorithms that provide solution to the problem. Previous work in this area of
research includes evolving scheduling policies for the single machine unweighted
tardiness problem [3][4][5], single machine scheduling subject to breakdowns [6],
classic job shop tardiness scheduling [7][8] and airplane scheduling in air traffic
control [9][10]. The scheduling procedure in those papers is however defined only
implicitly for a given scheduling environment. In this paper we structure the
scheduling algorithm in two components: a meta-algorithm which uses priority
values to perform scheduling and a priority function which defines values for dif-
ferent elements of the system. To illustrate this technique we develop scheduling
heuristics for multiple proportional machine environment (described in the next
section) for which a methodology with GP has, to the best of our knowledge, not
been published previously. We also include several combinations of additional re-
quirements, such as dynamic job arrivals, sequence dependent setup times and
different scheduling criteria.

2 Parallel Machine Environment

2.1 Problem Statement

In a parallel machine environment, a number n of jobs Jj compete for processing
on either of m machines. In a static problem each job is available at time zero,
whereas in a dynamic problem each job has a release date rj . The nominal
processing time of the job is pj and its due date is dj . Each machine in the
system has a speed si so that the actual processing time of job j on a machine
i is given with pij = pj/si. Relative importance of a job is denoted with its
weight wj . The most widely used scheduling criteria for this environment include
weighted tardiness, number of tardy jobs, flowtime and makespan. If Cj denotes
the finishing time of job j, then the job tardiness Tj is defined as

Tj = max {Cj − dj , 0} . (1)

Lateness of a job Uj is taken to be 1 if a job is late, i.e. if its tardiness is greater
than zero, and 0 otherwise. Flowtime of a job is the time the job has spent in
the system, i.e. the difference between job release time and completion time:
Fj = Cj − rj , whereas the makespan (Cmax) is the maximum finishing time
of all the jobs in a set. Based on these output values, the weighted scheduling
criteria are defined as follows: weighted tardiness for a set of jobs is defined as

Tw =
∑

j
wjTj , (2)

weighted number of late jobs as

Uw =
∑

j
wjUj , (3)
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and weighted flowtime as
Fw =

∑
j
wjFj . (4)

In the case where a machine may need to process more than one type of job,
there is sometimes the need to adjust the machine for the processing of the next
job. If the time needed for adjusting depends on the previous and the following
job, this is referred to as sequence dependent setup time and must be defined for
every possible combination of two jobs [11] [12]. This condition further increases
the problem complexity for some scheduling criteria.

In the evolution process, a single scheduling criteria can be selected as fitness
function where smaller values indicate greater fitness. The total quality estimate
of an algorithm is expressed as the sum of criteria values over all the test cases.

2.2 Test Cases Formulation

Each scheduling instance is defined with the following parameters: the number of
machines m and their speeds si, the number of jobs n, their nominal processing
times pj , due dates, release dates and weights. The values of processing times
are generated using uniform, normal and quasi-bimodal probability distributions
among the different test cases. The number of jobs varies from 12 to 100 and
number of machines from 3 to 20. With machine speeds we can define the effective
number of machines m̂ as the sum of speeds of all machines:

m̂ =
m∑

i=1

si , (5)

where m represents the actual number of machines.
In some of the test environments we allow for the job sequence dependent

setup times. A distinct setup time, which does not depend of the speed of the
machine, is defined for every possible sequence of two jobs. The values of all of
the above parameters are generated in accordance with methods and examples
given in [4], [11], [12] and [13]. Overall, we defined 120 test cases for learning and
600 evaluation test cases for comparison of the evolved and existing scheduling
heuristics.

2.3 Scheduling Heuristics

The scheduling method investigated in this work is priority scheduling, in which
certain elements of the scheduling system are assigned priority values. The choice
of the next activity being run on a certain machine is based on their respective
priority values. This kind of scheduling algorithm is also called, variously, ’dis-
patching rule’, ’scheduling rule’ or just ’heuristic’. The term scheduling rule, in a
narrow sense, often represents only the priority function which assigns values to
elements of the system (jobs in most cases). For instance, a scheduling process
may be described with the statement ’scheduling is performed using EDD rule’.
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While in most cases the method of assignment of jobs on machines based on pri-
ority values is self-evident, in some environments it is not. This is particularly
true in dynamic conditions where jobs arrive over time or may not be run before
some other job finishes. That is why a meta-algorithm must be defined for each
scheduling environment, dictating the way activities are scheduled based on their
priorities and possible system constraints. The meta-algorithm encapsulates the
priority function, but the same meta-algorithm may be used with different prior-
ity functions and vice versa [14]. In virtually all the literature on the subject the
meta-algorithm part is never explicitly expressed but only presumed implicitly,
which can lead to many misunderstandings between different projects.

The time complexity of priority scheduling algorithms depends on the meta-
algorithm, but it is in most cases negligible compared to search-based techniques,
which allows the use of this method in on-line scheduling [15] and dynamic
conditions. All the heuristics presented in this paper, including the evolved ones,
provide a solution for several hundred instances in less than a second (since the
priority functions are evolved offline).

In this work, we included the following widely used scheduling heuristics for
efficiency comparison: weighted shortest processing time (WSPT), earliest due
date (EDD), longest processing time (LPT), X-dispatch bottleneck dynamics
heuristic [13] (XD), Rachamadugu & Morton heuristic [16] (RM), weighted Mon-
tagne heuristic [13] (MON) and Apparent Tardiness Cost with Setups heuristic
[11] (ATCS). Each heuristic is defined with its priority function which is used
by a meta-algorithm for a given environment (stated in the next section).

3 Scheduling with Genetic Programming

In this work we use the described elements of priority scheduling paradigm,
so that the meta-algorithm part is defined manually for a specific scheduling
environment and the priority function is evolved with genetic programming using
appropriate functional and data structures. This way, using the same meta-
algorithm, different scheduling algorithms best suited for the current criteria can
be devised. The task of genetic programming is to find such a priority function
which would yield the best results considering given meta-algorithm and user
requirements. The solution of genetic programming is represented with a single
tree that embodies the priority function. After the learning process, single best
found priority function is tested on all evaluation test cases and compared with
existing heuristics. Following the described priority scheduling procedure, we
define the following meta-algorithm which is used with all the existing heuristics
as well as with GP evolved priority function for static job availability:

while there are unscheduled jobs do
wait until a machine (k) is ready;
calculate priorities of all available jobs on machine k;
schedule job with best (greatest) priority on machine k;

end while
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Handling Dynamic Job Arrivals. In a dynamic environment the scheduler
can use algorithms designed for a static environment, but two things need to be
defined for those heuristics. The first is the subset of the jobs to be taken into
consideration for scheduling, since some jobs may arrive in some future moment
in time. The second issue is the method of evaluation of jobs which have not yet
arrived, i.e. the question should the priority function for those jobs be different
and in what way. This can be resolved in the following ways:

1. no inserted idleness - we only consider jobs which are immediately available;
2. inserted idleness - waiting for a job is allowed and waiting time is added to

job’s processing time in priority calculation;
3. inserted idleness with arbitrary priority - waiting is allowed but the priority

function must be defined so that it takes waiting time into account.

When using existing heuristics for comparison, we apply the second approach
where necessary, i.e. if the priority function does not take job’s release date
into account. Genetic programming, on the other hand, is coupled with the
third approach, as it has the ability to learn and make use of waiting time
information on itself. Scheduling heuristics that presume all the jobs are available
are modified so that the processing time of a job includes job’s time till arrival
(waiting time), denoted with

wtj = max {rj − time, 0} . (6)

Thus, if an algorithm uses only the processing time of a job, that time is
increased by wtj of the job. All the described heuristics, except the XD heuristic
which is defined for a dynamic environment, are modified in this manner when
solving the dynamic variant of the scheduling problem.

The question remains as to which jobs to include when calculating the priority
function? It can be shown that, for any regular scheduling criteria [13], a job
should not be scheduled on a machine k if the waiting time for that job is longer
than the processing time of the shortest of all currently available unscheduled
jobs on that machine (some scheduling software implementations also include
this condition [17]). In other words, we may only consider jobs j for which

wtj < min
i

{pki} , ∀i : ri ≤ time . (7)

This approach can be illustrated with the following meta-algorithm which is
used in dynamic conditions with an arbitrary priority function:

while there are unscheduled jobs do
wait until a machine (k) and at least one job are ready;
pMIN = processing time of the shortest available job on machine k;
calculate priorities of all jobs j with wtj < pMIN ;
schedule job with best priority;

end while
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Table 1. The genetic programming parameters

Parameter / operator Value / description
population size 10000

max. individual depth 17

selection steady-state, tournament of size 3

stopping criteria maximum number of generations (150) or maximum num-
ber of consecutive generations without best solution im-
provement (30)

crossover 85% probability, standard crossover

mutation standard, swap and shrink mutation, 3% probability each

reproduction 5% probability

initialization ramped half-and-half, max. depth of 5

Handling Sequence Dependent Setups. Almost any heuristic may be ad-
justed to include sequence dependant setup time with a method presented in
[13]. The job priority obtained with the original function is decreased by a cer-
tain value that measures the additional cost brought by setup time for that job.
If the original priority value is denoted with πj , then the priority with setup
times is given with

πlj = πj − slj

(pAV /m̂) · (pj/sk)
, (8)

where l is the last processed job, slj setup time between job l and job j and
pAV the average nominal processing time of all unscheduled jobs. All existing
heuristics are modified in this way when solving for setup times, except the
ATCS heuristic which is specifically designed for this scheduling condition.

Genetic Programming Parameters, Functions and Terminals. The GP
parameters used are presented in Table 1. We did not experiment with many
parameter combinations as the GP efficiency did not vary noticably in respect to
scheduling heuristic efficiency. The most crucial decision is finding the minimal
set of functions and terminals that will satisfy the sufficiency property for a given
environment. We define the same function set for every scheduling environment
and a different terminal set depending on the variant of the problem (for sequence
dependent setups and/or dynamic job arrivals). The complete set, along with
guidelines for terminal usage, is given in Table 2.

3.1 Scheduling with Static Job Availability

In a static environment all jobs (and all machines) are available at time zero.
The task of genetic programming is to evolve such a priority function that would
produce schedules of a good quality for a given performance criteria. We made
two sets of experiments: one for the simple static problem and another with addi-
tional sequence dependent setups, both optimizing minimum weighted tardiness
criteria.
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Table 2. The function and terminal set

Function name Definition
ADD, SUB, MUL binary addition, subtraction and multiplication operators

DIV protected division: DIV (a, b) =

{
1, if |b| < 0.000001

a/b, otherwise

POS POS (a) = max {a, 0}
Terminal name Definition
Terminals used in every problem variant
pt nominal processing time of a job (pj)

dd due date (dj)

w weight (wj)

Nr number of remaining (unscheduled) jobs

SPr sum of processing times of remaining jobs

SD sum of due dates of all jobs

SL positive slack, max {dj − pj − time, 0}
SLs positive slack using machine speed, max {dj − pj/sk − time, 0}
SPD speed of the current machine (sk)

Msm the sum of all machine speeds (effective number of machines, m̂)

Terminals for sequence dependent setups
STP setup time from previous to job j

Sav average setup time from previous (l) to all jobs 1
n−1

n∑
j=1

slj

Terminals for dynamic environment
AR job arrival time (waiting time), max {rj − time, 0}

For the first set (notation Q ||
∑

wjTj in scheduling theory) we conducted
20 runs and achieved mean best result of 37.6 with std. deviation σ = 1.38 in
weighted tardiness as fitness function on evaluation set of 600 unseen test cases.
Apart from total criteria values, a good performance measure for a scheduling
heuristic may be defined as the percentage of test cases in which the heuristic
provided the best achieved result (or the result that is not worse than any other
heuristic). This value can be denoted as the dominance percentage. Both types
of results are shown in the uppermost section of Table 3 and best results in each
category are marked in boldface.

It can be noted that the performance is mainly divided between different
heuristics: GP evolved heuristic achieved best weighted tardiness result, WSPT
rule best weighted flowtime and LPT best makespan. Another set of 20 runs was
conducted in the same environment but with the inclusion of sequence dependent
setups (notation: Q |sij |

∑
wjTj) and additional GP terminals from Table 2.

