
The series Studies in Computational Intelligence (SCI) publishes new developments 
and advances in the various areas of computational intelligence – quickly and with  
a high quality. The intent is to cover the theory, applications, and designmethods  
of computational intelligence, as embedded in the fields of engineering, computer 
science, physics and life science, as well as the methodologies behind them.  
The series contains monographs, lecture notes and edited volumes in computational 
intelligence spanning the areas of neural networks, connectionist systems, genetic 
algorithms, evolutionary computation, artificial intelligence, cellular automata, self-
organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. 
Critical to both contributors and readers are the short publication time and world-
wide distribution – this permits a rapid and broad dissemination of research results.

issn 1860-949x 

Computational Mind: A Complex Dynamics Perspective is a graduate–level mono-
graphic textbook in the field of Computational Intelligence. It presents a modern 
dynamical theory of the computational mind, combining cognitive psychology,  
artificial and computational intelligence, and chaos theory with quantum conscious-
ness and computation. The book introduces to human and computational mind, 
comparing and contrasting main themes of cognitive psychology, artificial and  
computational intelligence. It presents brain/mind dynamics from the chaos theory 
perspective, including sections on chaos in human EEG, basics of nonlinear dyna-
mics and chaos, techniques of chaos control, synchronization in chaotic systems  
and complexity in humanoid robots. This book presents modern theory of quantum 
computational mind, including sections on Dirac–Feynman quantum dynamics, 
quantum consciousness, and quantum computation using Josephson junctions.  
The book is designed as a one–semester course for computer scientists, engineers, 
physicists and applied mathematicians, both in industry and academia. It includes  
a strong bibliography on the subject and detailed index.

9 783540 714651

ISBN 978-3-540-71465-1



Vladimir G. Ivancevic and Tijana T. Ivancevic

Computational Mind: A Complex Dynamics Perspective



Studies in Computational Intelligence, Volume 60

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 37. Jie Lu, Da Ruan, Guangquan Zhang (Eds.)
E-Service Intelligence, 2007
ISBN 978-3-540-37015-4

Vol. 38. Art Lew, Holger Mauch
Dynamic Programming, 2007
ISBN 978-3-540-37013-0

Vol. 39. Gregory Levitin (Ed.)
Computational Intelligence in Reliability Engineering,
2007
ISBN 978-3-540-37367-4

Vol. 40. Gregory Levitin (Ed.)
Computational Intelligence in Reliability Engineering,
2007
ISBN 978-3-540-37371-1

Vol. 41. Mukesh Khare, S.M. Shiva Nagendra (Eds.)
Artificial Neural Networks in Vehicular Pollution
Modelling, 2007
ISBN 978-3-540-37417-6
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Preface

Computational Mind: A Complex Dynamics Perspective is a graduate–level
monographic textbook in the field of Computational Intelligence. It presents
a modern dynamical theory of the computational mind, combining cognitive
psychology, artificial and computational intelligence, and chaos theory with
quantum consciousness and computation. The book has three Chapters. The
first Chapter gives an introduction to human and computational mind, com-
paring and contrasting main themes of cognitive psychology, artificial and
computational intelligence. The second Chapter presents brain/mind dynam-
ics from the chaos theory perspective, including sections on chaos in human
EEG, basics of nonlinear dynamics and chaos, techniques of chaos control,
synchronization in chaotic systems and complexity in humanoid robots. The
last Chapter presents modern theory of quantum computational mind, includ-
ing sections on Dirac–Feynman quantum dynamics, quantum consciousness,
and quantum computation using Josephson junctions. The book is designed
as a one–semester course for computer scientists, engineers, physicists and
applied mathematicians, both in industry and academia. It includes a strong
bibliography on the subject and detailed index.

Adelaide, V. Ivancevic, Defence Science & Technology Organisation,
Now 2006 Australia, e-mail: Vladimir.Ivancevic@dsto.defence.gov.au

T. Ivancevic, School of Mathematics, The University of Adelaide,
e-mail: Tijana.Ivancevic@adelaide.edu.au
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1

Introduction: Human and Computational Mind

In this Chapter we compare and contrast human and computational mind,
from psychological, AI and CI perspectives.

1.1 Natural Intelligence and Human Mind

Recall that the word intelligence (plural intelligences) comes from Latin
intellegentia.1 It is a property of human mind that encompasses many related
mental abilities, such as the capacities to reason, plan, solve problems, think
abstractly, comprehend ideas and language, and learn. Although many regard
the concept of intelligence as having a much broader scope, for example in
cognitive science and computer science, in some schools of psychology ,2 the

1 Intellegentia is a combination of Latin inter = between and legere = choose, pick
out, read. Inter–lege–nt–ia, literally means ‘choosing between.’

Also, note that there is a is a scientific journal titled ‘Intelligence’, dealing with
intelligence and psychometrics. It was founded in 1977 by Douglas K. Detterman
of Case Western Reserve University. It is currently published by Elsevier and is
the official journal of the International Society for Intelligence Research.

2 Recall that psychology is an academic and applied field involving the study of
the human mind, brain, and behavior. Psychology also refers to the application
of such knowledge to various spheres of human activity, including problems of
individuals’ daily lives and the treatment of mental illness.

Psychology differs from anthropology, economics, political science, and socio-
logy in seeking to explain the mental processes and behavior of individuals.
Psychology differs from biology and neuroscience in that it is primarily concerned
with the interaction of mental processes and behavior, and of the overall processes
of a system, and not simply the biological or neural processes themselves, though
the subfield of neuropsychology combines the study of the actual neural processes
with the study of the mental effects they have subjectively produced.

The word psychology comes from the ancient Greek ‘psyche’, which means
‘soul’ or ‘mind’ and ‘ology’, which means ‘study’.

V.G. Ivancevic and T.T. Ivancevic: Introduction: Human and Computational Mind, Studies in

Computational Intelligence (SCI) 60, 1–269 (2007)
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2 1 Introduction: Human and Computational Mind

study of intelligence generally regards this trait as distinct from creativity ,
personality , character , or wisdom.

Briefly, the word intelligence has five common meanings:

1. Capacity of human mind, especially to understand principles, truths, con-
cepts, facts or meanings, acquire knowledge, and apply it to practise; the
ability to learn and comprehend.

2. A form of life that has such capacities.
3. Information, usually secret, about the enemy or about hostile activities.
4. A political or military department, agency or unit designed to gather such

information.
5. Biological intelligent behavior represents animal’s ability to make produc-

tive decisions for a specific task, given a root objective; this decision is
based on learning which requires the ability to hold onto results from
previous tasks, as well as being able to analyze the situation; the root
objective for living organisms is simply survival; the ‘specific task’ could
be a choice of food, i.e., one that provides long steady supply of energy
as it could be a long while before the next mealtime; this is in perfect
harmony with the root biological objective – survival.

According to Encyclopedia Britannica, intelligence is the ability to adapt
effectively to the environment, either by making a change in oneself or by
changing the environment or finding a new one. Different investigators have
emphasized different aspects of intelligence in their definitions. For example,
in a 1921 symposium on the definition of intelligence, the American psycho-
logist Lewis Terman emphasized the ability to think abstractly , while another
American psychologist, Edward Thorndike, emphasized learning and the abil-
ity to give good responses to questions. In a similar 1986 symposium, however,
psychologists generally agreed on the importance of adaptation to the envi-
ronment as the key to understanding both what intelligence is and what it
does. Such adaptation may occur in a variety of environmental situations. For
example, a student in school learns the material that is required to pass or
do well in a course; a physician treating a patient with an unfamiliar dis-
ease adapts by learning about the disease; an artist reworks a painting in
order to make it convey a more harmonious impression. For the most part,
adapting involves making a change in oneself in order to cope more effectively,
but sometimes effective adaptation involves either changing the environment
or finding a new environment altogether. Effective adaptation draws upon a
number of cognitive processes, such as perception, learning, memory, reason-
ing, and problem solving. The main trend in defining intelligence, then, is
that it is not itself a cognitive or mental process, but rather a selective com-
bination of these processes purposively directed toward effective adaptation
to the environment. For example, the physician noted above learning about a
new disease adapts by perceiving material on the disease in medical literature,
learning what the material contains, remembering crucial aspects of it that are
needed to treat the patient, and then reasoning to solve the problem of how
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to apply the information to the needs of the patient. Intelligence, in sum, has
come to be regarded as not a single ability but an effective drawing together of
many abilities. This has not always been obvious to investigators of the sub-
ject, however, and, indeed, much of the history of the field revolves around
arguments regarding the nature and abilities that constitute intelligence.

Now, let us quickly reflect on the above general intelligence–related
keywords.

Reason

Recall that in the philosophy of arguments, reason is the ability of the human
mind to form and operate on concepts in abstraction, in varied accordance
with rationality and logic —terms with which reason shares heritage. Reason
is thus a very important word in Western intellectual history, to describe a
type or aspect of mental thought which has traditionally been claimed as dis-
tinctly human, and not to be found elsewhere in the animal world. Discussion
and debate about the nature, limits and causes of reason could almost be
said to define the main lines of historical philosophical discussion and debate.
Discussion about reason especially concerns:

(a) its relationship to several other related concepts: language, logic, con-
sciousness etc,

(b) its ability to help people decide what is true, and
(c) its origin.

The concept of reason is connected to the concept of language, as reflected
in the meanings of the Greek word ‘logos’, later to be translated by Latin
‘ratio’ and then French ‘raison’, from which the English word derived. As rea-
son, rationality, and logic are all associated with the ability of the human
mind to predict effects as based upon presumed causes, the word ‘reason’
also denotes a ground or basis for a particular argument, and hence is used
synonymously with the word ‘cause’.

It is sometimes said that the contrast between reason and logic extends
back to the time of Plato3 and Aristotle4. Indeed, although they had no
3 Plato (c. 427 — c. 347 BC) was an immensely influential ancient Greek philoso-

pher, a student of Socrates, writer of philosophical dialogues, and founder of the
Academy in Athens where Aristotle studied. Plato lectured extensively at the
Academy, and wrote on many philosophical issues, dealing especially in politics,
ethics, metaphysics, and epistemology. The most important writings of Plato are
his dialogues, although some letters have come down to us under his name. It is
believed that all of Plato’s authentic dialogues survive. However, some dialogues
ascribed to Plato by the Greeks are now considered by the consensus of schol-
ars to be either suspect (e.g., First Alcibiades, Clitophon) or probably spurious
(such as Demodocus, or the Second Alcibiades). The letters are all considered to
probably be spurious, with the possible exception of the Seventh Letter. Socrates
is often a character in Plato’s dialogues. How much of the content and argument
of any given dialogue is Socrates’ point of view, and how much of it is Plato’s, is
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separate Greek word for logic as opposed to language and reason, Aristotle’s
syllogism (Greek ‘syllogismos’) identified logic clearly for the first time as a
distinct field of study: the most peculiarly reasonable (‘logikê’) part of rea-
soning, so to speak.

heavily disputed, since Socrates himself did not write anything; this is often
referred to as the ‘Socratic problem’. However, Plato was doubtless strongly
influenced by Socrates’ teachings.

Platonism has traditionally been interpreted as a form of metaphysical dualism,
sometimes referred to as Platonic realism, and is regarded as one of the earlier
representatives of metaphysical objective idealism. According to this reading,
Plato’s metaphysics divides the world into two distinct aspects: the intelligible
world of ‘forms’, and the perceptual world we see around us. The perceptual
world consists of imperfect copies of the intelligible forms or ideas. These forms
are unchangeable and perfect, and are only comprehensible by the use of the
intellect or understanding, that is, a capacity of the mind that does not include
sense-perception or imagination. This division can also be found in Zoroastrian
philosophy, in which the dichotomy is referenced as the Minu (intelligence) and
Giti (perceptual) worlds. Currently, in the domain of mathematical physics, this
view has been adopted by Sir Roger Penrose [Pen89].

4 Aristotle (384 BC — March 7, 322 BC) was an ancient Greek philosopher,
a student of Plato and teacher of Alexander the Great. He wrote books on
divers subjects, including physics, poetry, zoology, logic, rhetoric, government,
and biology, none of which survive in their entirety. Aristotle, along with Plato
and Socrates, is generally considered one of the most influential of ancient Greek
philosophers. They transformed Presocratic Greek philosophy into the founda-
tions of Western philosophy as we know it. The writings of Plato and Aristotle
founded two of the most important schools of Ancient philosophy.

Aristotle valued knowledge gained from the senses and in modern terms would
be classed among the modern empiricists. He also achieved a ‘grounding’ of dialec-
tic in the Topics by allowing interlocutors to begin from commonly held beliefs
(Endoxa), with his frequent aim being to progress from ‘what is known to us’
towards ‘what is known in itself’ (Physics). He set the stage for what would
eventually develop into the empirical scientific method some two millennia later.
Although he wrote dialogues early in his career, no more than fragments of these
have survived. The works of Aristotle that still exist today are in treatise form
and were, for the most part, unpublished texts. These were probably lecture notes
or texts used by his students, and were almost certainly revised repeatedly over
the course of years. As a result, these works tend to be eclectic, dense and difficult
to read. Among the most important ones are Physics, Metaphysics (or Ontology),
Nicomachean Ethics, Politics, De Anima (On the Soul) and Poetics. These works,
although connected in many fundamental ways, are very different in both style
and substance.

Aristotle is known for being one of the few figures in history who studied
almost every subject possible at the time, probably being one of the first poly-
maths. In science, Aristotle studied anatomy, astronomy, economics, embryology,
geography, geology, meteorology, physics, and zoology. In philosophy, Aristotle
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No philosopher of any note has ever argued that logic is the same as reason.
They are generally thought to be distinct, although logic is one important
aspect of reason. But the tendency to the preference for ‘hard logic’, or ‘solid
logic’, in modern times has incorrectly led to the two terms occasionally being

wrote on aesthetics, ethics, government, metaphysics, politics, psychology, rhetoric
and theology. He also dealt with education, foreign customs, literature and poetry.
His combined works practically constitute an encyclopedia of Greek knowledge.
According to Aristotle, everything is made out of the five basic elements:

1. Earth, which is cold and dry;
2. Water, which is cold and wet;
3. Fire, which is hot and dry;
4. Air, which is hot and wet; and
5. Aether, which is the divine substance that makes up the heavenly spheres and

heavenly bodies (stars and planets).

Aristotle defines his philosophy in terms of essence, saying that philosophy is ‘the
science of the universal essence of that which is actual’. Plato had defined it as the
‘science of the idea’, meaning by idea what we should call the unconditional basis
of phenomena. Both pupil and master regard philosophy as concerned with the
universal; Aristotle, however, finds the universal in particular things, and called
it the essence of things, while Plato finds that the universal exists apart from
particular things, and is related to them as their prototype or exemplar. For Aris-
totle, therefore, philosophic method implies the ascent from the study of particular
phenomena to the knowledge of essences, while for Plato philosophic method means
the descent from a knowledge of universal ideas to a contemplation of particular
imitations of those ideas. In a certain sense, Aristotle’s method is both inductive
and deductive, while Plato’s is essentially deductive from a priori principles.
In the larger sense of the word, Aristotle makes philosophy coextensive with rea-

soning, which he also called ‘science’. Note, however, that his use of the term science
carries a different meaning than that which is covered by the scientific method. “All
science (dianoia) is either practical, poetical or theoretical.” By practical science
he understands ethics and politics; by poetical, he means the study of poetry and
the other fine arts; while by theoretical philosophy he means physics, mathematics,
and metaphysics.
Aristotle’s conception of logic was the dominant form of logic up until the

advances in mathematical logic in the 19th century. Kant himself thought that
Aristotle had done everything possible in terms of logic. The Organon is the name
given by Aristotle’s followers, the Peripatetics, for the standard collection of six
of his works on logic. The system of logic described in two of these works, namely
On Interpretation and the Prior Analytics, is often called Aristotelian logic.
Aristotle was the creator of syllogisms with modalities (modal logic). The word

modal refers to the word ‘modes’, explaining the fact that modal logic deals with
the modes of truth. Aristotle introduced the qualification of ‘necessary’ and ‘pos-
sible’ premises. He constructed a logic which helped in the evaluation of truth but
which was difficult to interpret.
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seen as essentially synonymous or perhaps more often logic is seen as the
defining and pure form of reason.

However machines and animals can unconsciously perform logical
operations, and many animals (including humans) can unconsciously, asso-
ciate different perceptions as causes and effects and then make decisions or
even plans. Therefore, to have any distinct meaning at all, ‘reason’ must be
the type of thinking which links language, consciousness and logic, and at
this time, only humans are known to combine these things.

However, note that reasoning is defined very differently depending on the
context of the understanding of reason as a form of knowledge. The logical
definition is the act of using reason to derive a conclusion from certain premises
using a given methodology, and the two most commonly used explicit methods
to reach a conclusion are deductive reasoning and inductive reasoning. How-
ever, within idealist philosophical contexts, reasoning is the mental process
which informs our imagination, perceptions, thoughts, and feelings with what-
ever intelligibility these appear to contain; and thus links our experience with
universal meaning. The specifics of the methods of reasoning are of interest
to such disciplines as philosophy, logic, psychology, and artificial intelligence.

In deductive reasoning, given true premises, the conclusion must follow
and it cannot be false. In this type of reasoning, the conclusion is inherent in
the premises. Deductive reasoning therefore does not increase one’s knowledge
base and is said to be non–ampliative. Classic examples of deductive reasoning
are found in such syllogisms as the following:

1. One must exist/live to perform the act of thinking.
2. I think.
3. Therefore, I am.

In inductive reasoning, on the other hand, when the premises are true,
then the conclusion follows with some degree of probability .5 This method of

5 Recall that the word probability derives from the Latin ‘probare’ (to prove, or
to test). Informally, probable is one of several words applied to uncertain events
or knowledge, being closely related in meaning to likely, risky, hazardous, and
doubtful. Chance, odds, and bet are other words expressing similar notions. Just
as the theory of mechanics assigns precise definitions to such everyday terms
as work and force, the theory of probability attempts to quantify the notion of
probable.

The scientific study of probability is a modern development. Gambling shows
that there has been an interest in quantifying the ideas of probability for millennia,
but exact mathematical descriptions of use in those problems only arose much
later. The doctrine of probabilities dates to the correspondence of Pierre de
Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest
known scientific treatment of the subject. Jakob Bernoulli’s ‘Ars Conjectandi’
(posthumous, 1713) and Abraham de Moivre’s ‘Doctrine of Chances’ (1718)
treated the subject as a branch of mathematics.
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reasoning is ampliative, as it gives more information than what was contained
in the premises themselves. A classical example comes from David Hume:6

1. The sun rose in the east every morning up until now.
2. Therefore the sun will also rise in the east tomorrow.

A third method of reasoning is called abductive reasoning, or inference
to the best explanation. This method is more complex in its structure and
can involve both inductive and deductive arguments. The main characteristic
of abduction is that it is an attempt to favor one conclusion above others by
either attempting to falsify alternative explanations, or showing the likelihood
of the favored conclusion given a set of more or less disputable assumptions.

A fourth method of reasoning is analogy. Reasoning by analogy goes from
a particular to another particular. The conclusion of an analogy is only plausi-
ble. Analogical reasoning is very frequent in common sense, science, philosophy
and the humanities, but sometimes it is accepted only as an auxiliary method.
A refined approach is case–based reasoning .

Pierre–Simon Laplace (1774) made the first attempt to deduce a rule for the
combination of observations from the principles of the theory of probabilities.
He represented the law of probability of errors by a curve y = ϕ(x), x being any
error and y its probability, and laid down three properties of this curve: (i) it is
symmetric as to the y−axis; (ii) the x−axis is an asymptote, the probability of
the error being 0; (iii) the area enclosed is 1, it being certain that an error exists.
He deduced a formula for the mean of three observations. He also gave (1781) a
formula for the law of facility of error (a term due to Lagrange, 1774), but one
which led to unmanageable equations. Daniel Bernoulli (1778) introduced the
principle of the maximum product of the probabilities of a system of concurrent
errors.

The method of least squares is due to Adrien–Marie Legendre (1805), who
introduced it in his ‘Nouvelles méthodes pour la détermination des orbites des
comètes’ (New Methods for Determining the Orbits of Comets). In ignorance of
Legendre’s contribution, an Irish–American writer, Robert Adrain, editor of ‘The
Analyst’ (1808), first deduced the law of facility of error,

φ(x) = ce−h2x2

where c and h are constants depending on precision of observation. He gave two
proofs, the second being essentially the same as John Herschel’s (1850). Carl
Friedrich Gauss gave the first proof which seems to have been known in Europe
(the third after Adrain’s) in 1809. Further proofs were given by Laplace (1810,
1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel
(1838), W. F. Donkin (1844, 1856), and Morgan Crofton (1870).

6 David Hume (April 26, 1711 – August 25, 1776)[1] was a Scottish philosopher,
economist, and historian, as well as an important figure of Western philosophy
and of the Scottish Enlightenment.
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Plan

Recall that a plan represents a proposed or intended method of getting from
one set of circumstances to another. They are often used to move from the
present situation, towards the achievement of one or more objectives or goals.

Informal or ad–hoc plans are created by individual humans in all of their
pursuits. Structured and formal plans, used by multiple people, are more
likely to occur in projects, diplomacy, careers, economic development, military
campaigns, combat, or in the conduct of other business.

It is common for less formal plans to be created as abstract ideas, and
remain in that form as they are maintained and put to use. More formal plans
as used for business and military purposes, while initially created with and
as an abstract thought, are likely to be written down, drawn up or otherwise
stored in a form that is accessible to multiple people across time and space.
This allows more reliable collaboration in the execution of the plan.

The term planning implies the working out of sub–components in some
degree of detail. Broader–brush enunciations of objectives may qualify as
metaphorical road–maps.

Planning literally just means the creation of a plan; it can be as simple as
making a list. It has acquired a technical meaning, however, to cover the area
of government legislation and regulations related to the use of resources.

Planning can refer to the planned use of any and all resources, as for
example, in the succession of Five–Year Plans through which the government
of the Soviet Union sought to develop the country. However, the term is most
frequently used in relation to planning for the use of land and related resources,
for example in urban planning, transportation planning, and so forth.

Problem Solving

The problem solving forms part of thinking. Considered the most complex of
all intellectual functions, problem solving has been defined as higher–order
cognitive process that requires the modulation and control of more routine or
fundamental skills. It occurs if an organism or an artificial intelligence system
does not know how to proceed from a given state to a desired goal state. It is
part of the larger problem process that includes problem finding and problem
shaping.

The nature of human problem solving has been studied by psychologists
over the past hundred years. There are several methods of studying problem
solving, including: introspection,7 behaviorism,8 computer simulation and
experimental methods.

7 Introspection is contemplation on one’s self, as opposed to extrospection, the
observation of things external to one’s self. Introspection may be used synony-
mously with self–reflection and used in a similar way. Cognitive psychology
accepts the use of the scientific method, but rejects introspection as a valid method
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Beginning with the early experimental work of the Gestaltists in Germany
(e.g., [Dun35], and continuing through the 1960s and early 1970s, research on
problem solving typically conducted relatively simple, laboratory tasks that
appeared novel to participants (see, e.g. [May92]). Various reasons account for
the choice of simple novel tasks: they had clearly defined optimal solutions,
they were solvable within a relatively short time frame, researchers could
trace participants’ problem–solving steps, and so on. The researchers made the
underlying assumption, of course, that simple tasks such as the Tower of Hanoi
captured the main properties of ‘real world’ problems, and that the cognitive
processes underlying participants’ attempts to solve simple problems were
representative of the processes engaged in when solving ‘real world’ problems.
Thus researchers used simple problems for reasons of convenience, and thought
generalizations to more complex problems would become possible. Perhaps the
best–known and most impressive example of this line of research remains the
work by Newell and Simon [NS72].

See more on problem solving below.

Learning

Recall that learning is the process of acquiring knowledge, skills, attitudes, or
values, through study, experience, or teaching, that causes a change of beha-
vior that is persistent, measurable, and specified or allows an individual to
formulate a new mental construct or revise a prior mental construct (concep-
tual knowledge such as attitudes or values). It is a process that depends on

of investigation. It should be noted that Herbert Simon and Allen Newell identi-
fied the ‘thinking–aloud’ protocol, in which investigators view a subject engaged
in introspection, and who speaks his thoughts aloud, thus allowing study of his
introspection.
Introspection was once an acceptable means of gaining insight into psychologi-
cal phenomena. Introspection was used by German physiologist Wilhelm Wundt
in the experimental psychology laboratory he had founded in Leipzig in 1879.
Wundt believed that by using introspection in his experiments he would gather
information into how the subject’s minds were working, thus he wanted to exam-
ine the mind into its basic elements. Wundt did not invent this way of looking
into an individual’s mind through their experiences; rather, it can be dated back
to Socrates. Wundt’s distinctive contribution was to take this method into the
experimental arena and thus into the newly formed field of psychology.

8 Behaviorism is an approach to psychology based on the proposition that behav-
ior can be studied and explained scientifically without recourse to internal mental
states. A similar approach to political science may be found in Behavioralism. The
behaviorist school of thought ran concurrent with the psychoanalysis movement in
psychology in the 20th century. Its main influences were Ivan Pavlov, who investi-
gated classical conditioning, John B. Watson who rejected introspective methods
and sought to restrict psychology to experimental methods, and B.F. Skinner who
conducted research on operant conditioning.
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experience and leads to long–term changes in behavior potential. Behavior
potential describes the possible behavior of an individual (not actual behav-
ior) in a given situation in order to achieve a goal. But potential is not enough;
if individual learning is not periodically reinforced, it becomes shallower and
shallower, and eventually will be lost in that individual.

Short term changes in behavior potential, such as fatigue, do not constitute
learning. Some long–term changes in behavior potential result from aging and
development, rather than learning.

Education is the conscious attempt to promote learning in others. The
primary function of ‘teaching’ is to create a safe, viable, productive learn-
ing environment. Management of the total learning environment to promote,
enhance and motivate learning is a paradigm shift9 from a focus on teaching
to a focus on learning.

9 Recall that an epistemological paradigm shift was called a scientific revolution
by epistemologist and historian of science Thomas Kuhn in his 1962 book ‘The
Structure of Scientific Revolutions’, to describe a change in basic assumptions
within the ruling theory of science. It has since become widely applied to many
other realms of human experience as well.

A scientific revolution occurs, according to Kuhn, when scientists encounter
anomalies which cannot be explained by the universally accepted paradigm
within which scientific progress has thereto been made. The paradigm, in Kuhn’s
view, is not simply the current theory, but the entire worldview in which it
exists, and all of the implications which come with it. There are anomalies for all
paradigms, Kuhn maintained, that are brushed away as acceptable levels of error,
or simply ignored and not dealt with (a principal argument Kuhn uses to reject
Karl Popper’s model of falsifiability as the key force involved in scientific change).
Rather, according to Kuhn, anomalies have various levels of significance to the
practitioners of science at the time. To put it in the context of early 20th century
physics, some scientists found the problems with calculating Mercury’s perihelion
more troubling than the Michelson–Morley experiment results, and some the
other way around. Kuhn’s model of scientific change differs here, and in many
places, from that of the logical positivists in that it puts an enhanced emphasis on
the individual humans involved as scientists, rather than abstracting science into
a purely logical or philosophical venture. When enough significant anomalies have
accrued against a current paradigm, the scientific discipline is thrown into a state
of crisis, according to Kuhn. During this crisis, new ideas, perhaps ones previously
discarded, are tried. Eventually a new paradigm is formed, which gains its own
new followers, and an intellectual ‘battle’ takes place between the followers of the
new paradigm and the hold–outs of the old paradigm. Again, for early 20th cen-
tury physics, the transition between the Maxwellian electromagnetic worldview
and the Einsteinian Relativistic worldview was not instantaneous nor calm, and
instead involved a protracted set of ‘attacks’, both with empirical data as well as
rhetorical or philosophical arguments, by both sides, with the Einsteinian theory
winning out in the long–run. Again, the weighing of evidence and importance of
new data was fit through the human sieve: some scientists found the simplicity
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The stronger the stimulation for the brain, the deeper the impression that
is left in the neuronal network. Therefore a repeated, very intensive experience
perceived through all of the senses (audition, sight, smell) of an individual will
remain longer and prevail over other experiences. The complex interactions
of neurons that have formed a network in the brain determine the direction
of flow of the micro–voltage electricity that flows through the brain when a
person thinks. The characteristics of the neuronal network shaped by previous
impressions is what we call the person’s ‘character’.

The most basic learning process is imitation, one’s personal repetition of
an observed process, such as a smile. Thus an imitation will take one’s time
(attention to the details), space (a location for learning), skills (or practice),
and other resources (for example, a protected area). Through copying, most
infants learn how to hunt (i.e., direct one’s attention), feed and perform most
basic tasks necessary for survival.

The so–called Bloom’s Taxonomy10 divides the learning process into a six–
level hierarchy, where knowledge is the lowest order of cognition and evaluation
the highest [Blo80]:

of Einstein’s equations to be most compelling, while some found them more com-
plicated than the notion of Maxwell’s aether which they banished. Some found
Eddington’s photographs of light bending around the sun to be compelling, some
questioned their accuracy and meaning. Sometimes the convincing force is just
time itself and the human toll it takes, Kuhn pointed out, using a quote from
Max Planck: “A new scientific truth does not triumph by convincing its oppo-
nents and making them see the light, but rather because its opponents eventually
die, and a new generation grows up that is familiar with it.” After a given discipline
has changed from one paradigm to another, this is called, in Kuhn’s terminology,
a scientific revolution or a paradigm shift. It is often this final conclusion, the
result of the long process, that is meant when the term paradigm shift is used
colloquially: simply the (often radical) change of worldview, without reference to
the specificities of Kuhn’s historical argument.

10Benjamin Bloom (21 February 1913 – September 13, 1999) was an American
educational psychologist who made significant contributions to the classification
of educational objectives and the theory of mastery learning.
Bloom’s classification of educational objectives, known as Bloom’s Taxonomy,
incorporates cognitive, psychomotor, and affective domains of knowledge. While
working at the University of Chicago in the 1950s and ’60s, he wrote two impor-
tant books, Stability and Change in Human Characteristics and Taxonomy of
Educational Objectives (1956). Bloom’s taxonomy provides structure in which to
categorize test questions. This taxonomy helps teachers pose questions in such a
way to determine the level of understanding that a student possesses. For example,
based upon the type of question asked, a teacher can determine that a student is
competent in content knowledge, comprehension, application, analysis, synthesis
and/or evaluation. This taxonomy is organized in a hierarchal way to organize
information from basic factual recall to higher order thinking. This data table
below is from the article written by W. Huitt titled, “Bloom et al.’s Taxonomy of
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1. Knowledge is the memory of previously–learnt materials such as facts,
terms, basic concepts and answers.

2. Comprehension is the understanding of facts and ideas by organization,
comparison, translation, interpretation, and description.

3. Application is the use of new knowledge to solve problems.
4. Analysis is the examination and division of information into parts by

identifying motives or causes. A person can analyze by making inferences
and finding evidence to support generalizations.

5. Synthesis is the compilation of information in a new way by combining
elements into patterns or proposing alternative solutions.

6. Evaluation is the presentation and defense of opinions by making judg-
ments about information, validity of ideas or quality of work based on the
following set of criteria:

• Attention – the cognitive process of selectively concentrating on one thing
while ignoring other things. Examples include listening carefully to what
someone is saying while ignoring other conversations in the room (e.g. the
cocktail party problem, Cherry, 1953). Attention can also be split, as when
a person drives a car and talks on a cell phone at the same time. Sometimes
our attention shifts to matters unrelated to the external environment, this
is referred to as mind-wandering or ‘spontaneous thought’. Attention is
one of the most intensely studied topics within psychology and cognitive
neuroscience. Of the many cognitive processes associated with the human
mind (decision–making, memory, emotion, etc), attention is considered
the most concrete because it is tied so closely to perception. As such, it is
a gateway to the rest of cognition. The most famous definition of attention
was provided by one of the first major psychologists, William James11 in

the Cognitive Domain”. The table below describes the levels of Bloom’s Taxon-
omy, beginning with the lowest level of basic factual recall. Each level in the table
is defined, gives descriptive verbs that would foster each level of learning, and
describes sample behaviors of that level. Bloom’s taxonomy helps teachers better
prepare questions that would foster basic knowledge recall all the way to ques-
tioning styles that foster synthesis and evaluation. By structuring the questioning
format, teachers will be able to better understand what a child’s weaknesses and
strengths are and determine ways to help students think at a higher–level.

11William James (January 11, 1842 — August 26, 1910) was a pioneering American
psychologist and philosopher. He wrote influential books on the young science of
psychology, educational psychology, psychology of religious experience and mysti-
cism, and the philosophy of pragmatism. He gained widespread recognition with
his monumental Principles of ‘Psychology’ (1890), fourteen hundred pages in two
volumes which took ten years to complete. ‘Psychology: The Briefer Course’, was
an 1892 abridgement designed as a less rigorous introduction to the field. These
works criticized both the English associationist school and the Hegelianism of
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his 1890 book ‘Principles of Psychology’: “Everyone knows what atten-
tion is. It is the taking possession by the mind in clear and vivid form, of
one out of what seem several simultaneously possible objects or trains of
thought ... It implies withdrawal from some things in order to deal effec-
tively with others.” Most experiments show that one neural correlate of
attention is enhanced firing. Say a neuron has a certain response to a stim-
ulus when the animal is not attending to that stimulus. When the animal
attends to the stimulus, even if the physical characteristic of the stimulus
remains the same the neurons response is enhanced. A strict criterion, in
this paradigm of testing attention, is that the physical stimulus available
to the subject must be the same, and only the mental state is allowed to
change. In this manner, any differences in neuronal firing may be attributed
to a mental state (attention) rather than differences in the stimulus
itself.

• Habituation – an example of non–associative learning in which there is a
progressive diminution of behavioral response probability with repetition
of a stimulus. It is another form of integration. An animal first responds
to a sensory stimulus, but if it is neither rewarding nor harmful the animal
learns to suppress its response through repeated encounters. One example
of this can be seen in small song birds – if a stuffed owl (or similar preda-
tor) is introduced into the cage, the birds react to it as though it were a
real predator, but soon realise that it is not and so become habituated to
it. If another stuffed owl is introduced (or the same one removed and re–
introduced), the birds react to it as though it were a predator, showing that
it is only a very specific stimulus that is being ignored (namely, one par-
ticular unmoving owl in one place). This learned suppression of response
is habituation. Habituation is stimulus specific. It does not cause a gen-
eral decline in responsiveness. It functions like an average weighted history
wavelet interference filter reducing the responsiveness of the organism to
a particular stimulus. Frequently one can see opponent processes after the

his day as competing dogmatisms of little explanatory value, and sought to
re–conceive of the human mind as inherently purposive and selective.

James defined true beliefs as those that prove useful to the believer. Truth, he
said, is that which works in the way of belief. “True ideas lead us into useful
verbal and conceptual quarters as well as directly up to useful sensible termini.
They lead to consistency, stability and flowing human intercourse” but “all true
processes must lead to the face of directly verifying sensible experiences some-
where,” he wrote.

Pragmatism as a view of the meaning of truth is considered obsolete by many in
contemporary philosophy, because the predominant trend of thinking in the years
since James’ death in 1910 has been toward non–epistemic definitions of truth,
i.e., definitions that don’t make truth dependent upon the warrant of a belief.
A contemporary philosopher or logician will often be found explaining that the
statement ‘the book is on the table’ is true iff the book is on the table.
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stimulus is removed. Habituation is connected to associational reciprocal
inhibition phenomenon, opponent process, motion after effect, color con-
stancy, size constancy, and negative image after effect. Habituation is fre-
quently used in testing psychological phenomena. Both infants and adults
look less and less as a result of consistent exposure to a particular stim-
ulus. The amount of time spent looking to a presented alternate stimulus
(after habituation to the initial stimulus) is indicative of the strength of
the remembered percept of the previous stimulus. It is also used to dis-
cover the resolution of perceptual systems, for example, by habituating
a subject to one stimulus, and then observing responses to similar ones,
one can detect the smallest degree of difference that is detectable by the
subject.
Closely related to habituation is neural adaptation or sensory adaptation
– a change over time in the responsiveness of the sensory system to a con-
stant stimulus. It is usually experienced as a change in the stimulus. For
example, if one rests one’s hand on a table, one immediately feels the ta-
ble’s surface on one’s skin. Within a few seconds, however, one ceases to feel
the table’s surface. The sensory neurons stimulated by the table’s surface
respond immediately, but then respond less and less until they may not
respond at all; this is neural adaptation. More generally, neural adaptation
refers to a temporary change of the neural response to a stimulus as the
result of preceding stimulation. It is usually distinguished from memory,
which is thought to involve a more permanent change in neural responsive-
ness. Some people use adaptation as an umbrella term that encompasses
the neural correlates of priming and habituation. In most cases, adap-
tation results in a response decrease, but response facilitation does also
occur. Some adaptation may result from simple fatigue, but some may
result from an active re–calibration of the responses of neurons to ensure
optimal sensitivity. Adaptation is considered to be the cause of perceptual
phenomena like afterimages and the motion aftereffect. In the absence of
fixational eye movements, visual perception may fade out or disappear due
to neural adaptation.

• Sensitization – an example of non–associative learning in which the pro-
gressive amplification of a response follows repeated administrations of a
stimulus [BHB95]. For example, electrical or chemical stimulation of the
rat hippocampus causes strengthening of synaptic signals, a process known
as long–term potentiation (LTP). LTP is thought to underlie memory and
learning in the human brain. A different type of sensitization is that of kin-
dling, where repeated stimulation of hippocampal or amygdaloid neurons
eventually leads to seizures. Thus, kindling has been suggested as a model
for temporal lobe epilepsy. A third type is central sensitization, where no-
ciceptive neurons in the dorsal horns of the spinal cord become sensitized
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by peripheral tissue damage or inflammation. These various types indicate
that sensitization may underlie both pathological and adaptive functions
in the organism, but whether they also share the same physiological and
molecular properties is not yet established.

• Classical Pavlovian conditioning – a type of associative learning. Ivan
Pavlov described the learning of conditioned behavior as being formed
by pairing two stimuli to condition an animal into giving a certain re-
sponse. The simplest form of classical conditioning is reminiscent of what
Aristotle would have called the law of contiguity, which states that: ‘When
two things commonly occur together, the appearance of one will bring the
other to mind.’ Classical conditioning focuses on reflexive behavior or in-
voluntary behavior. Any reflex can be conditioned to respond to a formerly
neutral stimulus. The typical paradigm for classical conditioning involves
repeatedly pairing a neutral stimulus with an unconditioned stimulus. An
unconditioned reflex is formed by an unconditioned stimulus, a stimulus
that elicits a response–known as an unconditioned response–that is au-
tomatic and requires no learning and are usually apparent in all species.
The relationship between the unconditioned stimulus and unconditioned
response is known as the unconditioned reflex. The conditioned stimulus, is
an initially neutral stimulus that elicits a response–known as a conditioned
response–that is acquired through learning and can vary greatly amongst
individuals. Conditioned stimuli are associated psychologically with con-
ditions such as anticipation, satisfaction (both immediate and prolonged),
and fear. The relationship between the conditioned stimulus and condi-
tioned response is known as the conditioned (or conditional) reflex. In
classical conditioning, when the unconditioned stimulus is repeatedly or
strongly paired with a neutral stimulus the neutral stimulus becomes a
conditioned stimulus and elicits a conditioned response.

• Operant conditioning – the use of consequences to modify the occur-
rence and form of behavior. Operant conditioning is distinguished from
Pavlovian conditioning in that operant conditioning deals with the mod-
ification of voluntary behavior through the use of consequences, while
Pavlovian conditioning deals with the conditioning of involuntary re-
flexive behavior so that it occurs under new antecedent conditions.
Unlike reflexes, which are biologically fixed in form, the form of an
operant response is modifiable by its consequences. Operant condition-
ing, sometimes called instrumental conditioning or instrumental learning,
was first extensively studied by Edward Thorndike,12 who observed the

12 Edward Lee Thorndike (August 31, 1874 - August 9, 1949) was an American
psychologist who spent nearly his entire career at Teachers College, Columbia
University. His work on animal behavior and the learning process led to the
theory of connectionism.

Among Thorndike’s most famous contributions were his research on how cats
learned to escape from puzzle boxes, and his related formulation of the law of
effect. The law of effect states that responses which are closely followed by satisfy-
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behavior of cats trying to escape from home-made puzzle boxes. When
first constrained in the boxes, the cats took a long time to escape. With
experience, ineffective responses occurred less frequently and successful
responses occurred more frequently, enabling the cats to escape in less
time over successive trials. In his Law of Effect, Thorndike theorized
that successful responses, those producing satisfying consequences, were
‘stamped in’ by the experience and thus occurred more frequently. Unsuc-
cessful responses, those producing annoying consequences, were stamped
out and subsequently occurred less frequently. In short, some consequences
strengthened behavior and some consequences weakened behavior. Bur-
rhus Skinner13 built upon Thorndike’s ideas to construct a more detailed

ing consequences are associated with the situation, and are more likely to reoccur
when the situation is subsequently encountered. Conversely, if the responses are
followed by aversive consequences, associations to the situation become weaker.
The puzzle box experiments were motivated in part by Thorndike’s dislike for
statements that animals made use of extraordinary faculties such as insight in
their problem solving: “In the first place, most of the books do not give us a
psychology, but rather a eulogy of animals. They have all been about animal
intelligence, never about animal stupidity.” (Animal Intelligence, 1911).

Thorndike meant to distinguish clearly whether or not cats escaping from puz-
zle boxes were using insight. Thorndike’s instruments in answering this question
were ‘learning curves’ revealed by plotting the time it took for an animal to escape
the box each time it was in the box. He reasoned that if the animals were showing
‘insight,’ then their time to escape would suddenly drop to a negligible period,
which would also be shown in the learning curve as an abrupt drop; while animals
using a more ordinary method of trial and error would show gradual curves. His
finding was that cats consistently showed gradual learning.

Thorndike interpreted the findings in terms of associations. He asserted that
the connection between the box and the motions the cat used to escape was
‘strengthened’ by each escape. A similar, though radically reworked idea was taken
up by B.F. Skinner in his formulation of Operant Conditioning, and the associa-
tive analysis went on to figure largely in behavioral work through mid-century,
now evident in some modern work in behavior as well as modern connectionism.

13 Burrhus Frederic Skinner (March 20, 1904 – August 18, 1990) was an American
psychologist and author. He conducted pioneering work on experimental psychol-
ogy and advocated behaviorism, which seeks to understand behavior as a function
of environmental histories of experiencing consequences. He also wrote a number
of controversial works in which he proposed the widespread use of psychological
behavior modification techniques, primarily operant conditioning, in order to im-
prove society and increase human happiness; and as a form of social engineering.

Skinner was born in rural Susquehanna, Pennsylvania. He attended Hamilton
College in New York with the intention of becoming a writer and received a B.A.
in English literature in 1926. After graduation, he spent a year in Greenwich
Village attempting to become a writer of fiction, but he soon became disillusioned
with his literary skills and concluded that he had little world experience, and no
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theory of operant conditioning based on: (a) reinforcement (a consequence
that causes a behavior to occur with greater frequency), (b) punishment
(a consequence that causes a behavior to occur with less frequency), and
(c) extinction (the lack of any consequence following a response). There
are four contexts of operant conditioning:
(i) Positive reinforcement occurs when a behavior (response) is followed
by a favorable stimulus (commonly seen as pleasant) that increases the
frequency of that behavior. In the Skinner box experiment, a stimulus
such as food or sugar solution can be delivered when the rat engages in a
target behavior, such as pressing a lever.
(ii) Negative reinforcement occurs when a behavior (response) is followed
by the removal of an aversive stimulus (commonly seen as unpleasant)
thereby increasing that behavior’s frequency. In the Skinner box experi-
ment, negative reinforcement can be a loud noise continuously sounding
inside the rat’s cage until it engages in the target behavior, such as pressing
a lever, upon which the loud noise is removed.
(iii) Positive punishment (also called ‘Punishment by contingent stimula-
tion’) occurs when a behavior (response) is followed by an aversive stim-
ulus, such as introducing a shock or loud noise, resulting in a decrease in
that behavior.
(iv) Negative punishment (also called ‘Punishment by contingent with-
drawal’) occurs when a behavior (response) is followed by the removal of a
favorable stimulus, such as taking away a child’s toy following an undesired
behavior, resulting in a decrease in that behavior.

• Observational (or social) learning – learning that occurs as a function
of observing, retaining and replicating behavior observed in others. It is
most associated with the work of psychologist Albert Bandura,14 who im-
plemented some of the seminal studies in the area and initiated social
learning theory. Although observational learning can take place at any
stage in life, it is thought to be particularly important during childhood,
particularly as authority becomes important. Because of this, social learn-
ing theory has influenced debates on the effect of television violence and
parental role models. Bandura’s Bobo doll experiment is widely cited in

strong personal perspective from which to write. During this time, which Skinner
later called ‘the dark year,’ he chanced upon a copy of Bertrand Russell’s book
‘An Outline of Philosophy’, in which Russell discusses the behaviorist philosophy
of psychologist John B. Watson. At the time, Skinner had begun to take more
interest in the actions and behaviors of those around him, and some of his short
stories had taken a ‘psychological’ slant. He decided to abandon literature and
seek admission as a graduate student in psychology at Harvard University (which
at the time was not regarded as a leading institution in that field).

14 Albert Bandura (born December 4, 1925 in Mundare, Alberta) is a Canadian
psychologist most famous for his work on social learning theory (or Social Cog-
nitivism) and self efficacy. He is particularly noted for the Bobo doll experiment.
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psychology as a demonstration of observational learning and demonstrated
that children are more likely to engage in violent play with a life size re-
bounding doll after watching an adult do the same. Observational learning
allows for learning without any change in behavior and has therefore been
used as an argument against strict behaviorism which argued that behavior
change must occur for new behaviors to be acquired. Bandura called the
process of social learning modelling and gave four conditions required for
a person to successfully model the behavior of someone else: (i) attention
to the model (a person must first pay attention to a person engaging in a
certain behavior – the model); (ii) retention of details (once attending to
the observed behavior, the observer must be able to effectively remember
what the model has done); (iii) motor reproduction (the observer must
be able to replicate the behavior being observed; e.g., juggling cannot be
effectively learned by observing a model juggler if the observer does not
already have the ability to perform the component actions, i.e., throwing
and catching a ball); (iv) motivation and opportunity (the observer must
be motivated to carry out the action they have observed and remembered,
and must have the opportunity to do so; e.g., a suitably skilled person must
want to replicate the behavior of a model juggler, and needs to have an
appropriate number of items to juggle to hand). Social learning may affect
behavior in the following ways: (i) teaches new behaviors; (ii) increases
or decreases the frequency with which previously learned behaviors are
carried out; (iii) can encourage previously forbidden behaviors; (iv) can
increase or decrease similar behaviors (e.g., observing a model excelling
in piano playing may encourage an observer to excel in playing the saxo-
phone).

• Communication – the process of symbolic activity, sometimes via a
language. Specialized fields focus on various aspects of communication,
and include: (i) mass communication (academic study of various means
by which individuals and entities relay information to large segments
of the population all at once through mass media); (ii) communication
studies (academic discipline that studies communication; subdisciplines
include argumentation, speech communication, rhetoric, communication
theory, performance studies, group communication, information theory,
intercultural communication, interpersonal communication, intrapersonal
communication, marketing, organizational communication, persuasion,
propaganda, public affairs, public relations and telecommunication); (iii)
organizational communication (the study of how people communicate
within an organizational context, or the influence of, or interaction with
organizational structures in communicating/organizing), (iv) conversation
analysis (commonly abbreviated as CA, is the study of talk in interaction;
CA generally attempts to describe the orderliness, structure and sequential
patterns of interaction, whether this is institutional, in the school, doctor’s
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surgery, courts or elsewhere, or casual conversation); (v) linguistics (scien-
tific study of human language and speech; usually is conducted along two
major axes: theoretical vs. applied, and autonomous vs. contextual ); (vi)
cognitive linguistics (commonly abbreviated as CL, refers to the school of
linguistics that views the important essence of language as innately based
in evolutionary–developed and speciated faculties, and seeks explanations
that advance or fit well into the current understandings of the human
mind); (vii) sociolinguistics (the study of the effect of any and all aspects
of society, including cultural norms, expectations, and context, on the way
language is used); (viii) pragmatics (concerned with bridging the explana-
tory gap between sentence meaning and speaker’s meaning – how context
influences the interpretation is crucial); (ix) semiotics (the study of signs,
both individually and grouped in sign systems; it includes the study of
how meaning is made and understood); and (x) discourse analysis (a
general term for a number of approaches to analyzing written, spoken or
signed language use; includes: discourse grammar, rhetoric and stylistics).
Communication as a named and unified discipline has a history of con-
testation that goes back to the Socratic dialogues, in many ways making
it the first and most contestatory of all early sciences and philosophies.
Seeking to define ‘communication’ as a static word or unified discipline
may not be as important as understanding communication as a family of
resemblances with a plurality of definitions as Ludwig Wittgenstein15 had
put forth. Some definitions are broad, recognizing that animals can com-
municate, and some are more narrow, only including human beings within
the parameters of human symbolic interaction. Nonetheless, communica-
tion is usually described along three major dimensions: content, form, and
destination. In the advent of ‘noise’ (internal psychological noise and/or
physical realities) these three components of communication often become
skewed and inaccurate. (between parties, communication content include
acts that declare knowledge and experiences, give advice and commands,
and ask questions. These acts may take many forms, including gestures
(nonverbal communication, sign language and body language), writing, or
verbal speaking. The form depends on the symbol systems used. Together,
communication content and form make messages that are sent towards a
destination. The target can be oneself, another person (in interpersonal
communication), or another entity (such as a corporation or group). There

15 Ludwig Josef Johann Wittgenstein (April 26, 1889 – April 29, 1951) was an
Austrian philosopher who contributed several ground-breaking works to contem-
porary philosophy, primarily on the foundations of logic, the philosophy of mathe-
matics, the philosophy of language, and the philosophy of mind. He is widely
regarded as one of the most influential philosophers of the 20th century.
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are many theories of communication, and a commonly held assumption is
that communication must be directed towards another person or entity.
This essentially ignores intrapersonal communication (note intra–, not
inter–) via diaries or self–talk. Interpersonal conversation can occur in
dyads and groups of various sizes, and the size of the group impacts the
nature of the talk. Small–group communication takes place in settings of
between three and 12 individuals, and differs from large group interaction
in companies or communities. This form of communication formed by a
dyad and larger is sometimes referred to as the psychological model of
communication where in a message is sent by a sender through channel to
a receiver. At the largest level, mass communication describes messages
sent to huge numbers of individuals through mass media, although there
is debate if this is an interpersonal conversation.

Language

Recall that a language is a system of signals, such as voice sounds, gestures
or written symbols that encode or decode information.

Human spoken and written languages can be described as a system of
symbols (sometimes known as lexemes) and the grammars (rules) by which
the symbols are manipulated. The word ‘language’ is also used to refer to
common properties of languages.

Language learning is normal in human childhood. Most human languages
use patterns of sound or gesture for symbols which enable communication
with others around them. There are thousands of human languages, and these
seem to share certain properties, even though many shared properties have
exceptions.

Languages are not just sets of symbols. They also often conform to a rough
grammar, or system of rules, used to manipulate the symbols. While a set of
symbols may be used for expression or communication, it is primitive and
relatively unexpressive, because there are no clear or regular relationships
between the symbols.

Human languages are usually referred to as natural languages, and the
science of studying them is linguistics, with Ferdinand de Saussure16 and
Noam Chomsky17 as the most influential figures.

16 Ferdinand de Saussure (November 26, 1857 – February 22, 1913) was a Geneva–
born Swiss linguist whose ideas laid the foundation for many of the significant
developments in linguistics in the 20th century. He is widely considered the ‘father’
of 20th–century linguistics.

Saussure’s most influential work, ‘Course in General Linguistics’, was published
posthumously in 1916 by former students Charles Bally and Albert Sechehaye on
the basis of notes taken from Saussure’s lectures at the University of Geneva.
The Course became one of the seminal linguistics works of the 20th century, not
primarily for the content (many of the ideas had been anticipated in the works
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Humans and computer programs have also constructed other languages,
including constructed languages such as Esperanto, Ido, Interlingua, Klingon,
programming languages, and various mathematical formalisms. These

of other 19th century linguists), but rather for the innovative approach that
Saussure applied in discussing linguistic phenomena. Its central notion is that
language may be analyzed as a formal system of differential elements, apart from
the messy dialectics of realtime production and comprehension.

Saussure’s famous quotes are:
“A sign is the basic unit of language (a given language at a given time). Every

language is a complete system of signs. Parole (the speech of an individual) is an
external manifestation of language.”

“A linguistic system is a series of differences of sound combined with a series
of differences of ideas.”

17 Noam Avram Chomsky (born December 7, 1928) is the Institute Professor Emer-
itus of linguistics at the MIT. Chomsky is credited with the creation of the theory
of generative grammar, considered to be one of the most significant contributions
to the field of theoretical linguistics made in the 20th century. He also helped
spark the cognitive revolution in psychology through his review of B.F. Skinner’s
‘Verbal Behavior’, in which he challenged the behaviorist approach to the study of
mind and language dominant in the 1950s. His naturalistic approach to the study
of language has also affected the philosophy of language and mind. He is also cred-
ited with the establishment of the so–called Chomsky hierarchy , a classification
of formal languages in terms of their generative power.

‘Syntactic Structures’ was a distillation of Chomsky’s book ‘Logical Structure
of Linguistic Theory’ (1955) in which he introduces transformational grammars.
The theory takes utterances (sequences of words) to have a syntax which can be
(largely) characterised by a formal grammar; in particular, a context–free gram-
mar extended with transformational rules. Children are hypothesised to have an
innate knowledge of the basic grammatical structure common to all human lan-
guages (i.e. they assume that any language which they encounter is of a certain
restricted kind). This innate knowledge is often referred to as universal gram-
mar. It is argued that modelling knowledge of language using a formal grammar
accounts for the ‘productivity’ of language: with a limited set of grammar rules
and a finite set of terms, humans are able to produce an infinite number of sen-
tences, including sentences no one has previously said.

Chomsky’s ideas have had a strong influence on researchers investigating the
acquisition of language in children, though some researchers who work in this area
today do not support Chomsky’s theories, often advocating emergentist or con-
nectionist theories reducing language to an instance of general processing mecha-
nisms in the brain.

Chomsky’s work in linguistics has had major implications for modern psycho-
logy. For Chomsky linguistics is a branch of cognitive psychology; genuine insights
in linguistics imply concomitant understandings of aspects of mental processing
and human nature. His theory of a universal grammar was seen by many as a
direct challenge to the established behaviorist theories of the time and had major
consequences for understanding how language is learned by children and what,
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languages are not necessarily restricted to the properties shared by human
languages.

Some of the areas of the human brain involved in language processing are:
Broca’s area, Wernicke’s area, Supramarginal gyrus, Angular gyrus, Primary
Auditory Cortex.

Mathematics and computer science use artificial entities called formal lan-
guages (including programming languages and markup languages, but also
some that are far more theoretical in nature). These often take the form of
character strings, produced by some combination of formal grammar and sem-
antics of arbitrary complexity.

The classification of natural languages can be performed on the basis of
different underlying principles (different closeness notions, respecting different
properties and relations between languages); important directions of present
classifications are:

1. Paying attention to the historical evolution of languages results in a gen-
etic classification of languages—which is based on genetic relatedness of
languages;

2. Paying attention to the internal structure of languages (grammar) results
in a typological classification of languages—which is based on similarity
of one or more components of the language’s grammar across languages;
and

3. Respecting geographical closeness and contacts between language-
speaking communities results in areal groupings of languages.

4. The different classifications do not match each other and are not expected
to, but the correlation between them is an important point for many lin-
guistic research works. (Note that there is a parallel to the classification
of species in biological phylogenetics here: consider monophyletic vs. poly-
phyletic groups of species.)

The task of genetic classification belongs to the field of historical–
comparative linguistics, of typological—to linguistic typology. The world’s
languages have been grouped into families of languages that are believed to
have common ancestors. Some of the major families are the Indo–European
languages, the Afro–Asiatic languages, the Austronesian languages, and the
Sino–Tibetan languages. The shared features of languages from one family
can be due to shared ancestry.

An example of a typological classification is the classification of languages
on the basis of the basic order of the verb, the subject and the object in a
sentence into several types: SVO, SOV, VSO, and so on, languages. (English,
for instance, belongs to the SVO language type.)

exactly, is the ability to use language. Many of the more basic principles of this
theory (though not necessarily the stronger claims made by the principles and
parameters approach described above) are now generally accepted in some circles.
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The shared features of languages of one type (= from one typological
class) may have arisen completely independently. (Compare with analogy in
biology.) Their cooccurence might be due to the universal laws governing the
structure of natural languages—language universals.

The following language groupings can serve as some linguistically signi-
ficant examples of areal linguistic units, or sprachbunds: Balkan linguistic
union, or the bigger group of European languages; Caucasian languages.
Although the members of each group are not closely genetically related, there
is a reason for them to share similar features, namely: their speakers have been
in contact for a long time within a common community and the languages con-
verged in the course of the history. These are called ‘areal features’.

Mathematics and computer science use artificial entities called formal lan-
guages (including programming languages and markup languages, but also
some that are far more theoretical in nature). These often take the form
of character strings, produced by some combination of formal grammar and
semantics of arbitrary complexity.

Abstraction

Recall that abstraction is the process of reducing the information content
of a concept, typically in order to retain only information which is relevant
for a particular purpose. For example, abstracting a leather soccer ball to
a ball retains only the information on general ball attributes and behavior.
Similarly, abstracting an emotional state to happiness reduces the amount of
information conveyed about the emotional state.

Abstraction typically results in complexity reduction leading to a simpler
conceptualization of a domain in order to facilitate processing or understand-
ing of many specific scenarios in a generic way.

In philosophical terminology, abstraction is the thought process wherein
ideas are distanced from objects.

Abstraction uses a strategy of simplification, wherein formerly concrete
details are left ambiguous, vague, or undefined; thus effective communica-
tion about things in the abstract requires an intuitive or common experience
between the communicator and the communication recipient.

Abstractions sometimes have ambiguous referents; for example, ‘happiness’
(when used as an abstraction) can refer to as many things as there are people
and events or states of being which make them happy. Likewise, ‘architecture’
refers not only to the design of safe, functional buildings, but also to elements
of creation and innovation which aim at elegant solutions to construction
problems, to the use of space, and at its best, to the attempt to evoke an
emotional response in the builders, owners, viewers and users of the building.

Abstraction in philosophy is the process (or, to some, the alleged process) in
concept–formation of recognizing some set of common features in individuals,
and on that basis forming a concept of that feature. The notion of abstraction
is important to understanding some philosophical controversies surrounding
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empiricism and the problem of universals. It has also recently become popular
in formal logic under predicate abstraction.

Some research into the human brain suggests that the left and right hemi-
spheres differ in their handling of abstraction. One side handles collections
of examples (e.g., examples of a tree) whereas the other handles the concept
itself.

Abstraction in mathematics is the process of extracting the underlying
essence of a mathematical concept, removing any dependence on real world
objects with which it might originally have been connected, and generalizing
it so that it has wider applications.

Many areas of mathematics began with the study of real world problems,
before the underlying rules and concepts were identified and defined as abs-
tract structures. For example, geometry has its origins in the calculation of
distances and areas in the real world; statistics has its origins in the calculation
of probabilities in gambling; and algebra started with methods of solving
problems in arithmetic.

Abstraction is an ongoing process in mathematics and the historical deve-
lopment of many mathematical topics exhibits a progression from the con-
crete to the abstract. Take the historical development of geometry as an
example; the first steps in the abstraction of geometry were made by the
ancient Greeks, with Euclid being the first person (as far as we know) to doc-
ument the axioms of plane geometry. In the 17th century Descartes introduced
Cartesian coordinates which allowed the development of analytic geometry.
Further steps in abstraction were taken by Lobachevsky, Bolyai and Gauss18

18 Gauss–Bolyai–Lobachevsky space is a non–Euclidean space with a negative
Gaussian curvature, that is, a hyperbolic geometry . The main topic of conversa-
tion involving Gauss–Bolyai–Lobachevsky space involves the impossible process
(at least in Euclidean geometry) of squaring the circle. The space is named after
Carl Gauss, János Bolyai, and Nikolai Lobachevsky.

Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German mathe-
matician and scientist of profound genius who contributed significantly to many
fields, including number theory, analysis, differential geometry, geodesy, mag-
netism, astronomy and optics. Sometimes known as ‘the prince of mathematicians’
and ‘greatest mathematician since antiquity’, Gauss had a remarkable influence in
many fields of mathematics and science and is ranked among one of history’s most
influential mathematicians. Gauss was a child prodigy, of whom there are many
anecdotes pertaining to his astounding precocity while a mere toddler, and made
his first ground–breaking mathematical discoveries while still a teenager. He com-
pleted Disquisitiones Arithmeticae, his magnum opus, at the age of twenty–one
(1798), though it would not be published until 1801. This work was fundamen-
tal in consolidating number theory as a discipline and has shaped the field to
the present day. One of his most important results is his ‘Theorema Egregrium’,
establishing an important property of the notion of curvature as a foundation of
differential geometry.

János Bolyai (December 15, 1802–January 27, 1860) was a Hungarian mathe-
matician. Between 1820 and 1823 he prepared a treatise on a complete system
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who generalized the concepts of geometry to develop non–Euclidean geome-
tries. Later in the 19th century mathematicians generalized geometry even fur-
ther, developing such areas as geometry in n dimensions, projective geometry,
affine geometry, finite geometry and differential geometry. Finally Felix Klein’s
‘Erlangen program’19 identified the underlying theme of all of these geome-
tries, defining each of them as the study of properties invariant under a given
group of symmetries. This level of abstraction revealed deep connections bet-
ween geometry and abstract algebra.

The advantages of abstraction are:
(i) It reveals deep connections between different areas of mathematics;
(ii) Known results in one area can suggest conjectures in a related area;

and
(iii) Techniques and methods from one area can be applied to prove results

in a related area.
An abstract structure is a formal object that is defined by a set of laws,

properties, and relationships in a way that is logically if not always historically
independent of the structure of contingent experiences, for example, those
involving physical objects. Abstract structures are studied not only in logic
and mathematics but in the fields that apply them, as computer science, and in
the studies that reflect on them, as philosophy and especially the philosophy of
mathematics. Indeed, modern mathematics has been defined in a very general
sense as the study of abstract structures by the Bourbaki group.20

of non–Euclidean geometry. Bolyai’s work was published in 1832 as an appendix
to a mathematics textbook by his father. Gauss, on reading the Appendix, wrote
to a friend saying “I regard this young geometer Bolyai as a genius of the first
order.” In 1848 Bolyai discovered not only that Lobachevsky had published a
similar piece of work in 1829, but also a generalisation of this theory.

Nikolai Ivanovich Lobachevsky (December 1, 1792–February 24, 1856
(N.S.) was a Russian mathematician. Lobachevsky’s main achievement is the
development (independently from János Bolyai) of non–Euclidean geometry.
Before him, mathematicians were trying to deduce Euclid’s fifth postulate from
other axioms. Lobachevsky would instead develop a geometry in which the fifth
postulate was not true.

19 Felix Christian Klein (April 25, 1849, Düsseldorf, Germany – June 22, 1925,
Göttingen) was a German mathematician, known for his work in group theory,
function theory, non-Euclidean geometry, and on the connections between geome-
try and group theory. His 1872 Erlangen Program, classifying geometries by their
underlying symmetry groups, was a hugely influential synthesis of much of the
mathematics of the day.

20 Nicolas Bourbaki is the collective allonym under which a group of (mainly French)
20th-century mathematicians wrote a series of books presenting an exposition of
modern advanced mathematics, beginning in 1935. With the goal of founding all
of mathematics on set theory, the group strove for utmost rigour and generality,
creating some new terminology and concepts along the way.

While Nicolas Bourbaki is an invented personage, the Bourbaki group is
officially known as the Association des collaborateurs de Nicolas Bourbaki
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The main disadvantage of abstraction is that highly abstract concepts are
more difficult to learn, and require a degree of mathematical maturity and
experience before they can be assimilated.

In computer science, abstraction is a mechanism and practice to reduce
and factor out details so that one can focus on a few concepts at a time.

The concept is by analogy with abstraction in mathematics. The mathe-
matical technique of abstraction begins with mathematical definitions; this
has the fortunate effect of finessing some of the vexing philosophical issues of
abstraction. For example, in both computing and in mathematics, numbers
are concepts in the programming languages, as founded in mathematics. Imp-
lementation details depend on the hardware and software, but this is not a
restriction because the computing concept of number is still based on the
mathematical concept.

Roughly speaking, abstraction can be either that of control or data. Con-
trol abstraction is the abstraction of actions while data abstraction is that
of data structures. For example, control abstraction in structured program-
ming is the use of subprograms and formatted control flows. Data abstraction
is to allow for handling data bits in meaningful manners. For example, it is
the basic motivation behind data–type. Object–oriented programming can be
seen as an attempt to abstract both data and code.

Creativity

Now, recall that creativity is a mental process involving the generation of new
ideas or concepts, or new associations between existing ideas or concepts. From
a scientific point of view, the products of creative thought (sometimes referred
to as divergent thought) are usually considered to have both originality and

(‘association of collaborators of Nicolas Bourbaki’), which has an office at the
École Normale Supérieure in Paris.

The emphasis on rigour may be seen as a reaction to the work of Jules–Henri
Poincaré, who stressed the importance of free–flowing mathematical intuition, at
a cost in completeness (i.e., proof) in presentation. The impact of Bourbaki’s
work initially was great on many active research mathematicians world–wide.

Notations introduced by Bourbaki include: the symbol ∅ for the empty set ,
and the terms injective, surjective, and bijective.

