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Introduction: Human and Computational Mind

In this Chapter we compare and contrast human and computational mind,
from psychological, AI and CI perspectives.

1.1 Natural Intelligence and Human Mind

Recall that the word intelligence (plural intelligences) comes from Latin
intellegentia.1 It is a property of human mind that encompasses many related
mental abilities, such as the capacities to reason, plan, solve problems, think
abstractly, comprehend ideas and language, and learn. Although many regard
the concept of intelligence as having a much broader scope, for example in
cognitive science and computer science, in some schools of psychology ,2 the

1 Intellegentia is a combination of Latin inter = between and legere = choose, pick
out, read. Inter–lege–nt–ia, literally means ‘choosing between.’

Also, note that there is a is a scientific journal titled ‘Intelligence’, dealing with
intelligence and psychometrics. It was founded in 1977 by Douglas K. Detterman
of Case Western Reserve University. It is currently published by Elsevier and is
the official journal of the International Society for Intelligence Research.

2 Recall that psychology is an academic and applied field involving the study of
the human mind, brain, and behavior. Psychology also refers to the application
of such knowledge to various spheres of human activity, including problems of
individuals’ daily lives and the treatment of mental illness.

Psychology differs from anthropology, economics, political science, and socio-
logy in seeking to explain the mental processes and behavior of individuals.
Psychology differs from biology and neuroscience in that it is primarily concerned
with the interaction of mental processes and behavior, and of the overall processes
of a system, and not simply the biological or neural processes themselves, though
the subfield of neuropsychology combines the study of the actual neural processes
with the study of the mental effects they have subjectively produced.

The word psychology comes from the ancient Greek ‘psyche’, which means
‘soul’ or ‘mind’ and ‘ology’, which means ‘study’.
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study of intelligence generally regards this trait as distinct from creativity ,
personality , character , or wisdom.

Briefly, the word intelligence has five common meanings:

1. Capacity of human mind, especially to understand principles, truths, con-
cepts, facts or meanings, acquire knowledge, and apply it to practise; the
ability to learn and comprehend.

2. A form of life that has such capacities.
3. Information, usually secret, about the enemy or about hostile activities.
4. A political or military department, agency or unit designed to gather such

information.
5. Biological intelligent behavior represents animal’s ability to make produc-

tive decisions for a specific task, given a root objective; this decision is
based on learning which requires the ability to hold onto results from
previous tasks, as well as being able to analyze the situation; the root
objective for living organisms is simply survival; the ‘specific task’ could
be a choice of food, i.e., one that provides long steady supply of energy
as it could be a long while before the next mealtime; this is in perfect
harmony with the root biological objective – survival.

According to Encyclopedia Britannica, intelligence is the ability to adapt
effectively to the environment, either by making a change in oneself or by
changing the environment or finding a new one. Different investigators have
emphasized different aspects of intelligence in their definitions. For example,
in a 1921 symposium on the definition of intelligence, the American psycho-
logist Lewis Terman emphasized the ability to think abstractly , while another
American psychologist, Edward Thorndike, emphasized learning and the abil-
ity to give good responses to questions. In a similar 1986 symposium, however,
psychologists generally agreed on the importance of adaptation to the envi-
ronment as the key to understanding both what intelligence is and what it
does. Such adaptation may occur in a variety of environmental situations. For
example, a student in school learns the material that is required to pass or
do well in a course; a physician treating a patient with an unfamiliar dis-
ease adapts by learning about the disease; an artist reworks a painting in
order to make it convey a more harmonious impression. For the most part,
adapting involves making a change in oneself in order to cope more effectively,
but sometimes effective adaptation involves either changing the environment
or finding a new environment altogether. Effective adaptation draws upon a
number of cognitive processes, such as perception, learning, memory, reason-
ing, and problem solving. The main trend in defining intelligence, then, is
that it is not itself a cognitive or mental process, but rather a selective com-
bination of these processes purposively directed toward effective adaptation
to the environment. For example, the physician noted above learning about a
new disease adapts by perceiving material on the disease in medical literature,
learning what the material contains, remembering crucial aspects of it that are
needed to treat the patient, and then reasoning to solve the problem of how
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to apply the information to the needs of the patient. Intelligence, in sum, has
come to be regarded as not a single ability but an effective drawing together of
many abilities. This has not always been obvious to investigators of the sub-
ject, however, and, indeed, much of the history of the field revolves around
arguments regarding the nature and abilities that constitute intelligence.

Now, let us quickly reflect on the above general intelligence–related
keywords.

Reason

Recall that in the philosophy of arguments, reason is the ability of the human
mind to form and operate on concepts in abstraction, in varied accordance
with rationality and logic —terms with which reason shares heritage. Reason
is thus a very important word in Western intellectual history, to describe a
type or aspect of mental thought which has traditionally been claimed as dis-
tinctly human, and not to be found elsewhere in the animal world. Discussion
and debate about the nature, limits and causes of reason could almost be
said to define the main lines of historical philosophical discussion and debate.
Discussion about reason especially concerns:

(a) its relationship to several other related concepts: language, logic, con-
sciousness etc,

(b) its ability to help people decide what is true, and
(c) its origin.

The concept of reason is connected to the concept of language, as reflected
in the meanings of the Greek word ‘logos’, later to be translated by Latin
‘ratio’ and then French ‘raison’, from which the English word derived. As rea-
son, rationality, and logic are all associated with the ability of the human
mind to predict effects as based upon presumed causes, the word ‘reason’
also denotes a ground or basis for a particular argument, and hence is used
synonymously with the word ‘cause’.

It is sometimes said that the contrast between reason and logic extends
back to the time of Plato3 and Aristotle4. Indeed, although they had no
3 Plato (c. 427 — c. 347 BC) was an immensely influential ancient Greek philoso-

pher, a student of Socrates, writer of philosophical dialogues, and founder of the
Academy in Athens where Aristotle studied. Plato lectured extensively at the
Academy, and wrote on many philosophical issues, dealing especially in politics,
ethics, metaphysics, and epistemology. The most important writings of Plato are
his dialogues, although some letters have come down to us under his name. It is
believed that all of Plato’s authentic dialogues survive. However, some dialogues
ascribed to Plato by the Greeks are now considered by the consensus of schol-
ars to be either suspect (e.g., First Alcibiades, Clitophon) or probably spurious
(such as Demodocus, or the Second Alcibiades). The letters are all considered to
probably be spurious, with the possible exception of the Seventh Letter. Socrates
is often a character in Plato’s dialogues. How much of the content and argument
of any given dialogue is Socrates’ point of view, and how much of it is Plato’s, is
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separate Greek word for logic as opposed to language and reason, Aristotle’s
syllogism (Greek ‘syllogismos’) identified logic clearly for the first time as a
distinct field of study: the most peculiarly reasonable (‘logikê’) part of rea-
soning, so to speak.

heavily disputed, since Socrates himself did not write anything; this is often
referred to as the ‘Socratic problem’. However, Plato was doubtless strongly
influenced by Socrates’ teachings.

Platonism has traditionally been interpreted as a form of metaphysical dualism,
sometimes referred to as Platonic realism, and is regarded as one of the earlier
representatives of metaphysical objective idealism. According to this reading,
Plato’s metaphysics divides the world into two distinct aspects: the intelligible
world of ‘forms’, and the perceptual world we see around us. The perceptual
world consists of imperfect copies of the intelligible forms or ideas. These forms
are unchangeable and perfect, and are only comprehensible by the use of the
intellect or understanding, that is, a capacity of the mind that does not include
sense-perception or imagination. This division can also be found in Zoroastrian
philosophy, in which the dichotomy is referenced as the Minu (intelligence) and
Giti (perceptual) worlds. Currently, in the domain of mathematical physics, this
view has been adopted by Sir Roger Penrose [Pen89].

4 Aristotle (384 BC — March 7, 322 BC) was an ancient Greek philosopher,
a student of Plato and teacher of Alexander the Great. He wrote books on
divers subjects, including physics, poetry, zoology, logic, rhetoric, government,
and biology, none of which survive in their entirety. Aristotle, along with Plato
and Socrates, is generally considered one of the most influential of ancient Greek
philosophers. They transformed Presocratic Greek philosophy into the founda-
tions of Western philosophy as we know it. The writings of Plato and Aristotle
founded two of the most important schools of Ancient philosophy.

Aristotle valued knowledge gained from the senses and in modern terms would
be classed among the modern empiricists. He also achieved a ‘grounding’ of dialec-
tic in the Topics by allowing interlocutors to begin from commonly held beliefs
(Endoxa), with his frequent aim being to progress from ‘what is known to us’
towards ‘what is known in itself’ (Physics). He set the stage for what would
eventually develop into the empirical scientific method some two millennia later.
Although he wrote dialogues early in his career, no more than fragments of these
have survived. The works of Aristotle that still exist today are in treatise form
and were, for the most part, unpublished texts. These were probably lecture notes
or texts used by his students, and were almost certainly revised repeatedly over
the course of years. As a result, these works tend to be eclectic, dense and difficult
to read. Among the most important ones are Physics, Metaphysics (or Ontology),
Nicomachean Ethics, Politics, De Anima (On the Soul) and Poetics. These works,
although connected in many fundamental ways, are very different in both style
and substance.

Aristotle is known for being one of the few figures in history who studied
almost every subject possible at the time, probably being one of the first poly-
maths. In science, Aristotle studied anatomy, astronomy, economics, embryology,
geography, geology, meteorology, physics, and zoology. In philosophy, Aristotle
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No philosopher of any note has ever argued that logic is the same as reason.
They are generally thought to be distinct, although logic is one important
aspect of reason. But the tendency to the preference for ‘hard logic’, or ‘solid
logic’, in modern times has incorrectly led to the two terms occasionally being

wrote on aesthetics, ethics, government, metaphysics, politics, psychology, rhetoric
and theology. He also dealt with education, foreign customs, literature and poetry.
His combined works practically constitute an encyclopedia of Greek knowledge.
According to Aristotle, everything is made out of the five basic elements:

1. Earth, which is cold and dry;
2. Water, which is cold and wet;
3. Fire, which is hot and dry;
4. Air, which is hot and wet; and
5. Aether, which is the divine substance that makes up the heavenly spheres and

heavenly bodies (stars and planets).

Aristotle defines his philosophy in terms of essence, saying that philosophy is ‘the
science of the universal essence of that which is actual’. Plato had defined it as the
‘science of the idea’, meaning by idea what we should call the unconditional basis
of phenomena. Both pupil and master regard philosophy as concerned with the
universal; Aristotle, however, finds the universal in particular things, and called
it the essence of things, while Plato finds that the universal exists apart from
particular things, and is related to them as their prototype or exemplar. For Aris-
totle, therefore, philosophic method implies the ascent from the study of particular
phenomena to the knowledge of essences, while for Plato philosophic method means
the descent from a knowledge of universal ideas to a contemplation of particular
imitations of those ideas. In a certain sense, Aristotle’s method is both inductive
and deductive, while Plato’s is essentially deductive from a priori principles.
In the larger sense of the word, Aristotle makes philosophy coextensive with rea-

soning, which he also called ‘science’. Note, however, that his use of the term science
carries a different meaning than that which is covered by the scientific method. “All
science (dianoia) is either practical, poetical or theoretical.” By practical science
he understands ethics and politics; by poetical, he means the study of poetry and
the other fine arts; while by theoretical philosophy he means physics, mathematics,
and metaphysics.
Aristotle’s conception of logic was the dominant form of logic up until the

advances in mathematical logic in the 19th century. Kant himself thought that
Aristotle had done everything possible in terms of logic. The Organon is the name
given by Aristotle’s followers, the Peripatetics, for the standard collection of six
of his works on logic. The system of logic described in two of these works, namely
On Interpretation and the Prior Analytics, is often called Aristotelian logic.
Aristotle was the creator of syllogisms with modalities (modal logic). The word

modal refers to the word ‘modes’, explaining the fact that modal logic deals with
the modes of truth. Aristotle introduced the qualification of ‘necessary’ and ‘pos-
sible’ premises. He constructed a logic which helped in the evaluation of truth but
which was difficult to interpret.
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seen as essentially synonymous or perhaps more often logic is seen as the
defining and pure form of reason.

However machines and animals can unconsciously perform logical
operations, and many animals (including humans) can unconsciously, asso-
ciate different perceptions as causes and effects and then make decisions or
even plans. Therefore, to have any distinct meaning at all, ‘reason’ must be
the type of thinking which links language, consciousness and logic, and at
this time, only humans are known to combine these things.

However, note that reasoning is defined very differently depending on the
context of the understanding of reason as a form of knowledge. The logical
definition is the act of using reason to derive a conclusion from certain premises
using a given methodology, and the two most commonly used explicit methods
to reach a conclusion are deductive reasoning and inductive reasoning. How-
ever, within idealist philosophical contexts, reasoning is the mental process
which informs our imagination, perceptions, thoughts, and feelings with what-
ever intelligibility these appear to contain; and thus links our experience with
universal meaning. The specifics of the methods of reasoning are of interest
to such disciplines as philosophy, logic, psychology, and artificial intelligence.

In deductive reasoning, given true premises, the conclusion must follow
and it cannot be false. In this type of reasoning, the conclusion is inherent in
the premises. Deductive reasoning therefore does not increase one’s knowledge
base and is said to be non–ampliative. Classic examples of deductive reasoning
are found in such syllogisms as the following:

1. One must exist/live to perform the act of thinking.
2. I think.
3. Therefore, I am.

In inductive reasoning, on the other hand, when the premises are true,
then the conclusion follows with some degree of probability .5 This method of

5 Recall that the word probability derives from the Latin ‘probare’ (to prove, or
to test). Informally, probable is one of several words applied to uncertain events
or knowledge, being closely related in meaning to likely, risky, hazardous, and
doubtful. Chance, odds, and bet are other words expressing similar notions. Just
as the theory of mechanics assigns precise definitions to such everyday terms
as work and force, the theory of probability attempts to quantify the notion of
probable.

The scientific study of probability is a modern development. Gambling shows
that there has been an interest in quantifying the ideas of probability for millennia,
but exact mathematical descriptions of use in those problems only arose much
later. The doctrine of probabilities dates to the correspondence of Pierre de
Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest
known scientific treatment of the subject. Jakob Bernoulli’s ‘Ars Conjectandi’
(posthumous, 1713) and Abraham de Moivre’s ‘Doctrine of Chances’ (1718)
treated the subject as a branch of mathematics.
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reasoning is ampliative, as it gives more information than what was contained
in the premises themselves. A classical example comes from David Hume:6

1. The sun rose in the east every morning up until now.
2. Therefore the sun will also rise in the east tomorrow.

A third method of reasoning is called abductive reasoning, or inference
to the best explanation. This method is more complex in its structure and
can involve both inductive and deductive arguments. The main characteristic
of abduction is that it is an attempt to favor one conclusion above others by
either attempting to falsify alternative explanations, or showing the likelihood
of the favored conclusion given a set of more or less disputable assumptions.

A fourth method of reasoning is analogy. Reasoning by analogy goes from
a particular to another particular. The conclusion of an analogy is only plausi-
ble. Analogical reasoning is very frequent in common sense, science, philosophy
and the humanities, but sometimes it is accepted only as an auxiliary method.
A refined approach is case–based reasoning .

Pierre–Simon Laplace (1774) made the first attempt to deduce a rule for the
combination of observations from the principles of the theory of probabilities.
He represented the law of probability of errors by a curve y = ϕ(x), x being any
error and y its probability, and laid down three properties of this curve: (i) it is
symmetric as to the y−axis; (ii) the x−axis is an asymptote, the probability of
the error being 0; (iii) the area enclosed is 1, it being certain that an error exists.
He deduced a formula for the mean of three observations. He also gave (1781) a
formula for the law of facility of error (a term due to Lagrange, 1774), but one
which led to unmanageable equations. Daniel Bernoulli (1778) introduced the
principle of the maximum product of the probabilities of a system of concurrent
errors.

The method of least squares is due to Adrien–Marie Legendre (1805), who
introduced it in his ‘Nouvelles méthodes pour la détermination des orbites des
comètes’ (New Methods for Determining the Orbits of Comets). In ignorance of
Legendre’s contribution, an Irish–American writer, Robert Adrain, editor of ‘The
Analyst’ (1808), first deduced the law of facility of error,

φ(x) = ce−h2x2

where c and h are constants depending on precision of observation. He gave two
proofs, the second being essentially the same as John Herschel’s (1850). Carl
Friedrich Gauss gave the first proof which seems to have been known in Europe
(the third after Adrain’s) in 1809. Further proofs were given by Laplace (1810,
1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel
(1838), W. F. Donkin (1844, 1856), and Morgan Crofton (1870).

6 David Hume (April 26, 1711 – August 25, 1776)[1] was a Scottish philosopher,
economist, and historian, as well as an important figure of Western philosophy
and of the Scottish Enlightenment.
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Plan

Recall that a plan represents a proposed or intended method of getting from
one set of circumstances to another. They are often used to move from the
present situation, towards the achievement of one or more objectives or goals.

Informal or ad–hoc plans are created by individual humans in all of their
pursuits. Structured and formal plans, used by multiple people, are more
likely to occur in projects, diplomacy, careers, economic development, military
campaigns, combat, or in the conduct of other business.

It is common for less formal plans to be created as abstract ideas, and
remain in that form as they are maintained and put to use. More formal plans
as used for business and military purposes, while initially created with and
as an abstract thought, are likely to be written down, drawn up or otherwise
stored in a form that is accessible to multiple people across time and space.
This allows more reliable collaboration in the execution of the plan.

The term planning implies the working out of sub–components in some
degree of detail. Broader–brush enunciations of objectives may qualify as
metaphorical road–maps.

Planning literally just means the creation of a plan; it can be as simple as
making a list. It has acquired a technical meaning, however, to cover the area
of government legislation and regulations related to the use of resources.

Planning can refer to the planned use of any and all resources, as for
example, in the succession of Five–Year Plans through which the government
of the Soviet Union sought to develop the country. However, the term is most
frequently used in relation to planning for the use of land and related resources,
for example in urban planning, transportation planning, and so forth.

Problem Solving

The problem solving forms part of thinking. Considered the most complex of
all intellectual functions, problem solving has been defined as higher–order
cognitive process that requires the modulation and control of more routine or
fundamental skills. It occurs if an organism or an artificial intelligence system
does not know how to proceed from a given state to a desired goal state. It is
part of the larger problem process that includes problem finding and problem
shaping.

The nature of human problem solving has been studied by psychologists
over the past hundred years. There are several methods of studying problem
solving, including: introspection,7 behaviorism,8 computer simulation and
experimental methods.

7 Introspection is contemplation on one’s self, as opposed to extrospection, the
observation of things external to one’s self. Introspection may be used synony-
mously with self–reflection and used in a similar way. Cognitive psychology
accepts the use of the scientific method, but rejects introspection as a valid method
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Beginning with the early experimental work of the Gestaltists in Germany
(e.g., [Dun35], and continuing through the 1960s and early 1970s, research on
problem solving typically conducted relatively simple, laboratory tasks that
appeared novel to participants (see, e.g. [May92]). Various reasons account for
the choice of simple novel tasks: they had clearly defined optimal solutions,
they were solvable within a relatively short time frame, researchers could
trace participants’ problem–solving steps, and so on. The researchers made the
underlying assumption, of course, that simple tasks such as the Tower of Hanoi
captured the main properties of ‘real world’ problems, and that the cognitive
processes underlying participants’ attempts to solve simple problems were
representative of the processes engaged in when solving ‘real world’ problems.
Thus researchers used simple problems for reasons of convenience, and thought
generalizations to more complex problems would become possible. Perhaps the
best–known and most impressive example of this line of research remains the
work by Newell and Simon [NS72].

See more on problem solving below.

Learning

Recall that learning is the process of acquiring knowledge, skills, attitudes, or
values, through study, experience, or teaching, that causes a change of beha-
vior that is persistent, measurable, and specified or allows an individual to
formulate a new mental construct or revise a prior mental construct (concep-
tual knowledge such as attitudes or values). It is a process that depends on

of investigation. It should be noted that Herbert Simon and Allen Newell identi-
fied the ‘thinking–aloud’ protocol, in which investigators view a subject engaged
in introspection, and who speaks his thoughts aloud, thus allowing study of his
introspection.
Introspection was once an acceptable means of gaining insight into psychologi-
cal phenomena. Introspection was used by German physiologist Wilhelm Wundt
in the experimental psychology laboratory he had founded in Leipzig in 1879.
Wundt believed that by using introspection in his experiments he would gather
information into how the subject’s minds were working, thus he wanted to exam-
ine the mind into its basic elements. Wundt did not invent this way of looking
into an individual’s mind through their experiences; rather, it can be dated back
to Socrates. Wundt’s distinctive contribution was to take this method into the
experimental arena and thus into the newly formed field of psychology.

8 Behaviorism is an approach to psychology based on the proposition that behav-
ior can be studied and explained scientifically without recourse to internal mental
states. A similar approach to political science may be found in Behavioralism. The
behaviorist school of thought ran concurrent with the psychoanalysis movement in
psychology in the 20th century. Its main influences were Ivan Pavlov, who investi-
gated classical conditioning, John B. Watson who rejected introspective methods
and sought to restrict psychology to experimental methods, and B.F. Skinner who
conducted research on operant conditioning.
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experience and leads to long–term changes in behavior potential. Behavior
potential describes the possible behavior of an individual (not actual behav-
ior) in a given situation in order to achieve a goal. But potential is not enough;
if individual learning is not periodically reinforced, it becomes shallower and
shallower, and eventually will be lost in that individual.

Short term changes in behavior potential, such as fatigue, do not constitute
learning. Some long–term changes in behavior potential result from aging and
development, rather than learning.

Education is the conscious attempt to promote learning in others. The
primary function of ‘teaching’ is to create a safe, viable, productive learn-
ing environment. Management of the total learning environment to promote,
enhance and motivate learning is a paradigm shift9 from a focus on teaching
to a focus on learning.

9 Recall that an epistemological paradigm shift was called a scientific revolution
by epistemologist and historian of science Thomas Kuhn in his 1962 book ‘The
Structure of Scientific Revolutions’, to describe a change in basic assumptions
within the ruling theory of science. It has since become widely applied to many
other realms of human experience as well.

A scientific revolution occurs, according to Kuhn, when scientists encounter
anomalies which cannot be explained by the universally accepted paradigm
within which scientific progress has thereto been made. The paradigm, in Kuhn’s
view, is not simply the current theory, but the entire worldview in which it
exists, and all of the implications which come with it. There are anomalies for all
paradigms, Kuhn maintained, that are brushed away as acceptable levels of error,
or simply ignored and not dealt with (a principal argument Kuhn uses to reject
Karl Popper’s model of falsifiability as the key force involved in scientific change).
Rather, according to Kuhn, anomalies have various levels of significance to the
practitioners of science at the time. To put it in the context of early 20th century
physics, some scientists found the problems with calculating Mercury’s perihelion
more troubling than the Michelson–Morley experiment results, and some the
other way around. Kuhn’s model of scientific change differs here, and in many
places, from that of the logical positivists in that it puts an enhanced emphasis on
the individual humans involved as scientists, rather than abstracting science into
a purely logical or philosophical venture. When enough significant anomalies have
accrued against a current paradigm, the scientific discipline is thrown into a state
of crisis, according to Kuhn. During this crisis, new ideas, perhaps ones previously
discarded, are tried. Eventually a new paradigm is formed, which gains its own
new followers, and an intellectual ‘battle’ takes place between the followers of the
new paradigm and the hold–outs of the old paradigm. Again, for early 20th cen-
tury physics, the transition between the Maxwellian electromagnetic worldview
and the Einsteinian Relativistic worldview was not instantaneous nor calm, and
instead involved a protracted set of ‘attacks’, both with empirical data as well as
rhetorical or philosophical arguments, by both sides, with the Einsteinian theory
winning out in the long–run. Again, the weighing of evidence and importance of
new data was fit through the human sieve: some scientists found the simplicity
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The stronger the stimulation for the brain, the deeper the impression that
is left in the neuronal network. Therefore a repeated, very intensive experience
perceived through all of the senses (audition, sight, smell) of an individual will
remain longer and prevail over other experiences. The complex interactions
of neurons that have formed a network in the brain determine the direction
of flow of the micro–voltage electricity that flows through the brain when a
person thinks. The characteristics of the neuronal network shaped by previous
impressions is what we call the person’s ‘character’.

The most basic learning process is imitation, one’s personal repetition of
an observed process, such as a smile. Thus an imitation will take one’s time
(attention to the details), space (a location for learning), skills (or practice),
and other resources (for example, a protected area). Through copying, most
infants learn how to hunt (i.e., direct one’s attention), feed and perform most
basic tasks necessary for survival.

The so–called Bloom’s Taxonomy10 divides the learning process into a six–
level hierarchy, where knowledge is the lowest order of cognition and evaluation
the highest [Blo80]:

of Einstein’s equations to be most compelling, while some found them more com-
plicated than the notion of Maxwell’s aether which they banished. Some found
Eddington’s photographs of light bending around the sun to be compelling, some
questioned their accuracy and meaning. Sometimes the convincing force is just
time itself and the human toll it takes, Kuhn pointed out, using a quote from
Max Planck: “A new scientific truth does not triumph by convincing its oppo-
nents and making them see the light, but rather because its opponents eventually
die, and a new generation grows up that is familiar with it.” After a given discipline
has changed from one paradigm to another, this is called, in Kuhn’s terminology,
a scientific revolution or a paradigm shift. It is often this final conclusion, the
result of the long process, that is meant when the term paradigm shift is used
colloquially: simply the (often radical) change of worldview, without reference to
the specificities of Kuhn’s historical argument.

10Benjamin Bloom (21 February 1913 – September 13, 1999) was an American
educational psychologist who made significant contributions to the classification
of educational objectives and the theory of mastery learning.
Bloom’s classification of educational objectives, known as Bloom’s Taxonomy,
incorporates cognitive, psychomotor, and affective domains of knowledge. While
working at the University of Chicago in the 1950s and ’60s, he wrote two impor-
tant books, Stability and Change in Human Characteristics and Taxonomy of
Educational Objectives (1956). Bloom’s taxonomy provides structure in which to
categorize test questions. This taxonomy helps teachers pose questions in such a
way to determine the level of understanding that a student possesses. For example,
based upon the type of question asked, a teacher can determine that a student is
competent in content knowledge, comprehension, application, analysis, synthesis
and/or evaluation. This taxonomy is organized in a hierarchal way to organize
information from basic factual recall to higher order thinking. This data table
below is from the article written by W. Huitt titled, “Bloom et al.’s Taxonomy of
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1. Knowledge is the memory of previously–learnt materials such as facts,
terms, basic concepts and answers.

2. Comprehension is the understanding of facts and ideas by organization,
comparison, translation, interpretation, and description.

3. Application is the use of new knowledge to solve problems.
4. Analysis is the examination and division of information into parts by

identifying motives or causes. A person can analyze by making inferences
and finding evidence to support generalizations.

5. Synthesis is the compilation of information in a new way by combining
elements into patterns or proposing alternative solutions.

6. Evaluation is the presentation and defense of opinions by making judg-
ments about information, validity of ideas or quality of work based on the
following set of criteria:

• Attention – the cognitive process of selectively concentrating on one thing
while ignoring other things. Examples include listening carefully to what
someone is saying while ignoring other conversations in the room (e.g. the
cocktail party problem, Cherry, 1953). Attention can also be split, as when
a person drives a car and talks on a cell phone at the same time. Sometimes
our attention shifts to matters unrelated to the external environment, this
is referred to as mind-wandering or ‘spontaneous thought’. Attention is
one of the most intensely studied topics within psychology and cognitive
neuroscience. Of the many cognitive processes associated with the human
mind (decision–making, memory, emotion, etc), attention is considered
the most concrete because it is tied so closely to perception. As such, it is
a gateway to the rest of cognition. The most famous definition of attention
was provided by one of the first major psychologists, William James11 in

the Cognitive Domain”. The table below describes the levels of Bloom’s Taxon-
omy, beginning with the lowest level of basic factual recall. Each level in the table
is defined, gives descriptive verbs that would foster each level of learning, and
describes sample behaviors of that level. Bloom’s taxonomy helps teachers better
prepare questions that would foster basic knowledge recall all the way to ques-
tioning styles that foster synthesis and evaluation. By structuring the questioning
format, teachers will be able to better understand what a child’s weaknesses and
strengths are and determine ways to help students think at a higher–level.

11William James (January 11, 1842 — August 26, 1910) was a pioneering American
psychologist and philosopher. He wrote influential books on the young science of
psychology, educational psychology, psychology of religious experience and mysti-
cism, and the philosophy of pragmatism. He gained widespread recognition with
his monumental Principles of ‘Psychology’ (1890), fourteen hundred pages in two
volumes which took ten years to complete. ‘Psychology: The Briefer Course’, was
an 1892 abridgement designed as a less rigorous introduction to the field. These
works criticized both the English associationist school and the Hegelianism of
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his 1890 book ‘Principles of Psychology’: “Everyone knows what atten-
tion is. It is the taking possession by the mind in clear and vivid form, of
one out of what seem several simultaneously possible objects or trains of
thought ... It implies withdrawal from some things in order to deal effec-
tively with others.” Most experiments show that one neural correlate of
attention is enhanced firing. Say a neuron has a certain response to a stim-
ulus when the animal is not attending to that stimulus. When the animal
attends to the stimulus, even if the physical characteristic of the stimulus
remains the same the neurons response is enhanced. A strict criterion, in
this paradigm of testing attention, is that the physical stimulus available
to the subject must be the same, and only the mental state is allowed to
change. In this manner, any differences in neuronal firing may be attributed
to a mental state (attention) rather than differences in the stimulus
itself.

• Habituation – an example of non–associative learning in which there is a
progressive diminution of behavioral response probability with repetition
of a stimulus. It is another form of integration. An animal first responds
to a sensory stimulus, but if it is neither rewarding nor harmful the animal
learns to suppress its response through repeated encounters. One example
of this can be seen in small song birds – if a stuffed owl (or similar preda-
tor) is introduced into the cage, the birds react to it as though it were a
real predator, but soon realise that it is not and so become habituated to
it. If another stuffed owl is introduced (or the same one removed and re–
introduced), the birds react to it as though it were a predator, showing that
it is only a very specific stimulus that is being ignored (namely, one par-
ticular unmoving owl in one place). This learned suppression of response
is habituation. Habituation is stimulus specific. It does not cause a gen-
eral decline in responsiveness. It functions like an average weighted history
wavelet interference filter reducing the responsiveness of the organism to
a particular stimulus. Frequently one can see opponent processes after the

his day as competing dogmatisms of little explanatory value, and sought to
re–conceive of the human mind as inherently purposive and selective.

James defined true beliefs as those that prove useful to the believer. Truth, he
said, is that which works in the way of belief. “True ideas lead us into useful
verbal and conceptual quarters as well as directly up to useful sensible termini.
They lead to consistency, stability and flowing human intercourse” but “all true
processes must lead to the face of directly verifying sensible experiences some-
where,” he wrote.

Pragmatism as a view of the meaning of truth is considered obsolete by many in
contemporary philosophy, because the predominant trend of thinking in the years
since James’ death in 1910 has been toward non–epistemic definitions of truth,
i.e., definitions that don’t make truth dependent upon the warrant of a belief.
A contemporary philosopher or logician will often be found explaining that the
statement ‘the book is on the table’ is true iff the book is on the table.
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stimulus is removed. Habituation is connected to associational reciprocal
inhibition phenomenon, opponent process, motion after effect, color con-
stancy, size constancy, and negative image after effect. Habituation is fre-
quently used in testing psychological phenomena. Both infants and adults
look less and less as a result of consistent exposure to a particular stim-
ulus. The amount of time spent looking to a presented alternate stimulus
(after habituation to the initial stimulus) is indicative of the strength of
the remembered percept of the previous stimulus. It is also used to dis-
cover the resolution of perceptual systems, for example, by habituating
a subject to one stimulus, and then observing responses to similar ones,
one can detect the smallest degree of difference that is detectable by the
subject.
Closely related to habituation is neural adaptation or sensory adaptation
– a change over time in the responsiveness of the sensory system to a con-
stant stimulus. It is usually experienced as a change in the stimulus. For
example, if one rests one’s hand on a table, one immediately feels the ta-
ble’s surface on one’s skin. Within a few seconds, however, one ceases to feel
the table’s surface. The sensory neurons stimulated by the table’s surface
respond immediately, but then respond less and less until they may not
respond at all; this is neural adaptation. More generally, neural adaptation
refers to a temporary change of the neural response to a stimulus as the
result of preceding stimulation. It is usually distinguished from memory,
which is thought to involve a more permanent change in neural responsive-
ness. Some people use adaptation as an umbrella term that encompasses
the neural correlates of priming and habituation. In most cases, adap-
tation results in a response decrease, but response facilitation does also
occur. Some adaptation may result from simple fatigue, but some may
result from an active re–calibration of the responses of neurons to ensure
optimal sensitivity. Adaptation is considered to be the cause of perceptual
phenomena like afterimages and the motion aftereffect. In the absence of
fixational eye movements, visual perception may fade out or disappear due
to neural adaptation.

• Sensitization – an example of non–associative learning in which the pro-
gressive amplification of a response follows repeated administrations of a
stimulus [BHB95]. For example, electrical or chemical stimulation of the
rat hippocampus causes strengthening of synaptic signals, a process known
as long–term potentiation (LTP). LTP is thought to underlie memory and
learning in the human brain. A different type of sensitization is that of kin-
dling, where repeated stimulation of hippocampal or amygdaloid neurons
eventually leads to seizures. Thus, kindling has been suggested as a model
for temporal lobe epilepsy. A third type is central sensitization, where no-
ciceptive neurons in the dorsal horns of the spinal cord become sensitized
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by peripheral tissue damage or inflammation. These various types indicate
that sensitization may underlie both pathological and adaptive functions
in the organism, but whether they also share the same physiological and
molecular properties is not yet established.

• Classical Pavlovian conditioning – a type of associative learning. Ivan
Pavlov described the learning of conditioned behavior as being formed
by pairing two stimuli to condition an animal into giving a certain re-
sponse. The simplest form of classical conditioning is reminiscent of what
Aristotle would have called the law of contiguity, which states that: ‘When
two things commonly occur together, the appearance of one will bring the
other to mind.’ Classical conditioning focuses on reflexive behavior or in-
voluntary behavior. Any reflex can be conditioned to respond to a formerly
neutral stimulus. The typical paradigm for classical conditioning involves
repeatedly pairing a neutral stimulus with an unconditioned stimulus. An
unconditioned reflex is formed by an unconditioned stimulus, a stimulus
that elicits a response–known as an unconditioned response–that is au-
tomatic and requires no learning and are usually apparent in all species.
The relationship between the unconditioned stimulus and unconditioned
response is known as the unconditioned reflex. The conditioned stimulus, is
an initially neutral stimulus that elicits a response–known as a conditioned
response–that is acquired through learning and can vary greatly amongst
individuals. Conditioned stimuli are associated psychologically with con-
ditions such as anticipation, satisfaction (both immediate and prolonged),
and fear. The relationship between the conditioned stimulus and condi-
tioned response is known as the conditioned (or conditional) reflex. In
classical conditioning, when the unconditioned stimulus is repeatedly or
strongly paired with a neutral stimulus the neutral stimulus becomes a
conditioned stimulus and elicits a conditioned response.

• Operant conditioning – the use of consequences to modify the occur-
rence and form of behavior. Operant conditioning is distinguished from
Pavlovian conditioning in that operant conditioning deals with the mod-
ification of voluntary behavior through the use of consequences, while
Pavlovian conditioning deals with the conditioning of involuntary re-
flexive behavior so that it occurs under new antecedent conditions.
Unlike reflexes, which are biologically fixed in form, the form of an
operant response is modifiable by its consequences. Operant condition-
ing, sometimes called instrumental conditioning or instrumental learning,
was first extensively studied by Edward Thorndike,12 who observed the

12 Edward Lee Thorndike (August 31, 1874 - August 9, 1949) was an American
psychologist who spent nearly his entire career at Teachers College, Columbia
University. His work on animal behavior and the learning process led to the
theory of connectionism.

Among Thorndike’s most famous contributions were his research on how cats
learned to escape from puzzle boxes, and his related formulation of the law of
effect. The law of effect states that responses which are closely followed by satisfy-
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behavior of cats trying to escape from home-made puzzle boxes. When
first constrained in the boxes, the cats took a long time to escape. With
experience, ineffective responses occurred less frequently and successful
responses occurred more frequently, enabling the cats to escape in less
time over successive trials. In his Law of Effect, Thorndike theorized
that successful responses, those producing satisfying consequences, were
‘stamped in’ by the experience and thus occurred more frequently. Unsuc-
cessful responses, those producing annoying consequences, were stamped
out and subsequently occurred less frequently. In short, some consequences
strengthened behavior and some consequences weakened behavior. Bur-
rhus Skinner13 built upon Thorndike’s ideas to construct a more detailed

ing consequences are associated with the situation, and are more likely to reoccur
when the situation is subsequently encountered. Conversely, if the responses are
followed by aversive consequences, associations to the situation become weaker.
The puzzle box experiments were motivated in part by Thorndike’s dislike for
statements that animals made use of extraordinary faculties such as insight in
their problem solving: “In the first place, most of the books do not give us a
psychology, but rather a eulogy of animals. They have all been about animal
intelligence, never about animal stupidity.” (Animal Intelligence, 1911).

Thorndike meant to distinguish clearly whether or not cats escaping from puz-
zle boxes were using insight. Thorndike’s instruments in answering this question
were ‘learning curves’ revealed by plotting the time it took for an animal to escape
the box each time it was in the box. He reasoned that if the animals were showing
‘insight,’ then their time to escape would suddenly drop to a negligible period,
which would also be shown in the learning curve as an abrupt drop; while animals
using a more ordinary method of trial and error would show gradual curves. His
finding was that cats consistently showed gradual learning.

Thorndike interpreted the findings in terms of associations. He asserted that
the connection between the box and the motions the cat used to escape was
‘strengthened’ by each escape. A similar, though radically reworked idea was taken
up by B.F. Skinner in his formulation of Operant Conditioning, and the associa-
tive analysis went on to figure largely in behavioral work through mid-century,
now evident in some modern work in behavior as well as modern connectionism.

13 Burrhus Frederic Skinner (March 20, 1904 – August 18, 1990) was an American
psychologist and author. He conducted pioneering work on experimental psychol-
ogy and advocated behaviorism, which seeks to understand behavior as a function
of environmental histories of experiencing consequences. He also wrote a number
of controversial works in which he proposed the widespread use of psychological
behavior modification techniques, primarily operant conditioning, in order to im-
prove society and increase human happiness; and as a form of social engineering.

Skinner was born in rural Susquehanna, Pennsylvania. He attended Hamilton
College in New York with the intention of becoming a writer and received a B.A.
in English literature in 1926. After graduation, he spent a year in Greenwich
Village attempting to become a writer of fiction, but he soon became disillusioned
with his literary skills and concluded that he had little world experience, and no
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theory of operant conditioning based on: (a) reinforcement (a consequence
that causes a behavior to occur with greater frequency), (b) punishment
(a consequence that causes a behavior to occur with less frequency), and
(c) extinction (the lack of any consequence following a response). There
are four contexts of operant conditioning:
(i) Positive reinforcement occurs when a behavior (response) is followed
by a favorable stimulus (commonly seen as pleasant) that increases the
frequency of that behavior. In the Skinner box experiment, a stimulus
such as food or sugar solution can be delivered when the rat engages in a
target behavior, such as pressing a lever.
(ii) Negative reinforcement occurs when a behavior (response) is followed
by the removal of an aversive stimulus (commonly seen as unpleasant)
thereby increasing that behavior’s frequency. In the Skinner box experi-
ment, negative reinforcement can be a loud noise continuously sounding
inside the rat’s cage until it engages in the target behavior, such as pressing
a lever, upon which the loud noise is removed.
(iii) Positive punishment (also called ‘Punishment by contingent stimula-
tion’) occurs when a behavior (response) is followed by an aversive stim-
ulus, such as introducing a shock or loud noise, resulting in a decrease in
that behavior.
(iv) Negative punishment (also called ‘Punishment by contingent with-
drawal’) occurs when a behavior (response) is followed by the removal of a
favorable stimulus, such as taking away a child’s toy following an undesired
behavior, resulting in a decrease in that behavior.

• Observational (or social) learning – learning that occurs as a function
of observing, retaining and replicating behavior observed in others. It is
most associated with the work of psychologist Albert Bandura,14 who im-
plemented some of the seminal studies in the area and initiated social
learning theory. Although observational learning can take place at any
stage in life, it is thought to be particularly important during childhood,
particularly as authority becomes important. Because of this, social learn-
ing theory has influenced debates on the effect of television violence and
parental role models. Bandura’s Bobo doll experiment is widely cited in

strong personal perspective from which to write. During this time, which Skinner
later called ‘the dark year,’ he chanced upon a copy of Bertrand Russell’s book
‘An Outline of Philosophy’, in which Russell discusses the behaviorist philosophy
of psychologist John B. Watson. At the time, Skinner had begun to take more
interest in the actions and behaviors of those around him, and some of his short
stories had taken a ‘psychological’ slant. He decided to abandon literature and
seek admission as a graduate student in psychology at Harvard University (which
at the time was not regarded as a leading institution in that field).

14 Albert Bandura (born December 4, 1925 in Mundare, Alberta) is a Canadian
psychologist most famous for his work on social learning theory (or Social Cog-
nitivism) and self efficacy. He is particularly noted for the Bobo doll experiment.
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psychology as a demonstration of observational learning and demonstrated
that children are more likely to engage in violent play with a life size re-
bounding doll after watching an adult do the same. Observational learning
allows for learning without any change in behavior and has therefore been
used as an argument against strict behaviorism which argued that behavior
change must occur for new behaviors to be acquired. Bandura called the
process of social learning modelling and gave four conditions required for
a person to successfully model the behavior of someone else: (i) attention
to the model (a person must first pay attention to a person engaging in a
certain behavior – the model); (ii) retention of details (once attending to
the observed behavior, the observer must be able to effectively remember
what the model has done); (iii) motor reproduction (the observer must
be able to replicate the behavior being observed; e.g., juggling cannot be
effectively learned by observing a model juggler if the observer does not
already have the ability to perform the component actions, i.e., throwing
and catching a ball); (iv) motivation and opportunity (the observer must
be motivated to carry out the action they have observed and remembered,
and must have the opportunity to do so; e.g., a suitably skilled person must
want to replicate the behavior of a model juggler, and needs to have an
appropriate number of items to juggle to hand). Social learning may affect
behavior in the following ways: (i) teaches new behaviors; (ii) increases
or decreases the frequency with which previously learned behaviors are
carried out; (iii) can encourage previously forbidden behaviors; (iv) can
increase or decrease similar behaviors (e.g., observing a model excelling
in piano playing may encourage an observer to excel in playing the saxo-
phone).

• Communication – the process of symbolic activity, sometimes via a
language. Specialized fields focus on various aspects of communication,
and include: (i) mass communication (academic study of various means
by which individuals and entities relay information to large segments
of the population all at once through mass media); (ii) communication
studies (academic discipline that studies communication; subdisciplines
include argumentation, speech communication, rhetoric, communication
theory, performance studies, group communication, information theory,
intercultural communication, interpersonal communication, intrapersonal
communication, marketing, organizational communication, persuasion,
propaganda, public affairs, public relations and telecommunication); (iii)
organizational communication (the study of how people communicate
within an organizational context, or the influence of, or interaction with
organizational structures in communicating/organizing), (iv) conversation
analysis (commonly abbreviated as CA, is the study of talk in interaction;
CA generally attempts to describe the orderliness, structure and sequential
patterns of interaction, whether this is institutional, in the school, doctor’s
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surgery, courts or elsewhere, or casual conversation); (v) linguistics (scien-
tific study of human language and speech; usually is conducted along two
major axes: theoretical vs. applied, and autonomous vs. contextual ); (vi)
cognitive linguistics (commonly abbreviated as CL, refers to the school of
linguistics that views the important essence of language as innately based
in evolutionary–developed and speciated faculties, and seeks explanations
that advance or fit well into the current understandings of the human
mind); (vii) sociolinguistics (the study of the effect of any and all aspects
of society, including cultural norms, expectations, and context, on the way
language is used); (viii) pragmatics (concerned with bridging the explana-
tory gap between sentence meaning and speaker’s meaning – how context
influences the interpretation is crucial); (ix) semiotics (the study of signs,
both individually and grouped in sign systems; it includes the study of
how meaning is made and understood); and (x) discourse analysis (a
general term for a number of approaches to analyzing written, spoken or
signed language use; includes: discourse grammar, rhetoric and stylistics).
Communication as a named and unified discipline has a history of con-
testation that goes back to the Socratic dialogues, in many ways making
it the first and most contestatory of all early sciences and philosophies.
Seeking to define ‘communication’ as a static word or unified discipline
may not be as important as understanding communication as a family of
resemblances with a plurality of definitions as Ludwig Wittgenstein15 had
put forth. Some definitions are broad, recognizing that animals can com-
municate, and some are more narrow, only including human beings within
the parameters of human symbolic interaction. Nonetheless, communica-
tion is usually described along three major dimensions: content, form, and
destination. In the advent of ‘noise’ (internal psychological noise and/or
physical realities) these three components of communication often become
skewed and inaccurate. (between parties, communication content include
acts that declare knowledge and experiences, give advice and commands,
and ask questions. These acts may take many forms, including gestures
(nonverbal communication, sign language and body language), writing, or
verbal speaking. The form depends on the symbol systems used. Together,
communication content and form make messages that are sent towards a
destination. The target can be oneself, another person (in interpersonal
communication), or another entity (such as a corporation or group). There

15 Ludwig Josef Johann Wittgenstein (April 26, 1889 – April 29, 1951) was an
Austrian philosopher who contributed several ground-breaking works to contem-
porary philosophy, primarily on the foundations of logic, the philosophy of mathe-
matics, the philosophy of language, and the philosophy of mind. He is widely
regarded as one of the most influential philosophers of the 20th century.
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are many theories of communication, and a commonly held assumption is
that communication must be directed towards another person or entity.
This essentially ignores intrapersonal communication (note intra–, not
inter–) via diaries or self–talk. Interpersonal conversation can occur in
dyads and groups of various sizes, and the size of the group impacts the
nature of the talk. Small–group communication takes place in settings of
between three and 12 individuals, and differs from large group interaction
in companies or communities. This form of communication formed by a
dyad and larger is sometimes referred to as the psychological model of
communication where in a message is sent by a sender through channel to
a receiver. At the largest level, mass communication describes messages
sent to huge numbers of individuals through mass media, although there
is debate if this is an interpersonal conversation.

Language

Recall that a language is a system of signals, such as voice sounds, gestures
or written symbols that encode or decode information.

Human spoken and written languages can be described as a system of
symbols (sometimes known as lexemes) and the grammars (rules) by which
the symbols are manipulated. The word ‘language’ is also used to refer to
common properties of languages.

Language learning is normal in human childhood. Most human languages
use patterns of sound or gesture for symbols which enable communication
with others around them. There are thousands of human languages, and these
seem to share certain properties, even though many shared properties have
exceptions.

Languages are not just sets of symbols. They also often conform to a rough
grammar, or system of rules, used to manipulate the symbols. While a set of
symbols may be used for expression or communication, it is primitive and
relatively unexpressive, because there are no clear or regular relationships
between the symbols.

Human languages are usually referred to as natural languages, and the
science of studying them is linguistics, with Ferdinand de Saussure16 and
Noam Chomsky17 as the most influential figures.

16 Ferdinand de Saussure (November 26, 1857 – February 22, 1913) was a Geneva–
born Swiss linguist whose ideas laid the foundation for many of the significant
developments in linguistics in the 20th century. He is widely considered the ‘father’
of 20th–century linguistics.

Saussure’s most influential work, ‘Course in General Linguistics’, was published
posthumously in 1916 by former students Charles Bally and Albert Sechehaye on
the basis of notes taken from Saussure’s lectures at the University of Geneva.
The Course became one of the seminal linguistics works of the 20th century, not
primarily for the content (many of the ideas had been anticipated in the works
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Humans and computer programs have also constructed other languages,
including constructed languages such as Esperanto, Ido, Interlingua, Klingon,
programming languages, and various mathematical formalisms. These

of other 19th century linguists), but rather for the innovative approach that
Saussure applied in discussing linguistic phenomena. Its central notion is that
language may be analyzed as a formal system of differential elements, apart from
the messy dialectics of realtime production and comprehension.

Saussure’s famous quotes are:
“A sign is the basic unit of language (a given language at a given time). Every

language is a complete system of signs. Parole (the speech of an individual) is an
external manifestation of language.”

“A linguistic system is a series of differences of sound combined with a series
of differences of ideas.”

17 Noam Avram Chomsky (born December 7, 1928) is the Institute Professor Emer-
itus of linguistics at the MIT. Chomsky is credited with the creation of the theory
of generative grammar, considered to be one of the most significant contributions
to the field of theoretical linguistics made in the 20th century. He also helped
spark the cognitive revolution in psychology through his review of B.F. Skinner’s
‘Verbal Behavior’, in which he challenged the behaviorist approach to the study of
mind and language dominant in the 1950s. His naturalistic approach to the study
of language has also affected the philosophy of language and mind. He is also cred-
ited with the establishment of the so–called Chomsky hierarchy , a classification
of formal languages in terms of their generative power.

‘Syntactic Structures’ was a distillation of Chomsky’s book ‘Logical Structure
of Linguistic Theory’ (1955) in which he introduces transformational grammars.
The theory takes utterances (sequences of words) to have a syntax which can be
(largely) characterised by a formal grammar; in particular, a context–free gram-
mar extended with transformational rules. Children are hypothesised to have an
innate knowledge of the basic grammatical structure common to all human lan-
guages (i.e. they assume that any language which they encounter is of a certain
restricted kind). This innate knowledge is often referred to as universal gram-
mar. It is argued that modelling knowledge of language using a formal grammar
accounts for the ‘productivity’ of language: with a limited set of grammar rules
and a finite set of terms, humans are able to produce an infinite number of sen-
tences, including sentences no one has previously said.

Chomsky’s ideas have had a strong influence on researchers investigating the
acquisition of language in children, though some researchers who work in this area
today do not support Chomsky’s theories, often advocating emergentist or con-
nectionist theories reducing language to an instance of general processing mecha-
nisms in the brain.

Chomsky’s work in linguistics has had major implications for modern psycho-
logy. For Chomsky linguistics is a branch of cognitive psychology; genuine insights
in linguistics imply concomitant understandings of aspects of mental processing
and human nature. His theory of a universal grammar was seen by many as a
direct challenge to the established behaviorist theories of the time and had major
consequences for understanding how language is learned by children and what,



22 1 Introduction: Human and Computational Mind

languages are not necessarily restricted to the properties shared by human
languages.

Some of the areas of the human brain involved in language processing are:
Broca’s area, Wernicke’s area, Supramarginal gyrus, Angular gyrus, Primary
Auditory Cortex.

Mathematics and computer science use artificial entities called formal lan-
guages (including programming languages and markup languages, but also
some that are far more theoretical in nature). These often take the form of
character strings, produced by some combination of formal grammar and sem-
antics of arbitrary complexity.

The classification of natural languages can be performed on the basis of
different underlying principles (different closeness notions, respecting different
properties and relations between languages); important directions of present
classifications are:

1. Paying attention to the historical evolution of languages results in a gen-
etic classification of languages—which is based on genetic relatedness of
languages;

2. Paying attention to the internal structure of languages (grammar) results
in a typological classification of languages—which is based on similarity
of one or more components of the language’s grammar across languages;
and

3. Respecting geographical closeness and contacts between language-
speaking communities results in areal groupings of languages.

4. The different classifications do not match each other and are not expected
to, but the correlation between them is an important point for many lin-
guistic research works. (Note that there is a parallel to the classification
of species in biological phylogenetics here: consider monophyletic vs. poly-
phyletic groups of species.)

The task of genetic classification belongs to the field of historical–
comparative linguistics, of typological—to linguistic typology. The world’s
languages have been grouped into families of languages that are believed to
have common ancestors. Some of the major families are the Indo–European
languages, the Afro–Asiatic languages, the Austronesian languages, and the
Sino–Tibetan languages. The shared features of languages from one family
can be due to shared ancestry.

An example of a typological classification is the classification of languages
on the basis of the basic order of the verb, the subject and the object in a
sentence into several types: SVO, SOV, VSO, and so on, languages. (English,
for instance, belongs to the SVO language type.)

exactly, is the ability to use language. Many of the more basic principles of this
theory (though not necessarily the stronger claims made by the principles and
parameters approach described above) are now generally accepted in some circles.
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The shared features of languages of one type (= from one typological
class) may have arisen completely independently. (Compare with analogy in
biology.) Their cooccurence might be due to the universal laws governing the
structure of natural languages—language universals.

The following language groupings can serve as some linguistically signi-
ficant examples of areal linguistic units, or sprachbunds: Balkan linguistic
union, or the bigger group of European languages; Caucasian languages.
Although the members of each group are not closely genetically related, there
is a reason for them to share similar features, namely: their speakers have been
in contact for a long time within a common community and the languages con-
verged in the course of the history. These are called ‘areal features’.

Mathematics and computer science use artificial entities called formal lan-
guages (including programming languages and markup languages, but also
some that are far more theoretical in nature). These often take the form
of character strings, produced by some combination of formal grammar and
semantics of arbitrary complexity.

Abstraction

Recall that abstraction is the process of reducing the information content
of a concept, typically in order to retain only information which is relevant
for a particular purpose. For example, abstracting a leather soccer ball to
a ball retains only the information on general ball attributes and behavior.
Similarly, abstracting an emotional state to happiness reduces the amount of
information conveyed about the emotional state.

Abstraction typically results in complexity reduction leading to a simpler
conceptualization of a domain in order to facilitate processing or understand-
ing of many specific scenarios in a generic way.

In philosophical terminology, abstraction is the thought process wherein
ideas are distanced from objects.

Abstraction uses a strategy of simplification, wherein formerly concrete
details are left ambiguous, vague, or undefined; thus effective communica-
tion about things in the abstract requires an intuitive or common experience
between the communicator and the communication recipient.

Abstractions sometimes have ambiguous referents; for example, ‘happiness’
(when used as an abstraction) can refer to as many things as there are people
and events or states of being which make them happy. Likewise, ‘architecture’
refers not only to the design of safe, functional buildings, but also to elements
of creation and innovation which aim at elegant solutions to construction
problems, to the use of space, and at its best, to the attempt to evoke an
emotional response in the builders, owners, viewers and users of the building.

Abstraction in philosophy is the process (or, to some, the alleged process) in
concept–formation of recognizing some set of common features in individuals,
and on that basis forming a concept of that feature. The notion of abstraction
is important to understanding some philosophical controversies surrounding
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empiricism and the problem of universals. It has also recently become popular
in formal logic under predicate abstraction.

Some research into the human brain suggests that the left and right hemi-
spheres differ in their handling of abstraction. One side handles collections
of examples (e.g., examples of a tree) whereas the other handles the concept
itself.

Abstraction in mathematics is the process of extracting the underlying
essence of a mathematical concept, removing any dependence on real world
objects with which it might originally have been connected, and generalizing
it so that it has wider applications.

Many areas of mathematics began with the study of real world problems,
before the underlying rules and concepts were identified and defined as abs-
tract structures. For example, geometry has its origins in the calculation of
distances and areas in the real world; statistics has its origins in the calculation
of probabilities in gambling; and algebra started with methods of solving
problems in arithmetic.

Abstraction is an ongoing process in mathematics and the historical deve-
lopment of many mathematical topics exhibits a progression from the con-
crete to the abstract. Take the historical development of geometry as an
example; the first steps in the abstraction of geometry were made by the
ancient Greeks, with Euclid being the first person (as far as we know) to doc-
ument the axioms of plane geometry. In the 17th century Descartes introduced
Cartesian coordinates which allowed the development of analytic geometry.
Further steps in abstraction were taken by Lobachevsky, Bolyai and Gauss18

18 Gauss–Bolyai–Lobachevsky space is a non–Euclidean space with a negative
Gaussian curvature, that is, a hyperbolic geometry . The main topic of conversa-
tion involving Gauss–Bolyai–Lobachevsky space involves the impossible process
(at least in Euclidean geometry) of squaring the circle. The space is named after
Carl Gauss, János Bolyai, and Nikolai Lobachevsky.

Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German mathe-
matician and scientist of profound genius who contributed significantly to many
fields, including number theory, analysis, differential geometry, geodesy, mag-
netism, astronomy and optics. Sometimes known as ‘the prince of mathematicians’
and ‘greatest mathematician since antiquity’, Gauss had a remarkable influence in
many fields of mathematics and science and is ranked among one of history’s most
influential mathematicians. Gauss was a child prodigy, of whom there are many
anecdotes pertaining to his astounding precocity while a mere toddler, and made
his first ground–breaking mathematical discoveries while still a teenager. He com-
pleted Disquisitiones Arithmeticae, his magnum opus, at the age of twenty–one
(1798), though it would not be published until 1801. This work was fundamen-
tal in consolidating number theory as a discipline and has shaped the field to
the present day. One of his most important results is his ‘Theorema Egregrium’,
establishing an important property of the notion of curvature as a foundation of
differential geometry.

János Bolyai (December 15, 1802–January 27, 1860) was a Hungarian mathe-
matician. Between 1820 and 1823 he prepared a treatise on a complete system
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who generalized the concepts of geometry to develop non–Euclidean geome-
tries. Later in the 19th century mathematicians generalized geometry even fur-
ther, developing such areas as geometry in n dimensions, projective geometry,
affine geometry, finite geometry and differential geometry. Finally Felix Klein’s
‘Erlangen program’19 identified the underlying theme of all of these geome-
tries, defining each of them as the study of properties invariant under a given
group of symmetries. This level of abstraction revealed deep connections bet-
ween geometry and abstract algebra.

The advantages of abstraction are:
(i) It reveals deep connections between different areas of mathematics;
(ii) Known results in one area can suggest conjectures in a related area;

and
(iii) Techniques and methods from one area can be applied to prove results

in a related area.
An abstract structure is a formal object that is defined by a set of laws,

properties, and relationships in a way that is logically if not always historically
independent of the structure of contingent experiences, for example, those
involving physical objects. Abstract structures are studied not only in logic
and mathematics but in the fields that apply them, as computer science, and in
the studies that reflect on them, as philosophy and especially the philosophy of
mathematics. Indeed, modern mathematics has been defined in a very general
sense as the study of abstract structures by the Bourbaki group.20

of non–Euclidean geometry. Bolyai’s work was published in 1832 as an appendix
to a mathematics textbook by his father. Gauss, on reading the Appendix, wrote
to a friend saying “I regard this young geometer Bolyai as a genius of the first
order.” In 1848 Bolyai discovered not only that Lobachevsky had published a
similar piece of work in 1829, but also a generalisation of this theory.

Nikolai Ivanovich Lobachevsky (December 1, 1792–February 24, 1856
(N.S.) was a Russian mathematician. Lobachevsky’s main achievement is the
development (independently from János Bolyai) of non–Euclidean geometry.
Before him, mathematicians were trying to deduce Euclid’s fifth postulate from
other axioms. Lobachevsky would instead develop a geometry in which the fifth
postulate was not true.

19 Felix Christian Klein (April 25, 1849, Düsseldorf, Germany – June 22, 1925,
Göttingen) was a German mathematician, known for his work in group theory,
function theory, non-Euclidean geometry, and on the connections between geome-
try and group theory. His 1872 Erlangen Program, classifying geometries by their
underlying symmetry groups, was a hugely influential synthesis of much of the
mathematics of the day.

20 Nicolas Bourbaki is the collective allonym under which a group of (mainly French)
20th-century mathematicians wrote a series of books presenting an exposition of
modern advanced mathematics, beginning in 1935. With the goal of founding all
of mathematics on set theory, the group strove for utmost rigour and generality,
creating some new terminology and concepts along the way.

While Nicolas Bourbaki is an invented personage, the Bourbaki group is
officially known as the Association des collaborateurs de Nicolas Bourbaki
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The main disadvantage of abstraction is that highly abstract concepts are
more difficult to learn, and require a degree of mathematical maturity and
experience before they can be assimilated.

In computer science, abstraction is a mechanism and practice to reduce
and factor out details so that one can focus on a few concepts at a time.

The concept is by analogy with abstraction in mathematics. The mathe-
matical technique of abstraction begins with mathematical definitions; this
has the fortunate effect of finessing some of the vexing philosophical issues of
abstraction. For example, in both computing and in mathematics, numbers
are concepts in the programming languages, as founded in mathematics. Imp-
lementation details depend on the hardware and software, but this is not a
restriction because the computing concept of number is still based on the
mathematical concept.

Roughly speaking, abstraction can be either that of control or data. Con-
trol abstraction is the abstraction of actions while data abstraction is that
of data structures. For example, control abstraction in structured program-
ming is the use of subprograms and formatted control flows. Data abstraction
is to allow for handling data bits in meaningful manners. For example, it is
the basic motivation behind data–type. Object–oriented programming can be
seen as an attempt to abstract both data and code.

Creativity

Now, recall that creativity is a mental process involving the generation of new
ideas or concepts, or new associations between existing ideas or concepts. From
a scientific point of view, the products of creative thought (sometimes referred
to as divergent thought) are usually considered to have both originality and

(‘association of collaborators of Nicolas Bourbaki’), which has an office at the
École Normale Supérieure in Paris.

The emphasis on rigour may be seen as a reaction to the work of Jules–Henri
Poincaré, who stressed the importance of free–flowing mathematical intuition, at
a cost in completeness (i.e., proof) in presentation. The impact of Bourbaki’s
work initially was great on many active research mathematicians world–wide.

Notations introduced by Bourbaki include: the symbol ∅ for the empty set ,
and the terms injective, surjective, and bijective.

Aiming at a completely self-contained treatment of most of modern mathe-
matics based on set theory, the group produced the following volumes (with the
original French titles in parentheses):

I Set theory (Théorie des ensembles);
II Algebra (Algèbre);
III General Topology (Topologie générale);
IV Functions of one real variable (Fonctions d’une variable réelle);
V Topological vector spaces (Espaces vectoriels topologiques);
VI Integration (Intégration);
VII Commutative algebra (Algèbre commutative); and
VIII Lie groups and algebras (Groupes et algèbres de Lie).
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appropriateness. An alternative, more everyday conception of creativity is
that it is simply the act of making something new. Although intuitively a
simple phenomenon, it is in fact quite complex. It has been studied from
the perspectives of behavioral psychology, social psychology, psychometrics,
cognitive science, artificial intelligence, philosophy, history, economics, design
research, business, and management, among others. The studies have covered
everyday creativity, exceptional creativity and even artificial creativity. Unlike
many phenomena in science, there is no single, authoritative perspective or
definition of creativity. Unlike many phenomena in psychology, there is no
standardized measurement technique.

Creativity has been attributed variously to divine intervention, cognitive
processes, the social environment, personality traits, and chance (‘accident’,
‘serendipity’). It has been associated with genius, mental illness and humor.
Some say it is a trait we are born with; others say it can be taught with
the application of simple techniques. Although popularly associated with art
and literature, it is also an essential part of innovation and invention and is
important in professions such as business, economics, architecture, industrial
design, science and engineering.

Despite, or perhaps because of, the ambiguity and multi–dimensional
nature of creativity, entire industries have been spawned from the pursuit
of creative ideas and the development of creativity techniques. This mysteri-
ous phenomenon, though undeniably important and constantly visible, seems
to lie tantalizingly beyond the grasp of scientific investigation.

More than 60 different definitions of creativity can be found in the psycho-
logical literature (see [Tay88]). The etymological root of the word in English
and most other European languages comes from the Latin ‘creatus’, which
literally means ‘to have grown’. Perhaps the most widespread conception of
creativity in the scholarly literature is that creativity is manifested in the
production of a creative work (for example, a new work of art or a scientific
hypothesis) that is both novel and useful. Colloquial definitions of creativity
are typically descriptive of activity that results in producing or bringing about
something partly or wholly new; in investing an existing object with new prop-
erties or characteristics; in imagining new possibilities that were not conceived
of before; and in seeing or performing something in a manner different from
what was thought possible or normal previously.

A useful distinction has been made by [Rho61], between the creative per-
son, the creative product, the creative process, and the creative ‘press’ or envi-
ronment. Each of these factors are usually present in creative activity. This has
been elaborated by [Joh72], who suggested that creative activity may exhibit
several dimensions including sensitivity to problems on the part of the creative
agent, originality, ingenuity, unusualness, usefulness, and appropriateness in
relation to the creative product, and intellectual leadership on the part of the
creative agent .

Boden [Bod04] noted that it is important to distinguish between ideas
which are psychologically creative (which are novel to the individual mind
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which had the idea), and those which are historically creative (which are novel
with respect to the whole of human history). Drawing on ideas from artificial
intelligence, she defines psychologically creative ideas as those which cannot
be produced by the same set of generative rules as other, familiar ideas.

Often implied in the notion of creativity is a concomitant presence of
inspiration, cognitive leaps, or intuitive insight as a part of creative thought
and action [Koe64]. Popular psychology sometimes associates creativity with
right or forehead brain activity or even specifically with lateral thinking. Some
students of creativity have emphasized an element of chance in the creative
process. Linus Pauling,21 asked at a public lecture how one creates scientific
theories, replied that one must endeavor to come up with many ideas — then
discard the useless ones.

The formal starting point of the scientific study of creativity is sometimes
considered to be J. Joy Guilford’s22 address to the American Psychological
Association in 1950, which helped to popularize the topic (see [SL99]). Since
then, researchers from a variety of fields have studied the nature of creativity

21 Linus Carl Pauling (February 28, 1901 – August 19, 1994) was an American
quantum chemist and biochemist, widely regarded as the premier chemist of the
twentieth century. Pauling was a pioneer in the application of quantum mechanics
to chemistry (quantum mechanics can, in principle, describe all of chemistry and
molecular biology), and in 1954 was awarded the Nobel Prize in chemistry for his
work describing the nature of chemical bonds. He also made important contribu-
tions to crystal and protein structure determination, and was one of the founders
of molecular biology. Pauling is noted as a versatile scholar for his expertise in
inorganic chemistry, organic chemistry, metallurgy, immunology, anesthesiology,
psychology, debate, radioactive decay, and the aftermath of nuclear weapons, in
addition to quantum mechanics and molecular biology.

Pauling received the Nobel Peace Prize in 1962 for his campaign against above-
ground nuclear testing, becoming the only person in history to individually receive
two Nobel Prizes (Marie Curie won Nobel Prizes in physics and chemistry, but
shared the former and won the latter individually; John Bardeen won two Nobel
Prizes in the field of physics, but both were shared; Frederick Sanger won two
Nobel Prizes in chemistry, but one was shared).

Later in life, he became an advocate for regular consumption of massive doses
of vitamin C, which is still regarded as unorthodox by conventional medicine.

22 Joy Paul Guilford (1897–1988) was a US psychologist, best remembered for his
psychometric study of human intelligence.

He graduated from the University of Nebraska before studying under Edward
Titchener at Cornell. He then held a number of posts at Nebraska and briefly at
the University of Southern California before becoming Director of Psychological
Research at Santa Ana Army Air Base in 1941. There he worked on the selection
and ranking of air–crew trainees.

Developing the views of L. L. Thurstone, Guilford rejected Charles Spearman’s
view that intelligence could be characterized in a single numerical parameter
and proposed that three dimensions were necessary for accurate description:
(i) content, (ii) operations, and (iii) productions. He made the important dis-
tinction between convergent and divergent production.
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from a scientific point of view. Others have taken a more pragmatic app-
roach, teaching practical creativity techniques. Three of the best–known are
Alex Osborn’s23 brainstorming techniques, Genrikh Altshuller’s24 ‘Theory of
Inventive Problem Solving’ (TIPS), and Edward de Bono’s25 lateral thinking
(1960s to present).

The neurology of creativity has been discussed by F. Balzac in [Bal06].
The study found that creative innovation requires coactivation and communi-
cation between regions of the brain that ordinarily are not strongly connected.
Highly creative people who excel at creative innovation tend to differ from
others in three ways: they have a high level of specialized knowledge, they
are capable of divergent thinking mediated by the frontal lobe, and they are
able to modulate neurotransmitters such as norepinephrine in their frontal
lobe. Thus, the frontal lobe appears to be the part of the cortex that is most
important for creativity. The study also explored the links between creativity
and sleep, mood and addiction disorders, and depression.

J. Guilford’s group developed the so–called ‘Torrance Tests of Creative
Thinking’. They involved simple tests of divergent thinking and other
problem–solving skills, which were scored on [Gui67]:

1. Fluency: the total number of interpretable, meaningful, and relevant ideas
generated in response to the stimulus;

2. Flexibility: the number of different categories of relevant responses;

23 Alex Faickney Osborn (May 24, 1888 – May 4, 1966) was an advertising manager
and the author of the creativity technique named brainstorming .

24 Genrikh Saulovich Altshuller (October 15, 1926 - September 24, 1998), created the
Theory of Inventive Problem Solving (TIPS). Working as a clerk in a patent office,
Altshuller embarked on finding some generic rules that would explain creation of
new, inventive, patentable ideas.

25 Edward de Bono (born May 19, 1933) is a psychologist and physician. De Bono
writes prolifically on subjects of lateral thinking, a concept he is believed to have
pioneered and now holds training seminars in. Dr. de Bono is also a world-famous
consultant who has worked with companies like Coca-cola and Ericsson. In 1979
he co–founded the School of Thinking with Dr Michael Hewitt–Gleeson.

De Bono has detailed a range of ‘deliberate thinking methods’ – applications
emphasizing thinking as a deliberate act rather than a reactive one. His writing
style is simple and clear, though often criticized for being dry and repetitive.
Avoiding academic terminology, he has advanced applied psychology by making
theories about creativity and perception into usable tools. A distinctive feature
of De Bono’s books is that he never acknowledges or credits the ideas of other
authors or researchers in the field of creativity.

De Bono’s work has become particularly popular in the sphere of business –
perhaps because of the perceived need to restructure corporations, to allow more
flexible working practices and to innovate in products and services. The methods
have migrated into corporate training courses designed to help employees and
executives ‘think out of the box’ / ‘think outside the box’.
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3. Originality: the statistical rarity of the responses among the test subjects;
and

4. Elaboration: the amount of detail in the responses.

Personality

On the other hand, personality is a collection of emotional, thought and
behavioral patterns unique to a person that is consistent over time. Personality
psychology is a branch of psychology which studies personality and individual
different processes – that which makes us into a person. One emphasis is on
trying to create a coherent picture of a person and all his or her major psy-
chological processes. Another emphasis views it as the study of individual
differences. These two views work together in practice. Personality psycho-
logists are interested in broad view of the individual. This often leads to an
interest in the most salient individual differences among people.

The word personality originates from the Latin persona, which means
‘mask’.26 In the History of theater of the ancient Latin world, the mask was
not used as a plot device to disguise the identity of a character, but rather
was a convention employed to represent, or typify that character.

There are several theoretical perspectives on personality in psychology,
which involve different ideas about the relationship between personality and
other psychological constructs, as well as different theories about the way
personality develops. Most theories can be grouped into one of the following
classes.

Generally the opponents to personality theories claim that personality is
‘plastic’ in time, places, moods and situations. Changing personality may in
fact resulting from diet (or lack of), medical effects, historical or subsequent
events, or learning. Stage managers (of many types) are especially skilled
in changing a person’s resulting ‘personality’. Most personality theories will
not cover such flexible nor unusual people situations. Therefore, although
personality theories do not define personality as ‘plastic’ over time like their
opponents, they do imply a drastic change in personality is highly unusual.

According to the Diagnostic and Statistical Manual of Mental Disorders
of the American Psychiatric Association, personality traits are ‘prominent
aspects of personality that are exhibited in a wide range of important social
and personal contexts.’ In other words, persons have certain characteristics
which partly determine their behavior. According to the theory, a friendly

26 A persona, in the word’s everyday usage, is a social role, or a character played by
an actor. The word derives from the Latin for ‘mask’ or ‘character’, derived from
the Etruscan word ‘phersu’, with the same meaning.

For instance, in Dostoevsky’s novel, Notes from Underground (generally con-
sidered to be the first existentialist novel), the narrator ought not to be conflated
with Dostoevsky himself, despite the fact that Dostoevsky and his narrator may
or may not have shared much in common. In this sense, the persona is basically
a mouthpiece for a particular world–view.
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person is likely to act friendly in any situation because of the traits in his
personality. One criticism of trait models of personality as a whole is that
they lead professionals in clinical psychology and lay–people alike to accept
classifications, or worse offer advice, based on superficial analysis of one’s
profile.

The most common models of traits incorporate four or five broad dimen-
sions or factors. The least controversial dimension, observed as far back as the
ancient Greeks, is simply extraversion vs. introversion (outgoing and physical–
stimulation–oriented vs. quiet and physical–stimulation–averse).

Gordon Allport27 delineated different kinds of traits, which he also called
dispositions. Central traits are basic to an individual’s personality, while sec-
ondary traits are more peripheral. Common traits are those recognized within
a culture and thus may vary from culture to culture. Cardinal traits are those
by which an individual may be strongly recognized.

Raymond Cattell’s28 research propagated a two–tiered personality struc-
ture with sixteen ‘primary factors’ (16 Personality Factors) and five ‘secondary
factors’ (see Table 1.1). Cattell referred to these 16 factors as primary fac-
tors, as opposed to the so–called ‘Big Five’ factors which he considered global
factors. All of the primary factors correlate with global factors and could
therefore be considered subfactors within them.
27 Gordon Willard Allport (November 11, 1897 - October 9, 1967) was an American

psychologist. He was born in Montezuma, Indiana, the youngest of four brothers.
One of his older brothers, Floyd Henry Allport, was an important and influential
psychologist as well. Gordon W. Allport was a long time and influential member
of the faculty at Harvard University from 1930-1967. His works include Becoming,
Pattern and Growth in Personality, The Individual and his Religion, and perhaps
his most influential book The Nature of Prejudice.

Allport was one of the first psychologists to focus on the study of the per-
sonality, and is often referred to as one of the fathers of personality psychology.
Characteristically for this ecletic and pluralistic thinker, he was also an impor-
tant contributor to social psychology as well. He rejected both a psychoanalytic
approach to personality, which he thought often went too deep, and a behav-
ioral approach, which he thought often did not go deep enough. He emphasized
the uniqueness of each individual, and the importance of the present context, as
opposed to past history, for understanding the personality.

28 Raymond Bernard Cattell (20 March 1905 – 2 February 1998) was a British and
American psychologist who theorized the existence of fluid and crystallized intel-
ligences to explain human cognitive ability. He was famously productive through-
out his 92 years, and ultimately was able to claim a combined authorship and
co–authorship of 55 books and some 500 journal articles in addition to at least
30 standardized tests. His legacy includes not just that intellectual production,
but also a spirit of scientific rigor brought to an otherwise soft science and kept
burning by his students and co–researchers whom he was survived by.