The best solutions were found with the mean 42.7 and σ = 2.5. The results
for this variant are shown in Table 3. It is clear from the results that in this
environment the GP evolved heuristic obtained very good performance over more
criteria.
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Table 3. Scheduling criteria values and dominance percentages

Heuristic Scheduling criteria Dominance percentage
Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

Static job arrivals, weighted tardiness optimization

GP 34.1 28.1 41.1 90.3 79 % 21 % 7 % 11 %

RM 46.2 27.4 41.7 92.1 14 % 22 % 1 % 6 %

MON 46.2 25.0 36.0 92.9 8 % 27 % 24 % 5 %

WSPT 49.8 25.1 35.1 94.4 1 % 31 % 66 % 3 %

EDD 66.1 36.0 41.3 92.9 4 % 9 % 2 % 6 %

LPT 115.7 44.7 52.6 83.6 0 % 0 % 0 % 73 %
Static job arrivals, sequence dependent setups, weighted tardiness optimization

GP 42.1 38.4 63.2 69.4 87 % 75 % 72 % 20 %

ATCS 61.0 44.7 68.7 70.6 9 % 22 % 22 % 9 %

RM 76.4 50.1 78.2 69.7 1 % 12 % 1 % 10 %

WSPT 71.6 47.6 72.9 66.8 1 % 15 % 4 % 45 %
MON 73.8 49.0 76.7 68.7 2 % 13 % 1 % 15 %

LPT 85.8 52.7 83.2 74.4 1 % 16 % 1 % 2 %

Dynamic job arrivals, weighted tardiness optimization

GP 33.0 23.9 26.7 47.9 78 % 45 % 9 % 11 %

XD 39.3 26.5 28.0 48.5 10 % 18 % 5 % 10 %

MON 39.3 24.6 25.0 48.7 5 % 19 % 29 % 11 %

WSPT 41.1 24.3 24.5 48.7 3 % 27 % 54 % 9 %

EDD 50.2 33.0 27.6 47.8 6 % 6 % 4 % 13 %

LPT 81.8 39.4 34.9 44.9 2 % 4 % 2 % 70 %
Dynamic job arrivals, makespan optimization

GP 78.7 39.1 34.2 41.9 5 % 2 % 7 % 68 %
XD 39.3 26.5 28.0 48.5 39 % 24 % 6 % 6 %

MON 39.3 24.6 25.0 48.7 33 % 35 % 30 % 8 %

WSPT 41.1 24.3 24.5 48.7 16 % 45 % 55 % 6 %

EDD 50.2 33.0 27.6 47.8 9 % 9 % 3 % 8 %

LPT 81.8 39.4 34.9 44.9 2 % 3 % 1 % 40 %

Dynamic job arrivals, sequence dependent setups, weighted tardiness optimization

GP 51.1 47.5 71.7 87.4 92% 72% 86% 19%

ATCS 67.8 49.8 81.2 91.5 4% 45% 9% 8%

XD 78.1 53.6 87.8 85.7 2% 27% 2% 17%

WSPT 75.7 51.7 84.6 84.0 1% 30% 2% 31%

MON 78.3 52.6 87.4 85.7 2% 28% 2% 20%

LPT 81.9 54.2 88.8 85.0 1% 27% 1% 35%
Dynamic job arrivals, sequence dependent setups, makespan optimization

GP 53.9 50.2 65.1 73.9 89% 56% 95% 89%
ATCS 67.8 49.8 81.2 91.5 8% 62% 3% 7%

XD 78.1 53.6 87.8 85.7 1% 27% 0% 9%

WSPT 75.7 51.7 84.6 84.0 1% 32% 1% 11%

MON 78.3 52.6 87.4 85.7 1% 28% 1% 9%

LPT 81.9 54.2 88.8 85.0 1% 27% 1% 7%
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3.2 Scheduling with Dynamic Job Availability

In dynamic environment the jobs have distinct release times, whereas the ma-
chines are still available from the time zero. In this variant the heuristics are cou-
pled with the second meta-algorithm and GP terminal set is expanded according
to Table 2. We conducted four sets of experiments, two sets without and another
two with sequence dependent setups. For each group we experimented with two
different scheduling criteria: weighted tardiness and makespan. All sets consisted
of 20 runs, out of which the best evolved priority function is compared with exist-
ing heuristics on evaluation set of test cases. For the variant without setup times
and with weighted tardiness optimization (notation: Q |rj |

∑
wjTj) we achieved

mean value of 35.0 with σ = 1.4. Additional 20 runs are conducted with makespan
as GP fitness function (notation: Q |rj | Cmax), for which the mean value was 42.7
with σ = 0.8; the results for both sets are shown in Table 3.

It can be seen that GP can easily outperform other heuristics for arbitrary
scheduling criteria. On the other hand, it is not very likely that a single heuristic
will dominate over more than one criteria, which is particularly true for our
GP system with single fitness function. If we are after a heuristic with good
overall performance, then it is maybe advisable to take some ’general use’ existing
heuristic, but if we want to maximize efficiency for a single criteria, then the
evolved heuristics represent a good choice.

The last two sets of experiments included setup times, and for the first set
we conducted 20 runs with weighted tardiness as fitness function (notation:
Q |rj , sij |

∑
wjTj), for which we achieved mean of 52.9 and σ = 1.7. Finally,

20 runs were conducted with makespan as the performance criteria (notation:
Q |rj , sij | Cmax), and the obtained mean value was 73.9 with σ = 0.34. The
results for both sets are shown in Table 3.

It can be perceived that in the case of a relatively rare scheduling environ-
ment, such as dynamic job arrivals and sequence dependent setups, GP evolved
heuristic easily outperforms existing algorithms. This may be attributed to the
non-existence of appropriate algorithms for this kind of problem, and that is
exactly the situation in which this technique offers the most promising use.

4 Conclusion

This paper shows how genetic programming can be used to build scheduling algo-
rithms for multiple machine environment with arbitrary criteria. The scheduling
heuristic is divided in two parts: a meta-algorithm, which is defined manually,
and a priority function, which is evolved by GP. We defined the appropriate
meta-algorithms for static and dynamic variants of the problem, as well as func-
tional and terminal elements which form the GP solution. The results are promis-
ing, as for given problems the evolved solutions exhibit better performance on
unseen scheduling instances than existing scheduling methods. Heuristics ob-
tained with GP have shown to be particularly efficient in cases where no ade-
quate algorithms exist, and we believe this approach to be of great use in those
situations.
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References

1. Jones, A., Rabelo, L.C.: Survey of job shop scheduling techniques. Technical report,
NISTIR, National Institute of Standards and Technology, Gaithersburg (1998)

2. Walker, S.S., Brennan, R.W., Norrie, D.H.: Holonic job shop scheduling using a
multiagent system. IEEE Intelligent Systems (2) (2005) 50

3. Dimopoulos, C., Zalzala, A.: A genetic programming heuristic for the one-machine
total tardiness problem. In: Proceedings of the Congress on Evolutionary Compu-
tation. Volume 3. (1999)

4. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming
for a classic one-machine scheduling problem. Advances in Engineering Software
32(6) (2001) 489

5. Adams, T.P.: Creation of simple, deadline, and priority scheduling algorithms
using genetic programming. In: Genetic Algorithms and Genetic Programming at
Stanford 2002. (2002)

6. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject
to machine breakdowns with genetic programming. In: Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, IEEE Press (2003) 1050

7. Atlan, B.L., Polack, J.: Learning distributed reactive strategies by genetic pro-
gramming for the general job shop problem. In: Proceedings 7th annual Florida
Artificial Intelligence Research Symposium, IEEE, IEEE Press (1994)

8. Miyashita, K.: Job-shop scheduling with gp. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann (2000)
505

9. Cheng, V., Crawford, L., Menon, P.: Air traffic control using genetic search tech-
niques. In: IEEE International Conference on Control Applications, Hawai’i, IEEE
(1999)

10. Hansen, J.V.: Genetic search methods in air traffic control. Computers and Oper-
ations Research 31(3) (2004) 445

11. Lee, Y.H., Bhaskaran, K., Pinedo, M.: A heuristic to minimize the total weighted
tardiness with sequence-dependent setups. IIE Transactions 29 (1997) 45–52

12. Lee, S.M., Asllani, A.A.: Job scheduling with dual criteria and sequence-dependent
setups: mathematical versus genetic programming. Omega 32(2) (2004) 145–153

13. Morton, T.E., Pentico, D.W.: Heuristic Scheduling Systems. John Wiley & Sons,
Inc. (1993)

14. Jakobovic, D., Budin, L.: Dynamic scheduling with genetic programming. Lecture
Notes in Computer Science 3905 (2005) 73

15. Pinedo, M.: Offline deterministic scheduling, stochastic scheduling, and online
deterministic scheduling: A comparative overview. In Leung, J.Y.T., ed.: Handbook
of Scheduling. Chapman & Hall/CRC (2004)

16. Mohan, R., Rachamadugu, V., Morton, T.E.: Myopic heuristics for the weighted
tardiness problem on identical parallel machines. Technical report, The Robotics
Institute, Carnegie-Mellon University (1983)

17. Feldman, A., Pinedo, M., Chao, X., Leung, J.: Lekin, flexible job shop scheduling
system. http://www.stern.nyu.edu/om/software/lekin/ (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Group-Foraging with Particle Swarms

and Genetic Programming

Cecilia Di Chio1 and Paolo Di Chio2

1 Department of Computer Science,
University of Essex, UK
cdichi@essex.ac.uk

2 Dipartimento di Sistemi e Istituzioni per l’Economia,
University of L’Aquila, Italy

pdc@ec.univaq.it

Abstract. This paper has been inspired by two quite different works in
the field of Particle Swarm theory. Its main aims are to obtain particle
swarm equations via genetic programming which perform better than
hand-designed ones on the group-foraging problem, and to provide in-
sight into behavioural ecology. With this work, we want to start a new
research direction: the use of genetic programming together with particle
swarm algorithms in the simulation of problems in behavioural ecology.

1 Introduction

This paper merges and extends ideas from two separate lines of research in
Particle Swarm (PS) theory [4].

Firstly, in [7], Poli et al. investigate novel extensions to the classic Parti-
cle Swarm Optimisation (PSO) algorithms, using Genetic Programming (GP)
to automatically evolve the equations governing the particles in a PS system.
This therefore contributes to an important new research trend: using search algo-
rithms to discover new search algorithms. This process has two equally important
facets:

– it provides an automated method to evolve better optimisation algorithms;
– it encourages the discovery of emergent, de-centralised solutions (where the

overall behaviour is not easily predicted from the constituent parts) by min-
imising the impact of design constraints stemming (consciously or not) from
human design preferences.

The second point means that well-performing solutions can be analysed after
the event and, hopefully, generalised to wider problem spaces.

Secondly, in [2], Di Chio et al. provide an innovative example of how the PS
paradigm can be applied as a simulation tool for a typical problem in behavioural
ecology: group-foraging. They argue that the standard PS algorithm contains
elements which map closely to the group-foraging problem (namely social at-
traction and communication between individuals), and it is therefore surprising

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 331–340, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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that it has remained largely a technique used in classical optimisation problems.
Some minor changes to the basic PS algorithm allow it to be used as a simplified
model of abstract animals, with the problem function representing a foraging
environment (with food as optima). Even with such a simple model, qualita-
tively realistic behaviour was observed, with the emergence of group-foraging
behaviour amongst the particles by means of the PS algorithm.

This paper borrows ideas from [7] to extend the approach in [2], by evolv-
ing the adapted PS equations via GP. The constraints applied to the GP (in
terms of the terminal set, etc.) can be used to reflect restrictions on the be-
havioural “features” of the animals (and thus reflect more real world cases as
required). Running the simulations on simplified foraging landscapes should also
help alleviate one of the difficulties with [7]: for the classic mathematical prob-
lem functions used, the GP evolved equations which were often very complex,
making it difficult to interpret them in terms of the physics of the particles.
The main aim is to obtain PS equations via GP which perform better than the
standard and hand-designed ones on the group-foraging problem, and which, on
analysis, provide insight into behavioural ecology contexts.

The rest of the paper is structured as follows. In section 2 we briefly describe
the biological model introduced in [2]. In section 3 we introduce the GP and how
this fit in the model. Section 4 presents the results, both for the GP (sec. 4.1)
and for the simulation (sec. 4.2), together with their analysis. We conclude in
section 5.

2 Food Particle Swarm (FPS) Model

The simulation of animal grouping behaviours is a fairly complex task. In [2],
the authors focused on an abstraction of the group-foraging problem, with the
following simplified scenario:

– there are neither predators nor other sources of risk or danger;
– the population size stays constant;
– animals can neither see nor smell the food;
– animals can communicate with each other regardless of the dimension of the

world;
– the food neither deteriorates nor regenerates.

Animals, represented by particles, move in a flat landscape scattered with
food patches. When one animal lands on a patch, it stops on it to eat. When the
food finishes, the animal starts its search for a new patch of food. The amount of
food eaten by each animal/particle is its fitness (eq. 1), which can be interpreted
as the energy gained when feeding. When a particle stops feeding and starts
looking for new food, its fitness decreases.

fiti(t) =
{

fiti(t − 1) + EnG if particle is on patch and food is available

fiti(t − 1) ∗ EnC otherwise
(1)
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where EnG is the energy gained by eating and is equal to the amount of food
eaten, and EnC is the energy consumed by moving (in this simple model, is
equal to a random negative number).

Since the particles are driven by PS equations (eq. 2-4), they attract each other
according to their fitness. Therefore, when the first particle reaches a patch, its
fitness will increase and this will attract other particles on the same patch.

fi = φ1R1(xsi − xi) + φ2R2(xpi − xi) (2)

with the first component (social interaction) causing the particles to be attracted
with random magnitude to the best position found by the swarm, and the second
(individual learning) causing the particles to be attracted with random magni-
tude to the best position found by themselves.

vi(t) =

⎧⎨
⎩

0 if food is on patch

Random if food is just finished

k((ωvi(t − 1)) + Δtfi) otherwise

(3)

which is different from the standard PS velocity update equation since it allows
the particles to stop on the food patches; when a particle leaves the patch, its
velocity is re-initialised at random.

xi(t) = xi(t − 1) + Δtvi(t) (4)

where Δt is a factor used to decrease the step the particles take when they
move, and has been introduced to promote a smoother movement and more
refined search.

3 GP Approach

GP is used to evolve programs in the form of trees. Following the idea first
presented in [7], we want to use the function f of equation 2 as the program to
be evolved. Our aim is to evolve PS force updating equations that outperform
the standard one on the group-foraging problem as described in section 2.