Aiming at a completely self-contained treatment of most of modern mathe-
matics based on set theory, the group produced the following volumes (with the
original French titles in parentheses):

I Set theory (Théorie des ensembles);
II Algebra (Algèbre);
III General Topology (Topologie générale);
IV Functions of one real variable (Fonctions d’une variable réelle);
V Topological vector spaces (Espaces vectoriels topologiques);
VI Integration (Intégration);
VII Commutative algebra (Algèbre commutative); and
VIII Lie groups and algebras (Groupes et algèbres de Lie).
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appropriateness. An alternative, more everyday conception of creativity is
that it is simply the act of making something new. Although intuitively a
simple phenomenon, it is in fact quite complex. It has been studied from
the perspectives of behavioral psychology, social psychology, psychometrics,
cognitive science, artificial intelligence, philosophy, history, economics, design
research, business, and management, among others. The studies have covered
everyday creativity, exceptional creativity and even artificial creativity. Unlike
many phenomena in science, there is no single, authoritative perspective or
definition of creativity. Unlike many phenomena in psychology, there is no
standardized measurement technique.

Creativity has been attributed variously to divine intervention, cognitive
processes, the social environment, personality traits, and chance (‘accident’,
‘serendipity’). It has been associated with genius, mental illness and humor.
Some say it is a trait we are born with; others say it can be taught with
the application of simple techniques. Although popularly associated with art
and literature, it is also an essential part of innovation and invention and is
important in professions such as business, economics, architecture, industrial
design, science and engineering.

Despite, or perhaps because of, the ambiguity and multi–dimensional
nature of creativity, entire industries have been spawned from the pursuit
of creative ideas and the development of creativity techniques. This mysteri-
ous phenomenon, though undeniably important and constantly visible, seems
to lie tantalizingly beyond the grasp of scientific investigation.

More than 60 different definitions of creativity can be found in the psycho-
logical literature (see [Tay88]). The etymological root of the word in English
and most other European languages comes from the Latin ‘creatus’, which
literally means ‘to have grown’. Perhaps the most widespread conception of
creativity in the scholarly literature is that creativity is manifested in the
production of a creative work (for example, a new work of art or a scientific
hypothesis) that is both novel and useful. Colloquial definitions of creativity
are typically descriptive of activity that results in producing or bringing about
something partly or wholly new; in investing an existing object with new prop-
erties or characteristics; in imagining new possibilities that were not conceived
of before; and in seeing or performing something in a manner different from
what was thought possible or normal previously.

A useful distinction has been made by [Rho61], between the creative per-
son, the creative product, the creative process, and the creative ‘press’ or envi-
ronment. Each of these factors are usually present in creative activity. This has
been elaborated by [Joh72], who suggested that creative activity may exhibit
several dimensions including sensitivity to problems on the part of the creative
agent, originality, ingenuity, unusualness, usefulness, and appropriateness in
relation to the creative product, and intellectual leadership on the part of the
creative agent .

Boden [Bod04] noted that it is important to distinguish between ideas
which are psychologically creative (which are novel to the individual mind
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which had the idea), and those which are historically creative (which are novel
with respect to the whole of human history). Drawing on ideas from artificial
intelligence, she defines psychologically creative ideas as those which cannot
be produced by the same set of generative rules as other, familiar ideas.

Often implied in the notion of creativity is a concomitant presence of
inspiration, cognitive leaps, or intuitive insight as a part of creative thought
and action [Koe64]. Popular psychology sometimes associates creativity with
right or forehead brain activity or even specifically with lateral thinking. Some
students of creativity have emphasized an element of chance in the creative
process. Linus Pauling,21 asked at a public lecture how one creates scientific
theories, replied that one must endeavor to come up with many ideas — then
discard the useless ones.

The formal starting point of the scientific study of creativity is sometimes
considered to be J. Joy Guilford’s22 address to the American Psychological
Association in 1950, which helped to popularize the topic (see [SL99]). Since
then, researchers from a variety of fields have studied the nature of creativity

21 Linus Carl Pauling (February 28, 1901 – August 19, 1994) was an American
quantum chemist and biochemist, widely regarded as the premier chemist of the
twentieth century. Pauling was a pioneer in the application of quantum mechanics
to chemistry (quantum mechanics can, in principle, describe all of chemistry and
molecular biology), and in 1954 was awarded the Nobel Prize in chemistry for his
work describing the nature of chemical bonds. He also made important contribu-
tions to crystal and protein structure determination, and was one of the founders
of molecular biology. Pauling is noted as a versatile scholar for his expertise in
inorganic chemistry, organic chemistry, metallurgy, immunology, anesthesiology,
psychology, debate, radioactive decay, and the aftermath of nuclear weapons, in
addition to quantum mechanics and molecular biology.

Pauling received the Nobel Peace Prize in 1962 for his campaign against above-
ground nuclear testing, becoming the only person in history to individually receive
two Nobel Prizes (Marie Curie won Nobel Prizes in physics and chemistry, but
shared the former and won the latter individually; John Bardeen won two Nobel
Prizes in the field of physics, but both were shared; Frederick Sanger won two
Nobel Prizes in chemistry, but one was shared).

Later in life, he became an advocate for regular consumption of massive doses
of vitamin C, which is still regarded as unorthodox by conventional medicine.

22 Joy Paul Guilford (1897–1988) was a US psychologist, best remembered for his
psychometric study of human intelligence.

He graduated from the University of Nebraska before studying under Edward
Titchener at Cornell. He then held a number of posts at Nebraska and briefly at
the University of Southern California before becoming Director of Psychological
Research at Santa Ana Army Air Base in 1941. There he worked on the selection
and ranking of air–crew trainees.

Developing the views of L. L. Thurstone, Guilford rejected Charles Spearman’s
view that intelligence could be characterized in a single numerical parameter
and proposed that three dimensions were necessary for accurate description:
(i) content, (ii) operations, and (iii) productions. He made the important dis-
tinction between convergent and divergent production.
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from a scientific point of view. Others have taken a more pragmatic app-
roach, teaching practical creativity techniques. Three of the best–known are
Alex Osborn’s23 brainstorming techniques, Genrikh Altshuller’s24 ‘Theory of
Inventive Problem Solving’ (TIPS), and Edward de Bono’s25 lateral thinking
(1960s to present).

The neurology of creativity has been discussed by F. Balzac in [Bal06].
The study found that creative innovation requires coactivation and communi-
cation between regions of the brain that ordinarily are not strongly connected.
Highly creative people who excel at creative innovation tend to differ from
others in three ways: they have a high level of specialized knowledge, they
are capable of divergent thinking mediated by the frontal lobe, and they are
able to modulate neurotransmitters such as norepinephrine in their frontal
lobe. Thus, the frontal lobe appears to be the part of the cortex that is most
important for creativity. The study also explored the links between creativity
and sleep, mood and addiction disorders, and depression.

J. Guilford’s group developed the so–called ‘Torrance Tests of Creative
Thinking’. They involved simple tests of divergent thinking and other
problem–solving skills, which were scored on [Gui67]:

1. Fluency: the total number of interpretable, meaningful, and relevant ideas
generated in response to the stimulus;

2. Flexibility: the number of different categories of relevant responses;

23 Alex Faickney Osborn (May 24, 1888 – May 4, 1966) was an advertising manager
and the author of the creativity technique named brainstorming .

24 Genrikh Saulovich Altshuller (October 15, 1926 - September 24, 1998), created the
Theory of Inventive Problem Solving (TIPS). Working as a clerk in a patent office,
Altshuller embarked on finding some generic rules that would explain creation of
new, inventive, patentable ideas.

25 Edward de Bono (born May 19, 1933) is a psychologist and physician. De Bono
writes prolifically on subjects of lateral thinking, a concept he is believed to have
pioneered and now holds training seminars in. Dr. de Bono is also a world-famous
consultant who has worked with companies like Coca-cola and Ericsson. In 1979
he co–founded the School of Thinking with Dr Michael Hewitt–Gleeson.

De Bono has detailed a range of ‘deliberate thinking methods’ – applications
emphasizing thinking as a deliberate act rather than a reactive one. His writing
style is simple and clear, though often criticized for being dry and repetitive.
Avoiding academic terminology, he has advanced applied psychology by making
theories about creativity and perception into usable tools. A distinctive feature
of De Bono’s books is that he never acknowledges or credits the ideas of other
authors or researchers in the field of creativity.

De Bono’s work has become particularly popular in the sphere of business –
perhaps because of the perceived need to restructure corporations, to allow more
flexible working practices and to innovate in products and services. The methods
have migrated into corporate training courses designed to help employees and
executives ‘think out of the box’ / ‘think outside the box’.
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3. Originality: the statistical rarity of the responses among the test subjects;
and

4. Elaboration: the amount of detail in the responses.

Personality

On the other hand, personality is a collection of emotional, thought and
behavioral patterns unique to a person that is consistent over time. Personality
psychology is a branch of psychology which studies personality and individual
different processes – that which makes us into a person. One emphasis is on
trying to create a coherent picture of a person and all his or her major psy-
chological processes. Another emphasis views it as the study of individual
differences. These two views work together in practice. Personality psycho-
logists are interested in broad view of the individual. This often leads to an
interest in the most salient individual differences among people.

The word personality originates from the Latin persona, which means
‘mask’.26 In the History of theater of the ancient Latin world, the mask was
not used as a plot device to disguise the identity of a character, but rather
was a convention employed to represent, or typify that character.

There are several theoretical perspectives on personality in psychology,
which involve different ideas about the relationship between personality and
other psychological constructs, as well as different theories about the way
personality develops. Most theories can be grouped into one of the following
classes.

Generally the opponents to personality theories claim that personality is
‘plastic’ in time, places, moods and situations. Changing personality may in
fact resulting from diet (or lack of), medical effects, historical or subsequent
events, or learning. Stage managers (of many types) are especially skilled
in changing a person’s resulting ‘personality’. Most personality theories will
not cover such flexible nor unusual people situations. Therefore, although
personality theories do not define personality as ‘plastic’ over time like their
opponents, they do imply a drastic change in personality is highly unusual.

According to the Diagnostic and Statistical Manual of Mental Disorders
of the American Psychiatric Association, personality traits are ‘prominent
aspects of personality that are exhibited in a wide range of important social
and personal contexts.’ In other words, persons have certain characteristics
which partly determine their behavior. According to the theory, a friendly

26 A persona, in the word’s everyday usage, is a social role, or a character played by
an actor. The word derives from the Latin for ‘mask’ or ‘character’, derived from
the Etruscan word ‘phersu’, with the same meaning.

For instance, in Dostoevsky’s novel, Notes from Underground (generally con-
sidered to be the first existentialist novel), the narrator ought not to be conflated
with Dostoevsky himself, despite the fact that Dostoevsky and his narrator may
or may not have shared much in common. In this sense, the persona is basically
a mouthpiece for a particular world–view.
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person is likely to act friendly in any situation because of the traits in his
personality. One criticism of trait models of personality as a whole is that
they lead professionals in clinical psychology and lay–people alike to accept
classifications, or worse offer advice, based on superficial analysis of one’s
profile.

The most common models of traits incorporate four or five broad dimen-
sions or factors. The least controversial dimension, observed as far back as the
ancient Greeks, is simply extraversion vs. introversion (outgoing and physical–
stimulation–oriented vs. quiet and physical–stimulation–averse).

Gordon Allport27 delineated different kinds of traits, which he also called
dispositions. Central traits are basic to an individual’s personality, while sec-
ondary traits are more peripheral. Common traits are those recognized within
a culture and thus may vary from culture to culture. Cardinal traits are those
by which an individual may be strongly recognized.

Raymond Cattell’s28 research propagated a two–tiered personality struc-
ture with sixteen ‘primary factors’ (16 Personality Factors) and five ‘secondary
factors’ (see Table 1.1). Cattell referred to these 16 factors as primary fac-
tors, as opposed to the so–called ‘Big Five’ factors which he considered global
factors. All of the primary factors correlate with global factors and could
therefore be considered subfactors within them.
27 Gordon Willard Allport (November 11, 1897 - October 9, 1967) was an American

psychologist. He was born in Montezuma, Indiana, the youngest of four brothers.
One of his older brothers, Floyd Henry Allport, was an important and influential
psychologist as well. Gordon W. Allport was a long time and influential member
of the faculty at Harvard University from 1930-1967. His works include Becoming,
Pattern and Growth in Personality, The Individual and his Religion, and perhaps
his most influential book The Nature of Prejudice.

Allport was one of the first psychologists to focus on the study of the per-
sonality, and is often referred to as one of the fathers of personality psychology.
Characteristically for this ecletic and pluralistic thinker, he was also an impor-
tant contributor to social psychology as well. He rejected both a psychoanalytic
approach to personality, which he thought often went too deep, and a behav-
ioral approach, which he thought often did not go deep enough. He emphasized
the uniqueness of each individual, and the importance of the present context, as
opposed to past history, for understanding the personality.

28 Raymond Bernard Cattell (20 March 1905 – 2 February 1998) was a British and
American psychologist who theorized the existence of fluid and crystallized intel-
ligences to explain human cognitive ability. He was famously productive through-
out his 92 years, and ultimately was able to claim a combined authorship and
co–authorship of 55 books and some 500 journal articles in addition to at least
30 standardized tests. His legacy includes not just that intellectual production,
but also a spirit of scientific rigor brought to an otherwise soft science and kept
burning by his students and co–researchers whom he was survived by.

In keeping with his devotion to rigorous scientific method, Cattell was an early
proponent of the application in psychology of factor analytical methods, in place
of what he called mere ‘verbal theorizing.’ One of the most important results of
Cattell’s application of factor analysis was the derivation of 16 factors underlying
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Table 1.1. Cattell’s 16 Personality Factors

Descriptors of Low Range Primary
Factor

Descriptors of High Range

Impersonal, distant, cool,
reserved, detached, formal,
aloof (Sizothymia)

Warmth Warm, outgoing, attentive to
others, kindly, easy going,
participating, likes people
(Affectothymia)

Concrete thinking, lower
general mental capacity, less
intelligent, unable to handle
abstract problems (Lower
Scholastic Mental Capacity)

Reasoning Abstract–thinking, more
intelligent, bright, higher
general mental capacity, fast
learner (Higher Scholastic
Mental Capacity)

Reactive emotionally,
changeable, affected by feelings,
emotionally less stable, easily
upset (Lower Ego Strength)

Emotional
Stability

Emotionally stable, adaptive,
mature, faces reality calm
(Higher Ego Strength)

Deferential, cooperative, avoids
conflict, submissive, humble,
obedient, easily led, docile,
accommodating
(Submissiveness)

Dominance Dominant, forceful, assertive,
aggressive, competitive,
stubborn, bossy (Dominance)

Serious, restrained, prudent,
taciturn, introspective, silent
(Desurgency)

Liveliness Lively, animated, spontaneous,
enthusiastic, happy go lucky,
cheerful, expressive, impulsive
(Surgency)

Expedient, nonconforming,
disregards rules, self indulgent
(Low Super Ego Strength)

Rule–
Consciousness

Rule–conscious, dutiful,
conscientious, conforming,
moralistic, staid, rule bound
(High Super Ego Strength)

Shy, threat–sensitive, timid,
hesitant, intimidated (Threctia)

Social
Boldness

Socially bold, venturesome,
thick skinned, uninhibited
(Parmia)

Utilitarian, objective,
unsentimental, tough minded,
self–reliant, no–nonsense, rough
(Harria)

Sensitivity Sensitive, aesthetic,
sentimental, tender minded,
intuitive, refined (Premsia)

Trusting, unsuspecting,
accepting, unconditional, easy
(Alaxia)

Vigilance Vigilant, suspicious, skeptical,
distrustful, oppositional
(Protension)

Grounded, practical, prosaic,
solution oriented, steady,
conventional (Praxernia)

Abstractedness Abstract, imaginative, absent
minded, impractical, absorbed
in ideas (Autia)

Forthright, genuine, artless,
open, guileless, naive,
unpretentious, involved
(Artlessness)

Privateness Private, discreet, nondisclosing,
shrewd, polished, worldly,
astute, diplomatic (Shrewdness)
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Self–Assured, unworried,
complacent, secure, free of
guilt, confident, self satisfied
(Untroubled)

Apprehension Apprehensive, self doubting,
worried, guilt prone, insecure,
worrying, self blaming (Guilt
Proneness)

Traditional, attached to
familiar, conservative,
respecting traditional ideas
(Conservatism)

Openness to
Change

Open to change, experimental,
liberal, analytical, critical, free
thinking, flexibility
(Radicalism)

Group–oriented, affiliative, a
joiner and follower dependent
(Group Adherence)

Self–Reliance Self–reliant, solitary,
resourceful, individualistic, self
sufficient (Self-Sufficiency)

Tolerated disorder, unexacting,
flexible, undisciplined, lax,
self-conflict, impulsive, careless
of social rules, uncontrolled
(Low Integration)

Perfectionism Perfectionistic, organized,
compulsive, self-disciplined,
socially precise, exacting will
power, control, self-sentimental
(High Self–Concept Control)

Relaxed, placid, tranquil,
torpid, patient, composed low
drive (Low Ergic Tension)

Tension Tense, high energy, impatient,
driven, frustrated, over
wrought, time driven. (High
Ergic Tension)

A different model was proposed by Hans Eysenck,29 who believed that just
three traits: extroversion, neuroticism and psychoticism – were sufficient to
describe human personality. Eysenck was one of the first psychologists to study
personality with the method of factor analysis, a statistical technique intro-
duced by Charles Spearman30 and expanded by Raymond Cattell. Eysenck’s

human personality. He called these 16 factors source traits because he believed
that they provide the underlying source for the surface behaviors that we think
of as personality. (‘Psychology and Life, 7 ed.’ by Richard Gerrig and Philip
Zimbardo.) This theory of 16 personality factors and the instruments used to
measure them are known collectively as the 16 Personality Factors.

29 Hans Jürgen Eysenck (March 4, 1916 – September 4, 1997) was an eminent psy-
chologist, most remembered for his work on intelligence and personality, though
he worked in a wide range of areas. At the time of his death, Eysenck was the
living psychologist most frequently cited in science journals.

Hans Eysenck was born in Germany, but moved to England as a young man in
the 1930s because of his opposition to the Nazi party. Eysenck was the founding
editor of the journal Personality and Individual Differences, and authored over
50 books and over 900 academic articles. He aroused intense debate with his
controversial dealing with variation in IQ among racial groups.

30 Charles Edward Spearman (September 10, 1863 - September 7, 1945) was an
English psychologist known for work in statistics, as a pioneer of factor analysis,
and for Spearman’s rank correlation coefficient. He also did seminal work on
models for human intelligence, including his theory that disparate cognitive test
scores reflect a single general factor and coining the term g factor. Spearman had
an unusual background for a psychologist. After 15 years as an officer in the British
Army he resigned to study for a PhD in experimental psychology. In Britain
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results suggested two main personality factors [Eys92a, Eys92b]. The first fac-
tor was the tendency to experience negative emotions, and Eysenck referred
to it as ‘neuroticism’. The second factor was the tendency enjoy positive
events, especially social events, and Eysenck named it ‘extraversion’. The
two personality dimensions were described in his 1947 book ‘Dimensions of
Personality’. It is common practice in personality psychology to refer to the
dimensions by the first letters, E and N . E and N provided a 2–dimensional
space to describe individual differences in behavior. An analogy can be made
to how latitude and longitude describe a point on the face of the earth. Also,
Eysenck noted how these two dimensions were similar to the four personality
types first proposed by the ancient Greek physician Galen31:

psychology was generally seen as a branch of philosophy and Spearman chose to
study in Leipzig under Wilhelm Wundt. Besides Spearman had no conventional
qualifications and Leipzig had liberal entrance requirements. He started in 1897
and after some interruption (he was recalled to the army during the South African
War) he obtained his degree in 1906. He had already published his seminal paper
on the factor analysis of intelligence (1904). Spearman met and impressed the
psychologist William McDougall who arranged for Spearman to replace him when
he left his position at University College London. Spearman stayed at University
College until he retired in 1931. Initially he was Reader and head of the small
psychological laboratory. In 1911 he was promoted to the Grote professorship of
the Philosophy of Mind and Logic. His title changed to Professor of Psychology in
1928 when a separate Department of Psychology was created. When Spearman
was elected to the Royal Society in 1924 the citation read “Dr. Spearman has
made many researches in experimental psychology. His many published papers
cover a wide field, but he is especially distinguished by his pioneer work in the
application of mathematical methods to the analysis of the human mind, and his
original studies of correlation in this sphere. He has inspired and directed research
work by many pupils.”

Spearman was strongly influenced by the work of Francis Galton. Galton did
pioneering work in psychology and developed correlation, the main statistical tool
used by Spearman. Spearman developed rank correlation (1904) and the widely
used correction for attenuation (1907). His statistical work was not appreciated
by his University College colleague Karl Pearson and there was long feud between
them. Although Spearman achieved most recognition for his statistical work, he
regarded this work as subordinate to his quest for the fundamental laws of psy-
chology (see [WZZ03] for details).

31 Galen, (Latin: Claudius Galenus of Pergamum) was an ancient Greek physician.
The forename ‘Claudius’ is absent in Greek texts; it was first documented in
texts from the Renaissance. Galen’s views dominated European medicine for over
a thousand years.

Galen transmitted Hippocratic medicine all the way to the Renaissance. His On
the Elements According to Hippocrates describes the philosopher’s system of four
bodily humours, blood, yellow bile, black bile and phlegm, which were identified
with the four classical elements, and in turn with the seasons. He created his own
theories from those principles, and much of Galen’s work can be seen as building
on the Hippocratic theories of the body, rather than being purely innovative. In
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1. High N and High E = Choleric type;
2. High N and Low E = Melancholic type;
3. Low N and High E = Sanguine type; and
4. Low N and Low E = Phlegmatic type.

The third dimension, ‘psychoticism’, was added to the model in the
late 1970s, based upon collaborations between Eysenck and his wife, Sybil
B.G. Eysenck, the current editor of Personality and Individual Differences
(see [Eys69, Eys76]).

The major strength of Eysenck’s model was to provide detailed theory of
the causes of personality (see his 1985 book ‘Decline and Fall of the Freudian
Empire’). For example, Eysenck proposed that extraversion was caused by
variability in cortical arousal; ‘introverts are characterized by higher levels
of activity than extraverts and so are chronically more cortically aroused
than extraverts’. While it seems counterintuitive to suppose that introverts
are more aroused than extraverts, the putative effect this has on behavior
is such that the introvert seeks lower levels of stimulation. Conversely, the
extravert seeks to heighten their arousal to a more optimal level (as predicted
by the Yerkes–Dodson Law) by increased activity, social engagement and other
stimulation–seeking behaviors.

Differences between Cattell and Eysenck emerged due to preferences for
different forms of factor analysis, with Cattell using oblique, Eysenck ortho-
gonal, rotation to analyze the factors that emerged when personality ques-
tionnaires were subject to statistical analysis. Today, the Big Five factors
have the weight of a considerable amount of empirical research behind them.
Building on the work of Cattell and others, Lewis Goldberg32 proposed a five–
dimensional personality model, nicknamed the ‘Big Five’ personality traits:

Extroversion (i.e., ‘extroversion vs. introversion’ above; outgoing and
physical–stimulation–oriented vs. quiet and physical–stimulation–averse);

turn, he mainly ignored Latin writings of Celsus, but accepted that the ancient
works of Asclepiades had sound theory.

Galen’s own theories, in accord with Plato’s, emphasized purposeful creation by
a single Creator (‘Nature’ – Greek ‘phusis’) – a major reason why later Christian
and Muslim scholars could accept his views. His fundamental principle of life was
pneuma (air, breath) that later writers connected with the soul. These writings
on philosophy were a product of Galen’s well rounded education, and through-
out his life Galen was keen to emphasize the philosophical element to medicine.
Pneuma physicon (animal spirit) in the brain took care of movement, perception,
and senses. Pneuma zoticon (vital spirit) in the heart controlled blood and body
temperature. ‘Natural spirit’ in the liver handled nutrition and metabolism. How-
ever, he did not agree with the Pneumatist theory that air passed through the
veins rather than blood.

32 Lewis R. Goldberg is an American personality psychologist and a professor emer-
itus at the University of Oregon. Among his other accomplishments, Goldberg is
closely associated with the Big Five taxonomy of personality. He has published
well over 100 research articles and has been active on editorial boards.
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1. Neuroticism (i.e., emotional stability; calm, unperturbable, optimistic vs.
emotionally reactive, prone to negative emotions);

2. Agreeableness (i.e., affable, friendly, conciliatory vs. aggression aggressive,
dominant, disagreeable);

3. Conscientiousness (i.e., dutiful, planful, and orderly vs. spontaneous, flex-
ible, and unreliable); and

4. Openness to experience (i.e., open to new ideas and change vs. traditional
and staid).

Character

A character structure is a system of relatively permanent motivational and
other traits that are manifested in the characteristic ways that an individual
relates to others and reacts to various kinds of challenges. The word ‘structure’
indicates that these several characteristics and/or learned patterns of behavior
are linked in such a way as to produce a state that can be highly resistant to
change. The idea has its roots in the work of Sigmund Freud33 and several of
his followers, the most important of whom (in this respect) is Erich Fromm.34

Among other important participants in the establishment of this concept must
surely be counted Erik Erikson.35

Among the earliest factors that determine an individual’s eventual charac-
ter structure are his or her genetic characteristics and early childhood nurture
and education. A child who is well nurtured and taught in a relatively benign
and consistent environment by loving adults who intend that the child should

33 Sigmund Freud (May 6, 1856–September 23, 1939) was an Austrian neurologist
and the founder of the psychoanalytic school of psychology. Freud is best known
for his studies of sexual desire, repression, and the unconscious mind. He is com-
monly referred to as ‘the father of psychoanalysis’ and his work has been tremen-
dously influential in the popular imagination–popularizing such notions as the
unconscious, defence mechanisms, Freudian slips and dream symbolism – while
also making a long-lasting impact on fields as diverse as literature, film, marxist
and feminist theories, literary criticism, philosophy, and of course, psychology.

34 Erich Pinchas Fromm (March 23, 1900 – March 18, 1980) was an internation-
ally renowned German-American psychologist and humanistic philosopher. He is
associated with what became known as the Frankfurt School of critical thinkers.

Central to Fromm’s world view was his interpretation of the Talmud, which he
began studying as a young man under Rabbi J. Horowitz and later studied under
Rabbi Salman Baruch Rabinkow while working towards his doctorate in sociology
at the University of Heidelberg and under Nehemia Nobel and Ludwig Krause
while studying in Frankfurt. Fromm’s grandfather and two great grandfathers on
his father’s side were rabbis, and a great uncle on his mother’s side was a noted
Talmudic scholar. However, Fromm turned away from orthodox Judaism in 1926
and turned towards secular interpretations of scriptural ideals.

35 Erik Homburger Erikson (June 15, 1902 – May 12, 1994) was a developmental
psychologist and psychoanalyst known for his theory on social development of
human beings, and for coining the phrase identity crisis.
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learn how to make objective appraisals regarding the environment will be
likely to form a normal or productive character structure. On the other hand,
a child whose nurture and/or education are not ideal, living in a treacher-
ous environment and interacting with adults who do not take the long–term
interests of the child to heart will be more likely to form a pattern of behav-
ior that suits the child to avoid the challenges put forth by a malign social
environment. The means that the child invents to make the best of a hos-
tile environment. Although this may serve the child well while in that bad
environment, it may also cause the child to react in inappropriate ways, ways
damaging to his or her own interests, when interacting with people in a more
ideal social context. Major trauma that occurs later in life, even in adulthood,
can sometimes have a profound effect. However, character may also develop
in a positive way according to how the individual meets the psychosocial chal-
lenges of the life cycle (Erikson).

Freud’s first paper on character described the anal character consisting
of stubbornness, stinginess and extreme neatness. He saw this as a reaction
formation to the child’s having to give up pleasure in anal eroticism.The posi-
tive version of this character is the conscientious, inner directed obsessive.
Freud also described the erotic character as both loving and dependent. And
the narcissistic character as the natural leader, aggressive and independent
because of not internalizing a strong super ego.

For Erich Fromm, character develops as the way in which an individual
structures modes of assimilation and relatedness. The character types are
almost identical to Freud’s but Fromm gives them different names, recep-
tive, hoarding, exploitative. Fromm adds the marketing type as the person
who continually adapts the self to succeed in the new service economy. For
Fromm, character types can be productive or unproductive. Fromm notes that
character structures develop in each individual to enable him or her to inter-
act successfully within a given society, to adapt to its mode of production and
social norms may be very counter–productive when used in a different society.

Wisdom

On the other hand, wisdom is the ability, developed through experience,
insight and reflection, to discern truth and exercise good judgment. It is
sometimes conceptualized as an especially well developed form of common
sense. Most psychologists regard wisdom as distinct from the cognitive abili-
ties measured by standardized intelligence tests. Wisdom is often considered
to be a trait that can be developed by experience, but not taught. When
applied to practical matters, the term wisdom is synonymous with prudence.
Some see wisdom as a quality that even a child, otherwise immature, may pos-
sess independent of experience or complete knowledge. The status of wisdom
or prudence as a virtue is recognized in cultural, philosophical and religious
sources. Some define wisdom in a utilitarian sense, as foreseeing consequences
and acting to maximize the long–term common good.
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A standard philosophical definition says that wisdom consists of making
the best use of available knowledge. As with all decisions, a wise decision may
be made with incomplete information. The technical philosophical term for the
opposite of wisdom is folly. For example, in his Metaphysics, Aristotle defines
wisdom as knowledge of causes: why things exist in a particular fashion.

Beyond the simple expedient of experience (which may be considered the
most difficult way to gain wisdom as through the ‘school of hard knocks’),
there are a variety of other avenues to gaining wisdom which vary accord-
ing to different philosophies. For example, the so–called freethinkers36believe
that wisdom may come from pure reason and perhaps experience. Recall
that freethought is a philosophical doctrine that holds that beliefs should be
formed on the basis of science and logical principles and not be comprised by
authority, tradition or any other dogmatic or otherwise fallacious belief sys-
tem that restricts logical reasoning. The cognitive application of freethought
is known as freethinking , and practitioners of freethought are known as free-
thinkers. Freethought holds that individuals should neither accept nor reject
ideas proposed as truth without recourse to knowledge and reason. Thus,
freethinkers strive to build their beliefs on the basis of facts, scientific in-
quiry, and logical principles, independent of the factual/logical fallacies and
intellectually-limiting effects of authority, cognitive bias, conventional wisdom,
popular culture, prejudice, sectarianism, tradition, urban legend and all other
dogmatic or otherwise fallacious principles. When applied to religion, the phi-
losophy of freethought holds that, given presently–known facts, established
scientific theories, and logical principles, there is insufficient evidence to sup-
port the existence of supernatural phenomena. A line from ‘Clifford’s Credo’
by the 19th Century British mathematician and philosopher William Clif-
ford37 perhaps best describes the premise of freethought: “It is wrong always,

36 Freethought is a philosophical doctrine that holds that beliefs should be formed
on the basis of science and logical principles and not be comprised by author-
ity, tradition or any other dogmatic or otherwise fallacious belief system that
restricts logical reasoning. The cognitive application of freethought is known as
freethinking, and practitioners of freethought are known as freethinkers.

37 William Kingdon Clifford, FRS (May 4, 1845 – March 3, 1879) was an English
mathematician who also wrote a fair bit on philosophy. Along with Hermann
Grassmann, he invented what is now termed geometric algebra, a special case
being the Clifford algebras named in his honour, which play a role in contemporary
mathematical physics. He was the first to suggest that gravitation might be a
manifestation of an underlying geometry. His philosophical writings coined the
phrase ‘mind–stuff’.

Influenced by Riemann and Lobachevsky, Clifford studied non–Euclidean
geometry. In 1870, he wrote On the space theory of matter, arguing that energy
and matter are simply different types of curvature of space. These ideas later
played a fundamental role in Albert Einstein’s general theory of relativity. Yet
Clifford is now best remembered for his eponymous Clifford algebras, a type of
associative algebra that generalizes the complex numbers and William Rowan
Hamilton’s quaternions. The latter resulted in the octonions (biquaternions),
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everywhere, and for anyone, to believe anything upon insufficient evidence.”
Since many popular beliefs are based on dogmas, freethinkers’ opinions are
often at odds with commonly–established views.

On the other hand, there is also a common belief that wisdom comes
from intuition or, ‘superlogic’, as it is called by Tony Buzan,38 inventor of
mind maps. For example, holists believe that wise people sense, work with
and align themselves and others to life. In this view, wise people help oth-
ers appreciate the fundamental interconnectedness of life. Also, some religions
hold that wisdom may be given as a gift from God. For example, Buddha
taught that a wise person is endowed with good bodily conduct, good verbal
conduct and good mental conduct and a wise person does actions that are un-
pleasant to do but give good results and doesn’t do actions that are pleasant
to do but give bad results; this is called karma. According to Hindu scrip-
tures, spiritual wisdom – jnana alone can lead to liberation. Confucius stated
that wisdom can be learned by three methods: (i) reflection (the noblest),
(ii) imitation (the easiest) and (iii) experience (the bitterest).

1.1.1 Human Intelligence

At least two major ‘consensus’ definitions of intelligence have been proposed.
First, from ‘Intelligence: Knowns and Unknowns’, a report of a task force
convened by the American Psychological Association39 in 1995 (see [APS98]):

which he employed to study motion in non–Euclidean spaces and on certain sur-
faces, now known as Klein–Clifford spaces. He showed that spaces of constant
curvature could differ in topological structure. He also proved that a Riemann
surface is topologically equivalent to a box with holes in it. On Clifford algebras,
quaternions, and their role in contemporary mathematical physics.

38 Tony Buzan (1942–) is the originator of mind mapping and coined the term mental
literacy. He was born in London and received double Honours in psychology,
English, mathematics and the General Sciences from the University of British
Columbia in 1964. He is probably best known for his book, Use Your Head, his
promotion of mnemonic systems and his mind–mapping techniques. Following
his 1970s series for the BBC, many of his ideas have been set into his series of
five books: Use Your Memory, Master Your Memory, Use Your Head, The Speed
Reading Book and The Mind Map Book.

In essence, Buzan teaches “Learn how your brain learns rapidly and naturally.”
His work is partly based on the explosion of brain research that has taken place
since the late 1950s, and the work on the left and right brain by psychologist
Robert Ornstein and Nobel Laureate Roger Wolcott Sperry.

39 The American Psychological Association (APA) is a professional organization
representing psychology in the US. It has around 150,000 members and an annual
budget of around $70m. The APA mission statement is to “advance psychology
as a science and profession and as a means of promoting health, education, and
human welfare.” The APA was founded in July 1892 at Clark University by a
group of 26 men. Its first president was G. Stanley Hall. There are currently 54
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Individuals differ from one another in their ability to understand complex
ideas, to adapt effectively to the environment, to learn from experience,
to engage in various forms of reasoning, to overcome obstacles by taking
thought. Although these individual differences can be substantial, they are
never entirely consistent: a given person’s intellectual performance will vary
on different occasions, in different domains, as judged by different criteria.
Concepts of ‘intelligence’ are attempts to clarify and organize this complex
set of phenomena.

A second definition of intelligence comes from the ‘Mainstream Science on
Intelligence’, which was signed by 52 intelligence researchers in 1994 (also see
[APS98]): Intelligence is a very general mental capability that, among other
things, involves the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly and learn from experience. It is
not merely book learning, a narrow academic skill, or test–taking smarts.
Rather, it reflects a broader and deeper capability for comprehending our
surroundings, i.e., ‘catching on’, ‘making sense’ of things, or ‘figuring out’
what to do.

Individual intelligence experts have offered a number of similar definitions:

(i) David Wechsler:40 “ ... the aggregate or global capacity of the individual
to act purposefully, to think rationally, and to deal effectively with his
environment.”

(ii) Cyril Burt:41 “ ... innate general cognitive ability.”
(iii) Howard Gardner:42 “ To my mind, a human intellectual competence

must entail a set of skills of problem solving, enabling the individual to
resolve genuine problems or difficulties that he or she encounters and,
when appropriate, to create an effective product, and must also entail
the potential for finding or creating problems, and thereby laying the
groundwork for the acquisition of new knowledge.”

professional divisions in the APA. It is affiliated with 58 state and territorial and
Canadian provincial associations.

40 David Wechsler (January 12, 1896, Lespedi, Romania – May 2, 1981, New York,
New York) was a leading Romanian-American psychologist. He developed well–
known intelligence scales, such as the Wechsler Adult Intelligence Scale (WAIS)
and the Wechsler Intelligence Scale for Children (WISC).

41 Sir Cyril Lodowic Burt (March 3, 1883 — October 10, 1971) was a prominent
British educational psychologist. He was a member of the London School of Dif-
ferential Psychology. Some of his work was controversial for its conclusions that
genetics substantially influence mental and behavioral traits. After his death, he
was famously accused of scientific fraud.

42 Howard Gardner (born in Scranton, Pennsylvania, USA in 1943) is a psychologist
based at Harvard University best known for his theory of multiple intelligences.
In 1981 he was awarded a MacArthur Prize Fellowship.
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(iv) Richard Herrnstein43 and Charles Murray: “ ... cognitive ability.”
(v) Robert Sternberg:44 “... goal–directed adaptive behavior.”

Psychometric Definition of Intelligence and Its Criticisms

Despite the variety of concepts of intelligence, the most influential approach
to understanding intelligence (i.e., with the most supporters and the most
published research over the longest period of time) is based on psychometric
testing ,45 which regards intelligence as cognitive ability.

43 Richard J. Herrnstein (May 20, 1930 – September 13, 1994) was a prominent
researcher in comparative psychology who did pioneering work on pigeon intel-
ligence employing the Experimental Analysis of Behavior and formulated the
‘Matching Law’ in the 1960s, a breakthrough in understanding how reinforce-
ment and behavior are linked. He was the Edgar Pierce Professor of psychology
at Harvard University and worked with B. F. Skinner in the Harvard pigeon lab,
where he did research on choice and other topics in behavioral psychology. Her-
rnstein became more broadly known for his work on the correlation between race
and intelligence, first in the 1970s, then with Charles Murray, discussed in their
controversial best–selling 1994 book, The Bell Curve. Herrnstein described the
behavior of hyperbolic discounting, in which people will choose smaller payoffs
sooner instead of larger payoffs later. He developed a type of non–parametric
statistics that he dubbed ρ.

44 Robert J. Sternberg (borne 8 December 1949) is a psychologist and psychometri-
cian and the Dean of Arts and Sciences at Tufts University. He was formerly IBM
Professor of Psychology and Education at Yale University and the President of
the American Psychological Association. Sternberg currently sits on the editorial
board of Intelligence. Sternberg has proposed the so–called Triarchic theory of in-
telligence and a triangular theory of love. He is the creator (with Todd Lubart) of
the investment theory of creativity, which states that creative people buy low and
sell high in the world of ideas, and a propulsion theory of creative contributions,
which states that creativity is a form of leadership.

45 Psychometrics is the field of study concerned with the theory and technique of
psychological measurement, which includes the measurement of knowledge, abil-
ities, attitudes, and personality traits. The field is primarily concerned with the
study of differences between individuals. It involves two major research tasks,
namely: (i) the construction of instruments and procedures for measurement; and
(ii) the development and refinement of theoretical approaches to measurement.
Much of the early theoretical and applied work in psychometrics was under-
taken in an attempt to measure intelligence. The origin of psychometrics has
connections to the related field of psychophysics. Charles Spearman, a pioneer
in psychometrics who developed approaches to the measurement of intelligence,
studied under Wilhelm Wundt and was trained in psychophysics. The psychome-
trician L.L. Thurstone later developed and applied a theoretical approach to the
measurement referred to as the law of comparative judgment, an approach which
has close connections to the psychophysical theory developed by Ernst Heinrich
Weber and Gustav Fechner. In addition, Spearman and Thurstone both made im-
portant contributions to the theory and application of factor analysis, a statistical
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Recall that psychometrics is the field of study concerned with the theory
and technique of psychological measurement, which includes the measurement
of knowledge, abilities, attitudes, and personality traits. The field is primarily
concerned with the study of differences between individuals. It involves two
major research tasks, namely:

(i) the construction of instruments and procedures for measurement; and
(ii) the development and refinement of theoretical approaches to measure-

ment. Much of the early theoretical and applied work in psychometrics was
undertaken in an attempt to measure intelligence.

The origin of psychometrics has connections to the related field of psy-
chophysics. Charles Spearman, a pioneer in psychometrics who developed
approaches to the measurement of intelligence, studied under Wilhelm
Wundt46 and was trained in psychophysics. The psychometrician Louis

method that has been used extensively in psychometrics. More recently, psycho-
metric theory has been applied in the measurement of personality, attitudes and
beliefs, academic achievement, and in health-related fields. Measurement of these
unobservable phenomena is difficult, and much of the research and accumulated
art in this discipline has been developed in an attempt to properly define and
quantify such phenomena. Critics, including practitioners in the physical sciences
and social activists, have argued that such definition and quantification is im-
possibly difficult, and that such measurements are often misused. Proponents of
psychometric techniques can reply, though, that their critics often misuse data by
not applying psychometric criteria, and also that various quantitative phenomena
in the physical sciences, such as heat and forces, cannot be observed directly but
must be inferred from their manifestations. Figures who made significant con-
tributions to psychometrics include Karl Pearson, L. L. Thurstone, Georg Rasch
and Arthur Jensen.

46 Wilhelm Maximilian Wundt (August 16, 1832–August 31, 1920) was a German
physiologist and psychologist. He is generally acknowledged as a founder of ex-
perimental psychology and cognitive psychology. He is less commonly recognised
as a founding figure in social psychology, however, the later years of Wundt’s life
were spent working on Völkerpsychologie which he understood as a study into
the social basis of higher mental functioning.

Wundt combined philosophical introspection with techniques and laboratory
apparatuses brought over from his physiological studies with Helmholtz, as well
as many of his own design. This experimental introspection was in contrast to
what had been called psychology until then, a branch of philosophy where people
introspected themselves. Wundt argued in his 1904 book ‘Principles of Physio-
logical Psychology’ that “we learn little about our minds from casual, haphazard
self–observation ... It is essential that observations be made by trained observers
under carefully specified conditions for the purpose of answering a well–defined
question.”

The methods Wundt used are still used in modern psychophysical work, where
reactions to systematic presentations of well–defined external stimuli are mea-
sured in some way–reaction time, reactions, comparison with graded colors or
sounds, and so forth. His chief method of investigation was called introspection
in the terminology of the time, though observation may be a better translation.
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Thurstone47 later developed and applied a theoretical approach to the mea-
surement referred to as the law of comparative judgment, an approach which
has close connections to the psychophysical theory developed by Ernst Weber
and Gustav Fechner (see below). In addition, Spearman and Thurstone both
made important contributions to the theory and application of factor analy-
sis, a statistical method that has been used extensively in psychometrics.
More recently, psychometric theory has been applied in the measurement
of personality, attitudes and beliefs, academic achievement, and in health–
related fields. Measurement of these unobservable phenomena is difficult,
and much of the research and accumulated art in this discipline has been
developed in an attempt to properly define and quantify such phenomena.
Critics, including practitioners in the physical sciences and social activists,
have argued that such definition and quantification is impossibly difficult,
and that such measurements are often misused. Proponents of psychometric
techniques can reply, though, that their critics often misuse data by not
applying psychometric criteria, and also that various quantitative phenomena
in the physical sciences, such as heat and forces, cannot be observed directly
but must be inferred from their manifestations. Figures who made significant
contributions to psychometrics include Karl Pearson, Louis Thurstone, Georg
Rasch and Arthur Jensen.

Wundt subscribed to a ‘psychophysical parallelism’ (which entirely excludes
the possibility of a mind–body/cause–effect relationship), which was supposed
to stand above both materialism and idealism. His epistemology was an eclectic
mixture of the ideas of Spinoza, Leibniz, Kant, and Hegel.

47 Louis Leon Thurstone (29 May 1887–29 September 1955) was a U.S. pioneer
in the fields of psychometrics and psychophysics. He conceived the approach to
measurement known as the law of comparative judgment, and is well known for
his contributions to factor analysis. He is responsible for the standardized mean
and standard deviation of IQ scores used today, as opposed to the Intelligence
Test system originally used by Alfred Binet. He is also known for the development
of the Thurstone scale.

Thurstone’s work in factor analysis led him to formulate a model of intelligence
center around ‘Primary Mental Abilities’ (PMAs), which were independent group
factors of intelligence that different individuals possessed in varying degrees. He
opposed the notion of a singular general intelligence that factored into the scores of
all psychometric tests and was expressed as a mental age. This idea was unpopular
at the time due to its obvious conflicts with Spearman’s ‘mental energy’ model,
and is today still largely discredited. Nonetheless, Thurstone’s contributions to
methods of factor analysis have proved invaluable in establishing and verifying
later psychometric factor structures, and has influenced the hierarchical models
of intelligence in use in intelligence tests such as WAIS and the modern Stanford–
Binet IQ test.

The seven primary mental abilities in Thurstone’s model were verbal compre-
hension, word fluency, number facility, spatial visualization, associative memory,
perceptual speed and reasoning.
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Intelligence, narrowly defined by psychometrics, can be measured
by intelligence tests, also called intelligence quotient (IQ)48 tests.
Such intelligence tests take many forms, but the common tests (Stanford–
Binet ,49 Raven’s Progressive Matrices,50 Wechsler Adult Intelligence

48 An intelligence quotient or IQ is a score derived from a set of standardized tests
of intelligence. Intelligence tests come in many forms, and some tests use a single
type of item or question. Most tests yield both an overall score and individual
sub–tests scores. Regardless of design, all IQ tests measure the same general in-
telligence. Component tests are generally designed and chosen because they are
found to be predictable of later intellectual development, such as educational
achievement. IQ also correlates with job performance, socioeconomic advance-
ment, and ‘social pathologies’. Recent work has demonstrated links between IQ
and health, longevity, and functional literacy. However, IQ tests do not measure
all meanings of ‘intelligence’, such as creativity. IQ scores are relative (like place-
ment in a race), not absolute (like the measurement of a ruler). The average IQ
scores for many populations were rising during the 20th century: a phenomenon
called the Flynn effect . It is not known whether these changes in scores reflect real
changes in intellectual abilities. On average, IQ scores are stable over a person’s
lifetime, but some individuals undergo large changes. For example, scores can be
affected by the presence of learning disabilities.

49 The modern field of intelligence testing began with the Stanford-Binet IQ test.
The Stanford-Binet itself started with the French psychologist Alfred Binet who
was charged by the French government with developing a method of identifying
intellectually deficient children for placement in special education programs. As
Binet indicated, case studies may be more detailed and at times more helpful,
but the time required to test large numbers of people would be huge. Unfortu-
nately, the tests he and his assistant Victor Henri developed in 1896 were largely
disappointing [Fan85].

50 Raven’s Progressive Matrices are widely used non–verbal intelligence tests. In each
test item, one is asked to find the missing part required to complete a pattern.
Each Set of items gets progressively harder, requiring greater cognitive capac-
ity to encode and analyze. The test is considered by many intelligence experts
to be one of the most g–loaded in existence. The matrices are offered in three
different forms for different ability levels, and for age ranges from five through
adult: (i) Colored Progressive Matrices (younger children and special groups);
(ii) Standard Progressive Matrices (average 6 to 80 year olds); and (iii) Advanced
Progressive Matrices (above average adolescents and adults). According to their
author, Raven’s Progressive Matrices and Vocabulary tests measure the two main
components of general intelligence (originally identified by Spearman): the abil-
ity to think clearly and make sense of complexity, which is known as eductive
ability (from the Latin root ‘educere’, meaning ‘to draw out’; and the ability to
store and reproduce information, known as reproductive ability. Adequate stan-
dardization, ease of use (without written or complex instructions), and minimal
cost per person tested are the main reasons for its widespread international use
in most countries of the world. It appears to measure a type of reasoning ability
which is fundamental to making sense out of the ‘booming buzzing confusion’ in
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Scale,51 Wechsler–Bellevue I ,52 and others) all measure the same dom-
inant form of intelligence, g or ‘general intelligence factor’. The abstraction
of g stems from the observation that scores on all forms of cognitive tests
positively correlate with one another. g can be derived as the principal in-
telligence factor from cognitive test scores using the multivariate correlation
statistical method of factor analysis (FA).

all walks of life. Thus, it has among the highest predictive validities of any test
in most occupational groups and, even more importantly, in predicting social
mobility ... the level of job a person will attain and retain. Although it is sometimes
criticized for being costly, this is based on a failure to calculate cost per person
tested with re–usable test booklets that can be used up to 50 times each. The
authors of the Manual recommend that, when used in selection, RPM scores are
set in the context of information relating to Raven’s framework for the assessment
of Competence. Some of the most fundamental research in cognitive psychology
has been carried out with the RPM. The tests have been shown to work–scale–
measure the same thing – in a vast variety of cultural groups. There is no truth
in the assertion that the low mean scores obtained in some groups arise from a
general lack of familiarity with the way of thought measured by the test. Two
remarkable, and relatively recent, findings are that, on the one hand, the actual
scores obtained by people living in most countries with a tradition of literacy –
from China, Russia, and India through Europe to Kuwait – are very similar at
any point in time. On the other hand, in all countries, the scores have increased
dramatically over time ... such that 50% of our grandparents would be assigned to
special education classes if they were judged against today’s norms. Yet none of
the common explanations (e.g., access to television, changes in education, changes
in family size etc.) hold up. The explanation seems to have more in common with
those put forward to explain the parallel increase in life expectancy ... which has
doubled over the same period of time.

51 Wechsler Adult Intelligence Scale or WAIS is a general IQ test, published in
February 1955 as a revision of the Wechsler–Bellevue test (1939), standardized
for use with adults over the age of 16. In this test intelligence is quantified as the
global capacity of the individual to act purposefully, to think rationally, and to
deal effectively with the environment.

52 David Wechsler (January 12, 1896, Lespedi, Romania – May 2, 1981, New York,
New York) was a leading Romanian–American psychologist. He developed well–
known intelligence scales, such as the Wechsler Adult Intelligence Scale (WAIS)
and the Wechsler Intelligence Scale for Children (WISC). The Wechsler Adult In-
telligence Scale (WAIS) was developed first in 1939 and then called the Wechsler–
Bellevue Intelligence Test. From these he derived the Wechsler Intelligence Scale
for Children (WISC) in 1949 and the Wechsler Preschool and Primary Scale of
Intelligence (WPPSI) in 1967. Wechsler originally created these tests to find out
more about his patients at the Bellevue clinic and he found the then–current
Binet IQ test unsatisfactory. The tests are still based on his philosophy that in-
telligence is “the global capacity to act purposefully, to think rationally, and to
deal effectively with (one’s) environment.”
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Fig. 1.1. Example of positive linear correlations between 1000 pairs of numbers.
Note that each set of points correlates maximally with itself, as shown on the diag-
onal. Also, note that we have not plot the upper part of the correlation matrix as it
is symmetrical.

Correlation and Factor Analysis

Recall that correlation, also called correlation coefficient , indicates the
strength and direction of a linear relationship between two random variables
(see Figure 1.1). In other words, correlation is a measure of the relation be-
tween two or more statistical variables. In general statistical usage, correlation
(or, co–rrelation) refers to the departure of two variables from independence,
although correlation does not imply their functional causal relation. In this
broad sense there are several coefficients, measuring the degree of correlation,
adapted to the nature of data. A number of different coefficients are used for
different situations. Correlation coefficients can range from −1.00 to +1.00.
The value of −1.00 represents a perfect negative correlation while a value
of +1.00 represents a perfect positive correlation. The perfect correlation
indicates an existence of functional relation between two statistical variables.
A value of 0.00 represents a lack of correlation.Geometrically, the correlation
coefficient can also be viewed as the cosine of the angle between the two
vectors of samples drawn from the two random variables.

The most widely–used type of correlation simple linear coefficient is Pear-
son r, also called linear or product–moment correlation, which assumes that
the two variables are measured on at least interval scales, and it determines
the extent to which values of the two variables are ‘proportional’ to each other.
The value of correlation coefficient does not depend on the specific measure-
ment units used. Proportional means linearly related using regression line or
least squares line. If the correlation coefficient is squared, then the resulting
value (r2, the coefficient of determination) will represent the proportion of
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common variation in the two variables (i.e., the ‘strength’ or ‘magnitude’ of
the relationship). In order to evaluate the correlation between variables, it is
important to know this ‘magnitude’ or ‘strength’ as well as the significance of
the correlation.

The significance level calculated for each correlation is a primary source
of information about the reliability of the correlation. The significance of
correlation coefficient of particular magnitude will change depending on the
size of the sample from which it was computed. The test of significance is based
on the assumption that each of the two variables is normally distributed and
that their bivariate (‘combined’) distribution is normal (which can be tested by
examining the 3D bivariate distribution histogram). However, Monte–Carlo
studies suggest that meeting those assumptions (especially the second one)
is not absolutely crucial if our sample size is not very small and when the
departure from normality is not very large. It is impossible to formulate precise
recommendations based on those Monte–Carlo results, but many researchers
follow a rule of thumb that if our sample size is 50 or more then serious
biases are unlikely, and if our sample size is over 100 then you should not be
concerned at all with the normality assumptions.

Recall that the normal distribution, also called Gaussian distribution, is
an extremely important probability distribution in many fields. It is a family
of distributions of the same general form, differing in their location and scale
parameters: the mean (‘average’) μ and standard deviation (‘variability’) σ,
respectively. The standard normal distribution is the normal distribution with
a mean of zero and a standard deviation of one. It is often called the bell curve
because the graph of its probability density function pdf , given by the Gaussian
function

pdf =
1

σ
√

2π
exp

(
− (x− μ)2

2σ2

)
,

resembles a bell shape (here, 1√
2π

e−x2/2 is the pdf for the standard normal dis-
tribution). The corresponding cumulative distribution function cdf is defined
as the probability that a variable X has a value less than or equal to x, and
it is expressed in terms of the pdf as

cdf =
1

σ
√

2π

∫ x

−∞
exp

(
− (u− μ)2

2σ2

)
du.

Now, the correlation rX,Y between two normally distributed random vari-
ables X and Y with expected values μX and μY and standard deviations σX
and σY is defined as:

rXY =
cov(X,Y )
σXσY

=
E((X − μX)(Y − μY ))

σXσY
,
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where E denotes the expected value of the variable and cov means covariance.
Since μX = E(X), σ2

X = E(X2) − E2(X) and similarly for Y , we can write
(see, e.g., [CCW03])

rXY =
E(XY )− E(X)E(Y )√

E(X2)− E2(X)
√

E(Y 2)− E2(Y )
.

Assume that we have a data matrix X = {xiα} formed out of the sample
{xi} of n normally distributed simulator tests called observable–vectors or
manifest variables, defined on the sample {α = 1, . . . , N} of pilot (for the
statistical significance the practical user’s criterion is N ≥ 5n). The maximum
likelihood estimator of the Pearson correlation coefficient rik between any two
manifest variables xi and xk is defined as53

rik =
∑N

α=1(xiα − μi)(xkα − μk)√∑N
α=1(xiα − μi)2

√∑N
α=1(xkα − μk)2

,

where

μi =
1
N

N∑
α=1

xiα

is the arithmetic mean of the variable xi.54 Correlation matrix R is the matrix
R ≡ Rik = {rik} including n × n Pearson correlation coefficients rik calcu-
lated between n manifest variables {xi}. Therefore, R is symmetrical matrix
53 A time–dependent generalization Cαβ = Cαβ(t) of the correlation coefficient rXY

is the correlation function, defined as follows. For the two time–series, xα(ti) and
xβ(ti) of the same length (i = 1, . . . , T ), one defines the correlation function by

Cαβ =

∑
i
(xα(ti) − x̄α)(xβ(ti) − x̄β)√∑

i
(xα(ti) − x̄α)2

∑
j
(xβ(tj) − x̄β)2

,

where x̄ denotes a time average over the period studied. For two sets of N time–
series xα(ti) each (α, β = 1, . . . , N) all combinations of the elements Cαβ can
be used as entries of the N × N correlation matrix C. By diagonalizing C, i.e.,
solving the eigenvalue problem:

Cvk = λkv
k,

one gets the eigenvalues λk (k = 1, . . . , N) and the corresponding eigenvectors
vk = {vk

α}.
54 The following algorithm (in pseudocode) estimates bivariate correlation coefficient

with good numerical stability:
Begin

sum sq x = 0;
sum sq y = 0;
sum coproduct = 0;
mean x = x[1];
mean y = y[1];
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with ones on the main diagonal. The correlation matrix R represents the total
variability of all included manifest variables. In other words it stores all infor-
mation about all simulator tests and all pilot. Now, if the number of included
simulator tests is small, this information is meaningful for the human mind.
But if we perform one hundred tests (on five hundred pilot), then the cor-
relation matrix contains ten thousand Pearson correlation coefficients. This
is the reason for seeking the ‘latent’ factor structure, underlying the whole
co–variability contained in the correlation matrix.

Therefore, the correlation is defined only if both of the standard devia-
tions are finite and both of them are nonzero. It is a corollary of the Cauchy–
Schwarz inequality55 that the correlation cannot exceed 1 in absolute value.

for i in 2 to N:
sweep = (i - 1.0) / i;
delta x = x[i] - mean x;
delta y = y[i] - mean y;
sum sq x += delta x * delta x * sweep;
sum sq y += delta y * delta y * sweep;
sum coproduct += delta x * delta y * sweep;
mean x += delta x / i;
mean y += delta y / i ;

end for;
pop sd x = sqrt( sum sq x / N );
pop sd y = sqrt( sum sq y / N );
cov x y = sum coproduct / N;
correlation = cov x y / (pop sd x * pop sd y);

End.
55 The Cauchy–Schwarz inequality, named after Augustin Louis Cauchy (the father

of complex analysis) and Hermann Amandus Schwarz, is a useful inequality en-
countered in many different settings, such as linear algebra applied to vectors,
in analysis applied to infinite series and integration of products, and in probabil-
ity theory, applied to variances and covariances. The Cauchy–Schwarz inequality
states that if x and y are elements of real or complex inner product spaces then

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉.

The two sides are equal iff x and y are linearly dependent (or in geometrical
sense they are parallel). This contrasts with a property that the inner product of
two vectors is zero if they are orthogonal (or perpendicular) to each other. The
inequality hence confers the notion of the angle between the two vectors to an
inner product, where concepts of Euclidean geometry may not have meaningful
sense, and justifies that the notion that inner product spaces are generalizations
of Euclidean space.

An important consequence of the Cauchy–Schwarz inequality is that the inner
product is a continuous function.

Another form of the Cauchy–Schwarz inequality is given using the notation of
norm, as explained under norms on inner product spaces, as
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The correlation is 1 in the case of an increasing linear relationship, −1 in
the case of a decreasing linear relationship, and some value in between in all
other cases, indicating the degree of linear dependence between the variables.
The closer the coefficient is to either −1 or 1, the stronger the correlation
between the variables (see Figure 1.1). If the variables are independent then
the correlation is 0, but the converse is not true because the correlation coef-
ficient detects only linear dependencies between two variables. For example,
suppose the random variable X is uniformly distributed on the interval from
−1 to 1, and Y = X2. Then Y is completely determined by X, so that X
and Y are dependent, but their correlation is zero; this means that they are
uncorrelated. The correlation matrix of n random variables X1, . . . , Xn is the
n× n matrix whose ij entry is rXiXj

. If the measures of correlation used are
product–moment coefficients, the correlation matrix is the same as the covari-
ance matrix of the standardized random variables Xi/σXi

(for i = 1, . . . , n).
Consequently it is necessarily a non–negative definite matrix. The correlation
matrix is symmetrical (the correlation between Xi and Xj is the same as the
correlation between Xj and Xi).

As a higher derivation of the correlation matrix analysis and its eigen-
vectors, the so–called principal components, the factor analysis (FA) is a
multivariate statistical technique used to explain variability among a large set
of observed random variables in terms of fewer unobserved random ‘latent’
variables, called factors. The observed, or ‘manifested’ variables are modelled
as linear combinations of the factors, plus ‘error terms’. According to FA, clas-
sical bivariate correlation analysis is an artificial extraction from a rial multi-
variate world, especially in human sciences. FA originated in psychometrics,
and is used in social sciences, marketing, product management, operations re-
search, and other applied sciences that deal with large multivariate quantities
of data.

For example,56 suppose a psychologist proposes a theory that there are two
kinds of intelligence, ‘verbal intelligence’ and ‘mathematical intelligence’. Note
that these are inherently unobservable. Evidence for the theory is sought in
the examination scores of 1000 students in each of 10 different academic fields.
If a student is chosen randomly from a large population, then the student’s
10 scores are random variables. The psychologist’s theory may say that the
average score in each of the 10 subjects for students with a particular level
of verbal intelligence and a particular level of mathematical intelligence is a
certain number times the level of verbal intelligence plus a certain number
times the level of mathematical intelligence, i.e., it is a linear combination of
those two ‘factors’. The numbers by which the two ‘intelligences’ are multiplied

|〈x, y〉| ≤ ‖x‖ · ‖y‖.

56 This oversimplified example should not be taken to be realistic. Usually we are
dealing with many factors.
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are posited by the theory to be the same for all students, and are called
‘factor loadings’. For example, the theory may hold that the average student’s
aptitude in the field of amphibology is
{ 10 × the student’s verbal intelligence } + { 6 × the student’s mathe-

matical intelligence }.
The numbers 10 and 6 are the factor loadings associated with amphibol-

ogy. Other academic subjects may have different factor loadings. Two students
having identical degrees of verbal intelligence and identical degrees of math-
ematical intelligence may have different aptitudes in amphibology because
individual aptitudes differ from average aptitudes. That difference is called
the ‘error’ — an unfortunate misnomer in statistics that means the amount
by which an individual differs from what is average. The observable data that
go into factor analysis would be 10 scores of each of the 1000 students, a total
of 10,000 numbers. The factor loadings and levels of the two kinds of intel-
ligence of each student must be inferred from the data. Even the number of
factors (two, in this example) must be inferred from the data.

In the example above, for i = 1, . . . , 1, 000 the ith student’s scores are

x1,i = μ1 + �1,1vi + �1,2mi + ε1,i

...
...

...
...

...
x10,i = μ10 + �10,1vi + �10,2mi + ε10,i

where xk,i is the ith student’s score for the kth subject, μk is the mean of the
students’ scores for the kth subject, νi is the ith student’s ‘verbal intelligence’,
mi is the ith student’s ‘mathematical intelligence’, �k,j are the factor loadings
for the kth subject, for j = 1, 2; εk,i is the difference between the ith student’s
score in the kth subject and the average score in the kth subject of all students
whose levels of verbal and mathematical intelligence are the same as those of
the ith student. In matrix notation, we have

X = μ + LF + ε,

where X is a 10× 1, 000 matrix of observable random variables, μ is a 10× 1
column vector of unobservable constants (in this case constants are quantities
not differing from one individual student to the next; and random variables are
those assigned to individual students; the randomness arises from the random
way in which the students are chosen), L is a 10× 2 matrix of factor loadings
(unobservable constants), F is a 2 × 1, 000 matrix of unobservable random
variables, ε is a 10× 1, 000 matrix of unobservable random variables.

Observe that by doubling the scale on which ‘verbal intelligence’, the first
component in each column of F , is measured, and simultaneously halving
the factor loadings for verbal intelligence makes no difference to the model.
Thus, no generality is lost by assuming that the standard deviation of verbal
intelligence is 1. Likewise for ‘mathematical intelligence’. Moreover, for similar
reasons, no generality is lost by assuming the two factors are uncorrelated
with each other. The ‘errors’ ε are taken to be independent of each other.
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The variances of the ‘errors’ associated with the 10 different subjects are not
assumed to be equal.

Mathematical basis of FA is principal components analysis (PCA), which
is a technique for simplifying a dataset, by reducing multidimensional datasets
to lower dimensions for analysis. Technically speaking, PCA is a linear trans-
formation57 that transforms the data to a new coordinate system such that
the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance
on the second coordinate, and so on. PCA can be used for dimensionality re-
duction58 in a dataset while retaining those characteristics of the dataset that
contribute most to its variance, by keeping lower–order principal components
and ignoring higher–order ones. Such low–order components often contain
the ‘most important’ aspects of the data. PCA is also called the (discrete)
Karhunen–Loève transform (or KLT, named after Kari Karhunen and Michel
Loève) or the Hotelling transform (in honor of Harold Hotelling59). PCA has
57 Recall that a linear transformation (also called linear map or linear operator)

is a function between two vector spaces that preserves the operations of vector
addition and scalar multiplication. In the language of abstract algebra, a lin-
ear transformation is a homomorphism of vector spaces, or a morphism in the
category of vector spaces over a given field.

Let V and W be vector spaces over the same field K. A function (operator)
f : V → W is said to be a linear transformation if for any two vectors x, y ∈ V
and any scalar a ∈ K, the following two conditions are satisfied:

additivity : f(x + y) = f(x) + f(y), and

homogeneity : f(ax) = af(x).

This is equivalent to requiring that for any vectors x1, . . . , xm and scalars
a1, . . . , am, the following equality holds:

f(a1x1 + · · · + amxm) = a1f(x1) + · · · + amf(xm).

58 Dimensionality reduction in statistics can be divided into two categories: feature
selection and feature extraction.

Feature selection approaches try to find a subset of the original features. Two
strategies are filter (e.g., information gain) and wrapper (e.g., genetic algorithm)
approaches. It is sometimes the case that data analysis such as regression or
classification can be carried out in the reduced space more accurately than in the
original space. On the other hand, feature extraction is applying a mapping of
the multidimensional space into a space of fewer dimensions. This means that the
original feature space is transformed by applying e.g., a linear transformation via
a principal components analysis.

Dimensionality reduction is also a phenomenon discussed widely in physics,
whereby a physical system exists in three dimensions, but its properties behave
like those of a lower–dimensional system.

59 Harold Hotelling (Fulda, Minnesota, September 29, 1895 - December 26, 1973)
was a mathematical statistician. His name is known to all statisticians because of
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the distinction of being the optimal linear transformation for keeping the sub-
space that has largest variance. This advantage, however, comes at the price of
greater computational requirement if compared, for example, to the discrete
cosine transform. Unlike other linear transforms, the PCA does not have a
fixed set of basis vectors. Its basis vectors depend on the data set.

Assuming zero empirical mean (the empirical mean of the distribution has
been subtracted from the data set), the principal component w1 of a dataset
x can be defined as

w1 = arg max
‖w‖=1

E
{(

wT x
)2}

.

With the first k − 1 components, the kth component can be found by sub-
tracting the first k − 1 principal components from x,

x̂k−1 = x−
k−1∑
i=1

wiwT
i x,

and by substituting this as the new dataset to find a principal component in

wk = arg max
‖w‖=1

E
{(

wT x̂k−1

)2}
.