In keeping with his devotion to rigorous scientific method, Cattell was an early
proponent of the application in psychology of factor analytical methods, in place
of what he called mere ‘verbal theorizing.’ One of the most important results of
Cattell’s application of factor analysis was the derivation of 16 factors underlying
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Table 1.1. Cattell’s 16 Personality Factors

Descriptors of Low Range Primary
Factor

Descriptors of High Range

Impersonal, distant, cool,
reserved, detached, formal,
aloof (Sizothymia)

Warmth Warm, outgoing, attentive to
others, kindly, easy going,
participating, likes people
(Affectothymia)

Concrete thinking, lower
general mental capacity, less
intelligent, unable to handle
abstract problems (Lower
Scholastic Mental Capacity)

Reasoning Abstract–thinking, more
intelligent, bright, higher
general mental capacity, fast
learner (Higher Scholastic
Mental Capacity)

Reactive emotionally,
changeable, affected by feelings,
emotionally less stable, easily
upset (Lower Ego Strength)

Emotional
Stability

Emotionally stable, adaptive,
mature, faces reality calm
(Higher Ego Strength)

Deferential, cooperative, avoids
conflict, submissive, humble,
obedient, easily led, docile,
accommodating
(Submissiveness)

Dominance Dominant, forceful, assertive,
aggressive, competitive,
stubborn, bossy (Dominance)

Serious, restrained, prudent,
taciturn, introspective, silent
(Desurgency)

Liveliness Lively, animated, spontaneous,
enthusiastic, happy go lucky,
cheerful, expressive, impulsive
(Surgency)

Expedient, nonconforming,
disregards rules, self indulgent
(Low Super Ego Strength)

Rule–
Consciousness

Rule–conscious, dutiful,
conscientious, conforming,
moralistic, staid, rule bound
(High Super Ego Strength)

Shy, threat–sensitive, timid,
hesitant, intimidated (Threctia)

Social
Boldness

Socially bold, venturesome,
thick skinned, uninhibited
(Parmia)

Utilitarian, objective,
unsentimental, tough minded,
self–reliant, no–nonsense, rough
(Harria)

Sensitivity Sensitive, aesthetic,
sentimental, tender minded,
intuitive, refined (Premsia)

Trusting, unsuspecting,
accepting, unconditional, easy
(Alaxia)

Vigilance Vigilant, suspicious, skeptical,
distrustful, oppositional
(Protension)

Grounded, practical, prosaic,
solution oriented, steady,
conventional (Praxernia)

Abstractedness Abstract, imaginative, absent
minded, impractical, absorbed
in ideas (Autia)

Forthright, genuine, artless,
open, guileless, naive,
unpretentious, involved
(Artlessness)

Privateness Private, discreet, nondisclosing,
shrewd, polished, worldly,
astute, diplomatic (Shrewdness)
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Self–Assured, unworried,
complacent, secure, free of
guilt, confident, self satisfied
(Untroubled)

Apprehension Apprehensive, self doubting,
worried, guilt prone, insecure,
worrying, self blaming (Guilt
Proneness)

Traditional, attached to
familiar, conservative,
respecting traditional ideas
(Conservatism)

Openness to
Change

Open to change, experimental,
liberal, analytical, critical, free
thinking, flexibility
(Radicalism)

Group–oriented, affiliative, a
joiner and follower dependent
(Group Adherence)

Self–Reliance Self–reliant, solitary,
resourceful, individualistic, self
sufficient (Self-Sufficiency)

Tolerated disorder, unexacting,
flexible, undisciplined, lax,
self-conflict, impulsive, careless
of social rules, uncontrolled
(Low Integration)

Perfectionism Perfectionistic, organized,
compulsive, self-disciplined,
socially precise, exacting will
power, control, self-sentimental
(High Self–Concept Control)

Relaxed, placid, tranquil,
torpid, patient, composed low
drive (Low Ergic Tension)

Tension Tense, high energy, impatient,
driven, frustrated, over
wrought, time driven. (High
Ergic Tension)

A different model was proposed by Hans Eysenck,29 who believed that just
three traits: extroversion, neuroticism and psychoticism – were sufficient to
describe human personality. Eysenck was one of the first psychologists to study
personality with the method of factor analysis, a statistical technique intro-
duced by Charles Spearman30 and expanded by Raymond Cattell. Eysenck’s

human personality. He called these 16 factors source traits because he believed
that they provide the underlying source for the surface behaviors that we think
of as personality. (‘Psychology and Life, 7 ed.’ by Richard Gerrig and Philip
Zimbardo.) This theory of 16 personality factors and the instruments used to
measure them are known collectively as the 16 Personality Factors.

29 Hans Jürgen Eysenck (March 4, 1916 – September 4, 1997) was an eminent psy-
chologist, most remembered for his work on intelligence and personality, though
he worked in a wide range of areas. At the time of his death, Eysenck was the
living psychologist most frequently cited in science journals.

Hans Eysenck was born in Germany, but moved to England as a young man in
the 1930s because of his opposition to the Nazi party. Eysenck was the founding
editor of the journal Personality and Individual Differences, and authored over
50 books and over 900 academic articles. He aroused intense debate with his
controversial dealing with variation in IQ among racial groups.

30 Charles Edward Spearman (September 10, 1863 - September 7, 1945) was an
English psychologist known for work in statistics, as a pioneer of factor analysis,
and for Spearman’s rank correlation coefficient. He also did seminal work on
models for human intelligence, including his theory that disparate cognitive test
scores reflect a single general factor and coining the term g factor. Spearman had
an unusual background for a psychologist. After 15 years as an officer in the British
Army he resigned to study for a PhD in experimental psychology. In Britain
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results suggested two main personality factors [Eys92a, Eys92b]. The first fac-
tor was the tendency to experience negative emotions, and Eysenck referred
to it as ‘neuroticism’. The second factor was the tendency enjoy positive
events, especially social events, and Eysenck named it ‘extraversion’. The
two personality dimensions were described in his 1947 book ‘Dimensions of
Personality’. It is common practice in personality psychology to refer to the
dimensions by the first letters, E and N . E and N provided a 2–dimensional
space to describe individual differences in behavior. An analogy can be made
to how latitude and longitude describe a point on the face of the earth. Also,
Eysenck noted how these two dimensions were similar to the four personality
types first proposed by the ancient Greek physician Galen31:

psychology was generally seen as a branch of philosophy and Spearman chose to
study in Leipzig under Wilhelm Wundt. Besides Spearman had no conventional
qualifications and Leipzig had liberal entrance requirements. He started in 1897
and after some interruption (he was recalled to the army during the South African
War) he obtained his degree in 1906. He had already published his seminal paper
on the factor analysis of intelligence (1904). Spearman met and impressed the
psychologist William McDougall who arranged for Spearman to replace him when
he left his position at University College London. Spearman stayed at University
College until he retired in 1931. Initially he was Reader and head of the small
psychological laboratory. In 1911 he was promoted to the Grote professorship of
the Philosophy of Mind and Logic. His title changed to Professor of Psychology in
1928 when a separate Department of Psychology was created. When Spearman
was elected to the Royal Society in 1924 the citation read “Dr. Spearman has
made many researches in experimental psychology. His many published papers
cover a wide field, but he is especially distinguished by his pioneer work in the
application of mathematical methods to the analysis of the human mind, and his
original studies of correlation in this sphere. He has inspired and directed research
work by many pupils.”

Spearman was strongly influenced by the work of Francis Galton. Galton did
pioneering work in psychology and developed correlation, the main statistical tool
used by Spearman. Spearman developed rank correlation (1904) and the widely
used correction for attenuation (1907). His statistical work was not appreciated
by his University College colleague Karl Pearson and there was long feud between
them. Although Spearman achieved most recognition for his statistical work, he
regarded this work as subordinate to his quest for the fundamental laws of psy-
chology (see [WZZ03] for details).

31 Galen, (Latin: Claudius Galenus of Pergamum) was an ancient Greek physician.
The forename ‘Claudius’ is absent in Greek texts; it was first documented in
texts from the Renaissance. Galen’s views dominated European medicine for over
a thousand years.

Galen transmitted Hippocratic medicine all the way to the Renaissance. His On
the Elements According to Hippocrates describes the philosopher’s system of four
bodily humours, blood, yellow bile, black bile and phlegm, which were identified
with the four classical elements, and in turn with the seasons. He created his own
theories from those principles, and much of Galen’s work can be seen as building
on the Hippocratic theories of the body, rather than being purely innovative. In
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1. High N and High E = Choleric type;
2. High N and Low E = Melancholic type;
3. Low N and High E = Sanguine type; and
4. Low N and Low E = Phlegmatic type.

The third dimension, ‘psychoticism’, was added to the model in the
late 1970s, based upon collaborations between Eysenck and his wife, Sybil
B.G. Eysenck, the current editor of Personality and Individual Differences
(see [Eys69, Eys76]).

The major strength of Eysenck’s model was to provide detailed theory of
the causes of personality (see his 1985 book ‘Decline and Fall of the Freudian
Empire’). For example, Eysenck proposed that extraversion was caused by
variability in cortical arousal; ‘introverts are characterized by higher levels
of activity than extraverts and so are chronically more cortically aroused
than extraverts’. While it seems counterintuitive to suppose that introverts
are more aroused than extraverts, the putative effect this has on behavior
is such that the introvert seeks lower levels of stimulation. Conversely, the
extravert seeks to heighten their arousal to a more optimal level (as predicted
by the Yerkes–Dodson Law) by increased activity, social engagement and other
stimulation–seeking behaviors.

Differences between Cattell and Eysenck emerged due to preferences for
different forms of factor analysis, with Cattell using oblique, Eysenck ortho-
gonal, rotation to analyze the factors that emerged when personality ques-
tionnaires were subject to statistical analysis. Today, the Big Five factors
have the weight of a considerable amount of empirical research behind them.
Building on the work of Cattell and others, Lewis Goldberg32 proposed a five–
dimensional personality model, nicknamed the ‘Big Five’ personality traits:

Extroversion (i.e., ‘extroversion vs. introversion’ above; outgoing and
physical–stimulation–oriented vs. quiet and physical–stimulation–averse);

turn, he mainly ignored Latin writings of Celsus, but accepted that the ancient
works of Asclepiades had sound theory.

Galen’s own theories, in accord with Plato’s, emphasized purposeful creation by
a single Creator (‘Nature’ – Greek ‘phusis’) – a major reason why later Christian
and Muslim scholars could accept his views. His fundamental principle of life was
pneuma (air, breath) that later writers connected with the soul. These writings
on philosophy were a product of Galen’s well rounded education, and through-
out his life Galen was keen to emphasize the philosophical element to medicine.
Pneuma physicon (animal spirit) in the brain took care of movement, perception,
and senses. Pneuma zoticon (vital spirit) in the heart controlled blood and body
temperature. ‘Natural spirit’ in the liver handled nutrition and metabolism. How-
ever, he did not agree with the Pneumatist theory that air passed through the
veins rather than blood.

32 Lewis R. Goldberg is an American personality psychologist and a professor emer-
itus at the University of Oregon. Among his other accomplishments, Goldberg is
closely associated with the Big Five taxonomy of personality. He has published
well over 100 research articles and has been active on editorial boards.
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1. Neuroticism (i.e., emotional stability; calm, unperturbable, optimistic vs.
emotionally reactive, prone to negative emotions);

2. Agreeableness (i.e., affable, friendly, conciliatory vs. aggression aggressive,
dominant, disagreeable);

3. Conscientiousness (i.e., dutiful, planful, and orderly vs. spontaneous, flex-
ible, and unreliable); and

4. Openness to experience (i.e., open to new ideas and change vs. traditional
and staid).

Character

A character structure is a system of relatively permanent motivational and
other traits that are manifested in the characteristic ways that an individual
relates to others and reacts to various kinds of challenges. The word ‘structure’
indicates that these several characteristics and/or learned patterns of behavior
are linked in such a way as to produce a state that can be highly resistant to
change. The idea has its roots in the work of Sigmund Freud33 and several of
his followers, the most important of whom (in this respect) is Erich Fromm.34

Among other important participants in the establishment of this concept must
surely be counted Erik Erikson.35

Among the earliest factors that determine an individual’s eventual charac-
ter structure are his or her genetic characteristics and early childhood nurture
and education. A child who is well nurtured and taught in a relatively benign
and consistent environment by loving adults who intend that the child should

33 Sigmund Freud (May 6, 1856–September 23, 1939) was an Austrian neurologist
and the founder of the psychoanalytic school of psychology. Freud is best known
for his studies of sexual desire, repression, and the unconscious mind. He is com-
monly referred to as ‘the father of psychoanalysis’ and his work has been tremen-
dously influential in the popular imagination–popularizing such notions as the
unconscious, defence mechanisms, Freudian slips and dream symbolism – while
also making a long-lasting impact on fields as diverse as literature, film, marxist
and feminist theories, literary criticism, philosophy, and of course, psychology.

34 Erich Pinchas Fromm (March 23, 1900 – March 18, 1980) was an internation-
ally renowned German-American psychologist and humanistic philosopher. He is
associated with what became known as the Frankfurt School of critical thinkers.

Central to Fromm’s world view was his interpretation of the Talmud, which he
began studying as a young man under Rabbi J. Horowitz and later studied under
Rabbi Salman Baruch Rabinkow while working towards his doctorate in sociology
at the University of Heidelberg and under Nehemia Nobel and Ludwig Krause
while studying in Frankfurt. Fromm’s grandfather and two great grandfathers on
his father’s side were rabbis, and a great uncle on his mother’s side was a noted
Talmudic scholar. However, Fromm turned away from orthodox Judaism in 1926
and turned towards secular interpretations of scriptural ideals.

35 Erik Homburger Erikson (June 15, 1902 – May 12, 1994) was a developmental
psychologist and psychoanalyst known for his theory on social development of
human beings, and for coining the phrase identity crisis.
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learn how to make objective appraisals regarding the environment will be
likely to form a normal or productive character structure. On the other hand,
a child whose nurture and/or education are not ideal, living in a treacher-
ous environment and interacting with adults who do not take the long–term
interests of the child to heart will be more likely to form a pattern of behav-
ior that suits the child to avoid the challenges put forth by a malign social
environment. The means that the child invents to make the best of a hos-
tile environment. Although this may serve the child well while in that bad
environment, it may also cause the child to react in inappropriate ways, ways
damaging to his or her own interests, when interacting with people in a more
ideal social context. Major trauma that occurs later in life, even in adulthood,
can sometimes have a profound effect. However, character may also develop
in a positive way according to how the individual meets the psychosocial chal-
lenges of the life cycle (Erikson).

Freud’s first paper on character described the anal character consisting
of stubbornness, stinginess and extreme neatness. He saw this as a reaction
formation to the child’s having to give up pleasure in anal eroticism.The posi-
tive version of this character is the conscientious, inner directed obsessive.
Freud also described the erotic character as both loving and dependent. And
the narcissistic character as the natural leader, aggressive and independent
because of not internalizing a strong super ego.

For Erich Fromm, character develops as the way in which an individual
structures modes of assimilation and relatedness. The character types are
almost identical to Freud’s but Fromm gives them different names, recep-
tive, hoarding, exploitative. Fromm adds the marketing type as the person
who continually adapts the self to succeed in the new service economy. For
Fromm, character types can be productive or unproductive. Fromm notes that
character structures develop in each individual to enable him or her to inter-
act successfully within a given society, to adapt to its mode of production and
social norms may be very counter–productive when used in a different society.

Wisdom

On the other hand, wisdom is the ability, developed through experience,
insight and reflection, to discern truth and exercise good judgment. It is
sometimes conceptualized as an especially well developed form of common
sense. Most psychologists regard wisdom as distinct from the cognitive abili-
ties measured by standardized intelligence tests. Wisdom is often considered
to be a trait that can be developed by experience, but not taught. When
applied to practical matters, the term wisdom is synonymous with prudence.
Some see wisdom as a quality that even a child, otherwise immature, may pos-
sess independent of experience or complete knowledge. The status of wisdom
or prudence as a virtue is recognized in cultural, philosophical and religious
sources. Some define wisdom in a utilitarian sense, as foreseeing consequences
and acting to maximize the long–term common good.
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A standard philosophical definition says that wisdom consists of making
the best use of available knowledge. As with all decisions, a wise decision may
be made with incomplete information. The technical philosophical term for the
opposite of wisdom is folly. For example, in his Metaphysics, Aristotle defines
wisdom as knowledge of causes: why things exist in a particular fashion.

Beyond the simple expedient of experience (which may be considered the
most difficult way to gain wisdom as through the ‘school of hard knocks’),
there are a variety of other avenues to gaining wisdom which vary accord-
ing to different philosophies. For example, the so–called freethinkers36believe
that wisdom may come from pure reason and perhaps experience. Recall
that freethought is a philosophical doctrine that holds that beliefs should be
formed on the basis of science and logical principles and not be comprised by
authority, tradition or any other dogmatic or otherwise fallacious belief sys-
tem that restricts logical reasoning. The cognitive application of freethought
is known as freethinking , and practitioners of freethought are known as free-
thinkers. Freethought holds that individuals should neither accept nor reject
ideas proposed as truth without recourse to knowledge and reason. Thus,
freethinkers strive to build their beliefs on the basis of facts, scientific in-
quiry, and logical principles, independent of the factual/logical fallacies and
intellectually-limiting effects of authority, cognitive bias, conventional wisdom,
popular culture, prejudice, sectarianism, tradition, urban legend and all other
dogmatic or otherwise fallacious principles. When applied to religion, the phi-
losophy of freethought holds that, given presently–known facts, established
scientific theories, and logical principles, there is insufficient evidence to sup-
port the existence of supernatural phenomena. A line from ‘Clifford’s Credo’
by the 19th Century British mathematician and philosopher William Clif-
ford37 perhaps best describes the premise of freethought: “It is wrong always,

36 Freethought is a philosophical doctrine that holds that beliefs should be formed
on the basis of science and logical principles and not be comprised by author-
ity, tradition or any other dogmatic or otherwise fallacious belief system that
restricts logical reasoning. The cognitive application of freethought is known as
freethinking, and practitioners of freethought are known as freethinkers.

37 William Kingdon Clifford, FRS (May 4, 1845 – March 3, 1879) was an English
mathematician who also wrote a fair bit on philosophy. Along with Hermann
Grassmann, he invented what is now termed geometric algebra, a special case
being the Clifford algebras named in his honour, which play a role in contemporary
mathematical physics. He was the first to suggest that gravitation might be a
manifestation of an underlying geometry. His philosophical writings coined the
phrase ‘mind–stuff’.

Influenced by Riemann and Lobachevsky, Clifford studied non–Euclidean
geometry. In 1870, he wrote On the space theory of matter, arguing that energy
and matter are simply different types of curvature of space. These ideas later
played a fundamental role in Albert Einstein’s general theory of relativity. Yet
Clifford is now best remembered for his eponymous Clifford algebras, a type of
associative algebra that generalizes the complex numbers and William Rowan
Hamilton’s quaternions. The latter resulted in the octonions (biquaternions),
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everywhere, and for anyone, to believe anything upon insufficient evidence.”
Since many popular beliefs are based on dogmas, freethinkers’ opinions are
often at odds with commonly–established views.

On the other hand, there is also a common belief that wisdom comes
from intuition or, ‘superlogic’, as it is called by Tony Buzan,38 inventor of
mind maps. For example, holists believe that wise people sense, work with
and align themselves and others to life. In this view, wise people help oth-
ers appreciate the fundamental interconnectedness of life. Also, some religions
hold that wisdom may be given as a gift from God. For example, Buddha
taught that a wise person is endowed with good bodily conduct, good verbal
conduct and good mental conduct and a wise person does actions that are un-
pleasant to do but give good results and doesn’t do actions that are pleasant
to do but give bad results; this is called karma. According to Hindu scrip-
tures, spiritual wisdom – jnana alone can lead to liberation. Confucius stated
that wisdom can be learned by three methods: (i) reflection (the noblest),
(ii) imitation (the easiest) and (iii) experience (the bitterest).

1.1.1 Human Intelligence

At least two major ‘consensus’ definitions of intelligence have been proposed.
First, from ‘Intelligence: Knowns and Unknowns’, a report of a task force
convened by the American Psychological Association39 in 1995 (see [APS98]):

which he employed to study motion in non–Euclidean spaces and on certain sur-
faces, now known as Klein–Clifford spaces. He showed that spaces of constant
curvature could differ in topological structure. He also proved that a Riemann
surface is topologically equivalent to a box with holes in it. On Clifford algebras,
quaternions, and their role in contemporary mathematical physics.

38 Tony Buzan (1942–) is the originator of mind mapping and coined the term mental
literacy. He was born in London and received double Honours in psychology,
English, mathematics and the General Sciences from the University of British
Columbia in 1964. He is probably best known for his book, Use Your Head, his
promotion of mnemonic systems and his mind–mapping techniques. Following
his 1970s series for the BBC, many of his ideas have been set into his series of
five books: Use Your Memory, Master Your Memory, Use Your Head, The Speed
Reading Book and The Mind Map Book.

In essence, Buzan teaches “Learn how your brain learns rapidly and naturally.”
His work is partly based on the explosion of brain research that has taken place
since the late 1950s, and the work on the left and right brain by psychologist
Robert Ornstein and Nobel Laureate Roger Wolcott Sperry.

39 The American Psychological Association (APA) is a professional organization
representing psychology in the US. It has around 150,000 members and an annual
budget of around $70m. The APA mission statement is to “advance psychology
as a science and profession and as a means of promoting health, education, and
human welfare.” The APA was founded in July 1892 at Clark University by a
group of 26 men. Its first president was G. Stanley Hall. There are currently 54
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Individuals differ from one another in their ability to understand complex
ideas, to adapt effectively to the environment, to learn from experience,
to engage in various forms of reasoning, to overcome obstacles by taking
thought. Although these individual differences can be substantial, they are
never entirely consistent: a given person’s intellectual performance will vary
on different occasions, in different domains, as judged by different criteria.
Concepts of ‘intelligence’ are attempts to clarify and organize this complex
set of phenomena.

A second definition of intelligence comes from the ‘Mainstream Science on
Intelligence’, which was signed by 52 intelligence researchers in 1994 (also see
[APS98]): Intelligence is a very general mental capability that, among other
things, involves the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly and learn from experience. It is
not merely book learning, a narrow academic skill, or test–taking smarts.
Rather, it reflects a broader and deeper capability for comprehending our
surroundings, i.e., ‘catching on’, ‘making sense’ of things, or ‘figuring out’
what to do.

Individual intelligence experts have offered a number of similar definitions:

(i) David Wechsler:40 “ ... the aggregate or global capacity of the individual
to act purposefully, to think rationally, and to deal effectively with his
environment.”

(ii) Cyril Burt:41 “ ... innate general cognitive ability.”
(iii) Howard Gardner:42 “ To my mind, a human intellectual competence

must entail a set of skills of problem solving, enabling the individual to
resolve genuine problems or difficulties that he or she encounters and,
when appropriate, to create an effective product, and must also entail
the potential for finding or creating problems, and thereby laying the
groundwork for the acquisition of new knowledge.”

professional divisions in the APA. It is affiliated with 58 state and territorial and
Canadian provincial associations.

40 David Wechsler (January 12, 1896, Lespedi, Romania – May 2, 1981, New York,
New York) was a leading Romanian-American psychologist. He developed well–
known intelligence scales, such as the Wechsler Adult Intelligence Scale (WAIS)
and the Wechsler Intelligence Scale for Children (WISC).

41 Sir Cyril Lodowic Burt (March 3, 1883 — October 10, 1971) was a prominent
British educational psychologist. He was a member of the London School of Dif-
ferential Psychology. Some of his work was controversial for its conclusions that
genetics substantially influence mental and behavioral traits. After his death, he
was famously accused of scientific fraud.

42 Howard Gardner (born in Scranton, Pennsylvania, USA in 1943) is a psychologist
based at Harvard University best known for his theory of multiple intelligences.
In 1981 he was awarded a MacArthur Prize Fellowship.
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(iv) Richard Herrnstein43 and Charles Murray: “ ... cognitive ability.”
(v) Robert Sternberg:44 “... goal–directed adaptive behavior.”

Psychometric Definition of Intelligence and Its Criticisms

Despite the variety of concepts of intelligence, the most influential approach
to understanding intelligence (i.e., with the most supporters and the most
published research over the longest period of time) is based on psychometric
testing ,45 which regards intelligence as cognitive ability.

43 Richard J. Herrnstein (May 20, 1930 – September 13, 1994) was a prominent
researcher in comparative psychology who did pioneering work on pigeon intel-
ligence employing the Experimental Analysis of Behavior and formulated the
‘Matching Law’ in the 1960s, a breakthrough in understanding how reinforce-
ment and behavior are linked. He was the Edgar Pierce Professor of psychology
at Harvard University and worked with B. F. Skinner in the Harvard pigeon lab,
where he did research on choice and other topics in behavioral psychology. Her-
rnstein became more broadly known for his work on the correlation between race
and intelligence, first in the 1970s, then with Charles Murray, discussed in their
controversial best–selling 1994 book, The Bell Curve. Herrnstein described the
behavior of hyperbolic discounting, in which people will choose smaller payoffs
sooner instead of larger payoffs later. He developed a type of non–parametric
statistics that he dubbed ρ.

44 Robert J. Sternberg (borne 8 December 1949) is a psychologist and psychometri-
cian and the Dean of Arts and Sciences at Tufts University. He was formerly IBM
Professor of Psychology and Education at Yale University and the President of
the American Psychological Association. Sternberg currently sits on the editorial
board of Intelligence. Sternberg has proposed the so–called Triarchic theory of in-
telligence and a triangular theory of love. He is the creator (with Todd Lubart) of
the investment theory of creativity, which states that creative people buy low and
sell high in the world of ideas, and a propulsion theory of creative contributions,
which states that creativity is a form of leadership.

45 Psychometrics is the field of study concerned with the theory and technique of
psychological measurement, which includes the measurement of knowledge, abil-
ities, attitudes, and personality traits. The field is primarily concerned with the
study of differences between individuals. It involves two major research tasks,
namely: (i) the construction of instruments and procedures for measurement; and
(ii) the development and refinement of theoretical approaches to measurement.
Much of the early theoretical and applied work in psychometrics was under-
taken in an attempt to measure intelligence. The origin of psychometrics has
connections to the related field of psychophysics. Charles Spearman, a pioneer
in psychometrics who developed approaches to the measurement of intelligence,
studied under Wilhelm Wundt and was trained in psychophysics. The psychome-
trician L.L. Thurstone later developed and applied a theoretical approach to the
measurement referred to as the law of comparative judgment, an approach which
has close connections to the psychophysical theory developed by Ernst Heinrich
Weber and Gustav Fechner. In addition, Spearman and Thurstone both made im-
portant contributions to the theory and application of factor analysis, a statistical
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Recall that psychometrics is the field of study concerned with the theory
and technique of psychological measurement, which includes the measurement
of knowledge, abilities, attitudes, and personality traits. The field is primarily
concerned with the study of differences between individuals. It involves two
major research tasks, namely:

(i) the construction of instruments and procedures for measurement; and
(ii) the development and refinement of theoretical approaches to measure-

ment. Much of the early theoretical and applied work in psychometrics was
undertaken in an attempt to measure intelligence.

The origin of psychometrics has connections to the related field of psy-
chophysics. Charles Spearman, a pioneer in psychometrics who developed
approaches to the measurement of intelligence, studied under Wilhelm
Wundt46 and was trained in psychophysics. The psychometrician Louis

method that has been used extensively in psychometrics. More recently, psycho-
metric theory has been applied in the measurement of personality, attitudes and
beliefs, academic achievement, and in health-related fields. Measurement of these
unobservable phenomena is difficult, and much of the research and accumulated
art in this discipline has been developed in an attempt to properly define and
quantify such phenomena. Critics, including practitioners in the physical sciences
and social activists, have argued that such definition and quantification is im-
possibly difficult, and that such measurements are often misused. Proponents of
psychometric techniques can reply, though, that their critics often misuse data by
not applying psychometric criteria, and also that various quantitative phenomena
in the physical sciences, such as heat and forces, cannot be observed directly but
must be inferred from their manifestations. Figures who made significant con-
tributions to psychometrics include Karl Pearson, L. L. Thurstone, Georg Rasch
and Arthur Jensen.

46 Wilhelm Maximilian Wundt (August 16, 1832–August 31, 1920) was a German
physiologist and psychologist. He is generally acknowledged as a founder of ex-
perimental psychology and cognitive psychology. He is less commonly recognised
as a founding figure in social psychology, however, the later years of Wundt’s life
were spent working on Völkerpsychologie which he understood as a study into
the social basis of higher mental functioning.

Wundt combined philosophical introspection with techniques and laboratory
apparatuses brought over from his physiological studies with Helmholtz, as well
as many of his own design. This experimental introspection was in contrast to
what had been called psychology until then, a branch of philosophy where people
introspected themselves. Wundt argued in his 1904 book ‘Principles of Physio-
logical Psychology’ that “we learn little about our minds from casual, haphazard
self–observation ... It is essential that observations be made by trained observers
under carefully specified conditions for the purpose of answering a well–defined
question.”

The methods Wundt used are still used in modern psychophysical work, where
reactions to systematic presentations of well–defined external stimuli are mea-
sured in some way–reaction time, reactions, comparison with graded colors or
sounds, and so forth. His chief method of investigation was called introspection
in the terminology of the time, though observation may be a better translation.
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Thurstone47 later developed and applied a theoretical approach to the mea-
surement referred to as the law of comparative judgment, an approach which
has close connections to the psychophysical theory developed by Ernst Weber
and Gustav Fechner (see below). In addition, Spearman and Thurstone both
made important contributions to the theory and application of factor analy-
sis, a statistical method that has been used extensively in psychometrics.
More recently, psychometric theory has been applied in the measurement
of personality, attitudes and beliefs, academic achievement, and in health–
related fields. Measurement of these unobservable phenomena is difficult,
and much of the research and accumulated art in this discipline has been
developed in an attempt to properly define and quantify such phenomena.
Critics, including practitioners in the physical sciences and social activists,
have argued that such definition and quantification is impossibly difficult,
and that such measurements are often misused. Proponents of psychometric
techniques can reply, though, that their critics often misuse data by not
applying psychometric criteria, and also that various quantitative phenomena
in the physical sciences, such as heat and forces, cannot be observed directly
but must be inferred from their manifestations. Figures who made significant
contributions to psychometrics include Karl Pearson, Louis Thurstone, Georg
Rasch and Arthur Jensen.

Wundt subscribed to a ‘psychophysical parallelism’ (which entirely excludes
the possibility of a mind–body/cause–effect relationship), which was supposed
to stand above both materialism and idealism. His epistemology was an eclectic
mixture of the ideas of Spinoza, Leibniz, Kant, and Hegel.

47 Louis Leon Thurstone (29 May 1887–29 September 1955) was a U.S. pioneer
in the fields of psychometrics and psychophysics. He conceived the approach to
measurement known as the law of comparative judgment, and is well known for
his contributions to factor analysis. He is responsible for the standardized mean
and standard deviation of IQ scores used today, as opposed to the Intelligence
Test system originally used by Alfred Binet. He is also known for the development
of the Thurstone scale.

Thurstone’s work in factor analysis led him to formulate a model of intelligence
center around ‘Primary Mental Abilities’ (PMAs), which were independent group
factors of intelligence that different individuals possessed in varying degrees. He
opposed the notion of a singular general intelligence that factored into the scores of
all psychometric tests and was expressed as a mental age. This idea was unpopular
at the time due to its obvious conflicts with Spearman’s ‘mental energy’ model,
and is today still largely discredited. Nonetheless, Thurstone’s contributions to
methods of factor analysis have proved invaluable in establishing and verifying
later psychometric factor structures, and has influenced the hierarchical models
of intelligence in use in intelligence tests such as WAIS and the modern Stanford–
Binet IQ test.

The seven primary mental abilities in Thurstone’s model were verbal compre-
hension, word fluency, number facility, spatial visualization, associative memory,
perceptual speed and reasoning.
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Intelligence, narrowly defined by psychometrics, can be measured
by intelligence tests, also called intelligence quotient (IQ)48 tests.
Such intelligence tests take many forms, but the common tests (Stanford–
Binet ,49 Raven’s Progressive Matrices,50 Wechsler Adult Intelligence

48 An intelligence quotient or IQ is a score derived from a set of standardized tests
of intelligence. Intelligence tests come in many forms, and some tests use a single
type of item or question. Most tests yield both an overall score and individual
sub–tests scores. Regardless of design, all IQ tests measure the same general in-
telligence. Component tests are generally designed and chosen because they are
found to be predictable of later intellectual development, such as educational
achievement. IQ also correlates with job performance, socioeconomic advance-
ment, and ‘social pathologies’. Recent work has demonstrated links between IQ
and health, longevity, and functional literacy. However, IQ tests do not measure
all meanings of ‘intelligence’, such as creativity. IQ scores are relative (like place-
ment in a race), not absolute (like the measurement of a ruler). The average IQ
scores for many populations were rising during the 20th century: a phenomenon
called the Flynn effect . It is not known whether these changes in scores reflect real
changes in intellectual abilities. On average, IQ scores are stable over a person’s
lifetime, but some individuals undergo large changes. For example, scores can be
affected by the presence of learning disabilities.

49 The modern field of intelligence testing began with the Stanford-Binet IQ test.
The Stanford-Binet itself started with the French psychologist Alfred Binet who
was charged by the French government with developing a method of identifying
intellectually deficient children for placement in special education programs. As
Binet indicated, case studies may be more detailed and at times more helpful,
but the time required to test large numbers of people would be huge. Unfortu-
nately, the tests he and his assistant Victor Henri developed in 1896 were largely
disappointing [Fan85].

50 Raven’s Progressive Matrices are widely used non–verbal intelligence tests. In each
test item, one is asked to find the missing part required to complete a pattern.
Each Set of items gets progressively harder, requiring greater cognitive capac-
ity to encode and analyze. The test is considered by many intelligence experts
to be one of the most g–loaded in existence. The matrices are offered in three
different forms for different ability levels, and for age ranges from five through
adult: (i) Colored Progressive Matrices (younger children and special groups);
(ii) Standard Progressive Matrices (average 6 to 80 year olds); and (iii) Advanced
Progressive Matrices (above average adolescents and adults). According to their
author, Raven’s Progressive Matrices and Vocabulary tests measure the two main
components of general intelligence (originally identified by Spearman): the abil-
ity to think clearly and make sense of complexity, which is known as eductive
ability (from the Latin root ‘educere’, meaning ‘to draw out’; and the ability to
store and reproduce information, known as reproductive ability. Adequate stan-
dardization, ease of use (without written or complex instructions), and minimal
cost per person tested are the main reasons for its widespread international use
in most countries of the world. It appears to measure a type of reasoning ability
which is fundamental to making sense out of the ‘booming buzzing confusion’ in
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Scale,51 Wechsler–Bellevue I ,52 and others) all measure the same dom-
inant form of intelligence, g or ‘general intelligence factor’. The abstraction
of g stems from the observation that scores on all forms of cognitive tests
positively correlate with one another. g can be derived as the principal in-
telligence factor from cognitive test scores using the multivariate correlation
statistical method of factor analysis (FA).

all walks of life. Thus, it has among the highest predictive validities of any test
in most occupational groups and, even more importantly, in predicting social
mobility ... the level of job a person will attain and retain. Although it is sometimes
criticized for being costly, this is based on a failure to calculate cost per person
tested with re–usable test booklets that can be used up to 50 times each. The
authors of the Manual recommend that, when used in selection, RPM scores are
set in the context of information relating to Raven’s framework for the assessment
of Competence. Some of the most fundamental research in cognitive psychology
has been carried out with the RPM. The tests have been shown to work–scale–
measure the same thing – in a vast variety of cultural groups. There is no truth
in the assertion that the low mean scores obtained in some groups arise from a
general lack of familiarity with the way of thought measured by the test. Two
remarkable, and relatively recent, findings are that, on the one hand, the actual
scores obtained by people living in most countries with a tradition of literacy –
from China, Russia, and India through Europe to Kuwait – are very similar at
any point in time. On the other hand, in all countries, the scores have increased
dramatically over time ... such that 50% of our grandparents would be assigned to
special education classes if they were judged against today’s norms. Yet none of
the common explanations (e.g., access to television, changes in education, changes
in family size etc.) hold up. The explanation seems to have more in common with
those put forward to explain the parallel increase in life expectancy ... which has
doubled over the same period of time.

51 Wechsler Adult Intelligence Scale or WAIS is a general IQ test, published in
February 1955 as a revision of the Wechsler–Bellevue test (1939), standardized
for use with adults over the age of 16. In this test intelligence is quantified as the
global capacity of the individual to act purposefully, to think rationally, and to
deal effectively with the environment.

52 David Wechsler (January 12, 1896, Lespedi, Romania – May 2, 1981, New York,
New York) was a leading Romanian–American psychologist. He developed well–
known intelligence scales, such as the Wechsler Adult Intelligence Scale (WAIS)
and the Wechsler Intelligence Scale for Children (WISC). The Wechsler Adult In-
telligence Scale (WAIS) was developed first in 1939 and then called the Wechsler–
Bellevue Intelligence Test. From these he derived the Wechsler Intelligence Scale
for Children (WISC) in 1949 and the Wechsler Preschool and Primary Scale of
Intelligence (WPPSI) in 1967. Wechsler originally created these tests to find out
more about his patients at the Bellevue clinic and he found the then–current
Binet IQ test unsatisfactory. The tests are still based on his philosophy that in-
telligence is “the global capacity to act purposefully, to think rationally, and to
deal effectively with (one’s) environment.”
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Fig. 1.1. Example of positive linear correlations between 1000 pairs of numbers.
Note that each set of points correlates maximally with itself, as shown on the diag-
onal. Also, note that we have not plot the upper part of the correlation matrix as it
is symmetrical.

Correlation and Factor Analysis

Recall that correlation, also called correlation coefficient , indicates the
strength and direction of a linear relationship between two random variables
(see Figure 1.1). In other words, correlation is a measure of the relation be-
tween two or more statistical variables. In general statistical usage, correlation
(or, co–rrelation) refers to the departure of two variables from independence,
although correlation does not imply their functional causal relation. In this
broad sense there are several coefficients, measuring the degree of correlation,
adapted to the nature of data. A number of different coefficients are used for
different situations. Correlation coefficients can range from −1.00 to +1.00.
The value of −1.00 represents a perfect negative correlation while a value
of +1.00 represents a perfect positive correlation. The perfect correlation
indicates an existence of functional relation between two statistical variables.
A value of 0.00 represents a lack of correlation.Geometrically, the correlation
coefficient can also be viewed as the cosine of the angle between the two
vectors of samples drawn from the two random variables.

The most widely–used type of correlation simple linear coefficient is Pear-
son r, also called linear or product–moment correlation, which assumes that
the two variables are measured on at least interval scales, and it determines
the extent to which values of the two variables are ‘proportional’ to each other.
The value of correlation coefficient does not depend on the specific measure-
ment units used. Proportional means linearly related using regression line or
least squares line. If the correlation coefficient is squared, then the resulting
value (r2, the coefficient of determination) will represent the proportion of
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common variation in the two variables (i.e., the ‘strength’ or ‘magnitude’ of
the relationship). In order to evaluate the correlation between variables, it is
important to know this ‘magnitude’ or ‘strength’ as well as the significance of
the correlation.

The significance level calculated for each correlation is a primary source
of information about the reliability of the correlation. The significance of
correlation coefficient of particular magnitude will change depending on the
size of the sample from which it was computed. The test of significance is based
on the assumption that each of the two variables is normally distributed and
that their bivariate (‘combined’) distribution is normal (which can be tested by
examining the 3D bivariate distribution histogram). However, Monte–Carlo
studies suggest that meeting those assumptions (especially the second one)
is not absolutely crucial if our sample size is not very small and when the
departure from normality is not very large. It is impossible to formulate precise
recommendations based on those Monte–Carlo results, but many researchers
follow a rule of thumb that if our sample size is 50 or more then serious
biases are unlikely, and if our sample size is over 100 then you should not be
concerned at all with the normality assumptions.

Recall that the normal distribution, also called Gaussian distribution, is
an extremely important probability distribution in many fields. It is a family
of distributions of the same general form, differing in their location and scale
parameters: the mean (‘average’) µ and standard deviation (‘variability’) σ,
respectively. The standard normal distribution is the normal distribution with
a mean of zero and a standard deviation of one. It is often called the bell curve
because the graph of its probability density function pdf , given by the Gaussian
function

pdf =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
,

resembles a bell shape (here, 1√
2π

e−x2/2 is the pdf for the standard normal dis-
tribution). The corresponding cumulative distribution function cdf is defined
as the probability that a variable X has a value less than or equal to x, and
it is expressed in terms of the pdf as

cdf =
1

σ
√

2π

∫ x

−∞
exp
(
− (u− µ)2

2σ2

)
du.

Now, the correlation rX,Y between two normally distributed random vari-
ables X and Y with expected values µX and µY and standard deviations σX
and σY is defined as:

rXY =
cov(X,Y )
σXσY

=
E((X − µX)(Y − µY ))

σXσY
,
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where E denotes the expected value of the variable and cov means covariance.
Since µX = E(X), σ2

X = E(X2) − E2(X) and similarly for Y , we can write
(see, e.g., [CCW03])

rXY =
E(XY )− E(X)E(Y )√

E(X2)− E2(X)
√
E(Y 2)− E2(Y )

.

Assume that we have a data matrix X = {xiα} formed out of the sample
{xi} of n normally distributed simulator tests called observable–vectors or
manifest variables, defined on the sample {α = 1, . . . , N} of pilot (for the
statistical significance the practical user’s criterion is N ≥ 5n). The maximum
likelihood estimator of the Pearson correlation coefficient rik between any two
manifest variables xi and xk is defined as53

rik =
∑N

α=1(xiα − µi)(xkα − µk)√∑N
α=1(xiα − µi)2

√∑N
α=1(xkα − µk)2

,

where

µi =
1
N

N∑
α=1

xiα

is the arithmetic mean of the variable xi.54 Correlation matrix R is the matrix
R ≡ Rik = {rik} including n × n Pearson correlation coefficients rik calcu-
lated between n manifest variables {xi}. Therefore, R is symmetrical matrix
53 A time–dependent generalization Cαβ = Cαβ(t) of the correlation coefficient rXY

is the correlation function, defined as follows. For the two time–series, xα(ti) and
xβ(ti) of the same length (i = 1, . . . , T ), one defines the correlation function by

Cαβ =

∑
i
(xα(ti) − x̄α)(xβ(ti) − x̄β)√∑

i
(xα(ti) − x̄α)2

∑
j
(xβ(tj) − x̄β)2

,

where x̄ denotes a time average over the period studied. For two sets of N time–
series xα(ti) each (α, β = 1, . . . , N) all combinations of the elements Cαβ can
be used as entries of the N × N correlation matrix C. By diagonalizing C, i.e.,
solving the eigenvalue problem:

Cvk = λkv
k,

one gets the eigenvalues λk (k = 1, . . . , N) and the corresponding eigenvectors
vk = {vk

α}.
54 The following algorithm (in pseudocode) estimates bivariate correlation coefficient

with good numerical stability:
Begin

sum sq x = 0;
sum sq y = 0;
sum coproduct = 0;
mean x = x[1];
mean y = y[1];
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with ones on the main diagonal. The correlation matrix R represents the total
variability of all included manifest variables. In other words it stores all infor-
mation about all simulator tests and all pilot. Now, if the number of included
simulator tests is small, this information is meaningful for the human mind.
But if we perform one hundred tests (on five hundred pilot), then the cor-
relation matrix contains ten thousand Pearson correlation coefficients. This
is the reason for seeking the ‘latent’ factor structure, underlying the whole
co–variability contained in the correlation matrix.

Therefore, the correlation is defined only if both of the standard devia-
tions are finite and both of them are nonzero. It is a corollary of the Cauchy–
Schwarz inequality55 that the correlation cannot exceed 1 in absolute value.

for i in 2 to N:
sweep = (i - 1.0) / i;
delta x = x[i] - mean x;
delta y = y[i] - mean y;
sum sq x += delta x * delta x * sweep;
sum sq y += delta y * delta y * sweep;
sum coproduct += delta x * delta y * sweep;
mean x += delta x / i;
mean y += delta y / i ;

end for;
pop sd x = sqrt( sum sq x / N );
pop sd y = sqrt( sum sq y / N );
cov x y = sum coproduct / N;
correlation = cov x y / (pop sd x * pop sd y);

End.
55 The Cauchy–Schwarz inequality, named after Augustin Louis Cauchy (the father

of complex analysis) and Hermann Amandus Schwarz, is a useful inequality en-
countered in many different settings, such as linear algebra applied to vectors,
in analysis applied to infinite series and integration of products, and in probabil-
ity theory, applied to variances and covariances. The Cauchy–Schwarz inequality
states that if x and y are elements of real or complex inner product spaces then

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉.

The two sides are equal iff x and y are linearly dependent (or in geometrical
sense they are parallel). This contrasts with a property that the inner product of
two vectors is zero if they are orthogonal (or perpendicular) to each other. The
inequality hence confers the notion of the angle between the two vectors to an
inner product, where concepts of Euclidean geometry may not have meaningful
sense, and justifies that the notion that inner product spaces are generalizations
of Euclidean space.

An important consequence of the Cauchy–Schwarz inequality is that the inner
product is a continuous function.

Another form of the Cauchy–Schwarz inequality is given using the notation of
norm, as explained under norms on inner product spaces, as
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The correlation is 1 in the case of an increasing linear relationship, −1 in
the case of a decreasing linear relationship, and some value in between in all
other cases, indicating the degree of linear dependence between the variables.
The closer the coefficient is to either −1 or 1, the stronger the correlation
between the variables (see Figure 1.1). If the variables are independent then
the correlation is 0, but the converse is not true because the correlation coef-
ficient detects only linear dependencies between two variables. For example,
suppose the random variable X is uniformly distributed on the interval from
−1 to 1, and Y = X2. Then Y is completely determined by X, so that X
and Y are dependent, but their correlation is zero; this means that they are
uncorrelated. The correlation matrix of n random variables X1, . . . , Xn is the
n× n matrix whose ij entry is rXiXj

. If the measures of correlation used are
product–moment coefficients, the correlation matrix is the same as the covari-
ance matrix of the standardized random variables Xi/σXi

(for i = 1, . . . , n).
Consequently it is necessarily a non–negative definite matrix. The correlation
matrix is symmetrical (the correlation between Xi and Xj is the same as the
correlation between Xj and Xi).

As a higher derivation of the correlation matrix analysis and its eigen-
vectors, the so–called principal components, the factor analysis (FA) is a
multivariate statistical technique used to explain variability among a large set
of observed random variables in terms of fewer unobserved random ‘latent’
variables, called factors. The observed, or ‘manifested’ variables are modelled
as linear combinations of the factors, plus ‘error terms’. According to FA, clas-
sical bivariate correlation analysis is an artificial extraction from a rial multi-
variate world, especially in human sciences. FA originated in psychometrics,
and is used in social sciences, marketing, product management, operations re-
search, and other applied sciences that deal with large multivariate quantities
of data.

For example,56 suppose a psychologist proposes a theory that there are two
kinds of intelligence, ‘verbal intelligence’ and ‘mathematical intelligence’. Note
that these are inherently unobservable. Evidence for the theory is sought in
the examination scores of 1000 students in each of 10 different academic fields.
If a student is chosen randomly from a large population, then the student’s
10 scores are random variables. The psychologist’s theory may say that the
average score in each of the 10 subjects for students with a particular level
of verbal intelligence and a particular level of mathematical intelligence is a
certain number times the level of verbal intelligence plus a certain number
times the level of mathematical intelligence, i.e., it is a linear combination of
those two ‘factors’. The numbers by which the two ‘intelligences’ are multiplied

|〈x, y〉| ≤ ‖x‖ · ‖y‖.

56 This oversimplified example should not be taken to be realistic. Usually we are
dealing with many factors.
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are posited by the theory to be the same for all students, and are called
‘factor loadings’. For example, the theory may hold that the average student’s
aptitude in the field of amphibology is

{ 10 × the student’s verbal intelligence } + { 6 × the student’s mathe-
matical intelligence }.

The numbers 10 and 6 are the factor loadings associated with amphibol-
ogy. Other academic subjects may have different factor loadings. Two students
having identical degrees of verbal intelligence and identical degrees of math-
ematical intelligence may have different aptitudes in amphibology because
individual aptitudes differ from average aptitudes. That difference is called
the ‘error’ — an unfortunate misnomer in statistics that means the amount
by which an individual differs from what is average. The observable data that
go into factor analysis would be 10 scores of each of the 1000 students, a total
of 10,000 numbers. The factor loadings and levels of the two kinds of intel-
ligence of each student must be inferred from the data. Even the number of
factors (two, in this example) must be inferred from the data.

In the example above, for i = 1, . . . , 1, 000 the ith student’s scores are

x1,i = µ1 + �1,1vi + �1,2mi + ε1,i

...
...

...
...

...
x10,i = µ10 + �10,1vi + �10,2mi + ε10,i

where xk,i is the ith student’s score for the kth subject, µk is the mean of the
students’ scores for the kth subject, νi is the ith student’s ‘verbal intelligence’,
mi is the ith student’s ‘mathematical intelligence’, �k,j are the factor loadings
for the kth subject, for j = 1, 2; εk,i is the difference between the ith student’s
score in the kth subject and the average score in the kth subject of all students
whose levels of verbal and mathematical intelligence are the same as those of
the ith student. In matrix notation, we have

X = µ+ LF + ε,

where X is a 10× 1, 000 matrix of observable random variables, µ is a 10× 1
column vector of unobservable constants (in this case constants are quantities
not differing from one individual student to the next; and random variables are
those assigned to individual students; the randomness arises from the random
way in which the students are chosen), L is a 10× 2 matrix of factor loadings
(unobservable constants), F is a 2 × 1, 000 matrix of unobservable random
variables, ε is a 10× 1, 000 matrix of unobservable random variables.

Observe that by doubling the scale on which ‘verbal intelligence’, the first
component in each column of F , is measured, and simultaneously halving
the factor loadings for verbal intelligence makes no difference to the model.
Thus, no generality is lost by assuming that the standard deviation of verbal
intelligence is 1. Likewise for ‘mathematical intelligence’. Moreover, for similar
reasons, no generality is lost by assuming the two factors are uncorrelated
with each other. The ‘errors’ ε are taken to be independent of each other.
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The variances of the ‘errors’ associated with the 10 different subjects are not
assumed to be equal.

Mathematical basis of FA is principal components analysis (PCA), which
is a technique for simplifying a dataset, by reducing multidimensional datasets
to lower dimensions for analysis. Technically speaking, PCA is a linear trans-
formation57 that transforms the data to a new coordinate system such that
the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance
on the second coordinate, and so on. PCA can be used for dimensionality re-
duction58 in a dataset while retaining those characteristics of the dataset that
contribute most to its variance, by keeping lower–order principal components
and ignoring higher–order ones. Such low–order components often contain
the ‘most important’ aspects of the data. PCA is also called the (discrete)
Karhunen–Loève transform (or KLT, named after Kari Karhunen and Michel
Loève) or the Hotelling transform (in honor of Harold Hotelling59). PCA has
57 Recall that a linear transformation (also called linear map or linear operator)

is a function between two vector spaces that preserves the operations of vector
addition and scalar multiplication. In the language of abstract algebra, a lin-
ear transformation is a homomorphism of vector spaces, or a morphism in the
category of vector spaces over a given field.

Let V and W be vector spaces over the same field K. A function (operator)
f : V → W is said to be a linear transformation if for any two vectors x, y ∈ V
and any scalar a ∈ K, the following two conditions are satisfied:

additivity : f(x + y) = f(x) + f(y), and

homogeneity : f(ax) = af(x).

This is equivalent to requiring that for any vectors x1, . . . , xm and scalars
a1, . . . , am, the following equality holds:

f(a1x1 + · · · + amxm) = a1f(x1) + · · · + amf(xm).

58 Dimensionality reduction in statistics can be divided into two categories: feature
selection and feature extraction.

Feature selection approaches try to find a subset of the original features. Two
strategies are filter (e.g., information gain) and wrapper (e.g., genetic algorithm)
approaches. It is sometimes the case that data analysis such as regression or
classification can be carried out in the reduced space more accurately than in the
original space. On the other hand, feature extraction is applying a mapping of
the multidimensional space into a space of fewer dimensions. This means that the
original feature space is transformed by applying e.g., a linear transformation via
a principal components analysis.

Dimensionality reduction is also a phenomenon discussed widely in physics,
whereby a physical system exists in three dimensions, but its properties behave
like those of a lower–dimensional system.

59 Harold Hotelling (Fulda, Minnesota, September 29, 1895 - December 26, 1973)
was a mathematical statistician. His name is known to all statisticians because of
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the distinction of being the optimal linear transformation for keeping the sub-
space that has largest variance. This advantage, however, comes at the price of
greater computational requirement if compared, for example, to the discrete
cosine transform. Unlike other linear transforms, the PCA does not have a
fixed set of basis vectors. Its basis vectors depend on the data set.

Assuming zero empirical mean (the empirical mean of the distribution has
been subtracted from the data set), the principal component w1 of a dataset
x can be defined as

w1 = arg max
‖w‖=1

E
{(

wT x
)2}

.

With the first k − 1 components, the kth component can be found by sub-
tracting the first k − 1 principal components from x,

x̂k−1 = x−
k−1∑
i=1

wiwT
i x,

and by substituting this as the new dataset to find a principal component in

wk = arg max
‖w‖=1

E
{(

wT x̂k−1

)2}
.

Therefore, the Karhunen–Loève transform is equivalent to finding the singular
value decomposition60 of the data matrix X,

Hotelling’s T–square distribution and its use in statistical hypothesis testing and
confidence regions. He also introduced canonical correlation analysis, and is the
eponym of Hotelling’s law , Hotelling’s lemma, and Hotelling’s rule in economics.

60 Recall that in linear algebra, the singular value decomposition (SVD) is an impor-
tant factorization of a rectangular real or complex matrix, with several applica-
tions in signal processing and statistics. The SVD can be seen as a generalization
of the spectral theorem, which says that normal matrices can be unitarily diago-
nalized using a basis of eigenvectors, to arbitrary, not necessarily square, matrices.

Suppose M is an m × n matrix whose entries come from the field K, which
is either the field of real numbers, or the field of complex numbers. Then there
exists a factorization of the form:

M = UΣV ∗,

where U is an m × m unitary matrix over K, the matrix Σ is m × n with non-
negative numbers on the diagonal and zeros off the diagonal, and V ∗ denotes the
conjugate transpose of V , an n × n unitary matrix over K. Such a factorization
is called a singular–value decomposition of M .

The matrix V thus contains a set of orthonormal ‘input’ or ‘analyzing’ basis
vector directions for M. The matrix U contains a set of orthonormal ‘output’
basis vector directions for M . The matrix Σ contains the singular values, which
can be thought of as scalar ‘gain controls’ by which each corresponding input
is multiplied to give a corresponding output. A common convention is to order
the values Σii in non–increasing fashion. In this case, the diagonal matrix Σ is
uniquely determined by M (although the matrices U and V are not).
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X = WΣVT ,

and then obtaining the reduced–space data matrix Y by projecting X down
into the reduced space defined by only the first L singular vectors WL,

Y = WL
T X = ΣLVL

T .

The matrix W of singular vectors of X is equivalently the matrix W of eigen-
vectors of the matrix of observed covariances C = XXT ,

XXT = WΣ2WT .

The eigenvectors with the largest eigenvalues correspond to the dimensions
that have the strongest correlation in the dataset.

Now, FA is performed as PCA61 with subsequent orthogonal (non–
correlated) or oblique (correlated) factor rotation for the simplest possible
interpretation (see, e.g., [KM78a]).
61 The alternative FA approach is the so–called principal factor analysis (PFA, also

called principal axis factoring , PAF, and common factor analysis, PFA). PFA
is a form of factor analysis which seeks the least number of factors which can
account for the common variance (correlation) of a set of variables, whereas the
more common principal components analysis (PCA) in its full form seeks the
set of factors which can account for all the common and unique (specific plus
error) variance in a set of variables. PFA uses a PCA strategy but applies it to
a correlation matrix in which the diagonal elements are not 1’s, as in PCA, but
iteratively–derived estimates of the communalities.

In addition to PCA and PFA, there are other less–used extraction methods:

1. Image factoring: based on the correlation matrix of predicted variables rather
than actual variables, where each variable is predicted from the others using
multiple regression.

2. Maximum likelihood factoring: based on a linear combination of variables to
form factors, where the parameter estimates are those most likely to have re-
sulted in the observed correlation matrix, using MLE methods and assuming
multivariate normality. Correlations are weighted by each variable’s uniqueness.
(As discussed below, uniqueness is the variability of a variable minus its com-
munality.) MLF generates a chi–square goodness–of–fit test. The researcher can
increase the number of factors one at a time until a satisfactory goodness of
fit is obtained. Warning: for large samples, even very small improvements in
explaining variance can be significant by the goodness-of-fit test and thus lead
the researcher to select too many factors.

3. Alpha factoring: based on maximizing the reliability of factors, assuming vari-
ables are randomly sampled from a universe of variables. All other methods
assume cases to be sampled and variables fixed.

4. Unweighted least squares (ULS) factoring: based on minimizing the sum of
squared differences between observed and estimated correlation matrices, not
counting the diagonal.

5. Generalized least squares (GLS) factoring: based on adjusting ULS by weighting
the correlations inversely according to their uniqueness (more unique variables
are weighted less). Like MLF, GLS also generates a chi–square goodness–of–fit



1.1 Natural Intelligence and Human Mind 55

FA is used to uncover the latent structure (dimensions) of a set of variables.
It reduces attribute space from a larger number of variables to a smaller
number of factors and as such is a ‘non–dependent’ procedure (that is, it does
not assume a dependent variable is specified). Factor analysis could be used
for any of the following purposes:

1. To reduce a large number of variables to a smaller number of factors for
modelling purposes, where the large number of variables precludes mod-
elling all the measures individually. As such, factor analysis is integrated
in structural equation modelling (SEM),62 helping create the latent vari-
ables modeled by SEM. However, factor analysis can be and is often used
on a standalone basis for similar purposes.

test. The researcher can increase the number of factors one at a time until a
satisfactory goodness of fit is obtained.

62 Structural equation modelling (SEM) grows out of and serves purposes similar to
multiple regression, but in a more powerful way which takes into account the mod-
elling of interactions, nonlinearities, correlated independents, measurement error,
correlated error terms, multiple latent independents each measured by multiple
indicators, and one or more latent dependents also each with multiple indicators.
SEM may be used as a more powerful alternative to multiple regression, path
analysis, factor analysis, time series analysis, and analysis of covariance. That
is, these procedures may be seen as special cases of SEM, or, to put it another
way, SEM is an extension of the general linear model (GLM) of which multiple
regression is a part.

SEM is usually viewed as a confirmatory rather than exploratory procedure,
using one of three approaches:

a) Strictly confirmatory approach: A model is tested using SEM goodness–of–fit
tests to determine if the pattern of variances and covariances in the data is
consistent with a structural (path) model specified by the researcher. However
as other unexamined models may fit the data as well or better, an accepted
model is only a not–disconfirmed model.

b) Alternative models approach: One may test two or more causal models to deter-
mine which has the best fit. There are many goodness–of–fit measures, reflecting
different considerations, and usually three or four are reported by the researcher.
Although desirable in principle, this AM approach runs into the real-world prob-
lem that in most specific research topic areas, the researcher does not find in
the literature two well-developed alternative models to test.

c) Model development approach: In practice, much SEM research combines con-
firmatory and exploratory purposes: a model is tested using SEM procedures,
found to be deficient, and an alternative model is then tested based on changes
suggested by SEM modification indexes. This is the most common approach
found in the literature. The problem with the model development approach is
that models confirmed in this manner are post–hoc ones which may not be sta-
ble (may not fit new data, having been created based on the uniqueness of an
initial dataset). Researchers may attempt to overcome this problem by using a
cross–validation strategy under which the model is developed using a calibration
data sample and then confirmed using an independent validation sample.
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2. To select a subset of variables from a larger set, based on which origi-
nal variables have the highest correlations with the principal component
factors.

3. To create a set of factors to be treated as uncorrelated variables as one
approach to handling multi–collinearity in such procedures as multiple
regression

4. To validate a scale or index by demonstrating that its constituent items
load on the same factor, and to drop proposed scale items which cross–load
on more than one factor.

5. To establish that multiple tests measure the same factor, thereby giving
justification for administering fewer tests.

6. To identify clusters of cases and/or outliers.
7. To determine network groups by determining which sets of people cluster

together.

The so–called exploratory factor analysis (EFA) seeks to uncover the un-
derlying structure of a relatively large set of variables. The researcher’s à priori
assumption is that any indicator may be associated with any factor. This is

Regardless of approach, SEM cannot itself draw causal arrows in models or
resolve causal ambiguities. Theoretical insight and judgment by the researcher is
still of utmost importance.

The SEM process centers around two steps: validating the measurement model
and fitting the structural model. The former is accomplished primarily through
confirmatory factor analysis, while the latter is accomplished primarily through
path analysis with latent variables. One starts by specifying a model on the basis
of theory. Each variable in the model is conceptualized as a latent one, measured
by multiple indicators. Several indicators are developed for each model, with a
view to winding up with at least three per latent variable after confirmatory
factor analysis. Based on a large (n > 100) representative sample, factor analysis
(common factor analysis or principal axis factoring, not principle components
analysis) is used to establish that indicators seem to measure the corresponding
latent variables, represented by the factors. The researcher proceeds only when
the measurement model has been validated. Two or more alternative models (one
of which may be the null model) are then compared in terms of model fit , which
measures the extent to which the covariances predicted by the model correspond
to the observed covariances in the data. The so–called modification indices and
other coefficients may be used by the researcher to alter one or more models to
improve fit.

Advantages of SEM compared to multiple regression include more flexible as-
sumptions (particularly allowing interpretation even in the face of multicollinear-
ity), use of confirmatory factor analysis to reduce measurement error by having
multiple indicators per latent variable, the attraction of SEM’s graphical mod-
elling interface, the desirability of testing models overall rather than coefficients
individually, the ability to test models with multiple dependents, the ability to
model mediating variables, the ability to model error terms, the ability to test co-
efficients across multiple between–subjects groups, and ability to handle difficult
data (time series with autocorrelated error, non–normal data, incomplete data).
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the most common form of factor analysis. There is no prior theory and one
uses factor loadings to intuit the factor structure of the data.

On the other hand, the so–called confirmatory factor analysis (CFA) seeks
to determine if the number of factors and the loadings of measured (indicator)
variables on them conform to what is expected on the basis of pre–established
theory. Indicator variables are selected on the basis of prior theory and factor
analysis is used to see if they load as predicted on the expected number of fac-
tors. The researcher’s à priori assumption is that each factor (the number and
labels of which may be specified à priori) is associated with a specified subset
of indicator variables. A minimum requirement of confirmatory factor analysis
is that one hypothesize beforehand the number of factors in the model, but
usually also the researcher will posit expectations about which variables will
load on which factors (see, e.g., [KM78b]). The researcher seeks to determine,
for instance, if measures created to represent a latent variable really belong
together.

The factor loadings, also called component loadings in PCA, are the cor-
relation coefficients between the variables (rows) and factors (columns) in the
factor matrix . Analogous to Pearson’s r, the squared factor loading is the per-
cent of variance in that variable explained by the factor. To get the percent of
variance in all the variables accounted for by each factor, add the sum of the
squared factor loadings for that factor (column) and divide by the number of
variables (note that the number of variables equals the sum of their variances
as the variance of a standardized variable is 1). This is the same as dividing
the factor’s eigenvalue by the number of variables.

The factor scores, also called component scores in PCA, factor scores are
the scores of each case (row) on each factor (column). To compute the factor
score for a given case for a given factor, one takes the case’s standardized score
on each variable, multiplies by the corresponding factor loading of the variable
for the given factor, and sums these products. Computing factor scores allows
one to look for factor outliers. Also, factor scores may be used as variables in
subsequent modelling.

Rotation serves to make the output more understandable and is usually
necessary to facilitate the interpretation of factors. The sum of eigenvalues is
not affected by rotation, but rotation will alter the eigenvalues (and percent of
variance explained) of particular factors and will change the factor loadings.
Since alternative rotations may explain the same variance (have the same
total eigenvalue) but have different factor loadings, and since factor loadings
are used to intuit the meaning of factors, this means that different meanings
may be ascribed to the factors depending on the rotation – a problem some
cite as a drawback to factor analysis. If factor analysis is used, the researcher
may wish to experiment with alternative rotation methods to see which leads
to the most interpretable factor structure.

Varimax rotation is an orthogonal rotation of the factor axes to maximize
the variance of the squared loadings of a factor (column) on all the variables
(rows) in a factor matrix, which has the effect of differentiating the original
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variables by extracted factor. Each factor will tend to have either large or small
loadings of any particular variable. A varimax solution yields results which
make it as easy as possible to identify each variable with a single factor. This
is the most common rotation option.

The oblique rotations allow the factors to be correlated, and so a factor
correlation matrix is generated when oblique is requested. Two most common
oblique rotation methods are:

Direct oblimin rotation – the standard method when one wishes a non–
orthogonal solution , that is, one in which the factors are allowed to be corre-
lated; this will result in higher eigenvalues but diminished interpretability of
the factors; and

Promax rotation – an alternative non–orthogonal rotation method which
is computationally faster than the direct oblimin method and therefore is
sometimes used for very large datasets.

FA advantages are:

1. Offers a much more objective method of testing intelligence in humans;
2. Allows for a satisfactory comparison between the results of intelligence

tests; and
3. Provides support for theories that would be difficult to prove otherwise.

Charles Spearman pioneered the use of factor analysis in the field of psy-
chology and is sometimes credited with the invention of factor analysis. He
discovered that schoolchildren’s scores on a wide variety of seemingly unre-
lated subjects were positively correlated, which led him to postulate that a
general mental ability, or g, underlies and shapes human cognitive perfor-
mance. His postulate now enjoys broad support in the field of intelligence
research, where it is known as the g theory.

Raymond Cattell expanded on Spearman’s idea of a two–factor theory
of intelligence after performing his own tests and factor analysis. He used a
multi–factor theory to explain intelligence. Cattell’s theory addressed alter-
nate factors in intellectual development, including motivation and psychology.
Cattell also developed several mathematical methods for adjusting psychome-
tric graphs, such as his ‘scree’ test and similarity coefficients. His research lead
to the development of his theory of fluid and crystallized intelligence. Cattell
was a strong advocate of factor analysis and psychometrics. He believed that
all theory should be derived from research, which supports the continued use
of empirical observation and objective testing to study human intelligence.

Factor Structure and Rotation

Starting with the correlation matrix R including the number of significant
correlations, the goal of exploratory factor analysis (FA) is to detect latent
underlying dimensions (i.e., the factor structure) among the set of all manifest
variables. Instead of the correlation matrix, the factor analysis can start from
the covariance matrix (see Figure 4), which is the symmetrical matrix with



1.1 Natural Intelligence and Human Mind 59

variances of all manifest variables on the main diagonal and their covariances
in other matrix cells. For the purpose of the present project the correlation
matrix is far more meaningful starting point. Three main applications of factor
analytic techniques are (see [CL71, And84, Har75]):

1. to reduce the number of manifest variables,
2. to classify manifest variables, and
3. to score each individual soldier on the latent factor structure.

Factor analysis model expands each of the manifest variables xi with the
means µi from the data matrix X = {xiα} as a linear vector–function

xi = µi + Lij fj + ei, (i = 1, . . . , n; j = 1, . . . ,m) (1.1)

where n and m denote the numbers of manifest and latent variables, re-
spectively, fj denotes the jth common–factor vector (with zero mean and
unity–matrix covariance), L = Lij is the matrix of factor loadings lij , and ei

corresponds to the ith specific–factor vector (specific variance not explained
by the common factors, with zero mean and diagonal–matrix covariance).

That portion of the variance of the ith manifest variable xi contributed
by the m common factors fj , the sum of squares of the loadings lij , is called
the ith communality.

Now, in the correlation matrix R the variances of all variables are equal
to 1.0. Therefore, the total variance in that matrix is equal to the number of
variables. Extraction of factors is based on the solution of eigenvalue problem,
i.e., characteristic equation for the correlation matrix R,

Rxi = λixi,

where λi are eigenvalues of R, representing the variances extracted by the
factors, and xi now represent the corresponding eigenvectors, representing
principal components or factors. The question then is, how many factors do
we want to extract? Note that as we extract consecutive factors, they account
for less and less variability. The decision of when to stop extracting factors
basically depends on when there is only very little ‘random’ variability left.
According to the widely used Kaiser criterion we can retain only factors with
eigenvalues greater than 1. In essence this is like saying that, unless a factor
extracts at least as much as the equivalent of one original variable, we drop it.
The proportion of variance of a particular item that is due to common factors
(shared with other items) is called communality. Therefore, an additional task
facing us when applying this model is to estimate the communalities for each
variable, that is, the proportion of variance that each item has in common
with other items. The proportion of variance that is unique to each item is
then the respective item’s total variance minus the communality. A common
starting point is to use the squared multiple correlation of an item with all
other items as an estimate of the communality. The correlations between the
manifest variables and the principal components are called factor loadings.
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The first factor is generally more highly correlated with the variables than
the second, third and other factors, as these factors are extracted successively
and will account for less and less variance overall.

Therefore, the principal component factor analysis of the sample correla-
tion matrix R is specified in terms of its m < n eigenvalue–eigenvector pairs
(λj ,xj) where λj ≥ λj+1. The matrix of estimated factor loadings lij is given
by

L =
[√
λ1x1|

√
λ2x2| . . . |

√
λmxm

]
.

Factor extraction can be performed also by other methods, collectively
called principal factors, including: (i) Maximum likelihood factors, (ii) Prin-
cipal axis method, (iii) Centroid method, (iv) Multiple R2-communalities, and
(v) Iterated Minres communalities. However, we shall stick on the principal
components because of their obvious eigen–structure.

In any case, matrix of factor loadings L is determined only up to an orthog-
onal matrix O. The communalities, given by the diagonal elements of LLT

are also unaffected by the choice of O. This ambiguity provides the ratio-
nale for ‘factor rotation’, since orthogonal matrices correspond to ‘coordinate’
rotations.

We could plot, theoretically, the factor loadings in a m−dimensional
scatter–plot. In that plot, each variable is represented as a point. In this
plot we could rotate the axes in any direction without changing the relative
locations of the points to each other; however, the actual coordinates of the
points, that is, the factor loadings would of course change. There are various
rotational strategies that have been proposed. The goal of all of these strate-
gies is to get a clear pattern of loadings, that is, factors that are somehow
clearly marked by high loadings for some variables and low loadings for oth-
ers. This general pattern is also sometimes referred to as simple structure (a
more formalized definition can be found in most standard textbooks). Typical
rotational strategies are Varimax, Quartimax, and Equimax (see Anderson,
1984). Basically, the extraction of principal components amounts to a variance
maximizing Varimax–rotation of the original space of manifest–variables. We
want to get a pattern of loadings on each factor that is as diverse as possible,
lending itself to easier interpretation. After we have found the line on which
the variance is maximal, there remains some variability around this line. In
principal components analysis, after the first factor has been extracted, that
is, after the first line has been drawn through the data, we continue and de-
fine another line that maximizes the remaining variability, and so on. In this
manner, consecutive factors are extracted. Because each consecutive factor
is defined to maximize the variability that is not captured by the preceding
factor, consecutive factors are independent of each other. Put another way,
consecutive factors are uncorrelated or orthogonal to each other.

Basically, the rotation of the matrix of the factor loadings L represents
its post–multiplication, i.e. L∗ = LO by the rotation matrix O, which itself
resembles one of the matrices included in the classical rotational Lie groups
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SO(m) (containing the specific m−fold combination of sinuses and cosinuses.
The linear factor equation (1.1) represents the orthogonal factor model, pro-
vided that vectors fj and ei are independent (orthogonal to each other, i.e.,
having zero covariance).

The most frequently used Kaiser’s Normal Varimax rotation procedure
selects the orthogonal transformation T that ‘spreads out’ the squares of the
loadings on each factor as much as possible, i.e., maximizes the total ’squared’
variance

V =
1
n

m∑
j=1

⎡
⎣ n∑

i=1

(l∗ij)
4 − 1

n

(
n∑

i=1

(l∗ij)
2

)2
⎤
⎦ ,

where l∗ij denote the rotated factor loadings from the rotated factor matrix
L∗.

Besides orthogonal rotation, there is another concept of oblique
(non-orthogonal, or correlated) factors, which could help to achieve more inter-
pretable simple structure. Specifically, computational strategies have been
developed to rotate factors so as to best represent clusters of manifest vari-
ables, without the constraint of orthogonality of factors. Oblique rotation
produces the factor structure made from the smaller set of mutually cor-
related factors. An oblique rotation to the simple structure corresponds to
nonrigid rotation of the factor-axes (i.e., principal components) in the factor
space such that the rotated axes l∗j = L∗

obl (no longer perpendicular) pass
(nearly) through the clusters of manifest variables. Although the purest math-
ematical background does not exist for the non–orthogonal factor rotation,
the parsimony principle: “explain the maximum of the common variability
of the data matrix X = {xiα} with the minimum number of factors”, is
fully developed only in this form of factor analysis, and the factor–correlation
matrix L∗

obl resembles the correlation matrix between manifest variables in
the latent, factor space with double–reduced number of observables.