Since we want to evolve force functions which will allow the particles to eat
as much food as possible, we have used two different performance measures for
the GP:

total fitness - bearing in mind that the fitness of a particle is the amount
of food it eats, for the first performance measure we want to maximise the
average of the total swarm fitness, which is given by the sum of each particle’s
fitness

fits =
N∑

i=1

fiti

residual food - for the second performance measure, we have instead used the
criteria of minimising the total amount of food left on the patches at the end
of the simulation.
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In order to evolve PS equations which will be able to perform well on different
scenarios, we have run the GP on three different food landscape configurations:

1. a single large source, covering most of the landscape, with a large amount
of food;

2. three medium sources of different sizes and with different food amounts,
covering a restricted portion of the landscape;

3. ten small sources, sparsely scattered on the landscape, all with the same
amount of food.

We have used PSs with 10 particles, and run them for 50 iterations on each
landscape configuration. Since the position of the patches, as well as the initial
position of the particles, can influence the behaviour of the simulation, we have
trained the GP on each one of these three scenarios for 8 times with different
random number seeds. Table 1 summarises the settings for the GP.

Table 1. Koza style table for the evolution of PS force equations

Objective Evolve fi(xi, xsi , xpi) over 8 instances of 3 different land-
scape configurations

Terminal set Particle position xi, particle best xp, swarm best xs, 0.5,
1.5

Function set ADD, SUB, MUL, INV

Fitness cases 1. Total swarm fitness
2. Total amount of food left at the end of simulation

Raw fitness Koza fitness

Population size 1024

Initialisation method Half builder

Simulation time 8 GP generations, each for 50 iterations

Crossover probability 0.9

Mutation probability 0.0

Initial program length Half-half ramp

Selection scheme Tournament selection

Termination criteria Number of generations (simulation time)

4 Results

4.1 GP Results

From the GP phase, we have obtained the following 6 evolved force functions (3
landscape configurations × 2 fitness cases).

1. FPSGP1 One food patch, total fitness

fi = xi + xpi

For this scenario, the behaviour of the particles is completely selfish. The
force acting on the particles makes them move in a direction between their
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current position and their own previous best. We can therefore infer that,
when there is only one single patch with a large amount of food (we can
assume that there is enough food for each particle), and the criteria to select
the equation is based on the population fitness, the particles prefer to avoid
having a social behaviour.

2. FPSGP2 Three food patches, total fitness

fi = xsi + 2xpi

In this scenario, the force acting on the particles is directed somewhere in
between the swarm best found position and their personal best, with a fairly
strong bias towards the latter point. The current position does not have any
influence on the behaviour of the particles.

3. FPSGP3 Ten food patches, total fitness

fi = 0.5 (xi + 0.5xsi + 0.5xpi)

In this case, the force acting on the particle directs them to a point which is
amongst their current position, their previous best position and the swarm
best position, with a mild bias towards their current location. It seems that,
again, the particles tend to give more importance to their own current posi-
tion than to the others (see case 1), even if in this configuration we cannot
really talk of “selfishness”, as a partial contribution from the swarm is still
present.

4. FPSGP4 One food patch, residual food

fi = −0.75 (0.5xsi + xpi)

This scenario is again with only one patch of food, but the fitness criteria
is based on the overall amount of food left in the landscape. Even if the
swarm component is present, still the influence of the global term is relatively
small compared to the influence of the individual one. The particles in this
configuration move in a direction which lies between the swarm best and the
particle best, with a fairly strong bias towards the particle best.

5. FPSGP5 Three food patches, residual food

fi = − (0.67xi + 2.33xsi + 1.75xpi)

In this situation, again the influence of the current position on the motion
of the particles is limited. With the present configuration, the particles are
directed towards a position amongst their current position, their previous
best and the swarm best, with a fairly strong bias towards the swarm best.

6. FPSGP6 Ten food patches, residual food, 100 PS iterations1

fi = 0.16xi + xsi − 2.16xpi

1 For this case we have used slightly different GP parameters since the GP settings
used for the other experiments gave a very poorly performing force equation.
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Despite the fact that this equation contains all three ingredients of the force,
the influence of the current particle position is very small. The force acting
on the particles tends to move them in a direction parallel to that connecting
the particle best position to the swarm best position.

4.2 Simulation Results

To test the evolved PS equations, and compare their performances with those
of the FPS algorithm (see eq. 2, sec. 2), we have run a set of simulations, with
settings as summarised in table 2.

Table 2. Experiment settings

Runs 20
Iterations 200
Population size 10 particles
Number of patches 1, 3, 10
Patch size 3, from 2 to 3, 1
Food amount 10, from 9 to 10, 5

The performance criteria for the simulation experiments mirrors those used
for the selection of forces in the GP phase (see sec. 3). In particular:

– SumFit is the total fitness of the swarm, averaged over the 20 runs, and is
given by the sum of the fitness of each particle

∑
part fitness;

– MaxSum = maxiter (SumFit) is the maximum of the total fitness of the
swarm over the 200 iterations;

– ResFood# is the amount of food left on each patch, with # number of the
patch;

– TotFood is the total amount of residual food in the whole landscape, aver-
aged over the 20 runs, and is given by the sum of the residual food of each
patch

∑
patch ResFood;

In tables 3 and 4, we only report the results for the last iteration.
From a first glance at the results, it appears that the FPS performing best is

FPSGP4, in which the particles are subject to the following evolved force:

fi = −0.75 (0.5xsi + xpi) (5)

Particles driven by equation 5 are moved towards a position between the
swarm best and the particle best, with a stronger bias towards the particle best.
A possible explanation for this behaviour lies in the landscape configuration.
Equation 5 has been evolved by the GP on a landscape with a single patch with
a large amount of food; therefore, if there is enough food, particles do not need
to rely on the information of other members of the swarm to find resources. As
a counter-example, we can consider FPSGP5 (see case 5). This equation has
been evolved on a landscape with few patches, each with a medium amount of
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Table 3. Total swarm fitness - comparison between hand-designed FPS and GP evolved
FPS equations

patches 1 3 10

SumFit MaxSum sumFit MaxSum sumFit MaxSum

FPS 7.3839 87.4987 29.5808 210.2540 160.8087 181.2672
FPSGP1 30.5694 74.9876 119.9199 177.3456 92.4320 100.9783
FPSGP2 30.5851 79.0632 98.0167 176.7462 93.7175 100.9721
FPSGP3 25.9488 78.9408 101.6207 194.9740 117.8726 127.5567
FPSGP4 21.9781 91.5746 105.5064 218.2384 174.0535 185.3125
FPSGP5 30.7636 87.3739 88.4477 201.4408 171.9206 178.0254
FPSGP6 4.31189 89.0372 82.0799 215.1310 160.0384 170.0278

Table 4. Total residual food - comparison between hand-designed FPS and GP evolved
FPS equations

patches 1 3 10

TotFood ResFood0 TotFood ResFood0 ResFood1 ResFood2 TotFood

FSP 1.6097 1.6097 4.0149 1.1415 1.9504 0.9230 30.2235
FPSGP1 2.9259 2.9259 9.5275 5.4635 2.4923 1.5716 40.2170
FPSGP2 2.4740 2.4740 9.4161 4.4574 3.4225 1.5362 40.1099
FPSGP3 2.4817 2.4817 7.9468 4.1271 2.2835 1.5362 37.5670
FPSGP4 1.0816 1.0816 4.6061 3.0908 0.8366 0.6787 30.8711
FPSGP5 1.5676 1.5676 6.4731 4.6668 0.7062 1.1000 32.2864
FPSGP6 1.4631 1.4631 3.3649 1.3330 1.4986 0.5333 32.7562

food; it seems that, when the food is not enough, or is more difficult to find, the
particles prefer to trust the experience of others. There are, in nature, examples
of this kind of behaviour [5].

Being evolved on a landscape with only one patch (and residual food perfor-
mance criteria), it is quite surprising that FPSGP4 performs well on landscape
configurations with more patches. One possible reason is that the absence of the
current position term means that, as the search progresses, the particles will
tend to move faster and faster, all in the same direction (eventually, the particle
best and the swarm best will become the same, and the force will be a con-
stant value), until they find a patch. It seems that, in a landscape scattered with
many food patches, a systematic search where all the particles move in parallel
is better than one where their movements are less coordinated. Figure 1 shows
the trajectories of the particles for both standard and evolved equations. For
FPSGP4 we present the particles’ movement over the three different landscape
configurations.

Another goal of this work is to observe the emergence of group-foraging be-
haviour. This means that the particles not only have to eat as much food as they
can find, but they also have to do it in groups, i.e., they have to form clusters
while feeding. We define a cluster of particles as follows.
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Fig. 1. Particles’ trajectories for the different solutions

Definition 1. Two particles p1 and p2 are in the same cluster if there exists an
ordered set of particles {p(0,1), p(0,2), · · · , p(0,n)}, with p(0,1) = p1 and p(0,n) = p2,
such that d

(
p(0,k), p(0,k+1)

)
≤ r, where r is the cluster threshold.

Table 5 compares the clustering efficiency of particles acting under the FPS force
and those driven by the GP evolved forces (results are for the last iteration only).
In particular:

– #Clust is the number of cluster, averaged over the 20 runs, for each choice
of the threshold;

– #Part is the number of particles in each cluster, averaged over the 20 runs.

As is clear from the results, all the evolved FPSs have a very low clustering.
We believe that the landscape configuration plays a role in the efficiency of the
particles forming groups. When there is only one patch covering most of the
landscape, and the amount of food available is large enough, then the particles
will not gather together.
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Table 5. Clustering efficiency - comparison between hand-designed FPS and GP
evolved FPS equations

patches 1

threshold 0.5 1.0 1.5

#Clust #Part #Clust #Part #Clust #Part

FPS 7.15 1.5143 4.8 2.6089 3.5 3.65
FPSGP1 10.0 1.0 10.0 1.0 10.0 1.0
FPSGP2 10.0 1.0 10.0 1.0 10.0 1.0
FPSGP3 10.0 1.0 10.0 1.0 10.0 1.0
FPSGP4 10.0 1.0 10.0 1.0 10.0 1.0
FPSGP5 9.9 1.0111 9.6 1.0472 9.35 1.0778
FPSGP6 10.0 1.0 9.95 1.0055 9.95 1.0055

patches 3

threshold 0.5 1.0 1.5

#Clust #Part #Clust #Part #Clust #Part

FPS 7.05 1.5772 4.3 3.2381 2.85 4.45
FPSGP1 10.0 1.0 9.95 1.0055 9.85 1.0167
FPSGP2 9.95 1.0055 9.9 1.0111 9.9 1.0111
FPSGP3 10.0 1.0 9.9 1.0111 9.9 1.0111
FPSGP4 9.95 1.0055 9.8 1.0222 9.6 1.0444
FPSGP5 9.75 1.0292 9.3 1.0847 8.95 1.1270
FPSGP6 9.95 1.0055 9.85 1.0167 9.85 1.0167

patches 10

threshold 0.5 1.0 1.5

#Clust #Part #Clust #Part #Clust #Part

FPS 7.9 1.3165 6.2 1.9141 4.1 3.0798
FPSGP1 9.95 1.0055 9.85 1.0167 9.75 1.0278
FPSGP2 10.0 1.0 10.0 1.0 9.85 1.0167
FPSGP3 9.95 1.0055 9.85 1.0167 9.75 1.0292
FPSGP4 9.45 1.0686 8.9 1.1359 8.7 1.16567
FPSGP5 9.6 1.04583 9.1 1.1103 8.9 1.1387
FPSGP6 9.75 1.0292 9.35 1.075 9.1 1.1103

This mirrors what happens in nature, where if enough food is available, ani-
mals will maximise their foraging gains by feeding solitarily [3]. Group-foraging
efficiency is a trade-off between competing priorities [6]. Theoretical models pre-
dict that, while joining a group will not increase an individual ability to find
food, the time spent to obtain food is reduced. The trade-off for the reduction in
searching time is that a smaller share of food will be available, the only excep-
tion being when the resource is so abundant that consumption by one individual
does not decrease the availability for others [1].

Another explanation for this poor performance is the topological structure
of the particles in the swarm. In this model, we have used a global topology
neighbourhood. This means that each particle is able to exchange information
with every other particle, therefore reducing the need for particles to group.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



340 C. Di Chio and P. Di Chio

5 Conclusion

With this work, we wanted to start a new research direction: the use of genetic
programming together with the particle swarm algorithm in the simulation of
behavioural ecology problems.

We have shown how, with the aid of GP, it is possible to evolve force equation
for the PS which are able to solve group-foraging problems considerably better
than the PS algorithm specifically designed for that problem.

There are many future extensions to this work. First of all, we understand that
the model presented is a very simple abstraction of a real animal system. There-
fore, the first improvement will consist in making the model more biologically
plausible. Not only can the FPS model be improved, but the GP can also be made
more accurate, incorporating information about the landscape and the animals in
the terminals set, other than options and selections in the functions set.
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Del. Coyoacán, México, D.F. 04510, Mexico

katya@uxdea4.iimas.unam.mx

Abstract. This paper describes Multiple Interactive Outputs in a Single
Tree (MIOST), a new form of Genetic Programming (GP). Our approach
is based on two ideas. Firstly, we have taken inspiration from graph-GP
representations. With this idea we decided to explore the possibility of
representing programs as graphs with oriented links. Secondly, our in-
dividuals could have more than one output. This idea was inspired on
the divide and conquer principle, a program is decomposed in subpro-
grams, and so, we are expecting to make the original problem easier by
breaking down a problem into two or more sub-problems. To verify the
effectiveness of our approach, we have used several evolvable hardware
problems of different complexity taken from the literature. Our results
indicate that our approach has a better overall performance in terms of
consistency to reach feasible solutions.