Therefore, the Karhunen–Loève transform is equivalent to finding the singular
value decomposition60 of the data matrix X,

Hotelling’s T–square distribution and its use in statistical hypothesis testing and
confidence regions. He also introduced canonical correlation analysis, and is the
eponym of Hotelling’s law , Hotelling’s lemma, and Hotelling’s rule in economics.

60 Recall that in linear algebra, the singular value decomposition (SVD) is an impor-
tant factorization of a rectangular real or complex matrix, with several applica-
tions in signal processing and statistics. The SVD can be seen as a generalization
of the spectral theorem, which says that normal matrices can be unitarily diago-
nalized using a basis of eigenvectors, to arbitrary, not necessarily square, matrices.

Suppose M is an m × n matrix whose entries come from the field K, which
is either the field of real numbers, or the field of complex numbers. Then there
exists a factorization of the form:

M = UΣV ∗,

where U is an m × m unitary matrix over K, the matrix Σ is m × n with non-
negative numbers on the diagonal and zeros off the diagonal, and V ∗ denotes the
conjugate transpose of V , an n × n unitary matrix over K. Such a factorization
is called a singular–value decomposition of M .

The matrix V thus contains a set of orthonormal ‘input’ or ‘analyzing’ basis
vector directions for M. The matrix U contains a set of orthonormal ‘output’
basis vector directions for M . The matrix Σ contains the singular values, which
can be thought of as scalar ‘gain controls’ by which each corresponding input
is multiplied to give a corresponding output. A common convention is to order
the values Σii in non–increasing fashion. In this case, the diagonal matrix Σ is
uniquely determined by M (although the matrices U and V are not).
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X = WΣVT ,

and then obtaining the reduced–space data matrix Y by projecting X down
into the reduced space defined by only the first L singular vectors WL,

Y = WL
T X = ΣLVL

T .

The matrix W of singular vectors of X is equivalently the matrix W of eigen-
vectors of the matrix of observed covariances C = XXT ,

XXT = WΣ2WT .

The eigenvectors with the largest eigenvalues correspond to the dimensions
that have the strongest correlation in the dataset.

Now, FA is performed as PCA61 with subsequent orthogonal (non–
correlated) or oblique (correlated) factor rotation for the simplest possible
interpretation (see, e.g., [KM78a]).
61 The alternative FA approach is the so–called principal factor analysis (PFA, also

called principal axis factoring, PAF, and common factor analysis, PFA). PFA
is a form of factor analysis which seeks the least number of factors which can
account for the common variance (correlation) of a set of variables, whereas the
more common principal components analysis (PCA) in its full form seeks the
set of factors which can account for all the common and unique (specific plus
error) variance in a set of variables. PFA uses a PCA strategy but applies it to
a correlation matrix in which the diagonal elements are not 1’s, as in PCA, but
iteratively–derived estimates of the communalities.

In addition to PCA and PFA, there are other less–used extraction methods:

1. Image factoring: based on the correlation matrix of predicted variables rather
than actual variables, where each variable is predicted from the others using
multiple regression.

2. Maximum likelihood factoring: based on a linear combination of variables to
form factors, where the parameter estimates are those most likely to have re-
sulted in the observed correlation matrix, using MLE methods and assuming
multivariate normality. Correlations are weighted by each variable’s uniqueness.
(As discussed below, uniqueness is the variability of a variable minus its com-
munality.) MLF generates a chi–square goodness–of–fit test. The researcher can
increase the number of factors one at a time until a satisfactory goodness of
fit is obtained. Warning: for large samples, even very small improvements in
explaining variance can be significant by the goodness-of-fit test and thus lead
the researcher to select too many factors.

3. Alpha factoring: based on maximizing the reliability of factors, assuming vari-
ables are randomly sampled from a universe of variables. All other methods
assume cases to be sampled and variables fixed.

4. Unweighted least squares (ULS) factoring: based on minimizing the sum of
squared differences between observed and estimated correlation matrices, not
counting the diagonal.

5. Generalized least squares (GLS) factoring: based on adjusting ULS by weighting
the correlations inversely according to their uniqueness (more unique variables
are weighted less). Like MLF, GLS also generates a chi–square goodness–of–fit
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FA is used to uncover the latent structure (dimensions) of a set of variables.
It reduces attribute space from a larger number of variables to a smaller
number of factors and as such is a ‘non–dependent’ procedure (that is, it does
not assume a dependent variable is specified). Factor analysis could be used
for any of the following purposes:

1. To reduce a large number of variables to a smaller number of factors for
modelling purposes, where the large number of variables precludes mod-
elling all the measures individually. As such, factor analysis is integrated
in structural equation modelling (SEM),62 helping create the latent vari-
ables modeled by SEM. However, factor analysis can be and is often used
on a standalone basis for similar purposes.

test. The researcher can increase the number of factors one at a time until a
satisfactory goodness of fit is obtained.

62 Structural equation modelling (SEM) grows out of and serves purposes similar to
multiple regression, but in a more powerful way which takes into account the mod-
elling of interactions, nonlinearities, correlated independents, measurement error,
correlated error terms, multiple latent independents each measured by multiple
indicators, and one or more latent dependents also each with multiple indicators.
SEM may be used as a more powerful alternative to multiple regression, path
analysis, factor analysis, time series analysis, and analysis of covariance. That
is, these procedures may be seen as special cases of SEM, or, to put it another
way, SEM is an extension of the general linear model (GLM) of which multiple
regression is a part.

SEM is usually viewed as a confirmatory rather than exploratory procedure,
using one of three approaches:

a) Strictly confirmatory approach: A model is tested using SEM goodness–of–fit
tests to determine if the pattern of variances and covariances in the data is
consistent with a structural (path) model specified by the researcher. However
as other unexamined models may fit the data as well or better, an accepted
model is only a not–disconfirmed model.

b) Alternative models approach: One may test two or more causal models to deter-
mine which has the best fit. There are many goodness–of–fit measures, reflecting
different considerations, and usually three or four are reported by the researcher.
Although desirable in principle, this AM approach runs into the real-world prob-
lem that in most specific research topic areas, the researcher does not find in
the literature two well-developed alternative models to test.

c) Model development approach: In practice, much SEM research combines con-
firmatory and exploratory purposes: a model is tested using SEM procedures,
found to be deficient, and an alternative model is then tested based on changes
suggested by SEM modification indexes. This is the most common approach
found in the literature. The problem with the model development approach is
that models confirmed in this manner are post–hoc ones which may not be sta-
ble (may not fit new data, having been created based on the uniqueness of an
initial dataset). Researchers may attempt to overcome this problem by using a
cross–validation strategy under which the model is developed using a calibration
data sample and then confirmed using an independent validation sample.
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2. To select a subset of variables from a larger set, based on which origi-
nal variables have the highest correlations with the principal component
factors.

3. To create a set of factors to be treated as uncorrelated variables as one
approach to handling multi–collinearity in such procedures as multiple
regression

4. To validate a scale or index by demonstrating that its constituent items
load on the same factor, and to drop proposed scale items which cross–load
on more than one factor.

5. To establish that multiple tests measure the same factor, thereby giving
justification for administering fewer tests.

6. To identify clusters of cases and/or outliers.
7. To determine network groups by determining which sets of people cluster

together.

The so–called exploratory factor analysis (EFA) seeks to uncover the un-
derlying structure of a relatively large set of variables. The researcher’s à priori
assumption is that any indicator may be associated with any factor. This is

Regardless of approach, SEM cannot itself draw causal arrows in models or
resolve causal ambiguities. Theoretical insight and judgment by the researcher is
still of utmost importance.

The SEM process centers around two steps: validating the measurement model
and fitting the structural model. The former is accomplished primarily through
confirmatory factor analysis, while the latter is accomplished primarily through
path analysis with latent variables. One starts by specifying a model on the basis
of theory. Each variable in the model is conceptualized as a latent one, measured
by multiple indicators. Several indicators are developed for each model, with a
view to winding up with at least three per latent variable after confirmatory
factor analysis. Based on a large (n > 100) representative sample, factor analysis
(common factor analysis or principal axis factoring, not principle components
analysis) is used to establish that indicators seem to measure the corresponding
latent variables, represented by the factors. The researcher proceeds only when
the measurement model has been validated. Two or more alternative models (one
of which may be the null model) are then compared in terms of model fit , which
measures the extent to which the covariances predicted by the model correspond
to the observed covariances in the data. The so–called modification indices and
other coefficients may be used by the researcher to alter one or more models to
improve fit.

Advantages of SEM compared to multiple regression include more flexible as-
sumptions (particularly allowing interpretation even in the face of multicollinear-
ity), use of confirmatory factor analysis to reduce measurement error by having
multiple indicators per latent variable, the attraction of SEM’s graphical mod-
elling interface, the desirability of testing models overall rather than coefficients
individually, the ability to test models with multiple dependents, the ability to
model mediating variables, the ability to model error terms, the ability to test co-
efficients across multiple between–subjects groups, and ability to handle difficult
data (time series with autocorrelated error, non–normal data, incomplete data).



1.1 Natural Intelligence and Human Mind 57

the most common form of factor analysis. There is no prior theory and one
uses factor loadings to intuit the factor structure of the data.

On the other hand, the so–called confirmatory factor analysis (CFA) seeks
to determine if the number of factors and the loadings of measured (indicator)
variables on them conform to what is expected on the basis of pre–established
theory. Indicator variables are selected on the basis of prior theory and factor
analysis is used to see if they load as predicted on the expected number of fac-
tors. The researcher’s à priori assumption is that each factor (the number and
labels of which may be specified à priori) is associated with a specified subset
of indicator variables. A minimum requirement of confirmatory factor analysis
is that one hypothesize beforehand the number of factors in the model, but
usually also the researcher will posit expectations about which variables will
load on which factors (see, e.g., [KM78b]). The researcher seeks to determine,
for instance, if measures created to represent a latent variable really belong
together.

The factor loadings, also called component loadings in PCA, are the cor-
relation coefficients between the variables (rows) and factors (columns) in the
factor matrix . Analogous to Pearson’s r, the squared factor loading is the per-
cent of variance in that variable explained by the factor. To get the percent of
variance in all the variables accounted for by each factor, add the sum of the
squared factor loadings for that factor (column) and divide by the number of
variables (note that the number of variables equals the sum of their variances
as the variance of a standardized variable is 1). This is the same as dividing
the factor’s eigenvalue by the number of variables.

The factor scores, also called component scores in PCA, factor scores are
the scores of each case (row) on each factor (column). To compute the factor
score for a given case for a given factor, one takes the case’s standardized score
on each variable, multiplies by the corresponding factor loading of the variable
for the given factor, and sums these products. Computing factor scores allows
one to look for factor outliers. Also, factor scores may be used as variables in
subsequent modelling.

Rotation serves to make the output more understandable and is usually
necessary to facilitate the interpretation of factors. The sum of eigenvalues is
not affected by rotation, but rotation will alter the eigenvalues (and percent of
variance explained) of particular factors and will change the factor loadings.
Since alternative rotations may explain the same variance (have the same
total eigenvalue) but have different factor loadings, and since factor loadings
are used to intuit the meaning of factors, this means that different meanings
may be ascribed to the factors depending on the rotation – a problem some
cite as a drawback to factor analysis. If factor analysis is used, the researcher
may wish to experiment with alternative rotation methods to see which leads
to the most interpretable factor structure.

Varimax rotation is an orthogonal rotation of the factor axes to maximize
the variance of the squared loadings of a factor (column) on all the variables
(rows) in a factor matrix, which has the effect of differentiating the original
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variables by extracted factor. Each factor will tend to have either large or small
loadings of any particular variable. A varimax solution yields results which
make it as easy as possible to identify each variable with a single factor. This
is the most common rotation option.

The oblique rotations allow the factors to be correlated, and so a factor
correlation matrix is generated when oblique is requested. Two most common
oblique rotation methods are:

Direct oblimin rotation – the standard method when one wishes a non–
orthogonal solution , that is, one in which the factors are allowed to be corre-
lated; this will result in higher eigenvalues but diminished interpretability of
the factors; and

Promax rotation – an alternative non–orthogonal rotation method which
is computationally faster than the direct oblimin method and therefore is
sometimes used for very large datasets.

FA advantages are:

1. Offers a much more objective method of testing intelligence in humans;
2. Allows for a satisfactory comparison between the results of intelligence

tests; and
3. Provides support for theories that would be difficult to prove otherwise.

Charles Spearman pioneered the use of factor analysis in the field of psy-
chology and is sometimes credited with the invention of factor analysis. He
discovered that schoolchildren’s scores on a wide variety of seemingly unre-
lated subjects were positively correlated, which led him to postulate that a
general mental ability, or g, underlies and shapes human cognitive perfor-
mance. His postulate now enjoys broad support in the field of intelligence
research, where it is known as the g theory.

Raymond Cattell expanded on Spearman’s idea of a two–factor theory
of intelligence after performing his own tests and factor analysis. He used a
multi–factor theory to explain intelligence. Cattell’s theory addressed alter-
nate factors in intellectual development, including motivation and psychology.
Cattell also developed several mathematical methods for adjusting psychome-
tric graphs, such as his ‘scree’ test and similarity coefficients. His research lead
to the development of his theory of fluid and crystallized intelligence. Cattell
was a strong advocate of factor analysis and psychometrics. He believed that
all theory should be derived from research, which supports the continued use
of empirical observation and objective testing to study human intelligence.

Factor Structure and Rotation

Starting with the correlation matrix R including the number of significant
correlations, the goal of exploratory factor analysis (FA) is to detect latent
underlying dimensions (i.e., the factor structure) among the set of all manifest
variables. Instead of the correlation matrix, the factor analysis can start from
the covariance matrix (see Figure 4), which is the symmetrical matrix with
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variances of all manifest variables on the main diagonal and their covariances
in other matrix cells. For the purpose of the present project the correlation
matrix is far more meaningful starting point. Three main applications of factor
analytic techniques are (see [CL71, And84, Har75]):

1. to reduce the number of manifest variables,
2. to classify manifest variables, and
3. to score each individual soldier on the latent factor structure.

Factor analysis model expands each of the manifest variables xi with the
means μi from the data matrix X = {xiα} as a linear vector–function

xi = μi + Lij fj + ei, (i = 1, . . . , n; j = 1, . . . ,m) (1.1)

where n and m denote the numbers of manifest and latent variables, re-
spectively, fj denotes the jth common–factor vector (with zero mean and
unity–matrix covariance), L = Lij is the matrix of factor loadings lij , and ei

corresponds to the ith specific–factor vector (specific variance not explained
by the common factors, with zero mean and diagonal–matrix covariance).

That portion of the variance of the ith manifest variable xi contributed
by the m common factors fj , the sum of squares of the loadings lij , is called
the ith communality.

Now, in the correlation matrix R the variances of all variables are equal
to 1.0. Therefore, the total variance in that matrix is equal to the number of
variables. Extraction of factors is based on the solution of eigenvalue problem,
i.e., characteristic equation for the correlation matrix R,

Rxi = λixi,

where λi are eigenvalues of R, representing the variances extracted by the
factors, and xi now represent the corresponding eigenvectors, representing
principal components or factors. The question then is, how many factors do
we want to extract? Note that as we extract consecutive factors, they account
for less and less variability. The decision of when to stop extracting factors
basically depends on when there is only very little ‘random’ variability left.
According to the widely used Kaiser criterion we can retain only factors with
eigenvalues greater than 1. In essence this is like saying that, unless a factor
extracts at least as much as the equivalent of one original variable, we drop it.
The proportion of variance of a particular item that is due to common factors
(shared with other items) is called communality. Therefore, an additional task
facing us when applying this model is to estimate the communalities for each
variable, that is, the proportion of variance that each item has in common
with other items. The proportion of variance that is unique to each item is
then the respective item’s total variance minus the communality. A common
starting point is to use the squared multiple correlation of an item with all
other items as an estimate of the communality. The correlations between the
manifest variables and the principal components are called factor loadings.
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The first factor is generally more highly correlated with the variables than
the second, third and other factors, as these factors are extracted successively
and will account for less and less variance overall.

Therefore, the principal component factor analysis of the sample correla-
tion matrix R is specified in terms of its m < n eigenvalue–eigenvector pairs
(λj ,xj) where λj ≥ λj+1. The matrix of estimated factor loadings lij is given
by

L =
[√

λ1x1|
√

λ2x2| . . . |
√

λmxm

]
.

Factor extraction can be performed also by other methods, collectively
called principal factors, including: (i) Maximum likelihood factors, (ii) Prin-
cipal axis method, (iii) Centroid method, (iv) Multiple R2-communalities, and
(v) Iterated Minres communalities. However, we shall stick on the principal
components because of their obvious eigen–structure.

In any case, matrix of factor loadings L is determined only up to an orthog-
onal matrix O. The communalities, given by the diagonal elements of LLT

are also unaffected by the choice of O. This ambiguity provides the ratio-
nale for ‘factor rotation’, since orthogonal matrices correspond to ‘coordinate’
rotations.

We could plot, theoretically, the factor loadings in a m−dimensional
scatter–plot. In that plot, each variable is represented as a point. In this
plot we could rotate the axes in any direction without changing the relative
locations of the points to each other; however, the actual coordinates of the
points, that is, the factor loadings would of course change. There are various
rotational strategies that have been proposed. The goal of all of these strate-
gies is to get a clear pattern of loadings, that is, factors that are somehow
clearly marked by high loadings for some variables and low loadings for oth-
ers. This general pattern is also sometimes referred to as simple structure (a
more formalized definition can be found in most standard textbooks). Typical
rotational strategies are Varimax, Quartimax, and Equimax (see Anderson,
1984). Basically, the extraction of principal components amounts to a variance
maximizing Varimax–rotation of the original space of manifest–variables. We
want to get a pattern of loadings on each factor that is as diverse as possible,
lending itself to easier interpretation. After we have found the line on which
the variance is maximal, there remains some variability around this line. In
principal components analysis, after the first factor has been extracted, that
is, after the first line has been drawn through the data, we continue and de-
fine another line that maximizes the remaining variability, and so on. In this
manner, consecutive factors are extracted. Because each consecutive factor
is defined to maximize the variability that is not captured by the preceding
factor, consecutive factors are independent of each other. Put another way,
consecutive factors are uncorrelated or orthogonal to each other.

Basically, the rotation of the matrix of the factor loadings L represents
its post–multiplication, i.e. L∗ = LO by the rotation matrix O, which itself
resembles one of the matrices included in the classical rotational Lie groups
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SO(m) (containing the specific m−fold combination of sinuses and cosinuses.
The linear factor equation (1.1) represents the orthogonal factor model, pro-
vided that vectors fj and ei are independent (orthogonal to each other, i.e.,
having zero covariance).

The most frequently used Kaiser’s Normal Varimax rotation procedure
selects the orthogonal transformation T that ‘spreads out’ the squares of the
loadings on each factor as much as possible, i.e., maximizes the total ’squared’
variance

V =
1
n

m∑
j=1

⎡⎣ n∑
i=1

(l∗ij)
4 − 1

n

(
n∑

i=1

(l∗ij)
2

)2
⎤⎦ ,

where l∗ij denote the rotated factor loadings from the rotated factor matrix
L∗.

Besides orthogonal rotation, there is another concept of oblique
(non-orthogonal, or correlated) factors, which could help to achieve more inter-
pretable simple structure. Specifically, computational strategies have been
developed to rotate factors so as to best represent clusters of manifest vari-
ables, without the constraint of orthogonality of factors. Oblique rotation
produces the factor structure made from the smaller set of mutually cor-
related factors. An oblique rotation to the simple structure corresponds to
nonrigid rotation of the factor-axes (i.e., principal components) in the factor
space such that the rotated axes l∗j = L∗

obl (no longer perpendicular) pass
(nearly) through the clusters of manifest variables. Although the purest math-
ematical background does not exist for the non–orthogonal factor rotation,
the parsimony principle: “explain the maximum of the common variability
of the data matrix X = {xiα} with the minimum number of factors”, is
fully developed only in this form of factor analysis, and the factor–correlation
matrix L∗

obl resembles the correlation matrix between manifest variables in
the latent, factor space with double–reduced number of observables.

The linear factor equation (1.1) becomes now the oblique factor model

xi = μi + L∗
obl fj + ei, (i = 1, . . . , n; j = 1, . . . ,m),

where the vectors fj and ei are interdependent (correlated to each other). With
oblique rotation, using common procedures, like Kaiser–Harris Orthoblique,
Oblimin, Oblimax, Quartimin, Promax (see [And84]), we could

1. perform a hierarchical (iterated) factor analysis, obtaining second–order
factors, third–order factors, etc., finishing with a single general factor
(for example using principal component analysis of the factor–correlation
matrix L∗

obl); and
2. develop the so–called ‘cybernetic models’: when two factors in the factor–

correlation matrix L∗
obl are highly correlated we can assume a linear func-

tional link between them; connecting all correlated factors on the certain
hierarchical level, we can make a block–diagram out of them depicting a
linear system; this is the real point of the exploratory factor analysis.
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The factor scores Sjα (where j labels factors and α labels individual pi-
lot) are incidental parameters that characterize general performance of the
individuals (see [CL71, And84, Har75]). Factor scores with zero mean and
unity-matrix covariance are usually automatically evaluated in principal–
component, orthogonal and oblique factor analysis, according to the formula:

Sjα = (LT L)−1LT (xjα − x̄jα),

and replacing L by L∗, and by L∗
obl, respectively. They represent an objective

measure of the general performance of pilot on the battery of psycho–tests.63

63 Here is the Mathematica algorithm for calculating the basic factor structure:
Mean[x ] := Plus@@x

Length[x]
;

V ariance[x ] := Plus@@(mean[x]−x)2

Length[x]
;

StDev[x ] :=
√

V ariance[x];

Covar[x1 , x2 ] := Plus@@((mean[x1]−x1)((mean[x2]−x2))
Length[x1]

;

Corr[x1 , x2 ] := Covar[x1,x2]
StDev[x1] StDev[x2]

;

CorrMat[X ] := Table[Corr[X[[1, j]], X[[1, i]]]//N, {i, m}, {j, m}];
Generate random data–matrix (m variables × n cases):

NoV ars = 10; NoCases = 50; m = NoV ars; n = NoCases;
data = Array[x, {NoCases, NoV ars}]//MatrixForm;
Table[x[i, j] = Random[Integer, {1, 5}], {i, NoCases}, {j, NoV ars}];
Print[“data = ”,data//MatrixForm];

Calculate correlation matrix:
R = CorrMat[data]; Print[“R=”,R//MatrixForm]

Calculate eigenvalues of the correlation matrix:
λ = Eigenvalues[R]//MatrixForm

Corresponding eigenvectors:
vec = Eigenvectors[R]; Print[vec//Transpose//MatrixForm]

Determine significant principal components
according to the criterion λ ≥ 2:
Print[“PRINCIPAL COMPONENTS”
→ {vec[[1]], vec[[2]]}//Transpose//MatrixForm]

Define operator matrix:
NoFact = 2; P = Array[p, NoV ars, NoFact];
Table[p[i, j] = 1, {i, NoV ars}, {j, NoFact}];
Table[p[i, j] = 0, {i, 2, NoV ars, 2}, {j, 2, NoFact, 2}];
Table[p[i, j] = 0, {i, 1, NoV ars, 2}, {j, 1, NoFact, 2}];
Print[“P = ”, P//MatrixForm];

Perform oblique rotation:
Q = Transpose[P ]; S = R.P ; G = Q.S;
Do[k = 1√

G‖i,i‖ , {i, NoFact}];
F = Sk; Z = kG; C = Zk;
L = Inverse[C]; Φ = F.L;

Factor structure matrix:
Print[“F = ”, F//MatrixForm]



1.1 Natural Intelligence and Human Mind 63

The factor scores can be used further for multivariate regression in the
latent space (instead in the original manifest space) for reducing the number
of predictors in the general regression analysis (see [CL71]).

Quantum–Like Correlation and Factor Dynamics

To develop correlation and factor dynamics model, we are using geometrical
analogy with nonrelativistic quantum mechanics (see [Dir49]). A time depen-
dent state of a quantum system is determined by a normalized (complex),
time–dependent, wave psi–function ψ = ψ(t), i.e. a unit Dirac’s ‘ket’ vec-
tor |ψ(t)〉, an element of the Hilbert space L2(ψ) with a coordinate basis
(qi), under the action of the Hermitian operators, obtained by the procedure
of quantization of classical mechanical quantities, for which real eigenvalues
are measured . The state–vector |ψ(t)〉, describing the motion of de Broglie’s
waves, has a statistical interpretation as the probability amplitude of the
quantum system, for the square of its magnitude determines the density of
the probability of the system detected at various points of space. The sum-
mation over the entire space must yield unity and this is the normalization
condition for the psi–function, determining the unit length of the state vector
|ψ(t)〉.

In the coordinate q–representation and the Schrödinger S–picture we con-
sider an action of an evolution operator (in normal units Planck constant
� = 1)

Ŝ ≡ Ŝ(t, t0) = exp[−iĤ(t− t0)],

i.e., a one–parameter Lie–group of unitary transformations evolving a quan-
tum system. The action represents an exponential map of the system’s total
energy operator – Hamiltonian Ĥ = Ĥ(t). It moves the quantum system from
one instant of time, t0, to some future time t, on the state–vector |ψ(t)〉, rotat-
ing it: |ψ(t)〉 = Ŝ(t, t0)|ψ(t0)〉. In this case the Hilbert coordinate basis (qi) is
fixed, so the system operators do not evolve in time, and the system evolution
is determined exclusively by the time–dependent Schrödinger equation

i∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (∂t = ∂/∂t), (1.2)

with initial condition given at one instant of time t0 as |ψ(t0)〉 = |ψ〉.

Inter-factor correlation matrix:
Print[“C = ”, C//MatrixForm]

Factor projection matrix:
Print[“Φ = ”, Φ//MatrixForm]

Calculate factor scores for individual pilot:
var[x ] := x − mean[x];
Table[v[i] = var[X[[i]]//N ], {i, n}];
TF = Transpose[F ]; FF = Inverse[TF .F ].TF ;
Table[FF .v[i], {i, n}]//MatrixForm.
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If the Hamiltonian Ĥ = Ĥ(t) does not explicitly depend on time (which is
the case with the absence of variables of macroscopic fields), the state vector
reduces to the exponential of the system energy:

|ψ(t)〉 = exp(−iE(t− t0)|ψ〉,

satisfying the time–independent (i.e., stationary) Schrödinger equation

Ĥ|ψ〉 = E|ψ〉, (1.3)

which represents the characteristic equation for the Hamiltonian operator Ĥ
and gives its real eigenvalues (stationary energy states) En and corresponding
orthonormal eigenfunctions (i.e., probability amplitudes) |ψn〉.

To model the correlation and factor dynamics we start with the charac-
teristic equation for the correlation matrix

Rx = λx,

making heuristic analogy with the stationary Schrödinger equation (1.3). This
analogy allows a ‘physical’ interpretation of the correlation matrix R as an
operator of the ‘total correlation or covariation energy’ of the statistical system
(the simulator–test data matrix X = {xiα}), eigenvalues λn corresponding to
the ‘stationary energy states’, and eigenvectors xn resembling ‘probability
amplitudes’ of the system.

So far we have considered one instant of time t0. Including the time–flow
into the stationary Schrödinger equation (1.3) we get the time–dependent
Schrödinger equation (1.2) and returning back with our heuristic analogy, we
get the basic equation of the n–dimensional correlation dynamics

∂tx(t) = R(t)xk(t), (1.4)

with initial condition at time t0 given as a stationary manifest–vectors
xk(t0) = xk (k = 1, . . . , n).

In more realistic case of ‘many’ observables (i.e., very big n), instead of
the correlation dynamics (1.4), we can use the reduced–dimension factor dy-
namics, represented by analogous equation in the factor space spanned by
the extracted (oblique) factors F = f i, with inter–factor–correlation matrix
C = cij (i, j = 1, . . . ,no. of factors)

∂tfi(t) = C(t) fi(t), (1.5)

subject to initial condition at time t0 given as stationary vectors fi(t0) = fi.
Now, according to the fundamental existence and uniqueness theorem for

linear autonomous ordinary differential equations, if A = A(t) is an n×n real
matrix, then the initial value problem

∂tx(t) = Ax(t), x(0) = x0 ∈ Rn,



1.1 Natural Intelligence and Human Mind 65

has the unique solution

x(t) = x0etA, for all t ∈ R.

Therefore, analytical solutions of our correlation and factor–correlation
dynamics equations (1.4) and (1.5) are given respectively by exponential maps

xk(t) = xk exp[tR],
fi(t) = fi exp[tC].

Thus, for each t ∈ R, the matrix x exp[tR], respectively the matrix
f exp[tC], maps

xk �→ xk exp[tR], respectively fi �→ fi exp[tC].

The sets gt
corr = {exp[tR]}t∈R and gt

fact = {exp[tC]}t∈R are 1–parameter
families (groups) of linear maps of Rn into Rn, representing the correlation
flow , respectively the factor–correlation flow of simulator–tests. The linear
flows gt (representing both gt

corr and gt
fact) have two essential properties:

1. identity map: g0 = I, and
2. composition: gt1+t2 = gt1 ◦ gt2 .

They partition the state space Rn into subsets that we call ‘correlation
orbits’, respectively ‘factor–correlation orbits’, through the initial states xk,
and fi, of simulator tests, defined respectively by

γ(xk) = {xkg
t|t ∈ R} and γ(fi) = {figt|t ∈ R}.

The correlation orbits can be classified as:

1. If gtxk = xk for all t ∈ R, then γ(xk) = {xk} and it is called a point
orbit . Point orbits correspond to equilibrium points in the manifest and
the factor space, respectively.

2. If there exists a T > 0 such that gT xk = xk, then γ(xk) is called a periodic
orbit . Periodic orbits describe a system that evolves periodically in time
in the manifest and the factor space, respectively.

3. If gtxk 
= xk for all t 
= 0, then γ(xk) is called a non–periodic orbit .

Analogously, the factor–correlation orbits can be classified as:

1. If gtfi = fi for all t ∈ R, then γ(fi) = {fi} and it is called a point orbit.
Point orbits correspond to equilibrium points in the manifest and the
factor space, respectively.

2. If there exists a T > 0 such that gT fi = fi, then γ(fi) is called a periodic
orbit. Periodic orbits describe a system that evolves periodically in time
in the manifest and the factor space, respectively.

3. If gtfi 
= fi for all t 
= 0, then γ(fi) is called a non–periodic orbit.
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Now, to interpret properly the meaning of (really discrete) time in the
correlation matrix R = R(t) and factor–correlation matrix C = C(t), we can
perform a successive time–series {t, t + Δt, t + 2Δt, t + kΔt, · · · } of simula-
tor tests (and subsequent correlation and factor analysis), and discretize our
correlation (respectively, factor–correlation) dynamics, to get

xk(t + Δt) = xk(0) + R(t)xk(t)Δt, and
fi(t + Δt) = fi(0) + C(t) fi(t)Δt,

respectively. Finally we can represent the discrete correlation and factor–
correlation dynamics in the form of the (computationally applicable) three–
point iterative dynamics equation, respectively in the manifest space

xs+1
k = xs−1

k + Rs
k xs

k,

and in the factor space
fs+1
i = fs−1

i + Cs
i fs

i ,

in which the time–iteration variable s labels the time occurrence of the simu-
lator tests (and subsequent correlation and factor analysis), starting with the
initial state, labelled s = 0.

FA–Based Intelligence

In the psychometric view, the concept of intelligence is most closely identified
with Spearman’s g, or Gf (‘fluid g’). However, psychometricians can measure
a wide range of abilities, which are distinct yet correlated. One common view
is that these abilities are hierarchically arranged with g at the vertex (or top,
overlaying all other cognitive abilities).64

On the other hand, critics of the psychometric approach, such as Robert
Sternberg from Yale, point out that people in the general population have
a somewhat different conception of intelligence than most experts. In turn,
they argue that the psychometric approach measures only a part of what

64 Intelligence, IQ, and g are distinct terms. As already said above, intelligence
is the term used in ordinary discourse to refer to cognitive ability. However,
it is generally regarded as too imprecise to be useful for a scientific treatment
of the subject. The intelligence quotient (IQ) is an index calculated from the
scores on test items judged by experts to encompass the abilities covered by the
term intelligence. IQ measures a multidimensional quantity: it is an amalgam of
different kinds of abilities, the proportions of which may differ between IQ tests.
The dimensionality of IQ scores can be studied by factor analysis, which reveals
a single dominant factor underlying the scores on all IQ tests. This factor, which
is a hypothetical construct, is called g. Variation in g corresponds closely to the
intuitive notion of intelligence, and thus g is sometimes called general cognitive
ability or general intelligence.
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is commonly understood as intelligence. Other critics, such as Arthur Ed-
dington,65 argue that the equipment used in an experiment often determines
the results and that proving that e.g., intelligence exists does not prove that
current equipment measure it correctly. Sceptics often argue that so much
scientific knowledge about the brain is still to be discovered that claiming the
conventional IQ test methodology to be infallible is just a small step forward
from claiming that craniometry66 was the infallible method for measuring
intelligence (which had scientific merits based on knowledge available in the
nineteenth century).

A more fundamental criticism is that both the psychometric model used
in these studies and the conceptualization of cognitive ability itself are fun-
damentally off beam. These views were expressed by none other than Charles
Spearman, the ‘discoverer’ of g – himself. Thus he wrote: “Every normal man,
woman, and child is a genius at something. It remains to discover at what.
This must be a most difficult matter, owing to the very fact that it occurs
in only a minute proportion of all possible abilities. It certainly cannot be
detected by any of the testing procedures at present in current usage. But
these procedures are capable, I believe, of vast improvement.” In this context
he noted that it is more important to ask ‘What does this person think about?’
than ‘How well can he or she think?’ Spearman went on to observe that the
tests from which his g had emerged had no place in schools since they did
not reflect the diverse talents of the children and thus deflected teachers from
their fundamental educational role, which is to nurture and recognize these
diverse talents.

He also noted, as paraphrased here, that the so–called ‘cognitive ability’
is not primarily cognitive but affective and conative. In constructing mean-
ing out of confusion (Spearman’s eductive ability) one first follows feelings
that beckon or attract. One then has to engage in ‘experimental interactions
with the environment’ to check out those, largely non–verbal, ‘hunches’. This
requires determination and persistence — conation. Now, all of these are dif-
ficult and demanding activities which will only be undertaken whilst one is
undertaking activities one cares about. So the first question is: ‘What kinds
of activity is this person strongly motivated to undertake’ (and the kinds
of activity which people may be strongly motivated to undertake are legion
and mostly unrelated to those assessed in conventional ‘intelligence’ tests).
And the second question is: ‘How many of the cumulative and substitutable

65 Sir Arthur Stanley Eddington, OM (December 28, 1882 — November 22, 1944)
was an astrophysicist of the early 20th century. The Eddington limit, the natural
limit to the luminosity that can be radiated by accretion onto a compact object, is
named in his honor. He is famous for his work regarding the Theory of Relativity.
Eddington wrote an article in 1919, Report on the relativity theory of gravitation,
which announced Einstein’s theory of general relativity to the English–speaking
world.

66 Craniometry is the technique of measuring the bones of the skull. Craniometry
was once intensively practiced in anthropology/ethnology.
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components of competence required to carry out these activities effectively
does this person display whilst carrying out that activity?’ So one cannot,
in reality, assess a person’s intelligence, or even their eductive ability, except
in relation to activities they care about. What one sees in e.g., the Raven
Progressive Matrices is the cumulative effect of how well they do all these
things in relation to a certain sort of task. The problem is that this is not
— and cannot be — ‘cognitive ability’ in any general sense of the word but
only in relation to this kind of task. As Roger Sperry67 has observed, what is
neurologically localized is not ‘cognitive ability’ in any general sense but the
emotional predisposition to ‘think’ about a particular kind of thing (for more
details, see e.g., papers of John Raven68 [Rav02]).

Most experts accept the concept of a single dominant factor of intelligence,
general mental ability or g, while others argue that intelligence consists of a
set of relatively independent abilities [APS98]. The evidence for g comes from
factor analysis of tests of cognitive abilities. The methods of factor analysis
do not guarantee a single dominant factor will be discovered. Other psycho-
logical tests, which do not measure cognitive ability, such as personality tests,
generate multiple factors.

Proponents of multiple–intelligence theories often claim that g is, at best,
a measure of academic ability. Other types of intelligence, they claim, might be
just as important outside of a school setting. Robert Sternberg has proposed
a ‘Triarchic Theory of Intelligence’. Howard Gardner’s theory of multiple in-
telligences breaks intelligence down into at least eight different components:
logical, linguistic, spatial, musical, kinesthetic, naturalist, intra–personal and

67 Roger Wolcott Sperry (August 20, 1913 – April 17, 1994) was a neuropsychologist
who, together with David Hunter Hubel and Torsten Nils Wiesel, won the 1981
Nobel Prize in Medicine for his work with split–brain research. Before Sperry’s
experiments, some research evidence seemed to indicate that areas of the brain
were largely undifferentiated and interchangeable. In his early experiments Sperry
challenged this view by showing that after early development circuits of the brain
are largely hardwired. In his Nobel–winning work, Sperry separated the corpus
callosum, the area of the brain used to transfer signals between the right and
left hemispheres, to treat epileptics. Sperry and his colleagues then tested these
patients with tasks that were known to be dependent on specific hemispheres of
the brain and demonstrated that the two halves of the brain may each contain
consciousness. In his words, each hemisphere is “... indeed a conscious system in
its own right, perceiving, thinking, remembering, reasoning, willing, and emot-
ing, all at a characteristically human level, and . . . both the left and the right
hemisphere may be conscious simultaneously in different, even in mutually con-
flicting, mental experiences that run along in parallel.” This research contributed
greatly to understanding the lateralization of brain functions. In 1989, Sperry
also received National Medal of Science.

68 John Carlyle Raven first published his Progressive Matrices in the United King-
dom in 1938. His three sons established Scotland–based test publisher JC Raven
Ltd. in 1972. In 2004, Harcourt Assessment, Inc. a division of Harcourt Education
acquired JC Raven Ltd.
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inter–personal intelligences. Daniel Goleman and several other researchers
have developed the concept of emotional intelligence and claim it is at least as
important as more traditional sorts of intelligence. These theories grew from
observations of human development and of brain injury victims who demon-
strate an acute loss of a particular cognitive function (e.g., the ability to think
numerically, or the ability to understand written language), without showing
any loss in other cognitive areas.

In response, g theorists have pointed out that g’s predictive validity69

has been repeatedly demonstrated, for example in predicting important non–
academic outcomes such as job performance, while no multiple–intelligences
theory has shown comparable validity. Meanwhile, they argue, the relevance,
and even the existence, of multiple intelligences have not been borne out when
actually tested [Hun01]. Furthermore, g theorists contend that proponents of
multiple–intelligences (see, e.g., [Ste95]) have not disproved the existence of a
general factor of intelligence [Kli00]. The fundamental argument for a general
factor is that test scores on a wide range of seemingly unrelated cognitive
ability tests (such as sentence completion, arithmetic, and memorization) are
positively correlated: people who score highly on one test tend to score highly
on all of them, and g thus emerges in a factor analysis. This suggests that the
tests are not unrelated, but that they all tap a common factor.

Cognitive vs. Not–Cognitive Intelligence

Clearly, biologically realized ‘cognitive intelligence’ is the most complex prop-
erty of human mind and can be perceived only by itself. Our problem is what
we call or may call cognitive intelligence. From the formal, computational
perspective, cognitive intelligence is one of ill defined concepts. Its definitions
are immersed in numerous scientific contexts and mirrors their historical evo-
lutions, as well as, different ‘interests’ of researchers. Its weakness is usually
based on its abstract multifaces image and, on the other hand, a universal
utility character.

69 In psychometrics, predictive validity is the extent to which a scale predicts scores
on some criterion measure. For example, the validity of a cognitive test for job per-
formance is the correlation between test scores and, say, supervisor performance
ratings. Such a cognitive test would have predictive validity if the observed cor-
relation were statistically significant. Predictive validity shares similarities with
concurrent validity in that both are generally measured as correlations between
a test and some criterion measure. In a study of concurrent validity the test is
administered at the same time as the criterion is collected. This is a common
method of developing validity evidence for employment tests: A test is adminis-
tered to incumbent employees, then a rating of those employees’ job performance
is obtained (often, as noted above, in the form of a supervisor rating). Note the
possibility for restriction of range both in test scores and performance scores: The
incumbent employees are likely to be a more homogeneous and higher performing
group than the applicant pool at large.
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The classical behavioral/biologists definition of intelligence reads: “Intel-
ligence is the ability to adapt to new conditions and to successfully cope with
life situations.” This definition seems to be the best, but ‘intelligence’ here
depends on available physical tools and specific life experience (individual
hidden knowledge, preferences and access to information), therefore it is not
enough selective to be measured, compared or designed. In general, cogni-
tive intelligence is a human–like intelligence. Unfortunately there are many
opinions what human–like intelligence means. For example, (i) cognitive in-
telligence uses a human mental introspective experience for the modelling of
intelligent system thinking; and (ii) cognitive intelligence may use brain mod-
els to extract brain’s intelligence property.

Therefore, cognitive intelligence can be seen as a product of human self–
conscious recognition of efficient mental processes, defined a’priori as intelli-
gent. In order to get a consensus on the notion of cognitive intelligence is useful
to have an agreement on which intelligence is not cognitive. A not–cognitive
intelligence could be considered as an intelligence being developed using not
human analogies; e.g., it is possible to construct very different models of flying
objects starting from the observation of storks, balloons, beetles or clouds –
maybe this observation can be useful.

The difference between human and artificial intelligence theories is similar
to the difference between a birds theory of fly and the airplanes fly theory, the
both can lead to a more general theory of fly but this last needs a goal–oriented
and a higher abstraction level of the conceptualization/ontology.

According to the TOGA meta–theory paradigms,70 for scientific and practi-
cal modelling purposes, it is reasonable to separate conceptually the following
five concepts: information, knowledge, preferences, intelligence and emotions.
If properly defined, all of them can be independently identified and designed.

Such conceptual modularity should enable to construct: emotional intel-
ligence, social intelligence, skill intelligence, organizational intelligence, and
many other X–intelligences, where X denotes a type of knowledge, preferences
or a carrier system involved.
70 According to the top–down object–based goal–oriented approach (TOGA) stan-

dard, the Information–Preferences–Knowledge cognitive architecture consists of:

Data: everything what is/can be processed/transformed in computational and men-
tal processes. Concept data is included in the ontology of ‘elaborators’, such as
developers of methods, programmers and other computation service people. In
this sense, data is a relative term and exists only in the couple (data, processing).

Information: data which represent a specific property of the domain of human or
artificial agent’s activity (such as: addresses, tel. numbers, encyclopedic data,
various lists of names and results of measurements). Every information has
always a source domain. It is a relative concept. Information is a concept from
the ontology of modeler/problem–solver/decision–maker.

Knowledge: every abstract property of human/artificial agent which has ability to
process/transform a quantitative/qualitative information into other informa-
tion, or into another knowledge. It includes: instructions, emergency procedures,
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For example, business intelligence and emotional intelligence, rather are
applications of intelligence either for business activities or for the second,
under emotional/(not conscious) constrains and ‘biological requests’.

In the above context, an abstract intelligent agent can be considered as a
functional kernel of any natural or artificial intelligent system.

Intelligence and Cognitive Development

Although there is no general theory of cognitive development , the most his-
torically influential theory was developed by Jean Piaget.71 Piaget theory

exploitation/user manuals, scientific materials, models and theories. Every
knowledge has its reference domain where it is applicable. It has to include
the source domain of the processed information. It is a relative concept.

Preference: an ordered relation among two properties of the domain of activity of a
cognitive agent , it indicates a property with higher utility. Preference relations
serve to establish an intervention goal of an agent. Cognitive preferences are
relative. A preference agent which manages preferences of an intelligent agent
can be external or its internal part.

Goal: a hypothetical state of the domain of activity which has maximal utility in
a current situation. Goal serves to the choice and activate proper knowledge
which process new information.

Document: a passive carrier of knowledge, information and/or preferences (with
different structures), comprehensive for humans, and it has to be recognized
as valid and useful by one or more human organizations, it can be physical or
electronic.

Computer Program: (i) from the modelers and decision-makers perspective: an ac-
tive carrier of different structures of knowledge expressed in computer languages
and usually focused on the realization of predefined objectives (a design-goal). It
may include build-in preferences and information and/or request specific IPK as
data. (ii) from the software engineers perspective: a data-processing tool (more
precise technical def. you may find on the Web).

71 Jean Piaget (August 9, 1896 – September 16, 1980) was a Swiss natural scientist
and developmental psychologist, well known for his work studying children and
his theory of cognitive development. Piaget served as professor of psychology at
the University of Geneva from 1929 to 1975 and is best known for reorganizing
cognitive development theory into a series of stages, expanding on earlier work
from James Baldwin: four levels of development corresponding roughly to (1)
infancy, (2) pre–school, (3) childhood, and (4) adolescence. Each stage is charac-
terized by a general cognitive structure that affects all of the child’s thinking (a
structuralist view influenced by philosopher Immanuel Kant). Each stage repre-
sents the child’s understanding of reality during that period, and each but the
last is an inadequate approximation of reality. Development from one stage to the
next is thus caused by the accumulation of errors in the child’s understanding of
the environment; this accumulation eventually causes such a degree of cognitive
disequilibrium that thought structures require reorganising. For his development
of the theory, Piaget was awarded the Erasmus Prize.
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provided many central concepts in the field of developmental psychology. His
theory concerned the growth of intelligence, which for Piaget meant the abil-
ity to more accurately represent the world, and perform logical operations
on representations of concepts grounded in the world. His theory concerns
the emergence and acquisition of schemata, schemes of how one perceives
the world, in ‘developmental stages’, times when children are acquiring new
ways of mentally representing information. Piaget theory is considered ‘con-
structivist, meaning that, unlike nativist theories (which describe cognitive
development as the unfolding of innate knowledge and abilities) or empiricist
theories (which describe cognitive development as the gradual acquisition of
knowledge through experience), asserts that we construct our cognitive abili-
ties through self–motivated action in the world.

The four development stages are described in Piaget’s theory as:

1. Sensorimotor stage: from birth to age 2 years (children experience the world
through movement and senses)

2. Preoperational stage: from ages 2 to 7(acquisition of motor skills)
3. Concrete operational stage: from ages 7 to 11 (children begin to think logically

about concrete events)
4. Formal Operational stage: after age 11 (development of abstract reasoning).

These chronological periods are approximate, and in light of the fact that stud-
ies have demonstrated great variation between children, cannot be seen as rigid
norms. Furthermore, these stages occur at different ages, depending upon the do-
main of knowledge under consideration. The ages normally given for the stages,
then, reflect when each stage tends to predominate, even though one might elicit
examples of two, three, or even all four stages of thinking at the same time from
one individual, depending upon the domain of knowledge and the means used to
elicit it. Despite this, though, the principle holds that within a domain of knowl-
edge, the stages usually occur in the same chronological order. Thus, there is a
somewhat subtler reality behind the normal characterization of the stages as de-
scribed above. The reason for the invariability of sequence derives from the idea
that knowledge is not simply acquired from outside the individual, but it is con-
structed from within. This idea has been extremely influential in pedagogy, and
is usually termed constructivism. Once knowledge is constructed internally, it is
then tested against reality the same way a scientist tests the validity of hypothe-
ses. Like a scientist, the individual learner may discard, modify, or reconstruct
knowledge based on its utility in the real world. Much of this construction (and
later reconstruction) is in fact done subconsciously. Therefore, Piaget’s four stages
actually reflect four types of thought structures. The chronological sequence is in-
evitable, then, because one structure may be necessary in order to construct the
next level, which is simpler, more generalizable, and more powerful. It’s a little
like saying that you need to form metal into parts in order to build machines,
and then coordinate machines in order to build a factory.
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Piaget divided schemes that children use to understand the world through
four main stages, roughly correlated with and becoming increasingly sophis-
ticated with age:

1. Sensorimotor stage (years 0–2),
2. Preoperational stage (years 2–7),
3. Concrete operational stage (years 7–11), and
4. Formal operational stage (years 11–adulthood).

Sensorimotor Stage

Infants are born with a set of congenital reflexes, according to Piaget, as well
as a drive to explore their world. Their initial schemas are formed through
differentiation of the congenital reflexes (see assimilation and accommodation,
below).

The sensorimotor stage is the first of the four stages. According to Piaget,
this stage marks the development of essential spatial abilities and understand-
ing of the world in six sub–stages:

1. The first sub–stage occurs from birth to six weeks and is associated pri-
marily with the development of reflexes. Three primary reflexes are de-
scribed by Piaget: sucking of objects in the mouth, following moving or
interesting objects with the eyes, and closing of the hand when an object
makes contact with the palm (palmar grasp). Over these first six weeks
of life, these reflexes begin to become voluntary actions; for example, the
palmar reflex becomes intentional grasping.

2. The second sub–stage occurs from six weeks to four months and is associ-
ated primarily with the development of habits. Primary circular reactions
or repeating of an action involving only ones own body begin. An example
of this type of reaction would involve something like an infant repeating
the motion of passing their hand before their face. Also at this phase,
passive reactions, caused by classical or operant conditioning, can begin.

3. The third sub–stage occurs from four to nine months and is associated
primarily with the development of coordination between vision and pre-
hension. Three new abilities occur at this stage: intentional grasping for a
desired object, secondary circular reactions, and differentiations between
ends and means. At this stage, infants will intentionally grasp the air in
the direction of a desired object, often to the amusement of friends and
family. Secondary circular reactions, or the repetition of an action involv-
ing an external object begin; for example, moving a switch to turn on
a light repeatedly. The differentiation between means also occurs. This is
perhaps one of the most important stages of a child’s growth as it signifies
the dawn of logic. Towards the late part of this sub–stage infants begin
to have a sense of object permanence, passing the A–not–B error test.

4. The fourth sub-stage occurs from nine to twelve months and is associated
primarily with the development of logic and the coordination between
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means and ends. This is an extremely important stage of development,
holding what Piaget calls the ‘first proper intelligence’. Also, this stage
marks the beginning of goal orientation, the deliberate planning of steps
to meet an objective.

5. The fifth sub–stage occurs from twelve to eighteen months and is asso-
ciated primarily with the discovery of new means to meet goals. Piaget
describes the child at this juncture as the ‘young scientist’, conducting
pseudo–experiments to discover new methods of meeting challenges.

6. The sixth sub–stage is associated primarily with the beginnings of insight,
or true creativity. This marks the passage into the preoperational stage.

Preoperational Stage

The Preoperational stage is the second of four stages of cognitive develop-
ment. By observing sequences of play, Piaget was able to demonstrate that
towards the end of the second year a qualitatively quite new kind of psycho-
logical functioning occurs. Operation in Piagetian theory is any procedure for
mentally acting on objects. The hallmark of the preoperational stage is sparse
and logically inadequate mental operations.

According to Piaget, the Sensorimotor stage of development is followed by
this stage (2–7 years), which includes the following five processes:

1. Symbolic functioning, which is characterised by the use of mental symbols
words or pictures which the child uses to represent something which is not
physically present.

2. Centration, which is characterized by a child focusing or attending to only
one aspect of a stimulus or situation. For example, in pouring a quantity
of liquid from a narrow beaker into a shallow dish, a preschool child might
judge the quantity of liquid to have decreased, because it is ‘lower’, that is,
the child attends to the height of the water, but not to the compensating
increase in the diameter of the container.

3. Intuitive thought, which occurs when the child is able to believe in some-
thing without knowing why she or he believes it.

4. Egocentrism, which is a version of centration, this denotes a tendency of
child to only think from own point of view.

5. Inability to Conserve; Through Piaget’s conservation experiments (con-
servation of mass, volume and number) Piaget concluded that children in
the preoperational stage lack perception of conservation of mass, volume,
and number after the original form has changed. For example, a child in
this phase will believe that a string of beads set up in a ‘O–O–O–O–O’
pattern will have the same number of beads as a string which has a ‘O–
O–O–O–O’ pattern, because they are the same length, or that a tall, thin
8-ounce cup has more liquid in it than a wide, fat 8–ounce cup.
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Concrete Operational Stage

The concrete operational stage is the third of four stages of cognitive devel-
opment in Piaget’s theory. This stage, which follows the Preoperational stage
and occurs from the ages of 7 to 11, is characterized by the appropriate use
of logic. The six important processes during this stage are:

1. Decentering, where the child takes into account multiple aspects of a prob-
lem to solve it. For example, the child will no longer perceive an excep-
tionally wide but short cup to contain less than a normally-wide, taller
cup.

2. Reversibility, where the child understands that numbers or objects can be
changed, then returned to their original state. For this reason, a child will
be able to rapidly determine that 4 + 4 which they can answer to be 8,
minus 4 will equal four, the original quantity.

3. Conservation: understanding that quantity, length or number of items is
unrelated to the arrangement or appearance of the object or items. For
instance, when a child is presented with two equally–sized, full cups they
will be able to discern that if water is transferred to a pitcher it will
conserve the quantity and be equal to the other filled cup.

4. Serialisation: the ability to arrange objects in an order according to size,
shape, or any other characteristic. For example, if given different–shaded
objects they may make a color gradient.

5. Classification: the ability to name and identify sets of objects according
to appearance, size or other characteristic, including the idea that one
set of objects can include another. A child is no longer subject to the
illogical limitations of animism (the belief that all objects are animals
and therefore have feelings).

6. Elimination of Egocentrism: the ability to view things from another’s per-
spective (even if they think incorrectly). For instance, show a child a comic
in which Jane puts a doll under a box, leaves the room, and then Jill moves
the doll to a drawer, and Jane comes back; a child in this stage will not
say that Jane will think the doll is in the drawer.

Formal Operational Stage

The formal operational stage is the fourth and final of the stages of cogni-
tive development of Piaget’s theory. This stage, which follows the Concrete
Operational stage, commences at around 11 years of age (puberty) and con-
tinues into adulthood. It is characterized by acquisition of the ability to think
abstractly and draw conclusions from the information available. During this
stage the young adult functions in a cognitively normal manner and there-
fore is able to understand such things as love, ‘shades of gray’, and values.
Lucidly, biological factors may be traced to this stage as it occurs during
puberty and marks the entering into adulthood in physiologically, cognitive,
moral (Kohlberg), psychosexual (Freud), and social development (Erikson).
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Many people do not successfully complete this stage, but mostly remain in
concrete operations.

Psychophysics

Recall that psychophysics is a subdiscipline of psychology, founded in 1860
by Gustav Fechner72 with the publication of ‘Elemente der Psychophysik’,
dealing with the relationship between physical stimuli and their subjective
correlates, or percepts. Fechner described research relating physical stimuli
with how they are perceived and set out the philosophical foundations of the
field. Fechner wanted to develop a theory that could relate matter to the mind,
by describing the relationship between the world and the way it is perceived
(Snodgrass, 1975). Fechner’s work formed the basis of psychology as a science.
Wilhelm Wundt, the founder of the first laboratory for psychological research,
built upon Fechner’s work.

The Weber–Fechner law attempts to describe the relationship between
the physical magnitudes of stimuli and the perceived intensity of the stimuli.

72 Gustav Theodor Fechner (April 19, 1801 – November 28, 1887), was a German
experimentle psychologist. A pioneer in experimental psychology.

Fechner’s epoch–faking work was his Elemente der Psychophysik (1860). He
starts from the Spinozistic thought that bodily facts and conscious facts, though
not reducible one to the other, are different sides of one reality. His originality
lies in trying to discover an exact mathematical relation between them. The most
famous outcome of his inquiries is the law known as Weber–Fechner law which
may be expressed as follows: “In order that the intensity of a sensation may
increase in arithmetical progression, the stimulus must increase in geometrical
progression.” Though holding good within certain limits only, the law has been
found immensely useful. Unfortunately, from the tenable theory that the intensity
of a sensation increases by definite additions of stimulus, Fechner was led on
to postulate a unit of sensation, so that any sensations might be regarded as
composed of n units. Sensations, he argued, thus being representable by numbers,
psychology may become an ‘exact’ science, susceptible of mathematical treatment.

His general formula for getting at the number of units in any sensation is
S = c log R, where S stands for the sensation, R for the stimulus numerically
estimated, and c for a constant that must be separately determined by experiment
in each particular order of sensibility. This reasoning of Fechner’s has given rise to
a great mass of controversy, but the fundamental mistake in it is simple. Though
stimuli are composite, sensations are not. “Every sensation,” says William James,
“presents itself as an indivisible unit; and it is quite impossible to read any clear
meaning into the notion that they are masses of units combined.” Still, the idea of
the exact measurement of sensation has been a fruitful one, and mainly through
his influence on Wilhelm Wundt, Fechner was the father of that ‘new’ psychology
of laboratories which investigates human faculties with the aid of exact scientific
apparatus.
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Ernst Weber73 was one of the first people to approach the study of the human
response to a physical stimulus in a quantitative fashion. Gustav Fechner later
offered an elaborate theoretical interpretation of Weber’s findings, which he
called simply Weber’s law, though his admirers made the law’s name a hyphen-
ate. Fechner believed that Weber had discovered the fundamental principle of
mind/body interaction, a mathematical analog of the function Rene Descartes
once assigned to the pineal gland.

In one of his classic experiments, Weber gradually increased the weight
that a blindfolded man was holding and asked him to respond when he first
felt the increase. Weber found that the response was proportional to a relative
increase in the weight. That is to say, if the weight is 1 kg, an increase of a few
grams will not be noticed. Rather, when the mass is increased by a certain
factor, an increase in weight is perceived. If the mass is doubled, the threshold
is also doubled. This kind of relationship can be described by a linear ordinary
differential equation as,

dp = k
dS

S
,

where dp is the differential change in perception, dS is the differential increase
in the stimulus and S is the stimulus at the instant. A constant factor k is
to be determined experimentally. Integrating the above equation gives: p =
k lnS + C, where C is the constant of integration. To determine C, we can
put p = 0, which means no perception; then we get, C = −k lnS0,where S0 is
that threshold of stimulus below which it is not perceived at all. In this way,
we get the solution

p = k ln
S

S0
.

Therefore, the relationship between stimulus and perception is logarithmic.
This logarithmic relationship means that if a stimulus varies as a geometric
progression (i.e. multiplied by a fixed factor), the corresponding perception is
altered in an arithmetic progression (i.e. in additive constant amounts). For
example, if a stimulus is tripled in strength (i.e, 3 × 1), the corresponding
perception may be two times as strong as its original value (i.e., 1 + 1). If
the stimulus is again tripled in strength (i.e., 3 × 3 × 1), the corresponding
perception will be three times as strong as its original value (i.e., 1 + 1 + 1).
Hence, for multiplications in stimulus strength, the strength of perception

73 Ernst Heinrich Weber (Wittenberg, June 24, 1795 – January 26, 1878) was a
German physician who is considered a founder of experimental psychology. Weber
studied medicine at Wittenberg University. In 1818 he was appointed Associate
Professor of comparative anatomy at Leipzig University, where he was made a
Fellow Professor of anatomy and physiology in 1821.

Around 1860 Weber worked with Gustav Fechner on psychophysics, during
which time he formulated Weber’s Law. In 1866 Weber retired as professor of
physiology and also as professor of anatomy in 1871. Around this time he and his
brother, Eduard Weber, discovered the inhibitory power of the vagus nerve.
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only adds. This logarithmic relationship is valid, not just for the sensation of
weight, but for other stimuli and our sensory perceptions as well.

In case of vision, we have that the eye senses brightness logarithmically.
Hence stellar magnitude is measured on a logarithmic scale. This magnitude
scale was invented by the ancient Greek astronomer Hipparchus in about 150
B.C. He ranked the stars he could see in terms of their brightness, with 1
representing the brightest down to 6 representing the faintest, though now
the scale has been extended beyond these limits. An increase in 5 magnitudes
corresponds to a decrease in brightness by a factor 100.

In case of sound, we have still another logarithmic scale is the decibel scale
of sound intensity. And yet another is pitch, which, however, differs from the
other cases in that the physical quantity involved is not a ‘strength’. In the
case of perception of pitch, humans hear pitch in a logarithmic or geometric
ratio–based fashion: For notes spaced equally apart to the human ear, the
frequencies are related by a multiplicative factor. For instance, the frequency
of corresponding notes of adjacent octaves differ by a factor of 2. Similarly,
the perceived difference in pitch between 100 Hz and 150 Hz is the same as
between 1000 Hz and 1500 Hz. Musical scales are always based on geometric
relationships for this reason. Notation and theory about music often refers
to pitch intervals in an additive way, which makes sense if one considers the
logarithms of the frequencies, as log(a× b) = log a + log b.

Psychophysicists usually employ experimental stimuli that can be objec-
tively measured, such as pure tones varying in intensity, or lights varying in
luminance. All the senses have been studied:vision, hearing, touch (including
skin and enteric perception), taste, smell, and the sense of time. Regardless
of the sensory domain, there are three main topics in the psychophysical clas-
sification scheme: absolute thresholds, discrimination thresholds, and scaling.

The most common use of psychophysics is in producing scales of human
experience of various aspects of physical stimuli. Take for an example the
physical stimulus of frequency of sound. Frequency of a sound is measured
in Hertz (Hz), cycles per second. But human experience of the frequencies of
sound is not the same as the frequencies. For one thing, there is a frequency
below which no sounds can be heard, no matter how intense they are (around
20 Hz depending on the individual) and there is a frequency above which
no sounds can be heard, no matter how intense they are (around 20,000 Hz,
again depending on the individual). For another, doubling the frequency of a
sound (e.g., from 100 Hz to 200 Hz) does not lead to a doubling of experience.
The perceptual experience of the frequency of sound is called pitch, and it is
measured by psychophysicists in mels.

More analytical approaches allow the use of psychophysical methods to
study neurophysiological properties and sensory processing mechanisms. This
is of particular importance in human research, where other (more invasive)
methods are not used due to ethical reasons. Areas of investigation include
sensory thresholds, methods of measurement of sensitivity, and signal detec-
tion theory.
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Perception is the process of acquiring, interpreting, selecting, and organiz-
ing sensory information. Methods of studying perception range from essen-
tially biological or physiological approaches, through psychological approaches
to the often abstract ‘thought–experiments’ of mental philosophy.

Experiments in psychophysics seek to determine whether the subject can
detect a stimulus, identify it, differentiate between it and another stimulus,
and describe the magnitude or nature of this difference [Sno75]. Often, the
classic methods of experimentation are argued to be inefficient. This is because
a lot of sampling and data has to be collected at points of the psychometric
function that is known (the tails). Staircase procedures can be used to quickly
estimate threshold. However, the cost of this efficiency, is that we do not get
the same amount of information regarding the psychometric function as we
can through classical methods; e.g., we cannot extract an estimate of the slope
(derivative) of the function.

A psychometric function describes the relationship between a parameter
of a physical stimulus and the responses of a person who has to decide about a
certain aspect of that stimulus. The psychometric function usually resembles a
sigmoid function with the percentage of correct responses (or a similar value)
displayed on the ordinate and the physical parameter on the abscissa. If the
stimulus parameter is very far towards one end of its possible range, the person
will always be able to respond correctly. Towards the other end of the range,
the person never perceives the stimulus properly and therefore the probability
of correct responses is at chance level. In between, there is a transition range
where the subject has an above–chance rate of correct responses, but does not
always respond correctly. The inflection point of the sigmoid function or the
point at which the function reaches the middle between the chance level and
100% is usually taken as sensory threshold. A common example is visual acuity
testing with an eye chart. The person sees symbols of different sizes (the size
is the relevant physical stimulus parameter) and has to decide which symbol
it is. Usually, there is one line on the chart where a subject can identify some,
but not all, symbols. This is equal to the transition range of the psychometric
function and the sensory threshold corresponds to visual acuity.

On the other hand, a sensory threshold is a theoretical concept which
states: “A stimulus that is less intense than the sensory threshold will not
elicit any sensation.” Whilst the concept can be applied to all senses, it is most
commonly applied to the detection and perception of flavours and aromas.
Several different sensory thresholds have been defined:

1. Absolute threshold: the lowest level at which a stimulus can be detected.
2. Recognition threshold: the level at which a stimulus can not only be de-

tected but also recognised.
3. Differential threshold: the level at which an increase in a detected stimulus

can be perceived.
4. Terminal threshold: the level beyond which a stimulus is no longer

detected.
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In other words, a threshold is the point of intensity at which the participant
can just detect the presence of, or difference in, a stimulus. Stimuli with
intensities below the threshold are considered not detectable, however stimuli
at values close to threshold will often be detectable some proportion of the
time. Due to this, a threshold is considered to be the point at which a stimulus,
or change in a stimulus, is detected some proportion p of the time. An absolute
threshold is the level of intensity of a stimulus at which the subject is able
to detect the presence of the stimulus some proportion of the time (a p level
of 50% is often used). An example of an absolute threshold is the number of
hairs on the back of one’s hand that must be touched before it can be felt, a
participant may be unable to feel a single hair being touched, but may be able
to feel two or three as this exceeds the threshold. A difference threshold is the
magnitude of the difference between two stimuli of differing intensities that the
participant is able to detect some proportion of the time (again, 50% is often
used). To test this threshold, several difference methods are used. The subject
may be asked to adjust one stimulus until it is perceived as the same as the
other, may be asked to describe the magnitude of the difference between two
stimuli, or may be asked to detect a stimulus against a background. Absolute
and difference thresholds are sometimes considered similar because there is
always background noise interfering with our ability to detect stimuli, however
study of difference thresholds still occurs, for example in pitch discrimination
tasks (see [Sno75]).

The sensory analysis applies principles of experimental design and sta-
tistical analysis to the use of human senses (sight, smell, taste, touch and
hearing) for the purposes of evaluating consumer products. The discipline
requires panels of human assessors, on whom the products are tested, and
recording the responses made by them. By applying statistical techniques to
the results it is possible to make inferences and insights about the products
under test. Most large consumer goods companies have departments dedicated
to sensory analysis. Sensory Analysis can generally be broken down into three
sub–sections:

1. Effective Testing (dealing with objective facts about products);
2. Affective Testing (dealing with subjective facts such as preferences); and
3. Perception (the biochemical and psychological aspects of sensation).