The linear factor equation (1.1) becomes now the oblique factor model

xi = µi + L∗
obl fj + ei, (i = 1, . . . , n; j = 1, . . . ,m),

where the vectors fj and ei are interdependent (correlated to each other). With
oblique rotation, using common procedures, like Kaiser–Harris Orthoblique,
Oblimin, Oblimax, Quartimin, Promax (see [And84]), we could

1. perform a hierarchical (iterated) factor analysis, obtaining second–order
factors, third–order factors, etc., finishing with a single general factor
(for example using principal component analysis of the factor–correlation
matrix L∗

obl); and
2. develop the so–called ‘cybernetic models’: when two factors in the factor–

correlation matrix L∗
obl are highly correlated we can assume a linear func-

tional link between them; connecting all correlated factors on the certain
hierarchical level, we can make a block–diagram out of them depicting a
linear system; this is the real point of the exploratory factor analysis.
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The factor scores Sjα (where j labels factors and α labels individual pi-
lot) are incidental parameters that characterize general performance of the
individuals (see [CL71, And84, Har75]). Factor scores with zero mean and
unity-matrix covariance are usually automatically evaluated in principal–
component, orthogonal and oblique factor analysis, according to the formula:

Sjα = (LT L)−1LT (xjα − x̄jα),

and replacing L by L∗, and by L∗
obl, respectively. They represent an objective

measure of the general performance of pilot on the battery of psycho–tests.63

63 Here is the Mathematica algorithm for calculating the basic factor structure:
Mean[x ] := Plus@@x

Length[x]
;

V ariance[x ] := Plus@@(mean[x]−x)2

Length[x]
;

StDev[x ] :=
√

V ariance[x];

Covar[x1 , x2 ] := Plus@@((mean[x1]−x1)((mean[x2]−x2))
Length[x1]

;

Corr[x1 , x2 ] := Covar[x1,x2]
StDev[x1] StDev[x2]

;

CorrMat[X ] := Table[Corr[X[[1, j]], X[[1, i]]]//N, {i, m}, {j, m}];
Generate random data–matrix (m variables × n cases):

NoV ars = 10; NoCases = 50; m = NoV ars; n = NoCases;
data = Array[x, {NoCases, NoV ars}]//MatrixForm;
Table[x[i, j] = Random[Integer, {1, 5}], {i, NoCases}, {j, NoV ars}];
Print[“data = ”,data//MatrixForm];

Calculate correlation matrix:
R = CorrMat[data]; Print[“R=”,R//MatrixForm]

Calculate eigenvalues of the correlation matrix:
λ = Eigenvalues[R]//MatrixForm

Corresponding eigenvectors:
vec = Eigenvectors[R]; Print[vec//Transpose//MatrixForm]

Determine significant principal components
according to the criterion λ ≥ 2:
Print[“PRINCIPAL COMPONENTS”
→ {vec[[1]], vec[[2]]}//Transpose//MatrixForm]

Define operator matrix:
NoFact = 2; P = Array[p, NoV ars, NoFact];
Table[p[i, j] = 1, {i, NoV ars}, {j, NoFact}];
Table[p[i, j] = 0, {i, 2, NoV ars, 2}, {j, 2, NoFact, 2}];
Table[p[i, j] = 0, {i, 1, NoV ars, 2}, {j, 1, NoFact, 2}];
Print[“P = ”, P//MatrixForm];

Perform oblique rotation:
Q = Transpose[P ]; S = R.P ; G = Q.S;
Do[k = 1√

G‖i,i‖
, {i, NoFact}];

F = Sk; Z = kG; C = Zk;
L = Inverse[C]; Φ = F.L;

Factor structure matrix:
Print[“F = ”, F//MatrixForm]
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The factor scores can be used further for multivariate regression in the
latent space (instead in the original manifest space) for reducing the number
of predictors in the general regression analysis (see [CL71]).

Quantum–Like Correlation and Factor Dynamics

To develop correlation and factor dynamics model, we are using geometrical
analogy with nonrelativistic quantum mechanics (see [Dir49]). A time depen-
dent state of a quantum system is determined by a normalized (complex),
time–dependent, wave psi–function ψ = ψ(t), i.e. a unit Dirac’s ‘ket’ vec-
tor |ψ(t)〉, an element of the Hilbert space L2(ψ) with a coordinate basis
(qi), under the action of the Hermitian operators, obtained by the procedure
of quantization of classical mechanical quantities, for which real eigenvalues
are measured . The state–vector |ψ(t)〉, describing the motion of de Broglie’s
waves, has a statistical interpretation as the probability amplitude of the
quantum system, for the square of its magnitude determines the density of
the probability of the system detected at various points of space. The sum-
mation over the entire space must yield unity and this is the normalization
condition for the psi–function, determining the unit length of the state vector
|ψ(t)〉.

In the coordinate q–representation and the Schrödinger S–picture we con-
sider an action of an evolution operator (in normal units Planck constant
� = 1)

Ŝ ≡ Ŝ(t, t0) = exp[−iĤ(t− t0)],
i.e., a one–parameter Lie–group of unitary transformations evolving a quan-
tum system. The action represents an exponential map of the system’s total
energy operator – Hamiltonian Ĥ = Ĥ(t). It moves the quantum system from
one instant of time, t0, to some future time t, on the state–vector |ψ(t)〉, rotat-
ing it: |ψ(t)〉 = Ŝ(t, t0)|ψ(t0)〉. In this case the Hilbert coordinate basis (qi) is
fixed, so the system operators do not evolve in time, and the system evolution
is determined exclusively by the time–dependent Schrödinger equation

i∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (∂t = ∂/∂t), (1.2)

with initial condition given at one instant of time t0 as |ψ(t0)〉 = |ψ〉.

Inter-factor correlation matrix:
Print[“C = ”, C//MatrixForm]

Factor projection matrix:
Print[“Φ = ”, Φ//MatrixForm]

Calculate factor scores for individual pilot:
var[x ] := x − mean[x];
Table[v[i] = var[X[[i]]//N ], {i, n}];
TF = Transpose[F ]; FF = Inverse[TF .F ].TF ;
Table[FF .v[i], {i, n}]//MatrixForm.
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If the Hamiltonian Ĥ = Ĥ(t) does not explicitly depend on time (which is
the case with the absence of variables of macroscopic fields), the state vector
reduces to the exponential of the system energy:

|ψ(t)〉 = exp(−iE(t− t0)|ψ〉,

satisfying the time–independent (i.e., stationary) Schrödinger equation

Ĥ|ψ〉 = E|ψ〉, (1.3)

which represents the characteristic equation for the Hamiltonian operator Ĥ
and gives its real eigenvalues (stationary energy states) En and corresponding
orthonormal eigenfunctions (i.e., probability amplitudes) |ψn〉.

To model the correlation and factor dynamics we start with the charac-
teristic equation for the correlation matrix

Rx = λx,

making heuristic analogy with the stationary Schrödinger equation (1.3). This
analogy allows a ‘physical’ interpretation of the correlation matrix R as an
operator of the ‘total correlation or covariation energy’ of the statistical system
(the simulator–test data matrix X = {xiα}), eigenvalues λn corresponding to
the ‘stationary energy states’, and eigenvectors xn resembling ‘probability
amplitudes’ of the system.

So far we have considered one instant of time t0. Including the time–flow
into the stationary Schrödinger equation (1.3) we get the time–dependent
Schrödinger equation (1.2) and returning back with our heuristic analogy, we
get the basic equation of the n–dimensional correlation dynamics

∂tx(t) = R(t)xk(t), (1.4)

with initial condition at time t0 given as a stationary manifest–vectors
xk(t0) = xk (k = 1, . . . , n).

In more realistic case of ‘many’ observables (i.e., very big n), instead of
the correlation dynamics (1.4), we can use the reduced–dimension factor dy-
namics, represented by analogous equation in the factor space spanned by
the extracted (oblique) factors F = f i, with inter–factor–correlation matrix
C = cij (i, j = 1, . . . ,no. of factors)

∂tfi(t) = C(t) fi(t), (1.5)

subject to initial condition at time t0 given as stationary vectors fi(t0) = fi.
Now, according to the fundamental existence and uniqueness theorem for

linear autonomous ordinary differential equations, if A = A(t) is an n×n real
matrix, then the initial value problem

∂tx(t) = Ax(t), x(0) = x0 ∈ R
n,
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has the unique solution

x(t) = x0etA, for all t ∈ R.

Therefore, analytical solutions of our correlation and factor–correlation
dynamics equations (1.4) and (1.5) are given respectively by exponential maps

xk(t) = xk exp[tR],
fi(t) = fi exp[tC].

Thus, for each t ∈ R, the matrix x exp[tR], respectively the matrix
f exp[tC], maps

xk �→ xk exp[tR], respectively fi �→ fi exp[tC].

The sets gt
corr = {exp[tR]}t∈R and gt

fact = {exp[tC]}t∈R are 1–parameter
families (groups) of linear maps of R

n into R
n, representing the correlation

flow , respectively the factor–correlation flow of simulator–tests. The linear
flows gt (representing both gt

corr and gt
fact) have two essential properties:

1. identity map: g0 = I, and
2. composition: gt1+t2 = gt1 ◦ gt2 .

They partition the state space R
n into subsets that we call ‘correlation

orbits’, respectively ‘factor–correlation orbits’, through the initial states xk,
and fi, of simulator tests, defined respectively by

γ(xk) = {xkg
t|t ∈ R} and γ(fi) = {figt|t ∈ R}.

The correlation orbits can be classified as:

1. If gtxk = xk for all t ∈ R, then γ(xk) = {xk} and it is called a point
orbit . Point orbits correspond to equilibrium points in the manifest and
the factor space, respectively.

2. If there exists a T > 0 such that gT xk = xk, then γ(xk) is called a periodic
orbit . Periodic orbits describe a system that evolves periodically in time
in the manifest and the factor space, respectively.

3. If gtxk 	= xk for all t 	= 0, then γ(xk) is called a non–periodic orbit .

Analogously, the factor–correlation orbits can be classified as:

1. If gtfi = fi for all t ∈ R, then γ(fi) = {fi} and it is called a point orbit.
Point orbits correspond to equilibrium points in the manifest and the
factor space, respectively.

2. If there exists a T > 0 such that gT fi = fi, then γ(fi) is called a periodic
orbit. Periodic orbits describe a system that evolves periodically in time
in the manifest and the factor space, respectively.

3. If gtfi 	= fi for all t 	= 0, then γ(fi) is called a non–periodic orbit.
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Now, to interpret properly the meaning of (really discrete) time in the
correlation matrix R = R(t) and factor–correlation matrix C = C(t), we can
perform a successive time–series {t, t + ∆t, t + 2∆t, t + k∆t, · · · } of simula-
tor tests (and subsequent correlation and factor analysis), and discretize our
correlation (respectively, factor–correlation) dynamics, to get

xk(t+∆t) = xk(0) + R(t)xk(t)∆t, and
fi(t+∆t) = fi(0) + C(t) fi(t)∆t,

respectively. Finally we can represent the discrete correlation and factor–
correlation dynamics in the form of the (computationally applicable) three–
point iterative dynamics equation, respectively in the manifest space

xs+1
k = xs−1

k + Rs
k xs

k,

and in the factor space
fs+1
i = fs−1

i + Cs
i fs

i ,

in which the time–iteration variable s labels the time occurrence of the simu-
lator tests (and subsequent correlation and factor analysis), starting with the
initial state, labelled s = 0.

FA–Based Intelligence

In the psychometric view, the concept of intelligence is most closely identified
with Spearman’s g, or Gf (‘fluid g’). However, psychometricians can measure
a wide range of abilities, which are distinct yet correlated. One common view
is that these abilities are hierarchically arranged with g at the vertex (or top,
overlaying all other cognitive abilities).64

On the other hand, critics of the psychometric approach, such as Robert
Sternberg from Yale, point out that people in the general population have
a somewhat different conception of intelligence than most experts. In turn,
they argue that the psychometric approach measures only a part of what

64 Intelligence, IQ, and g are distinct terms. As already said above, intelligence
is the term used in ordinary discourse to refer to cognitive ability. However,
it is generally regarded as too imprecise to be useful for a scientific treatment
of the subject. The intelligence quotient (IQ) is an index calculated from the
scores on test items judged by experts to encompass the abilities covered by the
term intelligence. IQ measures a multidimensional quantity: it is an amalgam of
different kinds of abilities, the proportions of which may differ between IQ tests.
The dimensionality of IQ scores can be studied by factor analysis, which reveals
a single dominant factor underlying the scores on all IQ tests. This factor, which
is a hypothetical construct, is called g. Variation in g corresponds closely to the
intuitive notion of intelligence, and thus g is sometimes called general cognitive
ability or general intelligence.
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is commonly understood as intelligence. Other critics, such as Arthur Ed-
dington,65 argue that the equipment used in an experiment often determines
the results and that proving that e.g., intelligence exists does not prove that
current equipment measure it correctly. Sceptics often argue that so much
scientific knowledge about the brain is still to be discovered that claiming the
conventional IQ test methodology to be infallible is just a small step forward
from claiming that craniometry66 was the infallible method for measuring
intelligence (which had scientific merits based on knowledge available in the
nineteenth century).

A more fundamental criticism is that both the psychometric model used
in these studies and the conceptualization of cognitive ability itself are fun-
damentally off beam. These views were expressed by none other than Charles
Spearman, the ‘discoverer’ of g – himself. Thus he wrote: “Every normal man,
woman, and child is a genius at something. It remains to discover at what.
This must be a most difficult matter, owing to the very fact that it occurs
in only a minute proportion of all possible abilities. It certainly cannot be
detected by any of the testing procedures at present in current usage. But
these procedures are capable, I believe, of vast improvement.” In this context
he noted that it is more important to ask ‘What does this person think about?’
than ‘How well can he or she think?’ Spearman went on to observe that the
tests from which his g had emerged had no place in schools since they did
not reflect the diverse talents of the children and thus deflected teachers from
their fundamental educational role, which is to nurture and recognize these
diverse talents.

He also noted, as paraphrased here, that the so–called ‘cognitive ability’
is not primarily cognitive but affective and conative. In constructing mean-
ing out of confusion (Spearman’s eductive ability) one first follows feelings
that beckon or attract. One then has to engage in ‘experimental interactions
with the environment’ to check out those, largely non–verbal, ‘hunches’. This
requires determination and persistence — conation. Now, all of these are dif-
ficult and demanding activities which will only be undertaken whilst one is
undertaking activities one cares about. So the first question is: ‘What kinds
of activity is this person strongly motivated to undertake’ (and the kinds
of activity which people may be strongly motivated to undertake are legion
and mostly unrelated to those assessed in conventional ‘intelligence’ tests).
And the second question is: ‘How many of the cumulative and substitutable

65 Sir Arthur Stanley Eddington, OM (December 28, 1882 — November 22, 1944)
was an astrophysicist of the early 20th century. The Eddington limit, the natural
limit to the luminosity that can be radiated by accretion onto a compact object, is
named in his honor. He is famous for his work regarding the Theory of Relativity.
Eddington wrote an article in 1919, Report on the relativity theory of gravitation,
which announced Einstein’s theory of general relativity to the English–speaking
world.

66 Craniometry is the technique of measuring the bones of the skull. Craniometry
was once intensively practiced in anthropology/ethnology.
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components of competence required to carry out these activities effectively
does this person display whilst carrying out that activity?’ So one cannot,
in reality, assess a person’s intelligence, or even their eductive ability, except
in relation to activities they care about. What one sees in e.g., the Raven
Progressive Matrices is the cumulative effect of how well they do all these
things in relation to a certain sort of task. The problem is that this is not
— and cannot be — ‘cognitive ability’ in any general sense of the word but
only in relation to this kind of task. As Roger Sperry67 has observed, what is
neurologically localized is not ‘cognitive ability’ in any general sense but the
emotional predisposition to ‘think’ about a particular kind of thing (for more
details, see e.g., papers of John Raven68 [Rav02]).

Most experts accept the concept of a single dominant factor of intelligence,
general mental ability or g, while others argue that intelligence consists of a
set of relatively independent abilities [APS98]. The evidence for g comes from
factor analysis of tests of cognitive abilities. The methods of factor analysis
do not guarantee a single dominant factor will be discovered. Other psycho-
logical tests, which do not measure cognitive ability, such as personality tests,
generate multiple factors.

Proponents of multiple–intelligence theories often claim that g is, at best,
a measure of academic ability. Other types of intelligence, they claim, might be
just as important outside of a school setting. Robert Sternberg has proposed
a ‘Triarchic Theory of Intelligence’. Howard Gardner’s theory of multiple in-
telligences breaks intelligence down into at least eight different components:
logical, linguistic, spatial, musical, kinesthetic, naturalist, intra–personal and

67 Roger Wolcott Sperry (August 20, 1913 – April 17, 1994) was a neuropsychologist
who, together with David Hunter Hubel and Torsten Nils Wiesel, won the 1981
Nobel Prize in Medicine for his work with split–brain research. Before Sperry’s
experiments, some research evidence seemed to indicate that areas of the brain
were largely undifferentiated and interchangeable. In his early experiments Sperry
challenged this view by showing that after early development circuits of the brain
are largely hardwired. In his Nobel–winning work, Sperry separated the corpus
callosum, the area of the brain used to transfer signals between the right and
left hemispheres, to treat epileptics. Sperry and his colleagues then tested these
patients with tasks that were known to be dependent on specific hemispheres of
the brain and demonstrated that the two halves of the brain may each contain
consciousness. In his words, each hemisphere is “... indeed a conscious system in
its own right, perceiving, thinking, remembering, reasoning, willing, and emot-
ing, all at a characteristically human level, and . . . both the left and the right
hemisphere may be conscious simultaneously in different, even in mutually con-
flicting, mental experiences that run along in parallel.” This research contributed
greatly to understanding the lateralization of brain functions. In 1989, Sperry
also received National Medal of Science.

68 John Carlyle Raven first published his Progressive Matrices in the United King-
dom in 1938. His three sons established Scotland–based test publisher JC Raven
Ltd. in 1972. In 2004, Harcourt Assessment, Inc. a division of Harcourt Education
acquired JC Raven Ltd.
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inter–personal intelligences. Daniel Goleman and several other researchers
have developed the concept of emotional intelligence and claim it is at least as
important as more traditional sorts of intelligence. These theories grew from
observations of human development and of brain injury victims who demon-
strate an acute loss of a particular cognitive function (e.g., the ability to think
numerically, or the ability to understand written language), without showing
any loss in other cognitive areas.

In response, g theorists have pointed out that g’s predictive validity69

has been repeatedly demonstrated, for example in predicting important non–
academic outcomes such as job performance, while no multiple–intelligences
theory has shown comparable validity. Meanwhile, they argue, the relevance,
and even the existence, of multiple intelligences have not been borne out when
actually tested [Hun01]. Furthermore, g theorists contend that proponents of
multiple–intelligences (see, e.g., [Ste95]) have not disproved the existence of a
general factor of intelligence [Kli00]. The fundamental argument for a general
factor is that test scores on a wide range of seemingly unrelated cognitive
ability tests (such as sentence completion, arithmetic, and memorization) are
positively correlated: people who score highly on one test tend to score highly
on all of them, and g thus emerges in a factor analysis. This suggests that the
tests are not unrelated, but that they all tap a common factor.

Cognitive vs. Not–Cognitive Intelligence

Clearly, biologically realized ‘cognitive intelligence’ is the most complex prop-
erty of human mind and can be perceived only by itself. Our problem is what
we call or may call cognitive intelligence. From the formal, computational
perspective, cognitive intelligence is one of ill defined concepts. Its definitions
are immersed in numerous scientific contexts and mirrors their historical evo-
lutions, as well as, different ‘interests’ of researchers. Its weakness is usually
based on its abstract multifaces image and, on the other hand, a universal
utility character.

69 In psychometrics, predictive validity is the extent to which a scale predicts scores
on some criterion measure. For example, the validity of a cognitive test for job per-
formance is the correlation between test scores and, say, supervisor performance
ratings. Such a cognitive test would have predictive validity if the observed cor-
relation were statistically significant. Predictive validity shares similarities with
concurrent validity in that both are generally measured as correlations between
a test and some criterion measure. In a study of concurrent validity the test is
administered at the same time as the criterion is collected. This is a common
method of developing validity evidence for employment tests: A test is adminis-
tered to incumbent employees, then a rating of those employees’ job performance
is obtained (often, as noted above, in the form of a supervisor rating). Note the
possibility for restriction of range both in test scores and performance scores: The
incumbent employees are likely to be a more homogeneous and higher performing
group than the applicant pool at large.
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The classical behavioral/biologists definition of intelligence reads: “Intel-
ligence is the ability to adapt to new conditions and to successfully cope with
life situations.” This definition seems to be the best, but ‘intelligence’ here
depends on available physical tools and specific life experience (individual
hidden knowledge, preferences and access to information), therefore it is not
enough selective to be measured, compared or designed. In general, cogni-
tive intelligence is a human–like intelligence. Unfortunately there are many
opinions what human–like intelligence means. For example, (i) cognitive in-
telligence uses a human mental introspective experience for the modelling of
intelligent system thinking; and (ii) cognitive intelligence may use brain mod-
els to extract brain’s intelligence property.

Therefore, cognitive intelligence can be seen as a product of human self–
conscious recognition of efficient mental processes, defined a’priori as intelli-
gent. In order to get a consensus on the notion of cognitive intelligence is useful
to have an agreement on which intelligence is not cognitive. A not–cognitive
intelligence could be considered as an intelligence being developed using not
human analogies; e.g., it is possible to construct very different models of flying
objects starting from the observation of storks, balloons, beetles or clouds –
maybe this observation can be useful.

The difference between human and artificial intelligence theories is similar
to the difference between a birds theory of fly and the airplanes fly theory, the
both can lead to a more general theory of fly but this last needs a goal–oriented
and a higher abstraction level of the conceptualization/ontology.

According to the TOGA meta–theory paradigms,70 for scientific and practi-
cal modelling purposes, it is reasonable to separate conceptually the following
five concepts: information, knowledge, preferences, intelligence and emotions.
If properly defined, all of them can be independently identified and designed.

Such conceptual modularity should enable to construct: emotional intel-
ligence, social intelligence, skill intelligence, organizational intelligence, and
many other X–intelligences, where X denotes a type of knowledge, preferences
or a carrier system involved.
70 According to the top–down object–based goal–oriented approach (TOGA) stan-

dard, the Information–Preferences–Knowledge cognitive architecture consists of:

Data: everything what is/can be processed/transformed in computational and men-
tal processes. Concept data is included in the ontology of ‘elaborators’, such as
developers of methods, programmers and other computation service people. In
this sense, data is a relative term and exists only in the couple (data, processing).

Information: data which represent a specific property of the domain of human or
artificial agent’s activity (such as: addresses, tel. numbers, encyclopedic data,
various lists of names and results of measurements). Every information has
always a source domain. It is a relative concept. Information is a concept from
the ontology of modeler/problem–solver/decision–maker.

Knowledge: every abstract property of human/artificial agent which has ability to
process/transform a quantitative/qualitative information into other informa-
tion, or into another knowledge. It includes: instructions, emergency procedures,
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For example, business intelligence and emotional intelligence, rather are
applications of intelligence either for business activities or for the second,
under emotional/(not conscious) constrains and ‘biological requests’.

In the above context, an abstract intelligent agent can be considered as a
functional kernel of any natural or artificial intelligent system.

Intelligence and Cognitive Development

Although there is no general theory of cognitive development , the most his-
torically influential theory was developed by Jean Piaget.71 Piaget theory

exploitation/user manuals, scientific materials, models and theories. Every
knowledge has its reference domain where it is applicable. It has to include
the source domain of the processed information. It is a relative concept.

Preference: an ordered relation among two properties of the domain of activity of a
cognitive agent , it indicates a property with higher utility. Preference relations
serve to establish an intervention goal of an agent. Cognitive preferences are
relative. A preference agent which manages preferences of an intelligent agent
can be external or its internal part.

Goal: a hypothetical state of the domain of activity which has maximal utility in
a current situation. Goal serves to the choice and activate proper knowledge
which process new information.

Document: a passive carrier of knowledge, information and/or preferences (with
different structures), comprehensive for humans, and it has to be recognized
as valid and useful by one or more human organizations, it can be physical or
electronic.

Computer Program: (i) from the modelers and decision-makers perspective: an ac-
tive carrier of different structures of knowledge expressed in computer languages
and usually focused on the realization of predefined objectives (a design-goal). It
may include build-in preferences and information and/or request specific IPK as
data. (ii) from the software engineers perspective: a data-processing tool (more
precise technical def. you may find on the Web).

71 Jean Piaget (August 9, 1896 – September 16, 1980) was a Swiss natural scientist
and developmental psychologist, well known for his work studying children and
his theory of cognitive development. Piaget served as professor of psychology at
the University of Geneva from 1929 to 1975 and is best known for reorganizing
cognitive development theory into a series of stages, expanding on earlier work
from James Baldwin: four levels of development corresponding roughly to (1)
infancy, (2) pre–school, (3) childhood, and (4) adolescence. Each stage is charac-
terized by a general cognitive structure that affects all of the child’s thinking (a
structuralist view influenced by philosopher Immanuel Kant). Each stage repre-
sents the child’s understanding of reality during that period, and each but the
last is an inadequate approximation of reality. Development from one stage to the
next is thus caused by the accumulation of errors in the child’s understanding of
the environment; this accumulation eventually causes such a degree of cognitive
disequilibrium that thought structures require reorganising. For his development
of the theory, Piaget was awarded the Erasmus Prize.
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provided many central concepts in the field of developmental psychology. His
theory concerned the growth of intelligence, which for Piaget meant the abil-
ity to more accurately represent the world, and perform logical operations
on representations of concepts grounded in the world. His theory concerns
the emergence and acquisition of schemata, schemes of how one perceives
the world, in ‘developmental stages’, times when children are acquiring new
ways of mentally representing information. Piaget theory is considered ‘con-
structivist, meaning that, unlike nativist theories (which describe cognitive
development as the unfolding of innate knowledge and abilities) or empiricist
theories (which describe cognitive development as the gradual acquisition of
knowledge through experience), asserts that we construct our cognitive abili-
ties through self–motivated action in the world.

The four development stages are described in Piaget’s theory as:

1. Sensorimotor stage: from birth to age 2 years (children experience the world
through movement and senses)

2. Preoperational stage: from ages 2 to 7(acquisition of motor skills)
3. Concrete operational stage: from ages 7 to 11 (children begin to think logically

about concrete events)
4. Formal Operational stage: after age 11 (development of abstract reasoning).

These chronological periods are approximate, and in light of the fact that stud-
ies have demonstrated great variation between children, cannot be seen as rigid
norms. Furthermore, these stages occur at different ages, depending upon the do-
main of knowledge under consideration. The ages normally given for the stages,
then, reflect when each stage tends to predominate, even though one might elicit
examples of two, three, or even all four stages of thinking at the same time from
one individual, depending upon the domain of knowledge and the means used to
elicit it. Despite this, though, the principle holds that within a domain of knowl-
edge, the stages usually occur in the same chronological order. Thus, there is a
somewhat subtler reality behind the normal characterization of the stages as de-
scribed above. The reason for the invariability of sequence derives from the idea
that knowledge is not simply acquired from outside the individual, but it is con-
structed from within. This idea has been extremely influential in pedagogy, and
is usually termed constructivism. Once knowledge is constructed internally, it is
then tested against reality the same way a scientist tests the validity of hypothe-
ses. Like a scientist, the individual learner may discard, modify, or reconstruct
knowledge based on its utility in the real world. Much of this construction (and
later reconstruction) is in fact done subconsciously. Therefore, Piaget’s four stages
actually reflect four types of thought structures. The chronological sequence is in-
evitable, then, because one structure may be necessary in order to construct the
next level, which is simpler, more generalizable, and more powerful. It’s a little
like saying that you need to form metal into parts in order to build machines,
and then coordinate machines in order to build a factory.
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Piaget divided schemes that children use to understand the world through
four main stages, roughly correlated with and becoming increasingly sophis-
ticated with age:

1. Sensorimotor stage (years 0–2),
2. Preoperational stage (years 2–7),
3. Concrete operational stage (years 7–11), and
4. Formal operational stage (years 11–adulthood).

Sensorimotor Stage

Infants are born with a set of congenital reflexes, according to Piaget, as well
as a drive to explore their world. Their initial schemas are formed through
differentiation of the congenital reflexes (see assimilation and accommodation,
below).

The sensorimotor stage is the first of the four stages. According to Piaget,
this stage marks the development of essential spatial abilities and understand-
ing of the world in six sub–stages:

1. The first sub–stage occurs from birth to six weeks and is associated pri-
marily with the development of reflexes. Three primary reflexes are de-
scribed by Piaget: sucking of objects in the mouth, following moving or
interesting objects with the eyes, and closing of the hand when an object
makes contact with the palm (palmar grasp). Over these first six weeks
of life, these reflexes begin to become voluntary actions; for example, the
palmar reflex becomes intentional grasping.

2. The second sub–stage occurs from six weeks to four months and is associ-
ated primarily with the development of habits. Primary circular reactions
or repeating of an action involving only ones own body begin. An example
of this type of reaction would involve something like an infant repeating
the motion of passing their hand before their face. Also at this phase,
passive reactions, caused by classical or operant conditioning, can begin.

3. The third sub–stage occurs from four to nine months and is associated
primarily with the development of coordination between vision and pre-
hension. Three new abilities occur at this stage: intentional grasping for a
desired object, secondary circular reactions, and differentiations between
ends and means. At this stage, infants will intentionally grasp the air in
the direction of a desired object, often to the amusement of friends and
family. Secondary circular reactions, or the repetition of an action involv-
ing an external object begin; for example, moving a switch to turn on
a light repeatedly. The differentiation between means also occurs. This is
perhaps one of the most important stages of a child’s growth as it signifies
the dawn of logic. Towards the late part of this sub–stage infants begin
to have a sense of object permanence, passing the A–not–B error test.

4. The fourth sub-stage occurs from nine to twelve months and is associated
primarily with the development of logic and the coordination between
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means and ends. This is an extremely important stage of development,
holding what Piaget calls the ‘first proper intelligence’. Also, this stage
marks the beginning of goal orientation, the deliberate planning of steps
to meet an objective.

5. The fifth sub–stage occurs from twelve to eighteen months and is asso-
ciated primarily with the discovery of new means to meet goals. Piaget
describes the child at this juncture as the ‘young scientist’, conducting
pseudo–experiments to discover new methods of meeting challenges.

6. The sixth sub–stage is associated primarily with the beginnings of insight,
or true creativity. This marks the passage into the preoperational stage.

Preoperational Stage

The Preoperational stage is the second of four stages of cognitive develop-
ment. By observing sequences of play, Piaget was able to demonstrate that
towards the end of the second year a qualitatively quite new kind of psycho-
logical functioning occurs. Operation in Piagetian theory is any procedure for
mentally acting on objects. The hallmark of the preoperational stage is sparse
and logically inadequate mental operations.

According to Piaget, the Sensorimotor stage of development is followed by
this stage (2–7 years), which includes the following five processes:

1. Symbolic functioning, which is characterised by the use of mental symbols
words or pictures which the child uses to represent something which is not
physically present.

2. Centration, which is characterized by a child focusing or attending to only
one aspect of a stimulus or situation. For example, in pouring a quantity
of liquid from a narrow beaker into a shallow dish, a preschool child might
judge the quantity of liquid to have decreased, because it is ‘lower’, that is,
the child attends to the height of the water, but not to the compensating
increase in the diameter of the container.

3. Intuitive thought, which occurs when the child is able to believe in some-
thing without knowing why she or he believes it.

4. Egocentrism, which is a version of centration, this denotes a tendency of
child to only think from own point of view.

5. Inability to Conserve; Through Piaget’s conservation experiments (con-
servation of mass, volume and number) Piaget concluded that children in
the preoperational stage lack perception of conservation of mass, volume,
and number after the original form has changed. For example, a child in
this phase will believe that a string of beads set up in a ‘O–O–O–O–O’
pattern will have the same number of beads as a string which has a ‘O–
O–O–O–O’ pattern, because they are the same length, or that a tall, thin
8-ounce cup has more liquid in it than a wide, fat 8–ounce cup.
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Concrete Operational Stage

The concrete operational stage is the third of four stages of cognitive devel-
opment in Piaget’s theory. This stage, which follows the Preoperational stage
and occurs from the ages of 7 to 11, is characterized by the appropriate use
of logic. The six important processes during this stage are:

1. Decentering, where the child takes into account multiple aspects of a prob-
lem to solve it. For example, the child will no longer perceive an excep-
tionally wide but short cup to contain less than a normally-wide, taller
cup.

2. Reversibility, where the child understands that numbers or objects can be
changed, then returned to their original state. For this reason, a child will
be able to rapidly determine that 4 + 4 which they can answer to be 8,
minus 4 will equal four, the original quantity.

3. Conservation: understanding that quantity, length or number of items is
unrelated to the arrangement or appearance of the object or items. For
instance, when a child is presented with two equally–sized, full cups they
will be able to discern that if water is transferred to a pitcher it will
conserve the quantity and be equal to the other filled cup.

4. Serialisation: the ability to arrange objects in an order according to size,
shape, or any other characteristic. For example, if given different–shaded
objects they may make a color gradient.

5. Classification: the ability to name and identify sets of objects according
to appearance, size or other characteristic, including the idea that one
set of objects can include another. A child is no longer subject to the
illogical limitations of animism (the belief that all objects are animals
and therefore have feelings).

6. Elimination of Egocentrism: the ability to view things from another’s per-
spective (even if they think incorrectly). For instance, show a child a comic
in which Jane puts a doll under a box, leaves the room, and then Jill moves
the doll to a drawer, and Jane comes back; a child in this stage will not
say that Jane will think the doll is in the drawer.

Formal Operational Stage

The formal operational stage is the fourth and final of the stages of cogni-
tive development of Piaget’s theory. This stage, which follows the Concrete
Operational stage, commences at around 11 years of age (puberty) and con-
tinues into adulthood. It is characterized by acquisition of the ability to think
abstractly and draw conclusions from the information available. During this
stage the young adult functions in a cognitively normal manner and there-
fore is able to understand such things as love, ‘shades of gray’, and values.
Lucidly, biological factors may be traced to this stage as it occurs during
puberty and marks the entering into adulthood in physiologically, cognitive,
moral (Kohlberg), psychosexual (Freud), and social development (Erikson).
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Many people do not successfully complete this stage, but mostly remain in
concrete operations.

Psychophysics

Recall that psychophysics is a subdiscipline of psychology, founded in 1860
by Gustav Fechner72 with the publication of ‘Elemente der Psychophysik’,
dealing with the relationship between physical stimuli and their subjective
correlates, or percepts. Fechner described research relating physical stimuli
with how they are perceived and set out the philosophical foundations of the
field. Fechner wanted to develop a theory that could relate matter to the mind,
by describing the relationship between the world and the way it is perceived
(Snodgrass, 1975). Fechner’s work formed the basis of psychology as a science.
Wilhelm Wundt, the founder of the first laboratory for psychological research,
built upon Fechner’s work.

The Weber–Fechner law attempts to describe the relationship between
the physical magnitudes of stimuli and the perceived intensity of the stimuli.

72 Gustav Theodor Fechner (April 19, 1801 – November 28, 1887), was a German
experimentle psychologist. A pioneer in experimental psychology.

Fechner’s epoch–faking work was his Elemente der Psychophysik (1860). He
starts from the Spinozistic thought that bodily facts and conscious facts, though
not reducible one to the other, are different sides of one reality. His originality
lies in trying to discover an exact mathematical relation between them. The most
famous outcome of his inquiries is the law known as Weber–Fechner law which
may be expressed as follows: “In order that the intensity of a sensation may
increase in arithmetical progression, the stimulus must increase in geometrical
progression.” Though holding good within certain limits only, the law has been
found immensely useful. Unfortunately, from the tenable theory that the intensity
of a sensation increases by definite additions of stimulus, Fechner was led on
to postulate a unit of sensation, so that any sensations might be regarded as
composed of n units. Sensations, he argued, thus being representable by numbers,
psychology may become an ‘exact’ science, susceptible of mathematical treatment.

His general formula for getting at the number of units in any sensation is
S = c log R, where S stands for the sensation, R for the stimulus numerically
estimated, and c for a constant that must be separately determined by experiment
in each particular order of sensibility. This reasoning of Fechner’s has given rise to
a great mass of controversy, but the fundamental mistake in it is simple. Though
stimuli are composite, sensations are not. “Every sensation,” says William James,
“presents itself as an indivisible unit; and it is quite impossible to read any clear
meaning into the notion that they are masses of units combined.” Still, the idea of
the exact measurement of sensation has been a fruitful one, and mainly through
his influence on Wilhelm Wundt, Fechner was the father of that ‘new’ psychology
of laboratories which investigates human faculties with the aid of exact scientific
apparatus.
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Ernst Weber73 was one of the first people to approach the study of the human
response to a physical stimulus in a quantitative fashion. Gustav Fechner later
offered an elaborate theoretical interpretation of Weber’s findings, which he
called simply Weber’s law, though his admirers made the law’s name a hyphen-
ate. Fechner believed that Weber had discovered the fundamental principle of
mind/body interaction, a mathematical analog of the function Rene Descartes
once assigned to the pineal gland.

In one of his classic experiments, Weber gradually increased the weight
that a blindfolded man was holding and asked him to respond when he first
felt the increase. Weber found that the response was proportional to a relative
increase in the weight. That is to say, if the weight is 1 kg, an increase of a few
grams will not be noticed. Rather, when the mass is increased by a certain
factor, an increase in weight is perceived. If the mass is doubled, the threshold
is also doubled. This kind of relationship can be described by a linear ordinary
differential equation as,

dp = k
dS

S
,

where dp is the differential change in perception, dS is the differential increase
in the stimulus and S is the stimulus at the instant. A constant factor k is
to be determined experimentally. Integrating the above equation gives: p =
k lnS + C, where C is the constant of integration. To determine C, we can
put p = 0, which means no perception; then we get, C = −k lnS0,where S0 is
that threshold of stimulus below which it is not perceived at all. In this way,
we get the solution

p = k ln
S

S0
.

Therefore, the relationship between stimulus and perception is logarithmic.
This logarithmic relationship means that if a stimulus varies as a geometric
progression (i.e. multiplied by a fixed factor), the corresponding perception is
altered in an arithmetic progression (i.e. in additive constant amounts). For
example, if a stimulus is tripled in strength (i.e, 3 × 1), the corresponding
perception may be two times as strong as its original value (i.e., 1 + 1). If
the stimulus is again tripled in strength (i.e., 3 × 3 × 1), the corresponding
perception will be three times as strong as its original value (i.e., 1 + 1 + 1).
Hence, for multiplications in stimulus strength, the strength of perception

73 Ernst Heinrich Weber (Wittenberg, June 24, 1795 – January 26, 1878) was a
German physician who is considered a founder of experimental psychology. Weber
studied medicine at Wittenberg University. In 1818 he was appointed Associate
Professor of comparative anatomy at Leipzig University, where he was made a
Fellow Professor of anatomy and physiology in 1821.

Around 1860 Weber worked with Gustav Fechner on psychophysics, during
which time he formulated Weber’s Law. In 1866 Weber retired as professor of
physiology and also as professor of anatomy in 1871. Around this time he and his
brother, Eduard Weber, discovered the inhibitory power of the vagus nerve.
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only adds. This logarithmic relationship is valid, not just for the sensation of
weight, but for other stimuli and our sensory perceptions as well.

In case of vision, we have that the eye senses brightness logarithmically.
Hence stellar magnitude is measured on a logarithmic scale. This magnitude
scale was invented by the ancient Greek astronomer Hipparchus in about 150
B.C. He ranked the stars he could see in terms of their brightness, with 1
representing the brightest down to 6 representing the faintest, though now
the scale has been extended beyond these limits. An increase in 5 magnitudes
corresponds to a decrease in brightness by a factor 100.

In case of sound, we have still another logarithmic scale is the decibel scale
of sound intensity. And yet another is pitch, which, however, differs from the
other cases in that the physical quantity involved is not a ‘strength’. In the
case of perception of pitch, humans hear pitch in a logarithmic or geometric
ratio–based fashion: For notes spaced equally apart to the human ear, the
frequencies are related by a multiplicative factor. For instance, the frequency
of corresponding notes of adjacent octaves differ by a factor of 2. Similarly,
the perceived difference in pitch between 100 Hz and 150 Hz is the same as
between 1000 Hz and 1500 Hz. Musical scales are always based on geometric
relationships for this reason. Notation and theory about music often refers
to pitch intervals in an additive way, which makes sense if one considers the
logarithms of the frequencies, as log(a× b) = log a+ log b.

Psychophysicists usually employ experimental stimuli that can be objec-
tively measured, such as pure tones varying in intensity, or lights varying in
luminance. All the senses have been studied:vision, hearing, touch (including
skin and enteric perception), taste, smell, and the sense of time. Regardless
of the sensory domain, there are three main topics in the psychophysical clas-
sification scheme: absolute thresholds, discrimination thresholds, and scaling.

The most common use of psychophysics is in producing scales of human
experience of various aspects of physical stimuli. Take for an example the
physical stimulus of frequency of sound. Frequency of a sound is measured
in Hertz (Hz), cycles per second. But human experience of the frequencies of
sound is not the same as the frequencies. For one thing, there is a frequency
below which no sounds can be heard, no matter how intense they are (around
20 Hz depending on the individual) and there is a frequency above which
no sounds can be heard, no matter how intense they are (around 20,000 Hz,
again depending on the individual). For another, doubling the frequency of a
sound (e.g., from 100 Hz to 200 Hz) does not lead to a doubling of experience.
The perceptual experience of the frequency of sound is called pitch, and it is
measured by psychophysicists in mels.

More analytical approaches allow the use of psychophysical methods to
study neurophysiological properties and sensory processing mechanisms. This
is of particular importance in human research, where other (more invasive)
methods are not used due to ethical reasons. Areas of investigation include
sensory thresholds, methods of measurement of sensitivity, and signal detec-
tion theory.
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Perception is the process of acquiring, interpreting, selecting, and organiz-
ing sensory information. Methods of studying perception range from essen-
tially biological or physiological approaches, through psychological approaches
to the often abstract ‘thought–experiments’ of mental philosophy.

Experiments in psychophysics seek to determine whether the subject can
detect a stimulus, identify it, differentiate between it and another stimulus,
and describe the magnitude or nature of this difference [Sno75]. Often, the
classic methods of experimentation are argued to be inefficient. This is because
a lot of sampling and data has to be collected at points of the psychometric
function that is known (the tails). Staircase procedures can be used to quickly
estimate threshold. However, the cost of this efficiency, is that we do not get
the same amount of information regarding the psychometric function as we
can through classical methods; e.g., we cannot extract an estimate of the slope
(derivative) of the function.

A psychometric function describes the relationship between a parameter
of a physical stimulus and the responses of a person who has to decide about a
certain aspect of that stimulus. The psychometric function usually resembles a
sigmoid function with the percentage of correct responses (or a similar value)
displayed on the ordinate and the physical parameter on the abscissa. If the
stimulus parameter is very far towards one end of its possible range, the person
will always be able to respond correctly. Towards the other end of the range,
the person never perceives the stimulus properly and therefore the probability
of correct responses is at chance level. In between, there is a transition range
where the subject has an above–chance rate of correct responses, but does not
always respond correctly. The inflection point of the sigmoid function or the
point at which the function reaches the middle between the chance level and
100% is usually taken as sensory threshold. A common example is visual acuity
testing with an eye chart. The person sees symbols of different sizes (the size
is the relevant physical stimulus parameter) and has to decide which symbol
it is. Usually, there is one line on the chart where a subject can identify some,
but not all, symbols. This is equal to the transition range of the psychometric
function and the sensory threshold corresponds to visual acuity.

On the other hand, a sensory threshold is a theoretical concept which
states: “A stimulus that is less intense than the sensory threshold will not
elicit any sensation.” Whilst the concept can be applied to all senses, it is most
commonly applied to the detection and perception of flavours and aromas.
Several different sensory thresholds have been defined:

1. Absolute threshold: the lowest level at which a stimulus can be detected.
2. Recognition threshold: the level at which a stimulus can not only be de-

tected but also recognised.
3. Differential threshold: the level at which an increase in a detected stimulus

can be perceived.
4. Terminal threshold: the level beyond which a stimulus is no longer

detected.
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In other words, a threshold is the point of intensity at which the participant
can just detect the presence of, or difference in, a stimulus. Stimuli with
intensities below the threshold are considered not detectable, however stimuli
at values close to threshold will often be detectable some proportion of the
time. Due to this, a threshold is considered to be the point at which a stimulus,
or change in a stimulus, is detected some proportion p of the time. An absolute
threshold is the level of intensity of a stimulus at which the subject is able
to detect the presence of the stimulus some proportion of the time (a p level
of 50% is often used). An example of an absolute threshold is the number of
hairs on the back of one’s hand that must be touched before it can be felt, a
participant may be unable to feel a single hair being touched, but may be able
to feel two or three as this exceeds the threshold. A difference threshold is the
magnitude of the difference between two stimuli of differing intensities that the
participant is able to detect some proportion of the time (again, 50% is often
used). To test this threshold, several difference methods are used. The subject
may be asked to adjust one stimulus until it is perceived as the same as the
other, may be asked to describe the magnitude of the difference between two
stimuli, or may be asked to detect a stimulus against a background. Absolute
and difference thresholds are sometimes considered similar because there is
always background noise interfering with our ability to detect stimuli, however
study of difference thresholds still occurs, for example in pitch discrimination
tasks (see [Sno75]).

The sensory analysis applies principles of experimental design and sta-
tistical analysis to the use of human senses (sight, smell, taste, touch and
hearing) for the purposes of evaluating consumer products. The discipline
requires panels of human assessors, on whom the products are tested, and
recording the responses made by them. By applying statistical techniques to
the results it is possible to make inferences and insights about the products
under test. Most large consumer goods companies have departments dedicated
to sensory analysis. Sensory Analysis can generally be broken down into three
sub–sections:

1. Effective Testing (dealing with objective facts about products);
2. Affective Testing (dealing with subjective facts such as preferences); and
3. Perception (the biochemical and psychological aspects of sensation).

The signal detection theory (SDT) is a means to quantify the ability to
discern between signal and noise. It has applications in many fields such as
quality control, telecommunications, and psychology (see [Abd06]). The con-
cept is similar to the signal to noise ratio used in the sciences, and it is also
usable in alarm management, where it is important to separate important
events from background noise. According to the theory, there are a number
of psychological determiners of how we will detect a signal, and where our
threshold levels will be. Experience, expectations, physiological state (e.g, fa-
tigue) and other factors affect thresholds. For instance, a sentry in wartime
will likely detect fainter stimuli than the same sentry in peacetime. SDT is
used when psychologists want to measure the way we make decisions under
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conditions of uncertainty, such as how we would perceive distances in foggy
conditions. SDT assumes that ‘the decision maker is not a passive receiver
of information, but an active decision–maker who makes difficult perceptual
judgements under conditions of uncertainty’. In foggy circumstances, we are
forced to decide how far an object is away from us based solely upon visual
stimulus which is impaired by the fog. Since the brightness of the object, such
as a traffic light, is used by the brain to discriminate the distance of an ob-
ject, and the fog reduces the brightness of objects, we perceive the object to
be much further away than it actually is. To apply signal detection theory
to a data set where stimuli were either present or absent, and the observer
categorized each trial as having the stimulus present or absent, the trials are
sorted into one of four categories, depending upon the stimulus and response:

Respond ‘Absent’ Respond ‘Present’
Stimulus Present Miss Hit
Stimulus Absent Correct Rejection False Alarm

1.1.2 Human Problem Solving

Beginning in the 1970s, researchers became increasingly convinced that empir-
ical findings and theoretical concepts derived from simple laboratory tasks did
not necessarily generalize to more complex, real–life problems. Even worse, it
appeared that the processes underlying creative problem solving in different
domains differed from each other [Ste95]. These realizations have led to rather
different responses in North America and in Europe.

In North America, initiated by the work of Herbert Simon on learning
by doing in semantically rich domains (see, e.g., [AS79, BS77]), researchers
began to investigate problem solving separately in different natural knowl-
edge domains – such as physics, writing, or chess playing – thus relinquishing
their attempts to extract a global theory of problem solving (see, e.g., [SF91]).
Instead, these researchers have frequently focused on the development of prob-
lem solving within a certain domain, that is on the development of expertise
(see, e.g., [ABR85], [CS73]; [CFG81]).

Areas that have attracted rather intensive attention in North Amer-
ica include such diverse fields as: reading [SC91], writing [BBS91], calcula-
tion [SM91], political decision making [VWL91], managerial problem solving
[Wag91], lawyers’ reasoning [ALL91], personal problem solving [HK87], math-
ematical problem solving [Pol45, Sch85], mechanical problem solving [Heg91],
problem solving in electronics [LL91], computer skills [Kay91], game playing
[FS91], and social problem solving [D’Zur86].

In particular, George Pólya’s 1945 book ‘How to Solve It’ [Pol45], is a small
volume describing methods of problem–solving. It suggests the following steps
when solving a mathematical problem:

1. First, you have to understand the problem.
2. After understanding, then make a plan.
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Heuristic Informal Description Formal analogue

Analogy can you find a problem analogous to your
problem and solve that?

Map

Generalization can you find a problem more general than
your problem ...?

Generalization

Induction can you solve your problem by deriving
a generalization from some examples?

Induction

Variation of the
Problem

can you vary or change your problem to
create a new problem (or set of problems)
whose solution(s) will help you solve your
original problem?

Search

Auxiliary Problem can you find a subproblem or side prob-
lem whose solution will help you solve
your problem?

Subgoal

Here is a problem re-
lated to yours and
solved before

can you find a problem related to yours
that has already been solved and use that
to solve your problem?

Pattern recognition
Pattern matching

Specialization can you find a problem more specialized? Specialization

Decomposing and
Recombining

can you decompose the problem and ”re-
combine its elements in some new man-
ner”?

Divide and conquer

Working backward can you start with the goal and work
backwards to something you already
know?

Backward chaining

Draw a Figure can you draw a picture of the problem? Diagrammatic
Reasoning

Auxiliary Elements can you add some new element to your
problem to get closer to a solution?

Extension

3. Carry out the plan.
4. Look back on your work. How could it be better?

If this technique fails, Polya advises: “If you cannot solve a problem, then
there is an easier problem you can solve: find it.” Or, “If you cannot solve the
proposed problem try to solve first some related problem. Could you imagine
a more accessible related problem?”

His small book contains a dictionary–style set of heuristics, many of which
have to do with generating a more accessible problem, like the ones given in
the table below:

The technique ‘have I used everything’ is perhaps most applicable to for-
mal educational examinations (e.g., n men digging m ditches, see footnote
below) problems. The book has achieved ‘classic’ status because of its consid-
erable influence. Marvin Minsky74 said in his influential paper ‘Steps Toward
Artificial Intelligence’: “And everyone should know the work of George Polya

74 Marvin Lee Minsky (born August 9, 1927), sometimes affectionately known as
‘Old Man Minsky’, is an American cognitive scientist in the field of artificial
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on how to solve problems.” Polya’s book has had a large influence on mathe-
matics textbooks. Most formulations of a problem solving framework in U.S.
textbooks attribute some relationship to Polya’s problem solving stages. Other
books on problem solving are often related to less concrete and more creative
techniques, like e.g., lateral thinking, mind mapping and brainstorming (see
below).

On the other hand, in Europe, two main approaches have surfaced, one
initiated by Donald Broadbent in the UK [Bro77, BB95] and the other one
by Dietrich Dörner in Germany [Dor75, DV85, DW95]. The two approaches
have in common an emphasis on relatively complex, semantically rich, com-
puterized laboratory tasks, constructed to resemble ‘real–life’ problems. The
approaches differ somewhat in their theoretical goals and methodology, how-
ever. The tradition initiated by Broadbent emphasizes the distinction between
cognitive problem–solving processes that operate under awareness versus out-
side of awareness, and typically employs mathematically well–defined com-
puterized systems. The tradition initiated by Dörner, on the other hand, has
an interest in the interplay of the cognitive, motivational, and social compo-
nents of problem solving, and utilizes very complex computerized scenarios
that contain up to 2,000 highly interconnected variables. Buchner [Buc95]
describes the two traditions in detail.

To sum up, researchers’ realization that problem–solving processes differ
across knowledge domains and across levels of expertise (see, e.g. [Ste95])
and that, consequently, findings obtained in the laboratory cannot necessarily
generalize to problem–solving situations outside the laboratory, has during
the past two decades led to an emphasis on real–world problem solving. This
emphasis has been expressed quite differently in North America and Europe,
however. Whereas North American research has typically concentrated on
studying problem solving in separate, natural knowledge domains, much of
the European research has focused on novel, complex problems, and has been
performed with computerized scenarios (see [Fun95], for an overview).

Characteristics of Difficult Problems

As elucidated by Dietrich Dorner and later expanded upon by Joachim Funke,
difficult problems have some typical characteristics. Recategorized and some-
what reformulated from these original works, these characteristics can be sum-
marized as follows:

Intransparency (lack of clarity of the situation), including commencement
opacity and continuation opacity;

Polytely (multiple goals), including inexpressiveness, opposition and tran-
sience;

intelligence (AI), co–founder of MIT’s AI laboratory, and author of several texts
on AI and philosophy.
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Complexity (large numbers of items, interrelations, and decisions), includ-
ing enumerability, connectivity (hierarchy relation, communication relation,
allocation relation), and heterogeneity;

Dynamism (time considerations), including temporal constraints, temporal
sensitivity, phase effects, and dynamic unpredictability.

The resolution of difficult problems requires a direct attack on each of
these characteristics that are encountered.

Some standard problem–solving techniques, also known as creativity tech-
niques, include:

1. Trial–and–error;75

75 Trial and error (also known in computer science literature as generate and test and
as ‘guess and check’ when solving equations in elementary algebra) is a method
of problem solving for obtaining knowledge, both propositional knowledge and
know-how.

This approach can be seen as one of the two basic approaches to problem
solving and is contrasted with an approach using insight and theory.

In trial and error, one selects (or, generates) a possible answer, applies it to
the problem and, if it is not successful, selects (or generates) another possibility
that is subsequently tried. The process ends when a possibility yields a solution.

In some versions of trial and error, the option that is a priori viewed as the
most likely one should be tried first, followed by the next most likely, and so
on until a solution is found, or all the options are exhausted. In other versions,
options are simply tried at random.

This approach is most successful with simple problems and in games, and is
often resorted to when no apparent rule applies. This does not mean that the
approach need be careless, for an individual can be methodical in manipulating
the variables in an effort to sort through possibilities that may result in success.
Nevertheless, this method is often used by people who have little knowledge in
the problem area.

Trial and error has a number of features:
solution-oriented: trial and error makes no attempt to discover why a solution

works, merely that it is a solution.
problem-specific: trial and error makes no attempt to generalize a solution to

other problems.
non-optimal: trial and error is an attempt to find a solution, not all solutions,

and not the best solution.
needs little knowledge: trial and error can proceed where there is little or no

knowledge of the subject.
For example, trial and error has traditionally been the main method of finding

new drugs, such as antibiotics. Chemists simply try chemicals at random until
they find one with the desired effect.

The scientific method can be regarded as containing an element of trial and
error in its formulation and testing of hypotheses. Also compare genetic algo-
rithms, simulated annealing and reinforcement learning – all varieties of search
which apply the basic idea of trial and error.
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2. Brainstorming;76

3. Morphological box;77

Biological Evolution is also a form of trial and error. Random mutations and
sexual genetic variations can be viewed as trials and poor reproductive fitness as
the error. Thus after a long time ‘knowledge’ of well–adapted genomes accumu-
lates simply by virtue of them being able to reproduce.

Bogosort can be viewed as a trial and error approach to sorting a list.
In mathematics the method of trial and error can be used to solve formulae –

it is a slower, less precise method than algebra, but is easier to understand.
76 Brainstorming is a creativity technique of generating ideas to solve a problem. The

main result of a brainstorm session may be a complete solution to the problem, a
list of ideas for an approach to a subsequent solution, or a list of ideas resulting in
a plan to find a solution. Brainstorming was originated in 1953 in the book ‘Ap-
plied Imagination’ by Alex Osborn, an advertising executive. Other methods of
generating ideas are individual ideation and the morphological analysis approach.

Brainstorming has many applications but it is most often used in:
New product development – obtaining ideas for new products and improving

existing products
Advertising – developing ideas for advertising campaigns
Problem solving – issues, root causes, alternative solutions, impact analysis,

evaluation
Process management – finding ways of improving business and production

processes
Project Management – identifying client objectives, risks, deliverables, work

packages, resources, roles and responsibilities, tasks, issues
Team building – generates sharing and discussion of ideas while stimulating

participants to think
Business planning – develop and improve the product idea.
Trial preparation by attorneys.
Brainstorming can be done either individually or in a group. In group brain-

storming, the participants are encouraged, and often expected, to share their ideas
with one another as soon as they are generated. Complex problems or brainstorm
sessions with a diversity of people may be prepared by a chairman. The chairman
is the leader and facilitator of the brainstorm session.

The key to brainstorming is to not interrupt the thought process. As ideas
come to mind, they are captured and stimulate the development of better ideas.
Thus a group brainstorm session is best conducted in a moderate–sized room, and
participants sit so that they can all look at each–other. A flip chart, blackboard,
or overhead projector is placed in a prominent location. The room is free of
telephones, clocks, or any other distractions.

77 Morphological analysis was designed for multi-dimensional, non-quantifiable
problems where causal modelling and simulation do not function well or at
all. Fritz Zwicky developed this approach to seemingly non-reducible complex-
ity [Zwi69]. Using the technique of cross consistency assessment (CCA) [Rit02],
the system however does allow for reduction, not by reducing the number of
variables involved, but by reducing the number of possible solutions through the
elimination of the illogical solution combinations in a grid box.
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4. Method of focal objects;78

5. Lateral thinking;79

78 The technique of focal objects for problem solving involves synthesizing the seem-
ingly non–matching characteristics of different objects into something new.

For example, to generate new solutions to gardening take some ideas at random,
such swimming and a couch, and invent ways for them to merge. Swimming might
be used with the idea of gardening to create a plant oxygen tank for underwater
divers. A couch might be used with the idea of gardening to invent new genes that
would grow plants into the shape of a couch. The larger the number of diverse
objects included, the greater the opportunity for inventive solutions.

Another way to think of focal objects is as a memory cue: if you’re trying to
find all the different ways to use a brick, give yourself some random ‘objects’
(situations, concepts, etc.) and see if you can find a use. Given ‘blender’, for
example, I would try to think of all the ways a brick could be used with a blender
(as a lid?). Another concept for the brick game: find patterns in your solutions,
and then break those patterns. If you keep finding ways to build things with bricks,
think of ways to use bricks that don’t involve construction. Pattern–breaking,
combined with focal object cues, can lead to very divergent solutions.

79 Lateral thinking is a term coined by Edward de Bono [Bon73], a Maltese psychol-
ogist, physician, and writer, although it may have been an idea whose time was
ready; the notion of lateral truth is discussed by Robert M. Pirsig in Zen and the
Art of Motorcycle Maintenance. de Bono defines Lateral Thinking as methods of
thinking concerned with changing concepts and perception. For example:

It took two hours for two men to dig a hole five feet deep. How deep would it
have been if ten men had dug the hole for two hours?

The answer appears to be 25 feet deep. This answer assumes that the thinker
has followed a simple mathematical relationship suggested by the description
given, but we can generate some lateral thinking ideas about what affects the size
of the hole which may lead to different answers:

A hole may need to be of a certain size or shape so digging might stop early
at a required depth.

The deeper a hole is, the more effort is required to dig it, since waste soil needs
to be lifted higher to the ground level. There is a limit to how deep a hole can be
dug by manpower without use of ladders or hoists for soil removal, and 25 feet is
beyond this limit.

Deeper soil layers may be harder to dig out, or we may hit bedrock or the
water table.

Each man digging needs space to use a shovel.
It is possible that with more people working on a project, each person may

become less efficient due to increased opportunity for distraction, the assumption
he can slack off, more people to talk to, etc.

More men could work in shifts to dig faster for longer.
There are more men but are there more shovels?
The two hours dug by ten men may be under different weather conditions than

the two hours dug by two men.
Rain could flood the hole to prevent digging.
Temperature conditions may freeze the men before they finish.
Would we rather have 5 holes each 5 feet deep?
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6. Mind mapping;80

The two men may be an engineering crew with digging machinery.
What if one man in each group is a manager who will not actually dig?
The extra eight men might not be strong enough to dig, or much stronger than

the first two.
The most useful ideas listed above are outside the simple mathematics implied

by the question. Lateral thinking is about reasoning that is not immediately
obvious and about ideas that may not be obtainable by using only traditional
step–by–step logic.

Techniques that apply lateral thinking to problems are characterized by the
shifting of thinking patterns away from entrenched or predictable thinking to new
or unexpected ideas. A new idea that is the result of lateral thinking is not always
a helpful one, but when a good idea is discovered in this way it is usually obvious
in hindsight, which is a feature lateral thinking shares with a joke.

Lateral thinking can be contrasted with critical thinking, which is primarily
concerned with judging the truth value of statements and seeking error. Lateral
Thinking is more concerned with the movement value of statements and ideas,
how to move from them to other statements and ideas.

For example the statement ‘cars should have square wheels’ when considered
with critical thinking would be evaluated as a poor suggestion, as there are many
engineering problems with square wheels. The Lateral Thinking treatment of the
same statement would be to see where it leads. Square wheels would produce
predictable bumps. If bumps can be predicted then suspension can be designed
to compensate. Another way to predict bumps would be a laser or sonar on the
front of the car examining the road surface ahead. This leads to the idea of active
suspension with a sensor on the car that has normal wheels. The initial statement
has been left behind.

80 Recall that a mind map is a diagram used to represent words, ideas, tasks or
other items linked to and arranged radially around a central key word or idea. It
is used to generate, visualize, structure and classify ideas, and as an aid in study,
organization, problem solving, and decision making.

It is an image–centered diagram that represents semantic or other connections
between portions of information. By presenting these connections in a radial,
nonlinear graphical manner, it encourages a brainstorming approach to any given
organizational task, eliminating the hurdle of initially establishing an intrinsically
appropriate or relevant conceptual framework to work within.

A mind map is similar to a semantic network or cognitive map but there are
no formal restrictions on the kinds of links used.

Most often the map involves images, words, and lines. The elements are
arranged intuitively according to the importance of the concepts and they are
organized into groupings, branches, or areas. The uniform graphic formulation
of the semantic structure of information on the method of gathering knowledge,
may aid recall of existing memories.

People have been using image centered radial graphic organization techniques
referred to variably as mental or generic mind maps for centuries in areas such as
engineering, psychology, and education, although the claim to the origin of the
mind map has been made by a British popular psychology author, Tony Buzan.
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7. Analogy with similar problems;81 and

The mind map continues to be used in various forms, and for various appli-
cations including learning and education (where it is often taught as ‘Webs’ or
‘Webbing’), planning and in engineering diagramming.

When compared with the earlier original concept map (which was developed
by learning experts in the 1960s) the structure of a mind map is a similar, but
simplified, radial by having one central key word.

Mind maps have many applications in personal, family, educational, and busi-
ness situations, including note-taking, brainstorming (wherein ideas are inserted
into the map radially around the center node, without the implicit prioritization
that comes from hierarchy or sequential arrangements, and wherein grouping and
organizing is reserved for later stages), summarizing, revising and general clari-
fying of thoughts. For example, one could listen to a lecture and take down notes
using mind maps for the most important points or keywords. One can also use
mind maps as a mnemonic technique or to sort out a complicated idea. Mind
maps are also promoted as a way to collaborate in color pen creativity sessions.

81 Recall that analogy is either the cognitive process of transferring information
from a particular subject (the analogue or source) to another particular subject
(the target), or a linguistic expression corresponding to such a process. In a nar-
rower sense, analogy is an inference or an argument from a particular to another
particular, as opposed to deduction, induction, and abduction, where at least one
of the premises or the conclusion is general. The word analogy can also refer to
the relation between the source and the target themselves, which is often, though
not necessarily, a similarity, as in the biological notion of analogy.

Niels Bohr’s model of the atom made an analogy between the atom and the
solar system.Analogy plays a significant role in problem solving, decision mak-
ing, perception, memory, creativity, emotion, explanation and communication.
It lies behind basic tasks such as the identification of places, objects and peo-
ple, for example, in face perception and facial recognition systems. It has been
argued that analogy is ‘the core of cognition’. Specifically analogical language
comprises exemplification, comparisons, metaphors, similes, allegories, and para-
bles, but not metonymy. Phrases like and so on, and the like, as if, and the very
word like also rely on an analogical understanding by the receiver of a message
including them. Analogy is important not only in ordinary language and com-
mon sense, where proverbs and idioms give many examples of its application,
but also in science, philosophy and the humanities. The concepts of association,
comparison, correspondence, homomorphism, iconicity, isomorphism, mathemat-
ical homology, metaphor, morphological homology, resemblance, and similarity
are closely related to analogy. In cognitive linguistics, the notion of conceptual
metaphor may be equivalent to that of analogy.

Analogy has been studied and discussed since classical antiquity by philoso-
phers, scientists and lawyers. The last few decades have shown a renewed interest
in analogy, most notable in cognitive science.

With respect to the terms source and target, there are two distinct traditions
of usage:

The logical and mathematical tradition speaks of an arrow, homomorphism,
mapping, or morphism from what is typically the more complex domain or source



1.1 Natural Intelligence and Human Mind 89

8. Research;82

1.1.3 Human Mind

Recall that the word mind commonly refers to the collective aspects of intel-
lect and consciousness which are manifest in some combination of thought ,
perception, emotion, will , memory , and imagination.

There are many theories of what the mind is and how it works, dating back
to Plato, Aristotle and other Ancient Greek philosophers. Modern theories,
based on a scientific understanding of the brain, see the mind as a phenomenon
of psychology, and the term is often used more or less synonymously with
consciousness.

The question of which human attributes make up the mind is also much
debated. Some argue that only the ‘higher’ intellectual functions constitute

to what is typically the less complex codomain or target, using all of these words
in the sense of mathematical category theory.

The tradition that appears to be more common in cognitive psychology, literary
theory, and specializations within philosophy outside of logic, speaks of a mapping
from what is typically the more familiar area of experience, the source, to what
is typically the more problematic area of experience, the target.

82 Research is often described as an active, diligent, and systematic process of inquiry
aimed at discovering, interpreting, and revising facts. This intellectual investiga-
tion produces a greater understanding of events, behaviors, or theories, and makes
practical applications through laws and theories. The term research is also used
to describe a collection of information about a particular subject, and is usually
associated with science and the scientific method.

The word research derives from Middle French; its literal meaning is ’to inves-
tigate thoroughly’.

Thomas Kuhn, in his book ‘The Structure of Scientific Revolutions’, traces an
interesting history and analysis of the enterprize of research.

Basic research (also called fundamental or pure research) has as its primary
objective the advancement of knowledge and the theoretical understanding of the
relations among variables. It is exploratory and often driven by the researcher’s
curiosity, interest, or hunch. It is conducted without any practical end in mind,
although it may have unexpected results pointing to practical applications. The
terms “basic” or “fundamental” indicate that, through theory generation, basic
research provides the foundation for further, sometimes applied research. As there
is no guarantee of short-term practical gain, researchers often find it difficult to
get funding for basic research. Research is a subset of invention.

Applied research is done to solve specific, practical questions; its primary aim
is not to gain knowledge for its own sake. It can be exploratory, but is usually de-
scriptive. It is almost always done on the basis of basic research. Applied research
can be carried out by academic or industrial institutions. Often, an academic in-
stitution such as a university will have a specific applied research program funded
by an industrial partner interested in that program. Common areas of applied re-
search include electronics, informatics, computer science, material science, process
engineering, drug design ...
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mind: particularly reason and memory. In this view the emotions – love, hate,
fear, joy – are more ‘primitive’ or subjective in nature and should be seen as
different in nature or origin to the mind. Others argue that the rational and
the emotional sides of the human person cannot be separated, that they are
of the same nature and origin, and that they should all be considered as part
of the individual mind.

In popular usage mind is frequently synonymous with thought : It is that
private conversation with ourselves that we carry on ‘inside our heads’ during
every waking moment of our lives. Thus we ‘make up our minds,’ or ‘change
our minds’ or are ‘of two minds’ about something. One of the key attributes
of the mind in this sense is that it is a private sphere. No–one else can ‘know
our mind.’ They can only know what we communicate.

Both philosophers and psychologists remain divided about the nature of
the mind. Some take what is known as the substantial view, and argue that
the mind is a single entity, perhaps having its base in the brain but distinct
from it and having an autonomous existence. This view ultimately derives
from Plato, and was absorbed from him into Christian thought. In its most
extreme form, the substantial view merges with the theological view that the
mind is an entity wholly separate from the body, in fact a manifestation of
the soul, which will survive the body’s death and return to God, its creator.

Others take what is known as the functional view, ultimately derived from
Aristotle, which holds that the mind is a term of convenience for a variety
of mental functions which have little in common except that humans are
conscious of their existence. Functionalists tend to argue that the attributes
which we collectively call the mind are closely related to the functions of
the brain and can have no autonomous existence beyond the brain, nor can
they survive its death. In this view mind is a subjective manifestation of
consciousness: the human brain’s ability to be aware of its own existence.
The concept of the mind is therefore a means by which the conscious brain
understands its own operations.

A leading exponent of the substantial view at the mind was George Berke-
ley, an 18th century Anglican bishop and philosopher. Berkeley argued that
there is no such thing as matter and what humans see as the material world
is nothing but an idea in God’s mind, and that therefore the human mind is
purely a manifestation of the soul or spirit. This type of belief is also common
in certain types of spiritual non–dualistic belief, but outside this field few
philosophers take an extreme view today. However, the view that the human
mind is of a nature or essence somehow different from, and higher than, the
mere operations of the brain, continues to be widely held.

Berkeley’s views were attacked, and in the eyes of many philosophers de-
molished, by T.H. Huxley,83 a 19th century biologist and disciple of Charles

83 Thomas Henry Huxley, FRS (4 May 1825 – 29 June 1895) was an English biologist,
known as ‘Darwin’s Bulldog’ for his defence of Charles Darwin’s theory of evolu-
tion. His scientific debates against Richard Owen demonstrated that there were
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Darwin,84 who agreed that the phenomena of the mind were of a unique order,
but argued that they can only be explained in reference to events in the brain.
Huxley drew on a tradition of materialist thought in British philosophy dat-
ing to Thomas Hobbes,85 who argued in the 17th century that mental events
were ultimately physical in nature, although with the biological knowledge
of his day he could not say what their physical basis was. Huxley blended
Hobbes with Darwin to produce the modern functional view . Huxley’s view
was reinforced by the steady expansion of knowledge about the functions of
the human brain. In the 19th century it was not possible to say with certainty
how the brain carried out such functions as memory, emotion, perception and
reason. This left the field open for substantialists to argue for an autonomous
mind, or for a metaphysical theory of the mind. But each advance in the study
of the brain during the 20th century made this harder, since it became more
and more apparent that all the components of the mind have their origins in

close similarities between the cerebral anatomy of humans and gorillas. Huxley
did not accept many of Darwin’s ideas, such as gradualism and was more inter-
ested in advocating a materialist professional science than in defending natural
selection.

A talented populariser of science, he coined the term ‘agnosticism’ to describe
his stance on religious belief. He is credited with inventing the concept of ‘biogen-
esis’, a theory stating that all cells arise from other cells and also ‘abiogenesis’,
describing the generation of life from non–living matter.

84 Charles Robert Darwin (12 February 1809 – 19 April 1882) was an English natu-
ralist who achieved lasting fame by producing considerable evidence that species
originated through evolutionary change, at the same time proposing the scientific
theory that natural selection is the mechanism by which such change occurs. This
theory is now considered a cornerstone of biology.

Darwin developed an interest in natural history while studying first medicine,
then theology, at university. Darwin’s observations on his five-year voyage on
the Beagle brought him eminence as a geologist and fame as a popular author.
His biological finds led him to study the transmutation of species and in 1838
he conceived his theory of natural selection. Fully aware that others had been
severely punished for such ‘heretical’ ideas, he confided only in his closest friends
and continued his research to meet anticipated objections. However, in 1858 the
information that Alfred Wallace had developed a similar theory forced an early
joint publication of the theory.

His 1859 book ‘On the Origin of Species by Means of Natural Selection’ es-
tablished evolution by common descent as the dominant scientific explanation of
diversification in nature.

85 Thomas Hobbes (April 5, 1588–December 4, 1679) was an English philosopher,
whose famous 1651 book Leviathan set the agenda for nearly all subsequent West-
ern political philosophy. Although Hobbes is today best remembered for his work
on political philosophy , he contributed to a diverse array of fields, including his-
tory, geometry, ethics, general philosophy and what would now be called polit-
ical science. Additionally, Hobbes’s account of human nature as self–interested
cooperation has proved to be an enduring theory in the field of philosophical
anthropology.
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the functioning of the brain. Huxley’s rationalism, was disturbed in the early
20th century by Freudian a theory of the unconscious mind, and argued that
those mental processes of which humans are subjectively aware are only a
small part of their total mental activity.

More recently, Douglas Hofstadter’s86 1979 Pulitzer Prize–winning book
‘Gödel, Escher, Bach – an eternal Golden Braid’, is a tour de force on the sub-
ject of mind, and how it might arise from the neurology of the brain. Amongst
other biological and cybernetic phenomena, Hofstadter places tangled loops
and recursion at the center of self, self–awareness, and perception of oneself,
and thus at the heart of mind and thinking. Likewise philosopher Ken Wilber
posits that Mind is the interior dimension of the brain holon, i.e., mind is
what a brain looks like internally, when it looks at itself.

Quantum physicist David Bohm87 had a theory of mind that is most com-
parable to Neo–Platonic theories. “Thought runs you. Thought, however, gives
false info that you are running it, that you are the one who controls thought.
Whereas actually thought is the one which controls each one of us ...” [Boh92].

The debate about the nature of the mind is relevant to the development of
artificial intelligence (see next section). If the mind is indeed a thing separate
from or higher than the functioning of the brain, then presumably it will not
be possible for any machine, no matter how sophisticated, to duplicate it. If
on the other hand the mind is no more than the aggregated functions of the

86 Douglas Richard Hofstadter (born February 15, 1945 in New York, New York)
is an American academic, the son of Nobel Prize–winning physicist Robert Hof-
stadter. He is probably best known for his book Gödel, Escher, Bach: an Eternal
Golden Braid (abbreviated as GEB) which was published in 1979, and won the
1980 Pulitzer Prize for general non-fiction. This book is commonly considered to
have inspired many students to begin careers in computing and artificial intel-
ligence, and attracted substantial notice outside its central artificial intelligence
readership owing to its drawing on themes from such diverse disciplines as high-
energy physics, music, the visual arts, molecular biology, and literature.

87 David Joseph Bohm (born December 20, 1917 in Wilkes–Barre, Pennsylvania,
died October 27, 1992 in London) was an American–born quantum physicist,
who made significant contributions in the fields of theoretical physics, philosophy
and neuropsychology, and to the Manhattan Project.

Bohm made a number of significant contributions to physics, particularly in the
area of quantum mechanics and relativity theory. While still a post-graduate at
Berkeley, he developed a theory of plasmas, discovering the electron phenomenon
now known as Bohm–diffusion. His first book, Quantum Theory published in 1951,
was well–received by Einstein, among others. However, Bohm became dissatisfied
with the orthodox approach to quantum theory, which he had written about in
that book, and began to develop his own approach (Bohm interpretation), a non–
local hidden variable deterministic theory whose predictions agree perfectly with
the nondeterministic quantum theory. His work and the EPR argument became
the major factor motivating John Bell’s inequality, whose consequences are still
being investigated.
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brain, then it will be possible, at least in theory, to create a machine with
a mind.

Currently, the Mind/Brain/Behavior Interfaculty Initiative (MBB) at Har-
vard University aims to elucidate the structure, function, evolution, develop-
ment, and pathology of the nervous system in relation to human behavior
and mental life. It draws on the departments of psychology, neurobiology,
neurology, molecular and cellular biology, radiology, psychiatry, organismic
and evolutionary biology, history of science, and linguistics.

Bohm also made significant theoretical contributions to neuropsychology and
the development of the so–called holonomic brain model . In collaboration with
Stanford neuroscientist Karl Pribram, Bohm helped establish the foundation for
Pribram’s theory that the brain operates in a manner similar to a hologram, in
accordance with quantum mathematical principles and the characteristics of wave
patterns. These wave forms may compose hologram–like organizations, Bohm sug-
gested, basing this concept on his application of Fourier analysis, a mathematical
method for decomposing complex waves into component sine waves. The holo-
nomic brain model developed by Pribram and Bohm posits a lens defined world
view, much like the textured prismatic effect of sunlight refracted by the churning
mists of a rainbow, a view which is quite different from the more conventional
‘objective’ approach. Pribram believes that if psychology means to understand
the conditions that produce the world of appearances, it must look to the thinking
of physicists like Bohm.