Kerwords: Multiple Interactive Outputs in a Single Tree, Genetic Pro-
gramming, Graph-GP representations.

1 Introduction

Genetic Programming (GP) [9] is a heuristic search technique, which has its
inspiration from the theories of genetic inheritance and natural selection. This
technique has been proved to be a suitable tool for solving problems in many ap-
plications. Usually, in GP programs are expressed as syntax trees. However, this
form of GP has some limitations. So, some researchers have proposed different
type of representations of GP.

For example, Koza [10] proposed Automatically Defined Functions (ADFs).
ADF is a function that is dynamically evolved during a run of a GP. The problem
with this approach is discovering good ADFs. So, in order to discover if an ADF
is good, GP has to spend computation time to discover with which parameters
the ADF can be used properly.

Angeline and Pollack [3] proposed a method called Evolutionary Module Ac-
quisition (EMA). The idea of this method is to build and evolve modules (which
are the reuse of code) during the evolution process. Because there is not a general

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 341–350, 2007.
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method of identifying what portions of the individual should be compressed, the
composition of each module is selected randomly. The same authors extended
this work in [2]. The authors refer to the method as Genetic Library Builder
(GLiB).

Montana [13] proposed Strongly Typed Genetic Programming (STGP). He
started from the definition of closure (which means that all elements take argu-
ments of a single data type and return values of the same data type). The main
characteristic of STGP is to build an individual as a parse tree and the data
type of the nodes not necessarily should be the same type.

Teller and Veloso [15] were one of the first researchers to use a graph-based
GP. Their method, Parallel Algorithm Discovery and Orchestration (PADO), is
a combination of GP and linear discriminator which was used to obtain a parallel
classification programs for signals and images.

Poli [14] proposed an approach called Parallel Distributed Genetic Program-
ming (PDGP). Poli stated that PDGP can be considered as a generalisation
of GP. However, PDGP can use more complex representations and evolve finite
state automata, neural networks and more. PDGP is based on a graph-like repre-
sentation for parallel programs which is manipulated by crossover and mutation
operators and guarantee the syntactic correctness of the offsprings.

Angeline [1] proposed a representation called Multiple Interacting Programs
(MIPs). This representation is a generalization of a recurrent neural network
that can model any type of dynamic system. Each program in a given set is
unique and stored in the form of a parse tree. Using this technique an individual
is virtually equivalent to a neural network where the computation performed at
each unit is replaced with an independent evolved equation.

Miller [12] proposed Cartesian Genetic Programming (CGP). This technique
was called Cartesian in the sense that the method considers a grid of nodes
that are addressed in a Cartesian coordinate system. In CGP the genotype is
represented as a list of integers that are mapped to directed graphs rather than
trees.

Kantschik and Banzhaf [6] proposed a different representation of GP named
Linear-Tree. The main idea was to give flexibility to a program to choose different
execution paths for different inputs. In this method each program is represented
as a tree. Later on, the same authors proposed a representation called Linear-
Graph [7]. They argued that graphs come one step nearer to the control flow of
a hand written program.

As it can be seen, different ideas have raised in GP to make it more efficient.
The aims of this study are: (a) to study how GP behaves with and without the
presence of graph-like structures, (b) to incorporate multiple outputs in individ-
ual’s structures, and, (c) to combine both properties (graph-like structures and
multiple outputs in individual’s structures) and to see what the effects are.

The paper is organised as follows. In the next section we describe our ap-
proach. Section 3 provides details on the experimental setup used and presents
results. In section 4 we analyse the results found by our approach and in Section
5 we draw some conclusions.
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Fig. 1. (a) GP-based representation of graphs without multiple outputs, (b) multiple
outputs in a single tree (MOST) without links ,and, (c) multiple interactive outputs in
a single tree (MIOST)

2 Approach

Our approach, which we have denominated Multiple Interactive Outputs in a
Single Tree (MIOST), is based on two ideas. Firstly, we have taken inspiration
from graph-GP representations. With this idea we decided to explore the pos-
sibility of representing programs as graphs with oriented links, see Figure 1(a).
The idea was to replace a function node by other element that represents links
which determine what’s need to be evaluated. We hope in this way to find parts
of an individual that can be more useful in other part(s) of the same individual.
Secondly, in our approach a program is represented as a tree as suggested by
Koza with the main difference that a program could has more than one output,
see Figure 1(b). Let us call this Multiple Outputs in a Single Tree (MOST). This
idea was inspired on the Divide and Conquer principle, a program is decomposed
in subprograms, and so, we are expecting to make the original problem easier by
breaking down a problem into two or more sub-problems. In Figure 1(c), we can
see a typical individual created with MIOST, which is the result of combining
both ideas (graph-gp representation and MOST).

2.1 Output Set

Apart of considering function and terminal sets, as usual, we also consider an-
other set which contain outputs. So, when we create an individual, we choose
randomly from the set of outputs any of these and we eliminate it from this set.
Once we have created an individual, we check if it contains all the outputs, if
not we repeat the process until we have created a valid individual. It is worth
mentioning that when we create an individual we do not specify which output
will be in the root, so our approach has the power to place the most complex
output in the root (results confirm this statement).
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2.2 P Symbol

The method proposed in this paper does not only allow having more than one
output in a single tree but it also allows evolving graph-like structures. This is
the result of using the p function symbol, which works as follows:

– Once the individuals in the populations have been generated with its corre-
sponding outputs, we use a probability to replace a function with a p symbol
which is a function of arity 2 (This is not a restriction because p could be of
any arity).

– If an individual contains this p symbol, this will point to code somewhere
in the program, so when p is executed, the subtree rooted at that node is
ignored.

– If p symbol points to a function symbol, the p symbol effectively represents
the sub-tree rooted at that function.

– If p symbol points to a terminal symbol, the p symbol simply represents that
node.

2.3 Genetic Operators

The crossover operator used in MIOST works as usual but an important dif-
ference is that, if the sub-tree swapped contained a p symbol, the p symbol’s
pointer is not changed1. Another difference is that once we have created our ini-
tial population, we classify each node of each individual in order to know which
nodes can be used to apply crossover. With this we assure that an individual will
contain the number of outputs that must contain. Of course, this classification
is only applied when the individual has more than one output. The mutation
operator is applied as usual on a per node basis. The only restriction is that a p
symbol is not allowed to be mutated.

2.4 Fitness Function

To test the effectiveness of our approach, we have used several evolvable hardware
problems of different complexity taken from the literature. The fitness function
works in two stages: at the beginning of the search, the fitness of a genotype
is the number of correct output bits (raw fitness). Once the fitness has reached
the maximum number of correct outputs bits, we try to optimize the circuits by
giving a higher fitness to an individual with shorter encodings.

2.5 Features

The approach detailed above has interesting features. For instance, the presence
of p symbols in our representation, assure us that there are inactive code in the
1 There is an exception to this rule: we prevent a p symbol from referring to a sub-tree

that contains the same p since this would lead to an infinite loop. We do this by
reassigning the position to which the p in question is pointing to.
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Table 1. Truth table of
the second example

A B C D O1 O2

0 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 1

1 1 1 1 0 1

Table 2. Truth table of the third example

A B C D E O1 O2 O3 A B C D E O1 O2 O3

0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1

0 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1

0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0

0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0

0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0

0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0

0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0

0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0

0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1

0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1

0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

individual. This has two advantages: when a mutation takes place in inactive
code there is no need to evaluate an individual since there is a change at genotype
level but not at phenotype level, and, it allows to study neutrality [8] which is
an area of controversial debate on Evolutionary Computation (EC) systems.

3 Experiments

As stated earlier, our approach is based on two ideas. So, for the first problem
we will test the first idea. That is, we have used only the graph-like presenta-
tion (Figure 1(a)). We used only mutation operator and we have defined differ-
ent mutation and p rates. For this example, we used the following set of gates
{AND,OR,NOT}.

As a consequence of the results obtained from the first example, we have
decided to test MIOST on three different hardware problems with different de-
grees of complexity. Our results were compared with those obtained by MGA [4],
EAPSO [16], EBPSO [11], BPSO [11], EGP [5] and MOST. For these examples,
we used the following set of gates {AND, OR, XOR, NOT}. After a series of
preliminary experiments we have decided to use crossover rate of 0.7%, mutation
rate of 0.02%, and p rate of 0.08% for all examples except for example 1 where
we have defined different values. To make a fair comparison with the previous
methods, we used the same number of generations and population size.

Runs were stopped when the maximum number of generations was reached.
For all examples, we performed 20 independent runs.
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Table 3. Truth table of the fourth example

A B C D O1 O2 O3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

3.1 Example 1

For our first example, we have used the well-known 6-bit Multiplexer Boolean
function to verify the idea of graph-like representation (without multiple outputs).

For our first example we have used Population Size (PS) = 200, and Maximum
Number of Generations (MNG) = 400, p = {0.01, 0.02, 0.03} and mut = {0.02,
0.03, 0.04}.

In Table 4 we can see the results found by the gp-graph representation. In
this table we present the percentage of feasible circuits (success rate) and the
average number of generations that were necessary to reach the feasible zone2.

As can be seen, regardless the value of p, the best results were found when
mutation rate = 0.02. Does this mean that the presence of p is useless on the
evolutionary process? To answer this question, we remove p from the evolution-
ary search and keep the same mutation rates. The success rates for mutation
rates 0.02, 0.03 and 0.4 were 65%, 75%, 45%, respectively.

From these results, it seems to be that the addition of p symbols to the
individuals’ structures aid the evolutionary search.

3.2 Example 2

For our second example we have used the truth table shown in Table 1. The
parameters used in this example are the following: PS = 380 and the MNG = 525
(i.e., a total of 199,500 fitness function evaluations). The same values parameters
were used by EGP and MOST. BPSO, EAPSO and EBPSO performed 200,000
2 The feasible zone is the area of the search space containing circuits that match all

the outputs of the problem’s truth table.
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Table 4. Results found using the gp-graph representation on the 6-bits Multiplexer
problem. P and mutation rates are shown in the first and second row, respectively.
Feasible Circuits (Success Rate) and Average of Generations (this refers to the average
number of generations that were necessary to reach the feasible zone) are shown in the
last two rows, respectively.

% p = 0.01 % p = 0.02 % p = 0.03
%mut= %mut= %mut=

0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04

% of feasible circuits 100% 90% 70% 75% 65% 50% 85% 85% 45%
Average of generations 80.6 155.66 138.62 91.46 136.66 141.5 122.7 109.64 179.5

Table 5. Comparison of results between BPSO, EAPSO, EBPSO, MGA, EGP, MOST
and MIOST on the second example

Feasible circuits Avg. # of gates Avg. of gen.
BPSO 95% 10.05 -

EAPSO 70% 13.45 -

EBPSO 100% 7.75 -

MGA 75% 13.4 -

EGP 55% 9.7 122.9

MOST 85% 14.98 53.29

MIOST 100% 12.9 109.55

fitness function evaluations, while MGA performed 201,300. As we can see in
Table 5, the only algorithms able to converge to the feasible region in 100% of
the runs were EBPSO and MIOST.

3.3 Example 3

For our third example we have used the truth table shown in Table 2 (Notice
that this truth table was split in two due to space limitations). The parameters
used in this example are the following: PS = 1,200 and the MNG = 832 (i.e., a
total of 998,400 fitness function evaluations). The same values parameters were

Table 6. Comparison of results between BPSO, EAPSO, EBPSO, MGA, GP, EGP,
MOST and MIOST on the third example

Feasible circuits Avg. # of gates Avg. of gen.
BPSO 25% 23.95 -

EAPSO 50% 18.65 -

EBPSO 45% 20.1 -

MGA 65% 17.05 -

EGP 60% 9.66 149.5

MOST 50% 11.3 94.5

MIOST 75% 11.6 104.67
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Table 7. Comparison of results between BPSO, EAPSO, EBPSO, MGA, GP, EGP,
MOST and MIOST on the fourth example

Feasible circuits Avg. # of gates Avg. of gen.
BPSO - - -

EAPSO - - -

EBPSO - - -

MGA - - -

EGP 30% - -

MOST 10% 20 234.16

MIOST 35% 22.16 277.363

used by EGP and by MOST. BPSO, EAPSO and EBPSO performed 1,000,000
fitness function evaluations, while MGA performed 1,101,040. As we can see in
Table 6, MIOST is the algorithm which has the highest percentage of feasible
solutions reached (75%).

3.4 Example 4

For our fourth and last example (also know as Katz circuit) we have used the
truth table shown in Table 3. The parameters used in this example are the fol-
lowing: PS = 880 and the MNG = 4,000 (i.e., a total of 3,520,000 fitness function
evaluations). The same values parameters were used by EGP and MOST. As we
can see in Table 7, MIOST is the algorithm which has the highest percentage of
feasible solutions reached (35%).

4 Analysis

For analysis purposes, we have conducted our experiments in the following way:

1. Firstly, we have allowed to the individuals having p symbols in their represen-
tation and in this way, we have been able to have a gp-graph representation,

2. Secondly, we have used MOST which is form of GP that has allowed us to
define multiple outputs in each individual and

3. Thirdly, we have used MIOST, which is a combination of the previous ones.
In other words, the individuals in MIOST have p symbols in their structures
and multiple outputs.