The signal detection theory (SDT) is a means to quantify the ability to
discern between signal and noise. It has applications in many fields such as
quality control, telecommunications, and psychology (see [Abd06]). The con-
cept is similar to the signal to noise ratio used in the sciences, and it is also
usable in alarm management, where it is important to separate important
events from background noise. According to the theory, there are a number
of psychological determiners of how we will detect a signal, and where our
threshold levels will be. Experience, expectations, physiological state (e.g, fa-
tigue) and other factors affect thresholds. For instance, a sentry in wartime
will likely detect fainter stimuli than the same sentry in peacetime. SDT is
used when psychologists want to measure the way we make decisions under
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conditions of uncertainty, such as how we would perceive distances in foggy
conditions. SDT assumes that ‘the decision maker is not a passive receiver
of information, but an active decision–maker who makes difficult perceptual
judgements under conditions of uncertainty’. In foggy circumstances, we are
forced to decide how far an object is away from us based solely upon visual
stimulus which is impaired by the fog. Since the brightness of the object, such
as a traffic light, is used by the brain to discriminate the distance of an ob-
ject, and the fog reduces the brightness of objects, we perceive the object to
be much further away than it actually is. To apply signal detection theory
to a data set where stimuli were either present or absent, and the observer
categorized each trial as having the stimulus present or absent, the trials are
sorted into one of four categories, depending upon the stimulus and response:

Respond ‘Absent’ Respond ‘Present’
Stimulus Present Miss Hit
Stimulus Absent Correct Rejection False Alarm

1.1.2 Human Problem Solving

Beginning in the 1970s, researchers became increasingly convinced that empir-
ical findings and theoretical concepts derived from simple laboratory tasks did
not necessarily generalize to more complex, real–life problems. Even worse, it
appeared that the processes underlying creative problem solving in different
domains differed from each other [Ste95]. These realizations have led to rather
different responses in North America and in Europe.

In North America, initiated by the work of Herbert Simon on learning
by doing in semantically rich domains (see, e.g., [AS79, BS77]), researchers
began to investigate problem solving separately in different natural knowl-
edge domains – such as physics, writing, or chess playing – thus relinquishing
their attempts to extract a global theory of problem solving (see, e.g., [SF91]).
Instead, these researchers have frequently focused on the development of prob-
lem solving within a certain domain, that is on the development of expertise
(see, e.g., [ABR85], [CS73]; [CFG81]).

Areas that have attracted rather intensive attention in North Amer-
ica include such diverse fields as: reading [SC91], writing [BBS91], calcula-
tion [SM91], political decision making [VWL91], managerial problem solving
[Wag91], lawyers’ reasoning [ALL91], personal problem solving [HK87], math-
ematical problem solving [Pol45, Sch85], mechanical problem solving [Heg91],
problem solving in electronics [LL91], computer skills [Kay91], game playing
[FS91], and social problem solving [D’Zur86].

In particular, George Pólya’s 1945 book ‘How to Solve It’ [Pol45], is a small
volume describing methods of problem–solving. It suggests the following steps
when solving a mathematical problem:

1. First, you have to understand the problem.
2. After understanding, then make a plan.
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Heuristic Informal Description Formal analogue

Analogy can you find a problem analogous to your
problem and solve that?

Map

Generalization can you find a problem more general than
your problem ...?

Generalization

Induction can you solve your problem by deriving
a generalization from some examples?

Induction

Variation of the
Problem

can you vary or change your problem to
create a new problem (or set of problems)
whose solution(s) will help you solve your
original problem?

Search

Auxiliary Problem can you find a subproblem or side prob-
lem whose solution will help you solve
your problem?

Subgoal

Here is a problem re-
lated to yours and
solved before

can you find a problem related to yours
that has already been solved and use that
to solve your problem?

Pattern recognition
Pattern matching

Specialization can you find a problem more specialized? Specialization

Decomposing and
Recombining

can you decompose the problem and ”re-
combine its elements in some new man-
ner”?

Divide and conquer

Working backward can you start with the goal and work
backwards to something you already
know?

Backward chaining

Draw a Figure can you draw a picture of the problem? Diagrammatic
Reasoning

Auxiliary Elements can you add some new element to your
problem to get closer to a solution?

Extension

3. Carry out the plan.
4. Look back on your work. How could it be better?

If this technique fails, Polya advises: “If you cannot solve a problem, then
there is an easier problem you can solve: find it.” Or, “If you cannot solve the
proposed problem try to solve first some related problem. Could you imagine
a more accessible related problem?”

His small book contains a dictionary–style set of heuristics, many of which
have to do with generating a more accessible problem, like the ones given in
the table below:

The technique ‘have I used everything’ is perhaps most applicable to for-
mal educational examinations (e.g., n men digging m ditches, see footnote
below) problems. The book has achieved ‘classic’ status because of its consid-
erable influence. Marvin Minsky74 said in his influential paper ‘Steps Toward
Artificial Intelligence’: “And everyone should know the work of George Polya

74 Marvin Lee Minsky (born August 9, 1927), sometimes affectionately known as
‘Old Man Minsky’, is an American cognitive scientist in the field of artificial
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on how to solve problems.” Polya’s book has had a large influence on mathe-
matics textbooks. Most formulations of a problem solving framework in U.S.
textbooks attribute some relationship to Polya’s problem solving stages. Other
books on problem solving are often related to less concrete and more creative
techniques, like e.g., lateral thinking, mind mapping and brainstorming (see
below).

On the other hand, in Europe, two main approaches have surfaced, one
initiated by Donald Broadbent in the UK [Bro77, BB95] and the other one
by Dietrich Dörner in Germany [Dor75, DV85, DW95]. The two approaches
have in common an emphasis on relatively complex, semantically rich, com-
puterized laboratory tasks, constructed to resemble ‘real–life’ problems. The
approaches differ somewhat in their theoretical goals and methodology, how-
ever. The tradition initiated by Broadbent emphasizes the distinction between
cognitive problem–solving processes that operate under awareness versus out-
side of awareness, and typically employs mathematically well–defined com-
puterized systems. The tradition initiated by Dörner, on the other hand, has
an interest in the interplay of the cognitive, motivational, and social compo-
nents of problem solving, and utilizes very complex computerized scenarios
that contain up to 2,000 highly interconnected variables. Buchner [Buc95]
describes the two traditions in detail.

To sum up, researchers’ realization that problem–solving processes differ
across knowledge domains and across levels of expertise (see, e.g. [Ste95])
and that, consequently, findings obtained in the laboratory cannot necessarily
generalize to problem–solving situations outside the laboratory, has during
the past two decades led to an emphasis on real–world problem solving. This
emphasis has been expressed quite differently in North America and Europe,
however. Whereas North American research has typically concentrated on
studying problem solving in separate, natural knowledge domains, much of
the European research has focused on novel, complex problems, and has been
performed with computerized scenarios (see [Fun95], for an overview).

Characteristics of Difficult Problems

As elucidated by Dietrich Dorner and later expanded upon by Joachim Funke,
difficult problems have some typical characteristics. Recategorized and some-
what reformulated from these original works, these characteristics can be sum-
marized as follows:

Intransparency (lack of clarity of the situation), including commencement
opacity and continuation opacity;

Polytely (multiple goals), including inexpressiveness, opposition and tran-
sience;

intelligence (AI), co–founder of MIT’s AI laboratory, and author of several texts
on AI and philosophy.
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Complexity (large numbers of items, interrelations, and decisions), includ-
ing enumerability, connectivity (hierarchy relation, communication relation,
allocation relation), and heterogeneity;

Dynamism (time considerations), including temporal constraints, temporal
sensitivity, phase effects, and dynamic unpredictability.

The resolution of difficult problems requires a direct attack on each of
these characteristics that are encountered.

Some standard problem–solving techniques, also known as creativity tech-
niques, include:

1. Trial–and–error;75

75 Trial and error (also known in computer science literature as generate and test and
as ‘guess and check’ when solving equations in elementary algebra) is a method
of problem solving for obtaining knowledge, both propositional knowledge and
know-how.

This approach can be seen as one of the two basic approaches to problem
solving and is contrasted with an approach using insight and theory.

In trial and error, one selects (or, generates) a possible answer, applies it to
the problem and, if it is not successful, selects (or generates) another possibility
that is subsequently tried. The process ends when a possibility yields a solution.

In some versions of trial and error, the option that is a priori viewed as the
most likely one should be tried first, followed by the next most likely, and so
on until a solution is found, or all the options are exhausted. In other versions,
options are simply tried at random.

This approach is most successful with simple problems and in games, and is
often resorted to when no apparent rule applies. This does not mean that the
approach need be careless, for an individual can be methodical in manipulating
the variables in an effort to sort through possibilities that may result in success.
Nevertheless, this method is often used by people who have little knowledge in
the problem area.

Trial and error has a number of features:
solution-oriented: trial and error makes no attempt to discover why a solution

works, merely that it is a solution.
problem-specific: trial and error makes no attempt to generalize a solution to

other problems.
non-optimal: trial and error is an attempt to find a solution, not all solutions,

and not the best solution.
needs little knowledge: trial and error can proceed where there is little or no

knowledge of the subject.
For example, trial and error has traditionally been the main method of finding

new drugs, such as antibiotics. Chemists simply try chemicals at random until
they find one with the desired effect.

The scientific method can be regarded as containing an element of trial and
error in its formulation and testing of hypotheses. Also compare genetic algo-
rithms, simulated annealing and reinforcement learning – all varieties of search
which apply the basic idea of trial and error.
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2. Brainstorming;76

3. Morphological box;77

Biological Evolution is also a form of trial and error. Random mutations and
sexual genetic variations can be viewed as trials and poor reproductive fitness as
the error. Thus after a long time ‘knowledge’ of well–adapted genomes accumu-
lates simply by virtue of them being able to reproduce.

Bogosort can be viewed as a trial and error approach to sorting a list.
In mathematics the method of trial and error can be used to solve formulae –

it is a slower, less precise method than algebra, but is easier to understand.
76 Brainstorming is a creativity technique of generating ideas to solve a problem. The

main result of a brainstorm session may be a complete solution to the problem, a
list of ideas for an approach to a subsequent solution, or a list of ideas resulting in
a plan to find a solution. Brainstorming was originated in 1953 in the book ‘Ap-
plied Imagination’ by Alex Osborn, an advertising executive. Other methods of
generating ideas are individual ideation and the morphological analysis approach.

Brainstorming has many applications but it is most often used in:
New product development – obtaining ideas for new products and improving

existing products
Advertising – developing ideas for advertising campaigns
Problem solving – issues, root causes, alternative solutions, impact analysis,

evaluation
Process management – finding ways of improving business and production

processes
Project Management – identifying client objectives, risks, deliverables, work

packages, resources, roles and responsibilities, tasks, issues
Team building – generates sharing and discussion of ideas while stimulating

participants to think
Business planning – develop and improve the product idea.
Trial preparation by attorneys.
Brainstorming can be done either individually or in a group. In group brain-

storming, the participants are encouraged, and often expected, to share their ideas
with one another as soon as they are generated. Complex problems or brainstorm
sessions with a diversity of people may be prepared by a chairman. The chairman
is the leader and facilitator of the brainstorm session.

The key to brainstorming is to not interrupt the thought process. As ideas
come to mind, they are captured and stimulate the development of better ideas.
Thus a group brainstorm session is best conducted in a moderate–sized room, and
participants sit so that they can all look at each–other. A flip chart, blackboard,
or overhead projector is placed in a prominent location. The room is free of
telephones, clocks, or any other distractions.

77 Morphological analysis was designed for multi-dimensional, non-quantifiable
problems where causal modelling and simulation do not function well or at
all. Fritz Zwicky developed this approach to seemingly non-reducible complex-
ity [Zwi69]. Using the technique of cross consistency assessment (CCA) [Rit02],
the system however does allow for reduction, not by reducing the number of
variables involved, but by reducing the number of possible solutions through the
elimination of the illogical solution combinations in a grid box.
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4. Method of focal objects;78

5. Lateral thinking;79

78 The technique of focal objects for problem solving involves synthesizing the seem-
ingly non–matching characteristics of different objects into something new.

For example, to generate new solutions to gardening take some ideas at random,
such swimming and a couch, and invent ways for them to merge. Swimming might
be used with the idea of gardening to create a plant oxygen tank for underwater
divers. A couch might be used with the idea of gardening to invent new genes that
would grow plants into the shape of a couch. The larger the number of diverse
objects included, the greater the opportunity for inventive solutions.

Another way to think of focal objects is as a memory cue: if you’re trying to
find all the different ways to use a brick, give yourself some random ‘objects’
(situations, concepts, etc.) and see if you can find a use. Given ‘blender’, for
example, I would try to think of all the ways a brick could be used with a blender
(as a lid?). Another concept for the brick game: find patterns in your solutions,
and then break those patterns. If you keep finding ways to build things with bricks,
think of ways to use bricks that don’t involve construction. Pattern–breaking,
combined with focal object cues, can lead to very divergent solutions.

79 Lateral thinking is a term coined by Edward de Bono [Bon73], a Maltese psychol-
ogist, physician, and writer, although it may have been an idea whose time was
ready; the notion of lateral truth is discussed by Robert M. Pirsig in Zen and the
Art of Motorcycle Maintenance. de Bono defines Lateral Thinking as methods of
thinking concerned with changing concepts and perception. For example:

It took two hours for two men to dig a hole five feet deep. How deep would it
have been if ten men had dug the hole for two hours?

The answer appears to be 25 feet deep. This answer assumes that the thinker
has followed a simple mathematical relationship suggested by the description
given, but we can generate some lateral thinking ideas about what affects the size
of the hole which may lead to different answers:

A hole may need to be of a certain size or shape so digging might stop early
at a required depth.

The deeper a hole is, the more effort is required to dig it, since waste soil needs
to be lifted higher to the ground level. There is a limit to how deep a hole can be
dug by manpower without use of ladders or hoists for soil removal, and 25 feet is
beyond this limit.

Deeper soil layers may be harder to dig out, or we may hit bedrock or the
water table.

Each man digging needs space to use a shovel.
It is possible that with more people working on a project, each person may

become less efficient due to increased opportunity for distraction, the assumption
he can slack off, more people to talk to, etc.

More men could work in shifts to dig faster for longer.
There are more men but are there more shovels?
The two hours dug by ten men may be under different weather conditions than

the two hours dug by two men.
Rain could flood the hole to prevent digging.
Temperature conditions may freeze the men before they finish.
Would we rather have 5 holes each 5 feet deep?



1.1 Natural Intelligence and Human Mind 87

6. Mind mapping;80

The two men may be an engineering crew with digging machinery.
What if one man in each group is a manager who will not actually dig?
The extra eight men might not be strong enough to dig, or much stronger than

the first two.
The most useful ideas listed above are outside the simple mathematics implied

by the question. Lateral thinking is about reasoning that is not immediately
obvious and about ideas that may not be obtainable by using only traditional
step–by–step logic.

Techniques that apply lateral thinking to problems are characterized by the
shifting of thinking patterns away from entrenched or predictable thinking to new
or unexpected ideas. A new idea that is the result of lateral thinking is not always
a helpful one, but when a good idea is discovered in this way it is usually obvious
in hindsight, which is a feature lateral thinking shares with a joke.

Lateral thinking can be contrasted with critical thinking, which is primarily
concerned with judging the truth value of statements and seeking error. Lateral
Thinking is more concerned with the movement value of statements and ideas,
how to move from them to other statements and ideas.

For example the statement ‘cars should have square wheels’ when considered
with critical thinking would be evaluated as a poor suggestion, as there are many
engineering problems with square wheels. The Lateral Thinking treatment of the
same statement would be to see where it leads. Square wheels would produce
predictable bumps. If bumps can be predicted then suspension can be designed
to compensate. Another way to predict bumps would be a laser or sonar on the
front of the car examining the road surface ahead. This leads to the idea of active
suspension with a sensor on the car that has normal wheels. The initial statement
has been left behind.

80 Recall that a mind map is a diagram used to represent words, ideas, tasks or
other items linked to and arranged radially around a central key word or idea. It
is used to generate, visualize, structure and classify ideas, and as an aid in study,
organization, problem solving, and decision making.

It is an image–centered diagram that represents semantic or other connections
between portions of information. By presenting these connections in a radial,
nonlinear graphical manner, it encourages a brainstorming approach to any given
organizational task, eliminating the hurdle of initially establishing an intrinsically
appropriate or relevant conceptual framework to work within.

A mind map is similar to a semantic network or cognitive map but there are
no formal restrictions on the kinds of links used.

Most often the map involves images, words, and lines. The elements are
arranged intuitively according to the importance of the concepts and they are
organized into groupings, branches, or areas. The uniform graphic formulation
of the semantic structure of information on the method of gathering knowledge,
may aid recall of existing memories.

People have been using image centered radial graphic organization techniques
referred to variably as mental or generic mind maps for centuries in areas such as
engineering, psychology, and education, although the claim to the origin of the
mind map has been made by a British popular psychology author, Tony Buzan.
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7. Analogy with similar problems;81 and

The mind map continues to be used in various forms, and for various appli-
cations including learning and education (where it is often taught as ‘Webs’ or
‘Webbing’), planning and in engineering diagramming.

When compared with the earlier original concept map (which was developed
by learning experts in the 1960s) the structure of a mind map is a similar, but
simplified, radial by having one central key word.

Mind maps have many applications in personal, family, educational, and busi-
ness situations, including note-taking, brainstorming (wherein ideas are inserted
into the map radially around the center node, without the implicit prioritization
that comes from hierarchy or sequential arrangements, and wherein grouping and
organizing is reserved for later stages), summarizing, revising and general clari-
fying of thoughts. For example, one could listen to a lecture and take down notes
using mind maps for the most important points or keywords. One can also use
mind maps as a mnemonic technique or to sort out a complicated idea. Mind
maps are also promoted as a way to collaborate in color pen creativity sessions.

81 Recall that analogy is either the cognitive process of transferring information
from a particular subject (the analogue or source) to another particular subject
(the target), or a linguistic expression corresponding to such a process. In a nar-
rower sense, analogy is an inference or an argument from a particular to another
particular, as opposed to deduction, induction, and abduction, where at least one
of the premises or the conclusion is general. The word analogy can also refer to
the relation between the source and the target themselves, which is often, though
not necessarily, a similarity, as in the biological notion of analogy.

Niels Bohr’s model of the atom made an analogy between the atom and the
solar system.Analogy plays a significant role in problem solving, decision mak-
ing, perception, memory, creativity, emotion, explanation and communication.
It lies behind basic tasks such as the identification of places, objects and peo-
ple, for example, in face perception and facial recognition systems. It has been
argued that analogy is ‘the core of cognition’. Specifically analogical language
comprises exemplification, comparisons, metaphors, similes, allegories, and para-
bles, but not metonymy. Phrases like and so on, and the like, as if, and the very
word like also rely on an analogical understanding by the receiver of a message
including them. Analogy is important not only in ordinary language and com-
mon sense, where proverbs and idioms give many examples of its application,
but also in science, philosophy and the humanities. The concepts of association,
comparison, correspondence, homomorphism, iconicity, isomorphism, mathemat-
ical homology, metaphor, morphological homology, resemblance, and similarity
are closely related to analogy. In cognitive linguistics, the notion of conceptual
metaphor may be equivalent to that of analogy.

Analogy has been studied and discussed since classical antiquity by philoso-
phers, scientists and lawyers. The last few decades have shown a renewed interest
in analogy, most notable in cognitive science.

With respect to the terms source and target, there are two distinct traditions
of usage:

The logical and mathematical tradition speaks of an arrow, homomorphism,
mapping, or morphism from what is typically the more complex domain or source
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8. Research;82

1.1.3 Human Mind

Recall that the word mind commonly refers to the collective aspects of intel-
lect and consciousness which are manifest in some combination of thought ,
perception, emotion, will , memory , and imagination.

There are many theories of what the mind is and how it works, dating back
to Plato, Aristotle and other Ancient Greek philosophers. Modern theories,
based on a scientific understanding of the brain, see the mind as a phenomenon
of psychology, and the term is often used more or less synonymously with
consciousness.

The question of which human attributes make up the mind is also much
debated. Some argue that only the ‘higher’ intellectual functions constitute

to what is typically the less complex codomain or target, using all of these words
in the sense of mathematical category theory.

The tradition that appears to be more common in cognitive psychology, literary
theory, and specializations within philosophy outside of logic, speaks of a mapping
from what is typically the more familiar area of experience, the source, to what
is typically the more problematic area of experience, the target.

82 Research is often described as an active, diligent, and systematic process of inquiry
aimed at discovering, interpreting, and revising facts. This intellectual investiga-
tion produces a greater understanding of events, behaviors, or theories, and makes
practical applications through laws and theories. The term research is also used
to describe a collection of information about a particular subject, and is usually
associated with science and the scientific method.

The word research derives from Middle French; its literal meaning is ’to inves-
tigate thoroughly’.

Thomas Kuhn, in his book ‘The Structure of Scientific Revolutions’, traces an
interesting history and analysis of the enterprize of research.

Basic research (also called fundamental or pure research) has as its primary
objective the advancement of knowledge and the theoretical understanding of the
relations among variables. It is exploratory and often driven by the researcher’s
curiosity, interest, or hunch. It is conducted without any practical end in mind,
although it may have unexpected results pointing to practical applications. The
terms “basic” or “fundamental” indicate that, through theory generation, basic
research provides the foundation for further, sometimes applied research. As there
is no guarantee of short-term practical gain, researchers often find it difficult to
get funding for basic research. Research is a subset of invention.

Applied research is done to solve specific, practical questions; its primary aim
is not to gain knowledge for its own sake. It can be exploratory, but is usually de-
scriptive. It is almost always done on the basis of basic research. Applied research
can be carried out by academic or industrial institutions. Often, an academic in-
stitution such as a university will have a specific applied research program funded
by an industrial partner interested in that program. Common areas of applied re-
search include electronics, informatics, computer science, material science, process
engineering, drug design ...
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mind: particularly reason and memory. In this view the emotions – love, hate,
fear, joy – are more ‘primitive’ or subjective in nature and should be seen as
different in nature or origin to the mind. Others argue that the rational and
the emotional sides of the human person cannot be separated, that they are
of the same nature and origin, and that they should all be considered as part
of the individual mind.

In popular usage mind is frequently synonymous with thought : It is that
private conversation with ourselves that we carry on ‘inside our heads’ during
every waking moment of our lives. Thus we ‘make up our minds,’ or ‘change
our minds’ or are ‘of two minds’ about something. One of the key attributes
of the mind in this sense is that it is a private sphere. No–one else can ‘know
our mind.’ They can only know what we communicate.

Both philosophers and psychologists remain divided about the nature of
the mind. Some take what is known as the substantial view, and argue that
the mind is a single entity, perhaps having its base in the brain but distinct
from it and having an autonomous existence. This view ultimately derives
from Plato, and was absorbed from him into Christian thought. In its most
extreme form, the substantial view merges with the theological view that the
mind is an entity wholly separate from the body, in fact a manifestation of
the soul, which will survive the body’s death and return to God, its creator.

Others take what is known as the functional view, ultimately derived from
Aristotle, which holds that the mind is a term of convenience for a variety
of mental functions which have little in common except that humans are
conscious of their existence. Functionalists tend to argue that the attributes
which we collectively call the mind are closely related to the functions of
the brain and can have no autonomous existence beyond the brain, nor can
they survive its death. In this view mind is a subjective manifestation of
consciousness: the human brain’s ability to be aware of its own existence.
The concept of the mind is therefore a means by which the conscious brain
understands its own operations.

A leading exponent of the substantial view at the mind was George Berke-
ley, an 18th century Anglican bishop and philosopher. Berkeley argued that
there is no such thing as matter and what humans see as the material world
is nothing but an idea in God’s mind, and that therefore the human mind is
purely a manifestation of the soul or spirit. This type of belief is also common
in certain types of spiritual non–dualistic belief, but outside this field few
philosophers take an extreme view today. However, the view that the human
mind is of a nature or essence somehow different from, and higher than, the
mere operations of the brain, continues to be widely held.

Berkeley’s views were attacked, and in the eyes of many philosophers de-
molished, by T.H. Huxley,83 a 19th century biologist and disciple of Charles

83 Thomas Henry Huxley, FRS (4 May 1825 – 29 June 1895) was an English biologist,
known as ‘Darwin’s Bulldog’ for his defence of Charles Darwin’s theory of evolu-
tion. His scientific debates against Richard Owen demonstrated that there were
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Darwin,84 who agreed that the phenomena of the mind were of a unique order,
but argued that they can only be explained in reference to events in the brain.
Huxley drew on a tradition of materialist thought in British philosophy dat-
ing to Thomas Hobbes,85 who argued in the 17th century that mental events
were ultimately physical in nature, although with the biological knowledge
of his day he could not say what their physical basis was. Huxley blended
Hobbes with Darwin to produce the modern functional view . Huxley’s view
was reinforced by the steady expansion of knowledge about the functions of
the human brain. In the 19th century it was not possible to say with certainty
how the brain carried out such functions as memory, emotion, perception and
reason. This left the field open for substantialists to argue for an autonomous
mind, or for a metaphysical theory of the mind. But each advance in the study
of the brain during the 20th century made this harder, since it became more
and more apparent that all the components of the mind have their origins in

close similarities between the cerebral anatomy of humans and gorillas. Huxley
did not accept many of Darwin’s ideas, such as gradualism and was more inter-
ested in advocating a materialist professional science than in defending natural
selection.

A talented populariser of science, he coined the term ‘agnosticism’ to describe
his stance on religious belief. He is credited with inventing the concept of ‘biogen-
esis’, a theory stating that all cells arise from other cells and also ‘abiogenesis’,
describing the generation of life from non–living matter.

84 Charles Robert Darwin (12 February 1809 – 19 April 1882) was an English natu-
ralist who achieved lasting fame by producing considerable evidence that species
originated through evolutionary change, at the same time proposing the scientific
theory that natural selection is the mechanism by which such change occurs. This
theory is now considered a cornerstone of biology.

Darwin developed an interest in natural history while studying first medicine,
then theology, at university. Darwin’s observations on his five-year voyage on
the Beagle brought him eminence as a geologist and fame as a popular author.
His biological finds led him to study the transmutation of species and in 1838
he conceived his theory of natural selection. Fully aware that others had been
severely punished for such ‘heretical’ ideas, he confided only in his closest friends
and continued his research to meet anticipated objections. However, in 1858 the
information that Alfred Wallace had developed a similar theory forced an early
joint publication of the theory.

His 1859 book ‘On the Origin of Species by Means of Natural Selection’ es-
tablished evolution by common descent as the dominant scientific explanation of
diversification in nature.

85 Thomas Hobbes (April 5, 1588–December 4, 1679) was an English philosopher,
whose famous 1651 book Leviathan set the agenda for nearly all subsequent West-
ern political philosophy. Although Hobbes is today best remembered for his work
on political philosophy, he contributed to a diverse array of fields, including his-
tory, geometry, ethics, general philosophy and what would now be called polit-
ical science. Additionally, Hobbes’s account of human nature as self–interested
cooperation has proved to be an enduring theory in the field of philosophical
anthropology.
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the functioning of the brain. Huxley’s rationalism, was disturbed in the early
20th century by Freudian a theory of the unconscious mind, and argued that
those mental processes of which humans are subjectively aware are only a
small part of their total mental activity.

More recently, Douglas Hofstadter’s86 1979 Pulitzer Prize–winning book
‘Gödel, Escher, Bach – an eternal Golden Braid’, is a tour de force on the sub-
ject of mind, and how it might arise from the neurology of the brain. Amongst
other biological and cybernetic phenomena, Hofstadter places tangled loops
and recursion at the center of self, self–awareness, and perception of oneself,
and thus at the heart of mind and thinking. Likewise philosopher Ken Wilber
posits that Mind is the interior dimension of the brain holon, i.e., mind is
what a brain looks like internally, when it looks at itself.

Quantum physicist David Bohm87 had a theory of mind that is most com-
parable to Neo–Platonic theories. “Thought runs you. Thought, however, gives
false info that you are running it, that you are the one who controls thought.
Whereas actually thought is the one which controls each one of us ...” [Boh92].

The debate about the nature of the mind is relevant to the development of
artificial intelligence (see next section). If the mind is indeed a thing separate
from or higher than the functioning of the brain, then presumably it will not
be possible for any machine, no matter how sophisticated, to duplicate it. If
on the other hand the mind is no more than the aggregated functions of the

86 Douglas Richard Hofstadter (born February 15, 1945 in New York, New York)
is an American academic, the son of Nobel Prize–winning physicist Robert Hof-
stadter. He is probably best known for his book Gödel, Escher, Bach: an Eternal
Golden Braid (abbreviated as GEB) which was published in 1979, and won the
1980 Pulitzer Prize for general non-fiction. This book is commonly considered to
have inspired many students to begin careers in computing and artificial intel-
ligence, and attracted substantial notice outside its central artificial intelligence
readership owing to its drawing on themes from such diverse disciplines as high-
energy physics, music, the visual arts, molecular biology, and literature.

87 David Joseph Bohm (born December 20, 1917 in Wilkes–Barre, Pennsylvania,
died October 27, 1992 in London) was an American–born quantum physicist,
who made significant contributions in the fields of theoretical physics, philosophy
and neuropsychology, and to the Manhattan Project.

Bohm made a number of significant contributions to physics, particularly in the
area of quantum mechanics and relativity theory. While still a post-graduate at
Berkeley, he developed a theory of plasmas, discovering the electron phenomenon
now known as Bohm–diffusion. His first book, Quantum Theory published in 1951,
was well–received by Einstein, among others. However, Bohm became dissatisfied
with the orthodox approach to quantum theory, which he had written about in
that book, and began to develop his own approach (Bohm interpretation), a non–
local hidden variable deterministic theory whose predictions agree perfectly with
the nondeterministic quantum theory. His work and the EPR argument became
the major factor motivating John Bell’s inequality, whose consequences are still
being investigated.
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brain, then it will be possible, at least in theory, to create a machine with
a mind.

Currently, the Mind/Brain/Behavior Interfaculty Initiative (MBB) at Har-
vard University aims to elucidate the structure, function, evolution, develop-
ment, and pathology of the nervous system in relation to human behavior
and mental life. It draws on the departments of psychology, neurobiology,
neurology, molecular and cellular biology, radiology, psychiatry, organismic
and evolutionary biology, history of science, and linguistics.

Bohm also made significant theoretical contributions to neuropsychology and
the development of the so–called holonomic brain model . In collaboration with
Stanford neuroscientist Karl Pribram, Bohm helped establish the foundation for
Pribram’s theory that the brain operates in a manner similar to a hologram, in
accordance with quantum mathematical principles and the characteristics of wave
patterns. These wave forms may compose hologram–like organizations, Bohm sug-
gested, basing this concept on his application of Fourier analysis, a mathematical
method for decomposing complex waves into component sine waves. The holo-
nomic brain model developed by Pribram and Bohm posits a lens defined world
view, much like the textured prismatic effect of sunlight refracted by the churning
mists of a rainbow, a view which is quite different from the more conventional
‘objective’ approach. Pribram believes that if psychology means to understand
the conditions that produce the world of appearances, it must look to the thinking
of physicists like Bohm.

Bohm proposes thus in his book ‘Thought as a System’ a pervasive, systematic
nature of thought: “What I mean by ‘thought’ is the whole thing – thought,
‘felt’, the body, the whole society sharing thoughts – it’s all one process. It is
essential for me not to break that up, because it’s all one process; somebody else’s
thoughts becomes my thoughts, and vice versa. Therefore it would be wrong and
misleading to break it up into my thoughts, your thoughts, my feelings, these
feelings, those feelings ... I would say that thought makes what is often called in
modern language a system. A system means a set of connected things or parts.
But the way people commonly use the word nowadays it means something all
of whose parts are mutually interdependent – not only for their mutual action,
but for their meaning and for their existence. A corporation is organized as a
system – it has this department, that department, that department. They do not
have any meaning separately; they only can function together. And also the body
is a system. Society is a system in some sense. And so on. Similarly, thought is a
system. That system not only includes thoughts and feelings, but it includes the
state of the body; it includes the whole of society – as thought is passing back and
forth between people in a process by which thought evolved from ancient times.
A system is constantly engaged in a process of development, change, evolution
and structure changes ... although there are certain features of the system which
become relatively fixed. We call this the structure ... Thought has been constantly
evolving and we can’t say when that structure began. But with the growth of
civilization it has developed a great deal. It was probably very simple thought
before civilization, and now it has become very complex and ramified and has
much more incoherence than before ...
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Fig. 1.2. A possibly chaotic 1–to–many relation: Thalamus ⇒ Cortex in the
human brain (with permission from E. Izhikevich).

On the other hand, human brain has been considered (by E.M. Izhikevich,
Editor of the new Encyclopedia of Computational Neuroscience) as a weakly–
connected neural network , with possibly chaotic behavior [Izh99b], consisting
of n quasi–periodic cortical oscillators X1, . . . , Xn forced by the thalamic input
X0 (see Figure 1.2)

The Mind–Body Problem

The mind–body problem is essentially the problem of explaining the relation-
ship between minds, or mental processes, and bodily states or processes (see,
e.g., [Kim95a]). Our perceptual experiences depend on stimuli which arrive
at our various sensory organs from the external world and that these stimuli
cause changes in the states of our brain, ultimately causing us to feel a sensa-
tion which may be pleasant or unpleasant. Someone’s desire for a slice of pizza
will tend to cause that person to move their body in a certain manner in a
certain direction in an effort to get what they want. But how is it possible that
conscious experiences can arise out of an inert lump of gray matter endowed
with electrochemical properties? [Kim95b]. How does someone’s desire cause
that individual’s neurons to fire and his muscles to contract in exactly the
right manner? These are some of the essential puzzles that have confronted
philosophers of mind at least from the time of René Descartes.88

88 René Descartes (March 31, 1596 – February 11, 1650), also known as Cartesius,
was a noted French philosopher, mathematician, and scientist. Dubbed the
‘Founder of Modern Philosophy’ and the ‘Father of Modern Mathematics’, he
ranks as one of the most important and influential thinkers of modern times.
Much of subsequent western philosophy is a reaction to his writings, which have
been closely studied from his time down to the present day. Descartes was one
of the key thinkers of the Scientific Revolution in the Western World. He is also
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Dualism

Recall that dualism is a set of views about the relationship between mind and
matter, which begins with the claim that mental phenomena are, in some
respects, non–physical [Har96]. One of the earliest known formulations of
mind–body dualism existed in the eastern Sankhya school of Hindu philos-
ophy (c. 650 BCE) which divided the world into Purusha (mind/spirit) and
Prakrti (material substance). In the Western philosophical tradition, we first
encounter similar ideas with the writings of Plato and Aristotle, who main-
tained, for different reasons, that man’s intelligence could not be identified
with, or explained in terms of, his physical body (see, e.g., [RPW97]). How-
ever, the best–known version of dualism is due to René Descartes (1641), and
holds that the mind is a non–physical substance [Des91]. Descartes was the
first to clearly identify the mind with consciousness and self–awareness and
to distinguish this from the brain, which was the seat of intelligence. Hence,
he was the first to formulate the mind–body problem in the form in which it
still exists today.

The main argument in favour of dualism is simply that it appeals to the
common–sense intuition of the vast majority of non–philosophically–trained
people. If asked what the mind is, the average person will usually respond
by identifying it with their self, their personality, their soul, or some other
such entity, and they will almost certainly deny that the mind simply is the
brain or vice–versa, finding the idea that there is just one ontological entity
at play to be too mechanistic or simply unintelligible [Har96]. The majority
of modern philosophers of mind reject dualism, suggesting that these intu-
itions, like many others, are probably misleading. We should use our critical
faculties, as well as empirical evidence from the sciences, to examine these
assumptions and determine if there is any real basis to them [Har96] Another
very important, more modern, argument in favor of dualism consists in the
idea that the mental and the physical seem to have quite different and per-
haps irreconcilable properties [Jac82]. Mental events have a certain subjective
quality to them, whereas physical events obviously do not. For example, what
does a burned finger feel like? What does blue sky look like? What does nice

honoured by having the Cartesian coordinate system used in plane geometry and
algebra named after him.

Descartes was a major figure in 17th century continental rationalism, later
advocated by Baruch Spinoza and Gottfried Leibniz, and opposed by the empiri-
cist school of thought, consisting of Hobbes, Locke, Berkeley, and Hume. Leibniz,
Spinoza and Descartes were all versed in mathematics as well as philosophy, and
Descartes and Leibniz contributed greatly to science as well. As the inventor of the
Cartesian coordinate system, Descartes founded analytic geometry, that bridge
between algebra and geometry crucial to the invention of the calculus and analy-
sis. Descartes’ reflections on mind and mechanism began the strain of western
thought that much later, impelled by the invention of the electronic computer
and by the possibility of machine intelligence, blossomed into, e.g., the Turing
test. His most famous statement is “Cogito ergo sum” (I think, therefore I am).



96 1 Introduction: Human and Computational Mind

music sound like? Philosophers of mind call the subjective aspects of mental
events qualia (or raw feels) [Jac82]. There is something that it is like to feel
pain, to see a familiar shade of blue, and so on; there are qualia involved in
these mental events. And the claim is that qualia seem particularly difficult
to reduce to anything physical [Nag74].

Interactionist dualism, or simply interactionism, is the particular form
of dualism first espoused by Descartes in the ‘Meditations’ [Des91]. In the
20th century, its major defenders have been Karl Popper89 and John Eccles90

89 Sir Karl Raimund Popper (July 28, 1902 – September 17, 1994), was an Austrian
and British philosopher and a professor at the London School of Economics. He is
counted among the most influential philosophers of science of the 20th century, and
also wrote extensively on social and political philosophy. Popper is perhaps best
known for repudiating the classical observationalist–inductivist account of scien-
tific method by advancing empirical falsifiability as the criterion for distinguishing
scientific theory from non–science; and for his vigorous defense of liberal democ-
racy and the principles of social criticism which he took to make the flourishing of
the ‘open society’ possible. In 1934 he published his first book, ‘The Logic of Sci-
entific Discovery’, in which he criticized psychologism, naturalism, inductionism,
and logical positivism, and put forth his theory of potential falsifiability being the
criterion for what should be considered science.

Popper coined the term critical rationalism to describe his philosophy. This
designation is significant, and indicates his rejection of classical empiricism, and of
the observationalist-inductivist account of science that had grown out of it. Popper
argued strongly against the latter, holding that scientific theories are universal in
nature, and can be tested only indirectly, by reference to their implications. He
also held that scientific theory, and human knowledge generally, is irreducibly
conjectural or hypothetical, and is generated by the creative imagination in order
to solve problems that have arisen in specific historico–cultural settings. Logically,
no number of positive outcomes at the level of experimental testing can confirm a
scientific theory, but a single genuine counterexample is logically decisive: it shows
the theory, from which the implication is derived, to be false. Popper’s account
of the logical asymmetry between verification and falsification lies at the heart of
his philosophy of science. It also inspired him to take falsifiability as his criterion
of demarcation between what is and is not genuinely scientific: a theory should
be considered scientific if and only if it is falsifiable. This led him to attack the
claims of both psychoanalysis and contemporary Marxism to scientific status, on
the basis that the theories enshrined by them are not falsifiable. His scientific work
was influenced by his study of quantum mechanics (he has written extensively
against the famous Copenhagen interpretation) and by Albert Einstein’s approach
to scientific theories.

In his book ‘All Life is Problem Solving’ (1999), Popper sought to explain the
apparent progress of scientific knowledge, how it is that our understanding of
the universe seems to improve over time. This problem arises from his position
that the truth content of our theories, even the best of them, cannot be verified
by scientific testing, but can only be falsified. If so, then how is it that the growth
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(see [PE02]). It is the view that mental states, such as beliefs and desires,
causally interact with physical states [Har96]. Descartes’ famous argument
for this position can be summarized as follows: Fred has a clear and distinct
idea of his mind as a thinking thing which has no spatial extension (i.e., it
cannot be measured in terms of length, weight, height, and so on) and he
also has a clear and distinct idea of his body as something that is spatially

of science appears to result in a growth in knowledge? In Popper’s view, the
advance of scientific knowledge is an evolutionary process characterised by his
formula:

PS1 → TT1 → EE1 → PS2 .

In response to a given problem situation, PS1, a number of competing conjec-
tures, or tentative theories, TT , are systematically subjected to the most rigorous
attempts at falsification possible. This process, error elimination, EE, performs
a similar function for science that natural selection performs for biological evo-
lution. Theories that better survive the process of refutation are not more true,
but rather, more ‘fit’, in other words, more applicable to the problem situation
at hand, PS1. Consequently, just as a species’ ‘biological fit’ does not predict
continued survival, neither does rigorous testing protect a scientific theory from
refutation in the future. Yet, as it appears that the engine of biological evolution
has produced, over time, adaptive traits equipped to deal with more and more
complex problems of survival, likewise, the evolution of theories through the sci-
entific method may, in Popper’s view, reflect a certain type of progress: toward
more and more interesting problems, PS2. For Popper, it is in the interplay be-
tween the tentative theories (conjectures) and error elimination (refutation) that
scientific knowledge advances toward greater and greater problems; in a process
very much akin to the interplay between genetic variation and natural selection.

As early as 1934 Popper wrote of the search for truth as one of the “strongest
motives for scientific discovery.” Still, he describes in ‘Objective Knowledge’ (1972)
early concerns about the much–criticised notion of truth as correspondence. Then
came the semantic theory of truth formulated by the logician Alfred Tarski. Popper
writes of learning in 1935 of the consequences of Tarski’s theory, to his intense
joy. The theory met critical objections to truth as correspondence and thereby
rehabilitated it. The theory also seemed to Popper to support metaphysical realism
and the regulative idea of a search for truth.

Among his contributions to philosophy is his answer to David Hume’s ‘Problem
of Induction’. Hume stated that just because the sun has risen every day for as
long as anyone can remember, doesn’t mean that there is any rational reason to
believe it will come up tomorrow. There is no rational way to prove that a pattern
will continue on just because it has before. Popper’s reply is characteristic, and
ties in with his criterion of falsifiability . He states that while there is no way
to prove that the sun will come up, we can theorize that it will. If it does not
come up, then it will be disproven, but since right now it seems to be consistent
with our theory, the theory is not disproven. Thus, Popper’s demarcation between
science and non–science serves as an answer to an old logical problem as well. This
approach was criticised by Peter Singer for masking the role induction plays in
empirical discovery.
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extended, subject to quantification and not able to think. It follows that mind
and body are not identical because they have radically different properties,
according to Descartes [Des91]. At the same time, however, it is clear that
Fred’s mental states (desires, beliefs, etc.) have causal effects on his body
and vice-versa: a child touches a hot stove (physical event) which causes pain
(mental event) and makes him yell (physical event) which provokes a sense
of fear and protectiveness in the mother (mental event) and so on. Descartes’
argument obviously depends on the crucial premise that what Fred believes
to be ‘clear and distinct’ ideas in his mind are necessarily true. Most modern
philosophers doubt the validity of such an assumption, since it has been shown

90 Sir John Carew Eccles (January 27, 1903 – May 2, 1997) was an Australian
neurophysiologist who won the 1963 Nobel Prize in Physiology or Medicine for
his work on the synapse. He shared the prize together with Andrew Fielding
Huxley and Alan Lloyd Hodgkin.

In the early 1950s, Eccles and his colleagues performed the key experiments
that would win Eccles the Nobel Prize. To study synapses in the peripheral ner-
vous system, Eccles and colleagues used the stretch reflex as a model. This re-
flex is easily studied because it consists of only two neurons: a sensory neuron
(the muscle spindle fiber) and the motor neuron. The sensory neuron synapses
onto the motor neuron in the spinal cord. When Eccles passed a current into the
sensory neuron in the quadriceps, the motor neuron innervating the quadriceps
produced a small excitatory postsynaptic potential (EPSP). When he passed the
same current through the hamstring, the opposing muscle to the quadriceps, he
saw an inhibitory postsynaptic potential (IPSP) in the quadriceps motor neuron.
Although a single EPSP was not enough to fire an action potential in the mo-
tor neuron, the sum of several EPSPs from multiple sensory neurons synapsing
onto the motor neuron could cause the motor neuron to fire, thus contracting the
quadriceps. On the other hand, IPSPs could subtract from this sum of EPSPs,
preventing the motor neuron from firing.

Apart from these seminal experiments, Eccles was key to a number of important
developments in neuroscience. Until around 1949, Eccles believed that synaptic
transmission was primarily electrical rather than chemical. Although he was wrong
in this hypothesis, his arguments led himself and others to perform some of the
experiments which proved chemical synaptic transmission. Bernard Katz and Ec-
cles worked together on some of the experiments which elucidated the role of
acetylcholine as a neurotransmitter.

91 Pierre Maurice Marie Duhem (10 June 1861 – 14 September 1916) French physicist
and philosopher of science. Duhem’s sophisticated views on the philosophy of
science are explicated in ‘The aim and structure of physical theory’ (foreword
by Prince Louis de Broglie). In this work he refuted the inductivist untruth that
Newton’s laws can de deduced from Kepler, et al. (a selection was published as
Medieval cosmology: theories of infinity, place, time, void, and the plurality of
worlds. He gave his name to the Quine-Duhem thesis, which holds that for any
given set of observations there are an innumerably large number of explanations.
Thus empirical evidence cannot force the revision of a theory.
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in modern times by Freud (a third–person psychologically–trained observer
can understand a person’s unconscious motivations better than she does), by
Pierre Duhem91

(a third–person philosopher of science can know a person’s methods of discov-
ery better than she does), by Bronis�law Malinowski92 (an anthropologist can
know a person’s customs and habits better than he does), and by theorists
of perception (experiments can make one see things that are not there and
scientists can describe a person’s perceptions better than he can), that such
an idea of privileged and perfect access to one’s own ideas is dubious at best.

Other important forms of dualism which arose as reactions to, or attempts
to salvage, the Cartesian version are:

(i) Psycho–physical parallelism, or simply parallelism, is the view that
mind and body, while having distinct ontological statuses, do not causally
influence one another, but run along parallel paths (mind events causally in-
teract with mind events and brain events causally interact with brain events)
and only seem to influence each other [RPW97]. This view was most promi-
nently defended by Gottfried Leibniz.93 Although Leibniz was actually an
ontological monist who believed that only one fundamental substance, mon-
ads, exists in the universe and everything else is reducible to it, he nonetheless
maintained that there was an important distinction between ‘the mental’ and
‘the physical’ in terms of causation. He held that God had arranged things in
advance so that minds and bodies would be in harmony with each other. This
is known as the doctrine of pre–established harmony [Lei714].

92 Bronis�law Kasper Malinowski (April 7, 1884 – May 16, 1942) was a Polish an-
thropologist widely considered to be one of the most important anthropologists of
the twentieth century because of his pioneering work on ethnographic fieldwork,
the study of reciprocity, and his detailed contribution to the study of Melanesia.

93 Gottfried Wilhelm Leibniz (July 1 (June 21 Old Style) 1646 – November 14, 1716)
was a German polymath. Educated in law and philosophy, Leibniz played a major
role in the European politics and diplomacy of his day. He occupies an equally
large place in both the history of philosophy and the history of mathematics. He
invented calculus independently of Newton, and his notation is the one in general
use since. He also invented the binary system, foundation of virtually all modern
computer architectures. In philosophy, he is most remembered for optimism, i.e.,
his conclusion that our universe is, in a restricted sense, the best possible one God
could have made. He was, along with René Descartes and Baruch Spinoza, one
of the three great 17th century rationalists, but his philosophy also both looks
back to the Scholastic tradition and anticipates logic and analysis. Leibniz also
made major contributions to physics and technology, and anticipated notions that
surfaced much later in biology, medicine, geology, probability theory, psychology,
knowledge engineering, and information science. He also wrote on politics, law,
ethics, theology, history, and philology, even occasional verse. His contributions
to this vast array of subjects are scattered in journals and in tens of thousands
of letters and unpublished manuscripts. To date, there is no complete edition
of Leibniz’s writings, and a complete account of his accomplishments is not yet
possible.
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(ii) Occasionalism is the view espoused by Nicholas Malebranche which
asserts that all supposedly causal relations between physical events or between
physical and mental events are not really causal at all. While body and mind
are still different substances on this view, causes (whether mental or physical)
are related to their effects by an act of God’s intervention on each specific
occasion [Sch02].

(iii) Epiphenomenalism is a doctrine first formulated by Thomas Huxley
[Hux898]. Fundamentally, it consists in the view that mental phenomena are
causally inefficacious. Physical events can cause other physical events and
physical events can cause mental events, but mental events cannot cause any-
thing, since they are just causally inert by-products (i.e. epiphenomena) of
the physical world [RPW97] The view has been defended most strongly in
recent times by Frank Jackson [Jac82].

(iv) Property dualism asserts that when matter is organized in the appro-
priate way (i.e., in the way that living human bodies are organized), mental
properties emerge. Hence, it is a sub–branch of emergent materialism [Har96].
These emergent properties have an independent ontological status and can-
not be reduced to, or explained in terms of, the physical substrate from which
they emerge. This position is espoused by David Chalmers and has undergone
something of a renaissance in recent years [Cha97].

Monism

In contrast to dualism, monism states that there is only one fundamental
substance. Monism, first proposed in the West by Parmenides94 and in modern
times by Baruch Spinoza,95 maintains that there is only one substance; in the
East, rough parallels might be the Hindu concept of Brahman or the Tao
of Lao Tzu [Spi670]. Today the most common forms of monism in Western
philosophy are physicalistic [Kim95b]. Physicalistic monism asserts that the
only existing substance is physical, in some sense of that term to be clarified

94 Parmenides of Elea (early 5th century BC) was an ancient Greek philosopher
born in Elea, a Hellenic city on the southern coast of Italy. Parmenides was a
student of Ameinias and the founder of the School of Elea, which also included
Zeno of Elea and Melissus of Samos.

95 Benedictus de Spinoza (November 24, 1632 – February 21, 1677), named Baruch
Spinoza by his synagogue elders, was a Jewish–Dutch philosopher. He is consid-
ered one of the great rationalists of 17th–century philosophy and, by virtue of
his magnum opus the ‘Ethics’, one of the definitive ethicists. His writings, like
those of his fellow rationalists, reveal considerable mathematical training and fa-
cility. Spinoza was a lens crafter by trade, an exciting engineering field at the
time because of great discoveries being made by telescopes. The full impact of
his work only took effect some time after his death and after the publication
of his ‘Opera Posthuma’. He is now seen as having prepared the way for the
18th century Enlightenment, and as a founder of modern biblical criticism. 20th
century philosopher, Gilles Deleuze (1990), referred to Spinoza as “The absolute
philosopher, whose Ethics is the foremost book on concepts.”
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by our best science [Sto05]. Another form of monism is that which states
that the only existing substance is mental. Such idealistic monism is currently
somewhat uncommon in the West [Kim95b].

Phenomenalism, the theory that all that exists are the representations (or
sense data) of external objects in our minds and not the objects themselves,
was adopted by Bertrand Russell96 and many of the logical positivists during
96 Bertrand Arthur William Russell, (3rd Earl Russell, 18 May 1872 – 2 February

1970), was a British philosopher, logician, and mathematician, working mostly
in the 20th century. A prolific writer, Bertrand Russell was also a populariser of
philosophy and a commentator on a large variety of topics, ranging from very
serious issues to the mundane. Continuing a family tradition in political affairs,
he was a prominent liberal as well as a socialist and anti–war activist for most of
his long life. Millions looked up to Russell as a prophet of the creative and rational
life; at the same time, his stances on many topics were extremely controversial.

Russell was born at the height of Britain’s economic and political ascendancy.
He died of influenza nearly a century later, at a time when the British Empire had
all but vanished, its power dissipated by two debilitating world wars. As one of the
world’s best–known intellectuals, Russell’s voice carried great moral authority,
even into his early 90s. Among his political activities, Russell was a vigorous
proponent of nuclear disarmament and an outspoken critic of the American war
in Vietnam.

In 1950, Russell was made a Nobel Laureate in Literature, “in recognition of
his varied and significant writings in which he champions humanitarian ideals and
freedom of thought.”

Russell is generally recognized as one of the founders of analytical philosophy ,
even of its several branches. At the beginning of the 20th century, alongside G.E.
Moore, Russell was largely responsible for the British ‘revolt against Idealism’,
a philosophy greatly influenced by Georg Hegel. This revolt was echoed 30 years
later in Vienna by the logical positivists’ ‘revolt against metaphysics’. Russell
was particularly appalled by the idealist doctrine of internal relations, which held
that in order to know any particular thing, we must know all of its relations.
Russell showed that this would make space, time, science and the concept of
number unintelligible. Russell’s logical work with Alfred Whitehead continued
this project.

Russell had great influence on modern mathematical logic. His first mathemat-
ical book, An Essay on the Foundations of Geometry, was published in 1897. This
work was heavily influenced by Immanuel Kant. Russell soon realised that the
conception it laid out would have made Albert Einstein’s schema of space-time
impossible, which he understood to be superior to his own system. Thenceforth,
he rejected the entire Kantian program as it related to mathematics and geometry,
and he maintained that his own earliest work on the subject was nearly without
value. Russell discovered that Gottlob Frege had independently arrived at equiv-
alent definitions for 0, successor, and number, and the definition of number is
now usually referred to as the Frege–Russell definition. It was largely Russell
who brought Frege to the attention of the English-speaking world. He did this
in 1903, when he published ‘The Principles of Mathematics’, in which the con-
cept of class is inextricably tied to the definition of number. The appendix to this
work detailed a paradox arising in Frege’s application of second– and higher–order
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the early 20th century [Rus18]. It lasted for only a very brief period of time. A
third possibility is to accept the existence of a basic substance which is neither
physical nor mental. The mental and physical would both be properties of this
neutral substance. Such a position was adopted by Baruch Spinoza [Spi670]
and popularized by Ernst Mach97 [Mac59] in the 19th century. This neutral
monism, as it is called, resembles property dualism.

Behaviorism

Behaviorism dominated philosophy of mind for much of the 20th century,
especially the first half [Kim95b]. In psychology, behaviorism developed as a
reaction to the inadequacies of introspectionism. Introspective reports on one’s
own interior mental life are not subject to careful examination for accuracy
and are not generalizable. Without generalizability and the possibility of third-
person examination, the behaviorists argued, science is simply not possible
[Sto05]. The way out for psychology was to eliminate the idea of an interior
mental life (and hence an ontologically independent mind) altogether and
focus instead on the description of observable behavior [Ski72].

functions which took first-order functions as their arguments, and he offered his
first effort to resolve what would henceforth come to be known as the Russell
Paradox , which he later developed into a complete theory, the Theory of types.
Aside from exposing a major inconsistency in naive set theory, Russell’s work led
directly to the creation of modern axiomatic set theory. It also crippled Frege’s
project of reducing arithmetic to logic. The Theory of Types and much of Russell’s
subsequent work have also found practical applications with computer science and
information technology.

Russell continued to defend logicism, the view that mathematics is in some
important sense reducible to logic, and along with his former teacher, Alfred
Whitehead, wrote the monumental ‘Principia Mathematica’, an axiomatic sys-
tem on which all of mathematics can be built. The first volume of the Principia
was published in 1910, and is largely ascribed to Russell. More than any other
single work, it established the specialty of mathematical or symbolic logic. Two
more volumes were published, but their original plan to incorporate geometry in a
fourth volume was never realised, and Russell never felt up to improving the orig-
inal works, though he referenced new developments and problems in his preface
to the second edition. Upon completing the Principia, three volumes of extraordi-
narily abstract and complex reasoning, Russell was exhausted, and he never felt
his intellectual faculties fully recovered from the effort. Although the Principia
did not fall prey to the paradoxes in Frege’s approach, it was later proven by
Kurt Gödel that neither Principia Mathematica, nor any other consistent system
of primitive recursive arithmetic, could, within that system, determine that every
proposition that could be formulated within that system was decidable, i.e., could
decide whether that proposition or its negation was provable within the system
(Gödel’s incompleteness theorem).

97 Ernst Mach (February 18, 1838 – February 19, 1916) was an Austrian–Czech
physicist and philosopher and is the namesake for the ‘Mach number” (aka Mach
speed) and the optical illusion known as Mach bands.
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Parallel to these developments in psychology, a philosophical behaviorism
(sometimes called logical behaviorism) was developed [Sto05]. This is char-
acterized by a strong verificationism, which generally considers unverifiable
statements about interior mental life senseless. But what are mental states if
they are not interior states on which one can make introspective reports? The
answer of the behaviorist is that mental states do not exist but are actually
just descriptions of behavior and/or dispositions to behave made by external
third parties in order to explain and predict others’ behavior [Ryl49]. Philo-
sophical behaviorism is considered by most modern philosophers of mind to
be outdated [Kim95a]. Apart from other problems, behaviorism implausibly
maintains, for example, that someone is talking about behavior if she reports
that she has a wracking headache.

Continental Philosophy of Mind

In contrast to Anglo–American analytic philosophy98 there are other schools
of thought which are sometimes subsumed under the broad label of conti-
nental philosophy . These schools tend to differ from the analytic school in

98 Analytic philosophy is the dominant academic philosophical movement in
English–speaking countries and in the Nordic countries. It is distinguished from
Continental Philosophy which pertains to most non–English speaking countries.
Its main founders were the Cambridge philosophers G.E. Moore and Bertrand
Russell. However, both were heavily influenced by the German philosopher and
mathematician Gottlob Frege and many of analytic philosophy’s leading propo-
nents, such as Ludwig Wittgenstein, Rudolf Carnap, Kurt Gödel, Karl Popper,
Hans Reichenbach, Herbert Feigl, Otto Neurath, and Carl Hempel have come
from Germany and Austria. In Britain, Russell and Moore were succeeded by
C. D. Broad, L. Stebbing, Gilbert Ryle, A. J. Ayer, R. B. Braithwaite, Paul Grice,
John Wisdom, R. M. Hare, J. L. Austin, P. F. Strawson, William Kneale,
G. E. M. Anscombe, and Peter Geach. In America, the movement was led by
many of the above-named European emigres as well as Max Black, Ernest Nagel,
C. L. Stevenson, Norman Malcolm, W. V. Quine, Wilfrid Sellars, and Nelson
Goodman, while A. N. Prior, John Passmore, and J. J. C. Smart were prominent
in Australasia.

Logic and philosophy of language were central strands of analytic philosophy
from the beginning, although this dominance has diminished greatly. Several lines
of thought originate from the early, language-and-logic part of this analytic phi-
losophy tradition. These include: logical positivism, logical empiricism, logical
atomism, logicism and ordinary language philosophy. Subsequent analytic phi-
losophy includes extensive work in ethics (such as Philippa Foot, R. M. Hare,
and J. L. Mackie), political philosophy (John Rawls, Robert Nozick), aesthet-
ics (Monroe Beardsley, Richard Wollheim, Arthur Danto), philosophy of religion
(Alvin Plantinga, Richard Swinburne), philosophy of language (David Kaplan,
Saul Kripke, Richard Montague, Hilary Putnam, W.V.O. Quine, Nathan Salmon,
John Searle), and philosophy of mind (Daniel Dennett, David Chalmers, Putnam).
Analytic metaphysics has also recently come into its own (Kripke, David Lewis,
Salmon, Peter van Inwagen, P.F. Strawson).
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that they focus less on language and logical analysis and more on directly
understanding human existence and experience. With reference specifically to
the discussion of the mind, this tends to translate into attempts to grasp the
concepts of thought and perceptual experience in some direct sense that does
not involve the analysis of linguistic forms [Dum01]. In particular, in his ‘Phe-
nomenology of Mind’, G.W. F. Hegel99 discusses three distinct types of mind:
the subjective mind, the mind of an individual; the objective mind, the mind
of society and of the State; and the Absolute mind, a unity of all concepts.
In modern times, the two main schools that have developed in response or
opposition to this Hegelian tradition are phenomenology and existentialism.
Phenomenology, founded by Edmund Husserl,100 focuses on the contents of

99 Georg Wilhelm Friedrich Hegel (August 27, 1770 – November 14, 1831) was a
German philosopher born in Stuttgart, Württemberg, in present-day southwest
Germany. His influence has been widespread on writers of widely varying posi-
tions, including both his admirers (F.H. Bradley, J.P. Sartre, Hans Küng, Bruno
Bauer), and his detractors (Kierkegaard, Schopenhauer, Heidegger, Schelling).
His great achievement was to introduce for the first time in philosophy the
idea that History and the concrete are important in getting out of the circle
of philosophia perennis, i.e., the perennial problems of philosophy. Also, for the
first time in the history of philosophy he realised the importance of the Other in
the coming to be of self–consciousness, see slave–master dialectic.

Some of Hegel’s writing was intended for those with advanced knowledge of
philosophy, although his ‘Encyclopedia’ was intended as a textbook in a univer-
sity course. Nevertheless, like many philosophers, Hegel assumed that his read-
ers would be well–versed in Western philosophy, up to and including Descartes,
Spinoza, Hume, Kant, Fichte, and Schelling. For those wishing to read his work
without this background, introductions to Hegel and commentaries about Hegel
may suffice. However, even this is hotly debated since the reader must choose
from multiple interpretations of Hegel’s writings from incompatible schools of
philosophy. Presumably, reading Hegel directly would be the best method of un-
derstanding him, but this task has historically proved to be beyond the average
reader of philosophy.[citation needed] This difficulty may be the most urgent
problem with respect to the legacy of Hegel.

One especially difficult aspect of Hegel’s work is his innovation in logic. In
response to Immanuel Kant’s challenge to the limits of Pure Reason, Hegel deve-
loped a radically new form of logic, which he called speculation, and which is
today popularly called dialectics. The difficulty in reading Hegel was perceived
in Hegel’s own day, and persists into the 21st century. To understand Hegel fully
requires paying attention to his critique of standard logic, such as the law of
contradiction and the law of the excluded middle, and, whether one accepts or
rejects it, at least taking it seriously. Many philosophers who came after Hegel
and were influenced by him, whether adopting or rejecting his ideas, did so
without fully absorbing his new speculative or dialectical logic.

100 Edmund Gustav Albrecht Husserl (April 8, 1859, Prostějov – April 26, 1938,
Freiburg) was a German philosopher, known as the father of phenomenology.
Husserl was born into a Jewish family in Prostějov (Prossnitz), Moravia, Czech
Republic (then part of the Austrian Empire). A pupil of Franz Brentano and
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the human mind and how phenomenological processes shape our experiences.
Existentialism, a school of thought led by Jean–Paul Sartre,101 focuses on the
content of experiences and how the mind deals with such experiences [Fly04].

Neurobiology

On the other hand, within the tangible field of neurobiology , there are many
subdisciplines which are concerned with the relations between mental and
physical states and processes [Bea95]:

1. Sensory neurophysiology investigates the relation between the processes
of perception and stimulation [Pine97].

Carl Stumpf, Husserl came to influence, among others, Edith Stein (St. Teresa
Benedicta of the Cross), Eugen Fink, Martin Heidegger, Jean–Paul Sartre, and
Maurice Merleau–Ponty; in addition, Hermann Weyl’s interest in intuitionistic
logic and impredicativity appear to have resulted from contacts with Husserl.
Rudolf Carnap was also influenced by Husserl, not only concerning Husserl’s
notion of essential insight that Carnap used in his Der Raum, but also his notion
of formation rules and transformation rules is founded on Husserl’s philosophy of
logic. In 1887 Husserl converted to Christianity and joined the Lutheran Church.
He taught philosophy at Halle as a tutor (Privatdozent) from 1887, then at
Göttingen as professor from 1901, and at Freiburg im Breisgau from 1916 until
he retired in 1928. After this, he continued his research and writing by using the
library at Freiburg, until barred therefrom because of his Jewish heritage under
the rectorship of his former pupil and intended protege, Martin Heidegger.

Husserl held the belief that truth–in–itself has as ontological correlate being–
in–itself, just as meaning categories have formal–ontological categories as cor-
relates. The discipline of logic is a formal theory of judgment, that studies the
formal a priori relations among judgments using meaning categories. Mathemat-
ics, on the other hand, is formal ontology, it studies all the possible forms of
being (of objects). So, in both of these disciplines, formal categories, in their
different forms, are their object of study, not the sensible objects themselves.
The problem with the psychological approach to mathematics and logic is that
it fails to account for the fact that it is about formal categories, not abstractions
from sensibility alone. The reason why we do not deal with sensible objects in
mathematics is because of another faculty of understanding called categorial ab-
straction. Through this faculty we are able to get rid of sensible components of
judgments, and just focus on formal categories themselves. Thanks to ‘eidetic
(or essential) intuition’, we are able to grasp the possibility, impossibility, ne-
cessity and contingency among concepts or among formal categories. Categorial
intuition, along with categorial abstraction and eidetic intuition, are the basis
for logical and mathematical knowledge.

101 Jean–Paul Charles Aymard Sartre (June 21, 1905 – April 15, 1980), was a French
existentialist philosopher, dramatist and screenwriter, novelist and critic.

The basis of Sartre’s existentialism is found in his ‘The Transcendence of
the Ego’. To begin with, the thing–in–itself is infinite and overflowing. Any direct
consciousness of the thing–in–itself, Sartre refers to as a ‘pre–reflective conscious-
ness’. Any attempt to describe, understand, historicize etc. the thing–in–itself,
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2. Cognitive neuroscience studies the correlations between mental processes
and neural processes [Pine97].

3. Neuropsychology describes the dependence of mental faculties on specific
anatomical regions of the brain [Pine97].

4. Lastly, evolutionary biology studies the origins and development of the
human nervous system and, in as much as this is the basis of the mind,
also describes the ontogenetic and phylogenetic development of mental
phenomena beginning from their most primitive stages [Pink97].

Since the 1980’s, sophisticated neuroimaging procedures, such as fMRI,
have furnished increasing knowledge about the workings of the human brain,
shedding light on ancient philosophical problems.The methodological break-
throughs of the neurosciences, in particular the introduction of high–tech
neuroimaging procedures, has propelled scientists toward the elaboration of
increasingly ambitious research programs: one of the main goals is to describe
and comprehend the neural processes which correspond to mental functions
[Bea95]. A very small number of neurobiologists, such as Emil Reymond102

be and John Eccles have denied the possibility of a ‘reduction’ of mental
phenomena to cerebral processes (see [PE02]). However, the contemporary
neurobiologist and philosopher Gerhard Roth continues to defend a form of
‘non–reductive materialism’ [Rot01].