Bohm proposes thus in his book ‘Thought as a System’ a pervasive, systematic
nature of thought: “What I mean by ‘thought’ is the whole thing – thought,
‘felt’, the body, the whole society sharing thoughts – it’s all one process. It is
essential for me not to break that up, because it’s all one process; somebody else’s
thoughts becomes my thoughts, and vice versa. Therefore it would be wrong and
misleading to break it up into my thoughts, your thoughts, my feelings, these
feelings, those feelings ... I would say that thought makes what is often called in
modern language a system. A system means a set of connected things or parts.
But the way people commonly use the word nowadays it means something all
of whose parts are mutually interdependent – not only for their mutual action,
but for their meaning and for their existence. A corporation is organized as a
system – it has this department, that department, that department. They do not
have any meaning separately; they only can function together. And also the body
is a system. Society is a system in some sense. And so on. Similarly, thought is a
system. That system not only includes thoughts and feelings, but it includes the
state of the body; it includes the whole of society – as thought is passing back and
forth between people in a process by which thought evolved from ancient times.
A system is constantly engaged in a process of development, change, evolution
and structure changes ... although there are certain features of the system which
become relatively fixed. We call this the structure ... Thought has been constantly
evolving and we can’t say when that structure began. But with the growth of
civilization it has developed a great deal. It was probably very simple thought
before civilization, and now it has become very complex and ramified and has
much more incoherence than before ...
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Fig. 1.2. A possibly chaotic 1–to–many relation: Thalamus ⇒ Cortex in the
human brain (with permission from E. Izhikevich).

On the other hand, human brain has been considered (by E.M. Izhikevich,
Editor of the new Encyclopedia of Computational Neuroscience) as a weakly–
connected neural network , with possibly chaotic behavior [Izh99b], consisting
of n quasi–periodic cortical oscillatorsX1, . . . , Xn forced by the thalamic input
X0 (see Figure 1.2)

The Mind–Body Problem

The mind–body problem is essentially the problem of explaining the relation-
ship between minds, or mental processes, and bodily states or processes (see,
e.g., [Kim95a]). Our perceptual experiences depend on stimuli which arrive
at our various sensory organs from the external world and that these stimuli
cause changes in the states of our brain, ultimately causing us to feel a sensa-
tion which may be pleasant or unpleasant. Someone’s desire for a slice of pizza
will tend to cause that person to move their body in a certain manner in a
certain direction in an effort to get what they want. But how is it possible that
conscious experiences can arise out of an inert lump of gray matter endowed
with electrochemical properties? [Kim95b]. How does someone’s desire cause
that individual’s neurons to fire and his muscles to contract in exactly the
right manner? These are some of the essential puzzles that have confronted
philosophers of mind at least from the time of René Descartes.88

88 René Descartes (March 31, 1596 – February 11, 1650), also known as Cartesius,
was a noted French philosopher, mathematician, and scientist. Dubbed the
‘Founder of Modern Philosophy’ and the ‘Father of Modern Mathematics’, he
ranks as one of the most important and influential thinkers of modern times.
Much of subsequent western philosophy is a reaction to his writings, which have
been closely studied from his time down to the present day. Descartes was one
of the key thinkers of the Scientific Revolution in the Western World. He is also
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Dualism

Recall that dualism is a set of views about the relationship between mind and
matter, which begins with the claim that mental phenomena are, in some
respects, non–physical [Har96]. One of the earliest known formulations of
mind–body dualism existed in the eastern Sankhya school of Hindu philos-
ophy (c. 650 BCE) which divided the world into Purusha (mind/spirit) and
Prakrti (material substance). In the Western philosophical tradition, we first
encounter similar ideas with the writings of Plato and Aristotle, who main-
tained, for different reasons, that man’s intelligence could not be identified
with, or explained in terms of, his physical body (see, e.g., [RPW97]). How-
ever, the best–known version of dualism is due to René Descartes (1641), and
holds that the mind is a non–physical substance [Des91]. Descartes was the
first to clearly identify the mind with consciousness and self–awareness and
to distinguish this from the brain, which was the seat of intelligence. Hence,
he was the first to formulate the mind–body problem in the form in which it
still exists today.

The main argument in favour of dualism is simply that it appeals to the
common–sense intuition of the vast majority of non–philosophically–trained
people. If asked what the mind is, the average person will usually respond
by identifying it with their self, their personality, their soul, or some other
such entity, and they will almost certainly deny that the mind simply is the
brain or vice–versa, finding the idea that there is just one ontological entity
at play to be too mechanistic or simply unintelligible [Har96]. The majority
of modern philosophers of mind reject dualism, suggesting that these intu-
itions, like many others, are probably misleading. We should use our critical
faculties, as well as empirical evidence from the sciences, to examine these
assumptions and determine if there is any real basis to them [Har96] Another
very important, more modern, argument in favor of dualism consists in the
idea that the mental and the physical seem to have quite different and per-
haps irreconcilable properties [Jac82]. Mental events have a certain subjective
quality to them, whereas physical events obviously do not. For example, what
does a burned finger feel like? What does blue sky look like? What does nice

honoured by having the Cartesian coordinate system used in plane geometry and
algebra named after him.

Descartes was a major figure in 17th century continental rationalism, later
advocated by Baruch Spinoza and Gottfried Leibniz, and opposed by the empiri-
cist school of thought, consisting of Hobbes, Locke, Berkeley, and Hume. Leibniz,
Spinoza and Descartes were all versed in mathematics as well as philosophy, and
Descartes and Leibniz contributed greatly to science as well. As the inventor of the
Cartesian coordinate system, Descartes founded analytic geometry, that bridge
between algebra and geometry crucial to the invention of the calculus and analy-
sis. Descartes’ reflections on mind and mechanism began the strain of western
thought that much later, impelled by the invention of the electronic computer
and by the possibility of machine intelligence, blossomed into, e.g., the Turing
test. His most famous statement is “Cogito ergo sum” (I think, therefore I am).
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music sound like? Philosophers of mind call the subjective aspects of mental
events qualia (or raw feels) [Jac82]. There is something that it is like to feel
pain, to see a familiar shade of blue, and so on; there are qualia involved in
these mental events. And the claim is that qualia seem particularly difficult
to reduce to anything physical [Nag74].

Interactionist dualism, or simply interactionism, is the particular form
of dualism first espoused by Descartes in the ‘Meditations’ [Des91]. In the
20th century, its major defenders have been Karl Popper89 and John Eccles90

89 Sir Karl Raimund Popper (July 28, 1902 – September 17, 1994), was an Austrian
and British philosopher and a professor at the London School of Economics. He is
counted among the most influential philosophers of science of the 20th century, and
also wrote extensively on social and political philosophy. Popper is perhaps best
known for repudiating the classical observationalist–inductivist account of scien-
tific method by advancing empirical falsifiability as the criterion for distinguishing
scientific theory from non–science; and for his vigorous defense of liberal democ-
racy and the principles of social criticism which he took to make the flourishing of
the ‘open society’ possible. In 1934 he published his first book, ‘The Logic of Sci-
entific Discovery’, in which he criticized psychologism, naturalism, inductionism,
and logical positivism, and put forth his theory of potential falsifiability being the
criterion for what should be considered science.

Popper coined the term critical rationalism to describe his philosophy. This
designation is significant, and indicates his rejection of classical empiricism, and of
the observationalist-inductivist account of science that had grown out of it. Popper
argued strongly against the latter, holding that scientific theories are universal in
nature, and can be tested only indirectly, by reference to their implications. He
also held that scientific theory, and human knowledge generally, is irreducibly
conjectural or hypothetical, and is generated by the creative imagination in order
to solve problems that have arisen in specific historico–cultural settings. Logically,
no number of positive outcomes at the level of experimental testing can confirm a
scientific theory, but a single genuine counterexample is logically decisive: it shows
the theory, from which the implication is derived, to be false. Popper’s account
of the logical asymmetry between verification and falsification lies at the heart of
his philosophy of science. It also inspired him to take falsifiability as his criterion
of demarcation between what is and is not genuinely scientific: a theory should
be considered scientific if and only if it is falsifiable. This led him to attack the
claims of both psychoanalysis and contemporary Marxism to scientific status, on
the basis that the theories enshrined by them are not falsifiable. His scientific work
was influenced by his study of quantum mechanics (he has written extensively
against the famous Copenhagen interpretation) and by Albert Einstein’s approach
to scientific theories.

In his book ‘All Life is Problem Solving’ (1999), Popper sought to explain the
apparent progress of scientific knowledge, how it is that our understanding of
the universe seems to improve over time. This problem arises from his position
that the truth content of our theories, even the best of them, cannot be verified
by scientific testing, but can only be falsified. If so, then how is it that the growth
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(see [PE02]). It is the view that mental states, such as beliefs and desires,
causally interact with physical states [Har96]. Descartes’ famous argument
for this position can be summarized as follows: Fred has a clear and distinct
idea of his mind as a thinking thing which has no spatial extension (i.e., it
cannot be measured in terms of length, weight, height, and so on) and he
also has a clear and distinct idea of his body as something that is spatially

of science appears to result in a growth in knowledge? In Popper’s view, the
advance of scientific knowledge is an evolutionary process characterised by his
formula:

PS1 → TT1 → EE1 → PS2 .

In response to a given problem situation, PS1, a number of competing conjec-
tures, or tentative theories, TT , are systematically subjected to the most rigorous
attempts at falsification possible. This process, error elimination, EE, performs
a similar function for science that natural selection performs for biological evo-
lution. Theories that better survive the process of refutation are not more true,
but rather, more ‘fit’, in other words, more applicable to the problem situation
at hand, PS1. Consequently, just as a species’ ‘biological fit’ does not predict
continued survival, neither does rigorous testing protect a scientific theory from
refutation in the future. Yet, as it appears that the engine of biological evolution
has produced, over time, adaptive traits equipped to deal with more and more
complex problems of survival, likewise, the evolution of theories through the sci-
entific method may, in Popper’s view, reflect a certain type of progress: toward
more and more interesting problems, PS2. For Popper, it is in the interplay be-
tween the tentative theories (conjectures) and error elimination (refutation) that
scientific knowledge advances toward greater and greater problems; in a process
very much akin to the interplay between genetic variation and natural selection.

As early as 1934 Popper wrote of the search for truth as one of the “strongest
motives for scientific discovery.” Still, he describes in ‘Objective Knowledge’ (1972)
early concerns about the much–criticised notion of truth as correspondence. Then
came the semantic theory of truth formulated by the logician Alfred Tarski. Popper
writes of learning in 1935 of the consequences of Tarski’s theory, to his intense
joy. The theory met critical objections to truth as correspondence and thereby
rehabilitated it. The theory also seemed to Popper to support metaphysical realism
and the regulative idea of a search for truth.

Among his contributions to philosophy is his answer to David Hume’s ‘Problem
of Induction’. Hume stated that just because the sun has risen every day for as
long as anyone can remember, doesn’t mean that there is any rational reason to
believe it will come up tomorrow. There is no rational way to prove that a pattern
will continue on just because it has before. Popper’s reply is characteristic, and
ties in with his criterion of falsifiability . He states that while there is no way
to prove that the sun will come up, we can theorize that it will. If it does not
come up, then it will be disproven, but since right now it seems to be consistent
with our theory, the theory is not disproven. Thus, Popper’s demarcation between
science and non–science serves as an answer to an old logical problem as well. This
approach was criticised by Peter Singer for masking the role induction plays in
empirical discovery.
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extended, subject to quantification and not able to think. It follows that mind
and body are not identical because they have radically different properties,
according to Descartes [Des91]. At the same time, however, it is clear that
Fred’s mental states (desires, beliefs, etc.) have causal effects on his body
and vice-versa: a child touches a hot stove (physical event) which causes pain
(mental event) and makes him yell (physical event) which provokes a sense
of fear and protectiveness in the mother (mental event) and so on. Descartes’
argument obviously depends on the crucial premise that what Fred believes
to be ‘clear and distinct’ ideas in his mind are necessarily true. Most modern
philosophers doubt the validity of such an assumption, since it has been shown

90 Sir John Carew Eccles (January 27, 1903 – May 2, 1997) was an Australian
neurophysiologist who won the 1963 Nobel Prize in Physiology or Medicine for
his work on the synapse. He shared the prize together with Andrew Fielding
Huxley and Alan Lloyd Hodgkin.

In the early 1950s, Eccles and his colleagues performed the key experiments
that would win Eccles the Nobel Prize. To study synapses in the peripheral ner-
vous system, Eccles and colleagues used the stretch reflex as a model. This re-
flex is easily studied because it consists of only two neurons: a sensory neuron
(the muscle spindle fiber) and the motor neuron. The sensory neuron synapses
onto the motor neuron in the spinal cord. When Eccles passed a current into the
sensory neuron in the quadriceps, the motor neuron innervating the quadriceps
produced a small excitatory postsynaptic potential (EPSP). When he passed the
same current through the hamstring, the opposing muscle to the quadriceps, he
saw an inhibitory postsynaptic potential (IPSP) in the quadriceps motor neuron.
Although a single EPSP was not enough to fire an action potential in the mo-
tor neuron, the sum of several EPSPs from multiple sensory neurons synapsing
onto the motor neuron could cause the motor neuron to fire, thus contracting the
quadriceps. On the other hand, IPSPs could subtract from this sum of EPSPs,
preventing the motor neuron from firing.

Apart from these seminal experiments, Eccles was key to a number of important
developments in neuroscience. Until around 1949, Eccles believed that synaptic
transmission was primarily electrical rather than chemical. Although he was wrong
in this hypothesis, his arguments led himself and others to perform some of the
experiments which proved chemical synaptic transmission. Bernard Katz and Ec-
cles worked together on some of the experiments which elucidated the role of
acetylcholine as a neurotransmitter.

91 Pierre Maurice Marie Duhem (10 June 1861 – 14 September 1916) French physicist
and philosopher of science. Duhem’s sophisticated views on the philosophy of
science are explicated in ‘The aim and structure of physical theory’ (foreword
by Prince Louis de Broglie). In this work he refuted the inductivist untruth that
Newton’s laws can de deduced from Kepler, et al. (a selection was published as
Medieval cosmology: theories of infinity, place, time, void, and the plurality of
worlds. He gave his name to the Quine-Duhem thesis, which holds that for any
given set of observations there are an innumerably large number of explanations.
Thus empirical evidence cannot force the revision of a theory.
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in modern times by Freud (a third–person psychologically–trained observer
can understand a person’s unconscious motivations better than she does), by
Pierre Duhem91

(a third–person philosopher of science can know a person’s methods of discov-
ery better than she does), by Bronis�law Malinowski92 (an anthropologist can
know a person’s customs and habits better than he does), and by theorists
of perception (experiments can make one see things that are not there and
scientists can describe a person’s perceptions better than he can), that such
an idea of privileged and perfect access to one’s own ideas is dubious at best.

Other important forms of dualism which arose as reactions to, or attempts
to salvage, the Cartesian version are:

(i) Psycho–physical parallelism, or simply parallelism, is the view that
mind and body, while having distinct ontological statuses, do not causally
influence one another, but run along parallel paths (mind events causally in-
teract with mind events and brain events causally interact with brain events)
and only seem to influence each other [RPW97]. This view was most promi-
nently defended by Gottfried Leibniz.93 Although Leibniz was actually an
ontological monist who believed that only one fundamental substance, mon-
ads, exists in the universe and everything else is reducible to it, he nonetheless
maintained that there was an important distinction between ‘the mental’ and
‘the physical’ in terms of causation. He held that God had arranged things in
advance so that minds and bodies would be in harmony with each other. This
is known as the doctrine of pre–established harmony [Lei714].

92 Bronis�law Kasper Malinowski (April 7, 1884 – May 16, 1942) was a Polish an-
thropologist widely considered to be one of the most important anthropologists of
the twentieth century because of his pioneering work on ethnographic fieldwork,
the study of reciprocity, and his detailed contribution to the study of Melanesia.

93 Gottfried Wilhelm Leibniz (July 1 (June 21 Old Style) 1646 – November 14, 1716)
was a German polymath. Educated in law and philosophy, Leibniz played a major
role in the European politics and diplomacy of his day. He occupies an equally
large place in both the history of philosophy and the history of mathematics. He
invented calculus independently of Newton, and his notation is the one in general
use since. He also invented the binary system, foundation of virtually all modern
computer architectures. In philosophy, he is most remembered for optimism, i.e.,
his conclusion that our universe is, in a restricted sense, the best possible one God
could have made. He was, along with René Descartes and Baruch Spinoza, one
of the three great 17th century rationalists, but his philosophy also both looks
back to the Scholastic tradition and anticipates logic and analysis. Leibniz also
made major contributions to physics and technology, and anticipated notions that
surfaced much later in biology, medicine, geology, probability theory, psychology,
knowledge engineering, and information science. He also wrote on politics, law,
ethics, theology, history, and philology, even occasional verse. His contributions
to this vast array of subjects are scattered in journals and in tens of thousands
of letters and unpublished manuscripts. To date, there is no complete edition
of Leibniz’s writings, and a complete account of his accomplishments is not yet
possible.
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(ii) Occasionalism is the view espoused by Nicholas Malebranche which
asserts that all supposedly causal relations between physical events or between
physical and mental events are not really causal at all. While body and mind
are still different substances on this view, causes (whether mental or physical)
are related to their effects by an act of God’s intervention on each specific
occasion [Sch02].

(iii) Epiphenomenalism is a doctrine first formulated by Thomas Huxley
[Hux898]. Fundamentally, it consists in the view that mental phenomena are
causally inefficacious. Physical events can cause other physical events and
physical events can cause mental events, but mental events cannot cause any-
thing, since they are just causally inert by-products (i.e. epiphenomena) of
the physical world [RPW97] The view has been defended most strongly in
recent times by Frank Jackson [Jac82].

(iv) Property dualism asserts that when matter is organized in the appro-
priate way (i.e., in the way that living human bodies are organized), mental
properties emerge. Hence, it is a sub–branch of emergent materialism [Har96].
These emergent properties have an independent ontological status and can-
not be reduced to, or explained in terms of, the physical substrate from which
they emerge. This position is espoused by David Chalmers and has undergone
something of a renaissance in recent years [Cha97].

Monism

In contrast to dualism, monism states that there is only one fundamental
substance. Monism, first proposed in the West by Parmenides94 and in modern
times by Baruch Spinoza,95 maintains that there is only one substance; in the
East, rough parallels might be the Hindu concept of Brahman or the Tao
of Lao Tzu [Spi670]. Today the most common forms of monism in Western
philosophy are physicalistic [Kim95b]. Physicalistic monism asserts that the
only existing substance is physical, in some sense of that term to be clarified

94 Parmenides of Elea (early 5th century BC) was an ancient Greek philosopher
born in Elea, a Hellenic city on the southern coast of Italy. Parmenides was a
student of Ameinias and the founder of the School of Elea, which also included
Zeno of Elea and Melissus of Samos.

95 Benedictus de Spinoza (November 24, 1632 – February 21, 1677), named Baruch
Spinoza by his synagogue elders, was a Jewish–Dutch philosopher. He is consid-
ered one of the great rationalists of 17th–century philosophy and, by virtue of
his magnum opus the ‘Ethics’, one of the definitive ethicists. His writings, like
those of his fellow rationalists, reveal considerable mathematical training and fa-
cility. Spinoza was a lens crafter by trade, an exciting engineering field at the
time because of great discoveries being made by telescopes. The full impact of
his work only took effect some time after his death and after the publication
of his ‘Opera Posthuma’. He is now seen as having prepared the way for the
18th century Enlightenment, and as a founder of modern biblical criticism. 20th
century philosopher, Gilles Deleuze (1990), referred to Spinoza as “The absolute
philosopher, whose Ethics is the foremost book on concepts.”
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by our best science [Sto05]. Another form of monism is that which states
that the only existing substance is mental. Such idealistic monism is currently
somewhat uncommon in the West [Kim95b].

Phenomenalism, the theory that all that exists are the representations (or
sense data) of external objects in our minds and not the objects themselves,
was adopted by Bertrand Russell96 and many of the logical positivists during
96 Bertrand Arthur William Russell, (3rd Earl Russell, 18 May 1872 – 2 February

1970), was a British philosopher, logician, and mathematician, working mostly
in the 20th century. A prolific writer, Bertrand Russell was also a populariser of
philosophy and a commentator on a large variety of topics, ranging from very
serious issues to the mundane. Continuing a family tradition in political affairs,
he was a prominent liberal as well as a socialist and anti–war activist for most of
his long life. Millions looked up to Russell as a prophet of the creative and rational
life; at the same time, his stances on many topics were extremely controversial.

Russell was born at the height of Britain’s economic and political ascendancy.
He died of influenza nearly a century later, at a time when the British Empire had
all but vanished, its power dissipated by two debilitating world wars. As one of the
world’s best–known intellectuals, Russell’s voice carried great moral authority,
even into his early 90s. Among his political activities, Russell was a vigorous
proponent of nuclear disarmament and an outspoken critic of the American war
in Vietnam.

In 1950, Russell was made a Nobel Laureate in Literature, “in recognition of
his varied and significant writings in which he champions humanitarian ideals and
freedom of thought.”

Russell is generally recognized as one of the founders of analytical philosophy ,
even of its several branches. At the beginning of the 20th century, alongside G.E.
Moore, Russell was largely responsible for the British ‘revolt against Idealism’,
a philosophy greatly influenced by Georg Hegel. This revolt was echoed 30 years
later in Vienna by the logical positivists’ ‘revolt against metaphysics’. Russell
was particularly appalled by the idealist doctrine of internal relations, which held
that in order to know any particular thing, we must know all of its relations.
Russell showed that this would make space, time, science and the concept of
number unintelligible. Russell’s logical work with Alfred Whitehead continued
this project.

Russell had great influence on modern mathematical logic. His first mathemat-
ical book, An Essay on the Foundations of Geometry, was published in 1897. This
work was heavily influenced by Immanuel Kant. Russell soon realised that the
conception it laid out would have made Albert Einstein’s schema of space-time
impossible, which he understood to be superior to his own system. Thenceforth,
he rejected the entire Kantian program as it related to mathematics and geometry,
and he maintained that his own earliest work on the subject was nearly without
value. Russell discovered that Gottlob Frege had independently arrived at equiv-
alent definitions for 0, successor, and number, and the definition of number is
now usually referred to as the Frege–Russell definition. It was largely Russell
who brought Frege to the attention of the English-speaking world. He did this
in 1903, when he published ‘The Principles of Mathematics’, in which the con-
cept of class is inextricably tied to the definition of number. The appendix to this
work detailed a paradox arising in Frege’s application of second– and higher–order
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the early 20th century [Rus18]. It lasted for only a very brief period of time. A
third possibility is to accept the existence of a basic substance which is neither
physical nor mental. The mental and physical would both be properties of this
neutral substance. Such a position was adopted by Baruch Spinoza [Spi670]
and popularized by Ernst Mach97 [Mac59] in the 19th century. This neutral
monism, as it is called, resembles property dualism.

Behaviorism

Behaviorism dominated philosophy of mind for much of the 20th century,
especially the first half [Kim95b]. In psychology, behaviorism developed as a
reaction to the inadequacies of introspectionism. Introspective reports on one’s
own interior mental life are not subject to careful examination for accuracy
and are not generalizable. Without generalizability and the possibility of third-
person examination, the behaviorists argued, science is simply not possible
[Sto05]. The way out for psychology was to eliminate the idea of an interior
mental life (and hence an ontologically independent mind) altogether and
focus instead on the description of observable behavior [Ski72].

functions which took first-order functions as their arguments, and he offered his
first effort to resolve what would henceforth come to be known as the Russell
Paradox , which he later developed into a complete theory, the Theory of types.
Aside from exposing a major inconsistency in naive set theory, Russell’s work led
directly to the creation of modern axiomatic set theory. It also crippled Frege’s
project of reducing arithmetic to logic. The Theory of Types and much of Russell’s
subsequent work have also found practical applications with computer science and
information technology.

Russell continued to defend logicism, the view that mathematics is in some
important sense reducible to logic, and along with his former teacher, Alfred
Whitehead, wrote the monumental ‘Principia Mathematica’, an axiomatic sys-
tem on which all of mathematics can be built. The first volume of the Principia
was published in 1910, and is largely ascribed to Russell. More than any other
single work, it established the specialty of mathematical or symbolic logic. Two
more volumes were published, but their original plan to incorporate geometry in a
fourth volume was never realised, and Russell never felt up to improving the orig-
inal works, though he referenced new developments and problems in his preface
to the second edition. Upon completing the Principia, three volumes of extraordi-
narily abstract and complex reasoning, Russell was exhausted, and he never felt
his intellectual faculties fully recovered from the effort. Although the Principia
did not fall prey to the paradoxes in Frege’s approach, it was later proven by
Kurt Gödel that neither Principia Mathematica, nor any other consistent system
of primitive recursive arithmetic, could, within that system, determine that every
proposition that could be formulated within that system was decidable, i.e., could
decide whether that proposition or its negation was provable within the system
(Gödel’s incompleteness theorem).

97 Ernst Mach (February 18, 1838 – February 19, 1916) was an Austrian–Czech
physicist and philosopher and is the namesake for the ‘Mach number” (aka Mach
speed) and the optical illusion known as Mach bands.
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Parallel to these developments in psychology, a philosophical behaviorism
(sometimes called logical behaviorism) was developed [Sto05]. This is char-
acterized by a strong verificationism, which generally considers unverifiable
statements about interior mental life senseless. But what are mental states if
they are not interior states on which one can make introspective reports? The
answer of the behaviorist is that mental states do not exist but are actually
just descriptions of behavior and/or dispositions to behave made by external
third parties in order to explain and predict others’ behavior [Ryl49]. Philo-
sophical behaviorism is considered by most modern philosophers of mind to
be outdated [Kim95a]. Apart from other problems, behaviorism implausibly
maintains, for example, that someone is talking about behavior if she reports
that she has a wracking headache.

Continental Philosophy of Mind

In contrast to Anglo–American analytic philosophy98 there are other schools
of thought which are sometimes subsumed under the broad label of conti-
nental philosophy . These schools tend to differ from the analytic school in

98 Analytic philosophy is the dominant academic philosophical movement in
English–speaking countries and in the Nordic countries. It is distinguished from
Continental Philosophy which pertains to most non–English speaking countries.
Its main founders were the Cambridge philosophers G.E. Moore and Bertrand
Russell. However, both were heavily influenced by the German philosopher and
mathematician Gottlob Frege and many of analytic philosophy’s leading propo-
nents, such as Ludwig Wittgenstein, Rudolf Carnap, Kurt Gödel, Karl Popper,
Hans Reichenbach, Herbert Feigl, Otto Neurath, and Carl Hempel have come
from Germany and Austria. In Britain, Russell and Moore were succeeded by
C. D. Broad, L. Stebbing, Gilbert Ryle, A. J. Ayer, R. B. Braithwaite, Paul Grice,
John Wisdom, R. M. Hare, J. L. Austin, P. F. Strawson, William Kneale,
G. E. M. Anscombe, and Peter Geach. In America, the movement was led by
many of the above-named European emigres as well as Max Black, Ernest Nagel,
C. L. Stevenson, Norman Malcolm, W. V. Quine, Wilfrid Sellars, and Nelson
Goodman, while A. N. Prior, John Passmore, and J. J. C. Smart were prominent
in Australasia.

Logic and philosophy of language were central strands of analytic philosophy
from the beginning, although this dominance has diminished greatly. Several lines
of thought originate from the early, language-and-logic part of this analytic phi-
losophy tradition. These include: logical positivism, logical empiricism, logical
atomism, logicism and ordinary language philosophy. Subsequent analytic phi-
losophy includes extensive work in ethics (such as Philippa Foot, R. M. Hare,
and J. L. Mackie), political philosophy (John Rawls, Robert Nozick), aesthet-
ics (Monroe Beardsley, Richard Wollheim, Arthur Danto), philosophy of religion
(Alvin Plantinga, Richard Swinburne), philosophy of language (David Kaplan,
Saul Kripke, Richard Montague, Hilary Putnam, W.V.O. Quine, Nathan Salmon,
John Searle), and philosophy of mind (Daniel Dennett, David Chalmers, Putnam).
Analytic metaphysics has also recently come into its own (Kripke, David Lewis,
Salmon, Peter van Inwagen, P.F. Strawson).
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that they focus less on language and logical analysis and more on directly
understanding human existence and experience. With reference specifically to
the discussion of the mind, this tends to translate into attempts to grasp the
concepts of thought and perceptual experience in some direct sense that does
not involve the analysis of linguistic forms [Dum01]. In particular, in his ‘Phe-
nomenology of Mind’, G.W. F. Hegel99 discusses three distinct types of mind:
the subjective mind, the mind of an individual; the objective mind, the mind
of society and of the State; and the Absolute mind, a unity of all concepts.
In modern times, the two main schools that have developed in response or
opposition to this Hegelian tradition are phenomenology and existentialism.
Phenomenology, founded by Edmund Husserl,100 focuses on the contents of

99 Georg Wilhelm Friedrich Hegel (August 27, 1770 – November 14, 1831) was a
German philosopher born in Stuttgart, Württemberg, in present-day southwest
Germany. His influence has been widespread on writers of widely varying posi-
tions, including both his admirers (F.H. Bradley, J.P. Sartre, Hans Küng, Bruno
Bauer), and his detractors (Kierkegaard, Schopenhauer, Heidegger, Schelling).
His great achievement was to introduce for the first time in philosophy the
idea that History and the concrete are important in getting out of the circle
of philosophia perennis, i.e., the perennial problems of philosophy. Also, for the
first time in the history of philosophy he realised the importance of the Other in
the coming to be of self–consciousness, see slave–master dialectic.

Some of Hegel’s writing was intended for those with advanced knowledge of
philosophy, although his ‘Encyclopedia’ was intended as a textbook in a univer-
sity course. Nevertheless, like many philosophers, Hegel assumed that his read-
ers would be well–versed in Western philosophy, up to and including Descartes,
Spinoza, Hume, Kant, Fichte, and Schelling. For those wishing to read his work
without this background, introductions to Hegel and commentaries about Hegel
may suffice. However, even this is hotly debated since the reader must choose
from multiple interpretations of Hegel’s writings from incompatible schools of
philosophy. Presumably, reading Hegel directly would be the best method of un-
derstanding him, but this task has historically proved to be beyond the average
reader of philosophy.[citation needed] This difficulty may be the most urgent
problem with respect to the legacy of Hegel.

One especially difficult aspect of Hegel’s work is his innovation in logic. In
response to Immanuel Kant’s challenge to the limits of Pure Reason, Hegel deve-
loped a radically new form of logic, which he called speculation, and which is
today popularly called dialectics. The difficulty in reading Hegel was perceived
in Hegel’s own day, and persists into the 21st century. To understand Hegel fully
requires paying attention to his critique of standard logic, such as the law of
contradiction and the law of the excluded middle, and, whether one accepts or
rejects it, at least taking it seriously. Many philosophers who came after Hegel
and were influenced by him, whether adopting or rejecting his ideas, did so
without fully absorbing his new speculative or dialectical logic.

100 Edmund Gustav Albrecht Husserl (April 8, 1859, Prostějov – April 26, 1938,
Freiburg) was a German philosopher, known as the father of phenomenology.
Husserl was born into a Jewish family in Prostějov (Prossnitz), Moravia, Czech
Republic (then part of the Austrian Empire). A pupil of Franz Brentano and
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the human mind and how phenomenological processes shape our experiences.
Existentialism, a school of thought led by Jean–Paul Sartre,101 focuses on the
content of experiences and how the mind deals with such experiences [Fly04].

Neurobiology

On the other hand, within the tangible field of neurobiology , there are many
subdisciplines which are concerned with the relations between mental and
physical states and processes [Bea95]:

1. Sensory neurophysiology investigates the relation between the processes
of perception and stimulation [Pine97].

Carl Stumpf, Husserl came to influence, among others, Edith Stein (St. Teresa
Benedicta of the Cross), Eugen Fink, Martin Heidegger, Jean–Paul Sartre, and
Maurice Merleau–Ponty; in addition, Hermann Weyl’s interest in intuitionistic
logic and impredicativity appear to have resulted from contacts with Husserl.
Rudolf Carnap was also influenced by Husserl, not only concerning Husserl’s
notion of essential insight that Carnap used in his Der Raum, but also his notion
of formation rules and transformation rules is founded on Husserl’s philosophy of
logic. In 1887 Husserl converted to Christianity and joined the Lutheran Church.
He taught philosophy at Halle as a tutor (Privatdozent) from 1887, then at
Göttingen as professor from 1901, and at Freiburg im Breisgau from 1916 until
he retired in 1928. After this, he continued his research and writing by using the
library at Freiburg, until barred therefrom because of his Jewish heritage under
the rectorship of his former pupil and intended protege, Martin Heidegger.

Husserl held the belief that truth–in–itself has as ontological correlate being–
in–itself, just as meaning categories have formal–ontological categories as cor-
relates. The discipline of logic is a formal theory of judgment, that studies the
formal a priori relations among judgments using meaning categories. Mathemat-
ics, on the other hand, is formal ontology, it studies all the possible forms of
being (of objects). So, in both of these disciplines, formal categories, in their
different forms, are their object of study, not the sensible objects themselves.
The problem with the psychological approach to mathematics and logic is that
it fails to account for the fact that it is about formal categories, not abstractions
from sensibility alone. The reason why we do not deal with sensible objects in
mathematics is because of another faculty of understanding called categorial ab-
straction. Through this faculty we are able to get rid of sensible components of
judgments, and just focus on formal categories themselves. Thanks to ‘eidetic
(or essential) intuition’, we are able to grasp the possibility, impossibility, ne-
cessity and contingency among concepts or among formal categories. Categorial
intuition, along with categorial abstraction and eidetic intuition, are the basis
for logical and mathematical knowledge.

101 Jean–Paul Charles Aymard Sartre (June 21, 1905 – April 15, 1980), was a French
existentialist philosopher, dramatist and screenwriter, novelist and critic.

The basis of Sartre’s existentialism is found in his ‘The Transcendence of
the Ego’. To begin with, the thing–in–itself is infinite and overflowing. Any direct
consciousness of the thing–in–itself, Sartre refers to as a ‘pre–reflective conscious-
ness’. Any attempt to describe, understand, historicize etc. the thing–in–itself,
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2. Cognitive neuroscience studies the correlations between mental processes
and neural processes [Pine97].

3. Neuropsychology describes the dependence of mental faculties on specific
anatomical regions of the brain [Pine97].

4. Lastly, evolutionary biology studies the origins and development of the
human nervous system and, in as much as this is the basis of the mind,
also describes the ontogenetic and phylogenetic development of mental
phenomena beginning from their most primitive stages [Pink97].

Since the 1980’s, sophisticated neuroimaging procedures, such as fMRI,
have furnished increasing knowledge about the workings of the human brain,
shedding light on ancient philosophical problems.The methodological break-
throughs of the neurosciences, in particular the introduction of high–tech
neuroimaging procedures, has propelled scientists toward the elaboration of
increasingly ambitious research programs: one of the main goals is to describe
and comprehend the neural processes which correspond to mental functions
[Bea95]. A very small number of neurobiologists, such as Emil Reymond102

be and John Eccles have denied the possibility of a ‘reduction’ of mental
phenomena to cerebral processes (see [PE02]). However, the contemporary
neurobiologist and philosopher Gerhard Roth continues to defend a form of
‘non–reductive materialism’ [Rot01].

Analytical Psychology

Recall that analytical psychology (AP) is part of the Jungian psychology move-
ment started by Carl G. Jung103 and his followers. Although considered to

Sartre calls ‘reflective consciousness’. There is no way for the reflective con-
sciousness to subsume the pre–reflective, and so reflection is fated to a form of
anxiety, i.e., the human condition. The reflective consciousness in all its forms,
(scientific, artistic or otherwise) can only limit the thing–in–itself by virtue of
its attempt to understand or describe it. It follows therefore that any attempt at
self–knowledge (self–consciousness) is a construct that fails no matter how often
it is attempted. (self-consciousness is a reflective consciousness of an overflowing
infinite) In Sartre’s words “Conciousness is consciousness of itself insofar as it is
consciousness of a transcendent object.” The same holds true about knowledge
of the ‘Other’ (being), which is a construct of reflective consciousness. One must
be careful to understand this more as a form of warning than as an ontolog-
ical statement. However, there is an implication of Solipsism here that Sartre
considers fundamental to any coherent description of the human condition.

102 Emil du Bois–Reymond (November 7, 1818, Berlin, Germany – November 26,
1896), was a German physician and physiologist, discoverer of the nerve action
potential and the father of experimental electrophysiology.

103 Carl Gustav Jung (July 26, 1875 – June 6, 1961) was a Swiss psychiatrist and
founder of analytical psychology.
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Jung’s unique and broadly influential approach to psychology emphasized un-
derstanding the psyche through exploring the worlds of dreams, art, mythology,
world religion and philosophy. Though not the first to analyze dreams, he has be-
come perhaps the best–known pioneer in the field of dream analysis. Although he
was a theoretical psychologist and practicing clinician for most of his life, much of
his life’s work was spent exploring other realms: Eastern vs. Western philosophy,
alchemy, astrology, sociology, as well as literature and the arts. Jung also em-
phasized the importance of balance. He cautioned that modern humans rely too
heavily on science and logic and would benefit from integrating spirituality and ap-
preciation of the unconscious realm. Interestingly, Jungian ideas are not typically
included in curriculum of most major universities’ psychology departments, but
are occasionally explored in humanities departments. Many pioneering psycholog-
ical concepts were originally proposed by Jung. Some of these are: (i) archetype,
(ii) collective unconscious, (iii) unconscious complex , and (iv) synchronicity . In
addition, the popular career test currently offered by high school and college ca-
reer centers, the Myers–Briggs Type Indicator , is strongly influenced by Jung’s
theories.

The overarching goal of Jung’s work was the reconciliation of the life of the
individual with the world of the supra–personal archetypes. He came to see the
individual’s encounter with the unconscious as central to this process. The human
experiences the unconscious through symbols encountered in all aspects of life:
in dreams, art, religion, and the symbolic dramas we enact in our relationships
and life pursuits. Essential to the encounter with the unconscious, and the rec-
onciliation of the individual’s consciousness with this broader world, is learning
this symbolic language. Only through attention and openness to this world (which
is quite foreign to the modern Western mind) are individuals able to harmonize
their lives with these supra–personal archetypal forces. In order to undergo the
individuation process, the individual must be open to the parts of oneself beyond
one’s own ego. In order to do this, the modern individual must pay attention to
dreams, explore the world of religion and spirituality, and question the assump-
tions of the operant societal world–view (rather than just blindly living life in
accordance with dominant norms and assumptions).

The collective unconscious could be thought of as the DNA of the human psyche.
Just as all humans share a common physical heritage and predisposition towards
specific physical forms (like having two legs, a heart, etc.) so do all humans have
a common psychological predisposition. However, unlike the quantifiable infor-
mation that composes DNA (in the form of coded sequences of nucleotides), the
collective unconscious is composed of archetypes. In contrast to the objective ma-
terial world, the subjective realm of archetypes can not be fully plumbed through
quantitative modes of research. Instead it can be revealed more fully through
an examination of the symbolic communications of the human psyche — in art,
dreams, religion, myth, and the themes of human relational/behavioral patterns.
Devoting his life to the task of exploring and understanding the collective uncon-
scious, Jung theorized that certain symbolic themes exist across all cultures, all
epochs, and in every individual.
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The shadow is an unconscious complex that is defined as the diametrical oppo-
site of the conscious self, the ego. The shadow represents unknown attributes and
qualities of the ego. There are constructive and destructive types of shadow. On
the destructive side, it often represents everything that the conscious person does
not wish to acknowledge within themselves. For instance, someone who identifies
as being kind has a shadow that is harsh or unkind. Conversely, an individual who
is brutal has a kind shadow. The shadow of persons who are convinced that they
are ugly appears to be beautiful. On the constructive side, the shadow may rep-
resent hidden positive influences. Jung points to the story of Moses and Al–Khidr
in the 18th Book of the Koran as an example. Jung emphasized the importance
of being aware of shadow material and incorporating it into conscious awareness,
lest one project these attributes on others. The shadow in dreams is often repre-
sented by dark figures of the same gender as the dreamer. According to Jung the
human being deals with the reality of the shadow in four ways: denial, projection,
integration and/or transmutation.

Jung identified the anima as being the unconscious feminine component of men
and the animus as the unconscious masculine component in women. However,
this is rarely taken as a literal definition: many modern–day Jungian practitioners
believe that every person has both an anima and an animus. Jung stated that
the anima and animus act as guides to the unconscious unified Self , and that
forming an awareness and a connection with the anima or animus is one of the
most difficult and rewarding steps in psychological growth. Jung reported that he
identified his anima as she spoke to him, as an inner voice, unexpectedly one day.
Oftentimes, when people ignore the anima or animus complexes, the anima or
animus vies for attention by projecting itself on others. This explains, according
to Jung, why we are sometimes immediately attracted to certain strangers: we
see our anima or animus in them. Love at first sight is an example of anima and
animus projection. Moreover, people who strongly identify with their gender role
(e.g., a man who acts aggressively and never cries) have not actively recognized
or engaged their anima or animus. Jung attributes human rational thought to be
the male nature, while the irrational aspect is considered to be natural female.
Consequently, irrationality is the male anima shadow and rationality is the female
animus shadow.

There are four primary modes of experiencing the world in Jung’s extro-
vert/introvert model : two rational functions: thinking and feeling , and two per-
ceptive functions: sensation and intuition. Sensation is the perception of facts.
Intuition is the perception of the unseen. Thinking is analytical, deductive cog-
nition. Feeling is synthetic, all–inclusive cognition. In any person, the degree of
introversion/extroversion of one function can be quite different to that of another
function. Broadly speaking, we tend to work from our most developed function,
while we need to widen our personality by developing the others. Related to this,
Jung noted that the unconscious often tends to reveal itself most easily through
a person’s least developed function. The encounter with the unconscious and de-
velopment of the underdeveloped function(s) thus tend to progress together.

Jung had a profesional relationship with the Nobel lauret physicist Wolfgang
Pauli. Their work has been published in the books [PJ55, PJ01] as well as in
Jung’s famous [Jun80].
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be a part of psychoanalysis, it is distinct from Freudian psychoanalysis.104

While Freudian psychoanalysis assumes that the repressed material hidden in
the unconscious is given by repressed sexual instincts, analytical psychology
has a more general approach. There is no preconceived assumption about the
unconscious material. The unconscious, for Jungian analysts, may contain
repressed sexual drives, but also aspirations, fears, etc.

The aim of AP is the personal experience of the deep forces and moti-
vations underlying human behavior. It is related to the so–called depth psy-
chology and archetypal psychology . Its basic assumption is that the personal
unconscious is a potent part, probably the more active part, of the normal
human psyche. Reliable communication between the conscious and uncon-
scious parts of the psyche is necessary for wholeness. Also crucial is the belief
that dreams show ideas, beliefs, and feelings of which individuals may not be
readily aware, but need to be, and that such material is expressed in a per-
sonalized vocabulary of visual metaphors. Things ‘known but unknown’ are
contained in the unconscious, and dreams are one of the main vehicles for the
unconscious to express them.

AP distinguishes between a personal and a collective unconscious. The
collective unconscious contains archetypes common to all human beings. That
is, individuation may bring to surface symbols that do not relate to the life
experiences of a single person. This content is more easily viewed as answers to
the more fundamental questions of humanity: life, death, meaning, happiness,
fear. Among these more spiritual concepts may arise and be integrated into
the personality.

AP distinguishes two main psychological types or temperaments: (i) extro-
vert , and (ii) introvert .105The attitude type could be thought of as the energy

104 For a period of some 6 years, Carl Jung was a close friend and collaborator of
Sigmund Freud. However after Jung published his ‘Wandlungen und Symbole
der Libido’ (The Psychology of the Unconscious) in 1913, their theoretical ideas
had diverged sharply.

105 In the context of personality psychology , extroverts and introverts differ in how
they get or lose energy as a function of their immediate social context. In partic-
ular, extroverts feel an increase of perceived energy when interacting with large
group of people, but a decrease of energy when left alone. Conversely, introverts
feel an increase of energy when alone, but a decrease of energy when surrounded
by large group of people.

Extroverts tend to be energetic when surrounded by people and depressive
when not. To induce human interactions, extroverts tend to be enthusiastic,
talkative, and assertive. Extroverts enjoy doing activities that involve other peo-
ple, such as taking part in community activities and involving in business, reli-
gious, political, and scientific affairs; their affinity to large groups allow them to
enjoy large social gatherings including parties and marches. As such, an extro-
verted person is likely to enjoy time spent with people and find less reward in
time spent alone.

On the other hand, introverts are ‘geared to inspect’ rather than to act in
social settings. In a large social setting, introverts tend to be quiet, low–key,
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flow of libido, or psychic energy (ch’i in Roman–Chinese and ‘ki’ in Roman–
Japanese).106 The introvert’s energy flow is inward to the subject and away

deliberate, and engaged in non–social activities. Conversely, introverts gain en-
ergy when alone performing solitary activities. Thus they tend to enjoy reading,
writing, watching movies at home, inventing, and designing - and doing these
activities in quiet, minimally socially interactive environment such as home, li-
brary, labs, and quiet coffee shops. While introverts avoid social situations with
large numbers of people, they tend to enjoy intense, one–to–one or one–to–few
social interactions. They tend to have small circle of very close friends, compared
to the extroverts’ typically larger circle of less–close friends.

While most people view being either introverted or extroverted as a question
with only two answers, levels of extraversion in fact fall in a normally distributed
bell curve, with most people falling in between. The term ambivert was coined to
denote people who fall more or less directly in the middle and exhibit tendencies
of both groups. An ambivert is normally comfortable with groups and enjoys
social interaction, but also relishes time alone and away from the crowd.

106 Freud introduced the term libido as the instinctual energy or force that can
come into conflict with the conventions of civilized behavior. It is the need to
conform to society and control the libido, contained in what Freud defined as
the Id, that leads to tension and disturbance in both society and the individual.
This disturbance Freud labelled neurosis. Thus, libido has to be transformed into
socially useful energy, according to Freud, through the process of ‘sublimation’.

Ch’i (or qi, or ki) is a fundamental concept of traditional Chinese culture.
Ch’i is believed to be part of everything that exists, as in ‘life force’ or ‘life
energy’, something like the ‘force’ in Lucas’ Star Wars. It is most often translated
as ‘energy flow,’ or literally as ‘air’ or ‘breath’.

The nature of ch’i is a matter of controversy among those who accept it as
a valid concept, while those who dismiss its very existence ignore it, except for
purposes of discussion with its adherents. Disputing the nature of qi is an old
controversy in Chinese philosophy. Among some traditional Chinese medicine
practitioners, qi is sometimes thought of as a metaphor for biological processes
similar to the Western concept of energy flow for homeostatic balance in biological
regulations. Others argue that qi involves some new physics or biology. Attempts
to directly connect qi with some scientific phenonomena have been attempted
since the mid–nineteenth century. Ch’i is a central concept in many martial arts;
e.g., in the Japanese arts, Ki is developed in Aikido and given special emphasis in
Ki–Aikido (a classic combat story concerns two opponents who held each others
hands before a fight, while doing so each felt the others ch’i and the one with
the weaker ch’i resigned without a blow being struck).

The concept of quantum tunneling in modern physics where physical matters
can ‘tunnel’ through energy barriers using quantum mechanics captured some of
the similar concepts of ch’i (which allows one to transcend normal physical forces
in nature). The seemingly impossibility of tunneling through energy barriers
(walls) is only limited by the conceptual framework of classical mechanics, but
can easily be resolved by the wave–particle duality in modern physics. By the
same token, this duality is similar to the metaphorical duality of yin and yang ,
which is governed by the flow of energy ch’i. Examples of quantum tunneling
can be found as a mechanism in biology used by enzymes to speed up reactions
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from the object, i.e., external relations. The extrovert’s energy flow is outward
toward the object, ie. towards external relations and away from the inner,
subjective world. Extroverts desire breadth, while introverts seek depth. The
introversion/extroversion attitude type may also influence mental breakdown.
Introverts may be more inclined to catatonic type schizophrenia and extroverts
towards manic depression.

Samuels [Sam95] has distinguished three schools of ‘post–Jungian’ psycho–
therapy: the classical, the developmental and the archetypal. The classical
school is that which tries to remain faithful to what Jung himself proposed
and taught in person and in his 20–plus volumes of work. The developmen-
tal school, associated with M. Fordham, B. Feldman etc., can be considered a
bridge between Jungian psychoanalysis and M. Klein’s object relations theory .
The archetypal school (sometimes called ‘the imaginal school’), with different
views associated with the mythopoeticists, such as J. Hillman in his intellec-
tual theoretical view of archetypal psychology, C.P. Estés, in her view that
ethnic and Aboriginal people are the originators of archetypal psychology and
have long carried the maps to the journey of the soul in their songs, tales,
dream–telling, art and rituals; M. Woodman who proposes a feminist view-
point regarding archetypal psychology, and other Jungians like T. Moore and
R. Moore, as well. Most mythopoeticists/archetypal psychology innovators
either imagine the Self not to be the main archetype of the collective un-
conscious as Jung thought, but rather assign each archetype equal value ...
Others, who are modern progenitors of archetypal psychology (such as Estés),
think of the Self as that which contains and yet is suffused by all the other
archetypes, each giving life to the other.

1.2 Artificial and Computational Intelligence

1.2.1 Artificial Intelligence

Recall that artificial intelligence (AI) is a branch of computer science that
deals with intelligent behavior , learning and adaptation in machines. Research
in AI is concerned with producing machines to automate tasks requiring intel-
ligent behavior. Examples include control, planning and scheduling, the abil-
ity to answer diagnostic and consumer questions, handwriting, speech, and
facial recognition. As such, it has become an engineering discipline, focused
on providing solutions to real life problems. AI systems are now in routine use
in economics, medicine, engineering and the military, as well as being built

in lifeforms to millions of times their normal speed [MRJ06]. Other examples
of quantum tunneling are found in semiconductor and superconductors, such
as field emission used in flash memory and major source of current leakage in
very–large–scale integration (VLSI) electronics draining power in mobile phones
and computers.



112 1 Introduction: Human and Computational Mind

into many common home computer software applications, traditional strategy
games like computer chess and other video games.

In the philosophy of artificial intelligence, the so–called strong AI is the
supposition that some forms of artificial intelligence can truly reason and solve
problems; strong AI supposes that it is possible for machines to become sapi-
ent, or self–aware, but may or may not exhibit human–like thought processes.
The term strong AI was originally coined by John Searle [Sea80]: “According
to strong AI, the computer is not merely a tool in the study of the mind; rather,
the appropriately programmed computer really is a mind.” The term ‘artifi-
cial intelligence’ would equate to the same concept as what we call ‘strong
AI’ based on the literal meanings of ‘artificial’ and ‘intelligence’. However,
initial research into artificial intelligence was focused on narrow fields such
as pattern recognition and automated scheduling, in hopes that they would
eventually allow for an understanding of true intelligence. The term ‘artificial
intelligence’ thus came to encompass these narrower fields, the so–called weak
AI as well as the idea of strong AI.

In contrast to strong AI, weak AI refers to the use of software to study or
accomplish specific problem solving or reasoning tasks that do not encompass
(or in some cases, are completely outside of) the full range of human cognitive
abilities. An example of weak AI software would be a chess program such as
Deep Blue. Unlike strong AI, a weak AI does not achieve self–awareness or
demonstrate a wide range of human–level cognitive abilities, and at its finest
is merely an intelligent, more specific problem–solver. Some argue that weak
AI programs cannot be called ‘intelligent’ because they cannot really think.

AI divides roughly into two schools of thought: Conventional AI and
Computational Intelligence (CI). Conventional AI mostly involves methods
now classified as machine learning, characterized by formalism and statistical
analysis. This is also known as symbolic AI, logical AI, neat AI and good old–
fashioned AI (which mainly deals with symbolic problems). Basic Ai methods
include:

1. Expert systems: apply reasoning capabilities to reach a conclusion. An ex-
pert system can process large amounts of known information and provide
conclusions based on them.

2. Case based reasoning
3. Bayesian networks
4. Behavior based AI: a modular method of building AI systems by hand.

On the other hand, CI involves iterative development or learning (e.g.,
parameter tuning in connectionist systems). Learning is based on empirical
data and is associated with non–symbolic AI and soft computing. Methods
mainly include:

1. Neural networks: systems with very strong pattern recognition capabili-
ties;
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2. Fuzzy systems: techniques for reasoning under uncertainty, have been
widely used in modern industrial and consumer product control systems;
and

3. Evolutionary computation: applies biologically inspired concepts such as
populations, mutation and survival of the fittest to generate increasingly
better solutions to the problem. These methods most notably divide into
evolutionary algorithms (e.g. genetic algorithms) and swarm intelligence
(e.g. ant algorithms).

With hybrid intelligent systems attempts are made to combine these two
groups. Expert inference rules can be generated through neural network or
production rules from statistical learning such as in ACT–R.

A promising new approach called intelligence amplification tries to achieve
artificial intelligence in an evolutionary development process as a side–effect
of amplifying human intelligence through technology.

Brief AI History

Early in the 18th century, René Descartes envisioned the bodies of animals
as complex but reducible machines, thus formulating the mechanistic theory,
also known as the ‘clockwork paradigm’. Wilhelm Schickard created the first
mechanical digital calculating machine in 1623, followed by machines of Blaise
Pascal107 (1643) and Gottfried Wilhelm von Leibniz (1671), who also invented
the binary system. In the 19th century, Charles Babbage and Ada Lovelace
worked on programmable mechanical calculating machines.

Bertrand Russell and Alfred Whitehead published their ‘Principia Mathe-
matica’ in 1910–1913, which revolutionized formal logic. In 1931 Kurt Gödel
showed that sufficiently powerful consistent formal systems contain true the-
orems unprovable by any theorem–proving AI that is systematically deriv-
ing all possible theorems from the axioms. In 1941 Konrad Zuse built the
first working program–controlled computers. Warren McCulloch and Walter
Pitts published A Logical Calculus of the Ideas Immanent in Nervous Activity

107 Blaise Pascal (June 19, 1623 – August 19, 1662) was a French mathematician,
physicist, and religious philosopher. Pascal was a child prodigy, who was educated
by his father. Pascal’s earliest work was in the natural and applied sciences, where
he made important contributions to the construction of mechanical calculators
and the study of fluids, and clarified the concepts of pressure and vacuum by
expanding the work of Evangelista Torricelli. Pascal also wrote powerfully in
defense of the scientific method.

He was a mathematician of the first order. Pascal helped create two major
new areas of research. He wrote a significant treatise on the subject of projective
geometry at the age of sixteen and corresponded with Pierre de Fermat from 1654
on probability theory, strongly influencing the development of modern economics
and social science.
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(1943), laying the foundations for neural networks. Norbert Wiener’s ‘Cyber-
netics or Control and Communication in the Animal and the Machine’ (MIT
Press, 1948) popularizes the term ‘cybernetics’.

The 1950s were a period of active efforts in AI. In 1950, Alan Turing intro-
duced the ‘Turing test’ as a way of operationalizing a test of intelligent behav-
ior. The first working AI programs were written in 1951 to run on the Ferranti
Mark I machine of the University of Manchester: a draughts–playing program
written by Christopher Strachey and a chess–playing program written by Di-
etrich Prinz. John McCarthy coined the term ‘artificial intelligence’ at the
first conference devoted to the subject, in 1956. He also invented the Lisp
programming language. Joseph Weizenbaum built ELIZA, a chatterbot im-
plementing Rogerian psychotherapy. At the same time, John von Neumann,108

who had been hired by the RAND Corporation, developed the game theory ,
which would prove invaluable in the progress of AI research.

During the 1960s and 1970s, Joel Moses demonstrated the power of
symbolic reasoning for integration problems in the Macsyma program, the
first successful knowledge–based program in mathematics. Leonard Uhr and
Charles Vossler published ‘A Pattern Recognition Program That Generates,
Evaluates, and Adjusts Its Own Operators’ in 1963, which described one of
the first machine learning programs that could adaptively acquire and mod-
ify features and thereby overcome the limitations of simple perceptrons of
Frank Rosenblatt.109 Marvin Minsky and Seymour Papert published their

108 John von Neumann (Neumann János) (December 28, 1903 – February 8, 1957)
was an Austro–Hungarian mathematician and polymath who made contributions
to quantum physics, functional analysis, set theory, game theory, economics,
computer science, topology, numerical analysis, hydrodynamics (of explosions),
statistics and many other mathematical fields as one of world history’s outstand-
ing mathematicians. His PhD supervisor was David Hilbert. Most notably, von
Neumann was a pioneer of the modern digital computer and the application of
operator theory to quantum mechanics, a member of the Manhattan Project and
the first faculty of the Institute for Advanced Study at Princeton (along with
Albert Einstein and Kurt Gödel), and creator of game theory and the concept of
cellular automata. Along with Edward Teller and Stanislaw Ulam, von Neumann
worked out key steps in the nuclear physics involved in thermonuclear reactions
and the hydrogen bomb.

109 Frank Rosenblatt (1928–1969) was a New York City born computer scientist who
completed the Perceptron (the simplest kind of feedforward neural network: a
linear classifier) on MARK 1, computer at Cornell University in 1960. This was
the first computer that could learn new skills by trial and error, using a type of
neural network that simulates human thought processes.

Rosenblatt’s perceptrons were initially simulated on an IBM 704 computer
at Cornell Aeronautical Laboratory in 1957. By the study of neural networks
such as the Perceptron, Rosenblatt hoped that “the fundamental laws of orga-
nization which are common to all information handling systems, machines and
men included, may eventually be understood.”
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book ‘Perceptrons’, which demonstrated the limits of simple neural nets. Alain
Colmerauer developed the Prolog computer language. Ted Shortliffe demon-
strated the power of rule–based systems for knowledge representation and
inference in medical diagnosis and therapy in what is sometimes called the
first expert system. Hans Moravec developed the first computer–controlled
vehicle to autonomously negotiate cluttered obstacle courses.

In the 1980s, neural networks became widely used due to the backpropa-
gation algorithm, first described by Paul Werbos in 1974. The team of Ernst
Dickmanns built the first robot cars, driving up to 55 mph on empty streets.
The 1990s marked major achievements in many areas of AI and demonstra-
tions of various applications. In 1995, one of Dickmanns’ robot cars drove
more than 1000 miles in traffic at up to 110 mph. Deep Blue, a chess–playing
computer, beat Garry Kasparov in a famous six–game match in 1997. DARPA
stated that the costs saved by implementing AI methods for scheduling units in
the first Persian Gulf War have repaid the US government’s entire investment
in AI research since the 1950s. Honda built the first prototypes of humanoid
robots.

During the 1990s and 2000s AI has become very influenced by probabil-
ity theory and statistics. Bayesian networks are the focus of this movement,
providing links to more rigorous topics in statistics and engineering such as
Markov models and Kalman filters, and bridging the old divide between ‘neat’
and ‘scruffy’ approaches. The last few years have also seen a big interest in
game theory applied to AI decision making. This new school of AI is some-
times called ‘machine learning’. After the September 11, 2001 attacks there
has been much renewed interest and funding for threat–detection AI systems,
including machine vision research and data–mining. The DARPA Grand Chal-
lenge is a race for a $2 million prize where cars drive themselves across several
hundred miles of challenging desert terrain without any communication with
humans, using GPS, computers and a sophisticated array of sensors. In 2005
the winning vehicles completed all 132 miles of the course.

Cybernetics, General Systems Theory and Bionics

Closely related to AI is cybernetics, which is the study of communication and
control, typically involving regulatory feedback, in living organisms, in ma-
chines and organisations and their combinations, for example, in sociotechni-
cal systems, computer controlled machines such as automata and robots. The
term cybernetics stems from the Greek ‘kybernetes’, which means steersman,
governor, pilot, or rudder, which has the same root as government. It is an
earlier but still–used generic term for many of the subject matters that are
increasingly subject to specialization under the headings of adaptive systems,
artificial intelligence, complex systems, complexity theory, control systems,
decision support systems, dynamical systems, information theory, learning
organizations, mathematical systems theory, operations research, simulation,
and systems engineering.
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Contemporary cybernetics began as an interdisciplinary study connect-
ing the fields of control systems, electrical network theory, logic modeling,
and neuroscience in the 1940s. The name cybernetics was coined by Norbert
Wiener110 to denote the study of ‘teleological mechanisms’ and was popular-
ized through his book ‘Cybernetics, or Control and Communication in the
Animal and Machine’ (MIT, 1948).

The study of teleological mechanisms in machines with corrective feedback
dates from as far back as the late 1700s when James Watt’s steam engine
was equipped with a governor, a centrifugal feedback valve for controlling the
speed of the engine. In 1868 James Clerk Maxwell111 published a theoretical
article on governors. In 1935 Russian physiologist P.K. Anokhin published a
book ‘Physiology of Functional Systems’ on in which the concept of feedback
(‘back afferentation’) was studied. In the 1940s the study and mathematical
modelling of regulatory processes became a continuing research effort and
two key articles were published in 1943. These papers were ‘Behavior, Purpose
and Teleology’ by Rosenblueth, Wiener and Bigelow; and the paper ‘A Logical
Calculus of the Ideas Immanent in Nervous Activity’ by McCulloch and Pitts.
110 Norbert Wiener (November 26, 1894 – March 18, 1964) was an American math-

ematician and applied mathematician, especially in the field of electronics engi-
neering. He was a pioneer in the study of stochastic processes (random processes)
and noise processes, especially in the field of electronic communication systems
and control systems. He is known as the founder of cybernetics. He coined the
term ‘cybernetics’ in his book ‘Cybernetics or Control and Communication in
the Animal and the Machine’ (MIT Press, 1948), widely recognized as one of
the most important books of contemporary scientific thinking. He is also con-
sidered by some to be the first American–born–and–trained mathematician on
an intellectual par with the traditional bastions of mathematical learning in Eu-
rope. He thus represents a watershed period in American mathematics. Wiener
did much valuable work in defense systems for the United States, particularly
during World War II and the Cold War.

111 James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathe-
matical physicist, born in Edinburgh. Maxwell formulated a set of equations ex-
pressing the basic laws of electricity and magnetism and developed the Maxwell
distribution in the kinetic theory of gases. He is also credited with developing
the first permanent colour photograph in 1861.

Maxwell had one of the finest mathematical minds of any theoretical physicist
of his time. Maxwell is widely regarded as the nineteenth century scientist who
had the greatest influence on twentieth century physics, making contributions
to the fundamental models of nature. In 1931, on the centennial anniversary of
Maxwell’s birthday, Einstein described Maxwell’s work as the “most profound
and the most fruitful that physics has experienced since the time of Newton.”

Algebraic mathematics with elements of geometry are a feature of much of
Maxwell’s work. Maxwell demonstrated that electric and magnetic forces are
two complementary aspects of electromagnetism. He showed that electric and
magnetic fields travel through space, in the form of waves, at a constant velocity
of 3.0 × 108 m/s. He also proposed that light was a form of electromagnetic
radiation.
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Wiener himself popularized the social implications of cybernetics, drawing
analogies between automatic systems such as a regulated steam engine and
human institutions in his best–selling ‘The Human Use of Human Beings:
Cybernetics and Society’ (Houghton–Mifflin, 1950).

In scholarly terms, cybernetics is the study of systems and control in an
abstracted sense, that is, it is not grounded in any one empirical field. The
emphasis is on the functional relations that hold between the different parts
of a system, rather than the parts themselves. These relations include the
transfer of information, and circular relations (feedbacks) that result in emer-
gent phenomena such as self–organization. The main innovation of cybernetics
was the creation of a scientific discipline focused on goals: an understanding
of goal–directedness or purpose, resulting from a negative feedback loop which
minimizes the deviation between the perceived situation and the desired sit-
uation (goal). As mechanistic as that sounds, cybernetics has the scope and
rigor to encompass the human social interactions of agreement and collabo-
ration that, after all, require goals and feedback to attain (see, e.g., [Ash56]).
Related to cybernetics are: engineering cybernetics, quantum cybernetics, bi-
ological cybernetics, medical cybernetics, psychocybernetics, sociocybernetics
and organizational cybernetics.

On the other hand, general systems theory is an interdisciplinary field
that studies the properties of systems as a whole. It was founded by Lud-
wig von Bertalanffy, Ross W. Ashby, Margaret Mead, Gregory Bateson and
others in the 1950s. Also, John von Neumann discovered cellular automata
and self–reproducing systems without computers, with only pencil and paper.
Aleksandr Lyapunov and Jules Henri Poincaré worked on the foundations of
chaos theory without any computer at all. Ilya Prigogine, Prigogine has stud-
ied ‘far from equilbrium systems’ for emergent properties, suggesting that they
offer analogues for living systems.

Systems theory brought together theoretical concepts and principles from
ontology, philosophy of science, physics, biology and engineering and later
found applications in numerous fields including geography, sociology, politi-
cal science, organizational theory, management, psychotherapy (within fam-
ily systems therapy) and economics among others. Cybernetics is a closely
related field. In recent times systems science, systemics and complex systems
have been used as synonyms.

Cybernetics, catastrophe theory and chaos theory have the common goal to
explain complex systems that consist of a large number of mutually interacting
and interrelated parts in terms of those interactions. Cellular automata (CA),
neural networks (NN), artificial intelligence (AI), and artificial life (ALife) are
related fields, but they do not try to describe general(universal) complex (sin-
gular) systems. The best context to compare the different “C”-Theories about
complex systems is historical, which emphasizes different tools and method-
ologies, from pure mathematics in the beginning to pure computer science
now. Since the beginning of chaos theory when Edward Lorenz accidentally
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discovered a strange attractor112 with his computer, computers have become
an indispensable source of information. One could not imagine the study of
complex systems without computers today.

In recent years, the field of systems thinking has been developed to provide
techniques for studying systems in holistic ways to supplement more tradi-
tional reductionistic methods. In this more recent tradition, systems theory is
considered by some as a humanistic extension of the natural sciences.

Finally, bionics is the application of methods and systems found in nature
to the study and design of engineering systems and modern technology. Also
a short form of biomechanics, the word ‘bionic’ is actually a portmanteau
formed from biology and electronic.

The transfer of technology between lifeforms and synthetic constructs is
desirable because evolutionary pressure typically forces natural systems to be-
come highly optimized and efficient. A classical example is the development
of dirt– and water–repellent paint (coating) from the observation that the
surface of the lotus flower plant is practically unsticky for anything (the lotus
effect). Examples of bionics in engineering include the hulls of boats imitat-
ing the thick skin of dolphins, sonar, radar, and medical ultrasound imaging
imitating the echolocation of bats.

In the field of computer science, the study of bionics has produced cyber-
netics, artificial neurons, artificial neural networks, and swarm intelligence.
Evolutionary computation was also motivated by bionics ideas but it took the
idea further by simulating evolution in silico and producing well-optimized
solutions that had never appeared in nature.

Often, the study of bionics emphasizes imitation of a biological structure
rather than just an implementation of its function. The conscious copying of
examples and mechanisms from natural organisms and ecologies is a form of
applied case–based reasoning, treating nature itself as a database of solutions
that already work. Proponents argue that the selective pressure placed on all
natural life forms minimizes and removes failures.

Roughly, we can distinguish three biological levels in biology after which
technology can be modelled:

1. mimicking natural methods of manufacture of chemical compounds to
create new ones;

2. imitating mechanisms found in nature; and
3. studying organizational principles from social behaviour of organisms,

such as the flocking behaviour of birds or the emergent behaviour of bees
and ants.

112 Strange attractor is an attracting set that has zero measure in the embedding
phase–space and has fractal dimension. Trajectories within a strange attractor
appear to skip around randomly (see Chapter 2 for details).
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Turing Test and General AI

Recall that the Turing test is a proposal for a test of a machine’s capability
to perform human–like conversation. Described by Alan Turing113 in his 1950
paper ‘Computing machinery and intelligence,’114 it proceeds as follows: a hu-
man judge engages in a natural language conversation with two other parties,
one a human and the other a machine; if the judge cannot reliably tell which
is which, then the machine is said to pass the test. It is assumed that both
the human and the machine try to appear human. In order to keep the test
setting simple and universal (to explicitly test the linguistic capability of the
machine instead of its ability to render words into audio), the conversation is
usually limited to a text–only channel such as a teletype machine as Turing
suggested or, more recently IRC or instant messaging.

General artificial intelligence research aims to create AI that can replicate
human intelligence completely, often called an Artificial General Intelligence
(AGI) to distinguish from less ambitious AI projects. As yet, researchers have
devoted little attention to AGI, many claiming intelligence is too complex
to be completely replicated. Some small groups of computer scientists are
doing some AGI research, however. By most measures, demonstrated progress
towards strong AI has been limited, as no system can pass a full Turing test
for unlimited amounts of time, although some AI systems can at least fool
some people initially now (see the Loebner prize winners). Few active AI
researchers are prepared to publicly predict whether, or when, such systems
will be developed, perhaps due to the failure of bold, unfulfilled predictions
for AI research progress in past years. There is also the problem of the AI

113 Alan Mathison Turing, OBE (June 23, 1912 – June 7, 1954) was an English
mathematician, logician, and cryptographer. Turing is often considered to be
the father of modern computer science.

With the Turing test, Turing made a significant and characteristically
provocative contribution to the debate regarding artificial intelligence: whether
it will ever be possible to say that a machine is conscious and can think. He pro-
vided an influential formalisation of the concept of algorithm and computation
with the Turing machine, formulating the now widely accepted “Turing” version
of the Church–Turing thesis, namely that any practical computing model has
either the equivalent or a subset of the capabilities of a Turing machine. During
World War II, Turing worked at Bletchley Park, Britain’s codebreaking centre
and was for a time head of Hut 8, the section responsible for German Naval
cryptanalysis. He devised a number of techniques for breaking German ciphers,
including the method of the bombe, an electromechanical machine which could
find settings for the Enigma machine.

114 In Turing’s paper, the term ‘Imitation Game’ is used for his proposed test as
well as the party game for men and women. The name ‘Turing test’ may have
been invented, and was certainly publicized, by Arthur C. Clarke in the science–
fiction novel 2001: A Space Odyssey (1968), where it is applied to the computer
HAL 9000.
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effect, where any achievement by a machine tends to be deprecated as a sign
of true intelligence.

Computer Simulation of Human Brain

This is seen by many as the quickest means of achieving Strong AI, as it
doesn’t require complete understanding. It would require three things:

1. Hardware: an extremely powerful computer would be required for such a
model. Futurist Ray Kurzweil estimates 1 million MIPS. If Moore’s law
continues, this will be available for £1000 by 2020.

2. Software: this is usually considered the hard part. It assumes that the
human mind is the central nervous system and is governed by physical
laws.

3. Understanding: finally, it requires sufficient understanding thereof to be
able to model it mathematically. This could be done either by understand-
ing the central nervous system, or by mapping and copying it. Neuro–
imaging technologies are improving rapidly, and Kurzweil predicts that a
map of sufficient quality will become available on a similar timescale to
the required computing power.

Once such a model is built, it will be easily altered and thus open to
trial and error experimentation. This is likely to lead to huge advances in
understanding, allowing the model’s intelligence to be improved/motivations
altered. Current research in the area is using one of the fastest supercomputer
architectures in the world, namely the Blue Gene platform created by IBM
to simulate a single Neocortical Column consisting of approximately 60,000
neurons and 5km of interconnecting synapses. The eventual goal of the project
is to use supercomputers to simulate an entire brain.

In opposition to human–brain simulation, the direct approach attempts to
achieve AI directly without imitating nature. By comparison, early attempts
to construct flying machines modelled them after birds, but modern aircraft
do not look like birds. The main question in the direct approach is: ‘What
is AI?’. The most famous definition of AI was the operational one proposed
by Alan Turing in his ‘Turing test’ proposal (see footnote above). There have
been very few attempts to create such definition since (some of them are in
the AI Project). John McCarthy115 stated in his work ‘What is AI?’ that we

115 John McCarthy (born September 4, 1927, in Boston, Massachusetts, sometimes
known affectionately as Uncle John McCarthy), is a prominent computer scien-
tist who received the Turing Award in 1971 for his major contributions to the
field of Artificial Intelligence. In fact, he was responsible for the coining of the
term ‘Artificial Intelligence’ in his 1955 proposal for 1956 Dartmouth Conference.

McCarthy championed expressing knowledge declaratively in mathematical
logic for Artificial Intelligence. An alternative school of thought emerged at MIT
and elsewhere proposing the ‘procedural embedding of knowledge’ using high
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still do not have a solid definition of intelligence (compare with the previous
section).

Machine Learning

As a broad AI–subfield, machine learning (ML) is concerned with the devel-
opment of algorithms and techniques that allow computers to ‘learn’. At a
general level, there are two types of learning: inductive, and deductive. In-
ductive machine learning methods create computer programs by extracting
rules and patterns out of massive data sets. It should be noted that although
pattern identification is important to ML, without rule extraction a process
falls more accurately in the field of data mining .

Machine learning overlaps heavily with statistics. In fact, many machine
learning algorithms have been found to have direct counterparts with statis-
tics. For example, boosting is now widely thought to be a form of stagewise
regression using a specific type of loss function.

Machine learning has a wide spectrum of applications including search en-
gines, medical diagnosis, bioinformatics and cheminformatics, detecting credit
card fraud, stock market analysis, classifying DNA sequences, speech and
handwriting recognition, object recognition in computer vision, game playing
and robot locomotion.

Some machine learning systems attempt to eliminate the need for hu-
man intuition in the analysis of the data, while others adopt a collaborative
approach between human and machine. Human intuition cannot be entirely
eliminated since the designer of the system must specify how the data are
to be represented and what mechanisms will be used to search for a char-
acterization of the data. Machine learning can be viewed as an attempt to
automate parts of the scientific method. Some machine learning researchers
create methods within the framework of Bayesian statistics.

level plans, assertions, and goals first in Planner and later in the Scientific Com-
munity Metaphor. The resulting controversy is still ongoing and the subject
matter of research.

McCarthy invented the Lisp programming language and published its design
in Communications of the ACM in 1960. He helped to motivate the creation of
Project MAC at MIT, but left MIT for Stanford University in 1962, where he
helped set up the Stanford AI Laboratory, for many years a friendly rival to
Project MAC.

In 1961, he was the first to publicly suggest (in a speech given to celebrate
MIT’s centennial) that computer time–sharing technology might lead to a future
in which computing power and even specific applications could be sold through
the utility business model (like water or electricity). This idea of a computer or
information utility was very popular in the late 1960s, but faded by the mid–
1970s as it became clear that the hardware, software and telecommunications
technologies of the time were simply not ready. However, since 2000, the idea
has resurfaced in new forms.
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Machine learning algorithms are organized into a taxonomy, based on the
desired outcome of the algorithm. Common algorithm types include:

1. supervised learning , where the algorithm generates a function that maps
inputs to desired outputs. One standard formulation of the supervised
learning task is the classification problem: the learner is required to learn
(to approximate the behavior of) a function which maps a vector into
one of several classes by looking at several input–output examples of the
function.