Let us focus our attention on the first example. In this example we decided to
test an individual partially created with our approach. That is, we have specified
to build an individual with links without multiple outputs. To verify how good
this idea is, we used only mutation operator in this example. The presence of p
symbols in individuals’ structures is necessary to improve performance on the
evolutionary process (results confirm this statement). However, when p was not
present in any of our individuals, the performance of the GP was worst.
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From the results obtained in the first example, we decided to incorporate this
idea to the representation where an individual can have more than one output
(MOST). This combination of ideas gave us as a result MIOST representation
and it was tested on the last three examples which are more complex problems.

Our results indicate that MIOST has a better overall performance in terms
of consistency to reach feasible solutions in all the examples. Let us analyse
the results we have found with our approach for the last three examples. For
the example 2, the average number of generations to solve the problem using
MIOST is 109.55, while in MOST the average number of generations is 53.29.
Similar situation is observed in examples 3 and 4, where the average number
of generations to solve the problem using MIOST is 104.67 and 277.363, while
in MOST the average number of generations is 94.5 and 234.16, respectively.
As can be seen, the presence of p symbols in MIOST seems to require more
generations to find the feasible circuit. This can be explained, if we consider
that mutations could take place on inactive code that does not produce any
change at phenotype level. On the other hand, this inactive code can have a
role where partial solutions are protected against disrupted mutations. However,
further analysis needs to be done to give final conclusions.

5 Conclusions

In this paper we have presented MIOST which is a new form of genetic program-
ming which has two main features: (a) it allows to represent programs as graphs
with oriented links (graph-GP representation) and (b) a program can have more
than one output.

We have used four evolvable hardware problems of different complexity to
carry out our experiments with the proposed approach. Firstly, we used MOST to
see how good the idea was by using only multiple outputs in our individuals. Once
we saw that this gave us good results, we tested our approach (MIOST) which
incorporates the idea of gp-graph representation in the presence of p symbols in
individuals’ structure.

Our results indicate that MIOST has a better overall performance in terms of
consistency in reaching feasible solutions. However, our approach was not able to
improve previously published results in terms of number of gates. This is due two
reasons (a) our approach is not an optimization technique and (b) our approach
has the restriction that one or more outputs depend on the solution of one or
more outputs. This can be seen easily by analyzing Figure 1(c).
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Abstract. A Genetic Programming algorithm based on Solomonoff’s
probabilistic induction is designed and used to face an Inductive Inference
task, i.e., symbolic regression. To this aim, some test functions are
dressed with increasing levels of noise and the algorithm is employed to
denoise the resulting function and recover the starting functions. Then,
the algorithm is compared against a classical parsimony–based GP. The
results shows the superiority of the Solomonoff–based approach.

1 Introduction

Inductive Inference is a fundamental problem both in science and engineering.
Its aim is to find a functional model of a system by determining its fundamental
properties from its observed behavior. In early Sixties, Solomonoff proposed
a formal theory for Inductive Inference [1]. He discovered that the Inductive
Inference problem can be faced by looking for a program v (a functional
expression) among all the programs u which generate x (the string of symbols
on a given alphabet encoding the observed data of a given phenomenon) as
output, with the highest a priori probability, i.e., the one with the shortest
length. Unfortunately, an effective procedure able to find the program v does not
exist [2]. As a consequence, the effective use of Solomonoff’s Induction theory is
constrained by Computability Theory. Nonetheless, in practice we can approach
Inductive Inference by adopting heuristic procedures.

Genetic Programming (GP) [3] is well suited to face this problem [4,5]. In
fact, GP should perform a search for functional expressions that fit all the data,
while minimizing their length. Besides, to overcome the possible lack of closure
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property GP is subject to, and, at the same time, to introduce bias into the
evolutionary process, Whigham’s approach is used by exploiting a GP based on
Context–Free Grammars (CFGs) [6]. In [7], in order to drive the evolution, it
is adopted a fitness function with a penalty term depending on the number of
nodes of the particular tree associated to the expression under evaluation. In
fact, intuitively, the higher the number of nodes of a tree the lower the a priori
probability of generating it according to the chosen CFG.

More recently it has been shown in [2,8] that to solve induction problems by
Inductive Inference, it is possible to introduce in a GP scheme, by premising some
hypotheses to the model, a fitness function directly derived from the expression
of the probability distribution of any possible result for the future experiments
as a function of those recorded in the previous n.

This work deals with a comparison between the innovative GP method based
on Solomonoff probabilistic induction theory [8,9] and a parsimony GP–based
approach on a typical problem of Inductive Inference on an unordered set, i.e.,
symbolic regression. Namely, we aim to find out which of them can better
recover, starting from empirical data, a common property by filtering out the
“inconvenience” of random noise, inevitable in scientific measurements.

The paper is organized as follows: Section 2 illustrates an overview on the
GP and on the fitness functions used. Section 3 outlines the applications of the
different methods to four test functions and their robustness is verified at four
levels of noise. Conclusions are eventually left to Section 4. The appendix gives
details about Solomonoff’s view on induction and hypothesis made to obtain a
fitness function for the evolutionary inductive inference approach.

2 General GP Framework

The two inductive systems have a common GP algorithm and differ in the
choice of the fitness functions only. Our GP is based on an expression generator
providing the starting population with a set of programs different in terms of
size, shape and functionality. Such a generator is implemented by means of a
CFG ensuring the syntactic correctness of the programs. The genotypes are
functional expressions encoded as derivation trees of the adopted CFG. This
encoding is appealing since the actions performed by the genetic operators
can be implemented as simple operations on the derivation trees. In fact,
crossover acts by randomly choosing a nonterminal node in the first parent
and then by randomly selecting the same nonterminal node in the second one.
Finally, it swaps the related subtrees. If a corresponding nonterminal node
cannot be found in the second parent, the crossover has no effect. Mutation
works by randomly choosing a nonterminal node and then the corresponding
production rule is activated to generate a new subtree, thus resulting either in
a complete substitution (macro–mutation) or in variation of a leaf node (micro–
mutation).

We now describe the fitness functions used in this comparison. Let us put
forward some notations: p is the program to evaluate, σ is the standard deviation
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of the empirical data, Q is the set of the questions Qi from which Inductive
Inference is made and n is their number, p (Qi) is the output of the program
for the i–th question, Ai is the answer related to Qi. Finally ω, w ∈ ]0, 1[ are
positive parameters to be chosen in order to ensure a balance between the error
made by p on data and a penalty term related to its ‘complexity’.

2.1 Solomonoff–Based Fitness Function

Consequently to Solomonoff’s theory [2,8] we have defined a GP, named as
Solomonoff–based Fitness Algorithm (SFA), which adopts as fitness function:

F (p) =
1
n

1
σ2

∑
Qi∈ Q

|p (Qi) − Ai|2 − ω ln(a0(p)) (1)

where a0(p) is the a priori probability of the program p. Equation (1) is
a functional expression of two terms, exactly matching those composing eq.
(16) in the Appendix. In fact, the first term is a Mean Square Error (MSE),
and evaluates the error made by the program p in the approximation of the
problem under examination. The second term, instead, depends on the a priori
probability of the program p examined. To evaluate it, starting from the CFG,
an algorithm computes the a priori probability a0(p) of the derivation tree which
generates the expression p.

Computation of the a priori probability. Drawing inspiration from [2],
the computation of the a0s is carried out by means of the “Laplace’s rule” for
successive and independent events. Once specified the grammar, the probability
αip that a given production rule is present in the i–th node of the derivation tree
of the program p is k/m, where k is the number of times in which the production
has previously occurred in the tree plus one, and m is the total number of all
the productions which are legal there, incremented by the number of times in
which they have previously occurred in the definition of the tree. The product

a0(p) =
q∏

ip=1

αip (2)

yields the a priori probability of the program p, i.e. of the fruit of the tree
with q productions, related to the grammar chosen [8]. This procedure is in
accordance with the results obtained by the theory of algorithmic probability,
in the sense that it attributes higher probabilities to functions which have lower
descriptive complexities with reference to the chosen grammar. So, between two
different solutions, the GP will choose the “simplest” expression, thus causing
an effective application of “Occam’s razor”. It should be noted that expressions
containing a lower number of primitive functions have lower complexity than
shorter expressions using a higher number of primitive functions (see [2]).
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2.2 Fitness Function with a Parsimony Term

The fitness is the sum of two weighted terms. The former accounts for the
difference between computed and actual answers on Q, while the latter is
proportional to the number of nodes of the derivation tree:

F (p) =
1
n

1
σ2

∑
Qi∈Q

|p (Qi) − Ai|2 + wNp (3)

where Np is the number of nodes making up the derivation tree for p. The
aim of the parsimony term is to allow that, during the first phase of expression
discovery, the error term is predominant. So the algorithm is free to increase the
tree size, either in depth or in width, in such a way to ease the search towards
the exact match of the data. Then, the system will exploit the obtained solutions
to achieve shorter and shorter expressions. We have decided to name the system
using eq. (3) as Parsimony–based Fitness Algorithm (PFA).

2.3 Linking Parsimony and Solomonoff

By adopting a general framework that links PFA and SFA fitness directly, it is
possible to show that the parsimony term in eq. (3) is a particular case of the
Solomonoff’s term in eq. (2). In fact, starting from Solomonoff fitness function
and by supposing that the grammar production rules have a uniform probability
to be applied in a certain node, we can achieve the PFA fitness. In fact, by
defining the probability αip of a node ip simply as 1/n (where n is the number
of grammar production rules), we have:

a0(p) =
q∏

ip=1

αip =
(

1
n

)q

(4)

where q is the number of nodes and therefore, eq. (1) becomes:

F (p) =
1
n

1
σ2

∑
Qi∈ Q

|p (Qi) − Ai|2 − ω q ln(1/n) . (5)

The above shows that eq. (2) is a first order compression of evolved expressions,
while eq. (4) is the zero-th order. Then, like it should be in a bayesian inductive
approach, the particular way to compute the a priori probabilities influences
the quality of a prediction. In fact, if one wants to strive toward significant
models, particularly in the inductive task, it should be looked for structural
models. One wishes for structures which, however remotely, do say something
about the causal mechanism behind the data at hand. Equation (3) does not
give any insight in this direction, while eq. (1) contains important features of
Solomonoff’s universal a priori probability distribution that can approximate
any probability with extreme accuracy.
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Table 1. GP parameters setting

number of data points 200

population size 400

max generations 1000

max depth trees 8

grammar rules S → f(x) = E
E → (EOE) | F (E) | N | R | x

O → + | − | ∗ | /
F → sqr | sqrt | abs | sin | cos

N → c ∈ IN, R → d ∈ IR

tournament selection size 10

crossover probability 30%

macro-micro mutation probability 100% (60% in macro and 40% in micro mutation)

3 Experimental Comparison

Experiments have been run on four functions of increasing complexity, i.e., the
Quartic polynomial, the Schwefel and the Rastrigin functions, and a version of
the Michalewicz function with 5 minima [10], in their 1–dimensional version:

f(x) = x4 + x3 + x2 + x, −1 ≤ x ≤ 1 (6)

f(x) = −x · sin
(√

|x|
)
, −500 ≤ x ≤ 500 (7)

f(x) = 10 + x2 − 10 · cos
(
2πx

)
, −5.12 ≤ x ≤ 5.12 (8)

f(x) = − sin(x) · sin2
(
(5/π)x2

)
, 0 ≤ x ≤ 3.14 (9)

This function set has been chosen to test PFA and SFA by problems of
incremental difficulty, meaning here that the creation of a particular constant
can determine the success or the failure of the symbolic regression. In fact, the
quartic polynomial is the simplest considered case and represents a problem
without constants, the second problem introduces integer numbers, while the
third and the fourth ones need real constants as well.

For both algorithms 20 runs with different random seeds have been carried out
with the same parameters resumed in Table 1. Other important parameters are
the weights ω and w. Given that both the error term and the order of magnitude
of the complexity term are the same in both eq. (1) and eq. (3) as well, it is
evident the values of ω and w should be kept equal in order to correctly compare
the two complexity measures in the equations. After a preliminary tuning phase,
we found that in all the cases examined 10−3 is the best value.

The experimental results are included in Fig. 1 and in Table 2.

3.1 Experimental Findings on Test Functions Dressed with Noise

An Inductive Inference system is a useful tool for scientific investigations if it
works in spite of the inevitable random noise which is present in all real measures.
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As a consequence, we wish to examine the ability of the two aforementioned
algorithms to understand the underlying function even in the presence of noise.
Hence we dress the functions with known noise. In this way we can check
performance of the two GP systems as a function of the level of noise, and we
might compare them against those achieved in absence of noise. Starting from a
target function f(x) we define a noisy function g by adding noise as follows:

g(x) = f(x) + ξ(x) (10)

where ξ(x) is a Gaussian pseudo–random number distribution with zero average.
We accomplish our investigation by characterizing any noisy data series g in

terms of the percent relative level of noise:

ηf (g) = (||f − g||/||g||)2 · 100 (11)

where || · || is the norm in L2.
We have taken into account four different values for ηf , namely 5%, 10%, 15%
and 20%. For any level each original function has been dressed with 4 noise
data series differing one another, because provided by a noise generator with
different random seeds, but all having a value around the prefixed ηf noise
level. In fact, we wish to examine the algorithms’ robustness in extracting the
function independently of the particular values of the noise series added. This is
accomplished by computing the Normalized Root Mean Square Error (NRMSE)
of the best individual found at the end of each run with respect to f :

NRMSE = 100 ·

√
n

n−1 · MSE

σt
(12)

where n is the number of training data, and σt the standard deviation of the target
values. This measure assigns the value of about 100 to an expression that performs
equivalently with the mean target value, while a perfect fit is obtained when the
NRMSE reaches 0. For any given noisy series we have then run any GP algorithm
20 times, so as to investigate average behavior from the evolutionary point of view.
As a result, for any value of ηf each algorithm has been executed 80 times. Fig. 1
shows grafically the relative performance of both PFA and SFA in terms of average
NRMSE with its standard error when the algorithms converge to the original
functions by “filtering” out the noise. As it can be seen, PFA meets increasing
difficulty in solving the task as the level of noise increases. SFA, instead, shows
at all the levels of noise a better ability to find the original function evidenced by
lower values of both average NRMSE and standard error. Of course, such ability
decreases as the level of noise becomes higher.