Analytical Psychology

Recall that analytical psychology (AP) is part of the Jungian psychology move-
ment started by Carl G. Jung103 and his followers. Although considered to

Sartre calls ‘reflective consciousness’. There is no way for the reflective con-
sciousness to subsume the pre–reflective, and so reflection is fated to a form of
anxiety, i.e., the human condition. The reflective consciousness in all its forms,
(scientific, artistic or otherwise) can only limit the thing–in–itself by virtue of
its attempt to understand or describe it. It follows therefore that any attempt at
self–knowledge (self–consciousness) is a construct that fails no matter how often
it is attempted. (self-consciousness is a reflective consciousness of an overflowing
infinite) In Sartre’s words “Conciousness is consciousness of itself insofar as it is
consciousness of a transcendent object.” The same holds true about knowledge
of the ‘Other’ (being), which is a construct of reflective consciousness. One must
be careful to understand this more as a form of warning than as an ontolog-
ical statement. However, there is an implication of Solipsism here that Sartre
considers fundamental to any coherent description of the human condition.

102 Emil du Bois–Reymond (November 7, 1818, Berlin, Germany – November 26,
1896), was a German physician and physiologist, discoverer of the nerve action
potential and the father of experimental electrophysiology.

103 Carl Gustav Jung (July 26, 1875 – June 6, 1961) was a Swiss psychiatrist and
founder of analytical psychology.
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Jung’s unique and broadly influential approach to psychology emphasized un-
derstanding the psyche through exploring the worlds of dreams, art, mythology,
world religion and philosophy. Though not the first to analyze dreams, he has be-
come perhaps the best–known pioneer in the field of dream analysis. Although he
was a theoretical psychologist and practicing clinician for most of his life, much of
his life’s work was spent exploring other realms: Eastern vs. Western philosophy,
alchemy, astrology, sociology, as well as literature and the arts. Jung also em-
phasized the importance of balance. He cautioned that modern humans rely too
heavily on science and logic and would benefit from integrating spirituality and ap-
preciation of the unconscious realm. Interestingly, Jungian ideas are not typically
included in curriculum of most major universities’ psychology departments, but
are occasionally explored in humanities departments. Many pioneering psycholog-
ical concepts were originally proposed by Jung. Some of these are: (i) archetype,
(ii) collective unconscious, (iii) unconscious complex , and (iv) synchronicity . In
addition, the popular career test currently offered by high school and college ca-
reer centers, the Myers–Briggs Type Indicator , is strongly influenced by Jung’s
theories.

The overarching goal of Jung’s work was the reconciliation of the life of the
individual with the world of the supra–personal archetypes. He came to see the
individual’s encounter with the unconscious as central to this process. The human
experiences the unconscious through symbols encountered in all aspects of life:
in dreams, art, religion, and the symbolic dramas we enact in our relationships
and life pursuits. Essential to the encounter with the unconscious, and the rec-
onciliation of the individual’s consciousness with this broader world, is learning
this symbolic language. Only through attention and openness to this world (which
is quite foreign to the modern Western mind) are individuals able to harmonize
their lives with these supra–personal archetypal forces. In order to undergo the
individuation process, the individual must be open to the parts of oneself beyond
one’s own ego. In order to do this, the modern individual must pay attention to
dreams, explore the world of religion and spirituality, and question the assump-
tions of the operant societal world–view (rather than just blindly living life in
accordance with dominant norms and assumptions).

The collective unconscious could be thought of as the DNA of the human psyche.
Just as all humans share a common physical heritage and predisposition towards
specific physical forms (like having two legs, a heart, etc.) so do all humans have
a common psychological predisposition. However, unlike the quantifiable infor-
mation that composes DNA (in the form of coded sequences of nucleotides), the
collective unconscious is composed of archetypes. In contrast to the objective ma-
terial world, the subjective realm of archetypes can not be fully plumbed through
quantitative modes of research. Instead it can be revealed more fully through
an examination of the symbolic communications of the human psyche — in art,
dreams, religion, myth, and the themes of human relational/behavioral patterns.
Devoting his life to the task of exploring and understanding the collective uncon-
scious, Jung theorized that certain symbolic themes exist across all cultures, all
epochs, and in every individual.
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The shadow is an unconscious complex that is defined as the diametrical oppo-
site of the conscious self, the ego. The shadow represents unknown attributes and
qualities of the ego. There are constructive and destructive types of shadow. On
the destructive side, it often represents everything that the conscious person does
not wish to acknowledge within themselves. For instance, someone who identifies
as being kind has a shadow that is harsh or unkind. Conversely, an individual who
is brutal has a kind shadow. The shadow of persons who are convinced that they
are ugly appears to be beautiful. On the constructive side, the shadow may rep-
resent hidden positive influences. Jung points to the story of Moses and Al–Khidr
in the 18th Book of the Koran as an example. Jung emphasized the importance
of being aware of shadow material and incorporating it into conscious awareness,
lest one project these attributes on others. The shadow in dreams is often repre-
sented by dark figures of the same gender as the dreamer. According to Jung the
human being deals with the reality of the shadow in four ways: denial, projection,
integration and/or transmutation.

Jung identified the anima as being the unconscious feminine component of men
and the animus as the unconscious masculine component in women. However,
this is rarely taken as a literal definition: many modern–day Jungian practitioners
believe that every person has both an anima and an animus. Jung stated that
the anima and animus act as guides to the unconscious unified Self , and that
forming an awareness and a connection with the anima or animus is one of the
most difficult and rewarding steps in psychological growth. Jung reported that he
identified his anima as she spoke to him, as an inner voice, unexpectedly one day.
Oftentimes, when people ignore the anima or animus complexes, the anima or
animus vies for attention by projecting itself on others. This explains, according
to Jung, why we are sometimes immediately attracted to certain strangers: we
see our anima or animus in them. Love at first sight is an example of anima and
animus projection. Moreover, people who strongly identify with their gender role
(e.g., a man who acts aggressively and never cries) have not actively recognized
or engaged their anima or animus. Jung attributes human rational thought to be
the male nature, while the irrational aspect is considered to be natural female.
Consequently, irrationality is the male anima shadow and rationality is the female
animus shadow.

There are four primary modes of experiencing the world in Jung’s extro-
vert/introvert model : two rational functions: thinking and feeling , and two per-
ceptive functions: sensation and intuition. Sensation is the perception of facts.
Intuition is the perception of the unseen. Thinking is analytical, deductive cog-
nition. Feeling is synthetic, all–inclusive cognition. In any person, the degree of
introversion/extroversion of one function can be quite different to that of another
function. Broadly speaking, we tend to work from our most developed function,
while we need to widen our personality by developing the others. Related to this,
Jung noted that the unconscious often tends to reveal itself most easily through
a person’s least developed function. The encounter with the unconscious and de-
velopment of the underdeveloped function(s) thus tend to progress together.

Jung had a profesional relationship with the Nobel lauret physicist Wolfgang
Pauli. Their work has been published in the books [PJ55, PJ01] as well as in
Jung’s famous [Jun80].
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be a part of psychoanalysis, it is distinct from Freudian psychoanalysis.104

While Freudian psychoanalysis assumes that the repressed material hidden in
the unconscious is given by repressed sexual instincts, analytical psychology
has a more general approach. There is no preconceived assumption about the
unconscious material. The unconscious, for Jungian analysts, may contain
repressed sexual drives, but also aspirations, fears, etc.

The aim of AP is the personal experience of the deep forces and moti-
vations underlying human behavior. It is related to the so–called depth psy-
chology and archetypal psychology . Its basic assumption is that the personal
unconscious is a potent part, probably the more active part, of the normal
human psyche. Reliable communication between the conscious and uncon-
scious parts of the psyche is necessary for wholeness. Also crucial is the belief
that dreams show ideas, beliefs, and feelings of which individuals may not be
readily aware, but need to be, and that such material is expressed in a per-
sonalized vocabulary of visual metaphors. Things ‘known but unknown’ are
contained in the unconscious, and dreams are one of the main vehicles for the
unconscious to express them.

AP distinguishes between a personal and a collective unconscious. The
collective unconscious contains archetypes common to all human beings. That
is, individuation may bring to surface symbols that do not relate to the life
experiences of a single person. This content is more easily viewed as answers to
the more fundamental questions of humanity: life, death, meaning, happiness,
fear. Among these more spiritual concepts may arise and be integrated into
the personality.

AP distinguishes two main psychological types or temperaments: (i) extro-
vert , and (ii) introvert .105The attitude type could be thought of as the energy

104 For a period of some 6 years, Carl Jung was a close friend and collaborator of
Sigmund Freud. However after Jung published his ‘Wandlungen und Symbole
der Libido’ (The Psychology of the Unconscious) in 1913, their theoretical ideas
had diverged sharply.

105 In the context of personality psychology , extroverts and introverts differ in how
they get or lose energy as a function of their immediate social context. In partic-
ular, extroverts feel an increase of perceived energy when interacting with large
group of people, but a decrease of energy when left alone. Conversely, introverts
feel an increase of energy when alone, but a decrease of energy when surrounded
by large group of people.

Extroverts tend to be energetic when surrounded by people and depressive
when not. To induce human interactions, extroverts tend to be enthusiastic,
talkative, and assertive. Extroverts enjoy doing activities that involve other peo-
ple, such as taking part in community activities and involving in business, reli-
gious, political, and scientific affairs; their affinity to large groups allow them to
enjoy large social gatherings including parties and marches. As such, an extro-
verted person is likely to enjoy time spent with people and find less reward in
time spent alone.

On the other hand, introverts are ‘geared to inspect’ rather than to act in
social settings. In a large social setting, introverts tend to be quiet, low–key,
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flow of libido, or psychic energy (ch’i in Roman–Chinese and ‘ki’ in Roman–
Japanese).106 The introvert’s energy flow is inward to the subject and away

deliberate, and engaged in non–social activities. Conversely, introverts gain en-
ergy when alone performing solitary activities. Thus they tend to enjoy reading,
writing, watching movies at home, inventing, and designing - and doing these
activities in quiet, minimally socially interactive environment such as home, li-
brary, labs, and quiet coffee shops. While introverts avoid social situations with
large numbers of people, they tend to enjoy intense, one–to–one or one–to–few
social interactions. They tend to have small circle of very close friends, compared
to the extroverts’ typically larger circle of less–close friends.

While most people view being either introverted or extroverted as a question
with only two answers, levels of extraversion in fact fall in a normally distributed
bell curve, with most people falling in between. The term ambivert was coined to
denote people who fall more or less directly in the middle and exhibit tendencies
of both groups. An ambivert is normally comfortable with groups and enjoys
social interaction, but also relishes time alone and away from the crowd.

106 Freud introduced the term libido as the instinctual energy or force that can
come into conflict with the conventions of civilized behavior. It is the need to
conform to society and control the libido, contained in what Freud defined as
the Id, that leads to tension and disturbance in both society and the individual.
This disturbance Freud labelled neurosis. Thus, libido has to be transformed into
socially useful energy, according to Freud, through the process of ‘sublimation’.

Ch’i (or qi, or ki) is a fundamental concept of traditional Chinese culture.
Ch’i is believed to be part of everything that exists, as in ‘life force’ or ‘life
energy’, something like the ‘force’ in Lucas’ Star Wars. It is most often translated
as ‘energy flow,’ or literally as ‘air’ or ‘breath’.

The nature of ch’i is a matter of controversy among those who accept it as
a valid concept, while those who dismiss its very existence ignore it, except for
purposes of discussion with its adherents. Disputing the nature of qi is an old
controversy in Chinese philosophy. Among some traditional Chinese medicine
practitioners, qi is sometimes thought of as a metaphor for biological processes
similar to the Western concept of energy flow for homeostatic balance in biological
regulations. Others argue that qi involves some new physics or biology. Attempts
to directly connect qi with some scientific phenonomena have been attempted
since the mid–nineteenth century. Ch’i is a central concept in many martial arts;
e.g., in the Japanese arts, Ki is developed in Aikido and given special emphasis in
Ki–Aikido (a classic combat story concerns two opponents who held each others
hands before a fight, while doing so each felt the others ch’i and the one with
the weaker ch’i resigned without a blow being struck).

The concept of quantum tunneling in modern physics where physical matters
can ‘tunnel’ through energy barriers using quantum mechanics captured some of
the similar concepts of ch’i (which allows one to transcend normal physical forces
in nature). The seemingly impossibility of tunneling through energy barriers
(walls) is only limited by the conceptual framework of classical mechanics, but
can easily be resolved by the wave–particle duality in modern physics. By the
same token, this duality is similar to the metaphorical duality of yin and yang ,
which is governed by the flow of energy ch’i. Examples of quantum tunneling
can be found as a mechanism in biology used by enzymes to speed up reactions
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from the object, i.e., external relations. The extrovert’s energy flow is outward
toward the object, ie. towards external relations and away from the inner,
subjective world. Extroverts desire breadth, while introverts seek depth. The
introversion/extroversion attitude type may also influence mental breakdown.
Introverts may be more inclined to catatonic type schizophrenia and extroverts
towards manic depression.

Samuels [Sam95] has distinguished three schools of ‘post–Jungian’ psycho–
therapy: the classical, the developmental and the archetypal. The classical
school is that which tries to remain faithful to what Jung himself proposed
and taught in person and in his 20–plus volumes of work. The developmen-
tal school, associated with M. Fordham, B. Feldman etc., can be considered a
bridge between Jungian psychoanalysis and M. Klein’s object relations theory .
The archetypal school (sometimes called ‘the imaginal school’), with different
views associated with the mythopoeticists, such as J. Hillman in his intellec-
tual theoretical view of archetypal psychology, C.P. Estés, in her view that
ethnic and Aboriginal people are the originators of archetypal psychology and
have long carried the maps to the journey of the soul in their songs, tales,
dream–telling, art and rituals; M. Woodman who proposes a feminist view-
point regarding archetypal psychology, and other Jungians like T. Moore and
R. Moore, as well. Most mythopoeticists/archetypal psychology innovators
either imagine the Self not to be the main archetype of the collective un-
conscious as Jung thought, but rather assign each archetype equal value ...
Others, who are modern progenitors of archetypal psychology (such as Estés),
think of the Self as that which contains and yet is suffused by all the other
archetypes, each giving life to the other.

1.2 Artificial and Computational Intelligence

1.2.1 Artificial Intelligence

Recall that artificial intelligence (AI) is a branch of computer science that
deals with intelligent behavior , learning and adaptation in machines. Research
in AI is concerned with producing machines to automate tasks requiring intel-
ligent behavior. Examples include control, planning and scheduling, the abil-
ity to answer diagnostic and consumer questions, handwriting, speech, and
facial recognition. As such, it has become an engineering discipline, focused
on providing solutions to real life problems. AI systems are now in routine use
in economics, medicine, engineering and the military, as well as being built

in lifeforms to millions of times their normal speed [MRJ06]. Other examples
of quantum tunneling are found in semiconductor and superconductors, such
as field emission used in flash memory and major source of current leakage in
very–large–scale integration (VLSI) electronics draining power in mobile phones
and computers.
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into many common home computer software applications, traditional strategy
games like computer chess and other video games.

In the philosophy of artificial intelligence, the so–called strong AI is the
supposition that some forms of artificial intelligence can truly reason and solve
problems; strong AI supposes that it is possible for machines to become sapi-
ent, or self–aware, but may or may not exhibit human–like thought processes.
The term strong AI was originally coined by John Searle [Sea80]: “According
to strong AI, the computer is not merely a tool in the study of the mind; rather,
the appropriately programmed computer really is a mind.” The term ‘artifi-
cial intelligence’ would equate to the same concept as what we call ‘strong
AI’ based on the literal meanings of ‘artificial’ and ‘intelligence’. However,
initial research into artificial intelligence was focused on narrow fields such
as pattern recognition and automated scheduling, in hopes that they would
eventually allow for an understanding of true intelligence. The term ‘artificial
intelligence’ thus came to encompass these narrower fields, the so–called weak
AI as well as the idea of strong AI.

In contrast to strong AI, weak AI refers to the use of software to study or
accomplish specific problem solving or reasoning tasks that do not encompass
(or in some cases, are completely outside of) the full range of human cognitive
abilities. An example of weak AI software would be a chess program such as
Deep Blue. Unlike strong AI, a weak AI does not achieve self–awareness or
demonstrate a wide range of human–level cognitive abilities, and at its finest
is merely an intelligent, more specific problem–solver. Some argue that weak
AI programs cannot be called ‘intelligent’ because they cannot really think.

AI divides roughly into two schools of thought: Conventional AI and
Computational Intelligence (CI). Conventional AI mostly involves methods
now classified as machine learning, characterized by formalism and statistical
analysis. This is also known as symbolic AI, logical AI, neat AI and good old–
fashioned AI (which mainly deals with symbolic problems). Basic Ai methods
include:

1. Expert systems: apply reasoning capabilities to reach a conclusion. An ex-
pert system can process large amounts of known information and provide
conclusions based on them.

2. Case based reasoning
3. Bayesian networks
4. Behavior based AI: a modular method of building AI systems by hand.

On the other hand, CI involves iterative development or learning (e.g.,
parameter tuning in connectionist systems). Learning is based on empirical
data and is associated with non–symbolic AI and soft computing. Methods
mainly include:

1. Neural networks: systems with very strong pattern recognition capabili-
ties;
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2. Fuzzy systems: techniques for reasoning under uncertainty, have been
widely used in modern industrial and consumer product control systems;
and

3. Evolutionary computation: applies biologically inspired concepts such as
populations, mutation and survival of the fittest to generate increasingly
better solutions to the problem. These methods most notably divide into
evolutionary algorithms (e.g. genetic algorithms) and swarm intelligence
(e.g. ant algorithms).

With hybrid intelligent systems attempts are made to combine these two
groups. Expert inference rules can be generated through neural network or
production rules from statistical learning such as in ACT–R.

A promising new approach called intelligence amplification tries to achieve
artificial intelligence in an evolutionary development process as a side–effect
of amplifying human intelligence through technology.

Brief AI History

Early in the 18th century, René Descartes envisioned the bodies of animals
as complex but reducible machines, thus formulating the mechanistic theory,
also known as the ‘clockwork paradigm’. Wilhelm Schickard created the first
mechanical digital calculating machine in 1623, followed by machines of Blaise
Pascal107 (1643) and Gottfried Wilhelm von Leibniz (1671), who also invented
the binary system. In the 19th century, Charles Babbage and Ada Lovelace
worked on programmable mechanical calculating machines.

Bertrand Russell and Alfred Whitehead published their ‘Principia Mathe-
matica’ in 1910–1913, which revolutionized formal logic. In 1931 Kurt Gödel
showed that sufficiently powerful consistent formal systems contain true the-
orems unprovable by any theorem–proving AI that is systematically deriv-
ing all possible theorems from the axioms. In 1941 Konrad Zuse built the
first working program–controlled computers. Warren McCulloch and Walter
Pitts published A Logical Calculus of the Ideas Immanent in Nervous Activity

107 Blaise Pascal (June 19, 1623 – August 19, 1662) was a French mathematician,
physicist, and religious philosopher. Pascal was a child prodigy, who was educated
by his father. Pascal’s earliest work was in the natural and applied sciences, where
he made important contributions to the construction of mechanical calculators
and the study of fluids, and clarified the concepts of pressure and vacuum by
expanding the work of Evangelista Torricelli. Pascal also wrote powerfully in
defense of the scientific method.

He was a mathematician of the first order. Pascal helped create two major
new areas of research. He wrote a significant treatise on the subject of projective
geometry at the age of sixteen and corresponded with Pierre de Fermat from 1654
on probability theory, strongly influencing the development of modern economics
and social science.
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(1943), laying the foundations for neural networks. Norbert Wiener’s ‘Cyber-
netics or Control and Communication in the Animal and the Machine’ (MIT
Press, 1948) popularizes the term ‘cybernetics’.

The 1950s were a period of active efforts in AI. In 1950, Alan Turing intro-
duced the ‘Turing test’ as a way of operationalizing a test of intelligent behav-
ior. The first working AI programs were written in 1951 to run on the Ferranti
Mark I machine of the University of Manchester: a draughts–playing program
written by Christopher Strachey and a chess–playing program written by Di-
etrich Prinz. John McCarthy coined the term ‘artificial intelligence’ at the
first conference devoted to the subject, in 1956. He also invented the Lisp
programming language. Joseph Weizenbaum built ELIZA, a chatterbot im-
plementing Rogerian psychotherapy. At the same time, John von Neumann,108

who had been hired by the RAND Corporation, developed the game theory ,
which would prove invaluable in the progress of AI research.

During the 1960s and 1970s, Joel Moses demonstrated the power of
symbolic reasoning for integration problems in the Macsyma program, the
first successful knowledge–based program in mathematics. Leonard Uhr and
Charles Vossler published ‘A Pattern Recognition Program That Generates,
Evaluates, and Adjusts Its Own Operators’ in 1963, which described one of
the first machine learning programs that could adaptively acquire and mod-
ify features and thereby overcome the limitations of simple perceptrons of
Frank Rosenblatt.109 Marvin Minsky and Seymour Papert published their

108 John von Neumann (Neumann János) (December 28, 1903 – February 8, 1957)
was an Austro–Hungarian mathematician and polymath who made contributions
to quantum physics, functional analysis, set theory, game theory, economics,
computer science, topology, numerical analysis, hydrodynamics (of explosions),
statistics and many other mathematical fields as one of world history’s outstand-
ing mathematicians. His PhD supervisor was David Hilbert. Most notably, von
Neumann was a pioneer of the modern digital computer and the application of
operator theory to quantum mechanics, a member of the Manhattan Project and
the first faculty of the Institute for Advanced Study at Princeton (along with
Albert Einstein and Kurt Gödel), and creator of game theory and the concept of
cellular automata. Along with Edward Teller and Stanislaw Ulam, von Neumann
worked out key steps in the nuclear physics involved in thermonuclear reactions
and the hydrogen bomb.

109 Frank Rosenblatt (1928–1969) was a New York City born computer scientist who
completed the Perceptron (the simplest kind of feedforward neural network: a
linear classifier) on MARK 1, computer at Cornell University in 1960. This was
the first computer that could learn new skills by trial and error, using a type of
neural network that simulates human thought processes.

Rosenblatt’s perceptrons were initially simulated on an IBM 704 computer
at Cornell Aeronautical Laboratory in 1957. By the study of neural networks
such as the Perceptron, Rosenblatt hoped that “the fundamental laws of orga-
nization which are common to all information handling systems, machines and
men included, may eventually be understood.”
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book ‘Perceptrons’, which demonstrated the limits of simple neural nets. Alain
Colmerauer developed the Prolog computer language. Ted Shortliffe demon-
strated the power of rule–based systems for knowledge representation and
inference in medical diagnosis and therapy in what is sometimes called the
first expert system. Hans Moravec developed the first computer–controlled
vehicle to autonomously negotiate cluttered obstacle courses.

In the 1980s, neural networks became widely used due to the backpropa-
gation algorithm, first described by Paul Werbos in 1974. The team of Ernst
Dickmanns built the first robot cars, driving up to 55 mph on empty streets.
The 1990s marked major achievements in many areas of AI and demonstra-
tions of various applications. In 1995, one of Dickmanns’ robot cars drove
more than 1000 miles in traffic at up to 110 mph. Deep Blue, a chess–playing
computer, beat Garry Kasparov in a famous six–game match in 1997. DARPA
stated that the costs saved by implementing AI methods for scheduling units in
the first Persian Gulf War have repaid the US government’s entire investment
in AI research since the 1950s. Honda built the first prototypes of humanoid
robots.

During the 1990s and 2000s AI has become very influenced by probabil-
ity theory and statistics. Bayesian networks are the focus of this movement,
providing links to more rigorous topics in statistics and engineering such as
Markov models and Kalman filters, and bridging the old divide between ‘neat’
and ‘scruffy’ approaches. The last few years have also seen a big interest in
game theory applied to AI decision making. This new school of AI is some-
times called ‘machine learning’. After the September 11, 2001 attacks there
has been much renewed interest and funding for threat–detection AI systems,
including machine vision research and data–mining. The DARPA Grand Chal-
lenge is a race for a $2 million prize where cars drive themselves across several
hundred miles of challenging desert terrain without any communication with
humans, using GPS, computers and a sophisticated array of sensors. In 2005
the winning vehicles completed all 132 miles of the course.

Cybernetics, General Systems Theory and Bionics

Closely related to AI is cybernetics, which is the study of communication and
control, typically involving regulatory feedback, in living organisms, in ma-
chines and organisations and their combinations, for example, in sociotechni-
cal systems, computer controlled machines such as automata and robots. The
term cybernetics stems from the Greek ‘kybernetes’, which means steersman,
governor, pilot, or rudder, which has the same root as government. It is an
earlier but still–used generic term for many of the subject matters that are
increasingly subject to specialization under the headings of adaptive systems,
artificial intelligence, complex systems, complexity theory, control systems,
decision support systems, dynamical systems, information theory, learning
organizations, mathematical systems theory, operations research, simulation,
and systems engineering.
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Contemporary cybernetics began as an interdisciplinary study connect-
ing the fields of control systems, electrical network theory, logic modeling,
and neuroscience in the 1940s. The name cybernetics was coined by Norbert
Wiener110 to denote the study of ‘teleological mechanisms’ and was popular-
ized through his book ‘Cybernetics, or Control and Communication in the
Animal and Machine’ (MIT, 1948).

The study of teleological mechanisms in machines with corrective feedback
dates from as far back as the late 1700s when James Watt’s steam engine
was equipped with a governor, a centrifugal feedback valve for controlling the
speed of the engine. In 1868 James Clerk Maxwell111 published a theoretical
article on governors. In 1935 Russian physiologist P.K. Anokhin published a
book ‘Physiology of Functional Systems’ on in which the concept of feedback
(‘back afferentation’) was studied. In the 1940s the study and mathematical
modelling of regulatory processes became a continuing research effort and
two key articles were published in 1943. These papers were ‘Behavior, Purpose
and Teleology’ by Rosenblueth, Wiener and Bigelow; and the paper ‘A Logical
Calculus of the Ideas Immanent in Nervous Activity’ by McCulloch and Pitts.
110 Norbert Wiener (November 26, 1894 – March 18, 1964) was an American math-

ematician and applied mathematician, especially in the field of electronics engi-
neering. He was a pioneer in the study of stochastic processes (random processes)
and noise processes, especially in the field of electronic communication systems
and control systems. He is known as the founder of cybernetics. He coined the
term ‘cybernetics’ in his book ‘Cybernetics or Control and Communication in
the Animal and the Machine’ (MIT Press, 1948), widely recognized as one of
the most important books of contemporary scientific thinking. He is also con-
sidered by some to be the first American–born–and–trained mathematician on
an intellectual par with the traditional bastions of mathematical learning in Eu-
rope. He thus represents a watershed period in American mathematics. Wiener
did much valuable work in defense systems for the United States, particularly
during World War II and the Cold War.

111 James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathe-
matical physicist, born in Edinburgh. Maxwell formulated a set of equations ex-
pressing the basic laws of electricity and magnetism and developed the Maxwell
distribution in the kinetic theory of gases. He is also credited with developing
the first permanent colour photograph in 1861.

Maxwell had one of the finest mathematical minds of any theoretical physicist
of his time. Maxwell is widely regarded as the nineteenth century scientist who
had the greatest influence on twentieth century physics, making contributions
to the fundamental models of nature. In 1931, on the centennial anniversary of
Maxwell’s birthday, Einstein described Maxwell’s work as the “most profound
and the most fruitful that physics has experienced since the time of Newton.”

Algebraic mathematics with elements of geometry are a feature of much of
Maxwell’s work. Maxwell demonstrated that electric and magnetic forces are
two complementary aspects of electromagnetism. He showed that electric and
magnetic fields travel through space, in the form of waves, at a constant velocity
of 3.0 × 108 m/s. He also proposed that light was a form of electromagnetic
radiation.
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Wiener himself popularized the social implications of cybernetics, drawing
analogies between automatic systems such as a regulated steam engine and
human institutions in his best–selling ‘The Human Use of Human Beings:
Cybernetics and Society’ (Houghton–Mifflin, 1950).

In scholarly terms, cybernetics is the study of systems and control in an
abstracted sense, that is, it is not grounded in any one empirical field. The
emphasis is on the functional relations that hold between the different parts
of a system, rather than the parts themselves. These relations include the
transfer of information, and circular relations (feedbacks) that result in emer-
gent phenomena such as self–organization. The main innovation of cybernetics
was the creation of a scientific discipline focused on goals: an understanding
of goal–directedness or purpose, resulting from a negative feedback loop which
minimizes the deviation between the perceived situation and the desired sit-
uation (goal). As mechanistic as that sounds, cybernetics has the scope and
rigor to encompass the human social interactions of agreement and collabo-
ration that, after all, require goals and feedback to attain (see, e.g., [Ash56]).
Related to cybernetics are: engineering cybernetics, quantum cybernetics, bi-
ological cybernetics, medical cybernetics, psychocybernetics, sociocybernetics
and organizational cybernetics.

On the other hand, general systems theory is an interdisciplinary field
that studies the properties of systems as a whole. It was founded by Lud-
wig von Bertalanffy, Ross W. Ashby, Margaret Mead, Gregory Bateson and
others in the 1950s. Also, John von Neumann discovered cellular automata
and self–reproducing systems without computers, with only pencil and paper.
Aleksandr Lyapunov and Jules Henri Poincaré worked on the foundations of
chaos theory without any computer at all. Ilya Prigogine, Prigogine has stud-
ied ‘far from equilbrium systems’ for emergent properties, suggesting that they
offer analogues for living systems.

Systems theory brought together theoretical concepts and principles from
ontology, philosophy of science, physics, biology and engineering and later
found applications in numerous fields including geography, sociology, politi-
cal science, organizational theory, management, psychotherapy (within fam-
ily systems therapy) and economics among others. Cybernetics is a closely
related field. In recent times systems science, systemics and complex systems
have been used as synonyms.

Cybernetics, catastrophe theory and chaos theory have the common goal to
explain complex systems that consist of a large number of mutually interacting
and interrelated parts in terms of those interactions. Cellular automata (CA),
neural networks (NN), artificial intelligence (AI), and artificial life (ALife) are
related fields, but they do not try to describe general(universal) complex (sin-
gular) systems. The best context to compare the different “C”-Theories about
complex systems is historical, which emphasizes different tools and method-
ologies, from pure mathematics in the beginning to pure computer science
now. Since the beginning of chaos theory when Edward Lorenz accidentally
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discovered a strange attractor112 with his computer, computers have become
an indispensable source of information. One could not imagine the study of
complex systems without computers today.

In recent years, the field of systems thinking has been developed to provide
techniques for studying systems in holistic ways to supplement more tradi-
tional reductionistic methods. In this more recent tradition, systems theory is
considered by some as a humanistic extension of the natural sciences.

Finally, bionics is the application of methods and systems found in nature
to the study and design of engineering systems and modern technology. Also
a short form of biomechanics, the word ‘bionic’ is actually a portmanteau
formed from biology and electronic.

The transfer of technology between lifeforms and synthetic constructs is
desirable because evolutionary pressure typically forces natural systems to be-
come highly optimized and efficient. A classical example is the development
of dirt– and water–repellent paint (coating) from the observation that the
surface of the lotus flower plant is practically unsticky for anything (the lotus
effect). Examples of bionics in engineering include the hulls of boats imitat-
ing the thick skin of dolphins, sonar, radar, and medical ultrasound imaging
imitating the echolocation of bats.

In the field of computer science, the study of bionics has produced cyber-
netics, artificial neurons, artificial neural networks, and swarm intelligence.
Evolutionary computation was also motivated by bionics ideas but it took the
idea further by simulating evolution in silico and producing well-optimized
solutions that had never appeared in nature.

Often, the study of bionics emphasizes imitation of a biological structure
rather than just an implementation of its function. The conscious copying of
examples and mechanisms from natural organisms and ecologies is a form of
applied case–based reasoning, treating nature itself as a database of solutions
that already work. Proponents argue that the selective pressure placed on all
natural life forms minimizes and removes failures.

Roughly, we can distinguish three biological levels in biology after which
technology can be modelled:

1. mimicking natural methods of manufacture of chemical compounds to
create new ones;

2. imitating mechanisms found in nature; and
3. studying organizational principles from social behaviour of organisms,

such as the flocking behaviour of birds or the emergent behaviour of bees
and ants.

112 Strange attractor is an attracting set that has zero measure in the embedding
phase–space and has fractal dimension. Trajectories within a strange attractor
appear to skip around randomly (see Chapter 2 for details).
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Turing Test and General AI

Recall that the Turing test is a proposal for a test of a machine’s capability
to perform human–like conversation. Described by Alan Turing113 in his 1950
paper ‘Computing machinery and intelligence,’114 it proceeds as follows: a hu-
man judge engages in a natural language conversation with two other parties,
one a human and the other a machine; if the judge cannot reliably tell which
is which, then the machine is said to pass the test. It is assumed that both
the human and the machine try to appear human. In order to keep the test
setting simple and universal (to explicitly test the linguistic capability of the
machine instead of its ability to render words into audio), the conversation is
usually limited to a text–only channel such as a teletype machine as Turing
suggested or, more recently IRC or instant messaging.

General artificial intelligence research aims to create AI that can replicate
human intelligence completely, often called an Artificial General Intelligence
(AGI) to distinguish from less ambitious AI projects. As yet, researchers have
devoted little attention to AGI, many claiming intelligence is too complex
to be completely replicated. Some small groups of computer scientists are
doing some AGI research, however. By most measures, demonstrated progress
towards strong AI has been limited, as no system can pass a full Turing test
for unlimited amounts of time, although some AI systems can at least fool
some people initially now (see the Loebner prize winners). Few active AI
researchers are prepared to publicly predict whether, or when, such systems
will be developed, perhaps due to the failure of bold, unfulfilled predictions
for AI research progress in past years. There is also the problem of the AI

113 Alan Mathison Turing, OBE (June 23, 1912 – June 7, 1954) was an English
mathematician, logician, and cryptographer. Turing is often considered to be
the father of modern computer science.

With the Turing test, Turing made a significant and characteristically
provocative contribution to the debate regarding artificial intelligence: whether
it will ever be possible to say that a machine is conscious and can think. He pro-
vided an influential formalisation of the concept of algorithm and computation
with the Turing machine, formulating the now widely accepted “Turing” version
of the Church–Turing thesis, namely that any practical computing model has
either the equivalent or a subset of the capabilities of a Turing machine. During
World War II, Turing worked at Bletchley Park, Britain’s codebreaking centre
and was for a time head of Hut 8, the section responsible for German Naval
cryptanalysis. He devised a number of techniques for breaking German ciphers,
including the method of the bombe, an electromechanical machine which could
find settings for the Enigma machine.

114 In Turing’s paper, the term ‘Imitation Game’ is used for his proposed test as
well as the party game for men and women. The name ‘Turing test’ may have
been invented, and was certainly publicized, by Arthur C. Clarke in the science–
fiction novel 2001: A Space Odyssey (1968), where it is applied to the computer
HAL 9000.
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effect, where any achievement by a machine tends to be deprecated as a sign
of true intelligence.

Computer Simulation of Human Brain

This is seen by many as the quickest means of achieving Strong AI, as it
doesn’t require complete understanding. It would require three things:

1. Hardware: an extremely powerful computer would be required for such a
model. Futurist Ray Kurzweil estimates 1 million MIPS. If Moore’s law
continues, this will be available for £1000 by 2020.

2. Software: this is usually considered the hard part. It assumes that the
human mind is the central nervous system and is governed by physical
laws.

3. Understanding: finally, it requires sufficient understanding thereof to be
able to model it mathematically. This could be done either by understand-
ing the central nervous system, or by mapping and copying it. Neuro–
imaging technologies are improving rapidly, and Kurzweil predicts that a
map of sufficient quality will become available on a similar timescale to
the required computing power.

Once such a model is built, it will be easily altered and thus open to
trial and error experimentation. This is likely to lead to huge advances in
understanding, allowing the model’s intelligence to be improved/motivations
altered. Current research in the area is using one of the fastest supercomputer
architectures in the world, namely the Blue Gene platform created by IBM
to simulate a single Neocortical Column consisting of approximately 60,000
neurons and 5km of interconnecting synapses. The eventual goal of the project
is to use supercomputers to simulate an entire brain.

In opposition to human–brain simulation, the direct approach attempts to
achieve AI directly without imitating nature. By comparison, early attempts
to construct flying machines modelled them after birds, but modern aircraft
do not look like birds. The main question in the direct approach is: ‘What
is AI?’. The most famous definition of AI was the operational one proposed
by Alan Turing in his ‘Turing test’ proposal (see footnote above). There have
been very few attempts to create such definition since (some of them are in
the AI Project). John McCarthy115 stated in his work ‘What is AI?’ that we

115 John McCarthy (born September 4, 1927, in Boston, Massachusetts, sometimes
known affectionately as Uncle John McCarthy), is a prominent computer scien-
tist who received the Turing Award in 1971 for his major contributions to the
field of Artificial Intelligence. In fact, he was responsible for the coining of the
term ‘Artificial Intelligence’ in his 1955 proposal for 1956 Dartmouth Conference.

McCarthy championed expressing knowledge declaratively in mathematical
logic for Artificial Intelligence. An alternative school of thought emerged at MIT
and elsewhere proposing the ‘procedural embedding of knowledge’ using high
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still do not have a solid definition of intelligence (compare with the previous
section).

Machine Learning

As a broad AI–subfield, machine learning (ML) is concerned with the devel-
opment of algorithms and techniques that allow computers to ‘learn’. At a
general level, there are two types of learning: inductive, and deductive. In-
ductive machine learning methods create computer programs by extracting
rules and patterns out of massive data sets. It should be noted that although
pattern identification is important to ML, without rule extraction a process
falls more accurately in the field of data mining .

Machine learning overlaps heavily with statistics. In fact, many machine
learning algorithms have been found to have direct counterparts with statis-
tics. For example, boosting is now widely thought to be a form of stagewise
regression using a specific type of loss function.

Machine learning has a wide spectrum of applications including search en-
gines, medical diagnosis, bioinformatics and cheminformatics, detecting credit
card fraud, stock market analysis, classifying DNA sequences, speech and
handwriting recognition, object recognition in computer vision, game playing
and robot locomotion.

Some machine learning systems attempt to eliminate the need for hu-
man intuition in the analysis of the data, while others adopt a collaborative
approach between human and machine. Human intuition cannot be entirely
eliminated since the designer of the system must specify how the data are
to be represented and what mechanisms will be used to search for a char-
acterization of the data. Machine learning can be viewed as an attempt to
automate parts of the scientific method. Some machine learning researchers
create methods within the framework of Bayesian statistics.

level plans, assertions, and goals first in Planner and later in the Scientific Com-
munity Metaphor. The resulting controversy is still ongoing and the subject
matter of research.

McCarthy invented the Lisp programming language and published its design
in Communications of the ACM in 1960. He helped to motivate the creation of
Project MAC at MIT, but left MIT for Stanford University in 1962, where he
helped set up the Stanford AI Laboratory, for many years a friendly rival to
Project MAC.

In 1961, he was the first to publicly suggest (in a speech given to celebrate
MIT’s centennial) that computer time–sharing technology might lead to a future
in which computing power and even specific applications could be sold through
the utility business model (like water or electricity). This idea of a computer or
information utility was very popular in the late 1960s, but faded by the mid–
1970s as it became clear that the hardware, software and telecommunications
technologies of the time were simply not ready. However, since 2000, the idea
has resurfaced in new forms.
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Machine learning algorithms are organized into a taxonomy, based on the
desired outcome of the algorithm. Common algorithm types include:

1. supervised learning , where the algorithm generates a function that maps
inputs to desired outputs. One standard formulation of the supervised
learning task is the classification problem: the learner is required to learn
(to approximate the behavior of) a function which maps a vector into
one of several classes by looking at several input–output examples of the
function.

2. unsupervised/self–organized learning, which models a set of inputs: labeled
examples are not available.

3. semi–supervised learning , which combines both labeled and unlabeled ex-
amples to generate an appropriate function or classifier.

4. reinforcement learning , where the algorithm learns a policy of how to
act given an observation of the world. Every action has some impact in
the environment, and the environment provides feedback that guides the
learning algorithm.

5. transduction, similar to supervised learning, but does not explicitly con-
struct a function: instead, tries to predict new outputs based on training
inputs, training outputs, and new inputs.

6. learning to learn, where the algorithm learns its own inductive bias based
on previous experience.

Symbol–Based Learning

The symbol–based learning relies on learning algorithms that can be charac-
terized into the following five dimensions [Lug02]:

– data and goals : here the learning problem is described according to the
goals of the learner and the data it is initially given;

– knowledge representation: using representation languages with programs to
store the knowledge learned by the system in a logical way;

– learning operations: an agent is given a set of training instances and it is
tasked to construct a generalization, heuristic rule or a plan that satisfies
its goals;

– concept space: the representation language along with the learning opera-
tions define a space of possible concept definitions, the learner needs to
search this space to find the desired concept. The complexity of this con-
cept space is used to measure how difficult the problem is; and

– heuristic search: heuristics are used to commit to a particular direction
when searching the concept space.

Connectionist Learning

The connectionist learning is performed using artificial neural networks (see
subsection below), which are systems comprised of a large number of in-
terconnected artificial neurons. They have been widely used for (see, e.g.,
[Hay94, Kos92, Lug02]):
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– classification: deciding the category or grouping where an input value
belongs;

– pattern recognition: identifying a structure in sometimes noisy data;
– memory recall : addressing the content in memory;
– prediction/forecasting : identifying an effect from different causes;
– optimization: finding the best organization within different constraints; and
– noise filtering : separating a signal from the background noise or removing

irrelevant components to a signal.

The knowledge of the network is encapsulated within the organization and
interaction of the neurons. Specifically, the global properties of neurons are
characterized as:

– network topology : the topology of the network is the pattern of connections
between neurons;

– learning algorithm: the algorithm used to change the weight between dif-
ferent connections; and

– encoding scheme: the interpretation of input data presented to the network
and output data obtained from the network.

Learning is achieved by modifying the structure of the neural network,
via adjusting weights, in order to map input combinations to required out-
puts. There are two general classes of learning algorithms for training neural
networks, they are supervised and unsupervised learning. Supervised learning
requires the neural network to have a set of training data, consisting of the
set of data to be learned as well as the corresponding answer. The data set
is repeatedly presented to the neural network, in turn, the network adapts by
changing the weights of connections between the neurons until the network
output corresponds closely to the required answers. The goal of supervised
learning is to find a model or mapping that will correctly associate its inputs
with its targets. Supervised learning is suited to applications when the out-
puts expected from the network are well known. This allows the designer (or
another fully trained network) to provide feedback.

In the case of unsupervised learning the target value is not provided and
the information in the training data set is continuously presented until some
convergence criteria is satisfied. This involves monitoring the output of the
network and stopping its training when some desired output is observed. The
main difference to supervised learning is that the desired output is not known
when the training starts. During training, the network has to continuously
adapt and change its output until it demonstrates a useful output behavior
at which time it receives a single feedback to stop. The input data provided
to the network will need to include sufficient information so that the problem
is unambiguous. Unsupervised learning is suitable in situations where there is
no clear–cut answer to a given problem.

The biggest problem of using neural networks with agents with that the
concepts cannot intuitively fit within the agent oriented paradigm. However,
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neural networks have been used to implement part of a system such as pattern
recognition and classification. It is also believed that neural learning concepts
and techniques will play an important role in future research [Lug02].

Computational Learning Theory

The performance and computational analysis of machine learning algorithms
is a branch of statistics known as computational learning theory . Machine
learning algorithms take a training set, form hypotheses or models, and make
predictions about the future. Because the training set is finite and the future
is uncertain, learning theory usually does not yield absolute guarantees of
performance of the algorithms. Instead, probabilistic bounds on the perfor-
mance of machine learning algorithms are quite common. In addition to per-
formance bounds, computational learning theorists study the time complexity
and feasibility of learning. In computational learning theory, a computation is
considered feasible if it can be done in polynomial time. There are two kinds
of time complexity results (see, e.g., [Ang92]):

1. positive results, showing that a certain class of functions is learnable in
polynomial time.

2. negative results, showing that certain classes cannot be learned in poly-
nomial time.

Negative results are proven only by assumption. The assumptions that are
common in negative results are:

(i) computational complexity : P 
= NP ,116 and

116 The relationship between the complexity classes P and NP is an unsolved ques-
tion in theoretical computer science. It is generally agreed to be the most impor-
tant such unsolved problem, and one of the most important unsolved problems in
all of mathematics. The Clay Mathematics Institute has offered a US $1,000,000
prize for a correct solution.

In essence, the P = NP question asks: if positive solutions to a YES/NO
problem can be verified quickly, can the answers also be computed quickly?
Consider, for instance, the subset–sum problem, an example of a problem which
is easy to verify, but is believed (but not proved) to be difficult to compute the
answer. Given a set of integers, does any subset of them sum to 0? For instance,
does a subset of the set {−2,−3, 15, 14, 7,−10} add up to 0? The answer is YES,
though it may take a little while to find a subset that does – and if the set was
larger, it might take a very long time to find a subset that does. On the other
hand, if someone claims that the answer is “YES, because {−2,−3,−10, 15}
add up to zero,” then we can quickly check that with a few additions. Verifying
that the subset adds up to zero is much faster than finding the subset in the
first place. The information needed to verify a positive answer is also called a
certificate. So we conclude that given the right certificates, positive answers to
our problem can be verified quickly (i.e. in polynomial time) and that’s why this
problem is in NP .
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(ii) cryptography :117 one–way functions exist.
Recall that a one–way function is a function that is easy to calculate but

hard to invert, i.e., it is difficult to calculate the input to the function given its
output. The precise meanings of ‘easy’ and ‘hard’ can be specified mathemat-
ically. With rare exceptions, almost the entire field of public key cryptography
rests on the existence of one–way functions. Formally, two variants of one–way
functions are defined: strong and weak one–way functions:

An answer to the P = NP question would determine whether problems
like SUBSET–SUM are really harder to compute than to verify (this would be
the case if P does not equal NP ), or that they are as easy to compute as to
verify (this would be the case if P = NP ). The answer would apply to all such
problems, not just the specific example of SUBSET–SUM.

The restriction to YES/NO problems doesn’t really make a difference; even
if we allow more complicated answers, the resulting problem (whether FP =
FNP ) is equivalent.

117 Recall that cryptography (or cryptology; derived from Greek ‘kryptós–hidden’
and ‘gráfein–to write’) is a mathematical discipline concerned with information
security and related issues, particularly encryption, authentication, and access
control. Its purpose is to hide the meaning of a message rather than its existence.
In modern times, it has also branched out into computer science. Cryptography
is central to the techniques used in computer and network security for such
things as access control and information confidentiality . Cryptography is used in
many applications that touch everyday life; the security of ATM cards, computer
passwords, and electronic commerce all depend on cryptography.

The so–called symmetric–key cryptography refers to encryption methods in
which both the sender and receiver share the same key (or, less commonly, in
which their keys are different, but related in an easily computable way). This
was the only kind of encryption publicly known until 1976.

The modern study of symmetric–key ciphers relates mainly to the study of
block ciphers and stream ciphers and to their applications (see, e.g., [Gol01]).
A block cipher is the modern embodiment of Alberti’s polyalphabetic cipher:
block ciphers take as input a block of plaintext and a key, and output a block
of ciphertext of the same size. Block ciphers are used in a mode of operation
to implement a cryptosystem. DES and AES are block ciphers which have been
designated cryptography standards by the US government (though DES’s des-
ignation was eventually withdrawn after the AES was adopted)[8]. Despite its
delisting as an official standard, DES (especially its still-approved and much
more secure triple–DES variant) remains quite popular; it is used across a wide
range of applications, from ATM encryption to e–mail privacy and secure re-
mote access. Many other block ciphers have been designed and released, with
considerable variation in quality. Stream ciphers, in contrast to the ‘block’ type,
create an arbitrarily long stream of key material, which is combined with the
plaintext bit by bit or character by character, somewhat like the one–time pad.
In a stream cipher, the output stream is created based on an internal state which
changes as the cipher operates. That state’s change is controlled by the key, and,
in some stream ciphers, by the plaintext stream as well.
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1. Strong one–way functions. A function

f : {0, 1}∗ → {0, 1}∗

is called (strongly) one–way if the following two conditions hold: (i) easy
to compute: there exists a (deterministic) polynomial–time algorithm A,
such that for input x algorithm A outputs f(x) (i.e., A(x) = f(x)); and
(ii) hard to invert: for any probabilistic polynomial–time algorithm A′,
and any polynomial p(·), and for sufficiently large n,

P (A′(f(Un), 1n) ∈ f−1|f(Un)) <
1

p(n)
,

where Un denotes a random variable uniformly distributed over {0, 1}n.
Hence, the probability in the second condition is taken over all the possible
values assigned to Un and all possible internal coin tosses of A′ with
uniform probability distribution. In addition to an input in the range of
f the inverting algorithm is also given the desired length of the output
in unary notation. The main reason for this convention is to rule out
the possibility that a function is considered one–way merely because the
inverting algorithm does not have enough time to print the output. The
left hand part of the comparison is quite easy to understand: it is the
probability, that A′ finds any value U , with property f(U) = f(Un).
So, basically, the hard–to–invert condition requires this probability to be
negligibly small.

2. Weak one–way functions only require that all efficient inverting algorithms
fail with some non–negligible probability. A function

f : {0, 1}∗ → {0, 1}∗

is called weakly one–way if the following two conditions hold: (i) easy to
compute: as in the definition of strong one–way functionl and (ii) slightly–
hard to invert: There exists a polynomial such that for every probabilistic
polynomial–time algorithm, A′, and all sufficiently large n’s,

P (A′(f(Un), 1n) 
∈ f−1|f(Un)) >
1

p(n)

It is not known whether one–way functions exist. In fact, their existence
would imply P 
= NP , resolving the foremost unsolved question of computer
science. However, it is not clear if P 
= NP implies the existence of one–
way functions. It can be proved that weak one–way functions exist if and
only if strong one-way functions do. Thus, as far as the mere existence of
one–way function goes, the notions of weak and strong one–way functions are
equivalent. It is known that the existence of one–way functions implies the
existence of many other useful cryptographic primitives, including:
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1. Pseudorandom bit generators;
2. Pseudorandom function families;
3. Digital signature schemes (secure against adaptive chosen–message at-

tack).

In particular, a trapdoor one–way function (or, trapdoor permutation) is
a special kind of one–way function. Such a function is hard to invert unless
some secret information, called the trapdoor, is known. RSA is a well known
example of a function believed to belong to this class.

Now, there are several different approaches to computational learning the-
ory, which are often mathematically incompatible. This incompatibility arises
from using different inference principles: principles which tell us how to gen-
eralize from limited data. The incompatibility also arises from differing def-
initions of probability (see frequency probability, Bayesian probability). The
different approaches include:

1. probably approximately correct learning (PAC learning),118 proposed by
Leslie Valiant;

2. statistical learning theory (or VC theory),119 proposed by Vladimir
Vapnik;

118 Probably approximately correct learning (PAC learning) is a framework of learn-
ing that was proposed by Leslie Valiant in his paper ‘A theory of the learnable’.
In this framework the learner gets samples that are classified according to a
function from a certain class. The aim of the learner is to find a bounded approx-
imation (approximately) of the function with high probability (probably). We
demand the learner to be able to learn the concept given any arbitrary approx-
imation ratio, probability of success or distribution of the samples. The model
was further extended to treat noise (misclassified samples). The PAC framework
allowed accurate mathematical analysis of learning. Also critical are definitions
of efficiency. In particular, we are interested in finding efficient classifiers (time
and space requirements bounded to a polynomial of the example size) with effi-
cient learning procedures (requiring an example count bounded to a polynomial
of the concept size, modified by the approximation and likelihood bounds).

119 Vapnik–Chervonenkis theory (also known as VC theory, or statistical learning
theory) was developed during 1960–1990 by Vladimir Vapnik and Alexey Cher-
vonenkis. The theory is a form of computational learning theory, which attempts
to explain the learning process from a statistical point of view. VC theory covers
four parts:

a) Theory of consistency of learning processes – what are (necessary and sufficient)
conditions for consistency of a learning process based on the empirical risk
minimization principle?

b) Nonasymptotic theory of the rate of convergence of learning processes – how
fast is the rate of convergence of the learning process?

c) Theory of controlling the generalization ability of learning processes – how can
one control the rate of convergence (the generalization ability) of the learning
process?

d) Theory of constructing learning machines – how can one construct algorithms
that can control the generalization ability?
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3. Bayesian inference (see below), arising from work first done by Thomas
Bayes;120 and

4. algorithmic learning theory ,121 from the work of Mark Gold.

The last part of VC theory introduced a well–known learning algorithm: the
support vector machine. VC theory contains important concepts such as the VC
dimension and structural risk minimization.

120 Thomas Bayes (c. 1702 – April 17, 1761) was a British mathematician and Pres-
byterian minister, known for having formulated a special case of Bayes’ theorem,
which was published posthumously. Bayes’ solution to a problem of ‘inverse prob-
ability’ was presented in the Essay Towards Solving a Problem in the Doctrine
of Chances (1764), published posthumously by his friend Richard Price in the
Philosophical Transactions of the Royal Society of London. This essay contains
a statement of a special case of Bayes’ theorem.

Bayesian probability is the name given to several related interpretations of
probability, which have in common the application of probability to any kind of
statement, not just those involving random variables. ‘Bayesian’ has been used
in this sense since about 1950.

It is not at all clear that Bayes himself would have embraced the very broad
interpretation now called Bayesian. It is difficult to assess Bayes’ philosophical
views on probability, as the only direct evidence is his essay, which does not go
into questions of interpretation. In the essay, Bayes defines probability as follows:

“The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed,
and the chance of the thing expected upon it’s happening.”

In modern utility theory we would say that expected utility is the probability
of an event times the payoff received in case of that event. Rearranging that to
solve for the probability, we get Bayes’ definition. As Stigler points out, this is
a subjective definition, and does not require repeated events; however, it does
require that the event in question be observable, for otherwise it could never be
said to have ‘happened’ (some would argue, however, that things can happen
without being observable).

The search engine Google, and the information retrieval company Autonomy
Systems, employ Bayesian principles to provide probable results to searches.
Microsoft is reported as using Bayesian probability in its future Notification
Platform to filter unwanted messages.

In statistics, empirical Bayes methods involve:

a) An ‘underlying’ probability distribution of some unobservable quantity assigned
to each member of a statistical population. This quantity is a random variable
if a member of the population is chosen at random. The probability distribution
of this random variable is not known, and is thought of as a property of the
population.

b) An observable quantity assigned to each member of the population. When a
random sample is taken from the population, it is desired first to estimate the
“underlying” probability distribution, and then to estimate the value of the
unobservable quantity assigned to each member of the sample.

121 Algorithmic learning theory (or inductive inference) is a framework for machine
learning, introduced in E.M. Gold’s seminal paper ‘Language identification in the
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Computational learning theory has led to practical algorithms. For exam-
ple, PAC theory inspired boosting, VC theory led to support vector machines,
and Bayesian inference led to Bayesian belief networks (see below).

limit’ [Gol67]. The objective of language identification is for a machine running
one program to be capable of developing another program by which any given
sentence can be tested to determine whether it is ‘grammatical’ or ‘ungram-
matical’. The language being learned need not be English or any other natural
language – in fact the definition of ‘grammatical’ can be absolutely anything
known to the tester.

In the framework of algorithmic learning theory, the tester gives the learner
an example sentence at each step, and the learner responds with a hypothesis,
which is a suggested program to determine grammatical correctness. It is required
of the tester that every possible sentence (grammatical or not) appears in the
list eventually, but no particular order is required. It is required of the learner
that at each step the hypothesis must be correct for all the sentences so far. A
particular learner is said to be able to ‘learn a language in the limit’ if there
is a certain number of steps beyond which its hypothesis no longer changes. At
this point it has indeed learned the language, because every possible sentence
appears somewhere in the sequence of inputs (past or future), and the hypothesis
is correct for all inputs (past or future), so the hypothesis is correct for every
sentence. The learner is not required to be able to tell when it has reached a
correct hypothesis, all that is required is that it be true.

Gold showed that any language which is defined by a Turing machine pro-
gram can be learned in the limit by another Turing–complete machine using
enumeration. This is done by the learner testing all possible Turing machine
programs in turn until one is found which is correct so far; this forms the hy-
pothesis for the current step. Eventually, the correct program will be reached,
after which the hypothesis will never change again (but note that the learner
does not know that it won’t need to change).

Gold also showed that if the learner is given only positive examples (that is,
only grammatical sentences appear in the input, not ungrammatical sentences),
then the language can only be guaranteed to be learned in the limit if there are
only a finite number of possible sentences in the language (this is possible if, for
example, sentences are known to be of limited length).

Language identification in the limit is a very theoretical model. It does not
allow for limits of runtime or computer memory which can occur in practice, and
the enumeration method may fail if there are errors in the input. However the
framework is very powerful, because if these strict conditions are maintained,
it allows the learning of any program known to be computable. This is because
a Turing machine program can be written to mimic any program in any con-
ventional programming language. Other frameworks of learning consider a much
more restricted class of function than Turing machines, but complete the learning
more quickly (in polynomial time). An example of such a framework is probably
approximately correct learning .
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Social and Emergent Learning

the social and emergent learning focuses on learning algorithms using the
underlying concept of evolution, in other words, shaping a population P (t) of
candidate solutions xt

i through the survival of the fittest members at time t.
P (t) is defined as:

P (t) = {xt
1, x

t
2, . . . , x

t
n}.

The attributes of a solution are represented with a particular pattern that
is initialized by a genetic algorithm. As time passes, solution candidates are
evaluated according to a specific fitness function that returns a measure of the
candidate’s fitness at that time. After evaluating all candidates the algorithm
selects pairs for recombination. Genetic operators from each individual are
used to produce new solutions that combine components of their parents.
The fitness of a candidate determines the extent to which it reproduces. The
general form of the genetic algorithm reads [Lug02]:

1. t← 0;
2. Initialize population P (t);
3. while termination condition not met do;
4. for each member xt

i within P (t) do;
5. fitness(member) ← FitnessFunction(member);
6. end for;
7. select members from P (t) based on fitness(member);
8. produce offspring of selected members using generic operators;
9. replace members of P (t) with offspring based on fitness;

10. t← t + 1;
11. end while.

Reinforcement Learning

Recall that reinforcement learning (RL) is designed to allow computers to
learn by trial and error . It is an approach to machine intelligence that com-
bines two disciplines to solve a problem that each discipline cannot solve on
its own. The first discipline, dynamic programming is a field in mathematics
used to solve problems of optimization and control. The second discipline,
supervised learning is discussed in section on neural networks below. In most
real–life problems the correct answers required with supervised learning are
not available, using RL the agent is simply provided with a reward–signal
that implicitly trains the agent as required, Figure 1.3 illustrates the agent–
environment interaction used with RL. The agent and the environment inter-
act in a discrete sequence of time steps t = 0, 1, 2, 3, ..., for each time step the
agent is presented with the current instance of the state st ∈ S where S is the
set of all possible states. The agent then uses the state to select and execute
an action at ∈ A(st) where A(st) is the set of all possible actions available
in state st. In the next time step the agent receives a reward rt+1 ∈ R, and
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Fig. 1.3. The agent–environment interface in reinforcement learning (adapted from
[SB98]).

is presented with a new state st+1. The system learns by mapping an action
to each state for a particular environment. A specific mapping of actions and
states is known as a policy π where πt(s, a) is the probability that at = a
if st = s. Actions available to agents can be separated into three different
categories [SB98]:

• Low–level actions (e.g., supplying voltage to a motor);
• High–level actions (e.g., making a decision);
• Mental actions (e.g., shifting attention focus);

An important point to note is that according to Figure 1.3, the reward
is calculated by the environment which is external to the agent. This is a
confusing concept because at first it seems that the designer of an RL sys-
tem is required to somehow implement something in the environment in order
to provide an agent with appropriate rewards. The RL literature overcome
this problem by explaining that the boundary between the agent and the en-
vironment need not be distinctively physical. The boundary of the agent is
shortened to include only the reasoning process, everything outside the rea-
soning process which includes all other components of the agent, are treated
as part of the environment. In the context of human reasoning, this is analo-
gous to treating the human brain as the agent and the entire human body as
part of the environment [Sio05].

Markov property of RL is concerned with the way that the state signal
received from the environment is represented. This is an important issue when
developing an RL system because all actions are directly dependent on the
state of the environment. In a causal system the response of the environment
for an action taken at time t will depend on all actions previously taken,
formally written as

PR{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, ..., s0, a0}.

However, the state signal should not be expected to represent everything
about the environment because certain information might be inaccessible or
intentionally made unavailable.

When the response of the environment depends only on the state and
action representations at time t, is it said to have the Markov property and
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can be defined as
PR{st+1 = s′, rt+1 = r|st, at}.

This means that the state signal is able to summarize all past sensations
compactly such that all relevant information is retained for making decisions.

When a reinforcement learning problem satisfies the Markov property it
is called a Markov decision process (MDP), additionally if the states and
actions sets are finite then it is called a finite MDP. In some cases even when
a particular problem is non–Markov it may be possible to consider it as an
approximation of an MDP for the basis for learning, in such cases the learning
performance will depend on how good the approximation is.

Reward function Ra
ss′ provides rewards depending on the actions of the

agent. The sequence of rewards received after time step t is rt+1, rt+2, rt+3, . . . ,
the agent learns by trying to maximize the sum of rewards received when
starting from an initial state and proceeding to a terminal state. An additional
concept is the one when an agent tries to maximize the expected discounted
return as

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0

γkrt+k+1,

where 0 ≤ γ ≤ 1. This involves the agent discounting future rewards by a
factor of γ.

There are two important classes of reward functions [HH97]. In the pure
delayed reward functions, rewards are all zero except at a terminal state where
the sign of the reward indicates whether it is a goal or penalty state. A classic
example of pure delayed rewards is the cart–pole problem, where the cart is
supporting a hinged inverted pendulum and the goal of the RL agent is to learn
to balance the pendulum in an upright position. The agent has two actions
in every state, move left and move right. The reinforcement function is zero
everywhere except when the pole falls or the cart hits the end of the track,
when the agent receives a -1 reward. Through such a set–up an agent will
eventually learn to balance the pole and avoid the negative reinforcement. On
the other hand, using the minimum–time reward functions it becomes possible
to find the shortest path to a goal state. The reward function returns a reward
of -1 for all actions except for the one leading to a terminal state for which the
value is again dependent on whether it is a goal or penalty state. Due to the
fact that the agent wants to maximize its rewards, it tries to achieve its goal
at the minimum number of actions and therefore learns the optimal policy. An
example used to illustrate this problem is driving a car up the hill problem,
which is caused by the car not having enough thrust to drive up the hill on
its own and therefore the RL agent needs to learn to use the momentum of
the car climb the hill.

Value function. The issue of how an agent knows what is a good action
is tackled using the value function V π(s) which provides a value of ‘goodness’
to states with respect to a specific policy. For MDPs, the information in a
value function can be formally defined by
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V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}

where Eπ{} denotes the expected value if the agent follows policy π, this
is called the state value function. Similarly, the action value function starting
from s, taking action a, and thereafter following policy π is defined by

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
.

A value function that returns the highest value for the best action in each
state is known as the optimal value function. V ∗(s) and Q∗(s, a) denote the
optimal state and action value functions and are given respectively by

V ∗(s) = max
a

∑
s′

P a
ss′ [Ra

ss′ + γV ∗(s′)],

Q∗(s, a) =
∑
s′

P a
ss′ [Ra

ss′ + γ max
a′

Q∗(s′, a′)].

Learning algorithms are concerned with how and when to update the
value function using provided rewards. The differences in algorithms range
depending on the required data that they need to operate, how they perform
calculations and finally when this update takes place. Learning algorithms
can be divided into three major classes: dynamic programming , Monte–Carlo
method and time–difference method .

Dynamic programming (DP) works by assigning blame to the many de-
cisions a system has to do while operating, this is done using two simple
principles. Firstly, if an action causes something bad to happen immediately,
then it learns not to do that action from that state again. Secondly, if all
actions from a certain state lead to a bad result then that state should also be
avoided. DP requires a perfect environment model in order to find a solution.
Therefore the environment must have finite sets of states S and actions A(s),
and also finite sets of transition probabilities P a

ss′ = Pr{st+1 = s′|st = s,
at = a} and immediate rewards Ra

ss′ = E{rt+1|st+1 = s′, st = s, at = a} for
all s ∈ S, a ∈ A(s). The value function in DP is updated using the equation

V π(s) =
∑

a

π(s, a)
∑
s′

P a
ss′ [Ra

ss′ + γV ∗(s′)].

Starting from the far right in this equation it can be seen that the reward
received for taking an action is added to the discounted value of the resulting
state of that action. However, a single action may have multiple effects in a
complex environment leading to multiple resulting states. The value of each
possible resulting state is multiplied by the corresponding transition probabil-
ity and all results are added to get the actual value of a single action. In order
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to calculate the value of the state itself, the value of each action is calculated
and added to produce the full value of the state.

The two biggest problems encountered when developing applications using
DP are [Sio05]: (i) the requirement of previously knowing all effects of actions
taken in the environment, and (ii) the exponential increase in computation
required to calculate the value of a state for only a small increase in possible
actions and/or effects.

Monte Carlo (MC) methods however do not assume complete knowledge
of the environment and require only experience through sampling sequences
of states, actions and rewards from direct interaction with an environment.
They are able to learn by segmenting sequences of actions into episodes and
averaging rewards received as shown by the following algorithm [SB98]:

1: π ←− policy to be evaluated;
2: V ←− an arbitrary state–value function;
3: Returns(s) ←− an empty list, for all s ∈ S;
4: while true do;
5: Generate an episode using;
6: for each state s appearing in the episode do;
7: R←− return following the first occurrence of s;
8: Append R to Returns(s);
9: V (s) ←− average(Returns(s));
10: end for;
11: end while;

Note that the algorithm requires the generation of an entire episode (line 5)
before performing any updates to the value function.

MC is also able to estimate action values rather than state values, in
this case policy evaluation is performed by estimating Qπ(s, a), which is the
expected return when starting in state s, taking action a, and thereafter fol-
lowing policy π. The relevant algorithm has the same structure as above.
When MC is used for approximating optimal policies, the generalized policy
iteration (GPI) is used. GPI maintains an approximate policy and an ap-
proximate value function, it then performs policy evaluation122 and policy
improvement123 repeatedly. This means that the value function is updated to
reflect the current policy while the policy is then improved with respect to the
value function. Using these two processes GPI is able to maximize its rewards.