2. unsupervised/self–organized learning , which models a set of inputs: labeled
examples are not available.

3. semi–supervised learning , which combines both labeled and unlabeled ex-
amples to generate an appropriate function or classifier.

4. reinforcement learning , where the algorithm learns a policy of how to
act given an observation of the world. Every action has some impact in
the environment, and the environment provides feedback that guides the
learning algorithm.

5. transduction, similar to supervised learning, but does not explicitly con-
struct a function: instead, tries to predict new outputs based on training
inputs, training outputs, and new inputs.

6. learning to learn, where the algorithm learns its own inductive bias based
on previous experience.

Symbol–Based Learning

The symbol–based learning relies on learning algorithms that can be charac-
terized into the following five dimensions [Lug02]:

– data and goals: here the learning problem is described according to the
goals of the learner and the data it is initially given;

– knowledge representation: using representation languages with programs to
store the knowledge learned by the system in a logical way;

– learning operations: an agent is given a set of training instances and it is
tasked to construct a generalization, heuristic rule or a plan that satisfies
its goals;

– concept space: the representation language along with the learning opera-
tions define a space of possible concept definitions, the learner needs to
search this space to find the desired concept. The complexity of this con-
cept space is used to measure how difficult the problem is; and

– heuristic search: heuristics are used to commit to a particular direction
when searching the concept space.

Connectionist Learning

The connectionist learning is performed using artificial neural networks (see
subsection below), which are systems comprised of a large number of in-
terconnected artificial neurons. They have been widely used for (see, e.g.,
[Hay94, Kos92, Lug02]):
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– classification: deciding the category or grouping where an input value
belongs;

– pattern recognition: identifying a structure in sometimes noisy data;
– memory recall : addressing the content in memory;
– prediction/forecasting : identifying an effect from different causes;
– optimization: finding the best organization within different constraints; and
– noise filtering : separating a signal from the background noise or removing

irrelevant components to a signal.

The knowledge of the network is encapsulated within the organization and
interaction of the neurons. Specifically, the global properties of neurons are
characterized as:

– network topology : the topology of the network is the pattern of connections
between neurons;

– learning algorithm: the algorithm used to change the weight between dif-
ferent connections; and

– encoding scheme: the interpretation of input data presented to the network
and output data obtained from the network.

Learning is achieved by modifying the structure of the neural network,
via adjusting weights, in order to map input combinations to required out-
puts. There are two general classes of learning algorithms for training neural
networks, they are supervised and unsupervised learning. Supervised learning
requires the neural network to have a set of training data, consisting of the
set of data to be learned as well as the corresponding answer. The data set
is repeatedly presented to the neural network, in turn, the network adapts by
changing the weights of connections between the neurons until the network
output corresponds closely to the required answers. The goal of supervised
learning is to find a model or mapping that will correctly associate its inputs
with its targets. Supervised learning is suited to applications when the out-
puts expected from the network are well known. This allows the designer (or
another fully trained network) to provide feedback.

In the case of unsupervised learning the target value is not provided and
the information in the training data set is continuously presented until some
convergence criteria is satisfied. This involves monitoring the output of the
network and stopping its training when some desired output is observed. The
main difference to supervised learning is that the desired output is not known
when the training starts. During training, the network has to continuously
adapt and change its output until it demonstrates a useful output behavior
at which time it receives a single feedback to stop. The input data provided
to the network will need to include sufficient information so that the problem
is unambiguous. Unsupervised learning is suitable in situations where there is
no clear–cut answer to a given problem.

The biggest problem of using neural networks with agents with that the
concepts cannot intuitively fit within the agent oriented paradigm. However,
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neural networks have been used to implement part of a system such as pattern
recognition and classification. It is also believed that neural learning concepts
and techniques will play an important role in future research [Lug02].

Computational Learning Theory

The performance and computational analysis of machine learning algorithms
is a branch of statistics known as computational learning theory . Machine
learning algorithms take a training set, form hypotheses or models, and make
predictions about the future. Because the training set is finite and the future
is uncertain, learning theory usually does not yield absolute guarantees of
performance of the algorithms. Instead, probabilistic bounds on the perfor-
mance of machine learning algorithms are quite common. In addition to per-
formance bounds, computational learning theorists study the time complexity
and feasibility of learning. In computational learning theory, a computation is
considered feasible if it can be done in polynomial time. There are two kinds
of time complexity results (see, e.g., [Ang92]):

1. positive results, showing that a certain class of functions is learnable in
polynomial time.

2. negative results, showing that certain classes cannot be learned in poly-
nomial time.

Negative results are proven only by assumption. The assumptions that are
common in negative results are:

(i) computational complexity : P 	= NP ,116 and

116 The relationship between the complexity classes P and NP is an unsolved ques-
tion in theoretical computer science. It is generally agreed to be the most impor-
tant such unsolved problem, and one of the most important unsolved problems in
all of mathematics. The Clay Mathematics Institute has offered a US $1,000,000
prize for a correct solution.

In essence, the P = NP question asks: if positive solutions to a YES/NO
problem can be verified quickly, can the answers also be computed quickly?
Consider, for instance, the subset–sum problem, an example of a problem which
is easy to verify, but is believed (but not proved) to be difficult to compute the
answer. Given a set of integers, does any subset of them sum to 0? For instance,
does a subset of the set {−2,−3, 15, 14, 7,−10} add up to 0? The answer is YES,
though it may take a little while to find a subset that does – and if the set was
larger, it might take a very long time to find a subset that does. On the other
hand, if someone claims that the answer is “YES, because {−2,−3,−10, 15}
add up to zero,” then we can quickly check that with a few additions. Verifying
that the subset adds up to zero is much faster than finding the subset in the
first place. The information needed to verify a positive answer is also called a
certificate. So we conclude that given the right certificates, positive answers to
our problem can be verified quickly (i.e. in polynomial time) and that’s why this
problem is in NP .
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(ii) cryptography :117 one–way functions exist.
Recall that a one–way function is a function that is easy to calculate but

hard to invert, i.e., it is difficult to calculate the input to the function given its
output. The precise meanings of ‘easy’ and ‘hard’ can be specified mathemat-
ically. With rare exceptions, almost the entire field of public key cryptography
rests on the existence of one–way functions. Formally, two variants of one–way
functions are defined: strong and weak one–way functions:

An answer to the P = NP question would determine whether problems
like SUBSET–SUM are really harder to compute than to verify (this would be
the case if P does not equal NP ), or that they are as easy to compute as to
verify (this would be the case if P = NP ). The answer would apply to all such
problems, not just the specific example of SUBSET–SUM.

The restriction to YES/NO problems doesn’t really make a difference; even
if we allow more complicated answers, the resulting problem (whether FP =
FNP ) is equivalent.

117 Recall that cryptography (or cryptology; derived from Greek ‘kryptós–hidden’
and ‘gráfein–to write’) is a mathematical discipline concerned with information
security and related issues, particularly encryption, authentication, and access
control. Its purpose is to hide the meaning of a message rather than its existence.
In modern times, it has also branched out into computer science. Cryptography
is central to the techniques used in computer and network security for such
things as access control and information confidentiality . Cryptography is used in
many applications that touch everyday life; the security of ATM cards, computer
passwords, and electronic commerce all depend on cryptography.

The so–called symmetric–key cryptography refers to encryption methods in
which both the sender and receiver share the same key (or, less commonly, in
which their keys are different, but related in an easily computable way). This
was the only kind of encryption publicly known until 1976.

The modern study of symmetric–key ciphers relates mainly to the study of
block ciphers and stream ciphers and to their applications (see, e.g., [Gol01]).
A block cipher is the modern embodiment of Alberti’s polyalphabetic cipher:
block ciphers take as input a block of plaintext and a key, and output a block
of ciphertext of the same size. Block ciphers are used in a mode of operation
to implement a cryptosystem. DES and AES are block ciphers which have been
designated cryptography standards by the US government (though DES’s des-
ignation was eventually withdrawn after the AES was adopted)[8]. Despite its
delisting as an official standard, DES (especially its still-approved and much
more secure triple–DES variant) remains quite popular; it is used across a wide
range of applications, from ATM encryption to e–mail privacy and secure re-
mote access. Many other block ciphers have been designed and released, with
considerable variation in quality. Stream ciphers, in contrast to the ‘block’ type,
create an arbitrarily long stream of key material, which is combined with the
plaintext bit by bit or character by character, somewhat like the one–time pad.
In a stream cipher, the output stream is created based on an internal state which
changes as the cipher operates. That state’s change is controlled by the key, and,
in some stream ciphers, by the plaintext stream as well.
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1. Strong one–way functions. A function

f : {0, 1}∗ → {0, 1}∗

is called (strongly) one–way if the following two conditions hold: (i) easy
to compute: there exists a (deterministic) polynomial–time algorithm A,
such that for input x algorithm A outputs f(x) (i.e., A(x) = f(x)); and
(ii) hard to invert: for any probabilistic polynomial–time algorithm A′,
and any polynomial p(·), and for sufficiently large n,

P (A′(f(Un), 1n) ∈ f−1|f(Un)) <
1
p(n)

,

where Un denotes a random variable uniformly distributed over {0, 1}n.
Hence, the probability in the second condition is taken over all the possible
values assigned to Un and all possible internal coin tosses of A′ with
uniform probability distribution. In addition to an input in the range of
f the inverting algorithm is also given the desired length of the output
in unary notation. The main reason for this convention is to rule out
the possibility that a function is considered one–way merely because the
inverting algorithm does not have enough time to print the output. The
left hand part of the comparison is quite easy to understand: it is the
probability, that A′ finds any value U , with property f(U) = f(Un).
So, basically, the hard–to–invert condition requires this probability to be
negligibly small.

2. Weak one–way functions only require that all efficient inverting algorithms
fail with some non–negligible probability. A function

f : {0, 1}∗ → {0, 1}∗

is called weakly one–way if the following two conditions hold: (i) easy to
compute: as in the definition of strong one–way functionl and (ii) slightly–
hard to invert: There exists a polynomial such that for every probabilistic
polynomial–time algorithm, A′, and all sufficiently large n’s,

P (A′(f(Un), 1n) 	∈ f−1|f(Un)) >
1
p(n)

It is not known whether one–way functions exist. In fact, their existence
would imply P 	= NP , resolving the foremost unsolved question of computer
science. However, it is not clear if P 	= NP implies the existence of one–
way functions. It can be proved that weak one–way functions exist if and
only if strong one-way functions do. Thus, as far as the mere existence of
one–way function goes, the notions of weak and strong one–way functions are
equivalent. It is known that the existence of one–way functions implies the
existence of many other useful cryptographic primitives, including:
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1. Pseudorandom bit generators;
2. Pseudorandom function families;
3. Digital signature schemes (secure against adaptive chosen–message at-

tack).

In particular, a trapdoor one–way function (or, trapdoor permutation) is
a special kind of one–way function. Such a function is hard to invert unless
some secret information, called the trapdoor, is known. RSA is a well known
example of a function believed to belong to this class.

Now, there are several different approaches to computational learning the-
ory, which are often mathematically incompatible. This incompatibility arises
from using different inference principles: principles which tell us how to gen-
eralize from limited data. The incompatibility also arises from differing def-
initions of probability (see frequency probability, Bayesian probability). The
different approaches include:

1. probably approximately correct learning (PAC learning),118 proposed by
Leslie Valiant;

2. statistical learning theory (or VC theory),119 proposed by Vladimir
Vapnik;

118 Probably approximately correct learning (PAC learning) is a framework of learn-
ing that was proposed by Leslie Valiant in his paper ‘A theory of the learnable’.
In this framework the learner gets samples that are classified according to a
function from a certain class. The aim of the learner is to find a bounded approx-
imation (approximately) of the function with high probability (probably). We
demand the learner to be able to learn the concept given any arbitrary approx-
imation ratio, probability of success or distribution of the samples. The model
was further extended to treat noise (misclassified samples). The PAC framework
allowed accurate mathematical analysis of learning. Also critical are definitions
of efficiency. In particular, we are interested in finding efficient classifiers (time
and space requirements bounded to a polynomial of the example size) with effi-
cient learning procedures (requiring an example count bounded to a polynomial
of the concept size, modified by the approximation and likelihood bounds).

119 Vapnik–Chervonenkis theory (also known as VC theory, or statistical learning
theory) was developed during 1960–1990 by Vladimir Vapnik and Alexey Cher-
vonenkis. The theory is a form of computational learning theory, which attempts
to explain the learning process from a statistical point of view. VC theory covers
four parts:

a) Theory of consistency of learning processes – what are (necessary and sufficient)
conditions for consistency of a learning process based on the empirical risk
minimization principle?

b) Nonasymptotic theory of the rate of convergence of learning processes – how
fast is the rate of convergence of the learning process?

c) Theory of controlling the generalization ability of learning processes – how can
one control the rate of convergence (the generalization ability) of the learning
process?

d) Theory of constructing learning machines – how can one construct algorithms
that can control the generalization ability?
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3. Bayesian inference (see below), arising from work first done by Thomas
Bayes;120 and

4. algorithmic learning theory ,121 from the work of Mark Gold.

The last part of VC theory introduced a well–known learning algorithm: the
support vector machine. VC theory contains important concepts such as the VC
dimension and structural risk minimization.

120 Thomas Bayes (c. 1702 – April 17, 1761) was a British mathematician and Pres-
byterian minister, known for having formulated a special case of Bayes’ theorem,
which was published posthumously. Bayes’ solution to a problem of ‘inverse prob-
ability’ was presented in the Essay Towards Solving a Problem in the Doctrine
of Chances (1764), published posthumously by his friend Richard Price in the
Philosophical Transactions of the Royal Society of London. This essay contains
a statement of a special case of Bayes’ theorem.

Bayesian probability is the name given to several related interpretations of
probability, which have in common the application of probability to any kind of
statement, not just those involving random variables. ‘Bayesian’ has been used
in this sense since about 1950.

It is not at all clear that Bayes himself would have embraced the very broad
interpretation now called Bayesian. It is difficult to assess Bayes’ philosophical
views on probability, as the only direct evidence is his essay, which does not go
into questions of interpretation. In the essay, Bayes defines probability as follows:

“The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed,
and the chance of the thing expected upon it’s happening.”

In modern utility theory we would say that expected utility is the probability
of an event times the payoff received in case of that event. Rearranging that to
solve for the probability, we get Bayes’ definition. As Stigler points out, this is
a subjective definition, and does not require repeated events; however, it does
require that the event in question be observable, for otherwise it could never be
said to have ‘happened’ (some would argue, however, that things can happen
without being observable).

The search engine Google, and the information retrieval company Autonomy
Systems, employ Bayesian principles to provide probable results to searches.
Microsoft is reported as using Bayesian probability in its future Notification
Platform to filter unwanted messages.

In statistics, empirical Bayes methods involve:

a) An ‘underlying’ probability distribution of some unobservable quantity assigned
to each member of a statistical population. This quantity is a random variable
if a member of the population is chosen at random. The probability distribution
of this random variable is not known, and is thought of as a property of the
population.

b) An observable quantity assigned to each member of the population. When a
random sample is taken from the population, it is desired first to estimate the
“underlying” probability distribution, and then to estimate the value of the
unobservable quantity assigned to each member of the sample.

121 Algorithmic learning theory (or inductive inference) is a framework for machine
learning, introduced in E.M. Gold’s seminal paper ‘Language identification in the
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Computational learning theory has led to practical algorithms. For exam-
ple, PAC theory inspired boosting, VC theory led to support vector machines,
and Bayesian inference led to Bayesian belief networks (see below).

limit’ [Gol67]. The objective of language identification is for a machine running
one program to be capable of developing another program by which any given
sentence can be tested to determine whether it is ‘grammatical’ or ‘ungram-
matical’. The language being learned need not be English or any other natural
language – in fact the definition of ‘grammatical’ can be absolutely anything
known to the tester.

In the framework of algorithmic learning theory, the tester gives the learner
an example sentence at each step, and the learner responds with a hypothesis,
which is a suggested program to determine grammatical correctness. It is required
of the tester that every possible sentence (grammatical or not) appears in the
list eventually, but no particular order is required. It is required of the learner
that at each step the hypothesis must be correct for all the sentences so far. A
particular learner is said to be able to ‘learn a language in the limit’ if there
is a certain number of steps beyond which its hypothesis no longer changes. At
this point it has indeed learned the language, because every possible sentence
appears somewhere in the sequence of inputs (past or future), and the hypothesis
is correct for all inputs (past or future), so the hypothesis is correct for every
sentence. The learner is not required to be able to tell when it has reached a
correct hypothesis, all that is required is that it be true.

Gold showed that any language which is defined by a Turing machine pro-
gram can be learned in the limit by another Turing–complete machine using
enumeration. This is done by the learner testing all possible Turing machine
programs in turn until one is found which is correct so far; this forms the hy-
pothesis for the current step. Eventually, the correct program will be reached,
after which the hypothesis will never change again (but note that the learner
does not know that it won’t need to change).

Gold also showed that if the learner is given only positive examples (that is,
only grammatical sentences appear in the input, not ungrammatical sentences),
then the language can only be guaranteed to be learned in the limit if there are
only a finite number of possible sentences in the language (this is possible if, for
example, sentences are known to be of limited length).

Language identification in the limit is a very theoretical model. It does not
allow for limits of runtime or computer memory which can occur in practice, and
the enumeration method may fail if there are errors in the input. However the
framework is very powerful, because if these strict conditions are maintained,
it allows the learning of any program known to be computable. This is because
a Turing machine program can be written to mimic any program in any con-
ventional programming language. Other frameworks of learning consider a much
more restricted class of function than Turing machines, but complete the learning
more quickly (in polynomial time). An example of such a framework is probably
approximately correct learning .
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Social and Emergent Learning

the social and emergent learning focuses on learning algorithms using the
underlying concept of evolution, in other words, shaping a population P (t) of
candidate solutions xt

i through the survival of the fittest members at time t.
P (t) is defined as:

P (t) = {xt
1, x

t
2, . . . , x

t
n}.

The attributes of a solution are represented with a particular pattern that
is initialized by a genetic algorithm. As time passes, solution candidates are
evaluated according to a specific fitness function that returns a measure of the
candidate’s fitness at that time. After evaluating all candidates the algorithm
selects pairs for recombination. Genetic operators from each individual are
used to produce new solutions that combine components of their parents.
The fitness of a candidate determines the extent to which it reproduces. The
general form of the genetic algorithm reads [Lug02]:

1. t← 0;
2. Initialize population P (t);
3. while termination condition not met do;
4. for each member xt

i within P (t) do;
5. fitness(member) ← FitnessFunction(member);
6. end for;
7. select members from P (t) based on fitness(member);
8. produce offspring of selected members using generic operators;
9. replace members of P (t) with offspring based on fitness;

10. t← t+ 1;
11. end while.

Reinforcement Learning

Recall that reinforcement learning (RL) is designed to allow computers to
learn by trial and error . It is an approach to machine intelligence that com-
bines two disciplines to solve a problem that each discipline cannot solve on
its own. The first discipline, dynamic programming is a field in mathematics
used to solve problems of optimization and control. The second discipline,
supervised learning is discussed in section on neural networks below. In most
real–life problems the correct answers required with supervised learning are
not available, using RL the agent is simply provided with a reward–signal
that implicitly trains the agent as required, Figure 1.3 illustrates the agent–
environment interaction used with RL. The agent and the environment inter-
act in a discrete sequence of time steps t = 0, 1, 2, 3, ..., for each time step the
agent is presented with the current instance of the state st ∈ S where S is the
set of all possible states. The agent then uses the state to select and execute
an action at ∈ A(st) where A(st) is the set of all possible actions available
in state st. In the next time step the agent receives a reward rt+1 ∈ R, and
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Fig. 1.3. The agent–environment interface in reinforcement learning (adapted from
[SB98]).

is presented with a new state st+1. The system learns by mapping an action
to each state for a particular environment. A specific mapping of actions and
states is known as a policy π where πt(s, a) is the probability that at = a
if st = s. Actions available to agents can be separated into three different
categories [SB98]:

• Low–level actions (e.g., supplying voltage to a motor);
• High–level actions (e.g., making a decision);
• Mental actions (e.g., shifting attention focus);

An important point to note is that according to Figure 1.3, the reward
is calculated by the environment which is external to the agent. This is a
confusing concept because at first it seems that the designer of an RL sys-
tem is required to somehow implement something in the environment in order
to provide an agent with appropriate rewards. The RL literature overcome
this problem by explaining that the boundary between the agent and the en-
vironment need not be distinctively physical. The boundary of the agent is
shortened to include only the reasoning process, everything outside the rea-
soning process which includes all other components of the agent, are treated
as part of the environment. In the context of human reasoning, this is analo-
gous to treating the human brain as the agent and the entire human body as
part of the environment [Sio05].

Markov property of RL is concerned with the way that the state signal
received from the environment is represented. This is an important issue when
developing an RL system because all actions are directly dependent on the
state of the environment. In a causal system the response of the environment
for an action taken at time t will depend on all actions previously taken,
formally written as

PR{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, ..., s0, a0}.

However, the state signal should not be expected to represent everything
about the environment because certain information might be inaccessible or
intentionally made unavailable.

When the response of the environment depends only on the state and
action representations at time t, is it said to have the Markov property and
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can be defined as
PR{st+1 = s′, rt+1 = r|st, at}.

This means that the state signal is able to summarize all past sensations
compactly such that all relevant information is retained for making decisions.

When a reinforcement learning problem satisfies the Markov property it
is called a Markov decision process (MDP), additionally if the states and
actions sets are finite then it is called a finite MDP. In some cases even when
a particular problem is non–Markov it may be possible to consider it as an
approximation of an MDP for the basis for learning, in such cases the learning
performance will depend on how good the approximation is.

Reward function Ra
ss′ provides rewards depending on the actions of the

agent. The sequence of rewards received after time step t is rt+1, rt+2, rt+3, . . . ,
the agent learns by trying to maximize the sum of rewards received when
starting from an initial state and proceeding to a terminal state. An additional
concept is the one when an agent tries to maximize the expected discounted
return as

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0

γkrt+k+1,

where 0 ≤ γ ≤ 1. This involves the agent discounting future rewards by a
factor of γ.

There are two important classes of reward functions [HH97]. In the pure
delayed reward functions, rewards are all zero except at a terminal state where
the sign of the reward indicates whether it is a goal or penalty state. A classic
example of pure delayed rewards is the cart–pole problem, where the cart is
supporting a hinged inverted pendulum and the goal of the RL agent is to learn
to balance the pendulum in an upright position. The agent has two actions
in every state, move left and move right. The reinforcement function is zero
everywhere except when the pole falls or the cart hits the end of the track,
when the agent receives a -1 reward. Through such a set–up an agent will
eventually learn to balance the pole and avoid the negative reinforcement. On
the other hand, using the minimum–time reward functions it becomes possible
to find the shortest path to a goal state. The reward function returns a reward
of -1 for all actions except for the one leading to a terminal state for which the
value is again dependent on whether it is a goal or penalty state. Due to the
fact that the agent wants to maximize its rewards, it tries to achieve its goal
at the minimum number of actions and therefore learns the optimal policy. An
example used to illustrate this problem is driving a car up the hill problem,
which is caused by the car not having enough thrust to drive up the hill on
its own and therefore the RL agent needs to learn to use the momentum of
the car climb the hill.

Value function. The issue of how an agent knows what is a good action
is tackled using the value function V π(s) which provides a value of ‘goodness’
to states with respect to a specific policy. For MDPs, the information in a
value function can be formally defined by
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V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}

where Eπ{} denotes the expected value if the agent follows policy π, this
is called the state value function. Similarly, the action value function starting
from s, taking action a, and thereafter following policy π is defined by

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
.

A value function that returns the highest value for the best action in each
state is known as the optimal value function. V ∗(s) and Q∗(s, a) denote the
optimal state and action value functions and are given respectively by

V ∗(s) = max
a

∑
s′

P a
ss′ [Ra

ss′ + γV ∗(s′)],

Q∗(s, a) =
∑
s′

P a
ss′ [Ra

ss′ + γmax
a′
Q∗(s′, a′)].

Learning algorithms are concerned with how and when to update the
value function using provided rewards. The differences in algorithms range
depending on the required data that they need to operate, how they perform
calculations and finally when this update takes place. Learning algorithms
can be divided into three major classes: dynamic programming , Monte–Carlo
method and time–difference method .

Dynamic programming (DP) works by assigning blame to the many de-
cisions a system has to do while operating, this is done using two simple
principles. Firstly, if an action causes something bad to happen immediately,
then it learns not to do that action from that state again. Secondly, if all
actions from a certain state lead to a bad result then that state should also be
avoided. DP requires a perfect environment model in order to find a solution.
Therefore the environment must have finite sets of states S and actions A(s),
and also finite sets of transition probabilities P a

ss′ = Pr{st+1 = s′|st = s,
at = a} and immediate rewards Ra

ss′ = E{rt+1|st+1 = s′, st = s, at = a} for
all s ∈ S, a ∈ A(s). The value function in DP is updated using the equation

V π(s) =
∑

a

π(s, a)
∑
s′

P a
ss′ [Ra

ss′ + γV ∗(s′)].

Starting from the far right in this equation it can be seen that the reward
received for taking an action is added to the discounted value of the resulting
state of that action. However, a single action may have multiple effects in a
complex environment leading to multiple resulting states. The value of each
possible resulting state is multiplied by the corresponding transition probabil-
ity and all results are added to get the actual value of a single action. In order
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to calculate the value of the state itself, the value of each action is calculated
and added to produce the full value of the state.

The two biggest problems encountered when developing applications using
DP are [Sio05]: (i) the requirement of previously knowing all effects of actions
taken in the environment, and (ii) the exponential increase in computation
required to calculate the value of a state for only a small increase in possible
actions and/or effects.

Monte Carlo (MC) methods however do not assume complete knowledge
of the environment and require only experience through sampling sequences
of states, actions and rewards from direct interaction with an environment.
They are able to learn by segmenting sequences of actions into episodes and
averaging rewards received as shown by the following algorithm [SB98]:

1: π ←− policy to be evaluated;
2: V ←− an arbitrary state–value function;
3: Returns(s) ←− an empty list, for all s ∈ S;
4: while true do;
5: Generate an episode using;
6: for each state s appearing in the episode do;
7: R←− return following the first occurrence of s;
8: Append R to Returns(s);
9: V (s) ←− average(Returns(s));
10: end for;
11: end while;

Note that the algorithm requires the generation of an entire episode (line 5)
before performing any updates to the value function.

MC is also able to estimate action values rather than state values, in
this case policy evaluation is performed by estimating Qπ(s, a), which is the
expected return when starting in state s, taking action a, and thereafter fol-
lowing policy π. The relevant algorithm has the same structure as above.
When MC is used for approximating optimal policies, the generalized policy
iteration (GPI) is used. GPI maintains an approximate policy and an ap-
proximate value function, it then performs policy evaluation122 and policy
improvement123 repeatedly. This means that the value function is updated to
reflect the current policy while the policy is then improved with respect to the
value function. Using these two processes GPI is able to maximize its rewards.

Temporal–Difference (TD) learning combines ideas from both MC and
DP methods. Similarly to MC, TD methods are able to learn from experi-
ences and do not need a model of the environment’s dynamics. Like DP, TD
methods update the value function based in part on estimates of future states

122 Policy evaluation calculates the value function of a given policy.
123 Policy improvement changes the policy such that it takes the best actions as

dictated by the value function.
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(this feature is called bootstraping) and hence do not require waiting for the
episode to finish. An example of TD learning is the Sarsa algorithm [SB98]:

1: Initialize Q(s, a) arbitrarily;
2: for each episode do;
3: Initialize s;
4: Choose a from s using policy derived from Q;
5: for each state s in episode do;
6: Take action a, observe r, s′;
7: Choose a′ from s′ using policy derived from Q;
8: Q(s, a) ←− Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)];
9: s←− s′; a←− a′;
10: end for;
11: end for;

The most important part of the algorithm is line 8 where the action value
function is updated according to the rule:

Q(s, a) ←− Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)],

where α is called the step–size parameter and it controls how much the value
function is changed with each update. Sarsa is an on–policy TD–algorithm
and it requires the agent to select the following action before updating Q(s, a).
This is becauseQ(s, a) is calculated by subtractingQ(s, a) from the discounted
value of Q(s′, a′), which can only be known by selecting a′. Note that actions
are selected using a policy that is based on the value function and in turn the
value function is updated from the reward received.

Off–policy TD is able to approximate the optimal value function indepen-
dently of the policy being followed. An example is the Qlearning algorithm
[SB98]:

1: Initialize Q(s, a) arbitrarily;
2: for each episode do;
3: Initialize s;
4: for Each state s in episode do;
5: Choose a′ from s′ using policy derived from Q;
6: Take action a, observe r, s′;
7: Q(s, a) ←− Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)];
8: s←− s′;
9: end for;
10: end for;

The main difference between Sarsa and Qlearning lies in the calculation
that updates the value function, the Qlearning update function is given by

Q(s, a) ←− Q(s, a) + α[r + γmax
a′
Q(s′, a′)−Q(s, a)].
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With Sarsa the value function is updated based on the next chosen action,
while with Qlearning it is updated based on the best known future action even
if that action is actually not selected in the next iteration of the algorithm.

Exploration versus exploitation. One of the more well known problems
within the RL literature is the exploration/exploitation problem. During its
operation the agent forms the action estimates Qπ(a) = Q∗(a). The best
known action at time t would therefore be

a∗t = arg max
a
Qt(a).

An agent is said to be exploring when it tries an new action for a particular
situation a 	= a∗t . The reward obtained from the execution of that action is
used to update the value function accordingly. An agent is said to be exploit-
ing its learning knowledge when it chooses the greedy action (i.e., best action)
indicated by its value function in a particular state a = a∗t . In this case, the
agent also updates the value function according to the reward received. This
may have two effects, firstly, the reward may be similar to the one expected
by the value function, which means that the value function is stabilizing on
the problem trying to be solved. Secondly, it may be totally different to the
value expected, therefore changing the value function and possibly the order-
ing of the actions with respect the their values. Hence, another action may
subsequently become the ‘best’ action for that state.

An action selection policy controls the exploitation/exploration that is per-
formed by the agent while learning. There are two types of policies commonly
considered. Firstly, the EGreedy policy explores by selecting actions randomly
but only for a defined percentage of all actions chosen as

at =
{
a∗t if PR = (1− ε),
random if PR = ε.

For example, if ε = 0.1 then the agent will explore only 10% of the time, the
rest of the time it chooses the greedy action.

Secondly, the SoftMax action selection is more complex. It makes its choice
based on the relation

at =
eQt(a)/τ∑n

b=1 eQt(a)/τ
,

where τ is called the temperature value. A high temperature selects all ac-
tions randomly, while a low temperature selects actions in a greedy fashion.
An intermediate temperature value causes SoftMax to select actions with a
probability that is based on their value. This way actions with a high value
have a greater chance of being selected while actions with a lower value have
less chance of being selected. The advantage of SoftMax is that it tends to
select the best action most of the time followed by the second–best, the third–
best and so on, an action with a very low value is seldom executed. This is
useful when a particular action is known to cause extremely bad rewards. Us-
ing SoftMax, that action will always get a very small probability of execution,
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with EGreedy however, it has the same probability as any other action when
exploring.

AI Programming Languages

Lisp

Recall that Lisp resps a family of computer programming languages with a
long history and a distinctive fully–parenthesized syntax. Originally speci-
fied in 1958, Lisp is the second–oldest high–level programming language124 in
widespread use today; only Fortran is older. Like Fortran, Lisp has changed
a great deal since its early days, and a number of dialects have existed over
its history. Today, the most widely–known general–purpose Lisp dialects are
Common Lisp125 and Scheme.126

124 Recall that a high–level programming language is a programming language that,
in comparison to low–level programming languages, may be more abstract, easier
to use, or more portable across platforms. Such languages often abstract away
CPU operations such as memory access models and management of scope.

125 Common Lisp, commonly abbreviated CL, is a dialect of the Lisp programming
language, standardised by ANSI X3.226-1994. Developed to standardize the di-
vergent variants of Lisp which predated it, it is not an implementation but rather
a language specification. Several implementations of the Common Lisp standard
are available, including commercial products and open source software.

Common Lisp is a general–purpose programming language, in contrast to
Lisp variants such as Emacs Lisp and AutoLISP which are embedded extension
languages in particular products. Unlike many earlier Lisps, Common Lisp (like
Scheme) uses lexical variable scope.

Common Lisp is a multi–paradigm programming language that:
(i) Supports programming techniques such as imperative, functional and

object-oriented programming.
(ii) Is dynamically typed, but with optional type declarations that can im-

prove efficiency.
(iii) Is extensible through standard features such as Lisp macros (compile–

time code rearrangement accomplished by the program itself) and reader macros
(extension of syntax to give special meaning to characters reserved for users for
this purpose).

126 Scheme is a multi–paradigm programming language and a dialect of Lisp which
supports functional and procedural programming. It was developed by Guy L.
Steele and Gerald Jay Sussman in the 1970s. Scheme was introduced to the
academic world via a series of papers now referred to as Sussman and Steele’s
Lambda Papers. There are two standards that define the Scheme language: the
official IEEE standard, and a de facto standard called the Revisedn Report on
the Algorithmic Language Scheme, nearly always abbreviated RnRS, where n is
the number of the revision.

Scheme’s philosophy is minimalist. Scheme provides as few primitive
notions as possible, and, where practical, lets everything else be provided by
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Lisp was originally created as a practical mathematical notation for com-
puter programs, based on Church’s127 lambda calculus (which provides a the-
oretical framework for describing functions and their evaluation; though it
is a mathematical abstraction rather than a programming language, lambda
calculus forms the basis of almost all functional programming languages128

today).

programming libraries. Scheme, like all Lisp dialects, has very little syntax com-
pared to many other programming languages. There are no operator precedence
rules because fully nested and parenthesized notation is used for all function
calls, and so there are no ambiguities as are found in infix notation, which mim-
ics conventional algebraic notation.

Scheme uses lists as the primary data structure, but also has support for
vectors. Scheme was the first dialect of Lisp to choose static (a.k.a. lexical) over
dynamic variable scope. It was also one of the first programming languages to
support first–class continuations.

127 Alonzo Church (June 14, 1903 — August 11, 1995) was an American mathemati-
cian and logician who was responsible for some of the foundations of theoretical
computer science. Born in Washington, DC, he received a bachelor’s degree from
Princeton University in 1924, completing his Ph.D. there in 1927, under Oswald
Veblen. After a postdoc at Göttingen, he taught at Princeton, 1929—1967, and
at the University of California, Los Angeles, 1967–1990.

Church is best known for the following accomplishments:
(i) His proof that Peano arithmetic and first–order logic are undecidable. The

latter result is known as Church’s theorem.
(ii) His articulation of what has come to be known as Church’s thesis.
(iii) He was the founding editor of the Journal of Symbolic Logic, editing its

reviews section until 1979.
(iv) His creation of the lambda calculus.
The lambda calculus emerged in his famous 1936 paper showing the existence

of an ‘undecidable problem’. This result preempted Alan Turing’s famous work
on the halting problem which also demonstrated the existence of a problem un-
solvable by mechanical means. He and Turing then showed that the lambda cal-
culus and the Turing machine used in Turing’s halting problem were equivalent in
capabilities, and subsequently demonstrated a variety of alternative ‘mechanical
processes for computation’. This resulted in the Church—Turing thesis.

The lambda calculus influenced the design of the LISP programming lan-
guage and functional programming languages in general. The Church encoding
is named in his honor.

128 Recall that functional programming is a programming paradigm that conceives
computation as the evaluation of mathematical functions and avoids state and
mutable data. Functional programming emphasizes the application of functions,
in contrast with imperative programming, which emphasizes changes in state
and the execution of sequential commands. A broader conception of functional
programming simply defines a set of common concerns and themes rather than a
list of distinctions from other paradigms. Often considered important are higher–
order and first-class functions, closures, and recursion. Other common features
of functional programming languages are continuations, Hindley–Milner type in-
ference systems, non–strict evaluation, and monads.
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Lisp quickly became the favored programming language for artificial intelli-
gence research. As one of the earliest programming languages, Lisp pioneered
many ideas in computer science, including tree data structures, automatic
storage management, dynamic typing, object–oriented programming, and the
self–hosting compiler.

The name Lisp derives from ‘List Processing’. Linked lists are one of Lisp
languages’ major data structures, and Lisp source code is itself made up of
lists. As a result, Lisp programs can manipulate source code as a data struc-
ture, giving rise to the macro systems that allow programmers to create new
syntax or even new ‘little languages’ embedded in Lisp.

The interchangeability of code and data also give Lisp its instantly recog-
nizable syntax. All program code is written as s–expressions, or parenthesized
lists. A function call or syntactic form is written as a list with the function or
operator’s name first, and the arguments following: (f x y z).

Lisp was invented by John McCarthy in 1958 while he was at MIT.
McCarthy published its design in a paper in Communications of the ACM
in 1960, entitled ‘Recursive Functions of Symbolic Expressions and Their
Computation by Machine’.129 He showed that with a few simple operators
and a notation for functions, one can build a Turing–complete language for
algorithms. Lisp was first implemented by Steve Russell on an IBM 704 com-
puter. Russell had read McCarthy’s paper, and realized (to McCarthy’s sur-
prise) that the eval function could be implemented as a Lisp interpreter. The
first complete Lisp compiler, written in Lisp, was implemented in 1962 by
Tim Hart and Mike Levin at MIT. (AI Memo 39, 767 kB PDF.) This com-
piler introduced the Lisp model of incremental compilation, in which compiled
and interpreted functions can intermix freely. The language used in Hart and
Levin’s memo is much closer to modern Lisp style than McCarthy’s earlier
code.

Largely because of its resource requirements with respect to early com-
puting hardware (including early microprocessors), Lisp did not become as
popular outside of the AI community as Fortran and the ALGOL–descended
C language. Newer languages such as Java have incorporated some limited
versions of some of the features of Lisp, but are necessarily unable to bring
the coherence and synergy of the full concepts found in Lisp. Because of its
suitability to ill–defined, complex, and dynamic applications, Lisp is presently
enjoying some resurgence of popular interest.

Functional programming languages, especially ‘purely functional’ ones, have
largely been emphasized in academia rather than in commercial software devel-
opment. However, notable functional programming languages used in industry
and commercial applications include Erlang (concurrent applications), R (statis-
tics), Mathematica (symbolic math), J and K (financial analysis), and domain–
specific programming languages like XSLT. Important influences on functional
programming have been the lambda calculus, APL, Lisp and Haskell.

129 McCarthy’s original notation used bracketed ‘M–expressions’ that would be
translated into S–expressions.
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Prolog

Prolog is a logic programming language. The name Prolog is taken from ‘pro-
grammation en logique’ (which is French for ‘programming in logic’). It was
created by Alain Colmerauer and Robert Kowalski130 around 1972 as an alter-
native to the American–dominated Lisp programming languages. It has been
an attempt to make a programming language that enables the expression of
logic instead of carefully specified instructions on the computer. In some ways
Prolog is a subset of Planner, e.g., see Kowalski’s early history of logic pro-
gramming. The ideas in Planner were later further developed in the Scientific
Community Metaphor .131

130 Alain Colmerauer (born January 24, 1941) is a French computer scientist. He
is the creator of the logic programming language Prolog and Q–Systems, one
of the earliest linguistic formalisms used in the development of the TAUM–
METEO machine translation prototype. He is a professor at the University of
Aix–Marseilles, specialising in the field of constraint programming.

Robert Anthony Kowalski (born May 15, 1941 in Bridgeport, Connecticut,
USA) is an American logician who has spent much of his career in the UK.
He has been important in the development of logic programming, especially the
programming language Prolog. He is also interested in legal reasoning.

131 The Scientific Community Metaphor is one way of understanding scientific com-
munities. In this approach, a high level programming language called Ether was
developed that made use of pattern–directed invocation to invoke high–level pro-
cedural plans on the basis of messages (e.g. assertions and goals). The Scientific
Community Metaphor builds on the philosophy, history and sociology of science
with its analysis that scientific research depends critically on monotonicity, con-
currency, commutativity, and pluralism to propose, modify, support, and oppose
scientific methods, practices, and theories.

The first publications on the Scientific Community Metaphor (Kornfeld &
Hewitt 1981, Kornfeld 1981, Kornfeld 1982) involved the development of a pro-
gramming language named ‘Ether’ that invoked procedural plans to process goals
and assertions concurrently by dynamically creating new rules during program
execution. Ether also addressed issues of conflict and contradiction with multiple
sources of knowledge and multiple viewpoints.

According to Carl Hewitt [Hew69], Scientific Community Metaphor systems
have characteristics of:

(i) monotonicity (once something is published it cannot be withdrawn),
(ii) concurrency (scientists can work concurrently, overlapping in time and

interacting with each other),
(iii) commutativity (publications can be read regardless of whether they ini-

tiate new research or become relevant to ongoing research),
(iv) pluralism (publications include heterogeneous, overlapping and possibly

conflicting information),
(v) skepticism (great effort is expended to test and validate current informa-

tion and replace it with better information), and
(vi) provenance (the provenance of information is carefully tracked and

recorded).
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Prolog is used in many AI programs and in computational linguistics
(especially natural language processing, which it was originally designed for;
the original goal was to provide a tool for computer–illiterate linguists) A
lot of the research leading up to modern implementations of Prolog came
from spin–off effects caused by the fifth generation computer systems project
(FGCS) which chose to use a variant of Prolog named Kernel Language for
their operating system (however, this area of research is now actually almost
defunct).

Prolog is based on first–order predicate calculus;132 however it is restricted
to allow only Horn clauses.133 Execution of a Prolog program is effectively an
application of theorem proving by first–order resolution.

‘Planner’ is a programming language designed by Carl Hewitt at MIT, and
first published in 1969. First subsets such as Micro–Planner and Pico–Planner
were implemented and then essentially the whole language was implemented in
Popler and derivations such as QA–4, Conniver, QLISP and Ether.

132 Recall that predicate calculus consists of

1. formation rules (i.e. recursive definitions for forming well–formed formulas),
2. transformation rules (i.e. inference rules for deriving theorems), and
3. axioms or axiom schemata (possibly a countably infinite number).

When the set of axioms is infinite, it is required that there be an algorithm
which can decide for a given well–formed formula, whether it is an axiom or not.
There should also be an algorithm which can decide whether a given application
of an inference rule is correct or not.

133 A Horn clause is a clause (a disjunction of literals) with at most one positive
literal. A Horn clause with exactly one positive literal is a definite clause; a Horn
clause with no positive literals is sometimes called a goal clause, especially in
logic programming. A Horn formula is a conjunctive normal form formula whose
clauses are all Horn; in other words, it is a conjunction of Horn clauses. A dual–
Horn clause is a clause with at most one negative literal. Horn clauses play a
basic role in logic programming and are important for constructive logic. For
example,

¬p ∨ ¬q ∨ · · · ∨ ¬t ∨ u

is a definite Horn clause. Such a formula can be rewritten in the following form,
which is more common in logic programming,

(p ∧ q ∧ · · · ∧ t) → u.

The relevance of Horn clauses to theorem proving by first–order resolution is that
the resolution of two Horn clauses is a Horn clause. Moreover, the resolution of
a goal clause and a definite clause is again a goal clause. In automated theorem
proving, this can lead to greater efficiencies in proving a theorem (represented as
a goal clause). Prolog is a programming language based on Horn clauses. Horn
clauses are also of interest in computational complexity, where the problem of
finding a set of variable assignments to make a conjunction of Horn clauses true
is a P–complete problem.
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Recall that a resolution rule in propositional logic is a single valid infer-
ence rule producing, from two clauses, a new clause implied by them. The
resolution rule takes two clauses – a clause is a disjunction of literals – con-
taining complementary literals, and produces a new clause with all the literals
of both except for the complementary ones. The clause produced by the res-
olution rule is called the resolvent of the two input clauses. When the two
clauses contain more than one pair of complementary literals, the resolution
rule can be applied (independently) for each such pair. However, only the
pair of literals that are resolved upon can be removed: all other pair of literals
remain in the resolvent clause.

When coupled with a complete search algorithm, the resolution rule yields
a sound and complete algorithm for deciding the satisfiability of a proposi-
tional formula, and, by extension, the validity of a sentence under a set of
axioms. This resolution technique uses proof by contradiction and is based on
the fact that any sentence in propositional logic can be transformed into an
equivalent sentence in conjunctive normal form. Its steps are:

1. All sentences in the knowledge base and the negation of the sentence to
be proved (the conjecture) are conjunctively connected.

2. The resulting sentence is transformed into a conjunctive normal form
(treated as a set of clauses, S).

3. The resolution rule is applied to all possible pairs of clauses that contains
complementary literals. After each application of the resolution rule, the
resulting sentence is simplified by removing repeated literals. If the sen-
tence contains complementary literals, it is discarded (as a tautology). If
not, and if it is not yet present in the clause set S, it is added to S, and
is considered for further resolution inferences.

4. If after applying a resolution rule the empty clause is derived, the complete
formula is unsatisfiable (or contradictory), and hence it can be concluded
that the initial conjecture follows from the axioms.

5. If, on the other hand, the empty clause cannot be derived, and the resolu-
tion rule cannot be applied to derive any more new clauses, the conjecture
is not a theorem of the original knowledge base.

In first order logic resolution condenses the traditional syllogisms of logical
inference down to a single rule.

Fundamental Prolog concepts are unification, tail recursion, and back-
tracking (a strategy for finding solutions to constraint satisfaction problems).
The concept of unification is one of the main ideas behind Prolog. It repre-
sents the mechanism of binding the contents of variables and can be viewed
as a kind of one–time assignment. In Prolog, this operation is denoted by
symbol ‘=’. In traditional Prolog, a variable X which is uninstantiated, i.e.,
no previous unifications were performed on it, can be unified with an atom, a
term, or another uninstantiated variable, thus effectively becoming its alias. In
many modern Prolog dialects and in first–order logic calculi, a variable cannot
be unified with a term that contains it; this is the so called ‘occurs check’.
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A Prolog atom can be unified only with the same atom. Similarly, a Prolog
term can be unified with another term if the top function symbols and arities
of the terms are identical and if the parameters can be unified simultaneously
(note that this is a recursive behaviour). Due to its declarative nature, the
order in a sequence of unifications is (usually) unimportant [BS01].

The tail recursion (or tail–end recursion) is a special case of recursion that
can be easily transformed into an iteration. Such a transformation is possible
if the recursive call is the last thing that happens in a function. Replacing
recursion with iteration, either manually or automatically, can drastically de-
crease the amount of stack space used and improve efficiency. This technique
is commonly used with functional programming languages, where the declar-
ative approach and explicit handling of state promote the use of recursive
functions that would otherwise rapidly fill the call stack.

Prolog has a built in mechanism for parsing context–free grammar (CFG),
a formal grammar in which every production rule is of the form: V → w,
where V is a non–terminal symbol and w is a string consisting of terminals
and/or non–terminals. The term ‘context–free’ comes from the fact that the
non–terminal V can always be replaced by w, regardless of the context in
which it occurs. A formal language is context–free if there is a context–free
grammar that generates it.

Context–free grammars are powerful enough to describe the syntax of most
programming languages; in fact, the syntax of most programming languages
are specified using context–free grammars. On the other hand, context–free
grammars are simple enough to allow the construction of efficient parsing al-
gorithms which, for a given string, determine whether and how it can be gen-
erated from the grammar. The metasyntax called Backus–Naur form (BNF),
is the most common notation used to express context–free grammars.

ACT–R: Combining Natural and Computational Intelligence

ACT–R (Adaptive Control of Thought–Rational) is a cognitive architecture
mainly developed by John Anderson134 at the Carnegie Mellon University
(see [And83, And80, And90]). Like any cognitive architecture, ACT–R aims
to define the basic and irreducible basic cognitive and perceptual operations
that enable the human mind. In theory, each task that humans can perform
should consist of a series of these discrete operations. Most of the ACT–R basic

134 John Robert Anderson (born 1947 in Vancouver, British Columbia) is a pro-
fessor of psychology and computer science at Carnegie Mellon University. He is
widely known for his cognitive architecture ACT–R [And84]. He has published
many papers on cognitive psychology, served as present of the Cognitive Science
Society, and received many scientific awards, including one from the American
Academy of Arts and Sciences. He is a fellow of the National Academy of Sci-
ences. Anderson was an early leader in research on intelligent tutoring systems,
and many of Anderson’s former students, such as Kenneth Koedinger and Neil
Heffernan, have become leaders in that area.
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assumptions are also inspired by the progresses of cognitive neuroscience, and,
in fact, ACT–R can be seen and described as way of specifying how the brain
itself is organized in a way that enables individual processing modules to
produce cognition.

Like other influential cognitive architectures (including Soar and EPIC),
the ACT–R theory has a computational implementation as an interpreter of
a special coding language. The interpreter itself is written in Lisp, and might
be loaded into any of the most common distributions of the Lisp language.
This enables researchers to specify models of human cognition in the form
of a script in the ACT–R language. The language primitives and data–types
are designed to reflect the theoretical assumptions about human cognition.
These assumptions are based on numerous facts derived from experiments in
cognitive psychology and brain imaging.

In recent years, ACT–R has also been extended to make quantitative pre-
dictions of patterns of activation in the brain, as detected in experiments with
fMRI. In particular, ACT–R has been augmented to predict the exact shape
and time–course of the BOLD response of several brain areas, including the
hand and mouth areas in the motor cortex, the left prefrontal cortex, the
anterior cingulate cortex, and the basal ganglia.

ACT–R’s most important assumption is that human knowledge can be
divided into two irreducible kinds of representations: declarative and proce-
dural. Within the ACT–R code, declarative knowledge is represented in form
of chunks, i.e., vector representations of individual properties, each of them
accessible from a labelled slot. On the other hand, chunks are held and made
accessible through buffers, which are the front–end of what are modules, i.e.
specialized and largely independent brain structures.

There are two types of modules:

1. Perceptual–motor modules, which take care of the interface with the real
world (i.e., with a simulation of the real world). The most well–developed
perceptual–motor modules in ACT–R are the visual and the manual mod-
ules.

2. Memory modules. There are two kinds of memory modules in ACT–R:
(i) Declarative memory, consisting of facts such as Washington, D.C. is
the capital of United States, France is a country in Europe, or 2 + 3 = 5;
and (ii) Procedural memory, made of productions. Productions represent
knowledge about how we do things: for instance, knowledge about how to
type the letter ‘Q’ on a keyboard, about how to drive, or about how to
perform addition.

Over the years, ACT–R models has been used in more than 500 different
scientific publications, and has been cited in a huge amount of others. It has
been applied in the following areas:

1. Learning and Memory
2. Higher level cognition, Problem solving and Decision making
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3. Natural language, including syntactic parsing, semantic processing and
language generation

4. Perception and Attention

More recently, more than two dozen papers made use of ACT–R for pre-
dicting brain activation patterns during imaging experiments, and it has also
been tentatively used to model neuropsychological impairments and mental
disorders.

Beside its scientific application in cognitive psychology, ACT–R used in
other, more application–oriented domains.

1. Human–computer interaction to produce user models that can assess dif-
ferent computer interfaces,

2. Education, where ACT–R–based cognitive tutoring systems try to ‘guess’
the difficulties that students may have and provide focused help

3. Computer–generated forces to provide cognitive agents that inhabit train-
ing environments

Some of the most successful applications, the Cognitive Tutors for Mathe-
matics, are used in thousands of schools across the United States. Such ‘Cogni-
tive Tutors’ are being used as a platform for research on learning and cognitive
modelling as part of the Pittsburgh Science of Learning Center.

After the publication of ‘The Atomic Components of Thought’ [And90],
Anderson become more and more interested in the underlying neural plau-
sibility of his life–time theory, and began to use brain imaging techniques
pursuing his own goal of understanding the computational underpinnings of
human mind. The necessity of accounting for brain localization pushed for
a major revision of the theory. ACT–R 5.0, presented in 2002, introduced
the concept of modules, specialized sets of procedural and declarative repre-
sentations that could be mapped to known brain systems. In addition, the
interaction between procedural and declarative knowledge was mediated by
newly introduced buffers, specialized structures for holding temporarily active
information (see the section above). Buffers were thought to reflect cortical
activity, and a subsequent series of studies later confirmed that activations
in cortical regions could be successfully related to computational operations
over buffers. The theory was first described in the 2004 paper ‘An Integrated
Theory of Mind’ [ABB04]. No major changes have occurred since then in the
theory, but a new version of the code, completely rewritten, was presented in
2005 as ACT–R 6.0. It also included significant improvements in the ACT–R
coding language.

Facial Recognition and Biometrics

A Facial Recognition (FR) system is a computer–driven application for auto-
matically identifying a person from a digital image. It does that by comparing
selected facial features in the live image and a facial database. It is typically
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used for security systems and can be compared to other biometrics such as
fingerprint or eye iris recognition systems.

Popular FR algorithms include eigenfaces, the Hidden Markov models,
and the neuronal motivated dynamic link matching . A newly emerging trend,
claimed to achieve previously unseen accuracies, is 3D face recognition. An-
other emerging trend uses the visual details of the skin, as captured in stan-
dard digital or scanned images. Tests on the FERET database, the widely
used industry benchmark, showed that this approach is substantially more
reliable than previous algorithms.

FR is based on the computer identification of unknown face images by
comparison with a single known image or database of known images. A FR
may be used for access control (one–to–one) or for surveillance of crowds to
locate people of interest (one–to–many or many–to–many). Access control FRs
are often used in highly controlled environments, which means that the input
data is of predictable quality, resulting in relatively high levels of performance.
Surveillance applications (which are often covert), may call for a large number
of faces to be compared with a large stored database of images to determine
if there are any matches. This can result in a large number of false alarms. In
addition, due to the nature of the surveillance application, the images obtained
are often of poor quality, since it is often difficult to adequately control all
the environmental conditions. This can reduce the ability of the FR to find a
correct match with an enrolled image.

Modes of Operation

FR systems have two functional modes: enrolment and operation. Each mode
used the same signal processing approach to extract salient information from
the sensor data. In the enrolment phase, face data on known subjects is ex-
tracted and stored in a database of known persons (often called the ‘gallery’).
In general, each individual is sampled a number of times during enrolment,
to ensure that the stored data is truly representative of that individual.

Once a database of known subjects is enrolled, the system may be used
in the operational mode. In this mode, data from people who are not yet
identified are processed in the same way as the enrolment data and the salient
features are compared with the database to see if there is a match. When
the degree of match is above some form of threshold, an action is generally
required. A key to effective operation of an FRS is the image processing that
extracts the salient features of faces for comparison with stored data.

Signal Processing Operations

The signal processing operations typically involved in FR include those listed
below, either as discrete operations (an algorithmic approach) or in combina-
tion (e.g., a neural network approach):

(i) Face Capture: The first stage in the FR process is to identify objects
that could be faces and then discard the rest of the scene. The face cap-
ture process could be as simple as a blob detector that sorts on size and
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shape, or it may include higher level processes that look for features such
as eye/nose/mouth geometry, color information or motion and location to
identify objects that are face–like.

(ii) Normalization: Once faces have been identified they must be presented
to the classifier in a form that compensates for variability in brightness/colour
due to lighting, camera and frame grabber characteristics, as well as geometric
distortions due to distance, pose and viewing aspect angles. Typical intensity
normalization may involve grey scale modification of regions of interest to
provide fixed average levels and contrast. Scale errors may be minimized by
re-sampling the faces to produce constant size inputs to following stages. In
general, the distance between eye pupils is used as the baseline measure to re–
scale images and it is critical that this parameter be accurately determined,
either by the software or manually.

(iii) Feature Extraction: Feature extraction is the process that takes the
normalized version of each real–world face image and generates a compact
data vector that uniquely describes it for use by the classification/database
engine.

(iv) Database Comparison: Unknown subjects and a target sample are
compared with the known database. Face images are gathered using the same
(or a similar) sensor as was used for enrolment and this data is processed
in the same way as the enrolment data. Following salient feature extraction,
the incoming data vector is compared with each template in the database to
determine the goodness of match with known data and a match measure is
generated for each comparison.

(v) Decision and Action: A decision making process follows the match
measurement, whereby the outcome is declared to be either a true match or
a non–match, based on the match measure. This decision may be made by
comparing the match value to a threshold setting. Any match measure that is
on higher side of the threshold is declared to be a true match and any on the
other is a non-match. The process of facial recognition is complex and many
of the processes outlined above are highly dependent upon external variables.
This can lead to considerable difficulty in the evaluation of the technologies
involved.

Evaluation Methods

Phillips et al. [PMW00] have given a general introduction to evaluating bio-
metric systems. They focused on biometric applications that give the user
some control over data acquisition. These applications recognize subjects from
mug shots, passport photos and scanned fingerprints. They concentrated on
two major kinds of biometric systems: identification and verification. In iden-
tification systems, a biometric signature of an unknown person is presented to
a system. The system compares the new biometric signature with a database
of biometric signatures of known individuals. On the basis of the comparison,
the system reports (or estimates) the identity of the unknown person from
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this database. Systems that rely on identification include those that check
for multiple applications by the same person for welfare benefits and driver’s
licences.

In verification systems, a user presents a biometric signature and a claim
that a particular identity belonged to the biometric signature. The algorithm
either accepts or rejects the claim. Alternatively, the algorithm could return
a confidence measurement of the claim’s validity. Verification applications
include those that authenticate identity during point-of-sale transactions or
that control access to computers or secure buildings.

Performance statistics for verification applications differ substantially from
those for identification systems. The main performance measure for an iden-
tification system is that system’s ability to identify the owner of a biometric
signature. More specifically, the performance measure is equal to the percent-
age of queries in which the correct answer could be found in the top few
matches.

Mansfield and Wayman [MW02] elaborated best practice in testing and
reporting the performance of biometric devices. The purpose of their report,
which is a revision of their original version [MW00], was to summarize the
current understanding by the biometrics community of the best scientific prac-
tices for conducting technical performance testing toward the end of field per-
formance estimation. The aims of the authors were as follows:

(1) To provide a framework for developing and fully describing test protocols.
(2) To help avoid systematic bias due to incorrect data collection or analytic
procedures in evaluations.
(3) To help testers achieve the best possible estimate of field performance
while expending minimum effort in conducting their evaluation.
(4) To improve understanding of the limits of applicability of test results and
test methods.

The recommendations in this paper were extremely general in nature. It
was noted that it might not be possible to follow best practice completely
in any test. Compromises often need to be made. In such situations the ex-
perimenter has to decide on the best compromise to achieve the evaluation
objectives, but should also report what has been done to enable a correct
interpretation to be made of the results.

The FERET Program

The Face Recognition Technology (FERET) program, which was sponsored
by the Department of Defense (DoD) Counterdrug Technology Program, com-
menced in September 1993. The primary mission of the FERET program was
to develop automatic face recognition capabilities that could be employed to
assist security, intelligence and law enforcement personnel in the performance
of their duties.

The FERET program initially consisted of three one year phases. The
objective of the first phase was to establish the viability of automatic face
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recognition algorithms, and to determine a performance baseline against which
to measure future progress. The goals of the other two phases was to fur-
ther develop face recognition technology. After the completion of phase 2 the
FERET demonstration effort was commenced, with the goals to port FERET
evaluated algorithms to real–time experimental/demonstration systems.

The program focused on three major areas:

1. Sponsoring Research: The goal of the sponsored research was to develop
facial recognition algorithms. After a broad agency announcement for al-
gorithm development proposals, twenty–four submissions were received
and evaluated by DoD and law enforcement personnel. Five contracts
were initially awarded, and three of these teams were selected to continue
their development for phase 2.

2. Collecting the FERET database: The FERET database of facial images
was a vital part of the overall FERET program and promised to be key to
future work in face recognition, because it provided a standard database
for algorithm development, test and evaluation, and most importantly, the
images were gathered independently from the algorithm developers. The
images were collected in a semi–controlled environment, with the same
physical setup used in each photography session to maintain a degree of
consistency throughout the database. However, because the equipment
had to be reassembled for each session, there was some minor variation in
images collected on different dates. The FERET database was collected
in 15 sessions between August 1993 and July 1996. The database contains
1564 sets of images for a total of 14,126 images that includes 1199 indi-
viduals and 365 duplicate sets of images. A duplicate set is a second set
of images of a person already in the database and was usually taken on a
different day.

3. Performing the FERET evaluations: Before the FERET database was cre-
ated, a large number of papers reported outstanding recognition results
(usually >95% correct recognition) on limited–size databases (usually <50
individuals). Only a few of these algorithms reported results on images
utilizing a common database – the FERET database made it possible for
researchers to develop algorithms on a common database and to report re-
sults in the literature using this database. More importantly, the FERET
database and evaluations clarified the state of the art in face recognition
and pointed out general directions for future research. Three sets of eval-
uations were performed, with the last two evaluations being administered
multiple times. The first FERET evaluation took place in August 1994, the
Aug94 evaluation. This evaluation was designed to measure performance
on algorithms that could automatically locate, normalize, and identify
faces from a database. The test consisted of three subtests, each with a
different gallery and probe set. The first subtest examined the ability of
algorithms to recognize faces from a gallery of 316 individuals. The second
subtest was the false-alarm test, which measured how well an algorithm
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rejects faces not in the gallery. The third subtest baselined the effects of
pose changes on performance. The second FERET evaluation took place
in March of 1995, the Mar95 evaluation. The goal was to measure progress
since the initial FERET evaluation, and to evaluate these algorithms on
larger galleries (817 individuals). An added emphasis of this evaluation
was on probe sets that contained duplicate images, where a duplicate im-
age was defined as an image of a person whose corresponding gallery image
was taken on a different date. The third FERET evaluations took place
in September of 1996, the Sep96 evaluation. For the Sept96 evaluation, a
new evaluation protocol was designed which required algorithms to match
a set of 3323 images against a set of 3816 images. The new protocol de-
sign allowed the determination of performance scores for multiple galleries
and probe sets, and perform a more detailed performance analysis. There
were two versions of the September 1996 evaluation. The first tested par-
tially automatic algorithms by providing the images with the coordinates
of the center of the eyes. The second tested fully automatic algorithms by
providing the images only.
Further details on the methodology of the FERET program can be found
in [PMW00].

Eigenfaces

Recall that eigenfaces are a set of eigenvectors135 used in the computer vision
problem of human FR. These eigenvectors are derived from the covariance
matrix of the probability distribution of the high–dimensional vector space
of possible human faces, in a similar fashion as in factor analysis described
above. Many authors prefer the term eigenimage rather than eigenface, as the
technique has been used for handwriting, lip reading, voice recognition, and
medical imaging.

In layman’s terms, eigenfaces are a set of ‘standardized face ingredients’,
derived from multivariate correlation analysis of many pictures of faces. Any
human face can be considered to be a combination of these standard faces.
One person’s face might be made up of 10% from face 1, 24% from face 2
135 Recall that an eigenvector of a transformation is a non–null vector whose direc-

tion is unchanged by that transformation. The factor by which the magnitude
is scaled is called the eigenvalue of that vector. Often, a transformation is com-
pletely described by its eigenvalues and eigenvectors. An eigenspace is a set of
eigenvectors with a common eigenvalue. These concepts play a major role in sev-
eral branches of both pure and applied mathematics — appearing prominently
in linear algebra, functional analysis, and even a variety of nonlinear situations.

It is common to prefix any natural name for the solution with eigen instead
of saying eigenvector. For example, eigenfunction if the eigenvector is a function,
eigenmode if the eigenvector is a harmonic mode, eigenstate if the eigenvector is
a quantum state, and so on (e.g. the eigenface example below). Similarly for the
eigenvalue, e.g., eigenfrequency if the eigenvalue is (or determines) a frequency.
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and so on. This means that if we want to record someone’s face for use by
FR software, we can use far less space than would be taken up by a digitised
photograph.

To generate a set of eigenfaces, a large set of digitized images of human
faces, taken under the same lighting conditions, are normalized to line up the
eyes and mouths. They are then all resampled at the same pixel resolution (say
m × n), and then treated as mnD vectors whose components are the values
of their pixels. The eigenvectors of the covariance matrix of the statistical
distribution of face image vectors are then extracted. It should be noted that
these are the same as the eigenvectors from principal components analysis
(PCA, see above), the statistical method from which eigenimaging is derived.
Since the eigenvectors belong to the same vector space as face images, they can
be viewed as if they were m×n pixel face images: hence the name eigenfaces.
Viewed in this way, the principal eigenface looks like a bland androgynous
average human face. Some subsequent eigenfaces can be seen to correspond
to generalized features such as left–right and top–bottom asymmetry, or the
presence or absence of a beard. Other eigenfaces are hard to categorize, and
look rather strange.

When properly weighted, eigenfaces can be summed together to create an
approximate gray–scale rendering of a human face. Remarkably few eigenvec-
tor terms are needed to give a fair likeness of most people’s faces, so eigenfaces
provide a means of applying data compression to faces for identification pur-
poses (see, e.g., [Abd88]).

Dynamic Link Matching

The dynamic link matching (DLM) is a neural FR–system based on the
Gabor–wavelet transform [Mal85, Mal88, KMM94, LVB93, Wis95]. The sys-
tem is inherently invariant with respect to shift, and is robust against many
other variations, most notably rotation in depth and deformation. The system
consists of an image domain and a model domain, which is tentatively iden-
tified with primary visual cortex and infero–temporal cortex. Both domains
have the form of neural sheets of hypercolumns, which are composed of simple
feature detectors (modeled as Gabor wavelets). Each object is represented in
memory by a separate model sheet, that is, a 2D array of features. The match
of the image to the models is performed by network self–organization, in
which rapid reversible synaptic plasticity of the connections (‘dynamic links’)
between the two domains is controlled by signal correlations, which are shaped
by fixed inter–columnar connections and by the dynamic links themselves. The
system requires very little genetic or learned structure, relying essentially on
the rules of rapid synaptic plasticity and the a priori constraint of preservation
of topography to find matches. This constraint is encoded within the neural
sheets with the help of lateral connections, which are excitatory over short
range and inhibitory over long range.

Topographical relationships between nodes in the DLM–system are en-
coded by excitatory and inhibitory lateral connections (see Figure 1.4). The
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Fig. 1.4. Architecture of the DLM face recognition system. Several models are
stored as neural layers of local features on a 1010 grid, as indicated by the black
dots. A new image is represented by a 1617 layer of nodes. Initially, the image
is connected all–to–all with the models. The task of DLM is to find the correct
mapping between the image and the models, providing translational invariance and
robustness against distortion. Once the correct mapping is found, a simple winner–
take–all mechanism can detect the model that is most active and most similar to
the image (adapted from [Mal85, Mal88, KMM94, LVB93, Wis95]).

model graphs are scaled horizontally and vertically and aligned manually,
such that certain nodes of the graphs are placed on the eyes and the mouth.
Model layers (1010 neurons) are smaller than the image layer (1617 neurons).
Since the face in the image may be arbitrarily translated, the connectivity
between model and image domain has to be all–to–all initially. The connec-
tivity matrices are initialized using the similarities between the jets of the
connected neurons. DLM serves as a process to restructure the connectivity
matrices and to find the correct mapping between the models and the image.
The models cooperate with the image depending on their similarity. A simple
winner–take–all mechanism sequentially rules out the least active and least
similar models, and the best–fitting one eventually survives.

Face Recognition Vendor Tests

Face Recognition Vendor Tests (FRVT) provide independent government eval-
uations of commercially available and mature prototype face recognition sys-
tems. During the FERET program face recognition technology was primarily
found in prototype systems in universities and research labs. By 2000 sys-
tems were available on the commercial market, so FRVT 2000 was instigated
to evaluate the capabilities of these commercial systems. Sponsored by the
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Defense Advanced Research Projects Agency (DARPA), DoD Counterdrug
Technology Development Program Office and National Institute of Justice
(NIJ), and designed by the National Institute of Standards and Technology
(NIST) the FRVT 2000 was based on the FERET evaluations and the evalu-
ation methodology philosophy outlined by [PMW00].

The FRVT 2000 was a technology evaluation consisting of two components:
the Recognition Performance Test and the Product Usability Test. The goal
of the Recognition Performance Test was to compare competing techniques
for performing facial recognition, with all systems tested on a standardized
database. The product usability test examined system properties for perform-
ing access control. Five commercial products were evaluated, and the results
of the tests can be found at get references from Lit Review Report. Under the
USA Patriot Act, NIST is mandated to measure the accuracy of biometric
technologies. In accordance with this legislation, NIST, in cooperation with
other Government agencies, is conducting the Face Recognition Vendor Test
2002 FRVT 2002. Now sponsored or supported by 16 organisations, including
some non–US agencies, the FRVT 2002 aims to assess the state–of–the–art
in face recognition technology, and is conducting a technology evaluation of
both mature prototype and commercially available systems face recognition
systems.

Hidden Markov Models

A hidden Markov model (HMM) is a statistical model where the system being
modelled is assumed to be a Markov process136 with unknown parameters,
and the challenge is to determine the hidden parameters from the observable
136 Recall that a Markov process is a stochastic process that has a Markov property ,

or Markov assumption. Technically, there are three well–known special cases of
the Chapman–Kolmogorov equation, describing a general Markov process (see
[Gar85]):

1. When both Bij [x(t), t] and W (t) are zero, i.e., in the case of pure deterministic
motion, it reduces to the Liouville equation

∂tP (x′, t′|x′′, t′′) = −
∑

i

∂

∂xi

{
Ai[x(t), t] P (x′, t′|x′′, t′′)

}
.

2. When only W (t) is zero, it reduces to the Fokker–Planck diffusion equation

∂tP (x′, t′|x′′, t′′) = −
∑

i

∂

∂xi

{
Ai[x(t), t] P (x′, t′|x′′, t′′)

}

+
1

2

∑
ij

∂2

∂xi∂xj

{
Bij [x(t), t] P (x′, t′|x′′, t′′)

}
.

3. When both Ai[x(t), t] and Bij [x(t), t] are zero, i.e., the state–space consists
of integers only, it reduces to the Master equation of discontinuous jumps
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parameters.137 The extracted model parameters can then be used to perform
further analysis, for example for pattern recognition applications. A HMM
can be considered as the simplest dynamic Bayesian network .

In a regular Markov model, the state is directly visible to the observer, and
therefore the state transition probabilities are the only parameters. In a hidden
Markov model, the state is not directly visible, but variables influenced by the
state are visible. Each state has a probability distribution over the possible
output tokens. Therefore the sequence of tokens generated by an HMM gives
some information about the sequence of states.

The HMM–architecture is depicted in Figure 1.5. From this diagram, it is
clear that the value of the hidden variable x(t) (at time t) only depends on
the value of the hidden variable x(t− 1) (at time t − 1). Similarly, the value
of the observed variable y(t) only depends on the value of the hidden variable
x(t) (both at time t).

The probability of observing a sequence Y = y(0), y(1), . . . , y(L − 1) of
length L in HMM is given by:

P (Y ) =
∑
X

P (Y | X)P (X),

∂tP (x′, t′|x′′, t′′) =

∫
dx
{
W (x′|x′′, t) P (x′, t′|x′′, t′′)

−W (x′′|x′, t) P (x′, t′|x′′, t′′)
}

.

The Markov assumption can now be formulated in terms of the conditional
probabilities P (xi, ti): if the times ti increase from right to left, the conditional
probability is determined entirely by the knowledge of the most recent condi-
tion. Markov process is generated by a set of conditional probabilities whose
probability–density P = P (x′, t′|x′′, t′′) evolution obeys the general Chapman–
Kolmogorov integro–differential equation

∂tP = −
∑

i

∂

∂xi
{Ai[x(t), t] P}

+
1

2

∑
ij

∂2

∂xi
∂xj {Bij [x(t), t] P}

+

∫
dx
{
W (x′|x′′, t) P − W (x′′|x′, t) P

}
including: deterministic drift , diffusion fluctuations and discontinuous jumps
(given respectively in the first, second and third rows).

137 Hidden Markov Models were first described in a series of statistical papers by
Leonard Baum in the second half of the 1960s. One of the first applications of
HMMs was speech recognition, starting in the mid–1970s. In the second half of
the 1980s, HMMs began to be applied to the analysis of biological sequences, in
particular DNA. Since then, they have become ubiquitous in the field of bioin-
formatics.
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Fig. 1.5. Generic architecture of a Hidden Markov model. Each oval shape repre-
sents a random variable that can adopt a number of values. The random variable x(t)
is the value of the hidden variable at time t. The random variable y(t) is the value
of the observed variable at time t. The arrows in the diagram denote conditional
dependencies.

where the sum runs over all possible hidden node sequences X =
x(0), x(1), . . . , x(L − 1). A brute force calculation of P (Y ) is intractable for
realistic problems, as the number of possible hidden node sequences typically
is extremely high. The calculation can however be speeded up enormously
using a dynamic programming algorithm, called the forward algorithm.

Recall that dynamic programming, invented by Richard Bellman,138 is a
method for reducing the runtime of algorithms exhibiting the properties of:

1. Overlapping subproblems (the problem can be broken down into subprob-
lems which are reused several times),139

2. Optimal substructure (optimal solution can be constructed efficiently from
optimal solutions to its subproblems; used to determine the usefulness of
dynamic programming and greedy algorithms140 in a problem), and

138 Richard Ernest Bellman (1920–1984) was an applied mathematician, celebrated
for his invention of dynamic programming in 1953, and important contributions
in other fields of mathematics, including the Bellman equation and Hamilton–
Jacobi–Bellman equation.

A well–known term in computation coined by Bellman is curse of dimen-
sionality : the problem caused by the rapid increase in volume associated with
adding extra dimensions to a (mathematical) space (e.g., ‘rules explosion’ in
fuzzy logic systems). Similarly, the curse of dimensionality is a significant obsta-
cle in machine learning problems that involve learning from few data samples in
a high–dimensional feature space.

139 For example, the problem of computing the Fibonacci sequence exhibits overlap-
ping subproblems. The problem of computing the nth Fibonacci number, F (n),
can be broken down into the subproblems of computing F (n− 1) and F (n− 2),
and then adding the two. The subproblem of computing F (n − 1) can itself be
broken down into a subproblem that involves computing F (n − 2). Therefore
the computation of F (n− 2) is reused, and the Fibonacci sequence thus exhibits
overlapping subproblems.

140 A greedy algorithm is an algorithm that follows the problem solving metaheuristic
of making the locally optimum choice at each stage with the hope of finding the
global optimum. For instance, applying the greedy strategy to the traveling sales-
man problem yields the following algorithm: ‘At each stage visit the unvisited
city nearest to the current city’. In general, greedy algorithms have five pillars:
(i) a candidate set, from which a solution is created; (ii) a selection function,
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3. Memoization (speeding up programs by storing the results of functions
for later reuse, rather than recomputing them).141

which chooses the best candidate to be added to the solution; (iii) a feasibility
function, that is used to determine if a candidate can be used to contribute to
a solution; (iv) an objective function, which assigns a value to a solution, or a
partial solution; and (v) a solution function, which will indicate when we have
discovered a complete solution.