Another interesting topic deals with the denoising capacity of the two
algorithms. The idea is that the noise is the part of data which cannot be
compressed with a considered model, while the remaining is the information
beared by the signal. Such a denoising capacity cannot be evidenced by taking
into account only the results outlined in Fig. 1. To this aim, for each function and
for each noise level considered, we computed the average NRMSE of the noisy
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Fig. 1. Performance of SFA with respect to PFA in terms of the average NRMSE and
its standard error

Table 2. Results in terms of average NRMSE

Average NRMSE
Quartic Schwefel Rastrigin Michalewicz

Noise level Noised Data PFA SFA PFA SFA PFA SFA PFA SFA

0% − 3.50 0.96 1.20 0.00 10.91 4.03 10.88 9.37
5% ∼ 23 4.28 2.80 10.41 4.56 15.10 9.74 14.25 12.53
10% ∼ 34 6.06 4.47 13.68 5.06 21.94 15.58 22.22 15.31
15% ∼ 40 9.73 6.91 17.86 5.97 28.78 24.55 28.31 22.69
20% ∼ 48 10.23 7.15 19.56 6.85 30.95 26.83 39.88 30.71

data g with respect to the original function f . Such averages are reported in the
second column of Table 2 along with those of the evolved solutions. It should
be noted that the average NRMSE is about the same for all the considered
functions. The experimental findings confirm that both PFA and SFA reduce
overfitting in that the average NRMSE of the evolved solutions is lower than the
average NRMSE of the noisy data (see Table 2). However, overfitting on noisy
values takes place more frequently for PFA. On the contrary, SFA avoids more
frequently overfitting, thanks to the introduction of the a priori probabilities.
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Fig. 2. Behavior of MSE and number of nodes (left) and of the a priori probability
(right) as a function of time t, for a typical SFA run on the Rastrigin function

Parsimony doesn’t mean simplicity. The whole of results underlines that a
search procedure using a fitness with a parsimony term, which looks for a solution
optimized with respect to a resource (in this case the number of nodes), is not
capable of finding the individuals with the simplest expression, meaning here, in
the common sense, the most ‘regular’, i.e., the one with the largest probability
of being generated. Moreover, the same results indicate that a search procedure
which uses a fitness function based on a formal notion of ‘simplicity’ is more
sensitive than a parsimony procedure. This is evident, for example, for Quartic
and Schwefel functions in which, even at 20%, in many runs SFA was able to
discover the original functions, while although the best individuals found by PFA
have in many runs NRMSE values with respect to the g data lower than those
shown by SFA, they are not able to catch the underlying function f . This is
due to the parsimony term which leads to prefer, at parity of number of nodes,
expressions which better fit the g data. In other words, it can distinguish between
two functions having the same number of nodes and the same performance on
the basis of the way in which those trees have been generated (the number of
rules used, the number of times each rule is called upon, etc.).

As a confirmation, Fig. 2 (left) reports a typical evolution of SFA in terms
of MSE and number of nodes on the Rastrigin function, while Fig. 2 (right)
shows the variations in the a priori probability for the best individuals found
during that run. It is evident that once reached a sufficiently low MSE value,
and as long as it remains unchanged, the algorithm tries to find individuals
whose expressions have larger a priori probability, i.e., it tries to find a simpler
expression for the same function. Moreover, the most important feature of SFA
is the following: until about the 350-th generation the best solution found is
an individual with a derivation tree made of 23 nodes, whose expression is
10+sqr(x)−10∗cos(6.28∗x). At that time the system discovers another solution
whose expression is 10+(x∗x)−10 ∗ cos(6.28 ∗x) in which sqr(x) is replaced by
(x ∗ x), the number of nodes is 25, the MSE is the same as in the previous case,
but one function less than the previous one is needed. For PFA the fitness of
this latter solution is higher than the former, while for SFA the fitness decreases.
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As a consequence, PFA could never select it as the best solution of the run,
because the parsimony term is proportional to the number of nodes.

4 Conclusions and Future Work

In this paper two GP systems are used to perform symbolic regression, one based
on parsimony ideas (PFA) and the other on Solomonoff probability induction
concepts (SFA). They both perform quite well when functions without noise are
faced. Strong differences arise concerning the application of the two systems on
data with additive gaussian noise, as soon as the level of noise increases. In fact,
experimental data show that PFA is able to recover the original functions for
quite low noise levels only. SFA, instead, shows a better ability in discovering
exactly the original functions, thus further reducing overfitting occurrence,
although, of course, its performance decreases when the noise level gets larger.
This behavior allows SFA to achieve a better NRMSE with respect to PFA when
computed on the original functions at all levels of noise.

Starting from the results obtained (see eq. (5) for example), in the future work
we plan to deepen the formal links between the algorithmic a priori probability
and evolutionary learning.
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A From Solomonoff’s Theory to a Fitness Function

According to Solomonoff, a generic induction problem on an unordered set can
be solved by defining an operator able to satisfy the following request: let [Qi, Ai]
be an unordered set of n couples (Qi, Ai), i = 1 . . . n, where Qi and Ai can be
strings and/or numbers. Given a new element Qn+1, which is the function F such
that F (Qi) = Ai, for i = 1, . . . , n+1, and with the highest a priori probability?

From bayesian considerations and by supposing that each couple (Qi, Ai) is
independent of the others, assigned a new Qn+1, the corresponding distribution
probability for any possible An+1, as a function of the data set [Qi, Ai], is [2]:

P(An+1) =
∑

j

aj
n Oj(An+1|Qn+1), with aj

n = aj
0

n∏
i=1

Oj(Ai|Qi) , (13)

where Oj(·|·) is the conditional probability distribution with respect to the
function F j such that F j(Qi) = Ai, and where aj

0 is the a priori probability
associated to F j . Solomonoff called eq. (13) Induction Operator (IO) [2]. Of
course, it is impossible to compute the infinite summation in eq. (13) by using
finite resources, yet it can be approximated by using a finite number of terms,
i.e. those having a high value of aj

n. In the ideal case we could include the terms
with maximal weights among the aj

ns, but no effective procedure exists able to
carry out this search, since some among the u programs might not terminate,
but this cannot be known a priori. Thus, the application of the IO consists in
trying to find, in a preset time, a set of functions F js such that the summation:∑

j

aj
n (14)

be as high as possible. For deterministic induction, in particular, it is sufficient
to find, in a finite time, the term among the aj

ns which dominates eq. (14).
Let us suppose that any Ai is given by Ai = F j(Qi) + εj, with F j a

deterministic function of Qi, and εj the error of the function F j on data. We also
assume that εj has a normal distribution with standard deviation σ independent
of both Qi and j.

By the above hypotheses, the Oj(·|·)s are distributions of gaussian
probabilities with standard deviation σ, and hence it results (see [8]):

aj
n = aj

0 (2πσ2)−
n
2 exp

(
−

n∑
i=1

[F j(Qi) − Ai]2

2σ2

)
(15)

Then, rather than maximizing eq. (14), we minimize, with respect to the
functions F js, the negative of the natural logarithm of its terms:

− lnaj
n ≈ 1

2σ2

n∑
i=1

[
F j(Qi) − Ai

]2

− ln aj
0 (16)

in such a way, a deterministic induction problem on a set [Qi, Ai] can be solved
by finding a F j with respect to which eq. (16) is as low as possible [8,9].
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Abstract. The Broadcast Language is a programming formalism de-
vised by Holland in 1975, which aims at improving the efficiency of
Genetic Algorithms (GAs) during long-term evolution. The key mech-
anism of the Broadcast Language is to allow GAs to employ an adapt-
able problem representation. Fixed problem encoding is commonly used
by GAs but may limit their performance in particular cases. This paper
describes an implementation of the Broadcast Language and its applica-
tion to modeling biochemical networks. Holland presented the Broadcast
Language in his book “Adaptation in Natural and Artificial Systems”
where only a description of the language was provided, without any im-
plementation. Our primary motivation for this work was the fact that
there is currently no published implementation of the Broadcast Lan-
guage available. Secondly, no additional examination of the Broadcast
Language and its applications can be found in the literature. Holland
proposed that the Broadcast Language would be suitable for the model-
ing of biochemical models. However, he did not support this belief with
any experimental work. In this paper, we propose an implementation
of the Broadcast Language which is then applied to the modeling of a
signal transduction network. We conclude the paper by proposing that
with some refinements it will be possible to use the Broadcast Language
to evolve biochemical networks in silico.

Keywords: Broadcast Language, adaptable representation, biochemical
networks modeling.

1 Introduction

Holland proposed the Broadcast Language so as to address some potential lim-
itations in the application or performance of Genetic Algorithms (GAs) [6,3].
Holland argued that GAs provide an efficient method of adaptation; however
in the case of long-term adaptation, the efficiency of GAs could be limited by
the representation used to encode the problem. In traditional GAs, this repre-
sentation is fixed and may significantly influence the complexity of the fitness
landscape. During long-term evolution this may limit the performance of the GA.
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To overcome this limitation, Holland proposed to dynamically adapt the prob-
lem representation. Adapting the representation may then generate correlations
between the problem representation and the GA performance.

Another feature discussed by Holland was the conjecture that the Broadcast
Language is a Turing Complete programming language. If this is so, it would
imply that the language would not dictate any long-term limits to its evolution.
However although this issue clearly has intrinsic interest, it will not be consided
further in the current paper.

Following this, Holland argued that the Broadcast Language would provide
a straightforward representation for a variety of natural models such as Genetic
Regulatory Networks or Neural Networks. This would show the computational
power of the Broadcast Language and its capacity to adapt.

However, while recognising some of the potential merits of the Broadcast Lan-
guage, we need to consider the fact that Holland did not support this approach
with experimental evaluation; nor have we been able to identify any body of
subsequently published work on the Broadcast Language in the literature.

We believe that there is a need for further investigations on the Broadcast
Language because:

– The Broadcast Language may provide a useful framework for investigating a
range of interesting problems in Evolutionary Computation and Theoretical
Biology.

– The potentially interesting applications of the Broadcast Language were only
outlined, not actually formally demonstrated, by Holland.

– Since Holland’s early presentations [6], no further work on Broadcast Systems
(Broadcast Language-based systems) can be found in the literature.

To initiate these further investigations we have implemented an execution
platform for the Broadcast Language. We applied this to the study of the model-
ing of biochemical networks. This paper is organized as follows: we first introduce
in more detail the Broadcast Language and then describe our implementation of
the Broadcast System. We then demonstrate how to model a signal transduction
network with the Broadcast Language. This is finally followed by a discussion
of possible refinements toward the modeling of a specific problem instance: the
evolution of biochemical networks in silico.

2 The Broadcast System

We use the formalism given by Holland in the original text [6]. We initially pro-
vide an overview of the Broadcast System and then present our implementation.

2.1 An Overview

The Broadcast Language basic components are called broadcast units which are
strings formed from the set Λ = {0, 1, ∗, :, ♦, �, �, �, p, ′}. Broadcast units
can be viewed as condition/action rules. Whenever a broadcast unit conditional
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statement is satisfied, the action statement is executed. This means that when-
ever a broadcast unit detects, in the environment, the presence of one or more
specific signal(s), possibly including the broadcast units themselves, then the
broadcast unit would broadcast an output signal.

As an example, we may consider a given broadcast unit that upon detecting
signals I1 and I2 would broadcast an output signal I3. This is analogous to a
biological phenomenon where an enzyme would form a product upon the binding
of specific substrate(s) to its binding region(s). In this example an enzyme can
be thought of as a broadcast unit, substrate(s) would be detected signal(s), the
enzyme binding region(s) would refer to the broadcast unit condition part, the
product is the output signal and finally the environment would be the reaction
space (e.g., the cell).

Following the above analogy, a substrate can be degraded during catalysis. We
implement this phenomenon through the signal processing ability of broadcast
units. Indeed general signal processing can also be performed with broadcast
units: e.g., a broadcast unit may detect a signal I and broadcast a signal I ′, so
that I ′ is some modification of the signal I.

Some broadcast units may broadcast a signal that may constitute a new broad-
cast unit. Similarly, a broadcast unit can be interpreted as a signal detected by
another broadcast unit. As a result, a broadcast unit may create new broadcast
units or detect and modify an existing broadcast unit.

A set of broadcast units, combined as a string, is designated a broadcast device.
A broadcast device can be viewed as analogous to a protein complex in which
interactions between the several proteins result in complex functional behavior
of the molecule.