Temporal–Difference (TD) learning combines ideas from both MC and
DP methods. Similarly to MC, TD methods are able to learn from experi-
ences and do not need a model of the environment’s dynamics. Like DP, TD
methods update the value function based in part on estimates of future states

122 Policy evaluation calculates the value function of a given policy.
123 Policy improvement changes the policy such that it takes the best actions as

dictated by the value function.
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(this feature is called bootstraping) and hence do not require waiting for the
episode to finish. An example of TD learning is the Sarsa algorithm [SB98]:

1: Initialize Q(s, a) arbitrarily;
2: for each episode do;
3: Initialize s;
4: Choose a from s using policy derived from Q;
5: for each state s in episode do;
6: Take action a, observe r, s′;
7: Choose a′ from s′ using policy derived from Q;
8: Q(s, a) ←− Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)];
9: s←− s′; a←− a′;
10: end for;
11: end for;

The most important part of the algorithm is line 8 where the action value
function is updated according to the rule:

Q(s, a) ←− Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)],

where α is called the step–size parameter and it controls how much the value
function is changed with each update. Sarsa is an on–policy TD–algorithm
and it requires the agent to select the following action before updating Q(s, a).
This is because Q(s, a) is calculated by subtracting Q(s, a) from the discounted
value of Q(s′, a′), which can only be known by selecting a′. Note that actions
are selected using a policy that is based on the value function and in turn the
value function is updated from the reward received.

Off–policy TD is able to approximate the optimal value function indepen-
dently of the policy being followed. An example is the Qlearning algorithm
[SB98]:

1: Initialize Q(s, a) arbitrarily;
2: for each episode do;
3: Initialize s;
4: for Each state s in episode do;
5: Choose a′ from s′ using policy derived from Q;
6: Take action a, observe r, s′;
7: Q(s, a) ←− Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)];
8: s←− s′;
9: end for;
10: end for;

The main difference between Sarsa and Qlearning lies in the calculation
that updates the value function, the Qlearning update function is given by

Q(s, a) ←− Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)].
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With Sarsa the value function is updated based on the next chosen action,
while with Qlearning it is updated based on the best known future action even
if that action is actually not selected in the next iteration of the algorithm.

Exploration versus exploitation. One of the more well known problems
within the RL literature is the exploration/exploitation problem. During its
operation the agent forms the action estimates Qπ(a) = Q∗(a). The best
known action at time t would therefore be

a∗t = arg max
a

Qt(a).

An agent is said to be exploring when it tries an new action for a particular
situation a 
= a∗t . The reward obtained from the execution of that action is
used to update the value function accordingly. An agent is said to be exploit-
ing its learning knowledge when it chooses the greedy action (i.e., best action)
indicated by its value function in a particular state a = a∗t . In this case, the
agent also updates the value function according to the reward received. This
may have two effects, firstly, the reward may be similar to the one expected
by the value function, which means that the value function is stabilizing on
the problem trying to be solved. Secondly, it may be totally different to the
value expected, therefore changing the value function and possibly the order-
ing of the actions with respect the their values. Hence, another action may
subsequently become the ‘best’ action for that state.

An action selection policy controls the exploitation/exploration that is per-
formed by the agent while learning. There are two types of policies commonly
considered. Firstly, the EGreedy policy explores by selecting actions randomly
but only for a defined percentage of all actions chosen as

at =
{

a∗t if PR = (1− ε),
random if PR = ε.

For example, if ε = 0.1 then the agent will explore only 10% of the time, the
rest of the time it chooses the greedy action.

Secondly, the SoftMax action selection is more complex. It makes its choice
based on the relation

at =
eQt(a)/τ∑n

b=1 eQt(a)/τ
,

where τ is called the temperature value. A high temperature selects all ac-
tions randomly, while a low temperature selects actions in a greedy fashion.
An intermediate temperature value causes SoftMax to select actions with a
probability that is based on their value. This way actions with a high value
have a greater chance of being selected while actions with a lower value have
less chance of being selected. The advantage of SoftMax is that it tends to
select the best action most of the time followed by the second–best, the third–
best and so on, an action with a very low value is seldom executed. This is
useful when a particular action is known to cause extremely bad rewards. Us-
ing SoftMax, that action will always get a very small probability of execution,
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with EGreedy however, it has the same probability as any other action when
exploring.

AI Programming Languages

Lisp

Recall that Lisp resps a family of computer programming languages with a
long history and a distinctive fully–parenthesized syntax. Originally speci-
fied in 1958, Lisp is the second–oldest high–level programming language124 in
widespread use today; only Fortran is older. Like Fortran, Lisp has changed
a great deal since its early days, and a number of dialects have existed over
its history. Today, the most widely–known general–purpose Lisp dialects are
Common Lisp125 and Scheme.126

124 Recall that a high–level programming language is a programming language that,
in comparison to low–level programming languages, may be more abstract, easier
to use, or more portable across platforms. Such languages often abstract away
CPU operations such as memory access models and management of scope.

125 Common Lisp, commonly abbreviated CL, is a dialect of the Lisp programming
language, standardised by ANSI X3.226-1994. Developed to standardize the di-
vergent variants of Lisp which predated it, it is not an implementation but rather
a language specification. Several implementations of the Common Lisp standard
are available, including commercial products and open source software.

Common Lisp is a general–purpose programming language, in contrast to
Lisp variants such as Emacs Lisp and AutoLISP which are embedded extension
languages in particular products. Unlike many earlier Lisps, Common Lisp (like
Scheme) uses lexical variable scope.

Common Lisp is a multi–paradigm programming language that:
(i) Supports programming techniques such as imperative, functional and

object-oriented programming.
(ii) Is dynamically typed, but with optional type declarations that can im-

prove efficiency.
(iii) Is extensible through standard features such as Lisp macros (compile–

time code rearrangement accomplished by the program itself) and reader macros
(extension of syntax to give special meaning to characters reserved for users for
this purpose).

126 Scheme is a multi–paradigm programming language and a dialect of Lisp which
supports functional and procedural programming. It was developed by Guy L.
Steele and Gerald Jay Sussman in the 1970s. Scheme was introduced to the
academic world via a series of papers now referred to as Sussman and Steele’s
Lambda Papers. There are two standards that define the Scheme language: the
official IEEE standard, and a de facto standard called the Revisedn Report on
the Algorithmic Language Scheme, nearly always abbreviated RnRS, where n is
the number of the revision.

Scheme’s philosophy is minimalist. Scheme provides as few primitive
notions as possible, and, where practical, lets everything else be provided by
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Lisp was originally created as a practical mathematical notation for com-
puter programs, based on Church’s127 lambda calculus (which provides a the-
oretical framework for describing functions and their evaluation; though it
is a mathematical abstraction rather than a programming language, lambda
calculus forms the basis of almost all functional programming languages128

today).

programming libraries. Scheme, like all Lisp dialects, has very little syntax com-
pared to many other programming languages. There are no operator precedence
rules because fully nested and parenthesized notation is used for all function
calls, and so there are no ambiguities as are found in infix notation, which mim-
ics conventional algebraic notation.

Scheme uses lists as the primary data structure, but also has support for
vectors. Scheme was the first dialect of Lisp to choose static (a.k.a. lexical) over
dynamic variable scope. It was also one of the first programming languages to
support first–class continuations.

127 Alonzo Church (June 14, 1903 — August 11, 1995) was an American mathemati-
cian and logician who was responsible for some of the foundations of theoretical
computer science. Born in Washington, DC, he received a bachelor’s degree from
Princeton University in 1924, completing his Ph.D. there in 1927, under Oswald
Veblen. After a postdoc at Göttingen, he taught at Princeton, 1929—1967, and
at the University of California, Los Angeles, 1967–1990.

Church is best known for the following accomplishments:
(i) His proof that Peano arithmetic and first–order logic are undecidable. The

latter result is known as Church’s theorem.
(ii) His articulation of what has come to be known as Church’s thesis.
(iii) He was the founding editor of the Journal of Symbolic Logic, editing its

reviews section until 1979.
(iv) His creation of the lambda calculus.
The lambda calculus emerged in his famous 1936 paper showing the existence

of an ‘undecidable problem’. This result preempted Alan Turing’s famous work
on the halting problem which also demonstrated the existence of a problem un-
solvable by mechanical means. He and Turing then showed that the lambda cal-
culus and the Turing machine used in Turing’s halting problem were equivalent in
capabilities, and subsequently demonstrated a variety of alternative ‘mechanical
processes for computation’. This resulted in the Church—Turing thesis.

The lambda calculus influenced the design of the LISP programming lan-
guage and functional programming languages in general. The Church encoding
is named in his honor.

128 Recall that functional programming is a programming paradigm that conceives
computation as the evaluation of mathematical functions and avoids state and
mutable data. Functional programming emphasizes the application of functions,
in contrast with imperative programming, which emphasizes changes in state
and the execution of sequential commands. A broader conception of functional
programming simply defines a set of common concerns and themes rather than a
list of distinctions from other paradigms. Often considered important are higher–
order and first-class functions, closures, and recursion. Other common features
of functional programming languages are continuations, Hindley–Milner type in-
ference systems, non–strict evaluation, and monads.
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Lisp quickly became the favored programming language for artificial intelli-
gence research. As one of the earliest programming languages, Lisp pioneered
many ideas in computer science, including tree data structures, automatic
storage management, dynamic typing, object–oriented programming, and the
self–hosting compiler.

The name Lisp derives from ‘List Processing’. Linked lists are one of Lisp
languages’ major data structures, and Lisp source code is itself made up of
lists. As a result, Lisp programs can manipulate source code as a data struc-
ture, giving rise to the macro systems that allow programmers to create new
syntax or even new ‘little languages’ embedded in Lisp.

The interchangeability of code and data also give Lisp its instantly recog-
nizable syntax. All program code is written as s–expressions, or parenthesized
lists. A function call or syntactic form is written as a list with the function or
operator’s name first, and the arguments following: (f x y z).

Lisp was invented by John McCarthy in 1958 while he was at MIT.
McCarthy published its design in a paper in Communications of the ACM
in 1960, entitled ‘Recursive Functions of Symbolic Expressions and Their
Computation by Machine’.129 He showed that with a few simple operators
and a notation for functions, one can build a Turing–complete language for
algorithms. Lisp was first implemented by Steve Russell on an IBM 704 com-
puter. Russell had read McCarthy’s paper, and realized (to McCarthy’s sur-
prise) that the eval function could be implemented as a Lisp interpreter. The
first complete Lisp compiler, written in Lisp, was implemented in 1962 by
Tim Hart and Mike Levin at MIT. (AI Memo 39, 767 kB PDF.) This com-
piler introduced the Lisp model of incremental compilation, in which compiled
and interpreted functions can intermix freely. The language used in Hart and
Levin’s memo is much closer to modern Lisp style than McCarthy’s earlier
code.

Largely because of its resource requirements with respect to early com-
puting hardware (including early microprocessors), Lisp did not become as
popular outside of the AI community as Fortran and the ALGOL–descended
C language. Newer languages such as Java have incorporated some limited
versions of some of the features of Lisp, but are necessarily unable to bring
the coherence and synergy of the full concepts found in Lisp. Because of its
suitability to ill–defined, complex, and dynamic applications, Lisp is presently
enjoying some resurgence of popular interest.

Functional programming languages, especially ‘purely functional’ ones, have
largely been emphasized in academia rather than in commercial software devel-
opment. However, notable functional programming languages used in industry
and commercial applications include Erlang (concurrent applications), R (statis-
tics), Mathematica (symbolic math), J and K (financial analysis), and domain–
specific programming languages like XSLT. Important influences on functional
programming have been the lambda calculus, APL, Lisp and Haskell.

129 McCarthy’s original notation used bracketed ‘M–expressions’ that would be
translated into S–expressions.
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Prolog

Prolog is a logic programming language. The name Prolog is taken from ‘pro-
grammation en logique’ (which is French for ‘programming in logic’). It was
created by Alain Colmerauer and Robert Kowalski130 around 1972 as an alter-
native to the American–dominated Lisp programming languages. It has been
an attempt to make a programming language that enables the expression of
logic instead of carefully specified instructions on the computer. In some ways
Prolog is a subset of Planner, e.g., see Kowalski’s early history of logic pro-
gramming. The ideas in Planner were later further developed in the Scientific
Community Metaphor .131

130 Alain Colmerauer (born January 24, 1941) is a French computer scientist. He
is the creator of the logic programming language Prolog and Q–Systems, one
of the earliest linguistic formalisms used in the development of the TAUM–
METEO machine translation prototype. He is a professor at the University of
Aix–Marseilles, specialising in the field of constraint programming.

Robert Anthony Kowalski (born May 15, 1941 in Bridgeport, Connecticut,
USA) is an American logician who has spent much of his career in the UK.
He has been important in the development of logic programming, especially the
programming language Prolog. He is also interested in legal reasoning.

131 The Scientific Community Metaphor is one way of understanding scientific com-
munities. In this approach, a high level programming language called Ether was
developed that made use of pattern–directed invocation to invoke high–level pro-
cedural plans on the basis of messages (e.g. assertions and goals). The Scientific
Community Metaphor builds on the philosophy, history and sociology of science
with its analysis that scientific research depends critically on monotonicity, con-
currency, commutativity, and pluralism to propose, modify, support, and oppose
scientific methods, practices, and theories.

The first publications on the Scientific Community Metaphor (Kornfeld &
Hewitt 1981, Kornfeld 1981, Kornfeld 1982) involved the development of a pro-
gramming language named ‘Ether’ that invoked procedural plans to process goals
and assertions concurrently by dynamically creating new rules during program
execution. Ether also addressed issues of conflict and contradiction with multiple
sources of knowledge and multiple viewpoints.

According to Carl Hewitt [Hew69], Scientific Community Metaphor systems
have characteristics of:

(i) monotonicity (once something is published it cannot be withdrawn),
(ii) concurrency (scientists can work concurrently, overlapping in time and

interacting with each other),
(iii) commutativity (publications can be read regardless of whether they ini-

tiate new research or become relevant to ongoing research),
(iv) pluralism (publications include heterogeneous, overlapping and possibly

conflicting information),
(v) skepticism (great effort is expended to test and validate current informa-

tion and replace it with better information), and
(vi) provenance (the provenance of information is carefully tracked and

recorded).
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Prolog is used in many AI programs and in computational linguistics
(especially natural language processing, which it was originally designed for;
the original goal was to provide a tool for computer–illiterate linguists) A
lot of the research leading up to modern implementations of Prolog came
from spin–off effects caused by the fifth generation computer systems project
(FGCS) which chose to use a variant of Prolog named Kernel Language for
their operating system (however, this area of research is now actually almost
defunct).

Prolog is based on first–order predicate calculus;132 however it is restricted
to allow only Horn clauses.133 Execution of a Prolog program is effectively an
application of theorem proving by first–order resolution.

‘Planner’ is a programming language designed by Carl Hewitt at MIT, and
first published in 1969. First subsets such as Micro–Planner and Pico–Planner
were implemented and then essentially the whole language was implemented in
Popler and derivations such as QA–4, Conniver, QLISP and Ether.

132 Recall that predicate calculus consists of

1. formation rules (i.e. recursive definitions for forming well–formed formulas),
2. transformation rules (i.e. inference rules for deriving theorems), and
3. axioms or axiom schemata (possibly a countably infinite number).

When the set of axioms is infinite, it is required that there be an algorithm
which can decide for a given well–formed formula, whether it is an axiom or not.
There should also be an algorithm which can decide whether a given application
of an inference rule is correct or not.

133 A Horn clause is a clause (a disjunction of literals) with at most one positive
literal. A Horn clause with exactly one positive literal is a definite clause; a Horn
clause with no positive literals is sometimes called a goal clause, especially in
logic programming. A Horn formula is a conjunctive normal form formula whose
clauses are all Horn; in other words, it is a conjunction of Horn clauses. A dual–
Horn clause is a clause with at most one negative literal. Horn clauses play a
basic role in logic programming and are important for constructive logic. For
example,

¬p ∨ ¬q ∨ · · · ∨ ¬t ∨ u

is a definite Horn clause. Such a formula can be rewritten in the following form,
which is more common in logic programming,

(p ∧ q ∧ · · · ∧ t) → u.

The relevance of Horn clauses to theorem proving by first–order resolution is that
the resolution of two Horn clauses is a Horn clause. Moreover, the resolution of
a goal clause and a definite clause is again a goal clause. In automated theorem
proving, this can lead to greater efficiencies in proving a theorem (represented as
a goal clause). Prolog is a programming language based on Horn clauses. Horn
clauses are also of interest in computational complexity, where the problem of
finding a set of variable assignments to make a conjunction of Horn clauses true
is a P–complete problem.
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Recall that a resolution rule in propositional logic is a single valid infer-
ence rule producing, from two clauses, a new clause implied by them. The
resolution rule takes two clauses – a clause is a disjunction of literals – con-
taining complementary literals, and produces a new clause with all the literals
of both except for the complementary ones. The clause produced by the res-
olution rule is called the resolvent of the two input clauses. When the two
clauses contain more than one pair of complementary literals, the resolution
rule can be applied (independently) for each such pair. However, only the
pair of literals that are resolved upon can be removed: all other pair of literals
remain in the resolvent clause.

When coupled with a complete search algorithm, the resolution rule yields
a sound and complete algorithm for deciding the satisfiability of a proposi-
tional formula, and, by extension, the validity of a sentence under a set of
axioms. This resolution technique uses proof by contradiction and is based on
the fact that any sentence in propositional logic can be transformed into an
equivalent sentence in conjunctive normal form. Its steps are:

1. All sentences in the knowledge base and the negation of the sentence to
be proved (the conjecture) are conjunctively connected.

2. The resulting sentence is transformed into a conjunctive normal form
(treated as a set of clauses, S).

3. The resolution rule is applied to all possible pairs of clauses that contains
complementary literals. After each application of the resolution rule, the
resulting sentence is simplified by removing repeated literals. If the sen-
tence contains complementary literals, it is discarded (as a tautology). If
not, and if it is not yet present in the clause set S, it is added to S, and
is considered for further resolution inferences.

4. If after applying a resolution rule the empty clause is derived, the complete
formula is unsatisfiable (or contradictory), and hence it can be concluded
that the initial conjecture follows from the axioms.

5. If, on the other hand, the empty clause cannot be derived, and the resolu-
tion rule cannot be applied to derive any more new clauses, the conjecture
is not a theorem of the original knowledge base.

In first order logic resolution condenses the traditional syllogisms of logical
inference down to a single rule.

Fundamental Prolog concepts are unification, tail recursion, and back-
tracking (a strategy for finding solutions to constraint satisfaction problems).
The concept of unification is one of the main ideas behind Prolog. It repre-
sents the mechanism of binding the contents of variables and can be viewed
as a kind of one–time assignment. In Prolog, this operation is denoted by
symbol ‘=’. In traditional Prolog, a variable X which is uninstantiated, i.e.,
no previous unifications were performed on it, can be unified with an atom, a
term, or another uninstantiated variable, thus effectively becoming its alias. In
many modern Prolog dialects and in first–order logic calculi, a variable cannot
be unified with a term that contains it; this is the so called ‘occurs check’.
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A Prolog atom can be unified only with the same atom. Similarly, a Prolog
term can be unified with another term if the top function symbols and arities
of the terms are identical and if the parameters can be unified simultaneously
(note that this is a recursive behaviour). Due to its declarative nature, the
order in a sequence of unifications is (usually) unimportant [BS01].

The tail recursion (or tail–end recursion) is a special case of recursion that
can be easily transformed into an iteration. Such a transformation is possible
if the recursive call is the last thing that happens in a function. Replacing
recursion with iteration, either manually or automatically, can drastically de-
crease the amount of stack space used and improve efficiency. This technique
is commonly used with functional programming languages, where the declar-
ative approach and explicit handling of state promote the use of recursive
functions that would otherwise rapidly fill the call stack.

Prolog has a built in mechanism for parsing context–free grammar (CFG),
a formal grammar in which every production rule is of the form: V → w,
where V is a non–terminal symbol and w is a string consisting of terminals
and/or non–terminals. The term ‘context–free’ comes from the fact that the
non–terminal V can always be replaced by w, regardless of the context in
which it occurs. A formal language is context–free if there is a context–free
grammar that generates it.

Context–free grammars are powerful enough to describe the syntax of most
programming languages; in fact, the syntax of most programming languages
are specified using context–free grammars. On the other hand, context–free
grammars are simple enough to allow the construction of efficient parsing al-
gorithms which, for a given string, determine whether and how it can be gen-
erated from the grammar. The metasyntax called Backus–Naur form (BNF),
is the most common notation used to express context–free grammars.

ACT–R: Combining Natural and Computational Intelligence

ACT–R (Adaptive Control of Thought–Rational) is a cognitive architecture
mainly developed by John Anderson134 at the Carnegie Mellon University
(see [And83, And80, And90]). Like any cognitive architecture, ACT–R aims
to define the basic and irreducible basic cognitive and perceptual operations
that enable the human mind. In theory, each task that humans can perform
should consist of a series of these discrete operations. Most of the ACT–R basic

134 John Robert Anderson (born 1947 in Vancouver, British Columbia) is a pro-
fessor of psychology and computer science at Carnegie Mellon University. He is
widely known for his cognitive architecture ACT–R [And84]. He has published
many papers on cognitive psychology, served as present of the Cognitive Science
Society, and received many scientific awards, including one from the American
Academy of Arts and Sciences. He is a fellow of the National Academy of Sci-
ences. Anderson was an early leader in research on intelligent tutoring systems,
and many of Anderson’s former students, such as Kenneth Koedinger and Neil
Heffernan, have become leaders in that area.
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assumptions are also inspired by the progresses of cognitive neuroscience, and,
in fact, ACT–R can be seen and described as way of specifying how the brain
itself is organized in a way that enables individual processing modules to
produce cognition.

Like other influential cognitive architectures (including Soar and EPIC),
the ACT–R theory has a computational implementation as an interpreter of
a special coding language. The interpreter itself is written in Lisp, and might
be loaded into any of the most common distributions of the Lisp language.
This enables researchers to specify models of human cognition in the form
of a script in the ACT–R language. The language primitives and data–types
are designed to reflect the theoretical assumptions about human cognition.
These assumptions are based on numerous facts derived from experiments in
cognitive psychology and brain imaging.

In recent years, ACT–R has also been extended to make quantitative pre-
dictions of patterns of activation in the brain, as detected in experiments with
fMRI. In particular, ACT–R has been augmented to predict the exact shape
and time–course of the BOLD response of several brain areas, including the
hand and mouth areas in the motor cortex, the left prefrontal cortex, the
anterior cingulate cortex, and the basal ganglia.

ACT–R’s most important assumption is that human knowledge can be
divided into two irreducible kinds of representations: declarative and proce-
dural. Within the ACT–R code, declarative knowledge is represented in form
of chunks, i.e., vector representations of individual properties, each of them
accessible from a labelled slot. On the other hand, chunks are held and made
accessible through buffers, which are the front–end of what are modules, i.e.
specialized and largely independent brain structures.

There are two types of modules:

1. Perceptual–motor modules, which take care of the interface with the real
world (i.e., with a simulation of the real world). The most well–developed
perceptual–motor modules in ACT–R are the visual and the manual mod-
ules.

2. Memory modules. There are two kinds of memory modules in ACT–R:
(i) Declarative memory, consisting of facts such as Washington, D.C. is
the capital of United States, France is a country in Europe, or 2 + 3 = 5;
and (ii) Procedural memory, made of productions. Productions represent
knowledge about how we do things: for instance, knowledge about how to
type the letter ‘Q’ on a keyboard, about how to drive, or about how to
perform addition.

Over the years, ACT–R models has been used in more than 500 different
scientific publications, and has been cited in a huge amount of others. It has
been applied in the following areas:

1. Learning and Memory
2. Higher level cognition, Problem solving and Decision making
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3. Natural language, including syntactic parsing, semantic processing and
language generation

4. Perception and Attention

More recently, more than two dozen papers made use of ACT–R for pre-
dicting brain activation patterns during imaging experiments, and it has also
been tentatively used to model neuropsychological impairments and mental
disorders.

Beside its scientific application in cognitive psychology, ACT–R used in
other, more application–oriented domains.

1. Human–computer interaction to produce user models that can assess dif-
ferent computer interfaces,

2. Education, where ACT–R–based cognitive tutoring systems try to ‘guess’
the difficulties that students may have and provide focused help

3. Computer–generated forces to provide cognitive agents that inhabit train-
ing environments

Some of the most successful applications, the Cognitive Tutors for Mathe-
matics, are used in thousands of schools across the United States. Such ‘Cogni-
tive Tutors’ are being used as a platform for research on learning and cognitive
modelling as part of the Pittsburgh Science of Learning Center.

After the publication of ‘The Atomic Components of Thought’ [And90],
Anderson become more and more interested in the underlying neural plau-
sibility of his life–time theory, and began to use brain imaging techniques
pursuing his own goal of understanding the computational underpinnings of
human mind. The necessity of accounting for brain localization pushed for
a major revision of the theory. ACT–R 5.0, presented in 2002, introduced
the concept of modules, specialized sets of procedural and declarative repre-
sentations that could be mapped to known brain systems. In addition, the
interaction between procedural and declarative knowledge was mediated by
newly introduced buffers, specialized structures for holding temporarily active
information (see the section above). Buffers were thought to reflect cortical
activity, and a subsequent series of studies later confirmed that activations
in cortical regions could be successfully related to computational operations
over buffers. The theory was first described in the 2004 paper ‘An Integrated
Theory of Mind’ [ABB04]. No major changes have occurred since then in the
theory, but a new version of the code, completely rewritten, was presented in
2005 as ACT–R 6.0. It also included significant improvements in the ACT–R
coding language.

Facial Recognition and Biometrics

A Facial Recognition (FR) system is a computer–driven application for auto-
matically identifying a person from a digital image. It does that by comparing
selected facial features in the live image and a facial database. It is typically
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used for security systems and can be compared to other biometrics such as
fingerprint or eye iris recognition systems.

Popular FR algorithms include eigenfaces, the Hidden Markov models,
and the neuronal motivated dynamic link matching . A newly emerging trend,
claimed to achieve previously unseen accuracies, is 3D face recognition. An-
other emerging trend uses the visual details of the skin, as captured in stan-
dard digital or scanned images. Tests on the FERET database, the widely
used industry benchmark, showed that this approach is substantially more
reliable than previous algorithms.

FR is based on the computer identification of unknown face images by
comparison with a single known image or database of known images. A FR
may be used for access control (one–to–one) or for surveillance of crowds to
locate people of interest (one–to–many or many–to–many). Access control FRs
are often used in highly controlled environments, which means that the input
data is of predictable quality, resulting in relatively high levels of performance.
Surveillance applications (which are often covert), may call for a large number
of faces to be compared with a large stored database of images to determine
if there are any matches. This can result in a large number of false alarms. In
addition, due to the nature of the surveillance application, the images obtained
are often of poor quality, since it is often difficult to adequately control all
the environmental conditions. This can reduce the ability of the FR to find a
correct match with an enrolled image.

Modes of Operation

FR systems have two functional modes: enrolment and operation. Each mode
used the same signal processing approach to extract salient information from
the sensor data. In the enrolment phase, face data on known subjects is ex-
tracted and stored in a database of known persons (often called the ‘gallery’).
In general, each individual is sampled a number of times during enrolment,
to ensure that the stored data is truly representative of that individual.

Once a database of known subjects is enrolled, the system may be used
in the operational mode. In this mode, data from people who are not yet
identified are processed in the same way as the enrolment data and the salient
features are compared with the database to see if there is a match. When
the degree of match is above some form of threshold, an action is generally
required. A key to effective operation of an FRS is the image processing that
extracts the salient features of faces for comparison with stored data.

Signal Processing Operations

The signal processing operations typically involved in FR include those listed
below, either as discrete operations (an algorithmic approach) or in combina-
tion (e.g., a neural network approach):

(i) Face Capture: The first stage in the FR process is to identify objects
that could be faces and then discard the rest of the scene. The face cap-
ture process could be as simple as a blob detector that sorts on size and
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shape, or it may include higher level processes that look for features such
as eye/nose/mouth geometry, color information or motion and location to
identify objects that are face–like.

(ii) Normalization: Once faces have been identified they must be presented
to the classifier in a form that compensates for variability in brightness/colour
due to lighting, camera and frame grabber characteristics, as well as geometric
distortions due to distance, pose and viewing aspect angles. Typical intensity
normalization may involve grey scale modification of regions of interest to
provide fixed average levels and contrast. Scale errors may be minimized by
re-sampling the faces to produce constant size inputs to following stages. In
general, the distance between eye pupils is used as the baseline measure to re–
scale images and it is critical that this parameter be accurately determined,
either by the software or manually.

(iii) Feature Extraction: Feature extraction is the process that takes the
normalized version of each real–world face image and generates a compact
data vector that uniquely describes it for use by the classification/database
engine.

(iv) Database Comparison: Unknown subjects and a target sample are
compared with the known database. Face images are gathered using the same
(or a similar) sensor as was used for enrolment and this data is processed
in the same way as the enrolment data. Following salient feature extraction,
the incoming data vector is compared with each template in the database to
determine the goodness of match with known data and a match measure is
generated for each comparison.

(v) Decision and Action: A decision making process follows the match
measurement, whereby the outcome is declared to be either a true match or
a non–match, based on the match measure. This decision may be made by
comparing the match value to a threshold setting. Any match measure that is
on higher side of the threshold is declared to be a true match and any on the
other is a non-match. The process of facial recognition is complex and many
of the processes outlined above are highly dependent upon external variables.
This can lead to considerable difficulty in the evaluation of the technologies
involved.

Evaluation Methods

Phillips et al. [PMW00] have given a general introduction to evaluating bio-
metric systems. They focused on biometric applications that give the user
some control over data acquisition. These applications recognize subjects from
mug shots, passport photos and scanned fingerprints. They concentrated on
two major kinds of biometric systems: identification and verification. In iden-
tification systems, a biometric signature of an unknown person is presented to
a system. The system compares the new biometric signature with a database
of biometric signatures of known individuals. On the basis of the comparison,
the system reports (or estimates) the identity of the unknown person from
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this database. Systems that rely on identification include those that check
for multiple applications by the same person for welfare benefits and driver’s
licences.

In verification systems, a user presents a biometric signature and a claim
that a particular identity belonged to the biometric signature. The algorithm
either accepts or rejects the claim. Alternatively, the algorithm could return
a confidence measurement of the claim’s validity. Verification applications
include those that authenticate identity during point-of-sale transactions or
that control access to computers or secure buildings.

Performance statistics for verification applications differ substantially from
those for identification systems. The main performance measure for an iden-
tification system is that system’s ability to identify the owner of a biometric
signature. More specifically, the performance measure is equal to the percent-
age of queries in which the correct answer could be found in the top few
matches.

Mansfield and Wayman [MW02] elaborated best practice in testing and
reporting the performance of biometric devices. The purpose of their report,
which is a revision of their original version [MW00], was to summarize the
current understanding by the biometrics community of the best scientific prac-
tices for conducting technical performance testing toward the end of field per-
formance estimation. The aims of the authors were as follows:

(1) To provide a framework for developing and fully describing test protocols.
(2) To help avoid systematic bias due to incorrect data collection or analytic
procedures in evaluations.
(3) To help testers achieve the best possible estimate of field performance
while expending minimum effort in conducting their evaluation.
(4) To improve understanding of the limits of applicability of test results and
test methods.

The recommendations in this paper were extremely general in nature. It
was noted that it might not be possible to follow best practice completely
in any test. Compromises often need to be made. In such situations the ex-
perimenter has to decide on the best compromise to achieve the evaluation
objectives, but should also report what has been done to enable a correct
interpretation to be made of the results.

The FERET Program

The Face Recognition Technology (FERET) program, which was sponsored
by the Department of Defense (DoD) Counterdrug Technology Program, com-
menced in September 1993. The primary mission of the FERET program was
to develop automatic face recognition capabilities that could be employed to
assist security, intelligence and law enforcement personnel in the performance
of their duties.

The FERET program initially consisted of three one year phases. The
objective of the first phase was to establish the viability of automatic face
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recognition algorithms, and to determine a performance baseline against which
to measure future progress. The goals of the other two phases was to fur-
ther develop face recognition technology. After the completion of phase 2 the
FERET demonstration effort was commenced, with the goals to port FERET
evaluated algorithms to real–time experimental/demonstration systems.

The program focused on three major areas:

1. Sponsoring Research: The goal of the sponsored research was to develop
facial recognition algorithms. After a broad agency announcement for al-
gorithm development proposals, twenty–four submissions were received
and evaluated by DoD and law enforcement personnel. Five contracts
were initially awarded, and three of these teams were selected to continue
their development for phase 2.

2. Collecting the FERET database: The FERET database of facial images
was a vital part of the overall FERET program and promised to be key to
future work in face recognition, because it provided a standard database
for algorithm development, test and evaluation, and most importantly, the
images were gathered independently from the algorithm developers. The
images were collected in a semi–controlled environment, with the same
physical setup used in each photography session to maintain a degree of
consistency throughout the database. However, because the equipment
had to be reassembled for each session, there was some minor variation in
images collected on different dates. The FERET database was collected
in 15 sessions between August 1993 and July 1996. The database contains
1564 sets of images for a total of 14,126 images that includes 1199 indi-
viduals and 365 duplicate sets of images. A duplicate set is a second set
of images of a person already in the database and was usually taken on a
different day.

3. Performing the FERET evaluations: Before the FERET database was cre-
ated, a large number of papers reported outstanding recognition results
(usually >95% correct recognition) on limited–size databases (usually <50
individuals). Only a few of these algorithms reported results on images
utilizing a common database – the FERET database made it possible for
researchers to develop algorithms on a common database and to report re-
sults in the literature using this database. More importantly, the FERET
database and evaluations clarified the state of the art in face recognition
and pointed out general directions for future research. Three sets of eval-
uations were performed, with the last two evaluations being administered
multiple times. The first FERET evaluation took place in August 1994, the
Aug94 evaluation. This evaluation was designed to measure performance
on algorithms that could automatically locate, normalize, and identify
faces from a database. The test consisted of three subtests, each with a
different gallery and probe set. The first subtest examined the ability of
algorithms to recognize faces from a gallery of 316 individuals. The second
subtest was the false-alarm test, which measured how well an algorithm



150 1 Introduction: Human and Computational Mind

rejects faces not in the gallery. The third subtest baselined the effects of
pose changes on performance. The second FERET evaluation took place
in March of 1995, the Mar95 evaluation. The goal was to measure progress
since the initial FERET evaluation, and to evaluate these algorithms on
larger galleries (817 individuals). An added emphasis of this evaluation
was on probe sets that contained duplicate images, where a duplicate im-
age was defined as an image of a person whose corresponding gallery image
was taken on a different date. The third FERET evaluations took place
in September of 1996, the Sep96 evaluation. For the Sept96 evaluation, a
new evaluation protocol was designed which required algorithms to match
a set of 3323 images against a set of 3816 images. The new protocol de-
sign allowed the determination of performance scores for multiple galleries
and probe sets, and perform a more detailed performance analysis. There
were two versions of the September 1996 evaluation. The first tested par-
tially automatic algorithms by providing the images with the coordinates
of the center of the eyes. The second tested fully automatic algorithms by
providing the images only.
Further details on the methodology of the FERET program can be found
in [PMW00].

Eigenfaces

Recall that eigenfaces are a set of eigenvectors135 used in the computer vision
problem of human FR. These eigenvectors are derived from the covariance
matrix of the probability distribution of the high–dimensional vector space
of possible human faces, in a similar fashion as in factor analysis described
above. Many authors prefer the term eigenimage rather than eigenface, as the
technique has been used for handwriting, lip reading, voice recognition, and
medical imaging.

In layman’s terms, eigenfaces are a set of ‘standardized face ingredients’,
derived from multivariate correlation analysis of many pictures of faces. Any
human face can be considered to be a combination of these standard faces.
One person’s face might be made up of 10% from face 1, 24% from face 2
135 Recall that an eigenvector of a transformation is a non–null vector whose direc-

tion is unchanged by that transformation. The factor by which the magnitude
is scaled is called the eigenvalue of that vector. Often, a transformation is com-
pletely described by its eigenvalues and eigenvectors. An eigenspace is a set of
eigenvectors with a common eigenvalue. These concepts play a major role in sev-
eral branches of both pure and applied mathematics — appearing prominently
in linear algebra, functional analysis, and even a variety of nonlinear situations.

It is common to prefix any natural name for the solution with eigen instead
of saying eigenvector. For example, eigenfunction if the eigenvector is a function,
eigenmode if the eigenvector is a harmonic mode, eigenstate if the eigenvector is
a quantum state, and so on (e.g. the eigenface example below). Similarly for the
eigenvalue, e.g., eigenfrequency if the eigenvalue is (or determines) a frequency.
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and so on. This means that if we want to record someone’s face for use by
FR software, we can use far less space than would be taken up by a digitised
photograph.

To generate a set of eigenfaces, a large set of digitized images of human
faces, taken under the same lighting conditions, are normalized to line up the
eyes and mouths. They are then all resampled at the same pixel resolution (say
m × n), and then treated as mnD vectors whose components are the values
of their pixels. The eigenvectors of the covariance matrix of the statistical
distribution of face image vectors are then extracted. It should be noted that
these are the same as the eigenvectors from principal components analysis
(PCA, see above), the statistical method from which eigenimaging is derived.
Since the eigenvectors belong to the same vector space as face images, they can
be viewed as if they were m×n pixel face images: hence the name eigenfaces.
Viewed in this way, the principal eigenface looks like a bland androgynous
average human face. Some subsequent eigenfaces can be seen to correspond
to generalized features such as left–right and top–bottom asymmetry, or the
presence or absence of a beard. Other eigenfaces are hard to categorize, and
look rather strange.

When properly weighted, eigenfaces can be summed together to create an
approximate gray–scale rendering of a human face. Remarkably few eigenvec-
tor terms are needed to give a fair likeness of most people’s faces, so eigenfaces
provide a means of applying data compression to faces for identification pur-
poses (see, e.g., [Abd88]).

Dynamic Link Matching

The dynamic link matching (DLM) is a neural FR–system based on the
Gabor–wavelet transform [Mal85, Mal88, KMM94, LVB93, Wis95]. The sys-
tem is inherently invariant with respect to shift, and is robust against many
other variations, most notably rotation in depth and deformation. The system
consists of an image domain and a model domain, which is tentatively iden-
tified with primary visual cortex and infero–temporal cortex. Both domains
have the form of neural sheets of hypercolumns, which are composed of simple
feature detectors (modeled as Gabor wavelets). Each object is represented in
memory by a separate model sheet, that is, a 2D array of features. The match
of the image to the models is performed by network self–organization, in
which rapid reversible synaptic plasticity of the connections (‘dynamic links’)
between the two domains is controlled by signal correlations, which are shaped
by fixed inter–columnar connections and by the dynamic links themselves. The
system requires very little genetic or learned structure, relying essentially on
the rules of rapid synaptic plasticity and the a priori constraint of preservation
of topography to find matches. This constraint is encoded within the neural
sheets with the help of lateral connections, which are excitatory over short
range and inhibitory over long range.

Topographical relationships between nodes in the DLM–system are en-
coded by excitatory and inhibitory lateral connections (see Figure 1.4). The
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Fig. 1.4. Architecture of the DLM face recognition system. Several models are
stored as neural layers of local features on a 1010 grid, as indicated by the black
dots. A new image is represented by a 1617 layer of nodes. Initially, the image
is connected all–to–all with the models. The task of DLM is to find the correct
mapping between the image and the models, providing translational invariance and
robustness against distortion. Once the correct mapping is found, a simple winner–
take–all mechanism can detect the model that is most active and most similar to
the image (adapted from [Mal85, Mal88, KMM94, LVB93, Wis95]).

model graphs are scaled horizontally and vertically and aligned manually,
such that certain nodes of the graphs are placed on the eyes and the mouth.
Model layers (1010 neurons) are smaller than the image layer (1617 neurons).
Since the face in the image may be arbitrarily translated, the connectivity
between model and image domain has to be all–to–all initially. The connec-
tivity matrices are initialized using the similarities between the jets of the
connected neurons. DLM serves as a process to restructure the connectivity
matrices and to find the correct mapping between the models and the image.
The models cooperate with the image depending on their similarity. A simple
winner–take–all mechanism sequentially rules out the least active and least
similar models, and the best–fitting one eventually survives.

Face Recognition Vendor Tests

Face Recognition Vendor Tests (FRVT) provide independent government eval-
uations of commercially available and mature prototype face recognition sys-
tems. During the FERET program face recognition technology was primarily
found in prototype systems in universities and research labs. By 2000 sys-
tems were available on the commercial market, so FRVT 2000 was instigated
to evaluate the capabilities of these commercial systems. Sponsored by the
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Defense Advanced Research Projects Agency (DARPA), DoD Counterdrug
Technology Development Program Office and National Institute of Justice
(NIJ), and designed by the National Institute of Standards and Technology
(NIST) the FRVT 2000 was based on the FERET evaluations and the evalu-
ation methodology philosophy outlined by [PMW00].

The FRVT 2000 was a technology evaluation consisting of two components:
the Recognition Performance Test and the Product Usability Test. The goal
of the Recognition Performance Test was to compare competing techniques
for performing facial recognition, with all systems tested on a standardized
database. The product usability test examined system properties for perform-
ing access control. Five commercial products were evaluated, and the results
of the tests can be found at get references from Lit Review Report. Under the
USA Patriot Act, NIST is mandated to measure the accuracy of biometric
technologies. In accordance with this legislation, NIST, in cooperation with
other Government agencies, is conducting the Face Recognition Vendor Test
2002 FRVT 2002. Now sponsored or supported by 16 organisations, including
some non–US agencies, the FRVT 2002 aims to assess the state–of–the–art
in face recognition technology, and is conducting a technology evaluation of
both mature prototype and commercially available systems face recognition
systems.

Hidden Markov Models

A hidden Markov model (HMM) is a statistical model where the system being
modelled is assumed to be a Markov process136 with unknown parameters,
and the challenge is to determine the hidden parameters from the observable
136 Recall that a Markov process is a stochastic process that has a Markov property ,

or Markov assumption. Technically, there are three well–known special cases of
the Chapman–Kolmogorov equation, describing a general Markov process (see
[Gar85]):

1. When both Bij [x(t), t] and W (t) are zero, i.e., in the case of pure deterministic
motion, it reduces to the Liouville equation

∂tP (x′, t′|x′′, t′′) = −
∑

i

∂

∂xi

{
Ai[x(t), t] P (x′, t′|x′′, t′′)

}
.

2. When only W (t) is zero, it reduces to the Fokker–Planck diffusion equation

∂tP (x′, t′|x′′, t′′) = −
∑

i

∂

∂xi

{
Ai[x(t), t] P (x′, t′|x′′, t′′)

}
+

1

2

∑
ij

∂2

∂xi∂xj

{
Bij [x(t), t] P (x′, t′|x′′, t′′)

}
.

3. When both Ai[x(t), t] and Bij [x(t), t] are zero, i.e., the state–space consists
of integers only, it reduces to the Master equation of discontinuous jumps
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parameters.137 The extracted model parameters can then be used to perform
further analysis, for example for pattern recognition applications. A HMM
can be considered as the simplest dynamic Bayesian network .

In a regular Markov model, the state is directly visible to the observer, and
therefore the state transition probabilities are the only parameters. In a hidden
Markov model, the state is not directly visible, but variables influenced by the
state are visible. Each state has a probability distribution over the possible
output tokens. Therefore the sequence of tokens generated by an HMM gives
some information about the sequence of states.

The HMM–architecture is depicted in Figure 1.5. From this diagram, it is
clear that the value of the hidden variable x(t) (at time t) only depends on
the value of the hidden variable x(t− 1) (at time t− 1). Similarly, the value
of the observed variable y(t) only depends on the value of the hidden variable
x(t) (both at time t).

The probability of observing a sequence Y = y(0), y(1), . . . , y(L − 1) of
length L in HMM is given by:

P (Y ) =
∑
X

P (Y | X)P (X),

∂tP (x′, t′|x′′, t′′) =

∫
dx

{
W (x′|x′′, t) P (x′, t′|x′′, t′′)

−W (x′′|x′, t) P (x′, t′|x′′, t′′)
}

.

The Markov assumption can now be formulated in terms of the conditional
probabilities P (xi, ti): if the times ti increase from right to left, the conditional
probability is determined entirely by the knowledge of the most recent condi-
tion. Markov process is generated by a set of conditional probabilities whose
probability–density P = P (x′, t′|x′′, t′′) evolution obeys the general Chapman–
Kolmogorov integro–differential equation

∂tP = −
∑

i

∂

∂xi
{Ai[x(t), t] P}

+
1

2

∑
ij

∂2

∂xi
∂xj {Bij [x(t), t] P}

+

∫
dx

{
W (x′|x′′, t) P − W (x′′|x′, t) P

}
including: deterministic drift , diffusion fluctuations and discontinuous jumps
(given respectively in the first, second and third rows).

137 Hidden Markov Models were first described in a series of statistical papers by
Leonard Baum in the second half of the 1960s. One of the first applications of
HMMs was speech recognition, starting in the mid–1970s. In the second half of
the 1980s, HMMs began to be applied to the analysis of biological sequences, in
particular DNA. Since then, they have become ubiquitous in the field of bioin-
formatics.
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Fig. 1.5. Generic architecture of a Hidden Markov model. Each oval shape repre-
sents a random variable that can adopt a number of values. The random variable x(t)
is the value of the hidden variable at time t. The random variable y(t) is the value
of the observed variable at time t. The arrows in the diagram denote conditional
dependencies.

where the sum runs over all possible hidden node sequences X =
x(0), x(1), . . . , x(L − 1). A brute force calculation of P (Y ) is intractable for
realistic problems, as the number of possible hidden node sequences typically
is extremely high. The calculation can however be speeded up enormously
using a dynamic programming algorithm, called the forward algorithm.

Recall that dynamic programming, invented by Richard Bellman,138 is a
method for reducing the runtime of algorithms exhibiting the properties of:

1. Overlapping subproblems (the problem can be broken down into subprob-
lems which are reused several times),139

2. Optimal substructure (optimal solution can be constructed efficiently from
optimal solutions to its subproblems; used to determine the usefulness of
dynamic programming and greedy algorithms140 in a problem), and

138 Richard Ernest Bellman (1920–1984) was an applied mathematician, celebrated
for his invention of dynamic programming in 1953, and important contributions
in other fields of mathematics, including the Bellman equation and Hamilton–
Jacobi–Bellman equation.

A well–known term in computation coined by Bellman is curse of dimen-
sionality : the problem caused by the rapid increase in volume associated with
adding extra dimensions to a (mathematical) space (e.g., ‘rules explosion’ in
fuzzy logic systems). Similarly, the curse of dimensionality is a significant obsta-
cle in machine learning problems that involve learning from few data samples in
a high–dimensional feature space.

139 For example, the problem of computing the Fibonacci sequence exhibits overlap-
ping subproblems. The problem of computing the nth Fibonacci number, F (n),
can be broken down into the subproblems of computing F (n− 1) and F (n− 2),
and then adding the two. The subproblem of computing F (n − 1) can itself be
broken down into a subproblem that involves computing F (n − 2). Therefore
the computation of F (n− 2) is reused, and the Fibonacci sequence thus exhibits
overlapping subproblems.

140 A greedy algorithm is an algorithm that follows the problem solving metaheuristic
of making the locally optimum choice at each stage with the hope of finding the
global optimum. For instance, applying the greedy strategy to the traveling sales-
man problem yields the following algorithm: ‘At each stage visit the unvisited
city nearest to the current city’. In general, greedy algorithms have five pillars:
(i) a candidate set, from which a solution is created; (ii) a selection function,
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3. Memoization (speeding up programs by storing the results of functions
for later reuse, rather than recomputing them).141

which chooses the best candidate to be added to the solution; (iii) a feasibility
function, that is used to determine if a candidate can be used to contribute to
a solution; (iv) an objective function, which assigns a value to a solution, or a
partial solution; and (v) a solution function, which will indicate when we have
discovered a complete solution.

There are two ingredients that are exhibited by most problems that lend
themselves to a greedy strategy:
1. Greedy Choice Property: We can make whatever choice seems best at the

moment and then solve the subproblems arising after the choice is made. The
choice made by a greedy algorithm may depend on choices so far. But, it
cannot depend on any future choices or all the solutions to the subproblem,
it progresses in a fashion making one greedy choice after another iteratively
reducing each given problem into a smaller one. This is the main difference
between it and dynamic programming. Dynamic programming is exhaustive
and is guaranteed to find the solution. After every algorithmic stage, dy-
namic programming makes decisions based on the all the decisions made in
the previous stage, and may reconsider the previous stage’s algorithmic path
to solution. A greedy algorithm makes the decision early and changes the al-
gorithmic path after decision, and will never reconsider the old decisions. It
may not be accurate for some problems.

2. Optimal Sub structure: A problem exhibits optimal sub–structure, if an op-
timal solution to the sub–problem contains within its optimal solution to the
problem.
For most problems, greedy algorithms mostly (but not always) fail to find the

globally optimal solution, because they usually do not operate exhaustively on
all the data. They can make commitments to certain choices too early which pre-
vent them from finding the best overall solution later. For example, all known
greedy algorithms for the graph coloring problem and all other NP-complete
problems do not consistently find optimum solutions. Nevertheless, they are use-
ful because they are quick to think up and often give good approximations to
the optimum. If a greedy algorithm can be proven to yield the global optimum
for a given problem class, it typically becomes the method of choice because
it is faster than other optimisation methods like dynamic programming. Exam-
ples of such greedy algorithms are Kruskal’s algorithm, Dijkstra’s algorithms for
finding single–source shortest paths and Prim’s algorithm for finding minimum
spanning trees and the algorithm for finding optimum Huffman trees. The theory
of matroids provide whole classes of such algorithms.

141 Functions can only be memoized if they are referentially transparent, that is, if
they will always return the same result given the same arguments. Operations
which are not referentially transparent, but whose results are not likely to change
rapidly, can still be cached with methods more complicated than memoization. In
general, memoized results are not expired or invalidated later, while caches gen-
erally are. In imperative languages, both memoization and more general caching
are typically implemented using some form of associative array.

In a functional programming language it is possible to construct a higher–
order function memoize which will create a memoized function for any
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Dynamic programming usually takes one of two approaches:

• Top–down approach: The problem is broken into subproblems, and these
subproblems are solved and the solutions remembered, in case they need
to be solved again. This is recursion and memoization combined together.

• Bottom–up approach: All subproblems that might be needed are solved
in advance and then used to build up solutions to larger problems. This
approach is slightly better in stack space and number of function calls, but
it is sometimes not intuitive to figure out all the subproblems needed for
solving given problem.

There are 3 canonical problems associated with HMMs (see, e.g., [Rab89]):

1. Given the parameters of the model, compute the probability of a particular
output sequence. This problem is solved by the forward algorithm.

2. Given the parameters of the model, find the most likely sequence of hidden
states that could have generated a given output sequence. This problem
is solved by the Viterbi algorithm.142

referentially transparent function. In languages without higher–order functions,
memoization must be implemented separately in each function that is to benefit
from it.

The term ‘memoization’ was coined by Donald Michie in his 1968 paper
‘Memo functions and machine learning’ in Nature.

142 The Viterbi algorithm is a dynamic programming algorithm for finding the most
likely sequence of hidden states, called the Viterbi path, that result in a sequence
of observed events, especially in the HMM context. The forward algorithm is a
closely related algorithm for computing the probability of a sequence of observed
events. These algorithms form a subset of modern information theory.

The algorithm makes a number of assumptions. First, both the observed
events and hidden events must be in a sequence. This sequence often corresponds
to time. Second, these two sequences need to be aligned, and an observed event
needs to correspond to exactly one hidden event. Third, computing the most
likely hidden sequence up to a certain point t must depend only on the observed
event at point t, and the most likely sequence at point t - 1. These assumptions
are all satisfied in a first-order hidden Markov model.

The terms ‘Viterbi path’ and ‘Viterbi algorithm’ are also applied to related
dynamic programming algorithms that discover the single most likely expla-
nation for an observation. For example, in stochastic parsing a dynamic pro-
gramming algorithm can be used to discover the single most likely context-free
derivation (parse) of a string, which is sometimes called the ‘Viterbi parse’.

The Viterbi algorithm was conceived by Andrew Viterbi as an
error–correction scheme for noisy digital communication links, finding univer-
sal application in decoding the convolutional codes used in both CDMA and
GSM digital cellular, dial–up modems, satellite, deep–space communications,
and 802.11 wireless LANs. It is now also commonly used in speech recognition,
keyword spotting, computational linguistics, and bioinformatics. For example, in
speech–to–text translation, the acoustic signal is treated as the observed sequence
of events, and a string of text is considered to be the ‘hidden cause’ of the
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3. Given an output sequence or a set of such sequences, find the most likely
set of state transition and output probabilities. In other words, train the
parameters of the HMM given a dataset of sequences. This problem is
solved by the Baum–Welch algorithm.143

Hidden Markov models are especially known for their applications in speech
recognition, machine translation and bioinformatics.

Bayesian Belief Networks

A Bayesian belief network is a form of probabilistic graphical model developed
by Judea Pearl.144 Bayesian network represents joint probability distribution
of a set of variables with explicit independency assumptions. It is a directed
acyclic graph with nodes representing variables and arcs representing proba-
bilistic dependency relations among the variables.

If there is an arc from node A to another node B, then variable B depends
directly on variable A and A is called a parent node of B. If the variable rep-
resented by a node has a known value then the node is said to be an evidence
node. A node can represent any kind of variable, be it a measured parame-
ter, a latent variable or a hypothesis. Nodes are not restricted to representing
random variables; this is what is ‘Bayesian’ about a Bayesian network.

Let the variables be X1, . . . , Xn. Let parents(A) be the parents of the
node A. Then the joint distribution for X1 through Xn is represented as the
product of the probability distributions for i = 1 to n. If Xi has no parents, its
probability distribution is said to be unconditional, otherwise it is conditional.

Questions about incongruent dependence among variables can be answered
by studying the graph alone. It can be shown that conditional independence

acoustic signal. The Viterbi algorithm finds the most likely string of text given
the acoustic signal.

143 The Baum–Welch algorithm is an expectation–maximization (EM) algorithm
(see [BPS70]). It can compute maximum likelihood estimates and posterior–mode
estimates for the parameters (transition and emission probabilities) of an HMM,
when given only emissions as training data. The algorithm has two steps: (i)
Calculating the forward probability and the backward probability for each HMM
state; and (ii) On the basis of this, determining the frequency of the transition–
emission pair values and dividing it by the probability of the entire string. This
amounts to calculating the expected count of the particular transition–emission
pair. Each time a particular transition is found, the value of the quotient of the
transition divided by the probability of the entire string goes up, and this value
can then be made the new value of the transition.

144 Judea Pearl is a computer scientist and statistician, best known for his prominent
work on the probabilistic approach to artificial intelligence, and in particular on
Bayesian belief networks. His work is also intended as a high–level cognitive
model . He is interested in the philosophy of causality, artificial intelligence and
knowledge representation, probabilistic and causal reasoning, nonstandard logics,
and learning strategies. Pearl is described as ‘one of the giants in the field of
artificial intelligence’.
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Fig. 1.6. A generic Markov blanket: the set of nodes MB(A) composed of A’s
parents, its children, and its children’s parents.

is represented in the graph by the graphical property of d−separation: nodes
X and Y are d−separated in the graph, given specified evidence nodes, iff
variables X and Y are independent given the corresponding evidence variables.
The set of all other nodes on which node X can directly depend is given by
X’s Markov blanket .

The Markov blanket (see Figure 1.6) for a node A in a Bayesian network
is the set of nodes MB(A) composed of A’s parents, its children, and its
children’s parents. In a Markov network , the Markov blanket of a node is its set
of neighboring nodes. Every node in the network is conditionally independent
of A when conditioned on the set MB(A), that is, when conditioned on the
Markov blanket of the node A. Formally, for distinct nodes A and B, we have

Pr(A | MB(A), B) = Pr(A | MB(A)).

The values of the parents and children of a node evidently give information
about that node. However, its children’s parents also have to be included,
because they can be used to explain away the node in question. The Markov
blanket of a node is interesting because it identifies all the variables that shield
off the node from the rest of the network. This means that the Markov blanket
of a node is the only knowledge that is needed to predict the behavior of that
node.

A causal Bayesian network is a Bayesian network where the directed arcs
of the graph are interpreted as representing causal relations145 in some real
domain. The directed arcs do not have to be interpreted as representing causal
145 Recall that the philosophical concept of causality , the principles of causes, or

causation, the working of causes, refers to the set of all particular ‘causal’ or
‘cause–and–effect’ relations. A neutral definition is notoriously hard to provide
since every aspect of causation has been subject to much debate. Most generally,
causation is a relationship that holds between events, properties, variables, or
states of affairs. Causality always implies at least some relationship of depen-
dency between the cause and the effect. For example, deeming something a cause
may imply that, all other things being equal, if the cause occurs the effect does
as well, or at least that the probability of the effect occurring increases. It is
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relations; however in practice knowledge about causal relations is very often
used as a guide in drawing Bayesian network graphs, thus resulting in causal
Bayesian networks.

In the simplest case, a Bayesian network is specified by an expert and is
then used to perform inference after some of the nodes are fixed to observed
values. In some applications, such as finding gene regulatory networks (see
[II06b]), a more complex problem of finding dependencies between variables
arises. This can be solved by learning a Bayesian network that fits to the data.

Learning the structure of a Bayesian network (i.e., the graph) is a very im-
portant part of machine learning . Given the information that the data is being

also usually presumed that the cause chronologically precedes the effect. In nat-
ural languages, causal relationships can be expressed by the following causative
expressions:

(i) a set of causative verbs (cause, make, create, do, effect, produce, occasion, per-
form, determine, influence; construct, compose, constitute; provoke, motivate,
force, facilitate, induce, get, stimulate; begin, commence, initiate, institute,
originate, start; prevent, keep, restrain, preclude, forbid, stop, cease);

(ii) a set of causative names (actor, agent, author, creator, designer, former, orig-
inator; antecedent, causality, causation, condition, fountain, occasion, origin,
power, precedent, reason, source, spring; reason, grounds, motive, need, im-
pulse);

(iii)a set of effective names (consequence, creation, development, effect, end, event,
fruit, impact, influence, issue, outcome, outgrowth, product, result, upshot).

Causality is the centerpiece of the universe and so the main subject of human
knowledge; for comprehending the nature, meaning, kinds, varieties, and order-
ing of cause and effect amounts to knowing the beginnings and endings of things,
to uncovering the implicit mechanisms of world dynamics, or to having the fun-
damental scientific knowledge.

Ancient Hindu scriptures, the Upanishads (namely Chandogya Upanishad,
Sarva Sara Upanishad and Mandukya Upanishad) and some other texts (namely
Brahma Sutras, Yoga Vashishta, Avadhuta Gita and Astavakra Gita) mention
causality. However, the mention is limited to the purpose of explaining creation of
the universe: ‘Cause is the effect concealed, effect is the cause revealed’, which is
also expressed as ‘Cause is the effect unmanifested, effect is the cause manifested’
(reference Complete Works of Swami Vivekananda, as well as Yoga Vashishta);
‘Effect is same as cause only’ (reference Sankaracharya’s commentary on Bha-
gavad Gita).

In Metaphysics and Posterior Analytics, Aristotle stated: “All causes of
things are beginnings; that we have scientific knowledge when we know the cause;
that to know a thing’s existence is to know the reason why it is.” With this, he
set the guidelines for all the subsequent causal theories by specifying the num-
ber, nature, principles, elements, varieties, order of causes as well as the modes
of causation. Aristotle’s account of the causes of things may be qualified as the
most comprehensive model up to now.

The modern deterministic world–view is one in which the universe is nothing
more than a chain of events following one after another according to the law of
cause and effect.
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generated by a Bayesian network and that all the variables are visible in every
iteration, the following methods are used to learn the structure of the acyclic
graph and the conditional probability table associated with it. The elements
of a structure–finding algorithm are a scoring function and a search strategy .
The time requirement of an exhaustive search returning back a structure that
maximizes the score is superexponential in the number of variables. A local
search algorithm makes incremental changes aimed at improving the score
of the structure. A global search algorithm like Markov–chain Monte–Carlo
(MCMC) can avoid getting trapped in local minima.

In order to fully specify the Bayesian network and thus fully represent the
joint probability distribution, it is necessary to further specify for each node
X the probability distribution for X conditional upon X’s parents. The distri-
bution of X conditional upon its parents may have any form. It is common to
work with discrete or Gaussian distributions since that simplifies calculations.
Sometimes only constraints on a distribution are known; one can then use the
principle of maximum entropy to determine a single distribution, the one with
the greatest entropy given the constraints. Analogously, in the specific context
of a dynamic Bayesian network, one commonly specifies the conditional dis-
tribution for the hidden state’s temporal evolution to maximize the entropy
rate of the implied stochastic process. Often these conditional distributions
include parameters which are unknown and must be estimated from data,
sometimes using the maximum likelihood approach. Direct maximization of
the likelihood (or of the posterior probability) is often complex when there are
unobserved variables. A classical approach to this problem is the expectation–
maximization algorithm which alternates computing expected values of the
unobserved variables conditional on observed data, with maximizing the com-
plete likelihood (or posterior) assuming that previously computed expected
values are correct. Under mild regularity conditions this process converges on
maximum likelihood (or maximum posterior) values for parameters. A more
fully Bayesian approach to parameters is to treat parameters as additional un-
observed variables and to compute a full posterior distribution over all nodes
conditional upon observed data, then to integrate out the parameters. This
approach can be expensive and lead to large dimension models, so in practise
classical parameter–setting approaches are more common.

The goal of inference in Bayesian networks is typically to find the dis-
tribution of a subset of the variables, conditional upon some other subset
of variables with known values (the evidence), with any remaining variables
integrated out. This is known as the posterior distribution of the subset of
the variables given the evidence. The posterior gives a universal sufficient
statistic for detection applications, when one wants to choose values for the
variable subset which minimize some expected loss function, for instance the
probability of decision error.

A Bayesian network can thus be considered a mechanism for automati-
cally constructing extensions of Bayes’ theorem to more complex problems.
Bayes’ theorem relates the conditional and marginal probability distributions
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of random variables. In some interpretations of probability, Bayes’ theorem
tells how to update or revise beliefs in light of new evidence: a posteriori. The
probability of an event A conditional on another event B is generally differ-
ent from the probability of B conditional on A. However, there is a definite
relationship between the two, and Bayes’ theorem is the statement of that
relationship.

As a formal theorem, Bayes’ theorem is valid in all interpretations of
probability. However, frequentist and Bayesian interpretations disagree about
the kinds of things to which probabilities should be assigned in applica-
tions: frequentists assigned probabilities to random events according to their
frequencies of occurrence or to subsets of populations as proportions of the
whole; Bayesians assign probabilities to propositions that are uncertain. A
consequence is that Bayesians have more frequent occasion to use Bayes’ the-
orem. The articles on Bayesian probability and frequentist probability discuss
these debates at greater length.

Formally, Bayes’ theorem relates the conditional and marginal probabili-
ties of stochastic events A and B as

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
∝ L(A|B) Pr(A),

where L(A|B) is the likelihood of A given fixed B. Each term in Bayes’ the-
orem has a conventional name:

Pr(A) is the prior probability or marginal probability of A. It is ‘prior’ in
the sense that it does not take into account any information about B;

Pr(A|B) is the conditional probability of A, given B. It is also called the
posterior probability because it is derived from or depends upon the specified
value of B.

Pr(B|A) is the conditional probability of B given A.
Pr(B) is the prior or marginal probability of B, and acts as a normalizing

constant.
With this terminology, the theorem may be paraphrased as:

posterior =
likelihood× prior

normalizing constant
,

or, in words: the posterior probability is proportional to the prior probability
times the likelihood. In addition, the ratio Pr(B|A)/Pr(B) is sometimes called
the standardised likelihood , so the theorem may also be paraphrased as:

posterior = standardised likelihood× prior.

The most common exact inference methods are variable elimination which
eliminates (by integration or summation) the non–observed non–query vari-
ables one by one by distributing the sum over the product, clique tree propaga-
tion which caches the computation so that the many variables can be queried
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at one time, and new evidence can be propagated quickly, recursive condition-
ing which allows for a space-time tradeoff but still allowing for the efficiency
of variable elimination when enough space is used. All of these methods have
complexity that is exponential in tree width. The most common approximate
inference algorithms are stochastic MCMC simulation, mini–bucket elimina-
tion which generalizes loopy belief propagation, and variational methods.

Bayesian networks are used for modelling knowledge in gene regulatory
networks, medicine, engineering, text analysis, image processing, data fusion,
and decision support systems.

Support Vector Machines

Recall that support vector machines (SVMs, see Figure 1.7) are a set of re-
lated supervised learning methods used for classification and regression (see
[Vap95, Vap98, SS01, CS00]). Their common factor is the use of a technique
known as the ‘kernel trick ’ to apply linear classification techniques to nonlin-
ear classification problems.

SVMs implement the statistical learning theory. They are a radically dif-
ferent type of classifier from artificial neural networks (ANNs, see below) that
has attracted a great deal of attention lately due to the novelty of the concepts
that they bring to pattern recognition, their strong mathematical foundation,
and their excellent results in practical problems. SVM represents the coupling
of the following two concepts: the idea that transforming the data into a high–
dimensional space makes linear discriminant functions practical, and the idea
of large margin classifiers to train the standard ANNs like MLP or RBF. It
is another type of a kernel classifier: it places Gaussian kernels over the data
and linearly weights their outputs to create the system output. To implement
the SVM–methodology, we can use the Adatron–kernel algorithm, a sophisti-
cated nonlinear generalization of the RBF networks, which maps inputs to a
high–dimensional feature space, and then optimally separates data into their
respective classes by isolating those inputs, which fall close to the data bound-
aries. Therefore, the Adatron–kernel is especially effective in separating sets
of data, which share complex boundaries, as well as for the training for non-
linearly separable patterns. The support vectors allow the network to rapidly
converge on the data boundaries and consequently classify the inputs.