There are two ingredients that are exhibited by most problems that lend
themselves to a greedy strategy:
1. Greedy Choice Property: We can make whatever choice seems best at the

moment and then solve the subproblems arising after the choice is made. The
choice made by a greedy algorithm may depend on choices so far. But, it
cannot depend on any future choices or all the solutions to the subproblem,
it progresses in a fashion making one greedy choice after another iteratively
reducing each given problem into a smaller one. This is the main difference
between it and dynamic programming. Dynamic programming is exhaustive
and is guaranteed to find the solution. After every algorithmic stage, dy-
namic programming makes decisions based on the all the decisions made in
the previous stage, and may reconsider the previous stage’s algorithmic path
to solution. A greedy algorithm makes the decision early and changes the al-
gorithmic path after decision, and will never reconsider the old decisions. It
may not be accurate for some problems.

2. Optimal Sub structure: A problem exhibits optimal sub–structure, if an op-
timal solution to the sub–problem contains within its optimal solution to the
problem.
For most problems, greedy algorithms mostly (but not always) fail to find the

globally optimal solution, because they usually do not operate exhaustively on
all the data. They can make commitments to certain choices too early which pre-
vent them from finding the best overall solution later. For example, all known
greedy algorithms for the graph coloring problem and all other NP-complete
problems do not consistently find optimum solutions. Nevertheless, they are use-
ful because they are quick to think up and often give good approximations to
the optimum. If a greedy algorithm can be proven to yield the global optimum
for a given problem class, it typically becomes the method of choice because
it is faster than other optimisation methods like dynamic programming. Exam-
ples of such greedy algorithms are Kruskal’s algorithm, Dijkstra’s algorithms for
finding single–source shortest paths and Prim’s algorithm for finding minimum
spanning trees and the algorithm for finding optimum Huffman trees. The theory
of matroids provide whole classes of such algorithms.

141 Functions can only be memoized if they are referentially transparent, that is, if
they will always return the same result given the same arguments. Operations
which are not referentially transparent, but whose results are not likely to change
rapidly, can still be cached with methods more complicated than memoization. In
general, memoized results are not expired or invalidated later, while caches gen-
erally are. In imperative languages, both memoization and more general caching
are typically implemented using some form of associative array.

In a functional programming language it is possible to construct a higher–
order function memoize which will create a memoized function for any
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Dynamic programming usually takes one of two approaches:

• Top–down approach: The problem is broken into subproblems, and these
subproblems are solved and the solutions remembered, in case they need
to be solved again. This is recursion and memoization combined together.

• Bottom–up approach: All subproblems that might be needed are solved
in advance and then used to build up solutions to larger problems. This
approach is slightly better in stack space and number of function calls, but
it is sometimes not intuitive to figure out all the subproblems needed for
solving given problem.

There are 3 canonical problems associated with HMMs (see, e.g., [Rab89]):

1. Given the parameters of the model, compute the probability of a particular
output sequence. This problem is solved by the forward algorithm.

2. Given the parameters of the model, find the most likely sequence of hidden
states that could have generated a given output sequence. This problem
is solved by the Viterbi algorithm.142

referentially transparent function. In languages without higher–order functions,
memoization must be implemented separately in each function that is to benefit
from it.

The term ‘memoization’ was coined by Donald Michie in his 1968 paper
‘Memo functions and machine learning’ in Nature.

142 The Viterbi algorithm is a dynamic programming algorithm for finding the most
likely sequence of hidden states, called the Viterbi path, that result in a sequence
of observed events, especially in the HMM context. The forward algorithm is a
closely related algorithm for computing the probability of a sequence of observed
events. These algorithms form a subset of modern information theory.

The algorithm makes a number of assumptions. First, both the observed
events and hidden events must be in a sequence. This sequence often corresponds
to time. Second, these two sequences need to be aligned, and an observed event
needs to correspond to exactly one hidden event. Third, computing the most
likely hidden sequence up to a certain point t must depend only on the observed
event at point t, and the most likely sequence at point t - 1. These assumptions
are all satisfied in a first-order hidden Markov model.

The terms ‘Viterbi path’ and ‘Viterbi algorithm’ are also applied to related
dynamic programming algorithms that discover the single most likely expla-
nation for an observation. For example, in stochastic parsing a dynamic pro-
gramming algorithm can be used to discover the single most likely context-free
derivation (parse) of a string, which is sometimes called the ‘Viterbi parse’.

The Viterbi algorithm was conceived by Andrew Viterbi as an
error–correction scheme for noisy digital communication links, finding univer-
sal application in decoding the convolutional codes used in both CDMA and
GSM digital cellular, dial–up modems, satellite, deep–space communications,
and 802.11 wireless LANs. It is now also commonly used in speech recognition,
keyword spotting, computational linguistics, and bioinformatics. For example, in
speech–to–text translation, the acoustic signal is treated as the observed sequence
of events, and a string of text is considered to be the ‘hidden cause’ of the
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3. Given an output sequence or a set of such sequences, find the most likely
set of state transition and output probabilities. In other words, train the
parameters of the HMM given a dataset of sequences. This problem is
solved by the Baum–Welch algorithm.143

Hidden Markov models are especially known for their applications in speech
recognition, machine translation and bioinformatics.

Bayesian Belief Networks

A Bayesian belief network is a form of probabilistic graphical model developed
by Judea Pearl.144 Bayesian network represents joint probability distribution
of a set of variables with explicit independency assumptions. It is a directed
acyclic graph with nodes representing variables and arcs representing proba-
bilistic dependency relations among the variables.

If there is an arc from node A to another node B, then variable B depends
directly on variable A and A is called a parent node of B. If the variable rep-
resented by a node has a known value then the node is said to be an evidence
node. A node can represent any kind of variable, be it a measured parame-
ter, a latent variable or a hypothesis. Nodes are not restricted to representing
random variables; this is what is ‘Bayesian’ about a Bayesian network.

Let the variables be X1, . . . , Xn. Let parents(A) be the parents of the
node A. Then the joint distribution for X1 through Xn is represented as the
product of the probability distributions for i = 1 to n. If Xi has no parents, its
probability distribution is said to be unconditional, otherwise it is conditional.

Questions about incongruent dependence among variables can be answered
by studying the graph alone. It can be shown that conditional independence

acoustic signal. The Viterbi algorithm finds the most likely string of text given
the acoustic signal.

143 The Baum–Welch algorithm is an expectation–maximization (EM) algorithm
(see [BPS70]). It can compute maximum likelihood estimates and posterior–mode
estimates for the parameters (transition and emission probabilities) of an HMM,
when given only emissions as training data. The algorithm has two steps: (i)
Calculating the forward probability and the backward probability for each HMM
state; and (ii) On the basis of this, determining the frequency of the transition–
emission pair values and dividing it by the probability of the entire string. This
amounts to calculating the expected count of the particular transition–emission
pair. Each time a particular transition is found, the value of the quotient of the
transition divided by the probability of the entire string goes up, and this value
can then be made the new value of the transition.

144 Judea Pearl is a computer scientist and statistician, best known for his prominent
work on the probabilistic approach to artificial intelligence, and in particular on
Bayesian belief networks. His work is also intended as a high–level cognitive
model . He is interested in the philosophy of causality, artificial intelligence and
knowledge representation, probabilistic and causal reasoning, nonstandard logics,
and learning strategies. Pearl is described as ‘one of the giants in the field of
artificial intelligence’.
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Fig. 1.6. A generic Markov blanket: the set of nodes MB(A) composed of A’s
parents, its children, and its children’s parents.

is represented in the graph by the graphical property of d−separation: nodes
X and Y are d−separated in the graph, given specified evidence nodes, iff
variablesX and Y are independent given the corresponding evidence variables.
The set of all other nodes on which node X can directly depend is given by
X’s Markov blanket .

The Markov blanket (see Figure 1.6) for a node A in a Bayesian network
is the set of nodes MB(A) composed of A’s parents, its children, and its
children’s parents. In a Markov network , the Markov blanket of a node is its set
of neighboring nodes. Every node in the network is conditionally independent
of A when conditioned on the set MB(A), that is, when conditioned on the
Markov blanket of the node A. Formally, for distinct nodes A and B, we have

Pr(A | MB(A), B) = Pr(A | MB(A)).

The values of the parents and children of a node evidently give information
about that node. However, its children’s parents also have to be included,
because they can be used to explain away the node in question. The Markov
blanket of a node is interesting because it identifies all the variables that shield
off the node from the rest of the network. This means that the Markov blanket
of a node is the only knowledge that is needed to predict the behavior of that
node.

A causal Bayesian network is a Bayesian network where the directed arcs
of the graph are interpreted as representing causal relations145 in some real
domain. The directed arcs do not have to be interpreted as representing causal
145 Recall that the philosophical concept of causality , the principles of causes, or

causation, the working of causes, refers to the set of all particular ‘causal’ or
‘cause–and–effect’ relations. A neutral definition is notoriously hard to provide
since every aspect of causation has been subject to much debate. Most generally,
causation is a relationship that holds between events, properties, variables, or
states of affairs. Causality always implies at least some relationship of depen-
dency between the cause and the effect. For example, deeming something a cause
may imply that, all other things being equal, if the cause occurs the effect does
as well, or at least that the probability of the effect occurring increases. It is
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relations; however in practice knowledge about causal relations is very often
used as a guide in drawing Bayesian network graphs, thus resulting in causal
Bayesian networks.

In the simplest case, a Bayesian network is specified by an expert and is
then used to perform inference after some of the nodes are fixed to observed
values. In some applications, such as finding gene regulatory networks (see
[II06b]), a more complex problem of finding dependencies between variables
arises. This can be solved by learning a Bayesian network that fits to the data.

Learning the structure of a Bayesian network (i.e., the graph) is a very im-
portant part of machine learning . Given the information that the data is being

also usually presumed that the cause chronologically precedes the effect. In nat-
ural languages, causal relationships can be expressed by the following causative
expressions:

(i) a set of causative verbs (cause, make, create, do, effect, produce, occasion, per-
form, determine, influence; construct, compose, constitute; provoke, motivate,
force, facilitate, induce, get, stimulate; begin, commence, initiate, institute,
originate, start; prevent, keep, restrain, preclude, forbid, stop, cease);

(ii) a set of causative names (actor, agent, author, creator, designer, former, orig-
inator; antecedent, causality, causation, condition, fountain, occasion, origin,
power, precedent, reason, source, spring; reason, grounds, motive, need, im-
pulse);

(iii)a set of effective names (consequence, creation, development, effect, end, event,
fruit, impact, influence, issue, outcome, outgrowth, product, result, upshot).

Causality is the centerpiece of the universe and so the main subject of human
knowledge; for comprehending the nature, meaning, kinds, varieties, and order-
ing of cause and effect amounts to knowing the beginnings and endings of things,
to uncovering the implicit mechanisms of world dynamics, or to having the fun-
damental scientific knowledge.

Ancient Hindu scriptures, the Upanishads (namely Chandogya Upanishad,
Sarva Sara Upanishad and Mandukya Upanishad) and some other texts (namely
Brahma Sutras, Yoga Vashishta, Avadhuta Gita and Astavakra Gita) mention
causality. However, the mention is limited to the purpose of explaining creation of
the universe: ‘Cause is the effect concealed, effect is the cause revealed’, which is
also expressed as ‘Cause is the effect unmanifested, effect is the cause manifested’
(reference Complete Works of Swami Vivekananda, as well as Yoga Vashishta);
‘Effect is same as cause only’ (reference Sankaracharya’s commentary on Bha-
gavad Gita).

In Metaphysics and Posterior Analytics, Aristotle stated: “All causes of
things are beginnings; that we have scientific knowledge when we know the cause;
that to know a thing’s existence is to know the reason why it is.” With this, he
set the guidelines for all the subsequent causal theories by specifying the num-
ber, nature, principles, elements, varieties, order of causes as well as the modes
of causation. Aristotle’s account of the causes of things may be qualified as the
most comprehensive model up to now.

The modern deterministic world–view is one in which the universe is nothing
more than a chain of events following one after another according to the law of
cause and effect.
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generated by a Bayesian network and that all the variables are visible in every
iteration, the following methods are used to learn the structure of the acyclic
graph and the conditional probability table associated with it. The elements
of a structure–finding algorithm are a scoring function and a search strategy .
The time requirement of an exhaustive search returning back a structure that
maximizes the score is superexponential in the number of variables. A local
search algorithm makes incremental changes aimed at improving the score
of the structure. A global search algorithm like Markov–chain Monte–Carlo
(MCMC) can avoid getting trapped in local minima.

In order to fully specify the Bayesian network and thus fully represent the
joint probability distribution, it is necessary to further specify for each node
X the probability distribution for X conditional upon X’s parents. The distri-
bution of X conditional upon its parents may have any form. It is common to
work with discrete or Gaussian distributions since that simplifies calculations.
Sometimes only constraints on a distribution are known; one can then use the
principle of maximum entropy to determine a single distribution, the one with
the greatest entropy given the constraints. Analogously, in the specific context
of a dynamic Bayesian network, one commonly specifies the conditional dis-
tribution for the hidden state’s temporal evolution to maximize the entropy
rate of the implied stochastic process. Often these conditional distributions
include parameters which are unknown and must be estimated from data,
sometimes using the maximum likelihood approach. Direct maximization of
the likelihood (or of the posterior probability) is often complex when there are
unobserved variables. A classical approach to this problem is the expectation–
maximization algorithm which alternates computing expected values of the
unobserved variables conditional on observed data, with maximizing the com-
plete likelihood (or posterior) assuming that previously computed expected
values are correct. Under mild regularity conditions this process converges on
maximum likelihood (or maximum posterior) values for parameters. A more
fully Bayesian approach to parameters is to treat parameters as additional un-
observed variables and to compute a full posterior distribution over all nodes
conditional upon observed data, then to integrate out the parameters. This
approach can be expensive and lead to large dimension models, so in practise
classical parameter–setting approaches are more common.

The goal of inference in Bayesian networks is typically to find the dis-
tribution of a subset of the variables, conditional upon some other subset
of variables with known values (the evidence), with any remaining variables
integrated out. This is known as the posterior distribution of the subset of
the variables given the evidence. The posterior gives a universal sufficient
statistic for detection applications, when one wants to choose values for the
variable subset which minimize some expected loss function, for instance the
probability of decision error.

A Bayesian network can thus be considered a mechanism for automati-
cally constructing extensions of Bayes’ theorem to more complex problems.
Bayes’ theorem relates the conditional and marginal probability distributions
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of random variables. In some interpretations of probability, Bayes’ theorem
tells how to update or revise beliefs in light of new evidence: a posteriori. The
probability of an event A conditional on another event B is generally differ-
ent from the probability of B conditional on A. However, there is a definite
relationship between the two, and Bayes’ theorem is the statement of that
relationship.

As a formal theorem, Bayes’ theorem is valid in all interpretations of
probability. However, frequentist and Bayesian interpretations disagree about
the kinds of things to which probabilities should be assigned in applica-
tions: frequentists assigned probabilities to random events according to their
frequencies of occurrence or to subsets of populations as proportions of the
whole; Bayesians assign probabilities to propositions that are uncertain. A
consequence is that Bayesians have more frequent occasion to use Bayes’ the-
orem. The articles on Bayesian probability and frequentist probability discuss
these debates at greater length.

Formally, Bayes’ theorem relates the conditional and marginal probabili-
ties of stochastic events A and B as

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
∝ L(A|B) Pr(A),

where L(A|B) is the likelihood of A given fixed B. Each term in Bayes’ the-
orem has a conventional name:
Pr(A) is the prior probability or marginal probability of A. It is ‘prior’ in

the sense that it does not take into account any information about B;
Pr(A|B) is the conditional probability of A, given B. It is also called the

posterior probability because it is derived from or depends upon the specified
value of B.
Pr(B|A) is the conditional probability of B given A.
Pr(B) is the prior or marginal probability of B, and acts as a normalizing

constant.
With this terminology, the theorem may be paraphrased as:

posterior =
likelihood× prior

normalizing constant
,

or, in words: the posterior probability is proportional to the prior probability
times the likelihood. In addition, the ratio Pr(B|A)/Pr(B) is sometimes called
the standardised likelihood , so the theorem may also be paraphrased as:

posterior = standardised likelihood× prior.

The most common exact inference methods are variable elimination which
eliminates (by integration or summation) the non–observed non–query vari-
ables one by one by distributing the sum over the product, clique tree propaga-
tion which caches the computation so that the many variables can be queried
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at one time, and new evidence can be propagated quickly, recursive condition-
ing which allows for a space-time tradeoff but still allowing for the efficiency
of variable elimination when enough space is used. All of these methods have
complexity that is exponential in tree width. The most common approximate
inference algorithms are stochastic MCMC simulation, mini–bucket elimina-
tion which generalizes loopy belief propagation, and variational methods.

Bayesian networks are used for modelling knowledge in gene regulatory
networks, medicine, engineering, text analysis, image processing, data fusion,
and decision support systems.

Support Vector Machines

Recall that support vector machines (SVMs, see Figure 1.7) are a set of re-
lated supervised learning methods used for classification and regression (see
[Vap95, Vap98, SS01, CS00]). Their common factor is the use of a technique
known as the ‘kernel trick ’ to apply linear classification techniques to nonlin-
ear classification problems.

SVMs implement the statistical learning theory. They are a radically dif-
ferent type of classifier from artificial neural networks (ANNs, see below) that
has attracted a great deal of attention lately due to the novelty of the concepts
that they bring to pattern recognition, their strong mathematical foundation,
and their excellent results in practical problems. SVM represents the coupling
of the following two concepts: the idea that transforming the data into a high–
dimensional space makes linear discriminant functions practical, and the idea
of large margin classifiers to train the standard ANNs like MLP or RBF. It
is another type of a kernel classifier: it places Gaussian kernels over the data
and linearly weights their outputs to create the system output. To implement
the SVM–methodology, we can use the Adatron–kernel algorithm, a sophisti-
cated nonlinear generalization of the RBF networks, which maps inputs to a
high–dimensional feature space, and then optimally separates data into their
respective classes by isolating those inputs, which fall close to the data bound-
aries. Therefore, the Adatron–kernel is especially effective in separating sets
of data, which share complex boundaries, as well as for the training for non-
linearly separable patterns. The support vectors allow the network to rapidly
converge on the data boundaries and consequently classify the inputs.

Fig. 1.7. Adatron–kernel based support vector machine (SVM) network, arranged
using NeuroSolutionsTM .
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The main advantage of SVMs over MLPs is that the learning task is a con-
vex optimization problem which can be reliably solved even when the example
data require the fitting of a very complicated function [Vap95, Vap98]. A com-
mon argument in computational learning theory suggests that it is dangerous
to utilize the full flexibility of the SVM to learn the training data perfectly
when these contain an amount of noise. By fitting more and more noisy data,
the machine may implement a rapidly oscillating function rather than the
smooth mapping which characterizes most practical learning tasks. Its pre-
diction ability could be no better than random guessing in that case. Hence,
modifications of SVM training [CS00] that allow for training errors were sug-
gested to be necessary for realistic noisy scenarios. This has the drawback of
introducing extra model parameters and spoils much of the original elegance
of SVMs.

Mathematics of SVMs is based on real Hilbert space methods.

Linear Classification Problem

Suppose we want to classify some data points into two classes. Often we are
interested in classifying data as part of a machine–learning process. These
data points may not necessarily be points in R

2 but may be multidimensional
R

p (statistics notation) or R
n (computer science notation) points. We are

interested in whether we can separate them by a hyperplane. As we examine
a hyperplane, this form of classification is known as linear classification. We
also want to choose a hyperplane that separates the data points ‘neatly’, with
maximum distance to the closest data point from both classes – this distance
is called the margin. We desire this property since if we add another data
point to the points we already have, we can more accurately classify the new
point since the separation between the two classes is greater. Now, if such a
hyperplane exists, the hyperplane is clearly of interest and is known as the
maximum–margin hyperplane or the optimal hyperplane, as are the vectors
that are closest to this hyperplane, which are called the support vectors.

Formalization

Consider data points of the form

{(x1, c1), (x2, c2), . . . , (xn, cn)},

where the ci is either 1 or −1; this constant denotes the class to which the
point xi belongs. Each xi is a pD (statistics notation), or nD (computer sci-
ence notation) vector of scaled [0, 1] or [−1, 1] values. The scaling is important
to guard against variables (attributes) with larger variance that might oth-
erwise dominate the classification. We can view this as training data, which
denotes the correct classification which we would like the SVM to eventually
distinguish, by means of the dividing hyperplane, which takes the form:

w · x− b = 0.
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Fig. 1.8. Maximum–margin hyperplanes for a SVM trained with samples from two
classes. Samples along the hyperplanes are called the support vectors.

As we are interested in the maximum margin, we are interested in the sup-
port vectors and the parallel hyperplanes (to the optimal hyperplane) closest
to these support vectors in either class (see Figure 1.8). It can be shown that
these parallel hyperplanes can be described by equations

w · x− b = 1, (1.6)
w · x− b = −1. (1.7)

We would like these hyperplanes to maximize the distance from the divid-
ing hyperplane and to have no data points between them. By using geometry,
we find the distance between the hyperplanes being 2/|w|, so we want to
minimize |w|. To exclude data points, we need to ensure that for all i either

w · xi − b ≥ 1, or
w · xi − b ≤ −1.

This can be rewritten as

ci(w · xi − b) ≥ 1, (1 ≤ i ≤ n). (1.8)

The problem now is to minimize |w| subject to the constraint (1.8). This
is a quadratic programming optimization (QP) problem.

After the SVM has been trained, it can be used to classify unseen ‘test’
data. This is achieved using the following decision rule,

ĉ =
{

1 if w · x + b ≥ 0,
−1 if w · x + b ≤ 0.

Writing the classification rule in its dual form reveals that classification is
only a function of the support vectors, i.e., the training data that lie on the
margin.
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The use of the maximum–margin hyperplane is motivated by Vapnik–
Chervo-nenkis SVM theory , which provides a probabilistic test error bound
that is minimized when the margin is maximized. However the utility of this
theoretical analysis is sometimes questioned given the large slack associated
with these bounds: the bounds often predict more than 100% error rates.

The parameters of the maximum–margin hyperplane are derived by solv-
ing the optimization. There exist several specialized algorithms for quickly
solving the QP problem that arises from SVMs. The most common method
for solving the QP problem is Platt’s SMO algorithm.

Nonlinear Classification

The original optimal hyperplane algorithm proposed by Vladimir Vapnik
in 1963 was a linear classifier . However, in 1992, B. Boser, I. Guyon and
Vapnik suggested a way to create nonlinear classifiers by applying the kernel
trick (originally proposed by Aizerman) to maximum–margin hyperplanes.
The resulting algorithm is formally similar, except that every dot product is
replaced by a nonlinear kernel function. This allows the algorithm to fit the
maximum–margin hyperplane in the transformed feature space. The transfor-
mation may be nonlinear and the transformed space high dimensional; thus
though the classifier is a hyperplane in the high–dimensional feature space it
may be nonlinear in the original input space.

If the kernel used is a Gaussian radial basis function, the corresponding
feature space is a Hilbert space of infinite dimension. Maximum margin clas-
sifiers are well regularized, so the infinite dimension does not spoil the results.
Some common kernels include:

1. Polynomial (homogeneous):

k(x,x′) = (x · x′)d;

2. Polynomial (inhomogeneous):

k(x,x′) = (x · x′ + 1)d;

3. Radial Basis Function:

k(x,x′) = exp(−γ‖x− x′‖2), for γ > 0;

4. Gaussian radial basis function:

k(x,x′) = exp(−‖x− x′‖2
2σ2

); and

5. Sigmoid:
k(x,x′) = tanh(κx · x′ + c),

for some (not every) κ > 0 and c < 0.
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Soft Margin

In 1995, Corinna Cortes and Vapnik suggested a modified maximum margin
idea that allows for mislabeled examples. If there exists no hyperplane that
can split the ‘yes’ and ‘no’ examples, the so–called soft margin method will
choose a hyperplane that splits the examples as cleanly as possible, while
still maximizing the distance to the nearest cleanly split examples. This work
popularized the expression Support Vector Machine or SVM. This method
introduces slack variables and the equation (1.8) now transforms to

ci(w · xi − b) ≥ 1− ξi, (1 ≤ i ≤ n), (1.9)

and the optimization problem becomes

min ||w||2 + C
∑

i

ξi such that ci(w · xi − b) ≥ 1− ξi, (1 ≤ i ≤ n),

This constraint in (1.9) along with the objective of minimizing |w| can be
solved using Lagrange multipliers or setting up a dual optimization problem
to eliminate the slack variable.

SV Regression

A version of a SVM for regression was proposed in 1995 by Vapnik,
S. Golowich, and A. Smola (see [Vap98, SS01]). This method is called support
vector regression (SVR). The model produced by support vector classification
(as described above) only depends on a subset of the training data, because
the cost function for building the model does not care about training points
that lie beyond the margin. Analogously, the model produced by SVR only
depends on a subset of the training data, because the cost function for build-
ing the model ignores any training data that is close (within a threshold ε)
to the model prediction.

Intelligent Agents

Recall that the agent theory concerns the definition of the so–called belief–
desire–intention agents (BDI–agents, for short), as well as multi–agent sys-
tems, properties, architectures, communication, cooperation and coordination
capabilities (see [RG98]).

A common definition of an agent reads: An agent is a computer system that
is situated in some environment, and that is capable of autonomous action in
this environment in order to meet its design requirements [Woo00].

Practical side of the agent theory concerns the agent languages and plat-
forms for programming and experimenting with agents. According to [Fer99],
a BDI–agent is a physical or virtual entity which:

1. is capable of limited perceiving its environment (see Figure 1.9),
2. has only a partial representation of its environment,
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Fig. 1.9. A basic agent–environment loop (modified from [Woo00]).

Fig. 1.10. Agent technology compared to relevant technologies.

3. is capable of acting in an environment,
4. can communicate directly with other agents,
5. is driven by a set of tendencies,146

6. possesses resources of its own,
7. possesses some skills and can offer services,
8. may be able to reproduce itself,
9. whose behavior tends towards satisfying its objectives,

– taking into account the resources and skills available to it and depend-
ing on its perception, its representation and the communications it receives.
Agents’ actions affect the environment which, in turn, affects future decisions
of agents. The multi–agent systems have been successfully applied in numer-
ous fields (see [Fer99] for the review).

Agents embody a new software development paradigm that attempts to
merge some of the theories developed in artificial intelligence research with
computer science. The power of agents comes from their intelligence and also
their ability to communicate with each other. A simple mapping of agent
technology compared to relevant technologies is illustrated in Figure 1.10.
Agents can be considered as the successors of object–oriented programming
techniques, applied to certain problem domains. However, the additional layer

146 in the form of individual objectives or of a satisfaction/survival function which
it tries to optimize
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of implementation in agents provides some key functionalities and deliberately
creates a separation between the implementation of an agent from the applica-
tion being developed. This is done in order to achieve one of the core properties
of agents, autonomy. Objects are able to assert a certain amount of control
over themselves via private variables and methods, and other objects via pub-
lic variables and methods. Consequently, a particular object is able to directly
change public variables of other objects and also execute public methods of
other objects. Hence, objects have no control over the values of public vari-
ables and who and when executes their public methods. Conversely, agents
are explicitly separated, and can only request from each other to perform a
particular task. Furthermore, it cannot be assumed that after a particular
agent makes a request, another agent will do it. This is because performing a
particular action may not be in the best interests of the other agent, in which
case it would not comply [Woo00].

Types of Intelligent Agents

Here we give a general overview of different types of agents and groups them
into several intuitive categories based on the method that they perform their
reasoning [Woo00].

Deliberate Agents

Deliberate agents are agents that perform rational reasoning, take actions
that are rational after deliberating using their knowledge base (KB), carefully
considering the possible effects of different actions available to them. There are
two subtypes of deliberate agents: deductive reasoning agents and production–
rule agents.

1. Deductive reasoning agents are built using expert systems theory, they
operate using an internal symbolic KB of the environment. Desired behavior
is achieved by manipulating the environment and updating the KB accord-
ingly. A utility function is implemented that provides an indication on how
good a particular state is compared on what the agent should achieve. An
example of the idea behind these type of agents is an agent that explores a
building. It has the ability to move around and it uses a video camera, the
video signal is processed and translated to some symbolic representation. As
the agent explores the world it maintains a data structure of what it has ex-
plored. The internal structure of deductive reasoning agents is illustrated in
Figure 1.11. There are two key problems encountered when trying to build
deductive reasoning agents. Firstly, the transduction problem is the problem
of translating the real world into an accurate, symbolic description in time
for it to be useful. Secondly, the representation or reasoning problem is the
problem of representing acquired information symbolically and getting agents
to manipulate/reason with it [Woo00].

2. Production systems are also an extension of expert systems. However
they place more emphasis how decisions are made based on the state of the
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Fig. 1.11. A concept of deductive reasoning agents (modified from [RN03]).

Fig. 1.12. A concept of production–rule agents (modified from [RN03]).

KB. The general structure of production system agents is illustrated in
Figure 1.12. The KB is called working memory and is aimed to resemble short
term memory. They also allow a designer to create a large set of condition-
action rules called productions that resemble long term memory. When a
production is executed it is able cause changes to the environment or directly
change the working memory. This in turn possibly activates other produc-
tions. Production systems typically contain a small working memory, and a
large number of rules that can be executed so fast that production systems
are able to operate in real time with thousands of rules [RN03]. An example
of a production–rule agent development environment is called SOAR (State,
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Operator And Result). SOAR uses a KB as a problem space and production
rules to look for solutions in a problem. IT has a powerful problem solving
mechanism whereby every time that it is faced with more than one choice
of productions (via a lack of knowledge about what is the best way to pro-
ceed) it creates an impasse that results in branching of the paths that it takes
through the problem space. The impasse asserts subgoals that force the cre-
ation of sub–states of problem solving behavior with the aim to resolve the
super–state impasse [Sio05].

Reactive Agents

Deliberate agents were originally developed using traditional software engi-
neering techniques. Such techniques define pre–conditions required for opera-
tion and post–conditions that define the required output after operation. Some
agents however, cannot be easily developed using this method because they
maintain a constant interaction with a dynamic environment, hence they are
called reactive agents. Reactive agents as especially suited for real–time appli-
cations where there are strict time constraints (i.e., milliseconds) on choosing
actions.

Reactive systems are studied by behavioral means where researchers have
tried to use entirely new approaches that reject any symbolic representation
and decision making. Instead, they argue that intelligent and rational behav-
ior emerges from the interaction of various simpler behaviors and is directly
linked to the environment that the agent occupies [Woo00]. The general struc-
ture of reactive agents is illustrated in Figure 1.13 The main contributor of
reactive agent research is Rod Brooks from MIT, with his subsumption archi-
tecture, where decision making is realized through a set of task–accomplishing

Fig. 1.13. A concept of reactive agents (modified from [RN03]).
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behaviors. Behaviors are arranged into layers where lower layers have a higher
priority and are able to inhibit higher layers that represent more abstract be-
haviors [Bro86]. A simple example of the subsumption architecture is a multi–
agent system used to collect a specific type of rock scattered in a particular
area on a distant planet. Agents are able to move around, collect rocks and
return to the mother–ship. Due to obstacles on the surface of the planet,
agents are not able to communicate directly, however they can carry special
radioactive crumb that they drop on the ground for other agents to detect.
The crumbs are used to leave a trail for other agents to follow. Additionally, a
powerful locater signal is transmitted from the mother–ship, agents can find
the ship by moving towards a stronger signal. A possible behavior architecture
for this scenario are the following set of heuristic IF–THEN rules:

1. IF detect an obstacle THEN change direction (this rule ensures that the
agent avoids obstacles when moving);

2. IF carrying samples and at the base THEN drop samples (this rule allows
agent to drop samples in the mother–ship);

3. IF carrying samples and not at the base THEN drop 2 crumbs and travel
up signal strength (this rule either reinforces a previous trail or creates a
new one);

4. IF detect a sample THEN pick sample up (this rule collects samples);
5. IF sense crumbs THEN pick up 1 crumb and travel away from signal

strength (this rule follows a crumb trail that should end at a mineral
deposit; crumbs are picked up to weaken the trail such that it disappears
when the mineral deposit has depleted);

6. IF true THEN move randomly (this rule explores the area until it stumbles
upon a mineral deposit or a crumb trail).

Hybrid Agents

Hybrid agents are capable of expressing both reactive and pro-active behav-
ior. They do this by breaking reactive and proactive behavior into different
subsystems called layers. The lowest layer is the reactive layer and it pro-
vides immediate responses to changes for the environment, similarly to the
subsumption architecture. The middle layer is the planning layer that is re-
sponsible for telling the agent what to do by reviewing internal plans, and
selecting a particular plan that would be suitable for achieving a goal. The
highest layer is the modelling layer that manages goals. A major issue encoun-
tered when developing solutions with hybrid reasoning agents is that agents
must be able to balance the time spent between thinking and acting. This
includes being able to stop planning at some point and commit to goal, even
if that goal is not optimal [Woo00]. The general structure of hybrid agents is
illustrated in Figure 1.14.
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Fig. 1.14. A concept of hybrid, goal–directed agents (modified from [RN03]).

Agent–Oriented Software Development

Agent–oriented development is concerned with the techniques of software
development that are specifically suited for developing agent systems. This
is an important issue because existing software development techniques are
unsuitable for agents as there exists a fundamental mismatch between tra-
ditional software engineering concepts and agents. Consequently, traditional
techniques fail to adequately capture an agent’s autonomous problem–solving
behavior as well as the complex issues involved in multi–agent interaction
[Sio05].

The first agent–oriented methodology was proposed by Wooldridge and is
called Gaia. Gaia is deemed appropriate for agent systems with the following
characteristics: (i) Agents are smart enough to require significant computa-
tional resources. (ii) Agents may be implemented using different programming
languages, architectures or techniques. (iii) The system has a static organiza-
tion structure such that inter–agent relationships do not change during oper-
ation. (iv) The abilities of agents and the services they provide do not change
during operation. (v) The system requires only small amount of agents. Gaia
splits the development process into three phases: Requirements, Analysis and
Design. The requirements phase is treated in the same way as traditional sys-
tems. The analysis phase is concerned with the roles that agents play in the
system as well as the interactions required between agents. The design phase
is concerned with the agent types that will make up the system. The agent
main services that are required to realize the agent’s roles, and finally, the
lines of communication between the different agents. The Gaia methodology
was the inspiration for the more detailed methodology described in the next
section (see [Woo00]).



174 1 Introduction: Human and Computational Mind

Agents Environments

Agent technology has been applied to many different application areas, each
focusing on a specific aspect of agents that is applicable to the domain at
hand. The role that BDI–agents play in their environment distinctly depends
on the application domain. The agent research community is very active and
environments are mostly viewed as test–beds for developing new features in
agents and showing how they are successfully used to solve a particular prob-
lem. Fortunately, in most cases this is a two–sided process, by understanding,
developing and improving new agent technologies it becomes possible to solve
similar real life problems. Consequently, as the underlying foundation of agent
software matures, new publications describe how agents are being applied suc-
cessfully in increasingly complex application domains [Sio05].

The BDI–agent is usually understood to be a decision–maker and any-
thing that it interacts with, comprising everything outside the agent itself, is
referred to as the environment . The environment has a number of features
and generates sensations that contain some information about the features.
A situation is commonly understood as a complete snapshot of the environ-
ment for a particular instance in time.147 Hence, if an agent is able to get or
deduce the situation of its environment it would know everything about the
environment at that time. A state is here defined as a snapshot of the agent’s
beliefs corresponding to its limited understanding of the environment. This
means that the state may or may not be a complete or accurate representa-
tion of the situation. This distinction supports research being conducted on
improving the agent’s situation awareness (SA), whereby SA measures how
similar the state is as opposed to the situation.

The agent and the environment interact continually, the agent selects
actions and the environment responds to the actions by presenting new sensa-
tions to the agent [SB98]. The interaction is normally segmented in a sequence
of discrete time steps, whereby, at a particular time step the agent receives
data from the environment and on that basis selects an action. In the next
time step, the agent finds itself in a new state (see Figure 1.9).

Various properties of environments have been classified into six categories
[RN03]:

1. Fully observable or partially observable. A fully observable environment
provides the agent with complete, accurate and up–to–date information of
the entire situation. However, as the complexity of environments increases,
they become less and less observable. The physical world is considered a
partially observable environment because it is not possible to know every-
thing that happens in it [Woo00]. On the other hand, depending on the

147 In a number of references, the term state is used with the same meaning. In this
section a clear distinction is made between the two terms, a situation is defined
as a complete snapshot of the real environment.
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application, the environment should not be expected to be completely ob-
servable (e.g., if an agent is playing a card game it should not be expected
to know the cards of every other player). Hence, in this case, even though
there is hidden information in the environment and this information would
be useful if the agent knew it, is not necessary for making rational deci-
sions [SB98]. An extension of this property is when sensations received
from the environment are able to summarize past sensations in a compact
way such that all relevant information from the situation can be deduced.
This requires that the agent maintains a history of all past sensations.
When sensations succeeds in retaining all relevant information, they are
said to have the Markov property. An example of a Markov sensation for
a game of checkers is the current configuration of the pieces on the board,
this is because it summarizes the complete sequence of sensations that led
to it. Even though much of the information about the sequence is lost,
all important information about the future of the game is retained. A dif-
ficulty encountered when dealing with partially observable environments
is when the agent is fooled to perceiving two or more different situations
as the same state, this problem is known as perceptual aliasing. If the
same action is required for the different situations then aliasing is a desir-
able effect, and can be considered a core part of the agent’s design, this
technique is commonly called state generalization [SB98].

2. Deterministic or stochastic. Deterministic is the property when actions
in the environment have a single guaranteed effect. In other words, if the
same action is performed from the same situation, the result is always
the same. A useful consequence of a deterministic environment is the abil-
ity to predict what will happen before an action is taken, giving rise to
the possibility of evaluating multiple actions depending on their predicted
effects. The physical world is classified as a stochastic environment as
stated by [Woo00]. However, if an environment is partially observable it
may appear to be stochastic because not all changes are observed and
understood [RN03], if more detailed observations are made, including ad-
ditional information, the environment becomes increasingly deterministic.

3. Episodic or sequential. Within an episodic environment, the situations
generated are dependent on a number of distinct episodes, and there is no
direct association between situations of different episodes. Episodic envi-
ronments are simpler for agent development because the reasoning of the
agent is based only on the current episode, there is no reason to consider
future episodes [Woo00]. An important assumption made when designing
agents for episodic environments, is that all episodes eventually termi-
nate no matter what actions are selected [SB98]. This is particularly true
when using learning techniques that only operate on the completion of
an episode through using a captured history of situations that occurred
within the episode. Actions made in sequential environments, on the other
hand, affect all future decisions. Chess is an example of a sequential envi-
ronment because short–term actions have long–term consequences.
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4. Static or dynamic. A static environment is one that remains unchanged
unless the agent explicitly causes changes through actions taken. A dy-
namic environment is one that contains other entities that cause changes in
ways beyond the agents control. The physical world continuously changes
with external means and is therefore considered a highly dynamic envi-
ronment [Woo00]. An example of a static environment, is an agent finding
its way though a 2D maze. In this case all changes are caused by the same
agent. An advantage of static environments is that the agent does not
need to continuously observe the environment while its deciding the next
action. It can take as much time as it needs to make a decision and the
environment will be the same as when previously observed [RN03].

5. Discrete or continuous. An environment is discrete if there is a fixed, finite
number of actions and situations in it [Woo00]. Simulations and computer
games are examples of discrete environments because they involve cap-
turing actions performed by entities, processing the changes caused by
the actions and providing an updated situation. Sometimes however, this
process is so quick that the simulation appears to be running continu-
ously. An example of a continuous environment is taxi driving, because
the speed and location of the taxi and other cars changes smoothly over
time [RN03].

6. Single–agent or multi–agent. Although the distinction between single and
multi–agent environments may seem trivial, recent research has surfaced
some interesting issues. These arise from the question of what in the en-
vironment may be viewed as another agent [RN03]. For example, does a
taxi driver agent need to treat another car as an agent? What about a
traffic light or a road sign? An extension to this question is when humans
are included as part of the design of the system, giving rise to the new
research area called human–agent teaming [Sio05].

Agents’ Reasoning and Learning

The environments described above illustrate the need for adaptation when
agent systems are required to interact with complex environments. Here we
sill review how agents and humans are understood to perform reasoning and
learning when they are faced with a particular environment.

Reasoning is understood as the thinking process that occurs within an
agent that needs to make a particular decision. This topic has been tackled
via two parallel directions with two different schools of thought. The first
school of thought focuses on how agents can perform rational reasoning where
the decisions made are a direct reflection of knowledge. The advantage of this
approach is that decisions made by an agent can be understood simply by
looking within its internal data structures, as the agent only makes decisions
based on what it knows. This process includes maintaining the agent’s knowl-
edge base such that it contains accurate information about its environment,
by performing operations in order to keep all knowledge consistent. Decisions
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are made through a collection of rules applied on the knowledge base that
define what should occur as knowledge changes [Sio05].

Another school of thought is concerned with the way that humans perform
reasoning and apply any concepts developed to agent technology. Humans are
known to perform practical reasoning every day, their decisions are based on
their desires and their understanding in regards to how to go about achieving
them. The process that takes place between observing the world, considering
desires and taking actions can be broken up into four main stages, each of
which consists of a number of smaller components. Through learning, it also
becomes possible to create agents that are able to change the way that they
were originally programmed to behave. This can be advantageous when an
agent is faced with a situation that it does not know how to proceed. Further-
more, it is useful when an agent is required to improve its performance with
experience.

Reasoning and Behavior

Research on artificial reasoning and behavior has been tackled from different
angles that can be categorized along two main dimensions (see Figure 1.15).
The vertical dimension illustrates the opposing nature of reasoning and behav-
ior that correspond to thinking versus acting respectively. This is an important
feature concept in every application using AI techniques. Great emphasis is
given to the balance between processing time for making better decisions, and
the required speed of operation. Approaches falling to the left side are based
on how humans reason and behave while approaches falling on the right side
are concerned with building systems that are rational, meaning that they are
required to think and act as best they can, given their limited knowledge
[RN03].

Rational Reasoning

1. Representation and search. Recall that the way that information is rep-
resented and used for intelligent problem solving forms a number of important
but difficult challenges that lie within the core of AI research. Knowledge rep-
resentation is concerned with the principles of correct reasoning. This involves
two parallel topics of research. One side is concerned with the development
of formal representation languages with the ability to maintain consistent

Fig. 1.15. Reasoning dimensions (modified from [RN03]).
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knowledge about the world, the other side is concerned with the development
of reasoning processes that bring the knowledge to life. The output of both
of these areas results in a Knowledge Base (KB) system. KBs try to create a
model of the real world via the collection of a number of sentences. An agent
is normally able to add new sentences to the knowledge base as well as query
the KB for information. Both of these tasks may require the KB to perform
inference on its knowledge, where an inference is defined as the process of
deriving new sentences from known information. An additional requirement
of KBs is that when an agent queries the KB, the answer should be inferred
from information previously added to the KB and not from unknown facts.
The most important part of a KB is the logic in which the its sentences are
represented. This is because all sentences in a KB are in fact expressed ac-
cording to the syntax and semantics of the logic’s representation language.
The syntax of the logic is required for implementing well formed sentences
while the semantics define the truth of each sentence with respect to a model
of the environment being represented [RN03].

Problem solving using KBs involves the use of search algorithms that are
able to search for solutions between different states of information within the
KB. Searching involves starting from an initial state and expanding across
different successor state possibilities until a solution is found. When a search
algorithm is faced with a choice of possibilities to consider, each possibility
is thoroughly searched before moving to the next possibility. Search however
has a number of issues, including [Lug02]:
(i) Guarantee of a solution being available; (ii) Termination of the search
algorithm; (iii) The optimality of a particular solution found; and (iv) The
complexity of the search algorithm with respect to the time and memory
usage.

State space analysis is done with the use of graphs. A graph is a set of
nodes with arcs that connect them, each node can have a label to distinguish
it from another node and arcs can have directions to indicate the direction
of movement between the nodes. A path in the graph connects a sequence of
nodes with arcs and the root is a node that has a path to all other nodes in
the graph.

There are two ways to search a state space, the first way is to use data-
driven search by which the search starts by a given set of facts and rules for
changing states. The search proceeds until it generates a path that leads to
the goal condition. Data driven search is more appropriate for problems in
which the initial problem state is well defined, or there are a large number of
potential goals and only a few facts to start with, or the goal state is unclear
[Lug02].

The second way is to use goal-driven search by which the search starts
by taking the goal state and determining what conditions must be true to
move into the goal state. These conditions are then treated as subgoals to be
searched. The search then continues backwards through the subgoals until it
reaches the initial facts of the problem. Goal driven search is more appropriate
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for problems in which the goal state is well defined, or there are a large number
of initial facts making it impractical to prefer data driven search, or the initial
data is not given and must be acquired by the system [Lug02].

The choice of which of the options to expand first is defined by the algo-
rithm’s search strategy. Two well known search strategies are: Breadth-first,
where all successors of a given depth are expanded first before any nodes at
the next level. Depth-first search involves expanding the deepest node for a
particular option before moving to the next option. There are also strategies
that include both elements, for example defining a depth limit for searching in
a tree. It is also possible to use heuristics to help with choosing branches that
are more likely to lead to an acceptable solution. Heuristics are usually applied
when a problem does not have an exact solution or the computational cost to
find an exact solution is too big. They reduce the state space by following the
more promising paths through the state space [RN03].

An additional layer of complexity in knowledge representation and search
is due to the fact that agents almost never have access a truly observable
environment. Which means that agents are required to act under uncertainty .
There are two techniques that have been used for reasoning in uncertain situa-
tions. The first involves the use of probability theory in assigning a value that
represents a degree of belief in facts in the KB. The second method involves
the use of fuzzy sets (see below) for representing how well a particular object
satisfies a vague description [RN03].

2. Expert systems. Recall that knowledge–based reasoning systems are
commonly called expert systems because they work by accumulating knowl-
edge extracted from different sources, and use different strategies on the
knowledge in order to solve problems. Simply put, expert systems try to repli-
cate what a human expert would do if faced with the same problem. They
can be classified into different categories depending on the type of problem
they are used to solve [Lug02]:

– interpretation: making conclusions or descriptions from collections of raw
data;

– prediction/forecasting : predicting the consequences of given situations;
– diagnosis: finding the cause of malfunctions based on the symptoms

observed;
– design: finding a configuration of components that best meets performance

goals when considering several design constraints;
– planning : finding a sequence of actions to achieve some given goals using

specific starting conditions and run–time constraints;
– monitoring : observing a system’s behavior and comparing it to its expected

behavior at run–time;
– debugging : finding problems and repairing caused malfunctions; and
– control : controlling how a complex system behaves.
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Fig. 1.16. A recognize–act operation cycle of production systems (modified from
[Lug02]).

A common way to represent data in a expert systems is using first–order
predicate calculus formulae. For example, the sentence ‘If a bird is a crow
then it is black’ is represented as:

∀X(crow(X) =⇒ black(X)).

3. Production systems. They are based on a model of computation that
uses search algorithms and models human problem solving. Production sys-
tems consist of production rules and a working memory. Production rules are
pre-defined rules that describe a single segment of problem–solving knowl-
edge. They are represented by a condition that determines when the produc-
tion is applicable to be executed, and an action which defines what to do
when executed. The working memory is an integrated KB that contains an
ever–changing state of the world.

The operation of production systems generally follows a recognize–act cy-
cle (see Figure 1.16). Working memory is initialized with data from the initial
problem description and is subsequently updated with new information. At
every step of operation, the state presented by the working memory is con-
tinuously captured as patterns and applied to conditions of productions. If a
pattern is recognized against a condition, the associated production is added to
a conflict set. A conflict resolution operation chooses between all enabled pro-
ductions and the chosen production is fired by executing its associated action.
The actions executed can have two effects. Firstly, they can cause changes to
the agent’s environment which indirectly changes the working memory. Sec-
ondly, they can explicitly cause changes in the working memory. The cycle
then restarts using the modified working memory until a situation when no
subsequent productions are enabled. Some production systems also contain
the means to do backtracking when there are no further enabled productions
but the goal of the system has still not been reached. Backtracking allows the
system to work backwards and try some different options in order to achieve
its goal [Lug02].

Human Reasoning

The so–called practical reasoning is concerned with studying the way that
humans reason about what to do in everyday activities and applying this to



1.2 Artificial and Computational Intelligence 181

Fig. 1.17. BDI–reasoning process (modified from [Woo00]).

the design of intelligent agents. Practical reasoning is specifically geared to
reasoning towards actions, it involves weighing conflicting considerations of
different options that are available depending on what a person desires to do.
Practical reasoning can be divided into two distinct activities (see Figure 1.17).
The first activity is called deliberation reasoning , it involves deciding on what
state to achieve. The second activity is called means–ends reasoning and it in-
volves deciding on how to achieve this state of affairs [Woo00]. Recall that the
central component of practical reasoning is the concept of intention because
it is used to characterize both the action and thinking process of a person. For
example ‘intending to do something’ characterizes a persons thinking while
‘intentionally doing something’ characterizes the action being taken.

The precursors of an intention are a persons’s desires and beliefs and hence
all of the beliefs, desires and intentions must be consistent. In other words,
intending to do something must be associated with a relevant desire, as well as
the belief that the intended action will help to achieve the desire. Maintaining
this consistency is challenging due to the dynamic nature of desires and beliefs.
Desires are always changing according to internal self-needs while beliefs are
constantly updated using information obtained from senses through a process
called belief revision, from the external environment.

Forming an intention involves performing two concurrent operations.
Firstly, option generation uses the current desires to generate a set of pos-
sible alternatives. Secondly, filtering chooses between these alternatives based
on the current intentions and beliefs. An intention also requires assigning a
degree of commitment toward performing a particular action or set of ac-
tions in the future. There are four important characteristics emerging by this
commitment are [Woo00]:

1. Intentions drive means-ends reasoning by forcing the agent to decide on
how to achieve them.

2. Intentions persist by forcing a continuous strive to achieve them. Hence,
after a particular action has failed, other alternative actions are attempted
until it comes to be believed that it is not possible to achieve the intention,
or the relevant desire is not longer present.
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3. Intentions constrain future deliberation because it is not necessary to con-
sider desires that are inconsistent with the current intentions.

4. Intentions influence beliefs by introducing future expectations. This is
due the requirement of believing that a desired state is possible before
and during execution the intention to satisfy it.

The process that occurs after forming an intention in order to take action is
identified as planning, it involves selecting and advancing through a sequence
of plans that dictate what actions to take. Plans are understood to consist
of pre-condition that characterizes the state in which a plan is applicable for
execution and a post-condition characterizes the resulting state after executing
the plan. Finally, a body containing the recipe defining the actions to take
[Woo00]. From the theory of practical reasoning, researchers have been able
to develop intuitive agent development architectures. The transition between
the theory and implementation has required the identification of equivalent
software constructs for each of the BDI–components [Sio05].

Cognitive systems engineering takes into account, during the design
and implementation of systems, that systems will be used by humans. It ac-
knowledges that humans are dynamic entities that are part of the system itself
but cannot be modelled as static components of a system. When humans use a
system they adapt to the functional characteristics of the system. In addition,
sometimes they can modify the system’s functional characteristics in order to
suit their own needs and preferences. This means that in order to understand
the behavior of the system once the adaptation has happened is to abstract
the structural elements into a purely functional level and identify and sepa-
rate the functional relationships. This concept can best be understood using
a simple example from [RPG94]:

“When a novice is driving a car, it is based on an instruction manual
identifying the controls of the car and explaining the use of instrument
readings, that is, when to shift gears, what distance to maintain to
the car ahead (depending on the speed), and how to use the steering
wheel. In this way, the function of the car is controlled by discrete rules
related to separate observations, and navigation depends on continu-
ous observation of the heading error and correction by steering wheel
movements. This aggregation of car characteristics and instructed
input–output behavior makes it possible to drive; it initiates the novice
by synchronizing them to the car functions. However, when driving
skill evolves, the picture changes radically. Behavior changes from a
sequence of separate acts to a complex, continuous behavioral pat-
tern. Variables are no longer observed individually. Complex patterns
of movements are synchronized with situational patterns and naviga-
tion depends on the perception of a field of safe driving. The drivers
are perceiving the environment in terms of their driving goals. At
this stage, the behavior of the system cannot be decomposed into
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structural elements. A description must be based on abstraction into
functional relationships.”

A new design approach is introduced that shifts away from the traditional
software engineering perspective to a functional perspective. There are two
different ways to define functional characteristics. Firstly, relational represen-
tations are based on mathematical equations that relate physical, measurable
environments. Secondly, casual representations are connections between dif-
ferent events. [RPG94] presented a framework that made it possible to relate
conceptual characteristics. The framework takes into account that in order to
bridge system behaviors into human profiles and preferences, several differ-
ent perspectives of analysis and languages of representation are needed (see
Figure 1.18).

Fig. 1.18. Relating Work Environment to Cognitive Resource Profiles of Actors
(adapted from [RPG94]).
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In this framework, the work domain analysis is used to make explicit the
goals, constraints and resources found in a work system. They are represented
by a general inventory of system elements that are categorized by functional
elements and their means-ends relations. The analysis identifies the structure
and general content of the global knowledge of the work system. Activity
analysis is divided into three different dimensions. Firstly, activity analysis in
domain terms focuses on the freedom left for activities after the constraints
posed by time and the functional space of the task. Generalizations are made
in terms of objectives, functions and resources. Secondly, activity analysis in
decision terms use functional languages to identify decision making functions
within relevant tasks. This results of this analysis are used to identify pro-
totype knowledge states that connect different decision functions together.
Thirdly, mental strategies are used to compare task requirements with cog-
nitive resource profiles of the individual actors and how they perform their
work, thus supplies the designer with mental models, data formats and rule
sets that can be incorporated into the interface of the system and used by
actors of varying expertise and competence.

The work organization analysis is used to identify the actors involved in
the decisions of different situations. This is done by finding the principles
and criteria that govern the allocation of roles among the groups and group
members. This allocation is dynamically dependent on circumstances and is
governed by different criteria such as actor competency, access to information,
minimizing communication load and sharing workload.

The social organization analysis focuses on the social aspect of groups
working together. This is useful for understanding communication between
team members, such communication may include complex information like
intentions used for coordinating activities and resolving ambiguities or mis-
interpretations. Finally, User Analysis is used to help judge which strategy is
likely to be chosen by an actor in a given situation focusing on the expertise
and the performance criteria of each actor.

Rasmussen further proposes a framework for representing the various
states of knowledge and information processes of human reasoning, it is called
the decision ladder (see Figure 1.19). The ladder models the human deci-
sion making process through a set of generic operations and standardized key
nodes or states of knowledge about the environment. The circles illustrated
are states of knowledge and the squares are operations. The decision ladder
was developed as a model for performing work domain analysis, however, the
structure of the ladder is generic enough to be used as a guide in the context
of describing agent reasoning.

The decision ladder can be further segmented into three levels of exper-
tise [RPG94]. The skill (lowest) level represents very fast, automated sensory–
motor performance and it is illustrated in the ladder via the heuristic shortcut
links in the middle. The rule (medium) level represents the use of rules and/or
procedures that have been pre–defined, or derived empirically using experi-
ence, or communicated by others, it traverses the bottom half of the ladder.
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Fig. 1.19. Rassmusen’s decision ladder (adapted from [RPG94]).

Finally, the knowledge (highest) level represents behaviors during less–familiar
situations when someone is faced with an environment where there are no rules
or skills available, in such cases a more detailed analysis of the environment
is required with respect to the goals the agent is trying to achieve, the entire
ladder is used for this case.

1.2.2 Computational Intelligence

Computational intelligence (CI) is a modern, more specifically defined AI
branch. CI research aims to use learning, adaptive, or evolutionary compu-
tation to create programs that are, in some sense, intelligent. Computational
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intelligence research either explicitly rejects statistical methods (as is the case
with fuzzy systems), or tacitly ignores statistics (as is the case with most
neural network research). In contrast, machine learning research rejects non–
statistical approaches to learning, adaptivity, and optimization. Main subjects
in CI, as defined by IEEE Computational Intelligence Society, are:

1. Neural networks,
2. Fuzzy systems, and
3. Evolutionary computation.

Neural Networks

Recall that an artificial neural network (ANN) is an interconnected group of
artificial neurons that uses a mathematical or computational model for infor-
mation processing based on the so–called connectionist approach to computa-
tion. In most cases an ANN is an adaptive system that changes its structure
based on external or internal information that flows through the network.

In more practical terms neural networks are nonlinear statistical data mod-
elling tools. They can be used to model complex relationships between inputs
and outputs or to find patterns in data.

Dynamically, the ANNs are nonlinear dynamical systems that act as func-
tional approximators [Kos92]. The ANN builds discriminant functions from
its processing elements (PE)s. The ANN topology determines the number and
shape of the discriminant functions. The shapes of the discriminant functions
change with the topology, so ANNs are considered semi–parametric classifiers.
One of the central advantages of ANNs is that they are sufficiently powerful
to create arbitrary discriminant functions so ANNs can achieve optimal clas-
sification.

The placement of the discriminant functions is controlled by the network
weights. Following the ideas of non–parametric training, the weights are ad-
justed directly from the training data without any assumptions about the
data’s statistical distribution. Hence one of the central issues in neural net-
work design is to utilize systematic procedures, the so–called training algo-
rithm, to modify the weights so that as accurate a classification as possible is
achieved. The accuracy is quantified by an error criterion [PEL00].

The training is usually performed in the following way. First, data is pre-
sented, and an output is computed. An error is obtained by comparing the
output {y} with a desired response {d} and it is used to modify the weights
with a training algorithm. This procedure is repeated using all the data in
the training set until a convergence criterion is met. Thus, in ANNs (and in
adaptive systems in general) the designer does not have to specify the para-
meters of the system. They are automatically extracted from the input data
and the desired response by means of the training algorithm. The two central
issues in neural network design (semi–parametric classifiers) are the selection
of the shape and number of the discriminant functions and their placement
in pattern space such that the classification error is minimized [PEL00].
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Biological Versus Artificial Neural Nets

In biological neural networks, signals are transmitted between neurons by
electrical pulses (action potentials or spike trains) travelling along the axon.
These pulses impinge on the afferent neuron at terminals called synapses.
These are found principally on a set of branching processes emerging from
the cell body (soma) known as dendrites. Each pulse occurring at a synapse
initiates the release of a small amount of chemical substance or neurotrans-
mitter which travels across the synaptic cleft and which is then received at
postsynaptic receptor sites on the dendritic side of the synapse. The neuro-
transmitter becomes bound to molecular sites here which, in turn, initiates
a change in the dendritic membrane potential. This postsynaptic potential
(PSP) change may serve to increase (hyperpolarize) or decrease (depolarize)
the polarization of the postsynaptic membrane. In the former case, the PSP
tends to inhibit generation of pulses in the afferent neuron, while in the lat-
ter, it tends to excite the generation of pulses. The size and type of PSP
produced will depend on factors such as the geometry of the synapse and the
type of neurotransmitter. Each PSP will travel along its dendrite and spread
over the soma, eventually reaching the base of the axon (axonhillock). The
afferent neuron sums or integrates the effects of thousands of such PSPs over
its dendritic tree and over time. If the integrated potential at the axonhillock
exceeds a threshold, the cell fires and generates an action potential or spike
which starts to travel along its axon. This then initiates the whole sequence
of events again in neurons contained in the efferent pathway.

ANNs are very loosely based on these ideas. In the most general terms,
a ANN consists of large numbers of simple processors linked by weighted
connections. By analogy, the processing nodes may be called artificial neurons.
Each node output depends only on information that is locally available at
the node, either stored internally or arriving via the weighted connections.
Each unit receives inputs from many other nodes and transmits its output to
yet other nodes. By itself, a single processing element is not very powerful; it
generates a scalar output, a single numerical value, which is a simple nonlinear
function of its inputs. The power of the system emerges from the combination
of many units in an appropriate way [FS92].

ANN is specialized to implement different functions by varying the con-
nection topology and the values of the connecting weights. Complex functions
can be implemented by connecting units together with appropriate weights. In
fact, it has been shown that a sufficiently large network with an appropriate
structure and property chosen weights can approximate with arbitrary accu-
racy any function satisfying certain broad constraints. In ANNs, the design
motivation is what distinguishes them from other mathematical techniques: an
ANN is a processing device, either an algorithm, or actual hardware, whose
design was motivated by the design and functioning of animal brains and
components thereof.
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There are many different types of ANNs, each of which has different
strengths particular to their applications. The abilities of different networks
can be related to their structure, dynamics and learning methods.

Multilayer Perceptrons

The most common ANN model is the feedforward neural network with one
input layer, one output layer, and one or more hidden layers, called multilayer
perceptron (MLP, see Figure 1.20). This type of neural network is known as a
supervised network because it requires a desired output in order to learn. The
goal of this type of network is to create a model f : x→ y that correctly maps
the input x to the output y using historical data so that the model can then
be used to produce the output when the desired output is unknown [Kos92].

In MLP the inputs are fed into the input layer and get multiplied by
interconnection weights as they are passed from the input layer to the first
hidden layer. Within the first hidden layer, they get summed then processed
by a nonlinear function (usually the hyperbolic tangent). As the processed
data leaves the first hidden layer, again it gets multiplied by interconnection
weights, then summed and processed by the second hidden layer. Finally the
data is multiplied by interconnection weights then processed one last time
within the output layer to produce the neural network output.

MLPs are typically trained with static backpropagation. These networks
have found their way into countless applications requiring static pattern clas-
sification. Their main advantage is that they are easy to use, and that they
can approximate any input/output map. The key disadvantages are that they
train slowly, and require lots of training data (typically three times more
training samples than the number of network weights).

Fig. 1.20. Multilayer perceptron (MLP) with two hidden layers.
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McCulloch–Pitts Processing Element

MLPs are typically composed of McCulloch–Pitts neurons (see [MP43]). This
processing element (PE) is simply a sum–of–products followed by a threshold
nonlinearity. Its input–output equation is

y = f(net) = f
(
wix

i + b
)
, (i = 1, . . . , D),

where D is the number of inputs, xi are the inputs to the PE, wi are the
weights and b is a bias term (see e.g., [MP69]). The activation function is a
hard threshold defined by signum function,

f(net) =
{

1, for net ≥ 0,
−1, for net < 0.

Therefore, McCulloch–Pitts PE is composed of an adaptive linear element
(Adaline, the weighted sum of inputs), followed by a signum nonlinearity
[PEL00].

Sigmoidal Nonlinearities

Besides the hard threshold defined by signum function, other nonlinearities
can be utilized in conjunction with the McCulloch–Pitts PE. Let us now
smooth out the threshold, yielding a sigmoid shape for the nonlinearity. The
most common nonlinearities are the logistic and the hyperbolic tangent thresh-
old activation functions ,

hyperbolic : f(net) = tanh(α net),

logistic : f(net) =
1

1 + exp(−α net)
,

where α is a slope parameter and normally is set to 1. The major difference
between the two sigmoidal nonlinearities is the range of their output values.
The logistic function produces values in the interval [0, 1], while the hyperbolic
tangent produces values in the interval [−1, 1]. An alternate interpretation
of this PE substitution is to think that the discriminant function has been
generalized to

g(x) = f(wix
i + b), (i = 1, . . . , D),

which is sometimes called a ridge function. The combination of the synapse
and the tanh axon (or the sigmoid axon) is usually referred to as the modi-
fied McCulloch–Pitts PE, because they all respond to the full input space in
basically the same functional form (a sum of products followed by a global
nonlinearity). The output of the logistic function varies from 0 to 1. Under
some conditions, the logistic function allows a very powerful interpretation
of the output of the PE as a’posteriori probabilities for Gaussian–distributed
input classes. The tanh is closely related to the logistic function by a lin-
ear transformation in the input and output spaces, so neural networks that
use either of these can be made equivalent by changing weights and biases
[PEL00].
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Gradient Descent on the Net’s Performance Surface

The search for the weights to meet a desired response or internal constraint
is the essence of any connectionist computation. The central problem to be
solved on the road to machine–based classifiers is how to automate the process
of minimizing the error so that the machine can independently make these
weight changes, without need for hidden agents, or external observers. The
optimality criterion to be minimized is usually the mean square error (MSE)

J =
1

2N

N∑
i=1

ε2i ,

where εi is the instantaneous error that is added to the output yi (the linearly
fitted value), and N is the number of observations. The function J(w) is
called the performance surface (the total error surface plotted in the space of
weights w).

The search for the minimum of a function can be done efficiently using a
broad class of methods based on gradient information. The gradient has two
main advantages for the search:

1. It can be computed locally, and
2. It always points in the direction of maximum change.

The gradient of the performance surface, ∇J = ∇wJ, is a vector (with
the dimension of w) that always points toward the direction of maximum
J−change and with a magnitude equal to the slope of the tangent of the
performance surface. The minimum value of the error Jmin depends on both
the input signal xi and the desired signal di,

Jmin =
1

2N

[∑
i

d2i −
(
dix

i
)∑

i x
i

]
, (i = 1, . . . , D).

The location in coefficient space where the minimum w∗ occurs also depends
on both xi and di. The performance surface shape depends only on the input
signal xi [PEL00].

Now, if the goal is to reach the minimum, the search must be in the direc-
tion opposite to the gradient. The overall method of gradient searching can be
stated in the following way: Start the search with an arbitrary initial weight
w(0), where the iteration number is denoted by the index in parentheses.
Then compute the gradient of the performance surface at w(0), and modify
the initial weight proportionally to the negative of the gradient at w(0). This
changes the operating point to w(1). Then compute the gradient at the new
position w(1), and apply the same procedure again, that is,

w(n+ 1) = w(n)− η∇J(n),
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where η is a small constant and∇J(n) denotes the gradient of the performance
surface at the nth iteration. The constant η is used to maintain stability in
the search by ensuring that the operating point does not move too far along
the performance surface. This search procedure is called the steepest descent
method .

In the late 1960s, Widrow proposed an extremely elegant algorithm to
estimate the gradient that revolutionized the application of gradient descent
procedures. His idea is very simple: Use the instantaneous value as the esti-
mator for the true quantity:

∇J(n) =
∂

∂w(n)
J ≈ 1

2
∂

∂w(n)
(
ε2(n)

)
= −ε(n)x(n),

i.e., instantaneous estimate of the gradient at iteration n is simply the product
of the current input x(n) to the weight w(n) times the current error ε(n). The
amazing thing is that the gradient can be estimated with one multiplication
per weight. This is the gradient estimate that led to the celebrated least means
square algorithm (LMS):

w(n+ 1) = w(n) + ηε(n)x(n), (1.10)

where the small constant η is called the step size, or the learning rate. The
estimate will be noisy, however, since the algorithm uses the error from a single
sample instead of summing the error for each point in the data set (e.g., the
MSE is estimated by the error for the current sample).

Now, for fast convergence to the neighborhood of the minimum a large
step size is desired. However, the solution with a large step size suffers from
rattling. One attractive solution is to use a large learning rate in the beginning
of training to move quickly toward the location of the optimal weights, but
then the learning rate should be decreased to get good accuracy on the final
weight values. This is called learning rate scheduling . This simple idea can be
implemented with a variable step size controlled by

η(n+ 1) = η(n)− β,

where η(0) = η0 is the initial step size, and β is a small constant [PEL00].

Perceptron and Its Learning Algorithm

Rosenblatt perceptron (see [Ros58b, MP69]) is a pattern–recognition machine
that was invented in the 1950s for optical character recognition. The per-
ceptron has an input layer fully connected to an output layer with multiple
McCulloch–Pitts PEs,

yi = f(net
i

) = f(wix
i + bi), (i = 1, . . . , D),

where bi is the bias for each PE. The number of outputs yi is normally de-
termined by the number of classes in the data. These PEs add the individual
scaled contributions and respond to the entire input space.
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F. Rosenblatt proposed the following procedure to directly minimize the
error by changing the weights of the McCulloch–Pitts PE: Apply an input
example to the network. If the output is correct do nothing. If the response is
incorrect, tweak the weights and bias until the response becomes correct. Get
the next example and repeat the procedure, until all the patterns are correctly
classified. This procedure is called the perceptron learning algorithm, which
can be put into the following form:

w(n+ 1) = w(n) + η(d(n)− y(n))x(n),

where η is the step size, y is the network output, and d is the desired response.
Clearly, the functional form is the same as in the LMS algorithm (1.10),

that is, the old weights are incrementally modified proportionally to the prod-
uct of the error and the input, but there is a significant difference. We cannot
say that this corresponds to gradient descent since the system has a discon-
tinuous nonlinearity. In the perceptron learning algorithm, y(n) is the output
of the nonlinear system. The algorithm is directly minimizing the difference
between the response of the McCulloch–Pitts PE and the desired response, in-
stead of minimizing the difference between the Adaline output and the desired
response [PEL00].

This subtle modification has tremendous impact on the performance of the
system. For one thing, the McCulloch–Pitts PE learns only when its output
is wrong. In fact, when y(n) = d(n), the weights remain the same. The net
effect is that the final values of the weights are no longer equal to the linear
regression result, because the nonlinearity is brought into the weight update
rule. Another way of phrasing this is to say that the weight update became
much more selective, effectively gated by the system performance. Notice that
the LMS update is also a function of the error to a certain degree. Larger errors
have more effect on the weight update than small errors, but all patterns
affect the final weights implementing a ‘smooth gate’. In the perceptron the
net effect is that the placement of the discriminant function is no longer
controlled smoothly by all the input samples as in the Adaline, only by the
ones that are important for placing the discriminant function in a way that
explicitly minimizes the output error.

The Delta Learning Rule

One can show that the LMS rule is equivalent to the chain rule in the
computation of the sensitivity of the cost function J with respect to the un-
knowns. Interpreting the LMS equation (1.10) with respect to the sensitivity
concept, we see that the gradient measures the sensitivity. LMS is therefore
updating the weights proportionally to how much they affect the performance,
i.e., proportionally to their sensitivity.

The LMS concept can be extended to the McCulloch–Pitts PE, which is a
nonlinear system. The main question here is how can we compute the sensitiv-
ity through a nonlinearity? [PEL00] The so–called δ−rule represents a direct
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extension of the LMS rule to nonlinear systems with smooth nonlinearities.
In case of the McCulloch–Pitts PE, delta–rule reads:

wi(n+ 1) = wi(n) + η εp(n) xi
p(n) f

′(net
p

(n)),

where f ′(net) is the partial derivative of the static nonlinearity, such that the
chain rule is applied to the network topology, i.e.,

f ′(net)xi =
∂y

∂wi
=

∂y

∂ net
∂

∂wi
. (1.11)

As long as the PE nonlinearity is smooth we can compute how much a change
in the weight δwi affects the output y, or from the point of view of the sen-
sitivity, how sensitive the output y is to a change in a particular weight δwi.
Note that we compute this output sensitivity by a product of partial deriva-
tives through intermediate points in the topology. For the nonlinear PE there
is only one intermediate point, net, but we really do not care how many of
these intermediate points there are. The chain rule can be applied as many
times as necessary. In practice, we have an error at the output (the difference
between the desired response and the actual output), and we want to adjust
all the PE weights so that the error is minimized in a statistical sense. The
obvious idea is to distribute the adjustments according to the sensitivity of
the output to each weight.

To modify the weight, we actually propagate back the output error to in-
termediate points in the network topology and scale it along the way as pre-
scribed by (1.11) according to the element transfer functions:

forward path : xi �−→ wi �−→ net �−→ y

backward path 1 : wi

∂ net /∂w
←↩ net

∂y/∂ net
←↩ y

backward path 2 : wi

∂y/∂w
←↩ y .

This methodology is very powerful, because we do not need to know explicitly
the error at intermediate places, such as net. The chain rule automatically
derives the error contribution for us. This observation is going to be crucial for
adapting more complicated topologies and will result in the backpropagation
algorithm, discovered in 1988 by Werbos [Wer89].

Now, several key aspects have changed in the performance surface (which
describes how the cost changes with the weights) with the introduction of
the nonlinearity. The nice, parabolic performance surface of the linear least
squares problem is lost. The performance depends on the topology of the
network through the output error, so when nonlinear processing elements are
used to solve a given problem the ‘performance – weights’ relationship becomes
nonlinear, and there is no guarantee of a single minimum. The performance
surface may have several minima. The minimum that produces the smallest
error in the search space is called the global minimum. The others are called
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local minima. Alternatively, we say that the performance surface is nonconvex.
This affects the search scheme because gradient descent uses local informa-
tion to search the performance surface. In the immediate neighborhood, local
minima are indistinguishable from the global minimum, so the gradient search
algorithm may be caught in these suboptimal performance points, ‘thinking’
it has reached the global minimum [PEL00].
δ−rule extended to perceptron reads:

wij(n+ 1) = wij(n)− η
∂J

∂wij
= wij(n) + η δip xj

p ,

which are local quantities available at the weight, that is, the activation xj
p

that reaches the weight wij from the input and the local error δip propagated
from the cost function J . This algorithm is local to the weight. Only the local
error δi and the local activation xj are needed to update a particular weight.
This means that it is immaterial how many PEs the net has and how complex
their interconnection is. The training algorithm can concentrate on each PE
individually and work only with the local error and local activation [PEL00].

Backpropagation

The multilayer perceptron constructs input–output mappings that are a
nested composition of nonlinearities, that is, they are of the form

y = f
(∑

f
(∑

(·)
))
,

where the number of function compositions is given by the number of network
layers. The resulting map is very flexible and powerful, but it is also hard to
analyze [PEL00].

MLPs are usually trained by generalized δ−rule, the so–called backpropa-
gation (BP). The weight update using backpropagation is

wij(n+ 1) = wij(n) + ηf ′(net
i

(n))
(
εk(n) f ′(net

k
(n))wki(n)

)
yj(n). (1.12)

The summation in (1.12) is a sum of local errors δk at each network output PE,
scaled by the weights connecting the output PEs to the ith PE. Thus the term
in parenthesis in (1.12) effectively computes the total error reaching the ith PE
from the output layer (which can be thought of as the ith PE’s contribution
to the output error). When we pass it through the ith PE nonlinearity, we
have its local error, which can be written as

δi(n) = f ′(net
i

(n)) δkwki(n).

Thus there is a unifying link in all the gradient–descent algorithms. All the
weights in gradient descent learning are updated by multiplying the local error
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δi(n) by the local activation xj(n) according to Widrow’s estimation of the
instantaneous gradient first shown in the LMS rule:

∆wij(n) = η δi(n) yj(n).

What differs is the calculation of the local error, depending on whether the
PE is linear or nonlinear and if the weight is attached to an output PE or a
hidden–layer PE [PEL00].