Holland also described in detail how he distinguishes between four key types
of broadcast unit, designated types 1, 2, 3 and 4. See [6,2] for a detailed descrip-
tion of this and also the more general syntax and semantics of the Broadcast
Language.

2.2 The System

In this section we present our implementation of the Holland Broadcast System.
We have implemented the Broadcast System using an Object Oriented paradigm,
in which we may distinguish three main classes:

– Env represents the environment, this object holds a list of all current existing
devices.

– The class BDevice designates a broadcast device, an instantiation of BDevice
may hold from 0 to n BUnit objects.

– The BUnit class refers to a broadcast unit, it may contain one or two argu-
ment(s) and an output signal, all represented by strings of characters.

In this system based on discrete timesteps, the sequential operation is as
follows. At timestep t, all broadcast devices including null devices are stored
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in a vector of devices S. This vector is held by an instance of Env. A vector
of character strings A is used to hold signals (strings) to be added to S at the
beginning of t. At time t = 0, S is empty and A represents the initial set of
broadcast devices. D is a vector of strings holding signals to be removed from S
at the end of timestep t.

Figure 1 presents an overview of the system from its initialization to its
termination.

Fig. 1. Broadcast System flowchart

Following this, we discuss in detail each step presented in this diagram:

1. Initialization: an Env object is instantiated, vectors S, A and D are created
and are empty by default.

2. Environmental signals: at this step, input signals (strings of character) given
by the environment are added to set A. At time t = 0, the input signals
correspond to the initial set of signals. A detector may be built to probe the
“external” environment and insert new signals into set A.

3. Transferring signals from set A to S: signals contained in set A are inserted
in set S. Set A is then flushed. Each signal inserted in S is processed into
broadcast devices (BDevice objects); if a signal generates an active broad-
cast device then this broadcast device is parsed into broadcast units (BUnit
objects).
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4. Processing signals in S: this step is broken up into two sequential sub-
processes:
(a) we first look for broadcast units of type 4 (see [6]) that are able to

broadcast at the same time t. If those broadcast units can be satisfied
by other signals (including themselves) then they broadcast their output
signals. The latter output signals are then directly inserted into S. As
these newly inserted signals may satisfy other similar type 4 broadcast
units, it is necessary to repeat this whole process until no new signal
gets inserted into S. This is the first subprocess to be performed because
type 4 broadcast units may output signals that may contribute to other
broadcast units contained in S at time t.

(b) Then each broadcast device in S is processed in a sequential order: if
a broadcast device I is active then each broadcast unit Ii contained
in I may broadcast its output signal upon detecting adequate signals.
A broadcast unit which has already been activated at time t may not
broadcast again within that timestep, under any circumstances. Output
signals issued by type 1, 2 and 4 broadcast units are stored in set A. If
a type 2 broadcast unit is activated then its output signal is inserted
into set D. Finally, if a broadcast device I is a null device and is not a
persistent signal, then this device signal is added to set D.

5. Delete signals from sets S and D: for each signal Id contained in set D, if
there is a signal of the form Id present in S then this signal is deleted from
S. If there are n signals in S that are of the form Id then only one of those
signals is deleted (selected uniformly at random). D is then flushed.

6. Termination condition: this condition is set by the user, for example it may
be an integer T indicating the maximum number of steps to be completed.
If this user-defined termination condition is not satisfied then the system
returns to step 1.

The above implementation addresses or clarifies a number of ambiguities that
had been left open by Holland. We now show how the Broadcast Language is
capable of modeling biochemical networks, which was one of Holland identified
application areas.

3 Modeling a Biochemical Network

In this section we present a case study where we model a biochemical network
with the Broadcast Language. We successfully model a signal transduction net-
work, which was previously modeled with the aid of a Boolean network [9]. Note
that this example given by Genoud only addresses the regulatory aspects of the
signaling network.

One way to represent the regulatory aspects of a biochemical network is to
use the Boolean formalism. With the Boolean abstraction, a (protein) molecule
is considered as a logical expression having two different possible states. One
possible state is the on state meaning that the molecule is present in the envi-
ronment. To the contrary, when a molecule state is off, this indicates that this
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Fig. 2. Boolean representation of the signal transduction network controlling the plants
defense response against pathogens

particular molecule is not present in the environment (cell). Figure 2 provides an
example of a graphical boolean representation of a signal transduction network.

We use the Broadcast Language to mirror the Boolean network of the bio-
chemical network presented in Figure 2. To accomplish this, we proceed to a di-
rect mapping of each Boolean function to broadcast devices. Using this Broadcast
System model, one may determine the states of the output molecules according
to the states of the input molecules.

We first represent each molecule (substrate) PhyA, PhyB, Eth, etc., with a
string (signal) such as p0000000, p0000001, p0000010, etc. We then define the
broadcast devices (enzymes) which enable the reactions to occur in this network.
In this case, the broadcast devices stand for the boolean functions shown in Fig.2.

(PR1PR5) = (¬PSI2 ∧ (PhyA ∨ PhyB)) ∧ SA

The above equation describes the state of PR1PR5 according to the states
of PSI2, PhyA, PhyB and SA. We now present how to express this Boolean
expression using the Broadcast Language.

In order to represent an OR gate that takes for input signals PhyA and PhyB
we generate the following broadcast device:

I1 = ∗p000000♦ : 1000000

This broadcast device indicates that whenever persistent signals p0000000
or p0000001 (PhyA or PhyB) are detected, the signaling molecule 1000000 is
broadcast. This example also demonstrates how to represent crosstalk phenom-
ena in the Broadcast Language. The purpose of using signaling molecules will
be shown in the description of the third broadcast device I3.

The NOT gate is expressed through the use of type 2 broadcast unit. To rep-
resent NOT p0000010 (PSI2), the following broadcast device is defined:

I2 = ∗ : p0000010 : 1000001

The above broadcast device stipulates that when no persistent PSI2 molecule
is present then the signaling molecule 1000001 is broadcast at time t + 1.
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Following the given example, we want to express an AND gate. The expres-
sion ((p0000000 OR p0000001) AND (NOT p0000010)) can be translated into the
following broadcast device:

I3 = ∗1000000 : 1000001 : 1000010

I3 would broadcast 1000010 only if 1000000 and 1000001 are detected. The
detection of 1000000 indicates that either p0000000 (PhyA) or p0000001 (PhyB)
is on. Secondly, detecting 1000001 implies that p0000010 (PSI2) has not been
detected.

I4 = ∗p0000011 : 1000011

The broadcast device I4 is used to broadcast a signaling molecule 1000011 if
p0000011 (SA) is detected.

I5 = ∗1000010 : 1000011 : 1000100

I5 is similar to I3 and represents an AND gate taking into account the results
of I3 and I4. This broadcast device, if satisfied, broadcasts a signaling molecule
that is employed to activate PR1PR5 (p0000101), as follows:

I6 = ∗1000100 : p0000101

Fig. 3. A series of results obtained with our implementation of the Broadcast System.
The Boolean network representation of the signal transduction network (Fig.2) was
implemented with our system. A molecule is on when at least one occurrence of the
corresponding broadcast device is found after time t = 4. These results present the
states of the output molecules PR1PR5, AtCesA3, etc according to the differing states
of the input molecules PhyA, PhyB, etc.

The whole Boolean networkmay be built following the above described method.
This case study was implemented with our system and tested against a selection of
inputs, and the outputs reacted precisely in accordance with the boolean functions
specified by the network, see Fig. 3. We may note that because some broadcast
units broadcast at time t+1, a cascade of similar reactions may then take a certain
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amount of time steps to process the whole network. This is indeed necessary so
that every boolean functions described in the model are processed. In the current
example, 4 time steps are necessary to obtain the output states accounting for
every boolean gates.

This example showed that the Broadcast Language is a straightforwardmethod
to model a biochemical network when the latter is described with a Boolean for-
malism. The same method could also be applied to represent other genetic regu-
latory networks as they can be modeled with Boolean networks [7].

4 Discussion

In the case study above, we demonstrated that the Broadcast Language can
model Genetic Regulatory Networks (GRNs). The ability of the Broadcast Lan-
guage to mirror Boolean networks illustrates the wide ranging processing power
that Broadcast Systems are capable of.

A key advantage to using the Broadcast System, as mentioned by Holland,
is the ability of the system to work in conjunction with GAs. By allowing the
coupling of GAs with the Broadcast System, a variety of evolutionary opera-
tors (mutation, crossover etc) are accessible. With these operators it would be
possible to design Broadcast Systems that model the evolution of GRNs.

Previous works on the modeling of the evolution of GRNs can be found in the
literature [5,1]. Nevertheless we believe that the study of the Broadcast Language
would complement this understanding. As argued by Holland [6], One benefit is
that with an adaptable representation the Broadcast Language would prevent
evolutionary plateaus being encountered during the evaluation. In long term
evolution, this may be of high significance as we commonly meet such plateaus
in evolutionary systems [4,8].

Although the modeling of the evolution of GRNs is valuable, we focus on a
related, but currently not so well understood class of biochemical network, the
Cell Signaling Networks (CSNs).

In the case study we provided above, we presented a CSN model where only
the regulatory aspects of the CSN were covered. Although this qualitative ap-
proach is of interest, this significantly limits the power of Broadcast Systems to
model biochemical networks. As currently defined, the Broadcast System cannot
express concentration kinetics and it is well known that molecular concentrations
play an important role in chemical reactions.

In order to refine the Broadcast Language we outline some refinements which
focus on the following points:

– To incorporate chemical kinetics in Broadcast Systems.
– To strengthen the biological plausibilities in the modeling of CSNs with

Broadcast Systems.
– To facilitate the evaluation of the Broadcast System.

Examining the first point we must consider collision theory: molecules must
collide to react together. When the molecular concentration increases, the prob-
ability of collision increases as well. These collisions occur at random and are
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best described as Brownian motion. However simulating Brownian motion is
computationally expensive. We approximate this phenomena in the Broadcast
System by adjusting the way broadcast devices are processed:

– Instead of processing all broadcast devices sequentially during a time step,
we propose the following: at each time step t, we pick n pairs of broadcast
devices at random. For each pair of devices, one of the broadcast devices
is designated (at random) as the catalyst device and the second one as the
substrate device. If the conditional statement of the catalyst device is satisfied
by the signal of the substrate device, then the action statement of the catalyst
device is executed upon the substrate device.

– n number of pairs of broadcast devices is a constant and refers to the tem-
perature in real chemistry. Temperature has an important role in chemical
reactions, indeed molecules at higher temperature have a greater probability
to collide with one another. In the Broadcast System, in order to increase
the “temperature”, one may increment the integer number n.

In order to improve the biological application of the system, and to facilitate
its evaluation, the following refinements are proposed:

– In the Broadcast Language specification given by Holland, additional rules
were required to resolve some ambiguities raised by the interpretation of
broadcast devices. To facilitate this, we suggest to simplify the nature of
broadcast units by preserving broadcast units of type 1 only.

– Similarly the notion of non-persistent devices is removed: by default all de-
vices are considered as persistent molecules.

– As type 3 broadcast units and non-persistent devices no longer exist in our
proposal, no molecule can be deleted from the population. However the dele-
tion of molecules is needed to obtain evolutionary pressure. Our suggestion
is as follows: each time two molecules react together, we pick a molecule at
random and delete it from the population.

The above suggestions simplify and strengthen the ability of Broadcast Sys-
tems to model biochemical networks. However to model precisely real biochem-
ical networks, more attributes are needed to describe accurately these complex
systems. A solution is to implement this derivation of the Broadcast System
as an agent-based model, where the agents behavior and adaptation is deter-
mined by broadcast devices. This allows the definition of additional molecular
properties (e.g., spatial location, state, etc) for each agent.

Although our proposed work will require further evaluation to precisely repre-
sent real biochemical networks, these refinements allow for the design of an evo-
lutionary simulation platform to study artificial biochemical networks in silico.

5 Conclusion

In this paper we presented our implementation of the Holland Broadcast System
and demonstrated the modeling of a signal transduction network with this ap-
proach. This work was motivated by the desire to implement the Holland system
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and also to apply it to biochemical networks modeling. We evaluated our imple-
mentation and showed that the Broadcast Language is suitable to model GRNs.
We then discussed the benefits of Broadcast Systems to evolve GRNs through the
use of GAs. Nevertheless it was shown later that Broadcast Systems are limited
regarding the study of biochemical networks from a quantitative point of view.
Following this, we proposed refinements that allow the Broadcast Language to
model the evolution of biochemical networks accounting for the quantitative as-
pects. These refinements provide the following additional benefits: reinforcement
of the biological applications of the system and facilitate its evaluation. This ap-
proach may contribute to the understanding of the evolutionary dynamics of
biochemical networks.
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Abstract. This paper reports on the results of a preliminary study conducted to 
evaluate genetic programming (GP) as a means of evolving finite state 
transducers.  A genetic programming system representing each individual as a 
directed graph was implemented to evolve Mealy machines.  Tournament 
selection was used to choose parents for the next generation and the 
reproduction, mutation and crossover operators were applied to the selected 
parents to create the next generation.  The system was tested on six standard 
Mealy machine problems.  The GP system was able to successfully induce 
solutions to all six problems.  Furthermore, the solutions evolved were human-
competitive and in all cases the minimal transducer was evolved.  

Keywords: genetic programming, finite state transducers. 