Fig. 1.7. Adatron–kernel based support vector machine (SVM) network, arranged
using NeuroSolutionsTM .
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The main advantage of SVMs over MLPs is that the learning task is a con-
vex optimization problem which can be reliably solved even when the example
data require the fitting of a very complicated function [Vap95, Vap98]. A com-
mon argument in computational learning theory suggests that it is dangerous
to utilize the full flexibility of the SVM to learn the training data perfectly
when these contain an amount of noise. By fitting more and more noisy data,
the machine may implement a rapidly oscillating function rather than the
smooth mapping which characterizes most practical learning tasks. Its pre-
diction ability could be no better than random guessing in that case. Hence,
modifications of SVM training [CS00] that allow for training errors were sug-
gested to be necessary for realistic noisy scenarios. This has the drawback of
introducing extra model parameters and spoils much of the original elegance
of SVMs.

Mathematics of SVMs is based on real Hilbert space methods.

Linear Classification Problem

Suppose we want to classify some data points into two classes. Often we are
interested in classifying data as part of a machine–learning process. These
data points may not necessarily be points in R2 but may be multidimensional
Rp (statistics notation) or Rn (computer science notation) points. We are
interested in whether we can separate them by a hyperplane. As we examine
a hyperplane, this form of classification is known as linear classification. We
also want to choose a hyperplane that separates the data points ‘neatly’, with
maximum distance to the closest data point from both classes – this distance
is called the margin. We desire this property since if we add another data
point to the points we already have, we can more accurately classify the new
point since the separation between the two classes is greater. Now, if such a
hyperplane exists, the hyperplane is clearly of interest and is known as the
maximum–margin hyperplane or the optimal hyperplane, as are the vectors
that are closest to this hyperplane, which are called the support vectors.

Formalization

Consider data points of the form

{(x1, c1), (x2, c2), . . . , (xn, cn)},

where the ci is either 1 or −1; this constant denotes the class to which the
point xi belongs. Each xi is a pD (statistics notation), or nD (computer sci-
ence notation) vector of scaled [0, 1] or [−1, 1] values. The scaling is important
to guard against variables (attributes) with larger variance that might oth-
erwise dominate the classification. We can view this as training data, which
denotes the correct classification which we would like the SVM to eventually
distinguish, by means of the dividing hyperplane, which takes the form:

w · x− b = 0.
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Fig. 1.8. Maximum–margin hyperplanes for a SVM trained with samples from two
classes. Samples along the hyperplanes are called the support vectors.

As we are interested in the maximum margin, we are interested in the sup-
port vectors and the parallel hyperplanes (to the optimal hyperplane) closest
to these support vectors in either class (see Figure 1.8). It can be shown that
these parallel hyperplanes can be described by equations

w · x− b = 1, (1.6)
w · x− b = −1. (1.7)

We would like these hyperplanes to maximize the distance from the divid-
ing hyperplane and to have no data points between them. By using geometry,
we find the distance between the hyperplanes being 2/|w|, so we want to
minimize |w|. To exclude data points, we need to ensure that for all i either

w · xi − b ≥ 1, or
w · xi − b ≤ −1.

This can be rewritten as

ci(w · xi − b) ≥ 1, (1 ≤ i ≤ n). (1.8)

The problem now is to minimize |w| subject to the constraint (1.8). This
is a quadratic programming optimization (QP) problem.

After the SVM has been trained, it can be used to classify unseen ‘test’
data. This is achieved using the following decision rule,

ĉ =
{

1 if w · x + b ≥ 0,
−1 if w · x + b ≤ 0.

Writing the classification rule in its dual form reveals that classification is
only a function of the support vectors, i.e., the training data that lie on the
margin.
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The use of the maximum–margin hyperplane is motivated by Vapnik–
Chervo-nenkis SVM theory , which provides a probabilistic test error bound
that is minimized when the margin is maximized. However the utility of this
theoretical analysis is sometimes questioned given the large slack associated
with these bounds: the bounds often predict more than 100% error rates.

The parameters of the maximum–margin hyperplane are derived by solv-
ing the optimization. There exist several specialized algorithms for quickly
solving the QP problem that arises from SVMs. The most common method
for solving the QP problem is Platt’s SMO algorithm.

Nonlinear Classification

The original optimal hyperplane algorithm proposed by Vladimir Vapnik
in 1963 was a linear classifier . However, in 1992, B. Boser, I. Guyon and
Vapnik suggested a way to create nonlinear classifiers by applying the kernel
trick (originally proposed by Aizerman) to maximum–margin hyperplanes.
The resulting algorithm is formally similar, except that every dot product is
replaced by a nonlinear kernel function. This allows the algorithm to fit the
maximum–margin hyperplane in the transformed feature space. The transfor-
mation may be nonlinear and the transformed space high dimensional; thus
though the classifier is a hyperplane in the high–dimensional feature space it
may be nonlinear in the original input space.

If the kernel used is a Gaussian radial basis function, the corresponding
feature space is a Hilbert space of infinite dimension. Maximum margin clas-
sifiers are well regularized, so the infinite dimension does not spoil the results.
Some common kernels include:

1. Polynomial (homogeneous):

k(x,x′) = (x · x′)d;

2. Polynomial (inhomogeneous):

k(x,x′) = (x · x′ + 1)d;

3. Radial Basis Function:

k(x,x′) = exp(−γ‖x− x′‖2), for γ > 0;

4. Gaussian radial basis function:

k(x,x′) = exp(−‖x− x′‖2
2σ2

); and

5. Sigmoid:
k(x,x′) = tanh(κx · x′ + c),

for some (not every) κ > 0 and c < 0.
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Soft Margin

In 1995, Corinna Cortes and Vapnik suggested a modified maximum margin
idea that allows for mislabeled examples. If there exists no hyperplane that
can split the ‘yes’ and ‘no’ examples, the so–called soft margin method will
choose a hyperplane that splits the examples as cleanly as possible, while
still maximizing the distance to the nearest cleanly split examples. This work
popularized the expression Support Vector Machine or SVM. This method
introduces slack variables and the equation (1.8) now transforms to

ci(w · xi − b) ≥ 1− ξi, (1 ≤ i ≤ n), (1.9)

and the optimization problem becomes

min ||w||2 + C
∑

i

ξi such that ci(w · xi − b) ≥ 1− ξi, (1 ≤ i ≤ n),

This constraint in (1.9) along with the objective of minimizing |w| can be
solved using Lagrange multipliers or setting up a dual optimization problem
to eliminate the slack variable.

SV Regression

A version of a SVM for regression was proposed in 1995 by Vapnik,
S. Golowich, and A. Smola (see [Vap98, SS01]). This method is called support
vector regression (SVR). The model produced by support vector classification
(as described above) only depends on a subset of the training data, because
the cost function for building the model does not care about training points
that lie beyond the margin. Analogously, the model produced by SVR only
depends on a subset of the training data, because the cost function for build-
ing the model ignores any training data that is close (within a threshold ε)
to the model prediction.

Intelligent Agents

Recall that the agent theory concerns the definition of the so–called belief–
desire–intention agents (BDI–agents, for short), as well as multi–agent sys-
tems, properties, architectures, communication, cooperation and coordination
capabilities (see [RG98]).

A common definition of an agent reads: An agent is a computer system that
is situated in some environment, and that is capable of autonomous action in
this environment in order to meet its design requirements [Woo00].

Practical side of the agent theory concerns the agent languages and plat-
forms for programming and experimenting with agents. According to [Fer99],
a BDI–agent is a physical or virtual entity which:

1. is capable of limited perceiving its environment (see Figure 1.9),
2. has only a partial representation of its environment,
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Fig. 1.9. A basic agent–environment loop (modified from [Woo00]).

Fig. 1.10. Agent technology compared to relevant technologies.

3. is capable of acting in an environment,
4. can communicate directly with other agents,
5. is driven by a set of tendencies,146

6. possesses resources of its own,
7. possesses some skills and can offer services,
8. may be able to reproduce itself,
9. whose behavior tends towards satisfying its objectives,

– taking into account the resources and skills available to it and depend-
ing on its perception, its representation and the communications it receives.
Agents’ actions affect the environment which, in turn, affects future decisions
of agents. The multi–agent systems have been successfully applied in numer-
ous fields (see [Fer99] for the review).

Agents embody a new software development paradigm that attempts to
merge some of the theories developed in artificial intelligence research with
computer science. The power of agents comes from their intelligence and also
their ability to communicate with each other. A simple mapping of agent
technology compared to relevant technologies is illustrated in Figure 1.10.
Agents can be considered as the successors of object–oriented programming
techniques, applied to certain problem domains. However, the additional layer

146 in the form of individual objectives or of a satisfaction/survival function which
it tries to optimize
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of implementation in agents provides some key functionalities and deliberately
creates a separation between the implementation of an agent from the applica-
tion being developed. This is done in order to achieve one of the core properties
of agents, autonomy. Objects are able to assert a certain amount of control
over themselves via private variables and methods, and other objects via pub-
lic variables and methods. Consequently, a particular object is able to directly
change public variables of other objects and also execute public methods of
other objects. Hence, objects have no control over the values of public vari-
ables and who and when executes their public methods. Conversely, agents
are explicitly separated, and can only request from each other to perform a
particular task. Furthermore, it cannot be assumed that after a particular
agent makes a request, another agent will do it. This is because performing a
particular action may not be in the best interests of the other agent, in which
case it would not comply [Woo00].

Types of Intelligent Agents

Here we give a general overview of different types of agents and groups them
into several intuitive categories based on the method that they perform their
reasoning [Woo00].

Deliberate Agents

Deliberate agents are agents that perform rational reasoning, take actions
that are rational after deliberating using their knowledge base (KB), carefully
considering the possible effects of different actions available to them. There are
two subtypes of deliberate agents: deductive reasoning agents and production–
rule agents.

1. Deductive reasoning agents are built using expert systems theory, they
operate using an internal symbolic KB of the environment. Desired behavior
is achieved by manipulating the environment and updating the KB accord-
ingly. A utility function is implemented that provides an indication on how
good a particular state is compared on what the agent should achieve. An
example of the idea behind these type of agents is an agent that explores a
building. It has the ability to move around and it uses a video camera, the
video signal is processed and translated to some symbolic representation. As
the agent explores the world it maintains a data structure of what it has ex-
plored. The internal structure of deductive reasoning agents is illustrated in
Figure 1.11. There are two key problems encountered when trying to build
deductive reasoning agents. Firstly, the transduction problem is the problem
of translating the real world into an accurate, symbolic description in time
for it to be useful. Secondly, the representation or reasoning problem is the
problem of representing acquired information symbolically and getting agents
to manipulate/reason with it [Woo00].

2. Production systems are also an extension of expert systems. However
they place more emphasis how decisions are made based on the state of the
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Fig. 1.11. A concept of deductive reasoning agents (modified from [RN03]).

Fig. 1.12. A concept of production–rule agents (modified from [RN03]).

KB. The general structure of production system agents is illustrated in
Figure 1.12. The KB is called working memory and is aimed to resemble short
term memory. They also allow a designer to create a large set of condition-
action rules called productions that resemble long term memory. When a
production is executed it is able cause changes to the environment or directly
change the working memory. This in turn possibly activates other produc-
tions. Production systems typically contain a small working memory, and a
large number of rules that can be executed so fast that production systems
are able to operate in real time with thousands of rules [RN03]. An example
of a production–rule agent development environment is called SOAR (State,
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Operator And Result). SOAR uses a KB as a problem space and production
rules to look for solutions in a problem. IT has a powerful problem solving
mechanism whereby every time that it is faced with more than one choice
of productions (via a lack of knowledge about what is the best way to pro-
ceed) it creates an impasse that results in branching of the paths that it takes
through the problem space. The impasse asserts subgoals that force the cre-
ation of sub–states of problem solving behavior with the aim to resolve the
super–state impasse [Sio05].

Reactive Agents

Deliberate agents were originally developed using traditional software engi-
neering techniques. Such techniques define pre–conditions required for opera-
tion and post–conditions that define the required output after operation. Some
agents however, cannot be easily developed using this method because they
maintain a constant interaction with a dynamic environment, hence they are
called reactive agents. Reactive agents as especially suited for real–time appli-
cations where there are strict time constraints (i.e., milliseconds) on choosing
actions.

Reactive systems are studied by behavioral means where researchers have
tried to use entirely new approaches that reject any symbolic representation
and decision making. Instead, they argue that intelligent and rational behav-
ior emerges from the interaction of various simpler behaviors and is directly
linked to the environment that the agent occupies [Woo00]. The general struc-
ture of reactive agents is illustrated in Figure 1.13 The main contributor of
reactive agent research is Rod Brooks from MIT, with his subsumption archi-
tecture, where decision making is realized through a set of task–accomplishing

Fig. 1.13. A concept of reactive agents (modified from [RN03]).
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behaviors. Behaviors are arranged into layers where lower layers have a higher
priority and are able to inhibit higher layers that represent more abstract be-
haviors [Bro86]. A simple example of the subsumption architecture is a multi–
agent system used to collect a specific type of rock scattered in a particular
area on a distant planet. Agents are able to move around, collect rocks and
return to the mother–ship. Due to obstacles on the surface of the planet,
agents are not able to communicate directly, however they can carry special
radioactive crumb that they drop on the ground for other agents to detect.
The crumbs are used to leave a trail for other agents to follow. Additionally, a
powerful locater signal is transmitted from the mother–ship, agents can find
the ship by moving towards a stronger signal. A possible behavior architecture
for this scenario are the following set of heuristic IF–THEN rules:

1. IF detect an obstacle THEN change direction (this rule ensures that the
agent avoids obstacles when moving);

2. IF carrying samples and at the base THEN drop samples (this rule allows
agent to drop samples in the mother–ship);

3. IF carrying samples and not at the base THEN drop 2 crumbs and travel
up signal strength (this rule either reinforces a previous trail or creates a
new one);

4. IF detect a sample THEN pick sample up (this rule collects samples);
5. IF sense crumbs THEN pick up 1 crumb and travel away from signal

strength (this rule follows a crumb trail that should end at a mineral
deposit; crumbs are picked up to weaken the trail such that it disappears
when the mineral deposit has depleted);

6. IF true THEN move randomly (this rule explores the area until it stumbles
upon a mineral deposit or a crumb trail).

Hybrid Agents

Hybrid agents are capable of expressing both reactive and pro-active behav-
ior. They do this by breaking reactive and proactive behavior into different
subsystems called layers. The lowest layer is the reactive layer and it pro-
vides immediate responses to changes for the environment, similarly to the
subsumption architecture. The middle layer is the planning layer that is re-
sponsible for telling the agent what to do by reviewing internal plans, and
selecting a particular plan that would be suitable for achieving a goal. The
highest layer is the modelling layer that manages goals. A major issue encoun-
tered when developing solutions with hybrid reasoning agents is that agents
must be able to balance the time spent between thinking and acting. This
includes being able to stop planning at some point and commit to goal, even
if that goal is not optimal [Woo00]. The general structure of hybrid agents is
illustrated in Figure 1.14.
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Fig. 1.14. A concept of hybrid, goal–directed agents (modified from [RN03]).

Agent–Oriented Software Development

Agent–oriented development is concerned with the techniques of software
development that are specifically suited for developing agent systems. This
is an important issue because existing software development techniques are
unsuitable for agents as there exists a fundamental mismatch between tra-
ditional software engineering concepts and agents. Consequently, traditional
techniques fail to adequately capture an agent’s autonomous problem–solving
behavior as well as the complex issues involved in multi–agent interaction
[Sio05].

The first agent–oriented methodology was proposed by Wooldridge and is
called Gaia. Gaia is deemed appropriate for agent systems with the following
characteristics: (i) Agents are smart enough to require significant computa-
tional resources. (ii) Agents may be implemented using different programming
languages, architectures or techniques. (iii) The system has a static organiza-
tion structure such that inter–agent relationships do not change during oper-
ation. (iv) The abilities of agents and the services they provide do not change
during operation. (v) The system requires only small amount of agents. Gaia
splits the development process into three phases: Requirements, Analysis and
Design. The requirements phase is treated in the same way as traditional sys-
tems. The analysis phase is concerned with the roles that agents play in the
system as well as the interactions required between agents. The design phase
is concerned with the agent types that will make up the system. The agent
main services that are required to realize the agent’s roles, and finally, the
lines of communication between the different agents. The Gaia methodology
was the inspiration for the more detailed methodology described in the next
section (see [Woo00]).
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Agents Environments

Agent technology has been applied to many different application areas, each
focusing on a specific aspect of agents that is applicable to the domain at
hand. The role that BDI–agents play in their environment distinctly depends
on the application domain. The agent research community is very active and
environments are mostly viewed as test–beds for developing new features in
agents and showing how they are successfully used to solve a particular prob-
lem. Fortunately, in most cases this is a two–sided process, by understanding,
developing and improving new agent technologies it becomes possible to solve
similar real life problems. Consequently, as the underlying foundation of agent
software matures, new publications describe how agents are being applied suc-
cessfully in increasingly complex application domains [Sio05].

The BDI–agent is usually understood to be a decision–maker and any-
thing that it interacts with, comprising everything outside the agent itself, is
referred to as the environment . The environment has a number of features
and generates sensations that contain some information about the features.
A situation is commonly understood as a complete snapshot of the environ-
ment for a particular instance in time.147 Hence, if an agent is able to get or
deduce the situation of its environment it would know everything about the
environment at that time. A state is here defined as a snapshot of the agent’s
beliefs corresponding to its limited understanding of the environment. This
means that the state may or may not be a complete or accurate representa-
tion of the situation. This distinction supports research being conducted on
improving the agent’s situation awareness (SA), whereby SA measures how
similar the state is as opposed to the situation.

The agent and the environment interact continually, the agent selects
actions and the environment responds to the actions by presenting new sensa-
tions to the agent [SB98]. The interaction is normally segmented in a sequence
of discrete time steps, whereby, at a particular time step the agent receives
data from the environment and on that basis selects an action. In the next
time step, the agent finds itself in a new state (see Figure 1.9).

Various properties of environments have been classified into six categories
[RN03]:

1. Fully observable or partially observable. A fully observable environment
provides the agent with complete, accurate and up–to–date information of
the entire situation. However, as the complexity of environments increases,
they become less and less observable. The physical world is considered a
partially observable environment because it is not possible to know every-
thing that happens in it [Woo00]. On the other hand, depending on the

147 In a number of references, the term state is used with the same meaning. In this
section a clear distinction is made between the two terms, a situation is defined
as a complete snapshot of the real environment.
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application, the environment should not be expected to be completely ob-
servable (e.g., if an agent is playing a card game it should not be expected
to know the cards of every other player). Hence, in this case, even though
there is hidden information in the environment and this information would
be useful if the agent knew it, is not necessary for making rational deci-
sions [SB98]. An extension of this property is when sensations received
from the environment are able to summarize past sensations in a compact
way such that all relevant information from the situation can be deduced.
This requires that the agent maintains a history of all past sensations.
When sensations succeeds in retaining all relevant information, they are
said to have the Markov property. An example of a Markov sensation for
a game of checkers is the current configuration of the pieces on the board,
this is because it summarizes the complete sequence of sensations that led
to it. Even though much of the information about the sequence is lost,
all important information about the future of the game is retained. A dif-
ficulty encountered when dealing with partially observable environments
is when the agent is fooled to perceiving two or more different situations
as the same state, this problem is known as perceptual aliasing. If the
same action is required for the different situations then aliasing is a desir-
able effect, and can be considered a core part of the agent’s design, this
technique is commonly called state generalization [SB98].

2. Deterministic or stochastic. Deterministic is the property when actions
in the environment have a single guaranteed effect. In other words, if the
same action is performed from the same situation, the result is always
the same. A useful consequence of a deterministic environment is the abil-
ity to predict what will happen before an action is taken, giving rise to
the possibility of evaluating multiple actions depending on their predicted
effects. The physical world is classified as a stochastic environment as
stated by [Woo00]. However, if an environment is partially observable it
may appear to be stochastic because not all changes are observed and
understood [RN03], if more detailed observations are made, including ad-
ditional information, the environment becomes increasingly deterministic.

3. Episodic or sequential. Within an episodic environment, the situations
generated are dependent on a number of distinct episodes, and there is no
direct association between situations of different episodes. Episodic envi-
ronments are simpler for agent development because the reasoning of the
agent is based only on the current episode, there is no reason to consider
future episodes [Woo00]. An important assumption made when designing
agents for episodic environments, is that all episodes eventually termi-
nate no matter what actions are selected [SB98]. This is particularly true
when using learning techniques that only operate on the completion of
an episode through using a captured history of situations that occurred
within the episode. Actions made in sequential environments, on the other
hand, affect all future decisions. Chess is an example of a sequential envi-
ronment because short–term actions have long–term consequences.
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4. Static or dynamic. A static environment is one that remains unchanged
unless the agent explicitly causes changes through actions taken. A dy-
namic environment is one that contains other entities that cause changes in
ways beyond the agents control. The physical world continuously changes
with external means and is therefore considered a highly dynamic envi-
ronment [Woo00]. An example of a static environment, is an agent finding
its way though a 2D maze. In this case all changes are caused by the same
agent. An advantage of static environments is that the agent does not
need to continuously observe the environment while its deciding the next
action. It can take as much time as it needs to make a decision and the
environment will be the same as when previously observed [RN03].

5. Discrete or continuous. An environment is discrete if there is a fixed, finite
number of actions and situations in it [Woo00]. Simulations and computer
games are examples of discrete environments because they involve cap-
turing actions performed by entities, processing the changes caused by
the actions and providing an updated situation. Sometimes however, this
process is so quick that the simulation appears to be running continu-
ously. An example of a continuous environment is taxi driving, because
the speed and location of the taxi and other cars changes smoothly over
time [RN03].

6. Single–agent or multi–agent. Although the distinction between single and
multi–agent environments may seem trivial, recent research has surfaced
some interesting issues. These arise from the question of what in the en-
vironment may be viewed as another agent [RN03]. For example, does a
taxi driver agent need to treat another car as an agent? What about a
traffic light or a road sign? An extension to this question is when humans
are included as part of the design of the system, giving rise to the new
research area called human–agent teaming [Sio05].

Agents’ Reasoning and Learning

The environments described above illustrate the need for adaptation when
agent systems are required to interact with complex environments. Here we
sill review how agents and humans are understood to perform reasoning and
learning when they are faced with a particular environment.

Reasoning is understood as the thinking process that occurs within an
agent that needs to make a particular decision. This topic has been tackled
via two parallel directions with two different schools of thought. The first
school of thought focuses on how agents can perform rational reasoning where
the decisions made are a direct reflection of knowledge. The advantage of this
approach is that decisions made by an agent can be understood simply by
looking within its internal data structures, as the agent only makes decisions
based on what it knows. This process includes maintaining the agent’s knowl-
edge base such that it contains accurate information about its environment,
by performing operations in order to keep all knowledge consistent. Decisions
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are made through a collection of rules applied on the knowledge base that
define what should occur as knowledge changes [Sio05].

Another school of thought is concerned with the way that humans perform
reasoning and apply any concepts developed to agent technology. Humans are
known to perform practical reasoning every day, their decisions are based on
their desires and their understanding in regards to how to go about achieving
them. The process that takes place between observing the world, considering
desires and taking actions can be broken up into four main stages, each of
which consists of a number of smaller components. Through learning, it also
becomes possible to create agents that are able to change the way that they
were originally programmed to behave. This can be advantageous when an
agent is faced with a situation that it does not know how to proceed. Further-
more, it is useful when an agent is required to improve its performance with
experience.

Reasoning and Behavior

Research on artificial reasoning and behavior has been tackled from different
angles that can be categorized along two main dimensions (see Figure 1.15).
The vertical dimension illustrates the opposing nature of reasoning and behav-
ior that correspond to thinking versus acting respectively. This is an important
feature concept in every application using AI techniques. Great emphasis is
given to the balance between processing time for making better decisions, and
the required speed of operation. Approaches falling to the left side are based
on how humans reason and behave while approaches falling on the right side
are concerned with building systems that are rational, meaning that they are
required to think and act as best they can, given their limited knowledge
[RN03].

Rational Reasoning

1. Representation and search. Recall that the way that information is rep-
resented and used for intelligent problem solving forms a number of important
but difficult challenges that lie within the core of AI research. Knowledge rep-
resentation is concerned with the principles of correct reasoning. This involves
two parallel topics of research. One side is concerned with the development
of formal representation languages with the ability to maintain consistent

Fig. 1.15. Reasoning dimensions (modified from [RN03]).
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knowledge about the world, the other side is concerned with the development
of reasoning processes that bring the knowledge to life. The output of both
of these areas results in a Knowledge Base (KB) system. KBs try to create a
model of the real world via the collection of a number of sentences. An agent
is normally able to add new sentences to the knowledge base as well as query
the KB for information. Both of these tasks may require the KB to perform
inference on its knowledge, where an inference is defined as the process of
deriving new sentences from known information. An additional requirement
of KBs is that when an agent queries the KB, the answer should be inferred
from information previously added to the KB and not from unknown facts.
The most important part of a KB is the logic in which the its sentences are
represented. This is because all sentences in a KB are in fact expressed ac-
cording to the syntax and semantics of the logic’s representation language.
The syntax of the logic is required for implementing well formed sentences
while the semantics define the truth of each sentence with respect to a model
of the environment being represented [RN03].

Problem solving using KBs involves the use of search algorithms that are
able to search for solutions between different states of information within the
KB. Searching involves starting from an initial state and expanding across
different successor state possibilities until a solution is found. When a search
algorithm is faced with a choice of possibilities to consider, each possibility
is thoroughly searched before moving to the next possibility. Search however
has a number of issues, including [Lug02]:
(i) Guarantee of a solution being available; (ii) Termination of the search
algorithm; (iii) The optimality of a particular solution found; and (iv) The
complexity of the search algorithm with respect to the time and memory
usage.

State space analysis is done with the use of graphs. A graph is a set of
nodes with arcs that connect them, each node can have a label to distinguish
it from another node and arcs can have directions to indicate the direction
of movement between the nodes. A path in the graph connects a sequence of
nodes with arcs and the root is a node that has a path to all other nodes in
the graph.

There are two ways to search a state space, the first way is to use data-
driven search by which the search starts by a given set of facts and rules for
changing states. The search proceeds until it generates a path that leads to
the goal condition. Data driven search is more appropriate for problems in
which the initial problem state is well defined, or there are a large number of
potential goals and only a few facts to start with, or the goal state is unclear
[Lug02].

The second way is to use goal-driven search by which the search starts
by taking the goal state and determining what conditions must be true to
move into the goal state. These conditions are then treated as subgoals to be
searched. The search then continues backwards through the subgoals until it
reaches the initial facts of the problem. Goal driven search is more appropriate
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for problems in which the goal state is well defined, or there are a large number
of initial facts making it impractical to prefer data driven search, or the initial
data is not given and must be acquired by the system [Lug02].

The choice of which of the options to expand first is defined by the algo-
rithm’s search strategy. Two well known search strategies are: Breadth-first,
where all successors of a given depth are expanded first before any nodes at
the next level. Depth-first search involves expanding the deepest node for a
particular option before moving to the next option. There are also strategies
that include both elements, for example defining a depth limit for searching in
a tree. It is also possible to use heuristics to help with choosing branches that
are more likely to lead to an acceptable solution. Heuristics are usually applied
when a problem does not have an exact solution or the computational cost to
find an exact solution is too big. They reduce the state space by following the
more promising paths through the state space [RN03].

An additional layer of complexity in knowledge representation and search
is due to the fact that agents almost never have access a truly observable
environment. Which means that agents are required to act under uncertainty .
There are two techniques that have been used for reasoning in uncertain situa-
tions. The first involves the use of probability theory in assigning a value that
represents a degree of belief in facts in the KB. The second method involves
the use of fuzzy sets (see below) for representing how well a particular object
satisfies a vague description [RN03].

2. Expert systems. Recall that knowledge–based reasoning systems are
commonly called expert systems because they work by accumulating knowl-
edge extracted from different sources, and use different strategies on the
knowledge in order to solve problems. Simply put, expert systems try to repli-
cate what a human expert would do if faced with the same problem. They
can be classified into different categories depending on the type of problem
they are used to solve [Lug02]:

– interpretation: making conclusions or descriptions from collections of raw
data;

– prediction/forecasting : predicting the consequences of given situations;
– diagnosis: finding the cause of malfunctions based on the symptoms

observed;
– design: finding a configuration of components that best meets performance

goals when considering several design constraints;
– planning : finding a sequence of actions to achieve some given goals using

specific starting conditions and run–time constraints;
– monitoring : observing a system’s behavior and comparing it to its expected

behavior at run–time;
– debugging : finding problems and repairing caused malfunctions; and
– control : controlling how a complex system behaves.
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Fig. 1.16. A recognize–act operation cycle of production systems (modified from
[Lug02]).

A common way to represent data in a expert systems is using first–order
predicate calculus formulae. For example, the sentence ‘If a bird is a crow
then it is black’ is represented as:

∀X(crow(X) =⇒ black(X)).

3. Production systems. They are based on a model of computation that
uses search algorithms and models human problem solving. Production sys-
tems consist of production rules and a working memory. Production rules are
pre-defined rules that describe a single segment of problem–solving knowl-
edge. They are represented by a condition that determines when the produc-
tion is applicable to be executed, and an action which defines what to do
when executed. The working memory is an integrated KB that contains an
ever–changing state of the world.

The operation of production systems generally follows a recognize–act cy-
cle (see Figure 1.16). Working memory is initialized with data from the initial
problem description and is subsequently updated with new information. At
every step of operation, the state presented by the working memory is con-
tinuously captured as patterns and applied to conditions of productions. If a
pattern is recognized against a condition, the associated production is added to
a conflict set. A conflict resolution operation chooses between all enabled pro-
ductions and the chosen production is fired by executing its associated action.
The actions executed can have two effects. Firstly, they can cause changes to
the agent’s environment which indirectly changes the working memory. Sec-
ondly, they can explicitly cause changes in the working memory. The cycle
then restarts using the modified working memory until a situation when no
subsequent productions are enabled. Some production systems also contain
the means to do backtracking when there are no further enabled productions
but the goal of the system has still not been reached. Backtracking allows the
system to work backwards and try some different options in order to achieve
its goal [Lug02].

Human Reasoning

The so–called practical reasoning is concerned with studying the way that
humans reason about what to do in everyday activities and applying this to



1.2 Artificial and Computational Intelligence 181

Fig. 1.17. BDI–reasoning process (modified from [Woo00]).

the design of intelligent agents. Practical reasoning is specifically geared to
reasoning towards actions, it involves weighing conflicting considerations of
different options that are available depending on what a person desires to do.
Practical reasoning can be divided into two distinct activities (see Figure 1.17).
The first activity is called deliberation reasoning , it involves deciding on what
state to achieve. The second activity is called means–ends reasoning and it in-
volves deciding on how to achieve this state of affairs [Woo00]. Recall that the
central component of practical reasoning is the concept of intention because
it is used to characterize both the action and thinking process of a person. For
example ‘intending to do something’ characterizes a persons thinking while
‘intentionally doing something’ characterizes the action being taken.

The precursors of an intention are a persons’s desires and beliefs and hence
all of the beliefs, desires and intentions must be consistent. In other words,
intending to do something must be associated with a relevant desire, as well as
the belief that the intended action will help to achieve the desire. Maintaining
this consistency is challenging due to the dynamic nature of desires and beliefs.
Desires are always changing according to internal self-needs while beliefs are
constantly updated using information obtained from senses through a process
called belief revision, from the external environment.

Forming an intention involves performing two concurrent operations.
Firstly, option generation uses the current desires to generate a set of pos-
sible alternatives. Secondly, filtering chooses between these alternatives based
on the current intentions and beliefs. An intention also requires assigning a
degree of commitment toward performing a particular action or set of ac-
tions in the future. There are four important characteristics emerging by this
commitment are [Woo00]:

1. Intentions drive means-ends reasoning by forcing the agent to decide on
how to achieve them.

2. Intentions persist by forcing a continuous strive to achieve them. Hence,
after a particular action has failed, other alternative actions are attempted
until it comes to be believed that it is not possible to achieve the intention,
or the relevant desire is not longer present.



182 1 Introduction: Human and Computational Mind

3. Intentions constrain future deliberation because it is not necessary to con-
sider desires that are inconsistent with the current intentions.

4. Intentions influence beliefs by introducing future expectations. This is
due the requirement of believing that a desired state is possible before
and during execution the intention to satisfy it.

The process that occurs after forming an intention in order to take action is
identified as planning, it involves selecting and advancing through a sequence
of plans that dictate what actions to take. Plans are understood to consist
of pre-condition that characterizes the state in which a plan is applicable for
execution and a post-condition characterizes the resulting state after executing
the plan. Finally, a body containing the recipe defining the actions to take
[Woo00]. From the theory of practical reasoning, researchers have been able
to develop intuitive agent development architectures. The transition between
the theory and implementation has required the identification of equivalent
software constructs for each of the BDI–components [Sio05].

Cognitive systems engineering takes into account, during the design
and implementation of systems, that systems will be used by humans. It ac-
knowledges that humans are dynamic entities that are part of the system itself
but cannot be modelled as static components of a system. When humans use a
system they adapt to the functional characteristics of the system. In addition,
sometimes they can modify the system’s functional characteristics in order to
suit their own needs and preferences. This means that in order to understand
the behavior of the system once the adaptation has happened is to abstract
the structural elements into a purely functional level and identify and sepa-
rate the functional relationships. This concept can best be understood using
a simple example from [RPG94]:

“When a novice is driving a car, it is based on an instruction manual
identifying the controls of the car and explaining the use of instrument
readings, that is, when to shift gears, what distance to maintain to
the car ahead (depending on the speed), and how to use the steering
wheel. In this way, the function of the car is controlled by discrete rules
related to separate observations, and navigation depends on continu-
ous observation of the heading error and correction by steering wheel
movements. This aggregation of car characteristics and instructed
input–output behavior makes it possible to drive; it initiates the novice
by synchronizing them to the car functions. However, when driving
skill evolves, the picture changes radically. Behavior changes from a
sequence of separate acts to a complex, continuous behavioral pat-
tern. Variables are no longer observed individually. Complex patterns
of movements are synchronized with situational patterns and naviga-
tion depends on the perception of a field of safe driving. The drivers
are perceiving the environment in terms of their driving goals. At
this stage, the behavior of the system cannot be decomposed into



1.2 Artificial and Computational Intelligence 183

structural elements. A description must be based on abstraction into
functional relationships.”

A new design approach is introduced that shifts away from the traditional
software engineering perspective to a functional perspective. There are two
different ways to define functional characteristics. Firstly, relational represen-
tations are based on mathematical equations that relate physical, measurable
environments. Secondly, casual representations are connections between dif-
ferent events. [RPG94] presented a framework that made it possible to relate
conceptual characteristics. The framework takes into account that in order to
bridge system behaviors into human profiles and preferences, several differ-
ent perspectives of analysis and languages of representation are needed (see
Figure 1.18).

Fig. 1.18. Relating Work Environment to Cognitive Resource Profiles of Actors
(adapted from [RPG94]).
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In this framework, the work domain analysis is used to make explicit the
goals, constraints and resources found in a work system. They are represented
by a general inventory of system elements that are categorized by functional
elements and their means-ends relations. The analysis identifies the structure
and general content of the global knowledge of the work system. Activity
analysis is divided into three different dimensions. Firstly, activity analysis in
domain terms focuses on the freedom left for activities after the constraints
posed by time and the functional space of the task. Generalizations are made
in terms of objectives, functions and resources. Secondly, activity analysis in
decision terms use functional languages to identify decision making functions
within relevant tasks. This results of this analysis are used to identify pro-
totype knowledge states that connect different decision functions together.
Thirdly, mental strategies are used to compare task requirements with cog-
nitive resource profiles of the individual actors and how they perform their
work, thus supplies the designer with mental models, data formats and rule
sets that can be incorporated into the interface of the system and used by
actors of varying expertise and competence.

The work organization analysis is used to identify the actors involved in
the decisions of different situations. This is done by finding the principles
and criteria that govern the allocation of roles among the groups and group
members. This allocation is dynamically dependent on circumstances and is
governed by different criteria such as actor competency, access to information,
minimizing communication load and sharing workload.

The social organization analysis focuses on the social aspect of groups
working together. This is useful for understanding communication between
team members, such communication may include complex information like
intentions used for coordinating activities and resolving ambiguities or mis-
interpretations. Finally, User Analysis is used to help judge which strategy is
likely to be chosen by an actor in a given situation focusing on the expertise
and the performance criteria of each actor.

Rasmussen further proposes a framework for representing the various
states of knowledge and information processes of human reasoning, it is called
the decision ladder (see Figure 1.19). The ladder models the human deci-
sion making process through a set of generic operations and standardized key
nodes or states of knowledge about the environment. The circles illustrated
are states of knowledge and the squares are operations. The decision ladder
was developed as a model for performing work domain analysis, however, the
structure of the ladder is generic enough to be used as a guide in the context
of describing agent reasoning.

The decision ladder can be further segmented into three levels of exper-
tise [RPG94]. The skill (lowest) level represents very fast, automated sensory–
motor performance and it is illustrated in the ladder via the heuristic shortcut
links in the middle. The rule (medium) level represents the use of rules and/or
procedures that have been pre–defined, or derived empirically using experi-
ence, or communicated by others, it traverses the bottom half of the ladder.
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Fig. 1.19. Rassmusen’s decision ladder (adapted from [RPG94]).

Finally, the knowledge (highest) level represents behaviors during less–familiar
situations when someone is faced with an environment where there are no rules
or skills available, in such cases a more detailed analysis of the environment
is required with respect to the goals the agent is trying to achieve, the entire
ladder is used for this case.

1.2.2 Computational Intelligence

Computational intelligence (CI) is a modern, more specifically defined AI
branch. CI research aims to use learning, adaptive, or evolutionary compu-
tation to create programs that are, in some sense, intelligent. Computational
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intelligence research either explicitly rejects statistical methods (as is the case
with fuzzy systems), or tacitly ignores statistics (as is the case with most
neural network research). In contrast, machine learning research rejects non–
statistical approaches to learning, adaptivity, and optimization. Main subjects
in CI, as defined by IEEE Computational Intelligence Society, are:

1. Neural networks,
2. Fuzzy systems, and
3. Evolutionary computation.

Neural Networks

Recall that an artificial neural network (ANN) is an interconnected group of
artificial neurons that uses a mathematical or computational model for infor-
mation processing based on the so–called connectionist approach to computa-
tion. In most cases an ANN is an adaptive system that changes its structure
based on external or internal information that flows through the network.

In more practical terms neural networks are nonlinear statistical data mod-
elling tools. They can be used to model complex relationships between inputs
and outputs or to find patterns in data.

Dynamically, the ANNs are nonlinear dynamical systems that act as func-
tional approximators [Kos92]. The ANN builds discriminant functions from
its processing elements (PE)s. The ANN topology determines the number and
shape of the discriminant functions. The shapes of the discriminant functions
change with the topology, so ANNs are considered semi–parametric classifiers.
One of the central advantages of ANNs is that they are sufficiently powerful
to create arbitrary discriminant functions so ANNs can achieve optimal clas-
sification.

The placement of the discriminant functions is controlled by the network
weights. Following the ideas of non–parametric training, the weights are ad-
justed directly from the training data without any assumptions about the
data’s statistical distribution. Hence one of the central issues in neural net-
work design is to utilize systematic procedures, the so–called training algo-
rithm, to modify the weights so that as accurate a classification as possible is
achieved. The accuracy is quantified by an error criterion [PEL00].

The training is usually performed in the following way. First, data is pre-
sented, and an output is computed. An error is obtained by comparing the
output {y} with a desired response {d} and it is used to modify the weights
with a training algorithm. This procedure is repeated using all the data in
the training set until a convergence criterion is met. Thus, in ANNs (and in
adaptive systems in general) the designer does not have to specify the para-
meters of the system. They are automatically extracted from the input data
and the desired response by means of the training algorithm. The two central
issues in neural network design (semi–parametric classifiers) are the selection
of the shape and number of the discriminant functions and their placement
in pattern space such that the classification error is minimized [PEL00].
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Biological Versus Artificial Neural Nets

In biological neural networks, signals are transmitted between neurons by
electrical pulses (action potentials or spike trains) travelling along the axon.
These pulses impinge on the afferent neuron at terminals called synapses.
These are found principally on a set of branching processes emerging from
the cell body (soma) known as dendrites. Each pulse occurring at a synapse
initiates the release of a small amount of chemical substance or neurotrans-
mitter which travels across the synaptic cleft and which is then received at
postsynaptic receptor sites on the dendritic side of the synapse. The neuro-
transmitter becomes bound to molecular sites here which, in turn, initiates
a change in the dendritic membrane potential. This postsynaptic potential
(PSP) change may serve to increase (hyperpolarize) or decrease (depolarize)
the polarization of the postsynaptic membrane. In the former case, the PSP
tends to inhibit generation of pulses in the afferent neuron, while in the lat-
ter, it tends to excite the generation of pulses. The size and type of PSP
produced will depend on factors such as the geometry of the synapse and the
type of neurotransmitter. Each PSP will travel along its dendrite and spread
over the soma, eventually reaching the base of the axon (axonhillock). The
afferent neuron sums or integrates the effects of thousands of such PSPs over
its dendritic tree and over time. If the integrated potential at the axonhillock
exceeds a threshold, the cell fires and generates an action potential or spike
which starts to travel along its axon. This then initiates the whole sequence
of events again in neurons contained in the efferent pathway.

ANNs are very loosely based on these ideas. In the most general terms,
a ANN consists of large numbers of simple processors linked by weighted
connections. By analogy, the processing nodes may be called artificial neurons.
Each node output depends only on information that is locally available at
the node, either stored internally or arriving via the weighted connections.
Each unit receives inputs from many other nodes and transmits its output to
yet other nodes. By itself, a single processing element is not very powerful; it
generates a scalar output, a single numerical value, which is a simple nonlinear
function of its inputs. The power of the system emerges from the combination
of many units in an appropriate way [FS92].

ANN is specialized to implement different functions by varying the con-
nection topology and the values of the connecting weights. Complex functions
can be implemented by connecting units together with appropriate weights. In
fact, it has been shown that a sufficiently large network with an appropriate
structure and property chosen weights can approximate with arbitrary accu-
racy any function satisfying certain broad constraints. In ANNs, the design
motivation is what distinguishes them from other mathematical techniques: an
ANN is a processing device, either an algorithm, or actual hardware, whose
design was motivated by the design and functioning of animal brains and
components thereof.
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There are many different types of ANNs, each of which has different
strengths particular to their applications. The abilities of different networks
can be related to their structure, dynamics and learning methods.

Multilayer Perceptrons

The most common ANN model is the feedforward neural network with one
input layer, one output layer, and one or more hidden layers, called multilayer
perceptron (MLP, see Figure 1.20). This type of neural network is known as a
supervised network because it requires a desired output in order to learn. The
goal of this type of network is to create a model f : x→ y that correctly maps
the input x to the output y using historical data so that the model can then
be used to produce the output when the desired output is unknown [Kos92].

In MLP the inputs are fed into the input layer and get multiplied by
interconnection weights as they are passed from the input layer to the first
hidden layer. Within the first hidden layer, they get summed then processed
by a nonlinear function (usually the hyperbolic tangent). As the processed
data leaves the first hidden layer, again it gets multiplied by interconnection
weights, then summed and processed by the second hidden layer. Finally the
data is multiplied by interconnection weights then processed one last time
within the output layer to produce the neural network output.

MLPs are typically trained with static backpropagation. These networks
have found their way into countless applications requiring static pattern clas-
sification. Their main advantage is that they are easy to use, and that they
can approximate any input/output map. The key disadvantages are that they
train slowly, and require lots of training data (typically three times more
training samples than the number of network weights).

Fig. 1.20. Multilayer perceptron (MLP) with two hidden layers.
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McCulloch–Pitts Processing Element

MLPs are typically composed of McCulloch–Pitts neurons (see [MP43]). This
processing element (PE) is simply a sum–of–products followed by a threshold
nonlinearity. Its input–output equation is

y = f(net) = f
(
wix

i + b
)
, (i = 1, . . . , D),

where D is the number of inputs, xi are the inputs to the PE, wi are the
weights and b is a bias term (see e.g., [MP69]). The activation function is a
hard threshold defined by signum function,

f(net) =
{

1, for net ≥ 0,
−1, for net < 0.

Therefore, McCulloch–Pitts PE is composed of an adaptive linear element
(Adaline, the weighted sum of inputs), followed by a signum nonlinearity
[PEL00].

Sigmoidal Nonlinearities

Besides the hard threshold defined by signum function, other nonlinearities
can be utilized in conjunction with the McCulloch–Pitts PE. Let us now
smooth out the threshold, yielding a sigmoid shape for the nonlinearity. The
most common nonlinearities are the logistic and the hyperbolic tangent thresh-
old activation functions ,

hyperbolic : f(net) = tanh(α net),

logistic : f(net) =
1

1 + exp(−α net)
,

where α is a slope parameter and normally is set to 1. The major difference
between the two sigmoidal nonlinearities is the range of their output values.
The logistic function produces values in the interval [0, 1], while the hyperbolic
tangent produces values in the interval [−1, 1]. An alternate interpretation
of this PE substitution is to think that the discriminant function has been
generalized to

g(x) = f(wix
i + b), (i = 1, . . . , D),

which is sometimes called a ridge function. The combination of the synapse
and the tanh axon (or the sigmoid axon) is usually referred to as the modi-
fied McCulloch–Pitts PE, because they all respond to the full input space in
basically the same functional form (a sum of products followed by a global
nonlinearity). The output of the logistic function varies from 0 to 1. Under
some conditions, the logistic function allows a very powerful interpretation
of the output of the PE as a’posteriori probabilities for Gaussian–distributed
input classes. The tanh is closely related to the logistic function by a lin-
ear transformation in the input and output spaces, so neural networks that
use either of these can be made equivalent by changing weights and biases
[PEL00].
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Gradient Descent on the Net’s Performance Surface

The search for the weights to meet a desired response or internal constraint
is the essence of any connectionist computation. The central problem to be
solved on the road to machine–based classifiers is how to automate the process
of minimizing the error so that the machine can independently make these
weight changes, without need for hidden agents, or external observers. The
optimality criterion to be minimized is usually the mean square error (MSE)

J =
1

2N

N∑
i=1

ε2
i ,

where εi is the instantaneous error that is added to the output yi (the linearly
fitted value), and N is the number of observations. The function J(w) is
called the performance surface (the total error surface plotted in the space of
weights w).

The search for the minimum of a function can be done efficiently using a
broad class of methods based on gradient information. The gradient has two
main advantages for the search:

1. It can be computed locally, and
2. It always points in the direction of maximum change.

The gradient of the performance surface, ∇J = ∇wJ, is a vector (with
the dimension of w) that always points toward the direction of maximum
J−change and with a magnitude equal to the slope of the tangent of the
performance surface. The minimum value of the error Jmin depends on both
the input signal xi and the desired signal di,

Jmin =
1

2N

[∑
i

d2
i −

(
dix

i
)∑

i x
i

]
, (i = 1, . . . , D).

The location in coefficient space where the minimum w∗ occurs also depends
on both xi and di. The performance surface shape depends only on the input
signal xi [PEL00].

Now, if the goal is to reach the minimum, the search must be in the direc-
tion opposite to the gradient. The overall method of gradient searching can be
stated in the following way: Start the search with an arbitrary initial weight
w(0), where the iteration number is denoted by the index in parentheses.
Then compute the gradient of the performance surface at w(0), and modify
the initial weight proportionally to the negative of the gradient at w(0). This
changes the operating point to w(1). Then compute the gradient at the new
position w(1), and apply the same procedure again, that is,

w(n + 1) = w(n)− η∇J(n),
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where η is a small constant and∇J(n) denotes the gradient of the performance
surface at the nth iteration. The constant η is used to maintain stability in
the search by ensuring that the operating point does not move too far along
the performance surface. This search procedure is called the steepest descent
method .

In the late 1960s, Widrow proposed an extremely elegant algorithm to
estimate the gradient that revolutionized the application of gradient descent
procedures. His idea is very simple: Use the instantaneous value as the esti-
mator for the true quantity:

∇J(n) =
∂

∂w(n)
J ≈ 1

2
∂

∂w(n)
(
ε2(n)

)
= −ε(n)x(n),

i.e., instantaneous estimate of the gradient at iteration n is simply the product
of the current input x(n) to the weight w(n) times the current error ε(n). The
amazing thing is that the gradient can be estimated with one multiplication
per weight. This is the gradient estimate that led to the celebrated least means
square algorithm (LMS):

w(n + 1) = w(n) + ηε(n)x(n), (1.10)

where the small constant η is called the step size, or the learning rate. The
estimate will be noisy, however, since the algorithm uses the error from a single
sample instead of summing the error for each point in the data set (e.g., the
MSE is estimated by the error for the current sample).

Now, for fast convergence to the neighborhood of the minimum a large
step size is desired. However, the solution with a large step size suffers from
rattling. One attractive solution is to use a large learning rate in the beginning
of training to move quickly toward the location of the optimal weights, but
then the learning rate should be decreased to get good accuracy on the final
weight values. This is called learning rate scheduling . This simple idea can be
implemented with a variable step size controlled by

η(n + 1) = η(n)− β,

where η(0) = η0 is the initial step size, and β is a small constant [PEL00].

Perceptron and Its Learning Algorithm

Rosenblatt perceptron (see [Ros58b, MP69]) is a pattern–recognition machine
that was invented in the 1950s for optical character recognition. The per-
ceptron has an input layer fully connected to an output layer with multiple
McCulloch–Pitts PEs,

yi = f(net
i

) = f(wix
i + bi), (i = 1, . . . , D),

where bi is the bias for each PE. The number of outputs yi is normally de-
termined by the number of classes in the data. These PEs add the individual
scaled contributions and respond to the entire input space.
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F. Rosenblatt proposed the following procedure to directly minimize the
error by changing the weights of the McCulloch–Pitts PE: Apply an input
example to the network. If the output is correct do nothing. If the response is
incorrect, tweak the weights and bias until the response becomes correct. Get
the next example and repeat the procedure, until all the patterns are correctly
classified. This procedure is called the perceptron learning algorithm, which
can be put into the following form:

w(n + 1) = w(n) + η(d(n)− y(n))x(n),

where η is the step size, y is the network output, and d is the desired response.
Clearly, the functional form is the same as in the LMS algorithm (1.10),

that is, the old weights are incrementally modified proportionally to the prod-
uct of the error and the input, but there is a significant difference. We cannot
say that this corresponds to gradient descent since the system has a discon-
tinuous nonlinearity. In the perceptron learning algorithm, y(n) is the output
of the nonlinear system. The algorithm is directly minimizing the difference
between the response of the McCulloch–Pitts PE and the desired response, in-
stead of minimizing the difference between the Adaline output and the desired
response [PEL00].

This subtle modification has tremendous impact on the performance of the
system. For one thing, the McCulloch–Pitts PE learns only when its output
is wrong. In fact, when y(n) = d(n), the weights remain the same. The net
effect is that the final values of the weights are no longer equal to the linear
regression result, because the nonlinearity is brought into the weight update
rule. Another way of phrasing this is to say that the weight update became
much more selective, effectively gated by the system performance. Notice that
the LMS update is also a function of the error to a certain degree. Larger errors
have more effect on the weight update than small errors, but all patterns
affect the final weights implementing a ‘smooth gate’. In the perceptron the
net effect is that the placement of the discriminant function is no longer
controlled smoothly by all the input samples as in the Adaline, only by the
ones that are important for placing the discriminant function in a way that
explicitly minimizes the output error.

The Delta Learning Rule

One can show that the LMS rule is equivalent to the chain rule in the
computation of the sensitivity of the cost function J with respect to the un-
knowns. Interpreting the LMS equation (1.10) with respect to the sensitivity
concept, we see that the gradient measures the sensitivity. LMS is therefore
updating the weights proportionally to how much they affect the performance,
i.e., proportionally to their sensitivity.

The LMS concept can be extended to the McCulloch–Pitts PE, which is a
nonlinear system. The main question here is how can we compute the sensitiv-
ity through a nonlinearity? [PEL00] The so–called δ−rule represents a direct
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extension of the LMS rule to nonlinear systems with smooth nonlinearities.
In case of the McCulloch–Pitts PE, delta–rule reads:

wi(n + 1) = wi(n) + η εp(n) xi
p(n) f ′(net

p
(n)),

where f ′(net) is the partial derivative of the static nonlinearity, such that the
chain rule is applied to the network topology, i.e.,

f ′(net)xi =
∂y

∂wi
=

∂y

∂ net
∂

∂wi
. (1.11)

As long as the PE nonlinearity is smooth we can compute how much a change
in the weight δwi affects the output y, or from the point of view of the sen-
sitivity, how sensitive the output y is to a change in a particular weight δwi.
Note that we compute this output sensitivity by a product of partial deriva-
tives through intermediate points in the topology. For the nonlinear PE there
is only one intermediate point, net, but we really do not care how many of
these intermediate points there are. The chain rule can be applied as many
times as necessary. In practice, we have an error at the output (the difference
between the desired response and the actual output), and we want to adjust
all the PE weights so that the error is minimized in a statistical sense. The
obvious idea is to distribute the adjustments according to the sensitivity of
the output to each weight.

To modify the weight, we actually propagate back the output error to in-
termediate points in the network topology and scale it along the way as pre-
scribed by (1.11) according to the element transfer functions:

forward path : xi �−→ wi �−→ net �−→ y

backward path 1 : wi

∂ net /∂w←↩ net
∂y/∂ net←↩ y

backward path 2 : wi

∂y/∂w←↩ y .

This methodology is very powerful, because we do not need to know explicitly
the error at intermediate places, such as net. The chain rule automatically
derives the error contribution for us. This observation is going to be crucial for
adapting more complicated topologies and will result in the backpropagation
algorithm, discovered in 1988 by Werbos [Wer89].

Now, several key aspects have changed in the performance surface (which
describes how the cost changes with the weights) with the introduction of
the nonlinearity. The nice, parabolic performance surface of the linear least
squares problem is lost. The performance depends on the topology of the
network through the output error, so when nonlinear processing elements are
used to solve a given problem the ‘performance – weights’ relationship becomes
nonlinear, and there is no guarantee of a single minimum. The performance
surface may have several minima. The minimum that produces the smallest
error in the search space is called the global minimum. The others are called
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local minima. Alternatively, we say that the performance surface is nonconvex.
This affects the search scheme because gradient descent uses local informa-
tion to search the performance surface. In the immediate neighborhood, local
minima are indistinguishable from the global minimum, so the gradient search
algorithm may be caught in these suboptimal performance points, ‘thinking’
it has reached the global minimum [PEL00].

δ−rule extended to perceptron reads:

wij(n + 1) = wij(n)− η
∂J

∂wij
= wij(n) + η δip xj

p ,

which are local quantities available at the weight, that is, the activation xj
p

that reaches the weight wij from the input and the local error δip propagated
from the cost function J . This algorithm is local to the weight. Only the local
error δi and the local activation xj are needed to update a particular weight.
This means that it is immaterial how many PEs the net has and how complex
their interconnection is. The training algorithm can concentrate on each PE
individually and work only with the local error and local activation [PEL00].

Backpropagation

The multilayer perceptron constructs input–output mappings that are a
nested composition of nonlinearities, that is, they are of the form

y = f
(∑

f
(∑

(·)
))

,

where the number of function compositions is given by the number of network
layers. The resulting map is very flexible and powerful, but it is also hard to
analyze [PEL00].

MLPs are usually trained by generalized δ−rule, the so–called backpropa-
gation (BP). The weight update using backpropagation is

wij(n + 1) = wij(n) + ηf ′(net
i

(n))
(
εk(n) f ′(net

k
(n))wki(n)

)
yj(n). (1.12)

The summation in (1.12) is a sum of local errors δk at each network output PE,
scaled by the weights connecting the output PEs to the ith PE. Thus the term
in parenthesis in (1.12) effectively computes the total error reaching the ith PE
from the output layer (which can be thought of as the ith PE’s contribution
to the output error). When we pass it through the ith PE nonlinearity, we
have its local error, which can be written as

δi(n) = f ′(net
i

(n)) δkwki(n).

Thus there is a unifying link in all the gradient–descent algorithms. All the
weights in gradient descent learning are updated by multiplying the local error
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δi(n) by the local activation xj(n) according to Widrow’s estimation of the
instantaneous gradient first shown in the LMS rule:

Δwij(n) = η δi(n) yj(n).

What differs is the calculation of the local error, depending on whether the
PE is linear or nonlinear and if the weight is attached to an output PE or a
hidden–layer PE [PEL00].

Momentum Learning

Momentum learning is an improvement to the straight gradient–descent search
in the sense that a memory term (the past increment to the weight) is used
to speed up and stabilize convergence. In momentum learning the equation
to update the weights becomes

wij(n + 1) = wij(n) + η δi(n)xj(n) + α (wij(n)− wij(n− 1)) ,

where α is the momentum constant, usually set between 0.5 and 0.9. This is
called momentum learning due to the form of the last term, which resembles
the momentum in mechanics. Note that the weights are changed proportion-
ally to how much they were updated in the last iteration. Thus if the search is
going down the hill and finds a flat region, the weights are still changed, not
because of the gradient (which is practically zero in a flat spot), but because
of the rate of change in the weights. Likewise, in a narrow valley, where the
gradient tends to bounce back and forth between hillsides, the momentum
stabilizes the search because it tends to make the weights follow a smoother
path. Imagine a ball (weight vector position) rolling down a hill (performance
surface). If the ball reaches a small flat part of the hill, it will continue past
this local minimum because of its momentum. A ball without momentum,
however, will get stuck in this valley. Momentum learning is a robust method
to speed up learning, and is usually recommended as the default search rule
for networks with nonlinearities.

Advanced Search Methods

The popularity of gradient descent method is based more on its simplicity (it
can be computed locally with two multiplications and one addition per weight)
than on its search power. There are many other search procedures more power-
ful than backpropagation. For example, Newtonian method is a second–order
method because it uses the information on the curvature to adapt the weights.
However Newtonian method is computationally much more costly to imple-
ment and requires information not available at the PE, so it has been used
little in neurocomputing. Although more powerful, Newtonian method is still
a local search method and so may be caught in local minima or diverge due to
the difficult neural network performance landscapes. Other techniques such
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as simulated annealing148 and genetic algorithms (GA)149 are global search
procedures, that is, they can avoid local minima. The issue is that they are
more costly to implement in a distributed system like a neural network, either
because they are inherently slow or because they require nonlocal quantities
[PEL00].

The problem of search with local information can be formulated as an
approximation to the functional form of the matrix cost function J(w) at the
operating point w0. This immediately points to the Taylor series expansion
of J around w0,

J(w −w0) = J0 + (w −w0)∇J0 +
1
2
(w −w0)H0(w −w0)T + · · · ,

where ∇J is our familiar gradient, and H is the Hessian matrix, that is, the
matrix of second derivatives with entries

Hij(w0) =
∂2J(w)
∂wi∂wj

∣∣∣∣
w=w0

,

evaluated at the operating point. We can immediately see that the Hessian
cannot be computed with the information available at a given PE, since it
uses information from two different weights. If we differentiate J with respect
to the weights, we get

∇J(w) = ∇J0 + H0(w −w0) + · · · (1.13)

so we can see that to compute the full gradient at w we need all the higher
terms of the derivatives of J . This is impossible. Since the performance surface
tends to be bowl shaped (quadratic) near the minimum, we are normally
interested only in the first and second terms of the expansion [PEL00].

If the expansion of (1.13) is restricted to the first term, we get the gradient–
search methods (hence they are called first–order–search methods), where the
gradient is estimated with its value at w0. If we expand to use the second–
order term, we get Newton method (hence the name second–order method).
If we equate the truncated relation (1.13) to 0 we immediately get

w = w0 −H−1
0 ∇J0 ,

148 Simulated annealing is a global search criterion by which the space is searched
with a random rule. In the beginning the variance of the random jumps is very
large. Every so often the variance is decreased, and a more local search is under-
taken. It has been shown that if the decrease of the variance is set appropriately,
the global optimum can be found with probability one. The method is called
simulated annealing because it is similar to the annealing process of creating
crystals from a hot liquid.

149 Genetic algorithms are global search procedures proposed by J. Holland that
search the performance surface, concentrating on the areas that provide better
solutions. They use ‘generations’ of search points computed from the previous
search points using the operators of crossover and mutation (hence the name).
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which is the equation for the Newton method, which has the nice property
of quadratic termination (it is guaranteed to find the exact minimum in a
finite number of steps for quadratic performance surfaces). For most quadratic
performance surfaces it can converge in one iteration.

The real difficulty is the memory and the computational cost (and preci-
sion) to estimate the Hessian. Neural networks can have thousands of weights,
which means that the Hessian will have millions of entries. This is why meth-
ods of approximating the Hessian have been extensively researched. There are
two basic classes of approximations [PEL00]:

1. Line search methods, and
2. Pseudo–Newton methods.

The information in the first type is restricted to the gradient, together with
line searches along certain directions, while the second seeks approximations
to the Hessian matrix. Among the line search methods probably the most
effective is the conjugate gradient method . For quadratic performance sur-
faces the conjugate gradient algorithm preserves quadratic termination and
can reach the minimum in D steps, where D is the dimension of the weight
space. Among the Pseudo–Newton methods probably the most effective is the
Levenberg–Marquardt algorithm (LM), which uses the Gauss–Newton method
to approximate the Hessian. LM is the most interesting for neural networks,
since it is formulated as a sum of quadratic terms just like the cost functions
in neural networks.

The extended Kalman filter (EKF) forms the basis of a second–order neural
network training method that is a practical and effective alternative to the
batch–oriented, second–order methods mentioned above. The essence of the
recursive EKF procedure is that, during training, in addition to evolving the
weights of a network architecture in a sequential (as opposed to batch) fashion,
an approximate error covariance matrix that encodes second–order informa-
tion about the training problem is also maintained and evolved.

Homotopy Methods

The most popular method for solving nonlinear equations in general is the
Newton–Raphson method . Unfortunately, this method sometimes fails, espe-
cially in cases when nonlinear equations possess multiple solutions (zeros).
An emerging family of methods that can be used in such cases are homotopy
(continuation) methods. These methods are robust and have good convergence
properties.

Homotopy methods or continuation methods have increasingly been used
for solving variety of nonlinear problems in fluid dynamics, structural mech-
anics, systems identifications, and integrated circuits (see [Wat90]). These
methods, popular in mathematical programming, are globally convergent
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provided that certain coercivity and continuity conditions are satisfied by
the equations that need to be solved [Wat90]. Moreover, they often yield all
the solutions to the nonlinear system of equations.

The idea behind a homotopy or continuation method is to embed a parame-
ter λ in the nonlinear equations to be solved. This is why they are sometimes
referred to as embedding methods. Initially, parameter λ is set to zero, in which
case the problem is reduced to an easy problem with a known or easily–found
solution. The set of equations is then gradually deformed into the originally
posed difficult problem by varying the parameter λ . The original problem is
obtained for λ = 1. Homotopies are a class of continuation methods, in which
parameter λ is a function of a path arc length and may actually increase or
decrease as the path is traversed. Provided that certain coercivity conditions
imposed on the nonlinear function to be solved are satisfied, the homotopy
path does not branch (bifurcate) and passes through all the solutions of the
nonlinear equations to be solved.

The zero curve of the homotopy map can be tracked by various techniques:
an ODE–algorithm, a normal flow algorithm, and an augmented Jacobian ma-
trix algorithm, among others [Wat90].

As a typical example, homotopy techniques can be applied to find the
zeros of the gradient function F : RN → RN , such that

F (θ) =
∂E(θ)
∂θk

, 1 ≤ k ≤ N,

where E = (θ) is the certain error function dependent on N parameters θk.
In other words, we need to solve a system of nonlinear equations

F (θ) = 0. (1.14)

In order to solve equation (1.14), we can create a linear homotopy function

H(θ, λ) = (1− λ)(θ − a) + λF (θ),

where a is an arbitrary starting point. Function H(θ, λ) has properties that
equation H(θ, 0) = 0 is easy to solve, and that H(θ, 1) ≡ F (θ).

ANNs as Functional Approximators

The universal approximation theorem of Kolmogorov states [Hay94]:
Let φ(·) be a nonconstant, bounded, and monotone–increasing continu-
ous (C0) function. Let IN denote ND unit hypercube [0, 1]N . The space
of C0−functions on IN is denoted by C(IN ). Then, given any function
f ∈ C(IN ) and ε > 0, there exist an integer M and sets of real constants
αi, θi, ωij , i = 1, . . . ,M ; j = 1, . . . , N such that we may define
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F (x1, . . . , xN ) = αiφ(ωijxj − θi),

as an approximate realization of the function f(·); that is

|F (x1, . . . , xN ) − f(x1, . . . , xN )| < ε for all {x1, . . . , xN} ∈ IN .

This theorem is directly applicable to multilayer perceptrons. First, the lo-
gistic function 1/[1 + exp(−v)] used as the sigmoidal nonlinearity in a neuron
model for the construction of a multilayer perceptron is indeed a nonconstant,
bounded, and monotone–increasing function; it therefore satisfies the condi-
tions imposed on the function φ(·). Second, the upper equation represents the
output of a multilayer perceptron described as follows:

1. The network has n input nodes and a single hidden layer consisting of M
neurons; the inputs are denoted by x1, . . . , xN .

2. ith hidden neuron has synaptic weights ωi1, . . . , ωiN and threshold θi.
3. The network output yj is a linear combination of the outputs of the hidden

neurons, with αi, . . . , αM defining the coefficients of this combination.

The theorem actually states that a single hidden layer is sufficient for
a multilayer perceptron to compute a uniform ε approximation to a given
training set represented by the set of inputs x1, . . . , xN and desired (target)
output f(x1, . . . , xN ). However, the theorem does not say that a single layer
is optimum in the sense of learning time or ease of implementation.