Momentum Learning

Momentum learning is an improvement to the straight gradient–descent search
in the sense that a memory term (the past increment to the weight) is used
to speed up and stabilize convergence. In momentum learning the equation
to update the weights becomes

wij(n+ 1) = wij(n) + η δi(n)xj(n) + α (wij(n)− wij(n− 1)) ,

where α is the momentum constant, usually set between 0.5 and 0.9. This is
called momentum learning due to the form of the last term, which resembles
the momentum in mechanics. Note that the weights are changed proportion-
ally to how much they were updated in the last iteration. Thus if the search is
going down the hill and finds a flat region, the weights are still changed, not
because of the gradient (which is practically zero in a flat spot), but because
of the rate of change in the weights. Likewise, in a narrow valley, where the
gradient tends to bounce back and forth between hillsides, the momentum
stabilizes the search because it tends to make the weights follow a smoother
path. Imagine a ball (weight vector position) rolling down a hill (performance
surface). If the ball reaches a small flat part of the hill, it will continue past
this local minimum because of its momentum. A ball without momentum,
however, will get stuck in this valley. Momentum learning is a robust method
to speed up learning, and is usually recommended as the default search rule
for networks with nonlinearities.

Advanced Search Methods

The popularity of gradient descent method is based more on its simplicity (it
can be computed locally with two multiplications and one addition per weight)
than on its search power. There are many other search procedures more power-
ful than backpropagation. For example, Newtonian method is a second–order
method because it uses the information on the curvature to adapt the weights.
However Newtonian method is computationally much more costly to imple-
ment and requires information not available at the PE, so it has been used
little in neurocomputing. Although more powerful, Newtonian method is still
a local search method and so may be caught in local minima or diverge due to
the difficult neural network performance landscapes. Other techniques such
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as simulated annealing148 and genetic algorithms (GA)149 are global search
procedures, that is, they can avoid local minima. The issue is that they are
more costly to implement in a distributed system like a neural network, either
because they are inherently slow or because they require nonlocal quantities
[PEL00].

The problem of search with local information can be formulated as an
approximation to the functional form of the matrix cost function J(w) at the
operating point w0. This immediately points to the Taylor series expansion
of J around w0,

J(w −w0) = J0 + (w −w0)∇J0 +
1
2
(w −w0)H0(w −w0)T + · · · ,

where ∇J is our familiar gradient, and H is the Hessian matrix, that is, the
matrix of second derivatives with entries

Hij(w0) =
∂2J(w)
∂wi∂wj

∣∣∣∣
w=w0

,

evaluated at the operating point. We can immediately see that the Hessian
cannot be computed with the information available at a given PE, since it
uses information from two different weights. If we differentiate J with respect
to the weights, we get

∇J(w) = ∇J0 + H0(w −w0) + · · · (1.13)

so we can see that to compute the full gradient at w we need all the higher
terms of the derivatives of J . This is impossible. Since the performance surface
tends to be bowl shaped (quadratic) near the minimum, we are normally
interested only in the first and second terms of the expansion [PEL00].

If the expansion of (1.13) is restricted to the first term, we get the gradient–
search methods (hence they are called first–order–search methods), where the
gradient is estimated with its value at w0. If we expand to use the second–
order term, we get Newton method (hence the name second–order method).
If we equate the truncated relation (1.13) to 0 we immediately get

w = w0 −H−1
0 ∇J0 ,

148 Simulated annealing is a global search criterion by which the space is searched
with a random rule. In the beginning the variance of the random jumps is very
large. Every so often the variance is decreased, and a more local search is under-
taken. It has been shown that if the decrease of the variance is set appropriately,
the global optimum can be found with probability one. The method is called
simulated annealing because it is similar to the annealing process of creating
crystals from a hot liquid.

149 Genetic algorithms are global search procedures proposed by J. Holland that
search the performance surface, concentrating on the areas that provide better
solutions. They use ‘generations’ of search points computed from the previous
search points using the operators of crossover and mutation (hence the name).
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which is the equation for the Newton method, which has the nice property
of quadratic termination (it is guaranteed to find the exact minimum in a
finite number of steps for quadratic performance surfaces). For most quadratic
performance surfaces it can converge in one iteration.

The real difficulty is the memory and the computational cost (and preci-
sion) to estimate the Hessian. Neural networks can have thousands of weights,
which means that the Hessian will have millions of entries. This is why meth-
ods of approximating the Hessian have been extensively researched. There are
two basic classes of approximations [PEL00]:

1. Line search methods, and
2. Pseudo–Newton methods.

The information in the first type is restricted to the gradient, together with
line searches along certain directions, while the second seeks approximations
to the Hessian matrix. Among the line search methods probably the most
effective is the conjugate gradient method . For quadratic performance sur-
faces the conjugate gradient algorithm preserves quadratic termination and
can reach the minimum in D steps, where D is the dimension of the weight
space. Among the Pseudo–Newton methods probably the most effective is the
Levenberg–Marquardt algorithm (LM), which uses the Gauss–Newton method
to approximate the Hessian. LM is the most interesting for neural networks,
since it is formulated as a sum of quadratic terms just like the cost functions
in neural networks.

The extended Kalman filter (EKF) forms the basis of a second–order neural
network training method that is a practical and effective alternative to the
batch–oriented, second–order methods mentioned above. The essence of the
recursive EKF procedure is that, during training, in addition to evolving the
weights of a network architecture in a sequential (as opposed to batch) fashion,
an approximate error covariance matrix that encodes second–order informa-
tion about the training problem is also maintained and evolved.

Homotopy Methods

The most popular method for solving nonlinear equations in general is the
Newton–Raphson method . Unfortunately, this method sometimes fails, espe-
cially in cases when nonlinear equations possess multiple solutions (zeros).
An emerging family of methods that can be used in such cases are homotopy
(continuation) methods. These methods are robust and have good convergence
properties.

Homotopy methods or continuation methods have increasingly been used
for solving variety of nonlinear problems in fluid dynamics, structural mech-
anics, systems identifications, and integrated circuits (see [Wat90]). These
methods, popular in mathematical programming, are globally convergent
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provided that certain coercivity and continuity conditions are satisfied by
the equations that need to be solved [Wat90]. Moreover, they often yield all
the solutions to the nonlinear system of equations.

The idea behind a homotopy or continuation method is to embed a parame-
ter λ in the nonlinear equations to be solved. This is why they are sometimes
referred to as embedding methods. Initially, parameter λ is set to zero, in which
case the problem is reduced to an easy problem with a known or easily–found
solution. The set of equations is then gradually deformed into the originally
posed difficult problem by varying the parameter λ . The original problem is
obtained for λ = 1. Homotopies are a class of continuation methods, in which
parameter λ is a function of a path arc length and may actually increase or
decrease as the path is traversed. Provided that certain coercivity conditions
imposed on the nonlinear function to be solved are satisfied, the homotopy
path does not branch (bifurcate) and passes through all the solutions of the
nonlinear equations to be solved.

The zero curve of the homotopy map can be tracked by various techniques:
an ODE–algorithm, a normal flow algorithm, and an augmented Jacobian ma-
trix algorithm, among others [Wat90].

As a typical example, homotopy techniques can be applied to find the
zeros of the gradient function F : R

N → R
N , such that

F (θ) =
∂E(θ)
∂θk

, 1 ≤ k ≤ N,

where E = (θ) is the certain error function dependent on N parameters θk.
In other words, we need to solve a system of nonlinear equations

F (θ) = 0. (1.14)

In order to solve equation (1.14), we can create a linear homotopy function

H(θ, λ) = (1− λ)(θ − a) + λF (θ),

where a is an arbitrary starting point. Function H(θ, λ) has properties that
equation H(θ, 0) = 0 is easy to solve, and that H(θ, 1) ≡ F (θ).

ANNs as Functional Approximators

The universal approximation theorem of Kolmogorov states [Hay94]:
Let φ(·) be a nonconstant, bounded, and monotone–increasing continu-
ous (C0) function. Let IN denote ND unit hypercube [0, 1]N . The space
of C0−functions on IN is denoted by C(IN ). Then, given any function
f ∈ C(IN ) and ε > 0, there exist an integer M and sets of real constants
αi, θi, ωij , i = 1, . . . ,M ; j = 1, . . . , N such that we may define
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F (x1, . . . , xN ) = αiφ(ωijxj − θi),

as an approximate realization of the function f(·); that is

|F (x1, . . . , xN ) − f(x1, . . . , xN )| < ε for all {x1, . . . , xN} ∈ IN .

This theorem is directly applicable to multilayer perceptrons. First, the lo-
gistic function 1/[1 + exp(−v)] used as the sigmoidal nonlinearity in a neuron
model for the construction of a multilayer perceptron is indeed a nonconstant,
bounded, and monotone–increasing function; it therefore satisfies the condi-
tions imposed on the function φ(·). Second, the upper equation represents the
output of a multilayer perceptron described as follows:

1. The network has n input nodes and a single hidden layer consisting of M
neurons; the inputs are denoted by x1, . . . , xN .

2. ith hidden neuron has synaptic weights ωi1, . . . , ωiN and threshold θi.
3. The network output yj is a linear combination of the outputs of the hidden

neurons, with αi, . . . , αM defining the coefficients of this combination.

The theorem actually states that a single hidden layer is sufficient for
a multilayer perceptron to compute a uniform ε approximation to a given
training set represented by the set of inputs x1, . . . , xN and desired (target)
output f(x1, . . . , xN ). However, the theorem does not say that a single layer
is optimum in the sense of learning time or ease of implementation.

Recall that training of multilayer perceptrons is usually performed using a
certain clone of the BP algorithm (1.2.2). In this forward–pass/backward–pass
gradient–descending algorithm, the adjusting of synaptic weights is defined by
the extended δ−rule, given by equation

∆ωji(N) = η · δj(N) · yi(N), (1.15)

where ∆ωji(N) corresponds to the weight correction, η is the learning–rate
parameter, δj(N) denotes the local gradient and yi(N) – the input signal of
neuron j; while the cost function E is defined as the instantaneous sum of
squared errors e2j

E(n) =
1
2

∑
j

e2j (N) =
1
2

∑
j

[dj(N)− yj(N)]2, (1.16)

where yj(N) is the output of jth neuron, and dj(N) is the desired (target)
response for that neuron. The slow BP convergence rate (1.15–1.16) can be
accelerated using the faster LM algorithm (see subsection 1.2.2 above), while
its robustness can be achieved using an appropriate fuzzy controller (see sub-
section (1.2.2) below).



200 1 Introduction: Human and Computational Mind

Summary of Supervised Learning Methods

Gradient Descent Method

Given the (D + 1)D weights vector w(n) = [w0(n), . . . , wD(n)]T (with
w0 = bias), and the correspondent MSE–gradient (including partials of MSE
w.r.t. weights)

∇e =
[
∂e

∂w0
, . . . ,

∂e

∂wD

]T

,

and the learning rate (step size) η, we have the vector learning equation

w(n+ 1) = w(n)− η∇e(n),

which in index form reads

wi(n+ 1) = wi(n)− η∇ei(n).

LMS Algorithm

w(n+ 1) = w(n) + ηε(n)x(n),

where x is an input (measurement) vector, and ε is a zero–mean Gaussian
noise vector uncorrelated with input, or

wi(n+ 1) = wi(n) + ηε(n)xi(n).

Newton’s Method

w(n+ 1) = w(n)− ηR−1e(n),

where R is input (auto)correlation matrix, or

w(n+ 1) = w(n) + ηR−1ε(n)x(n),

Conjugate Gradient Method

w(n+ 1) = w(n) + η p(n),
p(n) = −∇e(n) + β(n)p(n− 1),

β(n) =
∇e(n)T∇e(n)

∇e(n− 1)T∇e(n− 1)
.
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Levenberg–Marquardt Algorithm

Putting
∇e = JT e,

where J is the Jacobian matrix, which contains first derivatives of the network
errors with respect to the weights and biases, and e is a vector of network
errors, LM algorithm reads

w(n+ 1) = w(n)− [JT J + µI]−1JT e. (1.17)

Generalized Feedforward Nets

The generalized feedforward network (GFN, see Figure 1.21) is a generaliza-
tion of MLP, such that connections can jump over one or more layers, which in
practice, often solves the problem much more efficiently than standard MLPs.
A classic example of this is the two–spiral problem, for which standard MLP
requires hundreds of times more training epochs than the generalized feedfor-
ward network containing the same number of processing elements. Both MLPs
and GFNs are usually trained using a variety of backpropagation techniques
and their enhancements like the nonlinear LM algorithm (1.17). During train-
ing in the spatial processing, the weights of the GFN converge iteratively to
the analytical solution of the 2D Laplace equation.

Modular Feedforward Nets

The modular feedforward networks are a special class of MLP. These net-
works process their input using several parallel MLPs, and then recombine
the results. This tends to create some structure within the topology, which

Fig. 1.21. Generalized feedforward network (GFN), arranged using Neuro-
SolutionsTM .
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Fig. 1.22. Modular feedforward network, arranged using NeuroSolutionsTM .

Fig. 1.23. Jordan and Elman network, arranged using NeuroSolutionsTM .

will foster specialization of function in each submodule (see Figure 1.22). In
contrast to the MLP, modular networks do not have full inter–connectivity
between their layers. Therefore, a smaller number of weights are required for
the same size network (i.e., the same number of PEs). This tends to speed up
training times and reduce the number of required training exemplars. There
are many ways to segment a MLP into modules. It is unclear how to best
design the modular topology based on the data. There are no guarantees that
each module is specializing its training on a unique portion of the data.

Jordan and Elman Nets

Jordan and Elman networks (see [Elm90]) extend the multilayer perceptron
with context units, which are processing elements (PEs) that remember past
activity. Context units provide the network with the ability to extract tempo-
ral information from the data. In the Elman network, the activity of the first
hidden PEs are copied to the context units, while the Jordan network copies
the output of the network (see Figure 1.23). Networks which feed the input
and the last hidden layer to the context units are also available.

Kohonen Self–Organizing Map

Kohonen self–organizing map (SOM, see Figure 1.24) is widely used for image
pre–processing as well as a pre–processing unit for various hybrid architec-
tures. SOM is a winner–take–all neural architecture that quantizes the input
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Fig. 1.24. Kohonen self–organizing map (SOM) network, arranged using
NeuroSolutionsTM .

space, using a distance metric, into a discrete feature output space, where
neighboring regions in the input space are neighbors in the discrete output
space. SOM is usually applied to neighborhood clustering of random points
along a circle using a variety of distance metrics: Euclidean, L1, L2, and Ln,
Machalanobis, etc. The basic SOM architecture consists of a layer of Kohonen
synapses of three basic forms: line, diamond and box, followed by a layer of
winner–take–all axons. It usually uses added Gaussian and uniform noise, with
control of both the mean and variance. Also, SOM usually requires choosing
the proper initial neighborhood width as well as annealing of the neighbor-
hood width during training to ensure that the map globally represents the
input space.

The Kohonen SOM algorithm is defined as follows: Every stimulus v of
an Euclidian input space V is mapped to the neuron with the position s in
the neural layer R with the highest neural activity, the ‘center of excitation’
or ‘winner’, given by the condition

|ws − v| = minr∈R |wr − v|,

where |.| denotes the Euclidian distance in input space. In the Kohonen model
the learning rule for each synaptic weight vector wr is given by

wnew
r = wold

r + η · grs · (v −wold
r ), (1.18)

with grs as a gaussian function of Euclidian distance |r − s| in the neural
layer. Topology preservation is enforced by the common update of all weight
vectors whose neuron r is adjacent to the center of excitation s. The function
grs describes the topology in the neural layer. The parameter η determines
the speed of learning and can be adjusted during the learning process.

Radial Basis Function Nets

The radial basis function network (RBF, see Figure 1.25) provides a powerful
alternative to MLP for function approximation or classification. It differs from
MLP in that the overall input–output map is constructed from local contribu-
tions of a layer of Gaussian axons. It trains faster and requires fewer training
samples than MLP, using the hybrid supervised/unsupervised method. The
unsupervised part of an RBF network consists of a competitive synapse fol-
lowed by a layer of Gaussian axons. The means of the Gaussian axons are
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Fig. 1.25. Radial basis function network, arranged using NeuroSolutionsTM .

Fig. 1.26. Principal component analysis (PCA) network, arranged using Neuro-
SolutionsTM .

found through competitive clustering and are, in fact, the weights of the Con-
science synapse. Once the means converge the variances are calculated based
on the separation of the means and are associated with the Gaussian layer.
Having trained the unsupervised part, we now add the supervised part, which
consists of a single–layer MLP with a soft–max output.

Principal Component Analysis Nets

The principal component analysis networks (PCAs, see Figure 1.26) com-
bine unsupervised and supervised learning in the same topology. Principal
component analysis is an unsupervised linear procedure that finds a set of
uncorrelated features, principal components, from the input. A MLP is su-
pervised to perform the nonlinear classification from these components. More
sophisticated are the independent component analysis networks (ICAs).

Co–active Neuro–Fuzzy Inference Systems

The co–active neuro–fuzzy inference system (CANFIS, see Figure 1.27), which
integrates adaptable fuzzy inputs with a modular neural network to rapidly
and accurately approximate complex functions. Fuzzy–logic inference systems
(see next section) are also valuable as they combine the explanatory nature of
rules (membership functions) with the power of ‘black box’ neural networks.

Genetic ANN–Optimization

Genetic optimization, added to ensure and speed–up the convergence of all
other ANN–components, is a powerful tool for enhancing the efficiency and
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Fig. 1.27. Co–active neuro–fuzzy inference system (CANFIS) network, arranged
using NeuroSolutionsTM .

Fig. 1.28. Time–lagged recurrent network (TLRN), arranged using Neuro-
SolutionsTM .

effectiveness of a neural network. Genetic optimization can fine–tune network
parameters so that network performance is greatly enhanced. Genetic control
applies a genetic algorithm (GA, see next section), a part of broader evolu-
tionary computation, see MIT journal with the same name) to any network
parameters that are specified. Also through the genetic control , GA parame-
ters such as mutation probability, crossover type and probability, and selection
type can be modified.

Time–Lagged Recurrent Nets

The time–lagged recurrent networks (TLRNs, see Figure 1.28) are MLPs
extended with short term memory structures [Wer90]. Most real–world data
contains information in its time structure, i.e., how the data changes with
time. Yet, most neural networks are purely static classifiers. TLRNs are the
state of the art in nonlinear time series prediction, system identification and
temporal pattern classification. Time–lagged recurrent nets usually use mem-
ory Axons, consisting of IIR filters with local adaptable feedback that act as
a variable memory depth. The time–delay neural network (TDNN) can be
considered a special case of these networks, examples of which include the
Gamma and Laguerre structures. The Laguerre axon uses locally recurrent
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all–pass IIR filters to store the recent past. They have a single adaptable pa-
rameter that controls the memory depth. Notice that in addition to providing
memory for the input, we have also used a Laguerre axon after the hidden
Tanh axon. This further increases the overall memory depth by providing
memory for that layer’s recent activations.

Fully Recurrent ANNs

The fully recurrent networks feed back the hidden layer to itself. Partially
recurrent networks start with a fully recurrent net and add a feedforward con-
nection that bypasses the recurrency, effectively treating the recurrent part
as a state memory. These recurrent networks can have an infinite memory
depth and thus find relationships through time as well as through the instan-
taneous input space. Most real–world data contains information in its time
structure. Recurrent networks are the state of the art in nonlinear time series
prediction, system identification, and temporal pattern classification. In case
of large number of neurons, here the firing states of the neurons or their mem-
brane potentials are the microscopic stochastic dynamical variables, and one
is mostly interested in quantities such as average state correlations and global
information processing quality, which are indeed measured by macroscopic
observables. In contrast to layered networks, one cannot simply write down
the values of successive neuron states for models of recurrent ANNs; here
they must be solved from (mostly stochastic) coupled dynamic equations. For
nonsymmetric networks, where the asymptotic (stationary) statistics are not
known, dynamical techniques from non–equilibrium statistical mechanics are
the only tools available for analysis. The natural set of macroscopic quanti-
ties (or order parameters) to be calculated can be defined in practice as the
smallest set which will obey closed deterministic equations in the limit of an
infinitely large network.

Being high–dimensional nonlinear systems with extensive feedback, the
dynamics of recurrent ANNs are generally dominated by a wealth of attrac-
tors (fixed–point attractors, limit–cycles, or even more exotic types), and the
practical use of recurrent ANNs (in both biology and engineering) lies in the
potential for creation and manipulation of these attractors through adaptation
of the network parameters (synapses and thresholds) (see [Hop82, Hop84]).
Input fed into a recurrent ANN usually serves to induce a specific initial config-
uration (or firing pattern) of the neurons, which serves as a cue, and the output
is given by the (static or dynamic) attractor which has been triggered by this
cue. The most familiar types of recurrent ANN models, where the idea of cre-
ating and manipulating attractors has been worked out and applied explicitly,
are the so–called attractor associative memory ANNs, designed to store and
retrieve information in the form of neuronal firing patterns and/or sequences
of neuronal firing patterns. Each pattern to be stored is represented as a mi-
croscopic state vector. One then constructs synapses and thresholds such that
the dominant attractors of the network are precisely the pattern vectors (in
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the case of static recall), or where, alternatively, they are trajectories in which
the patterns are successively generated microscopic system states. From an
initial configuration (the cue, or input pattern to be recognized) the system
is allowed to evolve in time autonomously, and the final state (or trajectory)
reached can be interpreted as the pattern (or pattern sequence) recognized by
network from the input. For such programmes to work one clearly needs re-
current ANNs with extensive ergodicity breaking: the state vector will during
the course of the dynamics (at least on finite time–scales) have to be confined
to a restricted region of state–space (an ergodic component), the location of
which is to depend strongly on the initial conditions. Hence our interest will
mainly be in systems with many attractors. This, in turn, has implications
at a theoretical/mathematical level: solving models of recurrent ANNs with
extensively many attractors requires advanced tools from disordered systems
theory, such as replica theory (statics) and generating functional analysis (dy-
namics).

Complex–Valued ANNs

It is expected that complex–valued ANNs, whose parameters (weights and
threshold values) are all complex numbers, will have applications in all the
fields dealing with complex numbers (e.g., telecommunications, quantum
physics). A complex–valued, feedforward, multi–layered, back–propagation
neural network model was proposed independently by T. Nitta [NF91, Nit97,
Nit00, Nit04], G. GK92 [GK92] and N. Benvenuto [BP92, BP92], and demon-
strated its characteristics:

(a) the properties greatly different from those of the real–valued back–
propagation network, including 2D motion structure of weights and the
orthogonality of the decision boundary of a complex–valued neuron;

(b) the learning property superior to the real–valued back–propagation;
(c) the inherent 2D motion learning ability (an ability to transform geometric

figures); and
(d) the ability to solve the XOR problem and detection of symmetry problem

with a single complex–valued neuron.

Following [NF91, Nit97, Nit00, Nit04], we consider here the complex–
valued neuron. Its input signals, weights, thresholds and output signals are
all complex numbers. The net input Un to a complex–valued neuron n is
defined as

Un = WmnXm + Vn,

where Wmn is the (complex–valued) weight connecting the complex–valued
neurons m and n, Vn is the (complex–valued) threshold value of the complex–
valued neuron n, and Xm is the (complex–valued) input signal from the
complex–valued neuronm. To get the (complex–valued) output signal, convert
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the net input Un into its real and imaginary parts as follows: Un = x+ iy = z,
where i =

√
−1. The (complex–valued) output signal is defined to be

σ(z) = tanh(x) + i tanh(y),

where tanh(u) = (exp(u)− exp(−u)) = (exp(u)+exp(−u)), u ∈ R. Note that
−1 < Re[σ], Im[σ] < 1. Note also that σ is not regular as a complex function,
because the Cauchy–Riemann equations do not hold.

A complex–valued ANN consists of such complex–valued neurons de-
scribed above. A typical network has 3 layers: m → n → 1, with wij ∈ C

– the weight between the input neuron i and the hidden neuron j, w0j ∈ C

– the threshold of the hidden neuron j, cj ∈ C – the weight between the
hidden neuron j and the output neuron (1 ≤ i ≤ m; 1 ≤ j ≤ n), and c0 ∈ C

– the threshold of the output neuron. Let yj(z), h(z) denote the output val-
ues of the hidden neuron j, and the output neuron for the input pattern
z = [z1, . . . , zm]t ∈ C

m, respectively. Let also νj(z) and µ(z) denote the net
inputs to the hidden neuron j and the output neuron for the input pattern
z ∈ C

m, respectively. That is,

νj(z) = wijzi + w0j , µ(z) = cjyj(z) + c0,
yj(z) = σ(νj(z)), h(z) = σ(µ(z)).

The set of allm→ n→ 1 complex–valued ANNs described above is usually
denoted by Nm,n. The Complex–BP learning rule [NF91, Nit97, Nit00, Nit04]
has been obtained by using a steepest–descent method for such (multilayered)
complex–valued ANNs.

Common Continuous ANNs

Virtually all computer–implemented ANNs (mainly listed above) are discrete
dynamical systems, mainly using supervised training (except Kohonen SOM)
in one of gradient–descent searching forms. They are good as problem–solving
tools, but they fail as models of animal nervous system. The other category
of ANNs are continuous neural systems that can be considered as models of
animal nervous system. However, as models of the human brain, all current
ANNs are simply trivial.

Neurons as Functions

According to B. Kosko, neurons behave as functions [Kos92]; they trans-
duce an unbounded input activation x(t) into output signal S(x(t)). Usually
a sigmoidal (S–shaped, bounded, monotone-nondecreasing: S′ ≥ 0) function
describes the transduction, as well as the input–output behavior of many oper-
ational amplifiers. For example, the logistic signal (or, the maximum–entropy)
function

S(x) =
1

1 + e−cx
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is sigmoidal and strictly increases for positive scaling constant c > 0. Strict
monotonicity implies that the activation derivative of S is positive:

S′ =
dS

dx
= cS(1− S) > 0.

An infinitely steep logistic signal function gives rise to a threshold signal
function

S(xn+1) =

⎧⎨
⎩

1, if xn+1 > T,
S(xn), if xn+1 = T,

0, if xn+1 < T,

for an arbitrary real–valued threshold T . The index n indicates the discrete
time step.

In practice signal values are usually binary or bipolar. Binary signals, like
logistic, take values in the unit interval [0, 1]. Bipolar signals are signed; they
take values in the bipolar interval [−1, 1]. Binary and bipolar signals transform
into each other by simple scaling and translation. For example, the bipolar
logistic signal function takes the form

S(x) =
2

1 + e−cx
− 1.

Neurons with bipolar threshold signal functions are called McCulloch–Pits
neurons.

A naturally occurring bipolar signal function is the hyperbolic–tangent sig-
nal function

S(x) = tanh(cx) =
ecx − e−cx

ecx + e−cx
,

with activation derivative

S′ = c(1− S2) > 0.

The threshold linear function is a binary signal function often used to
approximate neuronal firing behavior:

S(x) =

⎧⎨
⎩

1, if cx ≥ 1,
0, if cx < 0,
cx, else,

which we can rewrite as

S(x) = min(1,max(0, cx)).

Between its upper and lower bounds the threshold linear signal function is
trivially monotone increasing, since S′ = c > 0.

Gaussian, or bell–shaped, signal function of the form S(x) = e−cx2
, for

c > 0, represents an important exception to signal monotonicity. Its activation
derivative S′ = −2cxe−cx2

has the sign opposite the sign of the activation x.
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Generalized Gaussian signal functions define potential or radial basis func-
tions Si(xi) given by

Si(x) = exp[− 1
2σ2

i

n∑
j=1

(xj − µi
j)

2],

for input activation vector x = (xi) ∈ R
n, variance σ2

i , and mean vector µi =
(µi

j). Each radial basis function Si defines a spherical receptive field in R
n. The

ith neuron emits unity, or near-unity, signals for sample activation vectors x
that fall in its receptive field. The mean vector µ centers the receptive field in
R

n. The variance σ2
i localizes it. The radius of the Gaussian spherical receptive

field shrinks as the variance σ2
i decreases. The receptive field approaches R

n

as σ2
i approaches ∞.

The signal velocity Ṡ ≡ dS/dt is the signal time derivative, related to the
activation derivative by

Ṡ = S′ẋ,

so it depends explicitly on activation velocity. This is used in unsupervised
learning laws that adapt with locally available information.

The signal S(x) induced by the activation x represents the neuron’s firing
frequency of action potentials, or pulses, in a sampling interval. The firing
frequency equals the average number of pulses emitted in a sampling interval.

Short–term memory is modelled by activation dynamics, and long–term
memory is modelled by learning dynamics. The overall neural network behaves
as an adaptive filter (see [Hay91]).

In the simplest and most common case, neurons are not topologically
ordered. They are related only by the synaptic connections between them.
Kohonen calls this lack of topological structure in a field of neurons the zeroth–
order topology. This suggests that ANN–models are abstractions, not descrip-
tions of the brain neural networks, in which order does matter.

Basic Activation and Learning Dynamics

One of the oldest continuous training methods, based on Hebb’s biological
synaptic learning [Heb49], is Oja–Hebb learning rule [Oja82], which calculates
the weight update according to the ODE

ω̇i(t) = O(t) [Ii(t)−O(t)ωi(t)],

where O(t) is the output of a simple, linear processing element; Ii(t) are the
inputs; and ωi(t) are the synaptic weights.

Related to the Oja–Hebb rule is a special matrix of synaptic weights called
Karhunen–Loeve covariance matrix W (KL), with entries

Wij =
1
N
ωµ

i ω
µ
j , (summing over µ)
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where N is the number of vectors, and ωµ
i is the ith component of the µth

vector. The KL matrix extracts the principal components, or directions of
maximum information (correlation) from a dataset.

In general, continuous ANNs are temporal dynamical systems. They have
two coupled dynamics: activation and learning. First, a general system of
coupled ODEs for the output of the ith processing element (PE) xi, called
the activation dynamics, can be written as

ẋi = gi(xi,net
i

), (1.19)

with the net input to the ith PE xi given by neti = ωijx
j .

For example,
ẋi = −xi + fi(net

i
),

where fi is called output, or activation, function. We apply some input values
to the PE so that neti > 0. If the inputs remain for a sufficiently long time,
the output value will reach an equilibrium value, when ẋi = 0, given by
xi = fi(neti). Once the unit has a nonzero output value, removal of the
inputs will cause the output to return to zero. If neti = 0, then ẋi = −xi,
which means that x→ 0.

Second, a general system of coupled ODEs for the update of the synaptic
weights ωij , i.e, learning dynamics, can be written as a generalization of the
Oja–Hebb rule, i.e..

ω̇ij = Gi(ωij , x
i, xi),

where Gi represents the learning law ; the learning process consists of finding
weights that encode the knowledge that we want the system to learn. For
most realistic systems, it is not easy to determine a closed–form solution for
this system of equations, so the approximative solutions are usually enough.

Standard Models of Continuous Nets

Hopfield Continuous Net

One of the first physically–based ANNs was developed by J. Hopfield. He
first made a discrete, Ising–spin based network in [Hop82], and later gener-
alized it to the continuous, graded–response network in [Hop84], which we
briefly describe here. Later we will give full description of Hopfield models.
Let neti = ui – the net input to the ith PE, biologically representing the
summed action potentials at the axon hillock of a neuron. The PE output
function is

vi = gi(λui) =
1
2
(1 + tanh(λui)),

where λ is a constant called the gain parameter. The network is described as
a transient RC circuit

Ciu̇i = Tijvj −
ui

Ri
+ Ii, (1.20)
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where Ii, Ri and Ci are inputs (currents), resistances and capacitances, and
Tij are synaptic weights.

The Hamiltonian energy function corresponding to (1.20) is given as

H = −1
2
Tijvivj +

1
λ

1
Ri

∫ vi

0

g−1
i (v) dv − Iivi, (j 	= i) (1.21)

which is a generalization of a discrete, Ising–spin Hopfield network with energy
function

E = −1
2
ωijx

ixj , (j 	= i).

where g−1
i (v) = u is the inverse of the function v = g(u). To show that (1.21)

is an appropriate Lyapunov function for the system, we shall take its time
derivative assuming Tij are symmetric:

Ḣ = −v̇i(Tijvj −
ui

Ri
+ Ii) = −Civ̇iu̇i = −Civ̇

2
i

∂g−1
i (vi)
∂vi

. (1.22)

All the factors in the summation (1.22) are positive, so Ḣ must decrease as
the system evolves, until it eventually reaches the stable configuration, where
Ḣ = v̇i = 0.

Hecht–Nielsen Counterpropagation Net

Hecht–Nielsen counterpropagation network (CPN) is a full–connectivity,
graded–response generalization of the standard BP algorithm (see [Hec87,
Hec90]). The outputs of the PEs in CPN are governed by the set of ODEs

ẋi = −Axi + (B − xi)Ii − xi
∑
j �=i

Ij ,

where 0 < xi(0) < B, and A,B > 0. Each PE receives a net excitation (on–
center) of (B − xi)Ii from its corresponding input value, I. The addition of
inhibitory connections (off–surround), −xiIj , from other units is responsible
for preventing the activity of the processing element from rising in proportion
to the absolute pattern intensity, Ii. Once an input pattern is applied, the
PEs quickly reach an equilibrium state (ẋi = 0) with

xi = Θi
BIi
A+ Ii

,

with the normalized reflectance pattern Θi = Ii (
∑

i Ii)
−1, such that∑

iΘi = 1.
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Competitive Net

Activation dynamics is governed by the ODEs

ẋi = −Axi + (B − xi)[f(xi) + net
i

]− xi

⎡
⎣∑

j �=i

f(xj) +
∑
j �=i

netj

⎤
⎦ ,

where A,B > 0 and f(xi) is an output function.

Kohonen’s Continuous SOM and Adaptive Robotics Control

Kohonen continuous self organizing map (SOM) is actually the original
Kohonen model of the biological neural process (see [Koh88]). SOM activation
dynamics is governed by

ẋi = −ri(xi) + net
i

+zijxj , (1.23)

where the function ri(xi) is a general form of a loss term, while the final term
models the lateral interactions between units (the sum extends over all units
in the system). If zij takes the form of the Mexican–hat function, then the
network will exhibit a bubble of activity around the unit with the largest value
of net input.

SOM learning dynamics is governed by

ω̇ij = α(t)(Ii − ωij)U(xi),

where α(t) is the learning momentum, while the function U(xi) = 0 unless
xi > 0 in which case U(xi) = 1, ensuring that only those units with positive
activity participate in the learning process.

Kohonen’s continuous SOM (1.23–1.2.2) is widely used in adaptive robotics
control. Having an n−segment robot arm with n chained SO(2)−joints, for
a particular initial position x and desired velocity ẋj

desir of the end–effector,
the required torques Ti in the joints can be found as

Ti = aij ẋ
j
desir,

where the inertia matrix aij = aij(x) is learned using SOM.

Adaptive Resonance Theory

Principles derived from an analysis of experimental literatures in vision,
speech, cortical development, and reinforcement learning, including atten-
tional blocking and cognitive–emotional interactions, led to the introduction
of S. Grossberg’s adaptive resonance theory (ART) as a theory of human cog-
nitive information processing (see [CG03]). The theory has evolved as a series
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of real–time neural network models that perform unsupervised and super-
vised learning, pattern recognition, and prediction. Models of unsupervised
learning include ART1, for binary input patterns, and fuzzy–ART and ART2,
for analog input patterns [Gro82, CG03]. ARTMAP models combine two un-
supervised modules to carry out supervised learning. Many variations of the
basic supervised and unsupervised networks have since been adapted for tech-
nological applications and biological analyzes.

A central feature of all ART systems is a pattern matching process that
compares an external input with the internal memory of an active code. ART
matching leads either to a resonant state, which persists long enough to permit
learning, or to a parallel memory search. If the search ends at an established
code, the memory representation may either remain the same or incorporate
new information from matched portions of the current input. If the search
ends at a new code, the memory representation learns the current input. This
match–based learning process is the foundation of ART code stability. Match–
based learning allows memories to change only when input from the external
world is close enough to internal expectations, or when something completely
new occurs. This feature makes ART systems well suited to problems that
require on–line learning of large and evolving databases (see [CG03]).

Many ART applications use fast learning, whereby adaptive weights con-
verge to equilibrium in response to each input pattern. Fast learning enables a
system to adapt quickly to inputs that occur rarely but that may require im-
mediate accurate recall. Remembering details of an exciting movie is a typical
example of learning on one trial. Fast learning creates memories that depend
upon the order of input presentation. Many ART applications exploit this
feature to improve accuracy by voting across several trained networks, with
voters providing a measure of confidence in each prediction.

Match–based learning is complementary to error–based learning, which re-
sponds to a mismatch by changing memories so as to reduce the difference
between a target output and an actual output, rather than by searching for
a better match. Error–based learning is naturally suited to problems such as
adaptive control and the learning of sensory–motor maps, which require ongo-
ing adaptation to present statistics. Neural networks that employ error–based
learning include backpropagation and other multilayer perceptrons (MLPs).

Activation dynamics of ART2 is governed by the ODEs [Gro82, CG03]

εẋi = −Axi + (1−Bxi)I+i − (C +Dxi)I−i ,

where ε is the ‘small parameter’, I+i and I−i are excitatory and inhibitory
inputs to the ith unit, respectively, and A,B,C,D > 0 are parameters.

General Cohen–Grossberg activation equations have the form:

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk], (j = 1, . . . , N), (1.24)
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and the Cohen–Grossberg theorem ensures the global stability of the system
(1.24). If

aj = 1/Cj , bj = vj/Rj − Ij , fj(vj) = uj ,

and constant mij = mji = Tji, the system (1.24) reduces to the Hopfield
circuit model (1.20).

ART and distributed ART (dART) systems are part of a growing fam-
ily of self–organizing network models that feature attentional feedback and
stable code learning. Areas of technological application include industrial
design and manufacturing, the control of mobile robots, face recognition,
remote sensing land cover classification, target recognition, medical diagno-
sis, electrocardiogram analysis, signature verification, tool failure monitor-
ing, chemical analysis, circuit design, protein/DNA analysis, 3D visual object
recognition, musical analysis, and seismic, sonar, and radar recognition. ART
principles have further helped explain parametric behavioral and brain data in
the areas of visual perception, object recognition, auditory source identifica-
tion, variable–rate speech and word recognition, and adaptive sensory–motor
control (see [CG03]).

Spatiotemporal Networks

In spatiotemporal networks, activation dynamics is governed by the ODEs

ẋi = A(−axi + b[Ii − Γ ]+),
Γ̇ = α(S − T ) + βṠ, with

[u]+ =
{
u if u > 0
0 if u ≤ 0 ,

A(u) =
{
u if u > 0
cu if u ≤ 0 .

where a, b, α, β > 0 are parameters, T > 0 is the power–level target, S =
∑

i x
i,

and A(u) is called the attack function.
Learning dynamics is given by differential Hebbian law

ω̇ij = (−cωij + dxixj)U(ẋi)U(−ẋj), with

U(s) =
{

1 if s > 0
0 if s ≤ 0 where c, d > 0 are constants.

Fuzzy Systems

Recall that fuzzy expert systems are based on fuzzy logic (FL), which is it-
self derived from fuzzy set theory dealing with reasoning that is approximate
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rather than precisely deduced from classical predicate logic.150 FL, introduced
in 1965 by Prof. Lotfi Zadeh at the University of California, Berkeley, can be
thought of as the application side of fuzzy set theory dealing with well thought
out real world expert values for a complex problem.151 FL allows for set mem-
bership values between and including 0 and 1, shades of gray as well as black
and white, and in its linguistic form, imprecise concepts like ‘slightly’, ‘quite’
and ‘very’. Specifically, it allows partial membership in a set. It is related to
fuzzy sets and possibility theory.

150 Recall that predicate or propositional logic (PL) is a system for evaluating the
validity of arguments by encoding them into sentential variables and boolean
operator and is part of the philosophy of formal logic. The actual truth of the
premises is not particularly relevant in PL; it is dealing mostly with the structure
of an argument so that if it so happens that the premises are true, the conclusion
either must be true, or could perhaps be false. If it is demonstrable that the
conclusion must be true then the original argument can be said to be valid.
However, if it is possible for all of the premises to be true, and yet still have a
false conclusion, the sequent is invalid. In an ordinary PL, there is one unitary
operator, four binary operators and two quantifiers. The only unary operator
in PL is the negation, usually denoted by ¬P , which is the opposite of the
predicate (i.e., Boolean variable) P . The binary operators are: (i) conjunction
∧, which is true iff both of the Boolean conjuncts are true; (ii) disjunction
∨, which is false iff both of the Boolean disjuncts are false; (iii) implication
(or, conditional), meaning, if P then Q, and denoted P =⇒ Q, where P is
antecedent and Q is consequent ; implication is false only iff from true P follows
false Q; (iv) equivalence, or bi–conditional is a double–sided implication, (P =⇒
Q)∧ (Q =⇒ P ); it is false iff from true P follows false Q and from true Q follows
false P . Besides, PL also has the universal quantifier ∀, meaning ‘for al’, and the
existential quantifier ∃, meaning ‘there is’.

151 Note that degrees of truth in fuzzy logic are often confused with probabilities.
However, they are conceptually distinct; fuzzy truth represents membership in
vaguely defined sets, not likelihood of some event or condition. To illustrate the
difference, consider this scenario: Bob is in a house with two adjacent rooms:
the kitchen and the dining room. In many cases, Bob’s status within the set of
things ‘in the kitchen’ is completely plain: he’s either ‘in the kitchen’ or ‘not in
the kitchen’. What about when Bob stands in the doorway? He may be consid-
ered ‘partially in the kitchen’. Quantifying this partial state yields a fuzzy set
membership. With only his big toe in the dining room, we might say Bob is
99% ‘in the kitchen’ and 1% ‘in the dining room’, for instance. No event (like
a coin toss) will resolve Bob to being completely ‘in the kitchen’ or ‘not in the
kitchen’, as long as he’s standing in that doorway. Fuzzy sets are based on vague
definitions of sets, not randomness. Fuzzy logic is controversial in some circles,
despite wide acceptance and a broad track record of successful applications. It
is rejected by some control engineers for validation and other reasons, and by
some statisticians who hold that probability is the only rigorous mathematical
description of uncertainty. Critics also argue that it cannot be a superset of ordi-
nary set theory since membership functions are defined in terms of conventional
sets.
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‘Fuzzy Thinking’

‘There is no logic in logic’, pronounced the father of fuzzy logic, Lotfi Zadeh.
His cryptic play–on–words, he explained, means that the kind of logic that
people use to solve most real world problems rather than the artificial prob-
lems for which mathematical solutions are available is not the kind of logic
that engineers are taught in school. ‘An engineer can solve problems through-
out his whole career without ever needing to resort to the brand of logic he
was trained in’, said Zadeh. ‘Why? Because all people, even engineers, com-
pute with words not the logical symbols taught in school’, Zadeh maintained.
‘In the future, computing will be done with words from natural languages,
rather than with symbols that are far removed from daily life.’

In 1973, Zadeh proposed the concept of linguistic or fuzzy variables
[Zad65, Zad78, Yag87]. Think of them as linguistic objects or words, rather
than numbers. The sensor input is a noun, e.g., temperature, displacement,
velocity, ow, pressure, etc. Since error is just the difference, it can be thought
of the same way. The fuzzy variables themselves are adjectives that modify
the variable (e.g., large positive error, small positive error, zero error, small
negative error, and large negative error). As a minimum, one could simply
have positive, zero, and negative variables for each of the parameters.

Additional ranges such as very large and very small could also be added
to extend the responsiveness to exceptional or very nonlinear conditions, but
are not necessary in a basic system. Normal logic is just not up to modelling
the real world, claims Bart Kosko [Kos92, Kos93, Kos96, Kos99], perhaps
the worlds most active proponent of fuzzy logic. According to Kosko, there
is always ambiguity in our perceptions and measurements that is difficult
to reflect in traditional logic. Probability attempts to reflect ambiguity by
resorting to statistical averages over many events. But fuzzy theory describes
the ambiguity of individual events. It measures the degree to which an event
occurs, not whether it occurs.

Fuzzy Sets

Recall that a crisp (ordinary mathematical) set X is defined by a binary
characteristic function χX(x) of its elements x

χX(x) =
{

1, if x ∈ X,
0, if x /∈ X,

while a fuzzy set is defined by a continuous characteristic function

χX(x) = [0, 1] ,

including all (possible) real values between the two crisp extremes 1 and 0,
and including them as special cases.
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More precisely, a fuzzy set X is defined as a collection of ordered pairs

X = {(x, µ(x))}, (1.25)

where µ(x) is the fuzzy membership function representing the grade of mem-
bership of the element x in the set X. A single pair is called a fuzzy singleton.

Lotfi Zadeh claimed that many sets in the world that surrounds us are
defined by a non-distinct boundary. Indeed, the set of high mountains is an
example of such sets. Zadeh decided to extend two–valued logic, defined by the
binary pair {0, 1} to the whole continuous interval [0, 1] thereby introducing a
gradual transition from falsehood to truth. The original and pioneering papers
on fuzzy sets by Zadeh [Zad65, Zad78, Yag87] explain the theory of fuzzy sets
that result from the extension as well as a fuzzy logic based on the set theory.

Fuzzy sets are a further development of the mathematical concept of a
set. Sets were first studied formally by German mathematician Georg Cantor
(1845–1918). His theory of sets met much resistance during his lifetime, but
nowadays most mathematicians believe it is possible to express most, if not all,
of mathematics in the language of set theory. Many researchers are looking at
the consequences of ‘fuzzifying’ set theory, and much mathematical literature
is the result.

Conventional sets. A set is any collection of objects which can be treated
as a whole. Cantor described a set by its members, such that an item from
a given universe is either a member or not. Almost anything called a set in
ordinary conversation is an acceptable set in the mathematical sense. A set
can be specified by its members, they characterize a set completely. The list
of members A = {0, 1, 2, 3} specifies a finite set. Nobody can list all elements
of an infinite set , we must instead state some property which characterizes
the elements in the set, for instance the predicate x > 10. That set is defined
by the elements of the universe of discourse which make the predicate true.
So there are two ways to describe a set: explicitly in a list or implicitly with
a predicate.

Fuzzy sets. Following Zadeh many sets have more than an Either–Or crite-
rion for membership. Take for example the set of young people. A one year
old baby will clearly be a member of the set, and a 100 years old person will
not be a member of this set, but what about people at the age of 20, 30, or
40 years? Another example is a weather report regarding high temperatures,
strong winds, or nice days. In other cases a criterion appears nonfuzzy, but
is perceived as fuzzy: a speed limit of 60 kilometers per hour, a check–out
time at 12 noon in a hotel, a 50 years old man. Zadeh proposed a grade of
membership, such that the transition from membership to non–membership
is gradual rather than abrupt.

The grade of membership for all its members thus describes a fuzzy set.
An item’s grade of membership is normally a real number between 0 and 1,
often denoted by the Greek letter µ. The higher the number, the higher the
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membership. Zadeh regards Cantor’s set as a special case where elements have
full membership, i.e., µ = 1. He nevertheless called Cantor’s sets nonfuzzy ;
today the term crisp set is used, which avoids that little dilemma.

The membership for a 50 year old in the set young depends on one’s
own view. The grade of membership is a precise, but subjective measure that
depends on the context.

A fuzzy membership function is different from a statistical probability
distribution. A possible event does not imply that it is probable. However, if
it is probable it must also be possible. We might view a fuzzy membership
function as our personal distribution, in contrast with a statistical distribution
based on observations.

Universe of discourse. Elements of a fuzzy set are taken from a universe of
discourse. It contains all elements that can come into consideration. Even the
universe of discourse depends on the context. An application of the universe
is to suppress faulty measurement data. In case we are dealing with a non–
numerical quantity, for instance taste, which cannot be measured against a
numerical scale, we cannot use a numerical universe. The elements are then
said to be taken from a psychological continuum.

Membership Functions. Every element in the universe of discourse is a
member of the fuzzy set to some grade, maybe even zero. The set of elements
that have a non–zero membership is called the support of the fuzzy set. The
function that ties a number to each element xof the universe is called the
membership function.

Continuous and discrete representations. There are two alternative ways
to represent a membership function in a computer: continuous or discrete. In
the continuous form the membership function is a mathematical function,
possibly a program. A membership function is for example bell-shaped (also
called a π−curve), s−shaped (called an s−curve), a reverse s−curve (called
z−curve), triangular, or trapezoidal. In the discrete form the membership
function and the universe are discrete points in a list (vector). Sometimes it
can be more convenient with a sampled (discrete) representation. As a very
crude rule of thumb, the continuous form is more CPU intensive, but less
storage demanding than the discrete form.

Normalization. A fuzzy set is normalized if its largest membership value
equals 1. We normalize by dividing each membership value by the largest
membership in the set, a/max(a).

Singletons. Strictly speaking, a fuzzy set A is a collection of ordered pairs:
A = {(x, µ(x))}.

Item x belongs to the universe and µ(x) is its grade of membership in A.
A single pair (x, µ(x)) is called a fuzzy singleton; thus the whole set can be
viewed as the union of its constituent singletons.
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Linguistic variables. Just like an algebraic variable takes numbers as values,
a linguistic variable takes words or sentences as values [Yag87, Kos92]. The
set of values that it can take is called its term set . Each value in the term set
is a fuzzy variable defined over a base variable. The base variable defines the
universe of discourse for all the fuzzy variables in the term set. In short, the
hierarchy is as follows:

linguistic variable → fuzzy variable → base variable.

Primary terms. A primary term is a term or a set that must be defined
a priori, for example Young and Old, whereas the sets Very Young and Not
Young are modified sets.

Fuzzy set operations. A fuzzy set operation creates a new set from one or
several given sets.

Let A and B be fuzzy sets on a mutual universe of discourse X. If these
were ordinary (crisp) sets, we would have the following definitions:

The intersection of A and B is: A ∩ B ≡ min{A,B}, where min is an
item–by–item minimum operation.

The union of A and B is: A∪B ≡ max{A,B}, where max is an item–by–
item maximum operation.

The complement of A is: ¬A ≡ 1− A, where in a each membership value
is subtracted from 1.

However, as A and B are fuzzy sets, the following definitions are more
appropriate:

The intersection of A and B is: A∩B ≡ min{µA(X), µB(X)}, where min
is an item–by–item minimum operation.

The union of A and B is: A∪B ≡ max{µA(X), µB(X)}, where max is an
item–by–item maximum operation.

The complement of A is: ¬A ≡ 1 − µA(X), where in a each membership
value is subtracted from 1.

Fuzzy Example

Using fuzzy membership functions µ(x), we can express both physical and
non–physical quantities (e.g., temperature, see Figure 1.29) using linguistic
variables.

Various logical combinations of such linguistic variables leads to the con-
cept of fuzzy–logic control. Recall that basic logical operations AND, OR,
NOT are defined as:

AND : C ∩W − intersection of crisp sets C,W,

OR : C ∪W − union of crisp sets C,W,

NOT : ¬C − complement of a crisp set C.
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Fig. 1.29. Fuzzy–set description of cold (C) and warm (W ) temperature (T ),
using the membership functions µC(T ) and µW (T ), respectively. For example, fuzzy
answers to the questions “How cold is 15◦?” and “How warm is 15◦?” are given by:
“15◦ is quite cold as µC(15) = 2/3” and “15◦ is not really warm as µW (15) = 1/3”,
respectively.

The corresponding fuzzy–logic operations are defined as:

AND : µC∩W (T ) = min{µC(T ), µW (T )},
OR : µC∪W (T ) = max{µC(T ), µW (T )},

NOT : µ¬C(T ) = 1− µC(T ).

Fuzziness of the Real World

The real world consists of all subsets of the universe and the only subsets that
are not fuzzy are the constructs of classical mathematics.

From small errors to satisfied customers to safe investments to noisy sig-
nals to charged particles, each element of the real world is in some measure
fuzzy. For instance, satisfied customers can be somewhat unsatisfied, safe in-
vestments somewhat unsafe and so on. What is worse, most events more or
less smoothly transition into their opposites, making classification difficult
near the midpoint of the transition. Unfortunately, textbook events and their
opposites are crisp, unlike the real world. Take the proposition that there is a
50% chance that an apple is in the refrigerator. That is an assertion of crisp
logic. But suppose upon investigation it is found that there is half an apple
in the refrigerator, that is fuzzy.

But regardless of the realities, the crisp logic in vogue today assumes that
the world is really unambiguous and that the only uncertainty is the result of
random samples from large sets. As the facts about these large sets become
better known, the randomness supposedly dissipates, so that if science had
access to all the facts, it would disappear. Unfortunately, if all the facts were
in, a platypus would remain only roughly an mammal.

On the other hand, fuzzy logic holds that uncertainty is deterministic and
does not dissipate as more elements of a set are examined. Take an ellipse, for
instance. It is approximately a circle, to whatever degree that it resembles a
perfect circle. There is nothing random about it. No matter how precisely it
is measured it remains only approximately a circle. All the facts are in and
yet uncertainty remains.
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Traditional crisp logic has a difficult time applying itself to very large sets,
since probability fades to unity, as well as to individual events where prob-
abilities cannot be defined at all. Nevertheless, crisp logic continues to rein
supreme based on long standing western traditions that maintain that ratio-
nality would vanish if there were not crisp logical ideals to which we should
aspire. These laws of (rational) thought were first characterized by Aristotle
as the principle of non-contradiction and the principle of the excluded middle.
The principle of non-contradiction, stated in words, says that nothing can be
both A and ¬A. The law of the excluded middle says that anything must be
either A or ¬A.

‘Fuzziness is the denial of both these so–called laws’, says E. Cox [Cox92,
Cox94]). The classical example is of a platypus which both is and is not a
mammal. In such individual cases, even appending probability theory to crisp
logic cannot resolve the paradox. For instance, take the now classical paradox
formulated by B. Russell: If a barber shaves everyone in a village who does
not shave himself, then who shaves the barber? This paradox was devised
to assault G. Cantor’s set theory as the foundation for G. Boole’s digital
logic. It has been restated in many forms, such as the liar from Crete who
said that all Creatans are liars. Russell solved it by merely disqualifying such
self–referential statements in his set theory. Probability theory solves it by
assuming a population of barbers 50% of whom do, and 50% of whom do
not, shave themselves. But fuzzy logic solves it by assigning to this individual
barber a 50% membership value in the set self-shaving barbers. Further, it
shows that there is a whole spectrum of other situations that are less fuzzy
and which correspond to other degrees of set membership. Such as, barbers
who shave themselves 70% of the time.

Kosko illustrates these various degrees of ambiguity by geometrically plot-
ting various degrees of set membership inside a unit fuzzy hypercube [0, 1]n

[Kos92, Kos93, Kos96, Kos99]. This sets–as–points approach holds that a fuzzy
set is a point in a unit hypercube and a non–fuzzy set is a corner of the hyper-
cube. Normal engineering practice often visualizes binary logical values as the
corners of a hypercube, but only fuzzy theory uses the inside of the cube. Fuzzy
logic is a natural filling–in of traditional set theory. Any engineer will recog-
nize the 3D representation of all possible combinations three Boolean values:
{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}, which
correspond to the corners of the unit hypercube. But fuzzy logic also al-
lows any other fractional values inside the hypercube, such as {0.5, 0.7, 0.3}
corresponding to degrees of set membership.

Fuzzy logic holds that any point inside the unit hypercube is a fuzzy set
with Russell’s paradox located at the point of maximum ambiguity in the
center of the hypercube.

Fuzzy Entropy

Degrees of fuzziness are referred to as entropy by Kosko. Fuzzy mutual entropy
measures the ambiguity of a situation, information and entropy are inversely
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related – if you have a maximum–entropy solution, then you have a minimum–
information solution, and visa versa, according to Kosko. But minimum–
information does not mean that too little information is being used. On the
contrary, the principle of maximum entropy ensures that only the relevant
information is being used.

This idea of maximizing entropy, according to Kosko, is present through-
out the sciences, although it is called by different names. ‘From the quantum
level up to astrophysics or anywhere in–between for pattern recognition, you
want to use all and only the available information,’ Kosko claims. This emer-
gent model proposes that scientists and engineers estimate the uncertainty
structure of a given environment and maximize the entropy relative to the
known information, similar to the Lagrange technique in mathematics. The
principle of maximum entropy states that any other technique has to be bi-
ased, because it has less entropy and thus uses more information than is really
available.

Fuzzy theory provides a measure of this entropy factor. It measures ambi-
guity with operations of union ∪, intersection ∩ and complement ¬.

In traditional logic, these three operators are used to define a set of ax-
ioms that were proposed by Aristotle to be the immutable laws of (rational)
thought, namely, the principle of non–contradiction and the principle of the
excluded middle. The principle of non–contradiction, that nothing can be both
A and ¬A, and the law of the excluded middle, that anything must be either
A or ¬A, amounts to saying that the intersection of a set and its comple-
ment is always empty and that the union of a set and its complement always
equals the whole universe of discourse, respectively. But if we do not know A
with certainty, then we do not know −A with certainty either, else by dou-
ble negation we would know A with certainty. This produces non–degenerate
overlap (A ∩ ¬A), which breaks the law of non–contradiction. Equivalently,
it also produced non–degenerate underlap (A ∪ ¬A) which breaks the law of
the excluded middle. In fuzzy logic both these so–called laws are denied. A
set and its complement can both be overlap and underlap.

What is worse, there is usually ambiguity in more than one parameter
or dimension of a problem. To represent multi–dimensional ambiguity, Kosko
shows fuzzy entropy geometrically with a hypercube.

All these relationships are needed in fuzzy logic to express its basic struc-
tures for addition, multiplication, and most important, implication IF ⇒
THEN . They all follow from the subsethood relationships between fuzzy
sets. The subset relation by itself, corresponds to the implication relation in
crisp logic. For instance, A⇒ B is false only if the antecedent A is true and
the consequent B is false. The same holds for subsets, A is a subset of B if
there is no element that belongs to A but not to B.

But in fuzzy logic, degrees of subsethood permit some A to be somewhat
of a subset of B even though some of its elements are not elements of B. The
degree to which A is a subset of B can be measured as the distance from the
origin to (A ∩B) divided by the distance from the origin to A.
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This structure is derived as a theorem of fuzzy logic, whereas for proba-
bility theory equivalent conditional probability theorem has to be assumed,
making fuzzy logic a more fundamental.

The fuzzy mutual entropy measures how close a fuzzy description of the
world is to its own opposite [Kos99]. It has no random analogue in general.
The fuzzy fluid leads to a type of wave equation. The wave shows how the
extended Shannon entropy potential S : [0, 1]n → R, defined on the entire
fuzzy cube [0, 1]n, fluctuates in time. It has the form of a reaction–diffusion
equation

Ṡ = −c∇2S, (1.26)

where c is the fuzzy diffusion parameter . The fuzzy wave equation (1.26)
implies Ṡ > 0, and thus resembles the entropy increase of the S−theorem
of the Second Law of thermodynamics.

Similar equations occur in all branches of science and engineering. The
Schrödinger wave equation (see [II06a, II06b]) has this form, as well as most
models of diffusion. The fuzzy wave equation (1.26) assumes only that inform-
ation is conserved. The total amount of information is fixed and we do not
create or destroy information. Some form of the wave equation would still
apply if information were conserved locally or in small regions of system space.
The space itself is a fuzzy cube of high dimension. It has as many dimensions
as there are objects of interest. The Shannon entropy S changes at each point
in this cube and defines a fuzzy wave. The obvious result is that the entropy
S can only grow in time in the spirit of the second law.

The entropy always grows but its rate of growth depends on the system’s
position in the fuzzy parameter space. A deeper result is that entropy changes
slowest at the fuzzy cube midpoint of maximum fuzz. That is the only point
in the cube where the fuzzy description equals its own opposite. The Shannon
entropy wave grows faster and faster away from the cube midpoint and near
its skin. The skin or surface of the fuzzy cube is the only place where a 0 or 1
appears in the system description. The fuzzy wave equation (1.26) shows that
the entropy S changes infinitely fast iff it touches the cubes’s skin. However,
this is impossible in a universe with finite bounds on velocity like the speed
of light. So, the result is never a bit – it is always a fit [Kos99].

Fuzzy Patches for System Modelling

Like ANNs, the fuzzy logic systems are generic function approximators
[Kos92]. Namely, fuzzy system modelling is performed as a nonlinear function
approximation using the so–called fuzzy patches (see Figure 1.30), which ap-
proximate the given function y = f(x), i.e., the system input–output relation.
The fuzzy patches Ri are given by a set of canonical fuzzy IF–THEN rules:
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Fig. 1.30. Fuzzy–logic approximation y = ffuz(x) of an arbitrary function y = f(x)
using fuzzy patches Ri given by a set of canonical fuzzy IF–THEN rules.

R1 : IF x is A1 THEN y is R1,

R2 : IF x is A2 THEN y is R2,

...
Rn : IF x is An THEN y is Rn.

Fuzzy Inference Engine

In the realm of fuzzy logic the above generic nonlinear function approximation
is performed by means of fuzzy inference engine. The fuzzy inference engine
is an input–output dynamical system which maps a set of input linguistic
variables (IF−part) into a set of output linguistic variables (THEN−part).
It has three sequential modules (see Figure 1.31):

1. Fuzzification; in this module numerical crisp input variables are fuzzified;
this is performed as an overlapping partition of their universes of discourse
by means of fuzzy membership functions µ(x) (1.25), which can have
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Fig. 1.31. Basic structure of the fuzzy inference engine.

Fig. 1.32. Fuzzification example: set of triangular–trapezoidal membership func-
tions partitioning the universe of discourse for the angle of the hypothetical steering
wheel; notice the white overlapping triangles.

various shapes, like triangular–trapezoidal (see Figure 1.32), Gaussian–
bell, µ(x) = exp

[
−(x−m)2

2σ2

]
(with mean m and standard deviation σ),

sigmoid µ(x) =
[
1 +
(

x−m
σ

)2]−1

, or some other shapes.
B. Kosko and his students have done extensive computer simulations look-
ing for the best shape of fuzzy sets to model a known test system as closely
as possible. They let fuzzy sets of all shapes and sizes compete against
each other. They also let neural systems tune the fuzzy–set curves to im-
prove how well they model the test system. The main conclusion from
these experiments is that ‘triangles never do well’ in such contests. Sup-
pose we want an adaptive fuzzy system F : R

n → R to approximate a test
function (or, approximand) f : R

n → R as closely as possible in the sense
of minimizing the mean–squared error between them,

(
‖f − F‖2

)
. Then

the ith scalar ‘sinc’ function (as commonly used in signal processing),

µi(x) =
sin
(

x−mi

di

)
x−mi

di

, (i = 1, . . . , n), (1.27)
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with center mi and dispersion (width) di = σ2
i > 0, often gives the best

performance for IF−part mean–squared function approximation, even
though this generalized function can take on negative values (see [Kos99]).

2. Inference; this module has two submodules:
(i) The expert–knowledge base consisting of a set of IF − THEN rules
relating input and output variables, and
(ii) The inference method, or implication operator, that actually combines
the rules to give the fuzzy output; the most common is Mamdani Min–
Max inference, in which the membership functions for input variables are
first combined inside the IF − THEN rules using AND (∩, or Min)
operator, and then the output fuzzy sets from different IF −THEN rules
are combined using OR (∪, or Max) operator to get the common fuzzy
output (see Figure 1.33).

3. Defuzzification; in this module fuzzy outputs from the inference module
are converted to numerical crisp values; this is achieved by one of the sev-
eral defuzzification algorithms; the most common is the Center of Gravity
method, in which the crisp output value is calculated as the abscissa under
the center of gravity of the output fuzzy set (see Figure 1.33).

In more complex technical applications of general function approxima-
tion (like in complex control systems, signal and image processing, etc.), two
optional blocks are usually added to the fuzzy inference engine [Kos92, Kos96,
Lee90]:

(0) Preprocessor, preceding the fuzzification module, performing various
kinds of normalization, scaling, filtering, averaging, differentiation or integra-
tion of input data; and

Fig. 1.33. Mamdani’s Min–Max inference method and Center of Gravity defuzzifi-
cation.
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(4) Postprocessor, succeeding the defuzzification module, performing the
analog operations on output data.

Common fuzzy systems have a simple feedforward mathematical structure,
the so–called Standard Additive Model (SAM), which aids the spread of ap-
plications. Almost all applied fuzzy systems use some form of SAM, and some
SAMs in turn resemble the ANN models (see [Kos99]).

In particular, an additive fuzzy system F : R
n → R

p stores m rules of
the patch form Ai × Bi ⊂ R

n × R
p, or of the word form ‘If X = Ai Then

Y = Bi’ and adds the ‘fired’ Then–parts B
′

i(x) to give the output set B(x),
calculated as

B(x) = wiB
′

i(x) = wiµi(x)Bi(x), (i = 1, . . . , n), (1.28)

for a scalar rule weight wi > 0. The factored form B
′

i(x) = µi(x)Bi(x)
makes the additive system (1.28) a SAM system. The fuzzy system F com-
putes its output F (x) by taking the centroid of the output set B(x): F (x) =
Centroid(B(x)). The SAM theorem then gives the centroid as a simple ratio,

F (x) = pi(x)ci, (i = 1, . . . , n),

where the convex coefficients or discrete probability weights pi(x) depend on
the input x through the ratios

pi(x) =
wiµi(x)Vi

wkµk(x)Vk
, (i = 1, . . . , n). (1.29)

Vi is the finite positive volume (or area if p = 1 in the codomain space R
p)

[Kos99],

Vi =
∫

Rp

bi(y1, . . . , yp)dy1...dyp > 0,

and ci is the centroid of the Then–part set Bi(x),

ci =

∫
Rp y bi(y1, . . . , yp)dy1...dyp∫
Rp bi(y1, . . . , yp)dy1...dyp

.

Fuzzy Logic Control

The most common and straightforward applications of fuzzy logic are in the
domain of nonlinear control [Kos92, Kos96, Lee90, DSS96]. Fuzzy control is
a nonlinear control method based on fuzzy logic. Just as fuzzy logic can be
described simply as computing with words rather than numbers, fuzzy control
can be described simply as control with sentences rather than differential
equations.

A fuzzy controller is based on the fuzzy inference engine, which acts either
in the feedforward or in the feedback path, or as a supervisor for the conven-
tional PID controller.

A fuzzy controller can work either directly with fuzzified dynamical vari-
ables, like direction, angle, speed, or with their fuzzified errors and rates of
change of errors. In the second case we have rules of the form:



1.2 Artificial and Computational Intelligence 229

1. IF error is Neg AND change in error is Neg THEN output is NB.
2. IF error is Neg AND change in error is Zero THEN output is NM .

The collection of rules is called a rule base. The rules are in IF −
THEN format, and formally the IF−side is called the condition and the
THEN−side is called the conclusion (more often, perhaps, the pair is called
antecedent – consequent). The input value Neg is a linguistic term short for
the word Negative, the output value NB stands for Negative Big and NM
for Negative Medium. The computer is able to execute the rules and com-
pute a control signal depending on the measured inputs error and change in
error.

The rule–base can be also presented in a convenient form of one or several
rule matrices, the so–called FAM−matrices, where FAM is a shortcut for
Kosko’s fuzzy associative memory [Kos92, Kos96]. For example, a 9×9 graded
FAM matrix can be defined in a symmetrical weighted form:

FAM =

⎛
⎜⎜⎜⎜⎝

0.6S4 0.6S4 0.7S3 ... CE
0.6S4 0.7S3 0.7S3 ... 0.9B1
0.7S3 0.7S3 0.8S2 ... 0.9B1

... ... ... ... 0.6B4
CE 0.9B1 0.9B1 ... 0.6B4

⎞
⎟⎟⎟⎟⎠ ,

in which the vector of nine linguistic variables L9 partitioning the universes
of discourse of all three variables (with trapezoidal or Gaussian bell–shaped
membership functions) has the form

L9 = {S4, S3, S2, S1, CE,B1, B2, B3, B4}T ,

to be interpreted as: ‘small 4’, ... , ‘small 1’, ‘center’, ‘big 1’, ... , ‘big 4’. For
example, the left upper entry (1, 1) of the FAM matrix means: IF red is S4
and blue is S4, THEN result is 0.6S4; or, entry (3, 7) means: IF red is S2 and
blue is B2, THEN result is center, etc.

Here we give three design examples for fuzzy controllers, the first one in
detail, and the other two briefly.

Example: Mamdani Fuzzy Controller

The problem is to balance θ a pole of mass m and inertia moment I on a
mobile platform of mass M that can be forced by F to move only (left/right)
along x−axis (see Figure 1.34). This is quite an involved problem for conven-
tional PID controller, based on differential equations of the pole and platform
motion. Instead, we will apply fuzzy linguistic technique called Mamdani in-
ference (see previous subsection).

Firstly, as a fuzzification part, we have to define (subjectively) what high
speed, low speed etc. of the platform M is. This is done by specifying the
membership functions for the fuzzy set partitions of the platform speed uni-
verse of discourse, using the following linguistic variables: (i) negative high
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Fig. 1.34. Problem of balancing an inverted pendulum.

Fig. 1.35. Fuzzy membership functions for speed of the platform.

Fig. 1.36. Fuzzy membership functions for speed of the platform.

(NH), (ii) negative low (NL), (iii) zero (ZE), (iv) positive low (PL), and (v)
positive high (PH) (see Figure 1.35).152

Also, we need to do the same for the angle θ between the platform and
the pendulum and the angular velocity θ̇ of this angle (see Figure 1.36).

Secondly, as an inference part, we give several fuzzy IF–THEN rules that
will tell us what to do in certain situations. Consider for example that the
pole is in the upright position (angle θ is zero) and it does not move (angular
velocity θ̇ is zero). Obviously this is the desired situation, and therefore we
don’t have to do anything (speed is zero). Let us consider also another case: the
pole is in upright position as before but is in motion at low velocity in positive

152 For simplicity, we assume that in the beginning the pole is in a nearly upright
position so that an angle θ greater than, 45 degrees in any direction can never
occur.
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direction. Naturally we would have to compensate the pole’s movement by
moving the platform in the same direction at low speed.

So far we’ve made up two rules that can be put into a more formalized
form like this:

IF angle is zero AND angular velocity is zero THEN speed shall be zero.
IF angle is zero AND angular velocity is positive low THEN speed shall be

positive low.
We can summarize all applicable rules in the following FAM table (see

previous subsection):

| Angle
|

Speed | NH NL ZE PL PH
——————————————————————————–
V NH | NH
e NL | NL ZE
l ZE | NH NL ZE PL PH
o PL | ZE PL
c PH | PH

Now, we are going to define two explicit values for angle and angular
velocity to calculate with. Consider the situation given in Figure 1.37, and let
us apply the following rule:

IF angle is zero AND angular velocity is zero THEN speed is zero
– to the values that we have previously selected (see Figure 1.38)

Only four rules yield a result (rules fire, see Figure 1.39), and we overlap
them into one single result (see Figure 1.40).

Fan: the Temperature Control System

In this simple example, the input linguistic variable is:

temperature error = desired temperature− current temperature.

Fig. 1.37. Actual values for angle θ and angular velocity θ̇.
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Fig. 1.38. Here is the linguistic variable angle θ where we zoom–in on the fuzzy set
zero (ZE) and the actual angle.

Fig. 1.39. Four fuzzy rules firing: (a) the result yielded by the rule: IF angle is zero
AND angular velocity is zero THEN speed is zero; (b) the result yielded by the rule: IF
angle is zero AND angular velocity is negative low THEN speed is negative low; (c) the
result yielded by the rule: IF angle is positive low AND angular velocity is zero THEN
speed is positive low; (d) the result yielded by the rule: IF angle is positive low AND
angular velocity is negative low THEN speed is zero.

Fig. 1.40. Left: Overlapping single–rule results to yield the overall result. Right:
The result of the fuzzy controller so far is a fuzzy set (of speed), so we have to choose
one representative value as the final output; there are several heuristic defuzzification
methods, one of them is to take the center of gravity of the fuzzy set. This is called
Mamdani fuzzy controller .

The two output linguistic variables are:
hot fan speed, and cool fan speed. The universes of discourse, consisting of
membership functions, i.e., overlapping triangular–trapezoidal shaped inter-
vals, for all three variables are:
invar: temperature error = {Negative Big,Negative Medium,

Negative Small, Zero, Positive Small, Positive Medium,Positive Big},
with the range [−110, 110] degrees;
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Fig. 1.41. Truck backer–upper steering control system.

outvars: hot fan speed and
cool fan speed = {zero, low,medium, high, very high}, with the range
[0, 100] rounds–per–meter.

Truck Backer–Upper Steering Control System

In this example there are two input linguistic variables: position and di-
rection of the truck, and one output linguistic variable: steering angle
(see Figure 1.41). The universes of discourse, partitioned by overlapping
triangular–trapezoidal shaped intervals, are defined as:
invars: position = {NL,NS,ZR,PS, PL}, and

direction = {NL,NM,NS,ZR,PS, PM,PL}, where NL denotes Nega-
tive Large, NM is Negative Medium, NS is Negative Small, etc.
outvar: steering angle = {NL,NM,NS,ZR,PS, PM,PL}.

The rule–base is given as:

IF direction is NL, AND position is NL, THEN steering angle is NL;
IF direction is NL, AND position is NS, THEN steering angle is NL;
IF direction is NL, AND position is ZE, THEN steering angle is PL;
IF direction is NL, AND position is PS, THEN steering angle is PL;
IF direction is NL, AND position is PL, THEN steering angle is PL;
IF direction is NM, AND position is NL, THEN steering angle is ZE;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IF direction is PL AND position is PL, THEN steering angle is PL.
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Fig. 1.42. Control surface for the truck backer–upper steering control system.

Fig. 1.43. Neuro–fuzzy inference engine.

The so–called control surface for the truck backer–upper steering control
system is depicted in Figure 1.42.

To distinguish between more and less important rules in the knowledge
base, we can put weights on them. Such weighted knowledge base can be
then trained by means of artificial neural networks. In this way we get hybrid
neuro–fuzzy trainable expert systems.

Another way of the hybrid neuro–fuzzy design is the fuzzy inference engine
such that each module is performed by a layer of hidden artificial neurons,
and ANN–learning capability is provided to enhance the system knowledge
(see Figure 1.43).

Again, the fuzzy control of the BP learning (1.15–1.16) can be implemented
as a set of heuristics in the form of fuzzy IF − THEN rules, for the purpose
of achieving a faster rate of convergence. The heuristics are driven by the
behavior of the instantaneous sum of squared errors.
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Finally, most feedback fuzzy systems are either discrete or continuous gen-
eralized SAMs [Kos99], given respectively by

x(k + 1) = pi(x(k))Bi(x(k)), or ẋ(t) = pi(x(t))Bi(x(t)),

with coefficients pi given by (1.29) above.

General Characteristics of Fuzzy Control

As demonstrated above, fuzzy logic offers several unique features that make
it a particularly good choice for many control problems, among them [Lee90,
DSS96]:

1. It is inherently robust since it does not require precise, noise–free inputs
and can be programmed to fail safely if a feedback sensor quits or is
destroyed. The output control is a smooth control function despite a wide
range of input variations.

2. Since the fuzzy logic controller processes user–defined rules governing the
target control system, it can be modified and tweaked easily to improve
or drastically alter system performance. New sensors can easily be in-
corporated into the system simply by generating appropriate governing
rules.

3. Fuzzy logic is not limited to a few feedback inputs and one or two control
outputs, nor is it necessary to measure or compute rate–of–change para-
meters in order for it to be implemented. Any sensor data that provides
some indication of a systems actions and reactions is sufficient. This al-
lows the sensors to be inexpensive and imprecise thus keeping the overall
system cost and complexity low.