1   Introduction 

Finite state transducers are used in various domains of Computer Science such as 
natural language processing and image processing.  A fair amount of research has 
investigated the evolution of finite state machines, however almost all of these efforts 
have been focused on inducing finite acceptors and very little work has examined the 
effectiveness of evolutionary algorithms in generating finite transducers.  The study 
presented in this paper is an initial attempt at assessing genetic programming (GP) for 
the purpose of inducing finite transducers, namely, Mealy machines. 

The following section provides an overview of finite state transducers.  Section 3 
presents a brief introduction to genetic programming and describes previous attempts 
at evolving transducers. A genetic programming system for evolving Mealy machines 
is proposed in section 4. Section 5 discusses the overall methodology employed to 
evaluate GP as means of generating Mealy machines. The performance of this GP 
system on six standard finite transducer problems is analyzed in section 6.  Finally, 
section 7 summarizes the findings of this study.   
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2   Finite Transducers 

Finite transducers are finite state machines that produce an output string for a given 
input string.  There are two types of transducers, namely, Mealy machines and Moore 
machines.  Mealy machines are formally defined as: 
 
   Me= {q0, ∑, Γ, Q, δ}  
 
where q0 is the start state 
 ∑ is the input string alphabet 
 Γ is the output string alphabet 
 Q is the set of states    
 δ: Q x ∑ x Γ → Q, i.e. defines the transitions 
 

A Mealy machine that takes a string consisting of a’s and b’s as input and outputs a 
binary string containing a1at the position of every substring “ab” in the original string 
is illustrated in Figure 2.1.  

A B

a/0a/0b/0

b/1
 

Fig. 2.1. Example of a Mealy machine 

Notice that Mealy machines produce the output string as part of the transition.  For 
example, at state A if a b is read in a 0 is output.  Moore machines differ from Mealy 
machines in that the output string is produced at the state.  Both these machines are 
deterministic.  Algorithms exist for converting Mealy machines to Moore machines, 
thus only the induction of Mealy machines will be examined in this study. 

3   GP and Finite Transducers 

Genetic programming (GP) is an evolutionary algorithm that represents elements of a 
population using variable sized structures [1].  Examples of representations used by 
different genetic programming systems include parse trees, matrices, and directed 
graphs, just to name a few.  GP has been successfully employed in numerous domains 
and in a number of cases has produced human-competitive results.  Research into the 
generation of finite automata using evolutionary algorithms was initiated as early as 
the 1960's with the study by Fogel et al. [2] investigating the evolution of 
deterministic finite automata (DFAs).  Later attempts at inducing DFAs include the 
genetic algorithm implemented by Dupont [3] to evolve DFAs.  This system takes a 
maximal canonical automaton for a set of positive sentences for the language as input.   

Dunay et al. [4] employ a genetic programming system to generate S-expressions 
representing DFAs. Brave [5] takes a similar approach that uses genetic programming 
to evolve cellular automata encodings of the DFAs.  More recent studies investigate 
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the use of gene regulation [6] and a genetic programming system representing each 
DFA as a transition matrix [7], for the purposes of DFA evolution.  While a lot of 
work has been directed at examining the generation of finite acceptors, not much 
research has addressed evolving finite transducers.  The only study applying 
evolutionary algorithms to this domain is that conducted by Lucas [8] to induce 
chaining codes for binary images. 

Lucas [8] implements a random-hill climber to induce a Mealy machine for 
converting a 4-direction chain code for a binary image to an 8-direction chain code.  
Each potential solution transducer is a table representing the transition matrix of the 
corresponding finite transducer. Each transducer is comprised of a maximum of ten 
states.  One of three nondestructive mutation operators is applied at each stage of the 
search to further evolve the potential solution.   

The training set consisted of fifty pairs of input strings and their corresponding 
target output. A general solution was induced within fifty runs of the system.  The 
solution consisted of five redundant states which once removed yielded a transducer 
that was equivalent to the target machine.  The following section presents a genetic 
programming system, using a direct representation for each finite transducer, namely, 
a transition graph, to evolve Mealy machines. 

4   Proposed GP System 

This section proposes a genetic programming system for the evolution of Mealy 
machines.  The generational control model is employed by the system.  The number 
of elements of the population is kept fixed from one generation to the next.  During 
each generation the reproduction, mutation and crossover operators are applied to 
parents that have been selected using tournament selection.  These processes are 
described in more detail below. 

4.1   Representation 

Each element of the population is represented as illustrated in Figure 2.1.  A direct 
representation is used for each Mealy machine, i.e. each element of the population is a 
directed graph with each node representing the state of the finite transducer and each 
edge representing the transition between states.  An edge label specifies an input 
character and the corresponding output character. The Mealy machines are 
deterministic, hence each state has an outgoing arc for each element of the input 
alphabet and a state can have at most one outgoing arc for each element of the  
input alphabet.  Thus, the terminal set is comprised of elements of the input and 
output alphabet and function nodes represent states in the Mealy machine.  During 
initial population generation each individual is created by randomly choosing source 
and destination states and input and output characters for the edges  joining these 
nodes, until the maximum node limit per individual is reached. 

4.2   Interpretation, Fitness Evaluation and Selection 

The fitness cases are essentially pairs of input strings and the corresponding output 
string that must be produced by the Mealy machine.  The interpretation process takes 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



374 A. Naidoo and N. Pillay 

an input string and the start state of the finite transducer as input. As each character of 
the input string is processed the corresponding transition of the transducer is applied 
and the output characters specified by each transition are concatenated to produce the 
output string.  The fitness of an individual is the number of fitness cases for which it 
produces the correct output string. These fitness measures are used by the tournament 
selection method to choose the parents for the next generation. 

4.3   Genetic Operators 

The GP system applies the reproduction, mutation and crossover operators to the 
selected parent to create the next generation.  The reproduction operator basically 
clones the chosen parent. Figure 4.3.1 provides an overview of the crossover process.   

0 1

2

0 1

3

b/0a/0

a/0

a/1

b/0

b/1

b/1

a/0

a/1

a/0 b/0

a/1

b/1
b/0

1. Randomly choose crossover points in both parents

P1: P2:

4

2
a/1, b/0

2. Swap the subgraphs rooted at the crossover points. 
Randomly allocate external edges to nodes in the new graph.

b/0
0 1

23

a/0

a/1
a/1

a/1
b/0

a/1
b/0

b/1
0 1

23 b/1

a/1

b/0

a/0

b/0
a/0

a/0

O1: O2:

 

Fig. 4.3.1. Application of the crossover operator 

The crossover operator randomly selects crossover points in copies of both the 
selected parents.  The subgraphs rooted at these points are swapped.  Internal edges 
refer to those edges directed at nodes remaining in the parent while external edges 
refer to edges that were connected to nodes in the removed subgraph. In Figure 4.3.1 
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internal edges are illustrated by a solid line and external edges by a broken line. The 
external edges in both parents are randomly allocated to target nodes in the newly 
inserted subgraphs.   

The mutation operator replaces a randomly chosen subgraph in the selected parent 
with a newly generated subgraph.  All external edges, i.e. edges that were previously 
connected to nodes in the removed subgraph, are randomly redirected to nodes in the 
new subgraph.  This process is illustrated in Figure 4.3.2. 

P

0

2

b/0

a/1

a/0

a/0
b/0

3

b/0

b/0

a/1

1

0

b/0

a/1

a/0

b/0

1 0

b/0

a/1

a/0

b/0

1

3

a/0
b/1

1. Randomly select a mutation
point in the parent

2. Remove the subgraph rooted at this
point

3. Insert the newly created
subgraph

 

Fig. 4.3.2. Application of the mutation operator 

Genetic operators often produce offspring that have worse fitness than their parents.  
Unfortunately, in such cases these operators impede the success of the GP 

algorithm in finding solutions.  Thus, non-destructive versions of the both these 
operators, i.e. genetic operators that produce offspring that are at least as fit as their 
parents, have been implemented and will be used if needed.  In both cases the 
operation is repeated until an offspring at least as good as the parent (or one of the 
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parents in the case of crossover) is produced.  A limit is set on the number of 
improvement steps.  If this limit is exceeded the offspring with worse fitness than its 
parent is accepted. 

5   Experimental Methodology 

The study reported in this paper is an initial attempt at evaluating genetic 
programming as a means of evolving finite transducers.  Hence, the genetic 
programming system proposed in the previous section will be tested on the standard 
finite transducer benchmarks described in the general literature on theory of machines 
and formal languages such as [9].  These benchmarks are listed in Table 5.1.  Based 
on the findings of this study, revisions will be made to the original system and further 
evaluations will be performed in a specific application domain such as natural 
language processing. 

Table 5.1. Mealy machine data set (from [9] and [10]) 

Machine  Description Example 

M1 
Mealy machine that outputs a 1 for each substring 
‘aaa’, Σ = {a, b}. 

Input: aaaaabaaa 
Output: 001000001 

M2 Mealy machine that outputs a 1 for each substring 
‘aab’, Σ = {a, b}. 

Input: abaabaab 
Output: 00001001 

M3 Mealy machine that takes a binary string in 
reverse order as input and outputs a binary string 
representing the number input incremented by 1. 

Input: 001 
Output: 101 

M4 
Mealy machine that outputs a 1 at every double 
letter, Σ = {a, b}. 

Input: baaabbabb 
Output: 001101001 

M5 Mealy machine that takes a binary string as input 
and outputs the 1's complement of the string. 

Input: 011010 
Output: 100101 

M6 Mealy machine that takes a binary string as input 
and outputs a string consisting of E’s and O’s 
such that an E occurs at a position if the number 
of 1's read in so far is even and an O if it is odd. 

Input: 11100101 
Output: 
OEOOOEEO 

 
The system was implemented in Java (JDK 1.5.0_6) and all simulations were run 

on a Windows based 1.86 GHz PC with 1GB of RAM.   
The random number generator used is that provided by the JDK library.  The GP 

parameters used are tabulated in Table 5.2.  Note that the application rates of the 
genetic operators were empirically derived.  A different number of fitness cases were 
needed for each language and ranged from a minimum of 20 to a maximum of 56 
fitness cases.   
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Table 5.2. GP Parameters 

Population size 2000 

Selection method Tournament selection 

Tournament size 5 

Maximum number of nodes 6 

Maximum generations 50 

Crossover rate 85% 

Mutation rate 5% 

Reproduction rate 10% 

Fitness cases  Pairs of input and corresponding output strings. 

Raw fitness The number of correct output strings. 

Termination criteria A solution has been found or 50 generations are 
completed. 

The next section discusses the performance of the proposed GP system when 
applied to the benchmarks in Table 5.1. 

6   Results and Discussion 

The genetic programming system proposed in section 4 was applied to the data set in 
Table 5.1.  The system was able to generate general solutions for all six machines. 
Ten runs were performed for each machine.  Each solution was evolved in under a 
minute.  The only other study applying evolutionary algorithms to the induction of 
finite transducers is that conducted by Lucas [8].  However, the domain for which 
transducers have been evolved is different from those presented in this paper and thus 
a direct comparison of the results is not possible.  Hence, the evolved solutions are 
compared to human-generated solutions. 

A solution for each of the machines and the corresponding “human generated” 
solutions are listed in Table 6.1.  Note that for all six machines the evolved solutions 
are equivalent to the “human generated” solutions and for all of these machines the 
minimal transducer was evolved.   

Table 6.2 lists the success rates for both standard and non-destructive operators.   
The standard genetic operators implemented generally produced fit individuals and 

produced a 100% success rate for all machines accept M1.  In the case of M1 the 
destructive effects of the genetic operators resulted in the lower success rate.  The 
application of non-destructive operators for this machine produces a success rate of 
100%. 
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Table 6.1. Mealy machine solutions 

Machine “ Human Generated” Solution GP Generated Solution 
M1  

q0 q1 q2

b/0

b/0

, b/0

a/0
a/0

a/1
 

 

 

0 1 2

b/0

b/0

, b/0

a/0
a/0

a/1

 
M2  

q0 q1 q2

b/0

b/0

b/1

a/0
a/0 a/0

 
 

 

0 1 2

b/0

b/0

b/1

a/0
a/0 a/0

 
M3  

start

no 
carry

carry

0/1

1/0
0/1

0/0, 1/1

1/0
 

 

 

0

0/1

1/0

0/1

0/0, 1/1

1/0

1

2

 
 

M4  

q0

a/0

b/0

a/1

b/1

q1

q2

b/0 a/0

 

0

a/0

b/0

a/1

b/1

1

2

b/0 a/0

M5 
 
 
 
 

 

q0

0/1, 1/0

 

 

0

0/1, 1/0

 
 

M6 
 
 
 
 

 

1

0/E

2

1/O 0/O

1/E
 

 

0

0/E

1

1/O 0/O

1/E
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Table 6.2. Success Rates for Mealy Machine Simulations 

Machine Standard Operators Non-destructive Operators 

M1 70% 100% 

M2 100% 100% 

M3 100% 100% 

M4 100% 100% 

M5 100% 100% 

M6 100% 100% 

7   Conclusion 

The main aim of the study presented in this paper is to assess the potential of genetic 
programming as a means of inducing finite transducers.  A GP system, using directed 
graphs to represent transducers, was implemented and tested on six standard 
transducer problems.  The results obtained are promising.  The system was able to 
evolve solutions to all six problems.  Furthermore, the solutions evolved were human 
competitive and in all cases the minimal transducer was found.  Thus, the main 
contribution of this study is the discovery of a genetic programming system, using a 
simple direct representation of each transducer, as an effective methodology for 
generating finite transducers.  Future extensions of this study will investigate applying 
the current system to specific applications in the domain of natural language 
processing.   
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