4. Because of the rule-based operation, any reasonable number of inputs
can be processed (1–8 or more) and numerous outputs (1–4 or more)
generated, although defining the rule–base quickly becomes complex if
too many inputs and outputs are chosen for a single implementation since
rules defining their interrelations must also be defined. It would be better
to break the control system into smaller chunks and use several smaller
fuzzy logic controllers distributed on the system, each with more limited
responsibilities.

5. Fuzzy logic can control nonlinear systems that would be difficult or im-
possible to model mathematically. This opens doors for control systems
that would normally be deemed unfeasible for automation.

A fuzzy logic controller is usually designed using the following steps:

1. Define the control objectives and criteria: What am I trying to control?
What do I have to do to control the system? What kind of response do I
need? What are the possible (probable) system failure modes?

2. Determine the input and output relationships and choose a minimum
number of variables for input to the fuzzy logic engine (typically error
and rate–of–change of error).
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3. Using the rule–based structure of fuzzy logic, break the control problem
down into a series of IF X AND Y THEN Z rules that define the desired
system output response for given system input conditions. The number
and complexity of rules depends on the number of input parameters that
are to be processed and the number fuzzy variables associated with each
parameter. If possible, use at least one variable and its time derivative.
Although it is possible to use a single, instantaneous error parameter
without knowing its rate of change, this cripples the systems ability to
minimize overshoot for a step inputs.

4. Create fuzzy logic membership functions that define the meaning (values)
of Input/Output terms used in the rules.

5. Test the system, evaluate the results, tune the rules and membership
functions, and re–test until satisfactory results are obtained.

Therefore, fuzzy logic does not require precise inputs, is inherently robust,
and can process any reasonable number of inputs but system complexity in-
creases rapidly with more inputs and outputs. Distributed processors would
probably be easier to implement. Simple, plain–language rules of the form
IF X AND Y THEN Z are used to describe the desired system response in
terms of linguistic variables rather than mathematical formulas. The number
of these is dependent on the number of inputs, outputs, and the designers con-
trol response goals. Obviously, for very complex systems, the rule–base can
be enormous and this is actually the only drawback in applying fuzzy logic.

Evolving Fuzzy–Connectionist Systems

Recently, [Kas02] introduced a new type of fuzzy inference systems, denoted as
dynamic evolving (see next subsection) neuro–fuzzy inference system (DEN-
FIS), for adaptive online and off–line learning, and their application for
dynamic time series prediction. DENFIS system evolves through incremen-
tal, hybrid (supervised/unsupervised), learning, and accommodates new input
data, including new features, new classes, etc., through local element tuning.
New fuzzy rules are created and updated during the operation of the system.
At each time moment, the output of DENFIS is calculated through a fuzzy inf-
erence system based on m−most activated fuzzy rules which are dynamically
chosen from a fuzzy rule set. Two approaches are proposed: (i) dynamic cre-
ation of a first–order Takagi–Sugeno–type (see, e.g., [Tan93]) fuzzy rule set for
a DENFIS online model; and (ii) creation of a first–order Takagi–Sugeno–type
fuzzy rule set, or an expanded high–order one, for a DENFIS offline model. A
set of fuzzy rules can be inserted into DENFIS before or during its learning
process. Fuzzy rules can also be extracted during or after the learning process.
An evolving clustering method (ECM), which is employed in both online and
off–line DENFIS models, is also introduced. It was demonstrated that DEN-
FIS could effectively learn complex temporal sequences in an adaptive way
and outperform some well–known, existing models.
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Evolutionary Computation

In general, evolutionary computation (see [Fog98, ES03, BFM97]) is a CI–
subfield involving combinatorial optimization problems.153 It can be loosely
recognized by the following criteria:

1. iterative progress, growth or development;
2. population based;
3. guided random search;
4. parallel processing; and
5. often biologically inspired.

This mostly involves the so–called metaheuristic optimization algorithms,
such as evolutionary algorithms and swarm intelligence. In a lesser extent,
evolutionary computation also involves differential evolution, artificial life,
artificial immune systems and learnable evolution model .

Evolutionary Algorithms

In a narrow sense, evolutionary computation is represented by evolution-
ary algorithms (EAs), which are generic population–based metaheuristic
optimization algorithms [Bac96]. The so–called candidate solutions154 to the
optimization problem play the role of individuals in a population, and the
cost function155 determines the environment within which the solutions ‘live’.
Evolution of the population then takes place after the repeated application
of the above operators. Artificial evolution (AE) describes a process involving
153 Recall that combinatorial optimization is a branch of optimization in applied

mathematics and computer science, related to operations research, algorithm
theory and computational complexity theory . Combinatorial optimization algo-
rithms are often implemented in an efficient imperative programming language,
in an expressive declarative programming language such as Prolog, or some com-
promise, perhaps a functional programming language such as Haskell, or a multi–
paradigm language such as Lisp. A study of computational complexity theory
helps to motivate combinatorial optimization. Combinatorial optimization algo-
rithms are typically concerned with problems that are NP–hard. Such problems
are not believed to be efficiently solvable in general. However, the various approx-
imations of complexity theory suggest that some instances (e.g. ‘small’ instances)
of these problems could be efficiently solved. This is indeed the case, and such
instances often have important practical ramifications. The domain of combina-
torial optimization is optimization problems where the set of feasible solutions
is discrete or can be reduced to a discrete one, and the goal is to find the best
possible solution.

154 Recall that a candidate solution is a member of a set of possible solutions to a
given problem. A candidate solution does not have to be a likely or reasonable
solution to the problem. The space of all candidate solutions is called the feasible
region or the feasible area.

155 Recall that a generic optimization problem can be represented as:
Given: a function f : A → R from some set A to the real numbers,
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individual evolutionary algorithms; EAs are individual components that par-
ticipate in an AE. EAs perform consistently well approximating solutions to
all types of problems because they do not make any assumption about the
underlying fitness landscape, evidenced by success in fields as diverse as engi-
neering, art, biology, economics, genetics, operations research, robotics, social
sciences, physics, and chemistry. Apart from their use as mathematical opti-
mizers, EAs have also been used as an experimental framework within which to
validate theories about biological evolution and natural selection, particularly
through work in the field of artificial life. EAs involve biologically–inspired
techniques implementing mechanisms such as:

1. Reproduction, which is the biological process by which new individual
organisms are produced. Reproduction is a fundamental feature of all
known life; each individual organism exists as the result of reproduction.
The known methods of reproduction are broadly grouped into two main
types: sexual and asexual. In asexual reproduction, an individual can
reproduce without involvement with another individual of that species.
The division of a bacterial cell into two daughter cells is an example of
asexual reproduction. Asexual reproduction is not, however, limited to
single–celled organisms. Most plants have the ability to reproduce asexu-
ally. On the other hand, sexual reproduction requires the involvement of

Sought : an element x0 ∈ A such that f(x0) ≤ f(x) for all x ∈ A (‘minimiza-
tion’) or such that f(x0) ≥ f(x) for all x ∈ A (‘maximization’).

Typically, A is some subset of the Euclidean space R
n, often specified by

a set of constraints, equalities or inequalities that the members of A have to
satisfy. The elements of A are called feasible solutions. The function f is called
an objective function, or cost function. A feasible solution that minimizes (or
maximizes, if that is the goal) the objective function is called an optimal solution.
The domain A of f is called the search space, while the elements of A are called
candidate solutions or feasible solutions.

Generally, when the feasible region or the objective function of the problem
does not present convexity , there may be several local minima and maxima,
where a local minimum x∗ is defined as a point for which there exists some δ > 0
so that for all x such that ‖x− x∗‖ ≤ δ, the expression f(x∗) ≤ f(x) – holds;
that is to say, on some region around x∗ all of the function values are greater than
or equal to the value at that point. Local maxima are defined similarly. For twice–
differentiable functions, unconstrained problems can be solved by finding the
points where the gradient of the objective function is zero (that is, the stationary
points) and using the Hessian matrix to classify the type of each point. If the
Hessian is positive definite, the point is a local minimum, if negative definite,
a local maximum, and if indefinite it is some kind of saddle point. Constrained
problems can often be transformed into unconstrained problems with the help
of Lagrange multipliers. Note that a large number of algorithms proposed for
solving non–convex problems, including the majority of commercially available
solvers, are not capable of making a distinction between local optimal solutions
and rigorous optimal solutions, and will treat the former as actual solutions to
the original problem.
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two individuals, typically one of each sex. Normal human reproduction is
a common example of sexual reproduction. In general, more–complex or-
ganisms reproduce sexually while simpler, usually unicellular, organisms
reproduce asexually.

2. Mutation, which is the biological change to the genetic material (usu-
ally DNA or RNA). Mutations can be caused by copying errors in the
genetic material during cell division and by exposure to radiation, chem-
icals (mutagens), or viruses, or can occur deliberately under cellular con-
trol during processes such as meiosis or hypermutation. In multicellular
organisms, mutations can be subdivided into germline mutations, which
can be passed on to descendants, and somatic mutations. The somatic
mutations cannot be transmitted to descendants in animals. Plants some-
times can transmit somatic mutations to their descendants asexually or
sexually (in case when flower buds develop in somatically mutated part of
plant). Mutations create variation in the gene pool, and then less favor-
able (or deleterious) mutations are removed from the gene pool by natural
selection, while more favorable (beneficial or advantageous) ones tend to
accumulate – this is evolution. Neutral mutations are defined as muta-
tions whose effects do not influence the fitness of either the species or the
individuals who make up the species. These can accumulate over time due
to genetic drift. The overwhelming majority of mutations have no signif-
icant effect, since DNA repair is able to revert most changes before they
become permanent mutations, and many organisms have mechanisms for
eliminating otherwise permanently mutated somatic cells.

3. Recombination, which is the biological process of genetic recombination
and meiosis, a genetic event that occurs during the formation of sperm
and egg cells. It is also referred to as crossover or phase change.

4. Natural selection, which is the biological process by which individual
organisms with favorable traits are more likely to survive and reproduce
than those with unfavorable traits. Natural selection works on the whole
individual, but only the heritable component of a trait will be passed on to
the offspring, with the result that favorable, heritable traits become more
common in the next generation. Given enough time, this passive process
can result in adaptations and speciation. Natural selection is one of the
cornerstones of modern biology. The term was introduced by Charles Dar-
win in his 1859 book ‘The Origin of Species’, by analogy with artificial
selection, by which a farmer selects his breeding stock.

5. Survival of the fittest, a biological phrase, which is a shorthand for a
concept relating to competition for survival or predominance. Originally
applied by Herbert Spencer156 in his ‘Principles of Biology’ of 1864,
Spencer drew parallels to his ideas of economics with Charles Darwin’s

156 Herbert Spencer (27 April 1820 – 8 December 1903) was an English philosopher
and prominent liberal political theorist. He is best known as the father of Social
Darwinism, a school of thought that applied the evolutionist theory of survival of
the fittest (a phrase coined by Spencer) to human societies. He also contributed to
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theories of evolution by what Darwin termed natural selection. The phrase
is a metaphor, not a scientific description; and it is not generally used
by biologists, who almost exclusively prefer to use the phrase ‘natural
selection’.

Each evolutionary algorithm uses some mechanisms inspired by biological
evolution: reproduction, mutation, recombination, natural selection and sur-
vival of the fittest . Candidate solutions to the optimization problem play the
role of individuals in a population, and the cost function determines the en-
vironment within which the solutions ‘live’. Evolution of the population then
takes place after the repeated application of the above operators. The so–called
artificial evolution (AE) describes a process involving individual evolutionary
algorithms; EAs are individual components that participate in an AE.

Evolutionary algorithms perform consistently well approximating solutions
to all types of problems because they do not make any assumption about
the underlying fitness landscape, evidenced by success in fields as diverse as
engineering, art, biology, economics, genetics, operations research, robotics,
social sciences, physics, and chemistry. However, consider the no–free–lunch
theorem.

Apart from their use as mathematical optimizers, EAs have also been
used as an experimental framework within which to validate theories about
biological evolution and natural selection, particularly through work in the
field of artificial life. Techniques from evolutionary algorithms applied to the
modelling of biological evolution are generally limited to explorations of mi-
croevolutionary processes, however some computer simulations, such as Tierra
and Avida, attempt to model macroevolutionary dynamics.

In general, an evolutionary algorithm is based on three main statements:

1. It is a process that works at the chromosomic level. Each individual is
codified as a set of chromosomes.

2. The process follows the Darwinian theory of evolution, say, the survival
and reproduction of the fittest in a changing environment.

3. The evolutionary process takes place at the reproduction stage. It is in
this stage when mutation and crossover occurs. As a result, the progeny
chromosomes can differ from their parents ones.

Starting from a guess initial population, an evolutionary algorithm basi-
cally generates consecutive generations (offprints). These are formed by a set
of chromosomes, or character (genes) chains, which represent possible solu-
tions to the problem under consideration. At each algorithm step, a fitness
function is applied to the whole set of chromosomes of the corresponding gen-
eration in order to check the goodness of the codified solution. Then, according

a wide range of subjects, including ethics, metaphysics, religion, politics, rhetoric,
biology and psychology. Spencer is today widely criticized as a perfect example
of scientism, while he had many followers and admirers in his time.
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to their fitting capacity, couples of chromosomes, to which the crossover op-
erator will be applied, are chosen. Also, at each step, a mutation operator is
applied to a number of randomly chosen chromosomes.

The two most commonly used methods to randomly select the chromo-
somes are:

1. The roulette wheel algorithm. It consists in building a roulette, so that to
each chromosome corresponds a circular sector proportional to its fitness.

2. The tournament method . After shuffling the population, their chromo-
somes are made to compete among them in groups of a given size (gener-
ally in pairs). The winners will be those chromosomes with highest fitness.
If we consider a binary tournament, say the competition is between pairs,
the population must be shuffled twice. This technique guarantees copies
of the best individual among the parents of the next generation.

After this selection, we proceed with the sexual reproduction or crossing
of the chosen individuals. In this stage, the survivors exchange chromosomic
material and the resulting chromosomes will codify the individuals of the next
generation. The forms of sexual reproduction most commonly used are:

(i) With one crossing point. This point is randomly chosen on the chain
length, and all the chain portion between the crossing point and the chain
end is exchanged.

(ii) With two crossing points. The portion to be exchanged is in between
two randomly chosen points.

For the algorithm implementation, the crossover normally has an assigned
percentage that determines the frequency of its occurrence. This means that
not all of the chromosomes will exchange material but some of them will pass
intact to the next generation. As a matter of fact, there is a technique, named
elitism, in which the fittest individual along several generations does not cross
with any of the other ones and keeps intact until an individual fitter than itself
appears.

Besides the selection and crossover, there is another operation, mutation,
that produces a change in one of the characters or genes of a randomly chosen
chromosome. This operation allows to introduce new chromosomic material
into the population. As for the crossover, the mutation is handled as a percent-
age that determines its occurrence frequency. This percentage is, generally, not
greater than 5%, quite below the crossover percentage.

Once the selected chromosomes have been crossed and muted, we need
some substitution method. Namely, we must choose, among those individu-
als, which ones will be substituted for the new progeny. Two main substitution
ways are usually considered. In one of them, all modified parents are substi-
tuted for the generated new individuals. In this way an individual does never
coexist with its parents. In the other one, only the worse fitted individuals
of the whole population are substituted, thus allowing the coexistence among
parents and progeny.
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Since the answer to our problem is almost always unknown, we must
establish some criterion to stop the algorithm. We can mention two such
criteria [SRV04]:

(i) the algorithm is run along a maximum number of generations; and
(ii) the algorithm is ended when the population stabilization has been

reached, i.e., when all, or most of, the individuals have the same fitness.
A limitation of EAs is their lack of a clear genotype–phenotype distinction

[Bac96]. In nature, the fertilized egg cell undergoes a complex process known
as embryogenesis to become a mature phenotype. This indirect encoding is
believed to make the genetic search more robust (i.e., reduce the probability
of fatal mutations), and also may improve the evolvability of the organism.
Recent work in the field of artificial embryogeny, or artificial developmental
systems, seeks to address these concerns.

Evolutionary algorithms usually comprise: genetic algorithms, genetic pro-
gramming, evolutionary programming, evolution strategy and learning classi-
fier systems.

Genetic Algorithms

The genetic algorithm (GA) is a search technique pioneered by John Hol-
land157 [Hol92] and used in computing to find true or approximate solutions
to optimization and search problems (see [Gol89, Mit96, Vos99, Mic99]). GAs
find application in computer science, engineering, economics, physics, mathe-
matics and other fields. GAs are categorized as global search heuristics. GAs
are implemented as a computer simulation in which a population of abstract
representations (called chromosomes or the genotype) of candidate solutions
(called individuals, creatures, or phenotypes) to an optimization problem
evolves toward better solutions. Traditionally, solutions are represented in
binary as strings of 0s and 1s, but other encodings are also possible. The
evolution usually starts from a population of randomly generated individuals
and happens in generations. In each generation, the fitness of every individual
in the population is evaluated, multiple individuals are stochastically selected
from the current population (based on their fitness), and modified (mutated
or recombined) to form a new population. The new population is then used
157 John Henry Holland (February 2, 1929) is a pioneer in complex system and

nonlinear science. He is known as the father of genetic algorithms. Holland is
Professor of Psychology and Professor of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor. He is also a member of The
Center for the Study of Complex Systems (CSCS) at the University of Michigan,
and a member of Board of Trustees and Science Board of the Santa Fe Institute.
Holland is the author of a number of books about complex adaptive systems
(CAS), including Hidden Order: How Adaptation Builds Complexity (1995),
Emergence: From Chaos to Order (1998) and his ground–breaking book on ge-
netic algorithms, ‘Adaptation in Natural and Artificial Systems’ (1975,1992).
Holland also frequently lectures around the world on his own research, and on
current research and open questions in CAS studies (see [Hol95, Hol95]).
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in the next iteration of the algorithm. A typical GA requires two things to be
defined: (i) a genetic representation of the solution domain, and (ii) a fitness
function to evaluate the solution domain.

A standard representation of the solution is as an array of bits. Arrays
of other types and structures can be used in essentially the same way. The
main property that makes these genetic representations convenient is that
their parts are easily aligned due to their fixed size, that facilitates sim-
ple crossover operation. Variable length representations were also used, but
crossover implementation is more complex in this case. The fitness function158

is defined over the genetic representation and measures the quality of the
represented solution. The fitness function is always problem dependent. For
instance, in the knapsack problem, we want to maximize the total value of
objects that we can put in a knapsack of some fixed capacity. A represen-
tation of a solution might be an array of bits, where each bit represents a
different object, and the value of the bit (0 or 1) represents whether or not
the object is in the knapsack. Not every such representation is valid, as the
size of objects may exceed the capacity of the knapsack. The fitness of the
solution is the sum of values of all objects in the knapsack if the representa-
tion is valid, or 0 otherwise. In some problems, it is hard or even impossible
to define the fitness expression; in these cases, interactive genetic algorithms
are used. Once we have the genetic representation and the fitness function
defined, GA proceeds to initialize a population of solutions randomly, then
improve it through repetitive application of mutation, crossover, and selec-
tion operators. Another way of looking at fitness functions is in terms of a
fitness landscape,159 which shows the fitness for each possible chromosome
(see [Mit96]).

158 A fitness function is a particular type of objective function that quantifies the
optimality of a solution (that is, a chromosome) in a genetic algorithm so that
particular chromosome may be ranked against all the other chromosomes. Opti-
mal chromosomes, or at least chromosomes which are more optimal, are allowed
to breed and mix their datasets by any of several techniques, producing a new
generation that will (hopefully) be even better. An ideal fitness function corre-
lates closely with the algorithm’s goal, and yet may be computed quickly. Speed
of execution is very important, as a typical genetic algorithm must be iterated
many, many times in order to produce a useable result for a non–trivial problem.
Definition of the fitness function is not straightforward in many cases and often
is performed iteratively if the fittest solutions produced by GA are not what
is desired. In some cases, it is very hard or impossible to come up even with a
guess of what fitness function definition might be. Interactive genetic algorithms
address this difficulty by out–sourcing evaluation to external agents (normally
humans).

159 Fitness landscapes or adaptive landscapes are used to visualize the relationship
between genotypes (or phenotypes) and reproductive success. It is assumed that
every genotype has a well defined replication rate (often referred to as fitness).
This fitness is the ‘height’ of the landscape. Genotypes which are very similar
are said to be ‘close’ to each other, while those that are very different are ‘far’
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It is well–known in biology that any organism can be represented by its
phenotype, which virtually determines what exactly the object is in the real
world, and its genotype containing all the information about the object at the
chromosome set level. Each gene, that is the genotype’s information element,
is reflected in the phenotype. Thus, to be able to solve problems we have
to represent every attribute of an object in a form suitable for use in genetic
algorithms. All further operation of genetic algorithm is done on the genotype
level, making the information about the object’s internal structure redundant.
This is why this algorithm is widely used to solve all sorts of problems.

In the most frequently used variant of genetic algorithm, an object’s geno-
type is represented by bit strings. Each attribute of an object in the phenotype
has a single corresponding gene in the genotype. The gene is represented by a
bit string, usually of a fixed length, which represents the value of the attribute.

The simplest variant can be used to encode such attributes that is the bit
value of the attribute. Then it will be quite easy to use a gene of certain length,
sufficient to represent all possible values of such an attribute. Unfortunately
this encoding method is not perfect. Its main disadvantage is that neighboring
numbers differ in several bits’ values. Thus, for example, such numbers as 7
and 8 in the bit representation have four different bits, which complicates the
gene algorithm functioning and increases time necessary for its convergence.
To avoid this problem another encoding method should be used, in which
neighboring numbers have less differences, ideally differing in only one bit.

from each other. The two concepts of height and distance are sufficient to form
the concept of a ‘landscape’. The set of all possible genotypes, their degree
of similarity, and their related fitness values is then called a fitness landscape.
In evolutionary optimization problems, fitness landscapes are evaluations of a
fitness function for all candidate solutions.

Apart from the field of evolutionary biology, the concept of a fitness land-
scape has also gained importance in evolutionary optimization methods, in which
one tries to solve real–world engineering or logistics problems by imitating the
dynamics of biological evolution. For example, a delivery truck with a number of
destination addresses can take a large variety of different routes, but only very
few will result in a short driving time. In order to use evolutionary optimization,
one has to define for every possible solution s to the problem of interest (i.e.,
every possible route in the case of the delivery truck) how ‘good’ it is. This is
done by introducing a scalar–valued function f(s) (scalar valued means that f(s)
is a simple number, such as 0.3, while s can be a more complicated object, for
example a list of destination addresses in the case of the delivery truck), which
is called the fitness function or fitness landscape. A high f(s) implies that s is
a good solution. In the case of the delivery truck, f(s) could be the number of
deliveries per hour on route s. The best, or at least a very good, solution is then
found in the following way. Initially, a population of random solutions is created.
Then, the solutions are mutated and selected for those with higher fitness, until
a satisfying solution has been found.
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Binary coding Coding using the Gray code

Dec.code Bin.value Hex.value Dec.code Bin.value Hex.value

0 0000 0h 0 0000 0h

1 0001 1h 1 0001 1h

2 0010 2h 3 0011 3h

3 0011 3h 2 0010 2h

4 0100 4h 6 0110 6h

5 0101 5h 7 0111 7h

6 0110 6h 5 0101 5h

7 0111 7h 4 0100 4h

8 1000 8h 12 1100 Ch

9 1001 9h 13 1101 Dh

10 1010 Ah 15 1111 Fh

11 1011 Bh 14 1110 Eh

12 1100 Ch 10 1010 Ah

13 1101 Dh 11 1011 Bh

14 1110 Eh 9 1001 9h

15 1111 Fh 8 1000 8h

Table 1.2. Correspondence between decimal codes and the Gray codes.

One of such codes is the Gray code, which is appropriate to be used with
genetic algorithms. The table below shows the Gray code values:
Accordingly, when encoding an integer–valued attribute, we break it into
quadruples and then convert each quadruple according to Gray code. Usu-
ally, there is no need to convert attribute values into gene values in practical
use of GAs. In practice, inverse problem occurs, when it is necessary to find
the attribute value from the corresponding gene value. Thus, the problem of
decoding gene values, which have corresponding integer–valued attributes, is
trivial. The simplest coding method, which first comes to mind, is to use bit
representation. However, this variant is equally imperfect as in the case of
integers. For this reason, the following sequence is used in practice:

1. All the interval of the attribute’s allowed values is split into segments with
adequate accuracy.

2. The value of the gene is accepted as an integer defining the interval number
(using the Gray code).

3. The midpoint number of the interval is taken as the parameter value.

Let us consider a specific example of the sequence of operations described
above: Assume that the attribute values are located in the interval [0, 1].
During the encoding the segment is split into 256 intervals. Thus we will
need 8 bits to code their numbers. Let us suppose the number of the gene
is 00100101bG (the capital letter ‘G’ stands for ‘Gray code’). For a start we
shall find the corresponding interval number using the following Gray code:
25hG→ 36h→ 54d. Now let us see what interval corresponds to it . . . Simple
calculation gives us the interval: [ 0.20703125 , 0.2109375 ].



246 1 Introduction: Human and Computational Mind

Then, the value of the parameter is (0.20703125 + 0.2109375)/2 =
0.208984375.

To encode nonnumeric data, we have to convert it into numbers. More
detailed description can be found on our web site in the articles dedicated to
the use of neural nets.

Thus, to find an object’s phenotype (i.e., values of the attributes describing
the object) we only have to know the values of the genes corresponding to these
attributes, i.e., the object’s genotype. The aggregate of the genes describing
the object’s genotype represents the chromosome. In some implementations
it is called an individual. Thus, when implementing genetic algorithm, a chro-
mosome is a bit string of a fixed length. Each segment of a string has its
corresponding gene. Genes inside a chromosome can have equal or different
lengths. Genes of equal length are used most often. Let us consider an exam-
ple of a chromosome and interpretation of its value. Let us assume that the
object has five attributes, each encoded by a gene 4 elements long. Then, the
length of the chromosome is 5 · 4 = 20 bits:

0010 1010 1001 0100 1101

Now we can define the values of the attributes:

Attribute Gene value Binary value of
the attribute

Decimal value
of the attribute

Attribute 1 0010 0011 3

Attribute 2 1010 1100 12

Attribute 3 1001 1110 14

Attribute 4 0100 0111 7

Attribute 5 1101 1001 9

As it is known in the evolution theory, the way the parents’ attributes
are inherited by their offsprings is of high importance. In genetic algorithms
an operator called crossing (also known as crossover or crossing over) is in
charge of passing the attributes from parents to their offsprings. It works in
the following way:

1. Two individuals are selected from the population to become parents;
2. A break point is determined (usually at random); and
3. The offspring is determined as concatenation of the first and the second

parents’ parts.

Let us see how this operator works:
Now, if we put the break after the third bit of the chromosome, then we have:
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Chromosome 1: 0000000000

Chromosome 2: 1111111111

Chromosome 1: 0000000000 >> 000 1111111 Resulting chromosome 1

Chromosome 2: 1111111111 >> 111 0000000 Resulting chromosome 2

After that, one of the resulting chromosomes is taken as an offspring with
the 0.5 probability.

The next genetic operator is intended for maintaining the diversity of
individuals in the population. It is called mutation. When it is used on a
chromosome, each bit in it gets inverted with a certain probability.

Besides, one more operator is used, called inversion. Applying it makes a
chromosome break in two parts, which then trade places. This can be shown
schematically as follows:

000 1111111 >> 1111111 000

Theoretically, these two genetic operators are enough to make the genetic
algorithm work. However, in practice some additional operators are used, as
well as modifications of these two operators. For instance, in addition to the
single-point crossover (described above) there can be a multipoint one, when
several break points (usually two) are formed. Besides, in some implementa-
tions of the algorithm the mutation operator performs the inversion of only
one randomly selected bit of a chromosome.

Having found out how to interpret the values of the genes, we proceed to
describing the genetic algorithm operation. Let us consider the flow chart of
genetic algorithm operation in its classic variant.

1. Initialize the start time t = 0. At random fashion form the initial popula-
tion consisting of k individuals: B0 = {A1, A2, . . . , Ak).

2. Calculate the fitness of every individual: FAi = fit(Ai), (i = 1 . . . k), and
of the population as a whole: Ft = fit(Bt). The value of this function
determines how suitable for solving the problem the individual described
by this chromosome is.

3. Select the individual Ac from the population: Ac = Get(Bt).
4. With a certain crossover probability Pc select the second individual from

the population: Ac1 = Get(Bt), and apply the crossover operator: Ac =
Crossing(Ac, Ac1).

5. With a certain mutation probability Pm apply the mutation operator:
Ac = mutation(Ac).

6. With a certain inversion probability Pi apply the inversion operator: Ac =
inversion(Ac).

7. Place the resulting chromosome in the new population: insert(Bt+1, Ac).
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8. Repeat steps 3 to 7k times.
9. Increase the current epoch number t = t+ 1.

10. If the stop condition is met, terminate the loop, else go to step 2.

Now let us examine in detail the individual steps of the algorithm. The
steps 3 and 4 play the most important role in the successful operation of the
algorithm when parent chromosomes are selected. Various alternatives are
possible. The most frequently used selection method is called roulette. When
using it, the probability of a chromosome selection is determined by its fitness,
i.e.,

PGet(Ai) ∼ Fit(Ai)/F it(Bt).

This method increases the probability of the attributes propagation that be-
long to the most adjusted individuals. Another frequently used method is the
tournament selection. It means that several individuals (usually two) are se-
lected in the population at random. The one wins which is more adjusted.
Besides, in some implementations of the algorithm the so–called elitism strat-
egy is used, which means that the best–adjusted individuals are guaranteed to
enter the new population. Using the elitism method is usually helpful to ac-
celerate the genetic algorithm convergence. The disadvantage of this strategy
is increased probability of the algorithm getting in the local minimum.

Another important point is the algorithm stop criteria determination. Usu-
ally the highest limit of the algorithm functioning epochs is taken as such, or
the algorithm is stopped upon stabilization of its convergence, normally mea-
sured by means of comparing the population’s fitness on various epochs.

Genetic Programming

The genetic programming (GP) is an automated methodology inspired by bio-
logical evolution to find computer programs that best perform a user–defined
task. It is therefore a particular machine learning technique that uses an evo-
lutionary algorithm to optimize a population of computer programs according
to a fitness landscape determined by a program’s ability to perform a given
computational task. The first experiments with GP were described in the book
‘Genetic Programming’ by John Koza (see [Koz92, Koz95, KBA99, KKS03].
Computer programs in GP can be written in a variety of programming
languages. In the early (and traditional) implementations of GP, program
instructions and data values were organized in tree–structures, thus favoring
the use of languages that naturally embody such a structure (an important
example pioneered by Koza is Lisp). Other forms of GP have been sug-
gested and successfully implemented, such as the simpler linear representation
which suits the more traditional imperative languages. The commercial GP
software Discipulus, for example, uses linear genetic programming combined
with machine code language to achieve better performance. Differently, the
MicroGP uses an internal representation similar to linear genetic programming
to generate programs that fully exploit the syntax of a given assembly lan-
guage. GP is very computationally intensive and so in the 1990s it was mainly
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used to solve relatively simple problems. However, more recently, thanks to
various improvements in GP technology and to the well known exponential
growth in CPU power, GP has started delivering a number of outstanding re-
sults. At the time of writing, nearly 40 human–competitive results have been
gathered, in areas such as quantum computing, electronic design, game play-
ing, sorting, searching and many more. These results include the replication
or infringement of several post–year–2000 inventions, and the production of
two patentable new inventions. Developing a theory for GP has been very
difficult and so in the 1990s genetic programming was considered a sort of
pariah amongst the various techniques of search. However, after a series of
breakthroughs in the early 2000s, the theory of GP has had a formidable and
rapid development. So much so that it has been possible to build exact proba-
bilistic models of GP (schema theories and Markov chain models) and to show
that GP is more general than, and in fact includes, GAs. On the other hand,
techniques have now been applied to evolvable hardware as well as computer
programs. Finally, the so–called meta–GP is the technique of evolving a GP–
system using GP itself; critics have argued that it is theoretically impossible,
but more research is needed.

Evolutionary Programming

The evolutionary programming (EP) was first used by Lawrence Fogel
[FOW66] in 1960 in order to use simulated evolution as a learning process
aiming to generate artificial intelligence. Fogel used finite state machines as
predictors and evolved them. Currently evolutionary programming is a wide
evolutionary computing dialect with no fixed structure, (representation), in
contrast with the other three dialects. It is becoming harder to distinguish
from evolutionary strategies. Its main variation operator is mutation; mem-
bers of the population are viewed as part of a specific species rather than
members of the same species therefore each parent generates an offspring,
using a (µ+ µ) survivor selection.

Selection is the stage of a EP or GA in which individual genomes are chosen
from a population for later breeding (recombination or crossover). There are
several generic selection algorithms. One of the common ones is the so–called
roulette wheel selection, which can be implemented as follows:

1. The fitness function is evaluated for each individual, providing fitness
values, which are then normalized. Normalization means multiplying the
fitness value of each individual by a fixed number, so that the sum of all
fitness values equals 1.

2. The population is sorted by descending fitness values.
3. Accumulated normalized fitness values are computed (the accumulated

fitness value of an individual is the sum of its own fitness value plus the
fitness values of all the previous individuals). The accumulated fitness of
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the last individual should of course be 1 (otherwise something went wrong
in the normalization step).

4. A random number R between 0 and 1 is chosen.
5. The selected individual is the first one whose accumulated normalized

value is greater than R. There are other selection algorithms that do not
consider all individuals for selection, but only those with a fitness value
that is higher than a given (arbitrary) constant. Other algorithms select
from a restricted pool where only a certain percentage of the individuals
are allowed, based on fitness value.

Evolution Strategy

The evolution strategy (ES) is an optimization technique based on ideas of
adaptation and evolution [Bey01, BS02]. ESs primarily use real–vector cod-
ing, and mutation, recombination, and environmental selection as its search
operators. As common with EAs, the operators are applied in order:

1. mating selection,
2. recombination,
3. mutation,
4. fitness function evaluation, and
5. environmental selection.

Performing the loop one time is called a generation, and this is continued
until a termination criterion is met. The first ES variants were not population
based, but memorized only one search point (the parent) and one ((1+1)−ES)
or more offspring ((1 + λ)−ES) at a time. Contemporary versions usually
employ a population ((µ + λ)−ES) and are thus believed to be less prone
to get stuck in local optima. Mutation is performed by adding a gaussian
distributed random value simultaneously to each vector element. The step
size or mutation strength (ie. the standard deviation of this distribution) is
usually learned during the optimization. This process is called self–adaptation,
and it should keep the evolutionary process within the evolution window .

It was observed in ES that during an evolutionary search the progress to-
ward the fitness/objective function’s optimum, generally, happens in a narrow
band of mutation step size σ. That progress is called evolution window. So
far, there is not an optimum tunning method for the mutation step size σ
to keep the search inside the evolution window and how to fast achieve this
window, although there are some investigations about that subject.

Learning Classifier Systems

The learning classifier systems (LCS) are machine learning systems with close
links to reinforcement learning and genetic algorithms. First described by
John Holland (see [Hol92, Hol95, Hol95]), an LCS consists of a population of
binary rules on which a genetic algorithm altered and selected the best rules.
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Instead of a using fitness function, rule utility is decided by a reinforcement
learning technique. Learning classifier systems can be split into two types
depending upon where the genetic algorithm acts. A Pittsburgh–type LCS
has a population of separate rule sets, where the genetic algorithm recombines
and reproduces the best of these rule sets. In a Michigan–style LCS there is
only a single population and the algorithm’s action focuses on selecting the
best classifiers within that ruleset. Michigan–style LCSs have two main types
of reinforcement learning, fitness sharing (ZCS) and accuracy–based (XCS).
Initially the classifiers or rules were binary, but recent research has focused on
improving this representation. This has been achieved by using populations
of neural networks and other methods. Learning classifier systems are not
well–defined mathematically and doing so remains an area of active research.
Despite this, they have been successfully applied in many problem domains.

Swarm Intelligence

The swarm intelligence (SI) is based around the study of collective behavior
in decentralized, self–organized systems (see, e.g., [Eng06]). The expression
‘swarm intelligence’ was introduced by Beni & Wang in 1989, in the context
of cellular automata160. SI–systems are typically made up of a population of
simple agents interacting locally with one another and with their environment.
Although there is normally no centralized control structure dictating how
individual agents should behave, local interactions between such agents often
lead to the emergence of global behavior. Examples of systems like this can be
found in nature, including ant colonies, bird flocking, animal herding, bacteria
molding and fish schooling. Application of swarm principles to large numbers
of robots is called as swarm robotics. SI–systems comprise:

1. The ant colony optimization (ACO), which is a metaheuristic optimiza-
tion algorithm that can be used to find approximate solutions to difficult
combinatorial optimization problems. In ACO artificial ants build solu-
tions by moving on the problem graph and they, mimicking real ants,
deposit artificial pheromone on the graph in such a way that future arti-
ficial ants can build better solutions. ACO has been successfully applied
to an impressive number of optimization problems.

160 Recall that a cellular automaton (plural: cellular automata, CA) is a discrete
dynamical system invented by Stanislaw Ulam and John von Neumann. CA are
studied in computability theory, mathematics, and theoretical biology. It consists
of an infinite, regular grid of cells, each in one of a finite number of states. The
grid can be in any finite number of dimensions. Time is also discrete, and the
state of a cell at time t is a function of the states of a finite number of cells
(called its neighborhood) at time t − 1. These neighbors are a selection of cells
relative to the specified cell, and do not change. Though the cell itself may be
in its neighborhood, it is not usually considered a neighbor. Every cell has the
same rule for updating, based on the values in this neighbourhood. Each time
the rules are applied to the whole grid a new generation is created. See below
for furhter details.
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2. The particle swarm optimization (PSO), which is a global optimization
algorithm for dealing with problems in which a best solution can be repre-
sented as a point or surface in an nD space. Hypotheses are plotted in this
space and seeded with an initial velocity, as well as a communication chan-
nel between the particles. Particles then move through the solution space,
and are evaluated according to some fitness criterion after each timestep.
Over time, particles are accelerated towards those particles within their
communication grouping which have better fitness values. The main ad-
vantage of such an approach over other global minimization strategies
such as simulated annealing is that the large number of members that
make up the particle swarm make the technique impressively resilient to
the problem of local minima.

3. The stochastic diffusion search (SDS), which is an agent based proba-
bilistic global search and optimization technique best suited to problems
where the objective function can be decomposed into multiple independent
partial–functions. Each agent maintains a hypothesis which is iteratively
tested by evaluating a randomly selected partial objective function para-
meterised by the agent’s current hypothesis. In the standard version of
SDS such partial function evaluations are binary resulting in each agent
becoming active or inactive. Information on hypotheses is diffused across
the population via inter–agent communication. Unlike the stigmergetic
communication used in ACO, in SDS agents communicate hypotheses via
a 1 − 1 communication strategy analogous to the tandem running pro-
cedure observed in some species of ant. A positive feedback mechanism
ensures that, over time, a population of agents stabilise around the global–
best solution. SDS is both an efficient and robust search and optimisation
algorithm, which has been extensively mathematically described.

In a lesser extent, evolutionary computation also involves:

1. The self–organization,161 comprising:
a) The self–organizing maps (SOMs, or Kohonen162 maps), which are

a subtype of ANNs (see above), trained using unsupervised learning

161 Recall that self–organization is a process in which the internal organization of a
system, normally an open system, increases in complexity without being guided
or managed by an outside source. Self–organizing systems usually display emer-
gent properties. Self-organization usually relies on four basic ingredients: (i) posi-
tive feedback, (ii) negative feedback, (iii) balance of exploitation and exploration,
and (iv) multiple interactions.

162 Teuvo Kohonen, Dr. Ing (born July 11, 1934), is a Finnish academican and
prominent researcher. He has made many contributions to the field of neural
networks, including the Learning Vector Quantization algorithm, fundamental
theories of distributed associative memory and optimal associative mappings,
the learning subspace method and novel algorithms for symbol processing like
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to produce low–dimensional representation of the training samples
while preserving the topological properties of the input space; this
makes SOMs especially good for visualizing high–dimensional data
[Koh82, Koh88, Koh91]. SOM is a single layer feedforward network
where the output neurons are arranged in low dimensional (usually
2D or 3D) grid. Each input is connected to all output neurons. At-
tached to every neuron there is a weight vector with the same di-
mensionality as the input vectors. The number of input dimensions is
usually a lot higher than the output grid dimension. SOMs are mainly
used for dimensionality reduction rather than expansion. The goal of
SOM training is to associate different parts of the SOM lattice to re-
spond similarly to certain input patterns. This is partly motivated by
how visual, auditory or other sensory information is handled in sepa-
rate parts of the cerebral cortex in the human brain. The weights of
the neurons are initialized either to small random values or sampled
evenly from the subspace spanned by the two largest principal com-
ponent eigenvectors. The latter alternative will speed up the training
significantly because the initial weights already give good approxima-
tion of SOM weights. The training utilizes competitive learning. Like
most ANNs, SOM has two modes of operation:
i. During the training process a map is built, the neural network

organises itself, using a competitive process. The network must be
given a large number of input vectors, as much as possible repre-
senting the kind of vectors that are expected during the second
phase (if any). Otherwise, all input vectors must be administered
several times.

ii. During the mapping process a new input vector may quickly be
given a location on the map, it is automatically classified or cate-
gorised. There will be one single winning neuron: the neuron whose
weight vector lies closest to the input vector (this can be simply
determined by calculating the Euclidean distance between input
vector and weight vector).

b) The growing neural gas (GNG), which is a self–organized neural net-
work proposed by B. Fritzke [Fri94]. It is based on the previously pro-
posed neural gas, a biologically inspired adaptive algorithm, coined
by Martinetz and Schulten in 1991, which sorts for the input signal
according to how far away they are; a certain number of them are
selected by distance in order, then the number of adaption units and
strength are decreased according to a fixed schedule. On the other
hand, GNG can add and delete nodes during algorithm execution.

redundant hash addressing. He has published several books and over 200 peer–
reviewed papers. His most famous contribution is the self–organizing map (SOM)
(also known as the Kohonen map, although Kohonen himself prefers SOM).
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The growth mechanism is based on growing cell structures and com-
petitive Hebbian learning.

c) The competitive learning (see, e.g., [Gro87]). In this area a large num-
ber of models exist which have a common goal to distribute a certain
number of vectors in a possibly high–dimensional space. The distrib-
ution of these vectors reflects the probability distribution of the input
signals which in general is not given explicitly but only through sam-
ple vectors. Two closely related concepts from computational geome-
try are the Voronoi tessellation and the Delaunay triangulation (see,
e.g., [PS90]).

2. The differential evolution (DE), which grew out of K. Price’s attempts
to solve the Chebyshev polynomial fitting problem that had been posed to
him by R. Storn. A breakthrough happened when Price came up with the
idea of using vector differences for perturbing the vector population. Since
this seminal idea a lively discussion between Price and Storn and endless
ruminations and computer simulations on both parts yielded many sub-
stantial improvements which make DE the versatile and robust tool it is
today. DE is a very simple population based, stochastic function mini-
mizer which is very powerful at the same time. DE managed to finish 3rd
at the First International Contest on Evolutionary Computation (Nagoya,
1996). DE turned out to be the best genetic type of algorithm for solving
the real–valued test function suite of the 1st ICEO (the first two places
were given to non–GA type algorithms which are not universally applica-
ble but solved the test–problems faster than DE). The crucial idea behind
DE is a scheme for generating trial parameter vectors. Basically, DE adds
the weighted difference between two population vectors to a third vector.
This way no separate probability distribution has to be used which makes
the scheme completely self–organizing (see, e.g., [Lam02]).

3. The artificial life (alife), which is the study of life through the use of
human–made analogs of living systems, evolving software that is more
alive than a virus (see, e.g., [Lev92]). Theoretically, later it will become
intelligent life. Computer scientist Christopher Langton coined the term
in the late 1980s when he held the first Int. Conference on the Synthe-
sis and Simulation of Living Systems (otherwise known as Artificial Life
I) at the Los Alamos National Laboratory in 1987. Researchers of al-
ife have focused on the ‘bottom–up’ nature of emergent behaviors. The
alife field is characterized by the extensive use of computer programs
and computer simulations which include evolutionary algorithms (EA),
genetic algorithms (GA), genetic programming (GP), swarm intelligence
(SI), ant colony optimization (ACO), artificial chemistries (AC), agent–
based models, and cellular automata (CA). Often those techniques are
seen as subfields of alife.The so–called strong alife position states that ‘life
is a process which can be abstracted away from any particular medium’.
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Notably, Tom Ray declared that his program ‘Tierra’163 was not simu-
lating life in a computer, but was synthesizing it. On the ther hand, the
weak alife position denies the possibility of generating a ‘living process’
outside of a carbon–based chemical solution. Its researchers try instead to
mimic life processes to understand the appearance of single phenomena.
The usual way is through an agent based model, which usually gives a
minimal possible solution. Closely related to alife is a digital organism,
which is a self–replicating computer program that mutates and evolves.
Digital organisms are used as a tool to study the dynamics of Darwinian
evolution, and to test or verify specific hypotheses or mathematical models
of evolution.

4. The artificial immune system (AIS), which is a type of optimisation
algorithm inspired by the principles and processes of the vertebrate
immune system (see [FPP86, Das99]). The algorithms typically exploit
the immune system’s characteristics of learning and memory to solve a
problem. They are closely related to GAs. Processes simulated in AlS in-
clude pattern recognition, hypermutation and clonal selection for B cells,

163 Tierra is a computer simulation developed by ecologist Thomas S. Ray in the
early 1990s in which computer programs compete for central processing unit
(CPU) time and access to main memory. The computer programs in Tierra are
evolvable and can mutate, self–replicate and recombine. Tierra is a frequently
cited example of an artificial life model; in the metaphor of the Tierra, the evolv-
able computer programs can be considered as digital organisms which compete
for energy (CPU time) and resources (main memory). The basic Tierra model
has been used to experimentally explore in silico the basic processes of evolu-
tionary and ecological dynamics. Processes such as the dynamics of punctuated
equilibrium, host–parasite co–evolution and density dependent natural selection
are amenable to investigation within the Tierra framework. A notable difference
to more conventional models of evolutionary computation, such as genetic algo-
rithms is that there is no explicit, or exogenous fitness function built into the
model. Often in such models there is the notion of a function being ‘optimized’; in
the case of Tierra, the fitness function is endogenous: there is simply survival and
death. According to Ray and others this may allow for more ‘open–ended’ evolu-
tion, in which the dynamics of the feedback between evolutionary and ecological
processes can itself change over time, although this promise has not been real-
ized, like most other open–ended digital evolution systems, it eventually comes
to a point where novelty ceases to be created, and the system at large begins
either looping or evolving statically; some descendant systems like Avida try to
avoid this pitfall. While the dynamics of Tierra are highly suggestive, the signif-
icance of the dynamics for real ecological and evolutionary behavior are still a
subject of debate within the scientific community. Tierra is an abstract model,
but any quantitative model is still subject to the same validation and verifica-
tion techniques applied to more traditional mathematical models, and as such,
has no special status. More detailed models in which more realistic dynamics
of biological systems and organisms are incorporated is now an active research
field.
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negative selection of T cells, affinity maturation and immune network
theory. In AIS, antibody and antigen representation is commonly imple-
mented by strings of attributes. Attributes may be binary, integer or
real–valued, although in principle any ordinal attribute could be used.
Matching is done on the grounds of Euclidean distance =

∑n
i=1(xi− yi)2,

Manhattan distance164 or Hamming distance.165 The so–called clonal se-
lection algorithms are commonly used for antibody hypermutation. This
allows the attribute string to be improved (as measured by a fitness func-
tion) using mutation alone.

5. The learnable evolution model (LEM), which is a novel, non–Darwinian
methodology for evolutionary computation that employs machine learning

164 The so–called taxicab geometry , considered by Hermann Minkowski in the 19th
century, is a form of geometry in which the usual metric of Euclidean geometry
is replaced by a new metric in which the distance between two points is the
sum of the (absolute) differences of their coordinates. More formally, we can
define the Manhattan distance, also known as the L1−distance, between two
points in an Euclidean space with fixed Cartesian coordinate system as the sum
of the lengths of the projections of the line segment between the points onto
the coordinate axes. Manhattan distance is also known as city block distance or
taxi-cab distance. It is named so because it is the shortest distance a car would
drive in a city laid out in square blocks, like Manhattan (discounting the facts
that in Manhattan there are one–way and oblique streets and that real streets
only exist at the edges of blocks, i.e., there is no 3.14th Avenue). Any route from
a corner to another one that is 3 blocks East and 6 blocks North, will cover at
least 9 blocks. All direct routes cover exactly 9. Taxicab geometry satisfies all of
Hilbert’s axioms except for the side–angle–side axiom, as one can generate two
triangles with two sides and the angle between the same and have them not be
congruent. A circle in taxicab geometry consists of those points that are a fixed
Manhattan distance from the center. These circles are squares whose sides make
a 45◦ angle with the coordinate axes.

In chess, the distance between squares on the chessboard for rooks is mea-
sured in Manhattan distance; kings and queens use Chebyshev distance, and
bishops use the Manhattan distance (between squares of the same color) on the
chessboard rotated 45 degrees, i.e., with its diagonals as coordinate axes. To
reach from one square to another, only kings require the number of moves equal
to the distance; rooks, queens and bishops require one or two moves (on an empty
board, and assuming that the move is possible at all in the bishop’s case).

165 The Hamming distance between two strings of equal length is the number of
positions for which the corresponding symbols are different. Put another way, it
measures the number of substitutions required to change one into the other, or
the number of errors that transformed one string into the other. For example: (i)
The Hamming distance between 1011101 and 1001001 is 2; (ii) The Hamming
distance between 2143896 and 2233796 is 3; (iii) The Hamming distance between
‘toned’ and ‘roses’ is 3. The Hamming weight of a string is its Hamming distance
from the zero string (string consisting of all zeros) of the same length. That is,
it is the number of elements in the string which are not zero: for a binary string
this is just the number of 1’s, so for instance the Hamming weight of 11101 is 4.
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to guide the generation of new individuals (candidate problem solutions)
[WM06]. Unlike standard, Darwinian–type evolutionary computation
methods that use random or semi–random operators for generating new
individuals (such as mutations and/or recombinations), LEM employs
hypothesis generation and instantiation operators. The hypothesis gener-
ation operator applies a machine learning program to induce descriptions
that distinguish between high–fitness and low–fitness individuals in each
consecutive population. Such descriptions delineate areas in the search
space that most likely contain the desirable solutions. Subsequently the
instantiation operator samples these areas to create new individuals.

Cellular Automata

It is common in nature to find systems whose overall behavior is extremely
complex, yet whose fundamental component parts are each very simple. The
complexity is generated by the cooperative effect of many simple identical
components. Much has been discovered about the nature of the components
in physical and biological systems; little is known about the mechanisms by
which these components act together to give the overall complexity observed.
According to Steve Wolfram [Wol02, Wol84], what is needed is a general math-
ematical theory to describe the nature and generation of complexity.

Cellular automata (CA) are examples of mathematical systems con-
structed from many identical components, each simple, but together capable
of complex behavior. From their analysis one may, on the one hand, develop
specific models for particular systems, and, on the other hand, hope to
abstract general principles applicable to a wide variety of complex systems.

1D Cellular Automata

Recall that a 1D CA consists of a line of sites, with each site carrying a value
0 or 1 (or in general 0, . . . , k − 1). The value αi of the site at each position i
is updated in discrete time steps according to an identical deterministic rule
depending on a neighborhood of sites around it [Wol02, Wol84]:

αt+1
i = ϕ[αt

i−r, α
t
i−r+1, . . . , α

t
i+r]. (1.30)

Even with k = 2 and r = 1 or 2, the overall behavior of CA constructed in
this simple way can be extremely complex.

Consider first the patterns generated by CA evolving from simple ‘seeds’
consisting of a few non–zero sites. Some local rules ϕ give rise to simple
behavior; others produce complicated patterns. An extensive empirical study
suggests that the patterns take on four qualitative forms (see Figure 1.44):

1. Disappears with time;
2. Evolves to a fixed finite size;
3. Grows indefinitely at a fixed speed; and
4. Grows and contracts irregularly.
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Fig. 1.44. Classes of patterns generated by the evolution of CA from simple ‘seeds’.
Successive rows correspond to successive time steps in the CA evolution. Each site is
updated at each time step according to equation (1.30) by CA rules that depend on
the values of a neighborhood of sites at the previous time step. Sites with values 0 and
1 are represented by white and black squares, respectively. Despite the simplicity of
their construction, patterns of some complexity are seen to be generated. The rules
shown exemplify the four classes of behavior found. In the third case, a self–similar
pattern is formed (adapted from [Wol02, Wol84]).

Patterns of type 3 are often found to be self–similar or scale invariant.
Parts of such patterns, when magnified, are indistinguishable from the whole.
The patterns are characterized by a fractal dimension, with the most common
value log23 � 1.59. Many of the self–similar patterns seen in natural systems
may in fact, be generated by CA evolution.

Different initial states with a particular CA rule yield patterns that differ
in detail, but are similar in form and statistical properties. Different CA rules
yield very different patterns. An empirical study, nevertheless, suggests that
four qualitative classes may be identified, yielding four characteristic limiting
forms:

1. Spatially homogeneous state;
2. Sequence of simple stable or periodic structures;
3. Chaotic aperiodic behavior; and
4. Complicated localized structures, some propagating.

All CA within each class, regardless of the details of their construction
and evolution rules, exhibit qualitatively similar behavior. Such universality
should make general results on these classes applicable to a wide variety of
systems modelled by CA.

CA Applications

Mathematical models of natural systems are usually based on differential equa-
tions which describe the smooth variation of one parameter as a function
of a few others. Cellular automata provide alternative and in some respects
complementary models, describing the discrete evolution of many (identical)
components. Models based on CA are typically most appropriate in highly
nonlinear regimes of physical systems, and in chemical and biological systems
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where discrete thresholds occur. Cellular automata are particularly suitable
as models when growth inhibition effects are important [Wol02, Wol84].

As one example, CA provide global models for the growth of dendritic crys-
tals (such as snowflakes). Starting from a simple seed, sites with values rep-
resenting the solid phase are aggregated according to a 2D rule that accounts
for the inhibition of growth near newly–aggregated sites, resulting in a fractal
pattern of growth. Nonlinear chemical reaction–diffusion systems give another
example: a simple CA rule with growth inhibition captures the essential fea-
tures of the usual partial differential equations, and reproduces the spatial
patterns seen. Turbulent fluids may also potentially be modelled as CA with
local interactions between discrete vortices on lattice sites [Wol02, Wol84].

If probabilistic noise is added to the time evolution rule (1.30), then CA
may be identified as generalized Ising–spin models. Phase transitions may
occur if retains some deterministic components, or in more than one dimen-
sion.

Cellular automata may serve as suitable models for a wide variety of
biological systems. In particular, they may suggest mechanisms for biolog-
ical pattern formation. For example, the patterns of pigmentation found on
many mollusc shells bear a striking resemblance to patterns generated by class
2 and 3 CA, and CA models for the growth of some pigmentation patterns
have been constructed [Wol02, Wol84].

Two Approaches to CA Mathematics

Rather than describing specific applications of CA, here we concentrate
on general mathematical features of their behavior. Two complementary
approaches provide characterizations of the four classes of behavior [Wol02,
Wol84].

In the first approach, CA are viewed as discrete dynamical systems (see,
e.g., [GH83]), or discrete idealizations of partial differential equations. The set
of possible (infinite) configurations of a CA forms a Cantor set . CA evolution
may be viewed as a continuous mapping on this Cantor set. Quantities such
as entropies, dimensions and Lyapunov exponents may then be considered
for CA.

In the second approach, CA are instead considered as information–
processing systems (see, e.g., [HU79]), or parallel–processing computers of
simple construction. Information represented by the initial configuration is
processed by the evolution of the CA. The results of this information process-
ing may then be characterized in terms of the types of formal languages
generated.166

166 Note that the mechanisms for information processing in natural system appear to
be much closer to those in CA than in conventional serial–processing computers:
CA may, therefore, provide efficient media for practical simulations of many
natural systems.
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CA Entropies and Dimensions

Most CA rules have the important feature of irreversibility: several differ-
ent configurations may evolve to a single configuration, and, with time, a
contracting subset of all possible configurations appears. Starting from all
possible initial configurations, the CA evolution may generate only special
‘organized’ configurations, and ‘self–organization’ may occur.

For class 1 CA, essentially all initial configurations evolve to a single final
configuration, analogous to a limit point in a continuous dynamical system.
Class 2 CA evolve to limit sets containing essentially only periodic configura-
tions, analogous to limit cycles. Class 3 CA yield chaotic aperiodic limit sets,
containing analogues of strange attractors [Wol02, Wol84].

Entropies and dimensions give a generalized measure of the density of the
configurations generated by CA evolution. The (set) dimension or limiting
(topological) entropy for a set of CA configurations is defined as (compare
with [GH83]):

d(x) = lim
X→∞

1
X

logkN(X), (1.31)

where N(X) gives the number of distinct sequences of X−site values that
appear. For the set of possible initial configurations, d(x) = 1. For a limit set
containing only a finite total number of configurations, d(x) = 0. For most
class 3 CA, d(x) decreases with time, giving, 0 < d(x) < 1, and suggesting
that a fractal subset of all possible configurations occurs.

A dimension or limiting entropy d(t) corresponding to the time series of
values of a single site may be defined in analogy with equation (1.31)167 d(t) =
0, for periodic sets of configurations.

Both d(x) and d(t) may be modified to account for the probabilities of
configurations by defining

d(x)
µ = − lim

X→∞

1
X

kµ∑
i=1

pi logk pi, (1.32)

and its d(t)−analogue, where pi are probabilities for possible length
X−sequences. These measure dimensions may be used to delineate the
large time behavior of the different classes of CA:168

1. d(x)
µ = d

(t)
µ = 0;

2. d(x)
µ > 0, d(t)µ = 0;

3. d(x)
µ > 0, d(t)µ > 0.

167 The analogue of equation (1.31) for a sufficiently wide patch of sites yields a
topologically–invariant entropy for the CA mapping.

168 Dimensions are usually undefined for class 4 CA.
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CA Information Propagation

Cellular automata may also be characterized by the stability or predictability
of their behavior under small perturbations in initial configurations, usually
resulting from a change in a single initial site value (see Figure 1.45). Such
perturbations have characteristic effects on the four classes of CA:

1. No change in final state;
2. Changes only in a finite region;
3. Changes over an ever-increasing region; and
4. Irregular changes.

In class 1 and 2 CA, information associated with site values in the initial
state propagates only a finite distance; in class 3 CA, it propagates an infinite
distance at a fixed speed, while in class 4 CA, it propagates irregularly but
over an infinite range. The speed of information propagation is related to
the Lyapunov exponent for the CA evolution, and measures the degree of
sensitivity to initial conditions. It leads to different degrees of predictability
for the outcome of CA evolution [Wol02, Wol84]:

1. Entirely predictable, independent of initial state;
2. Local behavior predictable from local initial state;
3. Behavior depends on an ever–increasing initial region; and
4. Behavior effectively unpredictable.

Information propagation is particularly simple for the special class of
additive CA (whose local rule function ϕ is linear modulo k), in which pat-
terns generated from arbitrary initial states may be obtained by superposition
of patterns generated by evolution of simple initial states containing a single
non–zero site. A rather complete algebraic analysis of such CA may be given.
Most CA are not additive; however, with special initial configurations it is
often possible for them to behave just like additive rules. Thus, for example,
the evolution of an initial configuration consisting of a sequence of 00 and

Fig. 1.45. Evolution of small initial perturbations in CA, as shown by the difference
(modulo two) between patterns generated from two disordered initial states differing
in the value of a single site. The examples shown illustrate the four classes of behavior
found. Information on changes in the initial state almost always propagates only a
finite distance in the first two classes, but may propagate an arbitrary distance in
the third and fourth classes (adapted from [Wol02, Wol84]).
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01 diagrams under one rule may be identical to the evolution of the corre-
sponding ‘blocked’ configuration consisting of 0 and 1 under another rule.
In this way, one rule may simulate another under a blocking transformation
(analogous to a renormalization group transformation). Evolution from an
arbitrary initial state may be attracted to (or repelled from) the special set
of configurations for which such a simulation occurs. Often several phases
exist, corresponding to different blocking transformations: sometimes phase
boundaries move at constant speed, and one phase rapidly takes over; in
other cases, phase boundaries execute random walks, annihilating in pairs,
and leading to a slow increase in the average domain size. Many rules appear
to follow attractive simulation paths to additive rules, which correspond to
fixed points of blocking transformations, and thus exhibit self similarity. The
behavior of many rules at large times, and on large spatial scales, is therefore
determined by the behavior of additive rules.

CA Thermodynamics

Decreases with time in the spatial entropies and dimensions of equations
(1.31)–(1.32) signal irreversibility in CA evolution. Some CA rules are, how-
ever, reversible, so that each and every configuration has a unique predecessor
in the evolution, and the spatial entropy and dimension of equations (1.31)–
(1.32) remain constant with time.

Now, conventional thermodynamics gives a general description of systems
whose microscopic evolution is reversible; it may, therefore, be applied to
reversible CA. As usual, the ‘fine–grained’ entropy for sets (ensembles) of
configurations, computed as in (1.32) with perfect knowledge of each site
value, remains constant in time. The ‘coarse–grained’ entropy for configura-
tions is, nevertheless, almost always non–decreasing with time, as required by
the second law of thermodynamics. Coarse graining emulates the imprecision
of practical measurements, and may be implemented by applying almost any
contractive mapping to the configurations (a few iterations of an irreversible
CA rule suffice). For example, coarse–grained entropy might be computed
by applying (1.32) to every fifth site value. In an ensemble with low coarse–
grained entropy, the values of every fifth site would be highly constrained,
but arbitrary values for the intervening sites would be allowed. Then in the
evolution of a class 3 or 4 CA the disorder of the intervening site values
would ‘mix’ with the fifth–site values, and the coarse–grained entropy would
tend towards its maximum value. Signs of self–organization in such systems
must be sought in temporal correlations, often manifest in ‘fluctuations’ or
meta–stable ‘pockets’ of order.

While all fundamental physical laws appear to be reversible, macroscopic
systems often behave irreversibly, and are appropriately described by irre-
versible laws. Thus, for example, although the microscopic molecular dynam-
ics of fluids is reversible, the relevant macroscopic velocity field obeys the
irreversible Navier–Stokes equations. Conventional thermodynamics does not
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apply to such intrinsically irreversible systems; new general principles must
be found. Thus, for CA with irreversible evolution rules, coarse–grained en-
tropy typically increases for a short time, but then decreases to follow the fine
grained entropy. Measures of the structure generated by self–organization in
the large time limit are usually affected very little by coarse graining.

CA and Formal Language Theory

Quantities such as entropy and dimension, suggested by information theory,
give only rough characterizations of CA behavior. Computation theory sug-
gests more complete descriptions of self–organization in CA (and other
systems). Sets of CA configurations may be viewed as formal languages,
consisting of sequences of symbols (site values) forming words according to
definite grammatical rules.

The set of all possible initial configurations corresponds to a trivial formal
language. The set of configurations obtained after any finite number of time
steps are found to form a regular language. The words in a regular language
correspond to the possible paths through a finite graph representing a finite
state machine. It can be shown that a unique smallest finite graph repro-
duces any given regular language (see [HU79]). Examples of such graphs are
shown in Figure 1.46. These graphs give complete specifications for sets of CA
configurations (ignoring probabilities). The number of nodes in the smallest
graph corresponding to a particular set of configurations may be defined as
the ‘regular language complexity’ of the set. It specifies the size of the mini-
mal description of the set in terms of regular languages. Larger correspond to
more complicated sets.

The regular language complexity Ξ for sets generated by CA evolution
almost always seems to be nondecreasing with time. Increasing Ξ signals
increasing self–organization. Ξ may thus represent a fundamental property of
self–organizing systems, complementary to entropy. It may, in principle, be
extracted from experimental data [Wol02, Wol84].

Cellular automata that exhibit only class 1 and 2 behavior always appear
to yields sets that correspond to regular languages in the large time limit.
Class 3 and 4 behavior typically gives rise, however, to a rapid increase of
Ξ with time, presumably leading to limiting sets not described by regular
languages.

Formal languages are recognized or generated by idealized computers with
a ‘central processing unit’ containing a fixed finite number of internal states,
together with a ‘memory’. Four types of formal languages are conventionally
identified, corresponding to four types of computer:

1. Regular languages: no memory required.
2. Context–free languages: memory arranged as a last–in, first–out stack.
3. Context–sensitive languages: memory as large as input word required.
4. Unrestricted languages: arbitrarily large memory required (general Turing

machine).
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Fig. 1.46. Graphs representing the sets of configurations generated in the first
few time steps of evolution according to a typical class 3 CA rule (k = 2, r = 1,
rule number 126). Possible configurations correspond to possible paths through the
graphs, beginning at the encircled node. At t = 0, all possible configurations are
allowed. With time, a contracting subset of configurations are generated (e.g., after
one time step no configuration containing the sequence of site value 101 can appear)
At each time step, the complete set of possible configurations forms a regular formal
language: the graph gives a minimal complete specification of it. The number of
nodes in the graph gives a measure of the complexity Ξ of the set, viewed as a
regular language. As for other class 3 CA, the complexity of the sets Ξ grows rapidly
with time (modified and adapted from [Wol02, Wol84]).

Examples are known of CA whose limiting sets correspond to all four
types of language. Arguments can be given that the limit sets for class 3
CA typically form context–sensitive languages, while those for class 4 CA
correspond to unrestricted languages.169

CA and Computation Theory

While dynamical systems theory concepts suffice to define class 1, 2 and 3
CA, computation theory is apparently required for class 4 CA. Varied and
complicated behavior, involving many different time scales is evident. Persis-
tent structures are often generated. It seems that the structures supported by

169 While a minimal specification for any regular language may always be found,
there is no finite procedure to get a minimal form for more complicated formal
languages; no generalization of the regular language complexity may thus be
given.
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this and other class 4 CA rule may be combined to implement arbitrary infor-
mation processing operations. Class 4 CA would then be capable of universal
computation: with particular initial states, their evolution could implement
any finite algorithm. A few percent of CA rules with k > 2 or r > 1 are found
to exhibit class 4 behavior: all these would then, in fact, be capable of arbi-
trarily complicated behavior. This capability precludes a smooth infinite size
limit for entropy or other quantities: as the size of CA considered increases,
more and more complicated phenomena may appear [Wol02, Wol84].

CA evolution may be viewed as a computation. Effective prediction of the
outcome of CA evolution requires a short–cut that allows a more efficient
computation than the evolution itself. For class 1 and 2 CA, such short cuts
are clearly possible: simple computations suffice to predict their complete
future. The computational capabilities of class 3 and 4 CA may, however, be
sufficiently great that, in general, they allow no short-cuts. The only effective
way to determine their evolution from a given initial state would then be by
explicit observation or simulation: no finite formulae for their general behavior
could be given.170 Their infinite time limiting behavior could then not, in
general, be determined by any finite computational process, and many of their
limiting properties would be formally undecidable. Thus, for example, the
‘halting problem’ of determining whether a class 4 CA with a given finite initial
configuration ever evolves to the null configuration would be undecidable. An
explicit simulation could determine only whether halting occurred before some
fixed time, and not whether it occurred after an arbitrarily long time.

For class 4 CA, the outcome of evolution from almost all initial configura-
tions can probably be determined only by explicit simulation, while for class
3 CA this is the case for only a small fraction of initial states. Nevertheless,
this possibility suggests that the occurrence of particular site value sequences
in the infinite time limit is in general undecidable. The large time limit of
the entropy for class 3 and 4 CA would then, in general, be non-computable:
bounds on it could be given, but there could be no finite procedure to compute
it to arbitrary precision.171

Undecidability and intractability are common in problems of mathematics
and computation. They may well afflict all but the simplest CA. One may
speculate that they are widespread in natural systems, perhaps occurring
almost whenever nonlinearity is present. No simple formulae for the behav-
ior of many natural systems could then be given; the consequences of their
evolution could be found effectively only by direct simulation or observation.

For more details on CA, complexity and computation, see [Wol02].

170 If class 4 CA are indeed capable of universal computation, then the variety of
their possible behavior would preclude general prediction, and make explicit
observation or simulation necessary.

171 This would be the case if the limit sets for class 3 and 4 CA formed at least
context–sensitive languages.
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Adaptive Business Intelligence

Recall that businesses and government agencies are mostly interested in two
fundamental things [Mic06]: (i) knowing what will happen next (prediction),
and (ii) making the best decision under risk and uncertainty (optimization)
(see Figure 1.47). Therefore, from CI–perspective, the goal is to provide CI–
based solutions for modelling, simulation, and optimization to address these
two fundamental needs.

Information technology applications that support decision–making
processes and problem–solving activities have proliferated and evolved over
the past few decades. In the 1970s, these applications were simple and based
on spreadsheet software. During the 1980s, decision-support systems incorpo-
rated optimization models, which originated in the operations research and
management science communities. In the 1990s, these systems were further
enhanced with components from artificial intelligence and statistics [MSM05].
This evolution led to many different types of decision–support systems with
somewhat confusing names, including management information systems, in-
telligent information systems, expert systems, management–support systems,
and knowledge–based systems . Because businesses realized that data was a
precious asset, they often based these 1intelligent’ systems on data ware-
housing and online analytical processing technologies. They gathered and
stored a lot of data, assuming valuable assets were implicitly coded in it. Raw
data, however, is rarely beneficial. Its value depends on a user’s ability to
extract knowledge that is useful for decision support. Thousands of ‘business
intelligence’ companies thus emerged to provide such services. After analyzing
a corporation’s operational data, for example, these companies might return
intelligence (in the form of tables, graphs, charts, and so on) stating that, say,

Fig. 1.47. Adaptive business intelligence: the diagram shows the flow from data
acquisition to recommended action, including an adaptive feedback loop (adapted
from [Mic06]).
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Fig. 1.48. Adaptive business intelligence: the diagram shows the flow from data
acquisition to recommended action, including an adaptive feedback loop (adapted
from [MSM05]).

57 percent of the corporation’s customers are between 40 and 50, or product
Q sells much better in Florida than in Georgia.

Many businesses have realized, however, that the return on investment for
pure ‘business intelligence’ is much smaller than initially thought. The ‘discov-
ery’ that 57 percent of our customers are between 40 and 50 doesn’t directly
lead to decisions that increase profit or market share. Moreover, we live in
a dynamic environment where everything is in flux. Interest rates change,
new fraud patterns emerge, weather conditions vary, the stock markets rise
and fall, new regulations and policies surface, and so on. These economic
and environmental changes render some data obsolete and make other data—
which might have been useless just six weeks ago—suddenly meaningful.

Michalewicz et al. developed a software system (see Figure 1.48) to address
these complexities and implemented it on a real distribution problem for a
large car manufacturer. The system detects data trends in a dynamic envi-
ronment, incorporates optimization modules to recommend a near–optimum
decision, and includes self–learning modules to improve future recommenda-
tions. As Figure 1.48 shows, such a system lets enterprizes monitor business
trends, evolve and adapt quickly as situations change, and make intelligent
decisions based on uncertain and incomplete information. This intelligent sys-
tem combines three modules: prediction, optimization and adaptation.

Research Issues in Dynamic Optimization

Most data–mining and optimization algorithms assume static data and a
static objective. Typically, they search for a snapshot of ‘knowledge’ and a
near-optimum solution with respect to some fixed measure (or set of mea-
sures), such as profit maximization or minimization of task–completion time.
However, real–world applications operate in dynamic environments, where it’s
often necessary to modify the current solution due to changes in the problem
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setting, such as machine breakdown or employee illness; or the environment,
such as consumer trends or changes in weather patterns or economic indica-
tors. It’s therefore important to investigate adaptive algorithms that don’t
require restart every time a change is recorded. In many commercial situa-
tions, such restarts are not an option.

Evolutionary Techniques

An obvious starting point here is evolutionary computation techniques
[MF04], which are optimization algorithms inspired by the continuously
changing natural environment. However, it is important to investigate which
evolutionary algorithm extensions are actually useful in business scenarios.
Unfortunately, most current approaches ignore dynamics and assume that re–
optimization should occur at regular intervals. However, significant benefits
can be realized when researchers explicitly address dynamism.

Many researchers have proposed various benchmarks for studying opti-
mization in dynamic environments. Among the proposals are the moving peaks
benchmark, the dynamic knapsack problem, dynamic bit–matching, schedul-
ing with new jobs arriving over time, and the greenhouse control problem.
Researchers have also proposed various measures, including off–line error, per-
centage of covered peaks, and diversity. Among the partial conclusions reached
in this research [Bra01]:

• standard evolutionary algorithms get stuck on a single peak;
• diversity preservation slows down the convergence;
• random immigrants introduce high diversity from the beginning, but offer

limited benefits;
• memory without diversity preservation is counterproductive; and
• nonadaptive memory suffers significantly if peaks move.

However, several essential points are seemingly missing in the key research
on optimization in dynamic environments. Most researchers emphasize an ulti-
mate goal of approximating real–world environments, but they fail to address
several key issues for successful adaptive–system development. The following
issues, which constitute the conceptual research framework, are essential for
creating a methodology for building intelligent systems [MSM05].

Non–Stationary Constraints

Here, the task is to optimize a non–stationary objective function f(x, t), sub-
ject to non–stationary constraints, ci(x, t) ≤ 0, (i = 1, 2, . . . , k). This approach
was applied successfully in the context of a collision situation at sea [SM00]. By
accounting for particular maneuvering–region boundaries, along with informa-
tion on navigation obstacles and other moving ships, the authors reduced the
collision–avoidance problem to a dynamic optimization task with static and
dynamic constraints. The proposed algorithm computed a safe and optimum
ship path in both static and dynamic environments.
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Prediction Component

Environmental changes are seldom random. In a typical real–world scenario,
where constraints change over time, it’s possible to calculate some failure
probabilities by analyzing past data, and thus predict a possible environmen-
tal change. The above mentioned work on collisions at sea [SM00] offers a
good example here as well. The authors based a ship’s safe trajectory in a col-
lision situation on predicted speeds and the other ships’ directions. Studying
dynamic environments where change is somewhat predictable is important,
but so far, little work exists along these lines.

Parameter Adaptation

In nonstationary environments, researchers must study parameter control,
particularly when the adaptive system includes predictive methods [EHM99].

Solution Robustness

Research into robustness concentrates on questions such as: What consti-
tutes flexibility in the specific context? How can we integrate a flexibility goal
into the algorithm? To answer these questions, we must take into account a
predictive model (for environmental changes) and the prediction’s estimated
error. This has yet to occur [MSM05]. Many researchers have recognized the
importance of solution robustness [Bra01]. Existing approaches vary, from
techniques to ‘disturb’ individuals in the population to those using search
history. Some researchers have considered an aspect of robustness, sometimes
called flexibility, in which the problem requires sequential decision–making
under an uncertain future, and the decision influences the system’s future
state. In such situations, the decision–making process should anticipate future
needs. That is, rather than focusing exclusively on the primary objective func-
tion, it should try to move the system into a flexible state.