Recall that training of multilayer perceptrons is usually performed using a
certain clone of the BP algorithm (1.2.2). In this forward–pass/backward–pass
gradient–descending algorithm, the adjusting of synaptic weights is defined by
the extended δ−rule, given by equation

Δωji(N) = η · δj(N) · yi(N), (1.15)

where Δωji(N) corresponds to the weight correction, η is the learning–rate
parameter, δj(N) denotes the local gradient and yi(N) – the input signal of
neuron j; while the cost function E is defined as the instantaneous sum of
squared errors e2

j

E(n) =
1
2

∑
j

e2
j (N) =

1
2

∑
j

[dj(N)− yj(N)]2, (1.16)

where yj(N) is the output of jth neuron, and dj(N) is the desired (target)
response for that neuron. The slow BP convergence rate (1.15–1.16) can be
accelerated using the faster LM algorithm (see subsection 1.2.2 above), while
its robustness can be achieved using an appropriate fuzzy controller (see sub-
section (1.2.2) below).
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Summary of Supervised Learning Methods

Gradient Descent Method

Given the (D + 1)D weights vector w(n) = [w0(n), . . . , wD(n)]T (with
w0 = bias), and the correspondent MSE–gradient (including partials of MSE
w.r.t. weights)

∇e =
[

∂e

∂w0
, . . . ,

∂e

∂wD

]T

,

and the learning rate (step size) η, we have the vector learning equation

w(n + 1) = w(n)− η∇e(n),

which in index form reads

wi(n + 1) = wi(n)− η∇ei(n).

LMS Algorithm

w(n + 1) = w(n) + ηε(n)x(n),

where x is an input (measurement) vector, and ε is a zero–mean Gaussian
noise vector uncorrelated with input, or

wi(n + 1) = wi(n) + ηε(n)xi(n).

Newton’s Method

w(n + 1) = w(n)− ηR−1e(n),

where R is input (auto)correlation matrix, or

w(n + 1) = w(n) + ηR−1ε(n)x(n),

Conjugate Gradient Method

w(n + 1) = w(n) + η p(n),
p(n) = −∇e(n) + β(n)p(n− 1),

β(n) =
∇e(n)T∇e(n)

∇e(n− 1)T∇e(n− 1)
.
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Levenberg–Marquardt Algorithm

Putting
∇e = JT e,

where J is the Jacobian matrix, which contains first derivatives of the network
errors with respect to the weights and biases, and e is a vector of network
errors, LM algorithm reads

w(n + 1) = w(n)− [JT J + μI]−1JT e. (1.17)

Generalized Feedforward Nets

The generalized feedforward network (GFN, see Figure 1.21) is a generaliza-
tion of MLP, such that connections can jump over one or more layers, which in
practice, often solves the problem much more efficiently than standard MLPs.
A classic example of this is the two–spiral problem, for which standard MLP
requires hundreds of times more training epochs than the generalized feedfor-
ward network containing the same number of processing elements. Both MLPs
and GFNs are usually trained using a variety of backpropagation techniques
and their enhancements like the nonlinear LM algorithm (1.17). During train-
ing in the spatial processing, the weights of the GFN converge iteratively to
the analytical solution of the 2D Laplace equation.

Modular Feedforward Nets

The modular feedforward networks are a special class of MLP. These net-
works process their input using several parallel MLPs, and then recombine
the results. This tends to create some structure within the topology, which

Fig. 1.21. Generalized feedforward network (GFN), arranged using Neuro-
SolutionsTM .
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Fig. 1.22. Modular feedforward network, arranged using NeuroSolutionsTM .

Fig. 1.23. Jordan and Elman network, arranged using NeuroSolutionsTM .

will foster specialization of function in each submodule (see Figure 1.22). In
contrast to the MLP, modular networks do not have full inter–connectivity
between their layers. Therefore, a smaller number of weights are required for
the same size network (i.e., the same number of PEs). This tends to speed up
training times and reduce the number of required training exemplars. There
are many ways to segment a MLP into modules. It is unclear how to best
design the modular topology based on the data. There are no guarantees that
each module is specializing its training on a unique portion of the data.

Jordan and Elman Nets

Jordan and Elman networks (see [Elm90]) extend the multilayer perceptron
with context units, which are processing elements (PEs) that remember past
activity. Context units provide the network with the ability to extract tempo-
ral information from the data. In the Elman network, the activity of the first
hidden PEs are copied to the context units, while the Jordan network copies
the output of the network (see Figure 1.23). Networks which feed the input
and the last hidden layer to the context units are also available.

Kohonen Self–Organizing Map

Kohonen self–organizing map (SOM, see Figure 1.24) is widely used for image
pre–processing as well as a pre–processing unit for various hybrid architec-
tures. SOM is a winner–take–all neural architecture that quantizes the input
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Fig. 1.24. Kohonen self–organizing map (SOM) network, arranged using
NeuroSolutionsTM .

space, using a distance metric, into a discrete feature output space, where
neighboring regions in the input space are neighbors in the discrete output
space. SOM is usually applied to neighborhood clustering of random points
along a circle using a variety of distance metrics: Euclidean, L1, L2, and Ln,
Machalanobis, etc. The basic SOM architecture consists of a layer of Kohonen
synapses of three basic forms: line, diamond and box, followed by a layer of
winner–take–all axons. It usually uses added Gaussian and uniform noise, with
control of both the mean and variance. Also, SOM usually requires choosing
the proper initial neighborhood width as well as annealing of the neighbor-
hood width during training to ensure that the map globally represents the
input space.

The Kohonen SOM algorithm is defined as follows: Every stimulus v of
an Euclidian input space V is mapped to the neuron with the position s in
the neural layer R with the highest neural activity, the ‘center of excitation’
or ‘winner’, given by the condition

|ws − v| = minr∈R |wr − v|,

where |.| denotes the Euclidian distance in input space. In the Kohonen model
the learning rule for each synaptic weight vector wr is given by

wnew
r = wold

r + η · grs · (v −wold
r ), (1.18)

with grs as a gaussian function of Euclidian distance |r − s| in the neural
layer. Topology preservation is enforced by the common update of all weight
vectors whose neuron r is adjacent to the center of excitation s. The function
grs describes the topology in the neural layer. The parameter η determines
the speed of learning and can be adjusted during the learning process.

Radial Basis Function Nets

The radial basis function network (RBF, see Figure 1.25) provides a powerful
alternative to MLP for function approximation or classification. It differs from
MLP in that the overall input–output map is constructed from local contribu-
tions of a layer of Gaussian axons. It trains faster and requires fewer training
samples than MLP, using the hybrid supervised/unsupervised method. The
unsupervised part of an RBF network consists of a competitive synapse fol-
lowed by a layer of Gaussian axons. The means of the Gaussian axons are
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Fig. 1.25. Radial basis function network, arranged using NeuroSolutionsTM .

Fig. 1.26. Principal component analysis (PCA) network, arranged using Neuro-
SolutionsTM .

found through competitive clustering and are, in fact, the weights of the Con-
science synapse. Once the means converge the variances are calculated based
on the separation of the means and are associated with the Gaussian layer.
Having trained the unsupervised part, we now add the supervised part, which
consists of a single–layer MLP with a soft–max output.

Principal Component Analysis Nets

The principal component analysis networks (PCAs, see Figure 1.26) com-
bine unsupervised and supervised learning in the same topology. Principal
component analysis is an unsupervised linear procedure that finds a set of
uncorrelated features, principal components, from the input. A MLP is su-
pervised to perform the nonlinear classification from these components. More
sophisticated are the independent component analysis networks (ICAs).

Co–active Neuro–Fuzzy Inference Systems

The co–active neuro–fuzzy inference system (CANFIS, see Figure 1.27), which
integrates adaptable fuzzy inputs with a modular neural network to rapidly
and accurately approximate complex functions. Fuzzy–logic inference systems
(see next section) are also valuable as they combine the explanatory nature of
rules (membership functions) with the power of ‘black box’ neural networks.

Genetic ANN–Optimization

Genetic optimization, added to ensure and speed–up the convergence of all
other ANN–components, is a powerful tool for enhancing the efficiency and
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Fig. 1.27. Co–active neuro–fuzzy inference system (CANFIS) network, arranged
using NeuroSolutionsTM .

Fig. 1.28. Time–lagged recurrent network (TLRN), arranged using Neuro-
SolutionsTM .

effectiveness of a neural network. Genetic optimization can fine–tune network
parameters so that network performance is greatly enhanced. Genetic control
applies a genetic algorithm (GA, see next section), a part of broader evolu-
tionary computation, see MIT journal with the same name) to any network
parameters that are specified. Also through the genetic control , GA parame-
ters such as mutation probability, crossover type and probability, and selection
type can be modified.

Time–Lagged Recurrent Nets

The time–lagged recurrent networks (TLRNs, see Figure 1.28) are MLPs
extended with short term memory structures [Wer90]. Most real–world data
contains information in its time structure, i.e., how the data changes with
time. Yet, most neural networks are purely static classifiers. TLRNs are the
state of the art in nonlinear time series prediction, system identification and
temporal pattern classification. Time–lagged recurrent nets usually use mem-
ory Axons, consisting of IIR filters with local adaptable feedback that act as
a variable memory depth. The time–delay neural network (TDNN) can be
considered a special case of these networks, examples of which include the
Gamma and Laguerre structures. The Laguerre axon uses locally recurrent
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all–pass IIR filters to store the recent past. They have a single adaptable pa-
rameter that controls the memory depth. Notice that in addition to providing
memory for the input, we have also used a Laguerre axon after the hidden
Tanh axon. This further increases the overall memory depth by providing
memory for that layer’s recent activations.

Fully Recurrent ANNs

The fully recurrent networks feed back the hidden layer to itself. Partially
recurrent networks start with a fully recurrent net and add a feedforward con-
nection that bypasses the recurrency, effectively treating the recurrent part
as a state memory. These recurrent networks can have an infinite memory
depth and thus find relationships through time as well as through the instan-
taneous input space. Most real–world data contains information in its time
structure. Recurrent networks are the state of the art in nonlinear time series
prediction, system identification, and temporal pattern classification. In case
of large number of neurons, here the firing states of the neurons or their mem-
brane potentials are the microscopic stochastic dynamical variables, and one
is mostly interested in quantities such as average state correlations and global
information processing quality, which are indeed measured by macroscopic
observables. In contrast to layered networks, one cannot simply write down
the values of successive neuron states for models of recurrent ANNs; here
they must be solved from (mostly stochastic) coupled dynamic equations. For
nonsymmetric networks, where the asymptotic (stationary) statistics are not
known, dynamical techniques from non–equilibrium statistical mechanics are
the only tools available for analysis. The natural set of macroscopic quanti-
ties (or order parameters) to be calculated can be defined in practice as the
smallest set which will obey closed deterministic equations in the limit of an
infinitely large network.

Being high–dimensional nonlinear systems with extensive feedback, the
dynamics of recurrent ANNs are generally dominated by a wealth of attrac-
tors (fixed–point attractors, limit–cycles, or even more exotic types), and the
practical use of recurrent ANNs (in both biology and engineering) lies in the
potential for creation and manipulation of these attractors through adaptation
of the network parameters (synapses and thresholds) (see [Hop82, Hop84]).
Input fed into a recurrent ANN usually serves to induce a specific initial config-
uration (or firing pattern) of the neurons, which serves as a cue, and the output
is given by the (static or dynamic) attractor which has been triggered by this
cue. The most familiar types of recurrent ANN models, where the idea of cre-
ating and manipulating attractors has been worked out and applied explicitly,
are the so–called attractor associative memory ANNs, designed to store and
retrieve information in the form of neuronal firing patterns and/or sequences
of neuronal firing patterns. Each pattern to be stored is represented as a mi-
croscopic state vector. One then constructs synapses and thresholds such that
the dominant attractors of the network are precisely the pattern vectors (in



1.2 Artificial and Computational Intelligence 207

the case of static recall), or where, alternatively, they are trajectories in which
the patterns are successively generated microscopic system states. From an
initial configuration (the cue, or input pattern to be recognized) the system
is allowed to evolve in time autonomously, and the final state (or trajectory)
reached can be interpreted as the pattern (or pattern sequence) recognized by
network from the input. For such programmes to work one clearly needs re-
current ANNs with extensive ergodicity breaking: the state vector will during
the course of the dynamics (at least on finite time–scales) have to be confined
to a restricted region of state–space (an ergodic component), the location of
which is to depend strongly on the initial conditions. Hence our interest will
mainly be in systems with many attractors. This, in turn, has implications
at a theoretical/mathematical level: solving models of recurrent ANNs with
extensively many attractors requires advanced tools from disordered systems
theory, such as replica theory (statics) and generating functional analysis (dy-
namics).

Complex–Valued ANNs

It is expected that complex–valued ANNs, whose parameters (weights and
threshold values) are all complex numbers, will have applications in all the
fields dealing with complex numbers (e.g., telecommunications, quantum
physics). A complex–valued, feedforward, multi–layered, back–propagation
neural network model was proposed independently by T. Nitta [NF91, Nit97,
Nit00, Nit04], G. GK92 [GK92] and N. Benvenuto [BP92, BP92], and demon-
strated its characteristics:

(a) the properties greatly different from those of the real–valued back–
propagation network, including 2D motion structure of weights and the
orthogonality of the decision boundary of a complex–valued neuron;

(b) the learning property superior to the real–valued back–propagation;
(c) the inherent 2D motion learning ability (an ability to transform geometric

figures); and
(d) the ability to solve the XOR problem and detection of symmetry problem

with a single complex–valued neuron.

Following [NF91, Nit97, Nit00, Nit04], we consider here the complex–
valued neuron. Its input signals, weights, thresholds and output signals are
all complex numbers. The net input Un to a complex–valued neuron n is
defined as

Un = WmnXm + Vn,

where Wmn is the (complex–valued) weight connecting the complex–valued
neurons m and n, Vn is the (complex–valued) threshold value of the complex–
valued neuron n, and Xm is the (complex–valued) input signal from the
complex–valued neuron m. To get the (complex–valued) output signal, convert
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the net input Un into its real and imaginary parts as follows: Un = x+ iy = z,
where i =

√
−1. The (complex–valued) output signal is defined to be

σ(z) = tanh(x) + i tanh(y),

where tanh(u) = (exp(u)− exp(−u)) = (exp(u)+exp(−u)), u ∈ R. Note that
−1 < Re[σ], Im[σ] < 1. Note also that σ is not regular as a complex function,
because the Cauchy–Riemann equations do not hold.

A complex–valued ANN consists of such complex–valued neurons de-
scribed above. A typical network has 3 layers: m → n → 1, with wij ∈ C

– the weight between the input neuron i and the hidden neuron j, w0j ∈ C

– the threshold of the hidden neuron j, cj ∈ C – the weight between the
hidden neuron j and the output neuron (1 ≤ i ≤ m; 1 ≤ j ≤ n), and c0 ∈ C

– the threshold of the output neuron. Let yj(z), h(z) denote the output val-
ues of the hidden neuron j, and the output neuron for the input pattern
z = [z1, . . . , zm]t ∈ Cm, respectively. Let also νj(z) and μ(z) denote the net
inputs to the hidden neuron j and the output neuron for the input pattern
z ∈ Cm, respectively. That is,

νj(z) = wijzi + w0j , μ(z) = cjyj(z) + c0,

yj(z) = σ(νj(z)), h(z) = σ(μ(z)).

The set of all m→ n→ 1 complex–valued ANNs described above is usually
denoted by Nm,n. The Complex–BP learning rule [NF91, Nit97, Nit00, Nit04]
has been obtained by using a steepest–descent method for such (multilayered)
complex–valued ANNs.

Common Continuous ANNs

Virtually all computer–implemented ANNs (mainly listed above) are discrete
dynamical systems, mainly using supervised training (except Kohonen SOM)
in one of gradient–descent searching forms. They are good as problem–solving
tools, but they fail as models of animal nervous system. The other category
of ANNs are continuous neural systems that can be considered as models of
animal nervous system. However, as models of the human brain, all current
ANNs are simply trivial.

Neurons as Functions

According to B. Kosko, neurons behave as functions [Kos92]; they trans-
duce an unbounded input activation x(t) into output signal S(x(t)). Usually
a sigmoidal (S–shaped, bounded, monotone-nondecreasing: S′ ≥ 0) function
describes the transduction, as well as the input–output behavior of many oper-
ational amplifiers. For example, the logistic signal (or, the maximum–entropy)
function

S(x) =
1

1 + e−cx
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is sigmoidal and strictly increases for positive scaling constant c > 0. Strict
monotonicity implies that the activation derivative of S is positive:

S′ =
dS

dx
= cS(1− S) > 0.

An infinitely steep logistic signal function gives rise to a threshold signal
function

S(xn+1) =

⎧⎨⎩
1, if xn+1 > T,

S(xn), if xn+1 = T,
0, if xn+1 < T,

for an arbitrary real–valued threshold T . The index n indicates the discrete
time step.

In practice signal values are usually binary or bipolar. Binary signals, like
logistic, take values in the unit interval [0, 1]. Bipolar signals are signed; they
take values in the bipolar interval [−1, 1]. Binary and bipolar signals transform
into each other by simple scaling and translation. For example, the bipolar
logistic signal function takes the form

S(x) =
2

1 + e−cx
− 1.

Neurons with bipolar threshold signal functions are called McCulloch–Pits
neurons.

A naturally occurring bipolar signal function is the hyperbolic–tangent sig-
nal function

S(x) = tanh(cx) =
ecx − e−cx

ecx + e−cx
,

with activation derivative

S′ = c(1− S2) > 0.

The threshold linear function is a binary signal function often used to
approximate neuronal firing behavior:

S(x) =

⎧⎨⎩
1, if cx ≥ 1,
0, if cx < 0,

cx, else,

which we can rewrite as

S(x) = min(1,max(0, cx)).

Between its upper and lower bounds the threshold linear signal function is
trivially monotone increasing, since S′ = c > 0.

Gaussian, or bell–shaped, signal function of the form S(x) = e−cx2
, for

c > 0, represents an important exception to signal monotonicity. Its activation
derivative S′ = −2cxe−cx2

has the sign opposite the sign of the activation x.
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Generalized Gaussian signal functions define potential or radial basis func-
tions Si(xi) given by

Si(x) = exp[− 1
2σ2

i

n∑
j=1

(xj − μi
j)

2],

for input activation vector x = (xi) ∈ Rn, variance σ2
i , and mean vector μi =

(μi
j). Each radial basis function Si defines a spherical receptive field in Rn. The

ith neuron emits unity, or near-unity, signals for sample activation vectors x
that fall in its receptive field. The mean vector μ centers the receptive field in
Rn. The variance σ2

i localizes it. The radius of the Gaussian spherical receptive
field shrinks as the variance σ2

i decreases. The receptive field approaches Rn

as σ2
i approaches ∞.

The signal velocity Ṡ ≡ dS/dt is the signal time derivative, related to the
activation derivative by

Ṡ = S′ẋ,

so it depends explicitly on activation velocity. This is used in unsupervised
learning laws that adapt with locally available information.

The signal S(x) induced by the activation x represents the neuron’s firing
frequency of action potentials, or pulses, in a sampling interval. The firing
frequency equals the average number of pulses emitted in a sampling interval.

Short–term memory is modelled by activation dynamics, and long–term
memory is modelled by learning dynamics. The overall neural network behaves
as an adaptive filter (see [Hay91]).

In the simplest and most common case, neurons are not topologically
ordered. They are related only by the synaptic connections between them.
Kohonen calls this lack of topological structure in a field of neurons the zeroth–
order topology. This suggests that ANN–models are abstractions, not descrip-
tions of the brain neural networks, in which order does matter.

Basic Activation and Learning Dynamics

One of the oldest continuous training methods, based on Hebb’s biological
synaptic learning [Heb49], is Oja–Hebb learning rule [Oja82], which calculates
the weight update according to the ODE

ω̇i(t) = O(t) [Ii(t)−O(t)ωi(t)],

where O(t) is the output of a simple, linear processing element; Ii(t) are the
inputs; and ωi(t) are the synaptic weights.

Related to the Oja–Hebb rule is a special matrix of synaptic weights called
Karhunen–Loeve covariance matrix W (KL), with entries

Wij =
1
N

ωμ
i ωμ

j , (summing over μ)
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where N is the number of vectors, and ωμ
i is the ith component of the μth

vector. The KL matrix extracts the principal components, or directions of
maximum information (correlation) from a dataset.

In general, continuous ANNs are temporal dynamical systems. They have
two coupled dynamics: activation and learning. First, a general system of
coupled ODEs for the output of the ith processing element (PE) xi, called
the activation dynamics, can be written as

ẋi = gi(xi,net
i

), (1.19)

with the net input to the ith PE xi given by neti = ωijx
j .

For example,
ẋi = −xi + fi(net

i
),

where fi is called output, or activation, function. We apply some input values
to the PE so that neti > 0. If the inputs remain for a sufficiently long time,
the output value will reach an equilibrium value, when ẋi = 0, given by
xi = fi(neti). Once the unit has a nonzero output value, removal of the
inputs will cause the output to return to zero. If neti = 0, then ẋi = −xi,
which means that x→ 0.

Second, a general system of coupled ODEs for the update of the synaptic
weights ωij , i.e, learning dynamics, can be written as a generalization of the
Oja–Hebb rule, i.e..

ω̇ij = Gi(ωij , x
i, xi),

where Gi represents the learning law ; the learning process consists of finding
weights that encode the knowledge that we want the system to learn. For
most realistic systems, it is not easy to determine a closed–form solution for
this system of equations, so the approximative solutions are usually enough.

Standard Models of Continuous Nets

Hopfield Continuous Net

One of the first physically–based ANNs was developed by J. Hopfield. He
first made a discrete, Ising–spin based network in [Hop82], and later gener-
alized it to the continuous, graded–response network in [Hop84], which we
briefly describe here. Later we will give full description of Hopfield models.
Let neti = ui – the net input to the ith PE, biologically representing the
summed action potentials at the axon hillock of a neuron. The PE output
function is

vi = gi(λui) =
1
2
(1 + tanh(λui)),

where λ is a constant called the gain parameter. The network is described as
a transient RC circuit

Ciu̇i = Tijvj −
ui

Ri
+ Ii, (1.20)
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where Ii, Ri and Ci are inputs (currents), resistances and capacitances, and
Tij are synaptic weights.

The Hamiltonian energy function corresponding to (1.20) is given as

H = −1
2
Tijvivj +

1
λ

1
Ri

∫ vi

0

g−1
i (v) dv − Iivi, (j 
= i) (1.21)

which is a generalization of a discrete, Ising–spin Hopfield network with energy
function

E = −1
2
ωijx

ixj , (j 
= i).

where g−1
i (v) = u is the inverse of the function v = g(u). To show that (1.21)

is an appropriate Lyapunov function for the system, we shall take its time
derivative assuming Tij are symmetric:

Ḣ = −v̇i(Tijvj −
ui

Ri
+ Ii) = −Civ̇iu̇i = −Civ̇

2
i

∂g−1
i (vi)
∂vi

. (1.22)

All the factors in the summation (1.22) are positive, so Ḣ must decrease as
the system evolves, until it eventually reaches the stable configuration, where
Ḣ = v̇i = 0.

Hecht–Nielsen Counterpropagation Net

Hecht–Nielsen counterpropagation network (CPN) is a full–connectivity,
graded–response generalization of the standard BP algorithm (see [Hec87,
Hec90]). The outputs of the PEs in CPN are governed by the set of ODEs

ẋi = −Axi + (B − xi)Ii − xi
∑
j 	=i

Ij ,

where 0 < xi(0) < B, and A,B > 0. Each PE receives a net excitation (on–
center) of (B − xi)Ii from its corresponding input value, I. The addition of
inhibitory connections (off–surround), −xiIj , from other units is responsible
for preventing the activity of the processing element from rising in proportion
to the absolute pattern intensity, Ii. Once an input pattern is applied, the
PEs quickly reach an equilibrium state (ẋi = 0) with

xi = Θi
BIi

A + Ii
,

with the normalized reflectance pattern Θi = Ii (
∑

i Ii)
−1, such that∑

i Θi = 1.
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Competitive Net

Activation dynamics is governed by the ODEs

ẋi = −Axi + (B − xi)[f(xi) + net
i

]− xi

⎡⎣∑
j 	=i

f(xj) +
∑
j 	=i

netj

⎤⎦ ,

where A,B > 0 and f(xi) is an output function.

Kohonen’s Continuous SOM and Adaptive Robotics Control

Kohonen continuous self organizing map (SOM) is actually the original
Kohonen model of the biological neural process (see [Koh88]). SOM activation
dynamics is governed by

ẋi = −ri(xi) + net
i

+zijxj , (1.23)

where the function ri(xi) is a general form of a loss term, while the final term
models the lateral interactions between units (the sum extends over all units
in the system). If zij takes the form of the Mexican–hat function, then the
network will exhibit a bubble of activity around the unit with the largest value
of net input.

SOM learning dynamics is governed by

ω̇ij = α(t)(Ii − ωij)U(xi),

where α(t) is the learning momentum, while the function U(xi) = 0 unless
xi > 0 in which case U(xi) = 1, ensuring that only those units with positive
activity participate in the learning process.

Kohonen’s continuous SOM (1.23–1.2.2) is widely used in adaptive robotics
control. Having an n−segment robot arm with n chained SO(2)−joints, for
a particular initial position x and desired velocity ẋj

desir of the end–effector,
the required torques Ti in the joints can be found as

Ti = aij ẋ
j
desir,

where the inertia matrix aij = aij(x) is learned using SOM.

Adaptive Resonance Theory

Principles derived from an analysis of experimental literatures in vision,
speech, cortical development, and reinforcement learning, including atten-
tional blocking and cognitive–emotional interactions, led to the introduction
of S. Grossberg’s adaptive resonance theory (ART) as a theory of human cog-
nitive information processing (see [CG03]). The theory has evolved as a series
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of real–time neural network models that perform unsupervised and super-
vised learning, pattern recognition, and prediction. Models of unsupervised
learning include ART1, for binary input patterns, and fuzzy–ART and ART2,
for analog input patterns [Gro82, CG03]. ARTMAP models combine two un-
supervised modules to carry out supervised learning. Many variations of the
basic supervised and unsupervised networks have since been adapted for tech-
nological applications and biological analyzes.

A central feature of all ART systems is a pattern matching process that
compares an external input with the internal memory of an active code. ART
matching leads either to a resonant state, which persists long enough to permit
learning, or to a parallel memory search. If the search ends at an established
code, the memory representation may either remain the same or incorporate
new information from matched portions of the current input. If the search
ends at a new code, the memory representation learns the current input. This
match–based learning process is the foundation of ART code stability. Match–
based learning allows memories to change only when input from the external
world is close enough to internal expectations, or when something completely
new occurs. This feature makes ART systems well suited to problems that
require on–line learning of large and evolving databases (see [CG03]).

Many ART applications use fast learning, whereby adaptive weights con-
verge to equilibrium in response to each input pattern. Fast learning enables a
system to adapt quickly to inputs that occur rarely but that may require im-
mediate accurate recall. Remembering details of an exciting movie is a typical
example of learning on one trial. Fast learning creates memories that depend
upon the order of input presentation. Many ART applications exploit this
feature to improve accuracy by voting across several trained networks, with
voters providing a measure of confidence in each prediction.

Match–based learning is complementary to error–based learning, which re-
sponds to a mismatch by changing memories so as to reduce the difference
between a target output and an actual output, rather than by searching for
a better match. Error–based learning is naturally suited to problems such as
adaptive control and the learning of sensory–motor maps, which require ongo-
ing adaptation to present statistics. Neural networks that employ error–based
learning include backpropagation and other multilayer perceptrons (MLPs).

Activation dynamics of ART2 is governed by the ODEs [Gro82, CG03]

εẋi = −Axi + (1−Bxi)I+
i − (C + Dxi)I−i ,

where ε is the ‘small parameter’, I+
i and I−i are excitatory and inhibitory

inputs to the ith unit, respectively, and A,B,C,D > 0 are parameters.
General Cohen–Grossberg activation equations have the form:

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk], (j = 1, . . . , N), (1.24)



1.2 Artificial and Computational Intelligence 215

and the Cohen–Grossberg theorem ensures the global stability of the system
(1.24). If

aj = 1/Cj , bj = vj/Rj − Ij , fj(vj) = uj ,

and constant mij = mji = Tji, the system (1.24) reduces to the Hopfield
circuit model (1.20).

ART and distributed ART (dART) systems are part of a growing fam-
ily of self–organizing network models that feature attentional feedback and
stable code learning. Areas of technological application include industrial
design and manufacturing, the control of mobile robots, face recognition,
remote sensing land cover classification, target recognition, medical diagno-
sis, electrocardiogram analysis, signature verification, tool failure monitor-
ing, chemical analysis, circuit design, protein/DNA analysis, 3D visual object
recognition, musical analysis, and seismic, sonar, and radar recognition. ART
principles have further helped explain parametric behavioral and brain data in
the areas of visual perception, object recognition, auditory source identifica-
tion, variable–rate speech and word recognition, and adaptive sensory–motor
control (see [CG03]).

Spatiotemporal Networks

In spatiotemporal networks, activation dynamics is governed by the ODEs

ẋi = A(−axi + b[Ii − Γ ]+),
Γ̇ = α(S − T ) + βṠ, with

[u]+ =
{

u if u > 0
0 if u ≤ 0 ,

A(u) =
{

u if u > 0
cu if u ≤ 0 .

where a, b, α, β > 0 are parameters, T > 0 is the power–level target, S =
∑

i x
i,

and A(u) is called the attack function.
Learning dynamics is given by differential Hebbian law

ω̇ij = (−cωij + dxixj)U(ẋi)U(−ẋj), with

U(s) =
{

1 if s > 0
0 if s ≤ 0 where c, d > 0 are constants.

Fuzzy Systems

Recall that fuzzy expert systems are based on fuzzy logic (FL), which is it-
self derived from fuzzy set theory dealing with reasoning that is approximate
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rather than precisely deduced from classical predicate logic.150 FL, introduced
in 1965 by Prof. Lotfi Zadeh at the University of California, Berkeley, can be
thought of as the application side of fuzzy set theory dealing with well thought
out real world expert values for a complex problem.151 FL allows for set mem-
bership values between and including 0 and 1, shades of gray as well as black
and white, and in its linguistic form, imprecise concepts like ‘slightly’, ‘quite’
and ‘very’. Specifically, it allows partial membership in a set. It is related to
fuzzy sets and possibility theory.

150 Recall that predicate or propositional logic (PL) is a system for evaluating the
validity of arguments by encoding them into sentential variables and boolean
operator and is part of the philosophy of formal logic. The actual truth of the
premises is not particularly relevant in PL; it is dealing mostly with the structure
of an argument so that if it so happens that the premises are true, the conclusion
either must be true, or could perhaps be false. If it is demonstrable that the
conclusion must be true then the original argument can be said to be valid.
However, if it is possible for all of the premises to be true, and yet still have a
false conclusion, the sequent is invalid. In an ordinary PL, there is one unitary
operator, four binary operators and two quantifiers. The only unary operator
in PL is the negation, usually denoted by ¬P , which is the opposite of the
predicate (i.e., Boolean variable) P . The binary operators are: (i) conjunction
∧, which is true iff both of the Boolean conjuncts are true; (ii) disjunction
∨, which is false iff both of the Boolean disjuncts are false; (iii) implication
(or, conditional), meaning, if P then Q, and denoted P =⇒ Q, where P is
antecedent and Q is consequent ; implication is false only iff from true P follows
false Q; (iv) equivalence, or bi–conditional is a double–sided implication, (P =⇒
Q)∧ (Q =⇒ P ); it is false iff from true P follows false Q and from true Q follows
false P . Besides, PL also has the universal quantifier ∀, meaning ‘for al’, and the
existential quantifier ∃, meaning ‘there is’.

151 Note that degrees of truth in fuzzy logic are often confused with probabilities.
However, they are conceptually distinct; fuzzy truth represents membership in
vaguely defined sets, not likelihood of some event or condition. To illustrate the
difference, consider this scenario: Bob is in a house with two adjacent rooms:
the kitchen and the dining room. In many cases, Bob’s status within the set of
things ‘in the kitchen’ is completely plain: he’s either ‘in the kitchen’ or ‘not in
the kitchen’. What about when Bob stands in the doorway? He may be consid-
ered ‘partially in the kitchen’. Quantifying this partial state yields a fuzzy set
membership. With only his big toe in the dining room, we might say Bob is
99% ‘in the kitchen’ and 1% ‘in the dining room’, for instance. No event (like
a coin toss) will resolve Bob to being completely ‘in the kitchen’ or ‘not in the
kitchen’, as long as he’s standing in that doorway. Fuzzy sets are based on vague
definitions of sets, not randomness. Fuzzy logic is controversial in some circles,
despite wide acceptance and a broad track record of successful applications. It
is rejected by some control engineers for validation and other reasons, and by
some statisticians who hold that probability is the only rigorous mathematical
description of uncertainty. Critics also argue that it cannot be a superset of ordi-
nary set theory since membership functions are defined in terms of conventional
sets.
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‘Fuzzy Thinking’

‘There is no logic in logic’, pronounced the father of fuzzy logic, Lotfi Zadeh.
His cryptic play–on–words, he explained, means that the kind of logic that
people use to solve most real world problems rather than the artificial prob-
lems for which mathematical solutions are available is not the kind of logic
that engineers are taught in school. ‘An engineer can solve problems through-
out his whole career without ever needing to resort to the brand of logic he
was trained in’, said Zadeh. ‘Why? Because all people, even engineers, com-
pute with words not the logical symbols taught in school’, Zadeh maintained.
‘In the future, computing will be done with words from natural languages,
rather than with symbols that are far removed from daily life.’

In 1973, Zadeh proposed the concept of linguistic or fuzzy variables
[Zad65, Zad78, Yag87]. Think of them as linguistic objects or words, rather
than numbers. The sensor input is a noun, e.g., temperature, displacement,
velocity, ow, pressure, etc. Since error is just the difference, it can be thought
of the same way. The fuzzy variables themselves are adjectives that modify
the variable (e.g., large positive error, small positive error, zero error, small
negative error, and large negative error). As a minimum, one could simply
have positive, zero, and negative variables for each of the parameters.

Additional ranges such as very large and very small could also be added
to extend the responsiveness to exceptional or very nonlinear conditions, but
are not necessary in a basic system. Normal logic is just not up to modelling
the real world, claims Bart Kosko [Kos92, Kos93, Kos96, Kos99], perhaps
the worlds most active proponent of fuzzy logic. According to Kosko, there
is always ambiguity in our perceptions and measurements that is difficult
to reflect in traditional logic. Probability attempts to reflect ambiguity by
resorting to statistical averages over many events. But fuzzy theory describes
the ambiguity of individual events. It measures the degree to which an event
occurs, not whether it occurs.

Fuzzy Sets

Recall that a crisp (ordinary mathematical) set X is defined by a binary
characteristic function χX(x) of its elements x

χX(x) =
{

1, if x ∈ X,
0, if x /∈ X,

while a fuzzy set is defined by a continuous characteristic function

χX(x) = [0, 1] ,

including all (possible) real values between the two crisp extremes 1 and 0,
and including them as special cases.
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More precisely, a fuzzy set X is defined as a collection of ordered pairs

X = {(x, μ(x))}, (1.25)

where μ(x) is the fuzzy membership function representing the grade of mem-
bership of the element x in the set X. A single pair is called a fuzzy singleton.

Lotfi Zadeh claimed that many sets in the world that surrounds us are
defined by a non-distinct boundary. Indeed, the set of high mountains is an
example of such sets. Zadeh decided to extend two–valued logic, defined by the
binary pair {0, 1} to the whole continuous interval [0, 1] thereby introducing a
gradual transition from falsehood to truth. The original and pioneering papers
on fuzzy sets by Zadeh [Zad65, Zad78, Yag87] explain the theory of fuzzy sets
that result from the extension as well as a fuzzy logic based on the set theory.

Fuzzy sets are a further development of the mathematical concept of a
set. Sets were first studied formally by German mathematician Georg Cantor
(1845–1918). His theory of sets met much resistance during his lifetime, but
nowadays most mathematicians believe it is possible to express most, if not all,
of mathematics in the language of set theory. Many researchers are looking at
the consequences of ‘fuzzifying’ set theory, and much mathematical literature
is the result.

Conventional sets. A set is any collection of objects which can be treated
as a whole. Cantor described a set by its members, such that an item from
a given universe is either a member or not. Almost anything called a set in
ordinary conversation is an acceptable set in the mathematical sense. A set
can be specified by its members, they characterize a set completely. The list
of members A = {0, 1, 2, 3} specifies a finite set. Nobody can list all elements
of an infinite set , we must instead state some property which characterizes
the elements in the set, for instance the predicate x > 10. That set is defined
by the elements of the universe of discourse which make the predicate true.
So there are two ways to describe a set: explicitly in a list or implicitly with
a predicate.

Fuzzy sets. Following Zadeh many sets have more than an Either–Or crite-
rion for membership. Take for example the set of young people. A one year
old baby will clearly be a member of the set, and a 100 years old person will
not be a member of this set, but what about people at the age of 20, 30, or
40 years? Another example is a weather report regarding high temperatures,
strong winds, or nice days. In other cases a criterion appears nonfuzzy, but
is perceived as fuzzy: a speed limit of 60 kilometers per hour, a check–out
time at 12 noon in a hotel, a 50 years old man. Zadeh proposed a grade of
membership, such that the transition from membership to non–membership
is gradual rather than abrupt.

The grade of membership for all its members thus describes a fuzzy set.
An item’s grade of membership is normally a real number between 0 and 1,
often denoted by the Greek letter μ. The higher the number, the higher the
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membership. Zadeh regards Cantor’s set as a special case where elements have
full membership, i.e., μ = 1. He nevertheless called Cantor’s sets nonfuzzy ;
today the term crisp set is used, which avoids that little dilemma.

The membership for a 50 year old in the set young depends on one’s
own view. The grade of membership is a precise, but subjective measure that
depends on the context.

A fuzzy membership function is different from a statistical probability
distribution. A possible event does not imply that it is probable. However, if
it is probable it must also be possible. We might view a fuzzy membership
function as our personal distribution, in contrast with a statistical distribution
based on observations.

Universe of discourse. Elements of a fuzzy set are taken from a universe of
discourse. It contains all elements that can come into consideration. Even the
universe of discourse depends on the context. An application of the universe
is to suppress faulty measurement data. In case we are dealing with a non–
numerical quantity, for instance taste, which cannot be measured against a
numerical scale, we cannot use a numerical universe. The elements are then
said to be taken from a psychological continuum.

Membership Functions. Every element in the universe of discourse is a
member of the fuzzy set to some grade, maybe even zero. The set of elements
that have a non–zero membership is called the support of the fuzzy set. The
function that ties a number to each element xof the universe is called the
membership function.

Continuous and discrete representations. There are two alternative ways
to represent a membership function in a computer: continuous or discrete. In
the continuous form the membership function is a mathematical function,
possibly a program. A membership function is for example bell-shaped (also
called a π−curve), s−shaped (called an s−curve), a reverse s−curve (called
z−curve), triangular, or trapezoidal. In the discrete form the membership
function and the universe are discrete points in a list (vector). Sometimes it
can be more convenient with a sampled (discrete) representation. As a very
crude rule of thumb, the continuous form is more CPU intensive, but less
storage demanding than the discrete form.

Normalization. A fuzzy set is normalized if its largest membership value
equals 1. We normalize by dividing each membership value by the largest
membership in the set, a/max(a).

Singletons. Strictly speaking, a fuzzy set A is a collection of ordered pairs:
A = {(x, μ(x))}.

Item x belongs to the universe and μ(x) is its grade of membership in A.
A single pair (x, μ(x)) is called a fuzzy singleton; thus the whole set can be
viewed as the union of its constituent singletons.
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Linguistic variables. Just like an algebraic variable takes numbers as values,
a linguistic variable takes words or sentences as values [Yag87, Kos92]. The
set of values that it can take is called its term set . Each value in the term set
is a fuzzy variable defined over a base variable. The base variable defines the
universe of discourse for all the fuzzy variables in the term set. In short, the
hierarchy is as follows:

linguistic variable → fuzzy variable → base variable.

Primary terms. A primary term is a term or a set that must be defined
a priori, for example Young and Old, whereas the sets Very Young and Not
Young are modified sets.

Fuzzy set operations. A fuzzy set operation creates a new set from one or
several given sets.

Let A and B be fuzzy sets on a mutual universe of discourse X. If these
were ordinary (crisp) sets, we would have the following definitions:

The intersection of A and B is: A ∩ B ≡ min{A,B}, where min is an
item–by–item minimum operation.

The union of A and B is: A∪B ≡ max{A,B}, where max is an item–by–
item maximum operation.

The complement of A is: ¬A ≡ 1− A, where in a each membership value
is subtracted from 1.

However, as A and B are fuzzy sets, the following definitions are more
appropriate:

The intersection of A and B is: A∩B ≡ min{μA(X), μB(X)}, where min
is an item–by–item minimum operation.

The union of A and B is: A∪B ≡ max{μA(X), μB(X)}, where max is an
item–by–item maximum operation.

The complement of A is: ¬A ≡ 1 − μA(X), where in a each membership
value is subtracted from 1.

Fuzzy Example

Using fuzzy membership functions μ(x), we can express both physical and
non–physical quantities (e.g., temperature, see Figure 1.29) using linguistic
variables.

Various logical combinations of such linguistic variables leads to the con-
cept of fuzzy–logic control. Recall that basic logical operations AND, OR,
NOT are defined as:

AND : C ∩W − intersection of crisp sets C,W,

OR : C ∪W − union of crisp sets C,W,

NOT : ¬C − complement of a crisp set C.
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Fig. 1.29. Fuzzy–set description of cold (C) and warm (W ) temperature (T ),
using the membership functions μC(T ) and μW (T ), respectively. For example, fuzzy
answers to the questions “How cold is 15◦?” and “How warm is 15◦?” are given by:
“15◦ is quite cold as μC(15) = 2/3” and “15◦ is not really warm as μW (15) = 1/3”,
respectively.

The corresponding fuzzy–logic operations are defined as:

AND : μC∩W (T ) = min{μC(T ), μW (T )},
OR : μC∪W (T ) = max{μC(T ), μW (T )},

NOT : μ¬C(T ) = 1− μC(T ).

Fuzziness of the Real World

The real world consists of all subsets of the universe and the only subsets that
are not fuzzy are the constructs of classical mathematics.

From small errors to satisfied customers to safe investments to noisy sig-
nals to charged particles, each element of the real world is in some measure
fuzzy. For instance, satisfied customers can be somewhat unsatisfied, safe in-
vestments somewhat unsafe and so on. What is worse, most events more or
less smoothly transition into their opposites, making classification difficult
near the midpoint of the transition. Unfortunately, textbook events and their
opposites are crisp, unlike the real world. Take the proposition that there is a
50% chance that an apple is in the refrigerator. That is an assertion of crisp
logic. But suppose upon investigation it is found that there is half an apple
in the refrigerator, that is fuzzy.

But regardless of the realities, the crisp logic in vogue today assumes that
the world is really unambiguous and that the only uncertainty is the result of
random samples from large sets. As the facts about these large sets become
better known, the randomness supposedly dissipates, so that if science had
access to all the facts, it would disappear. Unfortunately, if all the facts were
in, a platypus would remain only roughly an mammal.

On the other hand, fuzzy logic holds that uncertainty is deterministic and
does not dissipate as more elements of a set are examined. Take an ellipse, for
instance. It is approximately a circle, to whatever degree that it resembles a
perfect circle. There is nothing random about it. No matter how precisely it
is measured it remains only approximately a circle. All the facts are in and
yet uncertainty remains.
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Traditional crisp logic has a difficult time applying itself to very large sets,
since probability fades to unity, as well as to individual events where prob-
abilities cannot be defined at all. Nevertheless, crisp logic continues to rein
supreme based on long standing western traditions that maintain that ratio-
nality would vanish if there were not crisp logical ideals to which we should
aspire. These laws of (rational) thought were first characterized by Aristotle
as the principle of non-contradiction and the principle of the excluded middle.
The principle of non-contradiction, stated in words, says that nothing can be
both A and ¬A. The law of the excluded middle says that anything must be
either A or ¬A.

‘Fuzziness is the denial of both these so–called laws’, says E. Cox [Cox92,
Cox94]). The classical example is of a platypus which both is and is not a
mammal. In such individual cases, even appending probability theory to crisp
logic cannot resolve the paradox. For instance, take the now classical paradox
formulated by B. Russell: If a barber shaves everyone in a village who does
not shave himself, then who shaves the barber? This paradox was devised
to assault G. Cantor’s set theory as the foundation for G. Boole’s digital
logic. It has been restated in many forms, such as the liar from Crete who
said that all Creatans are liars. Russell solved it by merely disqualifying such
self–referential statements in his set theory. Probability theory solves it by
assuming a population of barbers 50% of whom do, and 50% of whom do
not, shave themselves. But fuzzy logic solves it by assigning to this individual
barber a 50% membership value in the set self-shaving barbers. Further, it
shows that there is a whole spectrum of other situations that are less fuzzy
and which correspond to other degrees of set membership. Such as, barbers
who shave themselves 70% of the time.

Kosko illustrates these various degrees of ambiguity by geometrically plot-
ting various degrees of set membership inside a unit fuzzy hypercube [0, 1]n

[Kos92, Kos93, Kos96, Kos99]. This sets–as–points approach holds that a fuzzy
set is a point in a unit hypercube and a non–fuzzy set is a corner of the hyper-
cube. Normal engineering practice often visualizes binary logical values as the
corners of a hypercube, but only fuzzy theory uses the inside of the cube. Fuzzy
logic is a natural filling–in of traditional set theory. Any engineer will recog-
nize the 3D representation of all possible combinations three Boolean values:
{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}, which
correspond to the corners of the unit hypercube. But fuzzy logic also al-
lows any other fractional values inside the hypercube, such as {0.5, 0.7, 0.3}
corresponding to degrees of set membership.

Fuzzy logic holds that any point inside the unit hypercube is a fuzzy set
with Russell’s paradox located at the point of maximum ambiguity in the
center of the hypercube.

Fuzzy Entropy

Degrees of fuzziness are referred to as entropy by Kosko. Fuzzy mutual entropy
measures the ambiguity of a situation, information and entropy are inversely
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related – if you have a maximum–entropy solution, then you have a minimum–
information solution, and visa versa, according to Kosko. But minimum–
information does not mean that too little information is being used. On the
contrary, the principle of maximum entropy ensures that only the relevant
information is being used.

This idea of maximizing entropy, according to Kosko, is present through-
out the sciences, although it is called by different names. ‘From the quantum
level up to astrophysics or anywhere in–between for pattern recognition, you
want to use all and only the available information,’ Kosko claims. This emer-
gent model proposes that scientists and engineers estimate the uncertainty
structure of a given environment and maximize the entropy relative to the
known information, similar to the Lagrange technique in mathematics. The
principle of maximum entropy states that any other technique has to be bi-
ased, because it has less entropy and thus uses more information than is really
available.

Fuzzy theory provides a measure of this entropy factor. It measures ambi-
guity with operations of union ∪, intersection ∩ and complement ¬.

In traditional logic, these three operators are used to define a set of ax-
ioms that were proposed by Aristotle to be the immutable laws of (rational)
thought, namely, the principle of non–contradiction and the principle of the
excluded middle. The principle of non–contradiction, that nothing can be both
A and ¬A, and the law of the excluded middle, that anything must be either
A or ¬A, amounts to saying that the intersection of a set and its comple-
ment is always empty and that the union of a set and its complement always
equals the whole universe of discourse, respectively. But if we do not know A
with certainty, then we do not know −A with certainty either, else by dou-
ble negation we would know A with certainty. This produces non–degenerate
overlap (A ∩ ¬A), which breaks the law of non–contradiction. Equivalently,
it also produced non–degenerate underlap (A ∪ ¬A) which breaks the law of
the excluded middle. In fuzzy logic both these so–called laws are denied. A
set and its complement can both be overlap and underlap.

What is worse, there is usually ambiguity in more than one parameter
or dimension of a problem. To represent multi–dimensional ambiguity, Kosko
shows fuzzy entropy geometrically with a hypercube.

All these relationships are needed in fuzzy logic to express its basic struc-
tures for addition, multiplication, and most important, implication IF ⇒
THEN . They all follow from the subsethood relationships between fuzzy
sets. The subset relation by itself, corresponds to the implication relation in
crisp logic. For instance, A⇒ B is false only if the antecedent A is true and
the consequent B is false. The same holds for subsets, A is a subset of B if
there is no element that belongs to A but not to B.

But in fuzzy logic, degrees of subsethood permit some A to be somewhat
of a subset of B even though some of its elements are not elements of B. The
degree to which A is a subset of B can be measured as the distance from the
origin to (A ∩B) divided by the distance from the origin to A.
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This structure is derived as a theorem of fuzzy logic, whereas for proba-
bility theory equivalent conditional probability theorem has to be assumed,
making fuzzy logic a more fundamental.

The fuzzy mutual entropy measures how close a fuzzy description of the
world is to its own opposite [Kos99]. It has no random analogue in general.
The fuzzy fluid leads to a type of wave equation. The wave shows how the
extended Shannon entropy potential S : [0, 1]n → R, defined on the entire
fuzzy cube [0, 1]n, fluctuates in time. It has the form of a reaction–diffusion
equation

Ṡ = −c∇2S, (1.26)

where c is the fuzzy diffusion parameter . The fuzzy wave equation (1.26)
implies Ṡ > 0, and thus resembles the entropy increase of the S−theorem
of the Second Law of thermodynamics.

Similar equations occur in all branches of science and engineering. The
Schrödinger wave equation (see [II06a, II06b]) has this form, as well as most
models of diffusion. The fuzzy wave equation (1.26) assumes only that inform-
ation is conserved. The total amount of information is fixed and we do not
create or destroy information. Some form of the wave equation would still
apply if information were conserved locally or in small regions of system space.
The space itself is a fuzzy cube of high dimension. It has as many dimensions
as there are objects of interest. The Shannon entropy S changes at each point
in this cube and defines a fuzzy wave. The obvious result is that the entropy
S can only grow in time in the spirit of the second law.

The entropy always grows but its rate of growth depends on the system’s
position in the fuzzy parameter space. A deeper result is that entropy changes
slowest at the fuzzy cube midpoint of maximum fuzz. That is the only point
in the cube where the fuzzy description equals its own opposite. The Shannon
entropy wave grows faster and faster away from the cube midpoint and near
its skin. The skin or surface of the fuzzy cube is the only place where a 0 or 1
appears in the system description. The fuzzy wave equation (1.26) shows that
the entropy S changes infinitely fast iff it touches the cubes’s skin. However,
this is impossible in a universe with finite bounds on velocity like the speed
of light. So, the result is never a bit – it is always a fit [Kos99].

Fuzzy Patches for System Modelling

Like ANNs, the fuzzy logic systems are generic function approximators
[Kos92]. Namely, fuzzy system modelling is performed as a nonlinear function
approximation using the so–called fuzzy patches (see Figure 1.30), which ap-
proximate the given function y = f(x), i.e., the system input–output relation.
The fuzzy patches Ri are given by a set of canonical fuzzy IF–THEN rules:
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Fig. 1.30. Fuzzy–logic approximation y = ffuz(x) of an arbitrary function y = f(x)
using fuzzy patches Ri given by a set of canonical fuzzy IF–THEN rules.

R1 : IF x is A1 THEN y is R1,

R2 : IF x is A2 THEN y is R2,

...
Rn : IF x is An THEN y is Rn.

Fuzzy Inference Engine

In the realm of fuzzy logic the above generic nonlinear function approximation
is performed by means of fuzzy inference engine. The fuzzy inference engine
is an input–output dynamical system which maps a set of input linguistic
variables (IF−part) into a set of output linguistic variables (THEN−part).
It has three sequential modules (see Figure 1.31):

1. Fuzzification; in this module numerical crisp input variables are fuzzified;
this is performed as an overlapping partition of their universes of discourse
by means of fuzzy membership functions μ(x) (1.25), which can have
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Fig. 1.31. Basic structure of the fuzzy inference engine.

Fig. 1.32. Fuzzification example: set of triangular–trapezoidal membership func-
tions partitioning the universe of discourse for the angle of the hypothetical steering
wheel; notice the white overlapping triangles.

various shapes, like triangular–trapezoidal (see Figure 1.32), Gaussian–
bell, μ(x) = exp

[
−(x−m)2

2σ2

]
(with mean m and standard deviation σ),

sigmoid μ(x) =
[
1 +

(
x−m

σ

)2]−1

, or some other shapes.
B. Kosko and his students have done extensive computer simulations look-
ing for the best shape of fuzzy sets to model a known test system as closely
as possible. They let fuzzy sets of all shapes and sizes compete against
each other. They also let neural systems tune the fuzzy–set curves to im-
prove how well they model the test system. The main conclusion from
these experiments is that ‘triangles never do well’ in such contests. Sup-
pose we want an adaptive fuzzy system F : Rn → R to approximate a test
function (or, approximand) f : Rn → R as closely as possible in the sense
of minimizing the mean–squared error between them,

(
‖f − F‖2

)
. Then

the ith scalar ‘sinc’ function (as commonly used in signal processing),

μi(x) =
sin

(
x−mi

di

)
x−mi

di

, (i = 1, . . . , n), (1.27)
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with center mi and dispersion (width) di = σ2
i > 0, often gives the best

performance for IF−part mean–squared function approximation, even
though this generalized function can take on negative values (see [Kos99]).

2. Inference; this module has two submodules:
(i) The expert–knowledge base consisting of a set of IF − THEN rules
relating input and output variables, and
(ii) The inference method, or implication operator, that actually combines
the rules to give the fuzzy output; the most common is Mamdani Min–
Max inference, in which the membership functions for input variables are
first combined inside the IF − THEN rules using AND (∩, or Min)
operator, and then the output fuzzy sets from different IF −THEN rules
are combined using OR (∪, or Max) operator to get the common fuzzy
output (see Figure 1.33).

3. Defuzzification; in this module fuzzy outputs from the inference module
are converted to numerical crisp values; this is achieved by one of the sev-
eral defuzzification algorithms; the most common is the Center of Gravity
method, in which the crisp output value is calculated as the abscissa under
the center of gravity of the output fuzzy set (see Figure 1.33).

In more complex technical applications of general function approxima-
tion (like in complex control systems, signal and image processing, etc.), two
optional blocks are usually added to the fuzzy inference engine [Kos92, Kos96,
Lee90]:

(0) Preprocessor, preceding the fuzzification module, performing various
kinds of normalization, scaling, filtering, averaging, differentiation or integra-
tion of input data; and

Fig. 1.33. Mamdani’s Min–Max inference method and Center of Gravity defuzzifi-
cation.
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(4) Postprocessor, succeeding the defuzzification module, performing the
analog operations on output data.

Common fuzzy systems have a simple feedforward mathematical structure,
the so–called Standard Additive Model (SAM), which aids the spread of ap-
plications. Almost all applied fuzzy systems use some form of SAM, and some
SAMs in turn resemble the ANN models (see [Kos99]).

In particular, an additive fuzzy system F : Rn → Rp stores m rules of
the patch form Ai × Bi ⊂ Rn × Rp, or of the word form ‘If X = Ai Then
Y = Bi’ and adds the ‘fired’ Then–parts B

′
i(x) to give the output set B(x),

calculated as

B(x) = wiB
′
i(x) = wiμi(x)Bi(x), (i = 1, . . . , n), (1.28)

for a scalar rule weight wi > 0. The factored form B
′
i(x) = μi(x)Bi(x)

makes the additive system (1.28) a SAM system. The fuzzy system F com-
putes its output F (x) by taking the centroid of the output set B(x): F (x) =
Centroid(B(x)). The SAM theorem then gives the centroid as a simple ratio,

F (x) = pi(x)ci, (i = 1, . . . , n),

where the convex coefficients or discrete probability weights pi(x) depend on
the input x through the ratios

pi(x) =
wiμi(x)Vi

wkμk(x)Vk
, (i = 1, . . . , n). (1.29)

Vi is the finite positive volume (or area if p = 1 in the codomain space Rp)
[Kos99],

Vi =
∫

Rp

bi(y1, . . . , yp)dy1...dyp > 0,

and ci is the centroid of the Then–part set Bi(x),

ci =

∫
Rp y bi(y1, . . . , yp)dy1...dyp∫
Rp bi(y1, . . . , yp)dy1...dyp

.

Fuzzy Logic Control

The most common and straightforward applications of fuzzy logic are in the
domain of nonlinear control [Kos92, Kos96, Lee90, DSS96]. Fuzzy control is
a nonlinear control method based on fuzzy logic. Just as fuzzy logic can be
described simply as computing with words rather than numbers, fuzzy control
can be described simply as control with sentences rather than differential
equations.

A fuzzy controller is based on the fuzzy inference engine, which acts either
in the feedforward or in the feedback path, or as a supervisor for the conven-
tional PID controller.

A fuzzy controller can work either directly with fuzzified dynamical vari-
ables, like direction, angle, speed, or with their fuzzified errors and rates of
change of errors. In the second case we have rules of the form:
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1. IF error is Neg AND change in error is Neg THEN output is NB.
2. IF error is Neg AND change in error is Zero THEN output is NM .

The collection of rules is called a rule base. The rules are in IF −
THEN format, and formally the IF−side is called the condition and the
THEN−side is called the conclusion (more often, perhaps, the pair is called
antecedent – consequent). The input value Neg is a linguistic term short for
the word Negative, the output value NB stands for Negative Big and NM
for Negative Medium. The computer is able to execute the rules and com-
pute a control signal depending on the measured inputs error and change in
error.

The rule–base can be also presented in a convenient form of one or several
rule matrices, the so–called FAM−matrices, where FAM is a shortcut for
Kosko’s fuzzy associative memory [Kos92, Kos96]. For example, a 9×9 graded
FAM matrix can be defined in a symmetrical weighted form:

FAM =

⎛⎜⎜⎜⎜⎝
0.6S4 0.6S4 0.7S3 ... CE
0.6S4 0.7S3 0.7S3 ... 0.9B1
0.7S3 0.7S3 0.8S2 ... 0.9B1

... ... ... ... 0.6B4
CE 0.9B1 0.9B1 ... 0.6B4

⎞⎟⎟⎟⎟⎠ ,

in which the vector of nine linguistic variables L9 partitioning the universes
of discourse of all three variables (with trapezoidal or Gaussian bell–shaped
membership functions) has the form

L9 = {S4, S3, S2, S1, CE,B1, B2, B3, B4}T ,

to be interpreted as: ‘small 4’, ... , ‘small 1’, ‘center’, ‘big 1’, ... , ‘big 4’. For
example, the left upper entry (1, 1) of the FAM matrix means: IF red is S4
and blue is S4, THEN result is 0.6S4; or, entry (3, 7) means: IF red is S2 and
blue is B2, THEN result is center, etc.

Here we give three design examples for fuzzy controllers, the first one in
detail, and the other two briefly.

Example: Mamdani Fuzzy Controller

The problem is to balance θ a pole of mass m and inertia moment I on a
mobile platform of mass M that can be forced by F to move only (left/right)
along x−axis (see Figure 1.34). This is quite an involved problem for conven-
tional PID controller, based on differential equations of the pole and platform
motion. Instead, we will apply fuzzy linguistic technique called Mamdani in-
ference (see previous subsection).

Firstly, as a fuzzification part, we have to define (subjectively) what high
speed, low speed etc. of the platform M is. This is done by specifying the
membership functions for the fuzzy set partitions of the platform speed uni-
verse of discourse, using the following linguistic variables: (i) negative high
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Fig. 1.34. Problem of balancing an inverted pendulum.

Fig. 1.35. Fuzzy membership functions for speed of the platform.

Fig. 1.36. Fuzzy membership functions for speed of the platform.

(NH), (ii) negative low (NL), (iii) zero (ZE), (iv) positive low (PL), and (v)
positive high (PH) (see Figure 1.35).152

Also, we need to do the same for the angle θ between the platform and
the pendulum and the angular velocity θ̇ of this angle (see Figure 1.36).

Secondly, as an inference part, we give several fuzzy IF–THEN rules that
will tell us what to do in certain situations. Consider for example that the
pole is in the upright position (angle θ is zero) and it does not move (angular
velocity θ̇ is zero). Obviously this is the desired situation, and therefore we
don’t have to do anything (speed is zero). Let us consider also another case: the
pole is in upright position as before but is in motion at low velocity in positive

152 For simplicity, we assume that in the beginning the pole is in a nearly upright
position so that an angle θ greater than, 45 degrees in any direction can never
occur.
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direction. Naturally we would have to compensate the pole’s movement by
moving the platform in the same direction at low speed.

So far we’ve made up two rules that can be put into a more formalized
form like this:

IF angle is zero AND angular velocity is zero THEN speed shall be zero.
IF angle is zero AND angular velocity is positive low THEN speed shall be

positive low.
We can summarize all applicable rules in the following FAM table (see

previous subsection):

| Angle
|

Speed | NH NL ZE PL PH
——————————————————————————–
V NH | NH
e NL | NL ZE
l ZE | NH NL ZE PL PH
o PL | ZE PL
c PH | PH

Now, we are going to define two explicit values for angle and angular
velocity to calculate with. Consider the situation given in Figure 1.37, and let
us apply the following rule:

IF angle is zero AND angular velocity is zero THEN speed is zero
– to the values that we have previously selected (see Figure 1.38)

Only four rules yield a result (rules fire, see Figure 1.39), and we overlap
them into one single result (see Figure 1.40).

Fan: the Temperature Control System

In this simple example, the input linguistic variable is:

temperature error = desired temperature− current temperature.

Fig. 1.37. Actual values for angle θ and angular velocity θ̇.
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Fig. 1.38. Here is the linguistic variable angle θ where we zoom–in on the fuzzy set
zero (ZE) and the actual angle.

Fig. 1.39. Four fuzzy rules firing: (a) the result yielded by the rule: IF angle is zero
AND angular velocity is zero THEN speed is zero; (b) the result yielded by the rule: IF
angle is zero AND angular velocity is negative low THEN speed is negative low; (c) the
result yielded by the rule: IF angle is positive low AND angular velocity is zero THEN
speed is positive low; (d) the result yielded by the rule: IF angle is positive low AND
angular velocity is negative low THEN speed is zero.

Fig. 1.40. Left: Overlapping single–rule results to yield the overall result. Right:
The result of the fuzzy controller so far is a fuzzy set (of speed), so we have to choose
one representative value as the final output; there are several heuristic defuzzification
methods, one of them is to take the center of gravity of the fuzzy set. This is called
Mamdani fuzzy controller .

The two output linguistic variables are:
hot fan speed, and cool fan speed. The universes of discourse, consisting of
membership functions, i.e., overlapping triangular–trapezoidal shaped inter-
vals, for all three variables are:

invar: temperature error = {Negative Big,Negative Medium,
Negative Small, Zero, Positive Small, Positive Medium,Positive Big},
with the range [−110, 110] degrees;
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Fig. 1.41. Truck backer–upper steering control system.

outvars: hot fan speed and
cool fan speed = {zero, low,medium, high, very high}, with the range
[0, 100] rounds–per–meter.

Truck Backer–Upper Steering Control System

In this example there are two input linguistic variables: position and di-
rection of the truck, and one output linguistic variable: steering angle
(see Figure 1.41). The universes of discourse, partitioned by overlapping
triangular–trapezoidal shaped intervals, are defined as:

invars: position = {NL,NS,ZR,PS, PL}, and
direction = {NL,NM,NS,ZR,PS, PM,PL}, where NL denotes Nega-
tive Large, NM is Negative Medium, NS is Negative Small, etc.

outvar: steering angle = {NL,NM,NS,ZR,PS, PM,PL}.
The rule–base is given as:

IF direction is NL, AND position is NL, THEN steering angle is NL;
IF direction is NL, AND position is NS, THEN steering angle is NL;
IF direction is NL, AND position is ZE, THEN steering angle is PL;
IF direction is NL, AND position is PS, THEN steering angle is PL;
IF direction is NL, AND position is PL, THEN steering angle is PL;
IF direction is NM, AND position is NL, THEN steering angle is ZE;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IF direction is PL AND position is PL, THEN steering angle is PL.
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Fig. 1.42. Control surface for the truck backer–upper steering control system.

Fig. 1.43. Neuro–fuzzy inference engine.

The so–called control surface for the truck backer–upper steering control
system is depicted in Figure 1.42.

To distinguish between more and less important rules in the knowledge
base, we can put weights on them. Such weighted knowledge base can be
then trained by means of artificial neural networks. In this way we get hybrid
neuro–fuzzy trainable expert systems.

Another way of the hybrid neuro–fuzzy design is the fuzzy inference engine
such that each module is performed by a layer of hidden artificial neurons,
and ANN–learning capability is provided to enhance the system knowledge
(see Figure 1.43).

Again, the fuzzy control of the BP learning (1.15–1.16) can be implemented
as a set of heuristics in the form of fuzzy IF − THEN rules, for the purpose
of achieving a faster rate of convergence. The heuristics are driven by the
behavior of the instantaneous sum of squared errors.
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Finally, most feedback fuzzy systems are either discrete or continuous gen-
eralized SAMs [Kos99], given respectively by

x(k + 1) = pi(x(k))Bi(x(k)), or ẋ(t) = pi(x(t))Bi(x(t)),

with coefficients pi given by (1.29) above.

General Characteristics of Fuzzy Control

As demonstrated above, fuzzy logic offers several unique features that make
it a particularly good choice for many control problems, among them [Lee90,
DSS96]:

1. It is inherently robust since it does not require precise, noise–free inputs
and can be programmed to fail safely if a feedback sensor quits or is
destroyed. The output control is a smooth control function despite a wide
range of input variations.

2. Since the fuzzy logic controller processes user–defined rules governing the
target control system, it can be modified and tweaked easily to improve
or drastically alter system performance. New sensors can easily be in-
corporated into the system simply by generating appropriate governing
rules.

3. Fuzzy logic is not limited to a few feedback inputs and one or two control
outputs, nor is it necessary to measure or compute rate–of–change para-
meters in order for it to be implemented. Any sensor data that provides
some indication of a systems actions and reactions is sufficient. This al-
lows the sensors to be inexpensive and imprecise thus keeping the overall
system cost and complexity low.

4. Because of the rule-based operation, any reasonable number of inputs
can be processed (1–8 or more) and numerous outputs (1–4 or more)
generated, although defining the rule–base quickly becomes complex if
too many inputs and outputs are chosen for a single implementation since
rules defining their interrelations must also be defined. It would be better
to break the control system into smaller chunks and use several smaller
fuzzy logic controllers distributed on the system, each with more limited
responsibilities.

5. Fuzzy logic can control nonlinear systems that would be difficult or im-
possible to model mathematically. This opens doors for control systems
that would normally be deemed unfeasible for automation.

A fuzzy logic controller is usually designed using the following steps:

1. Define the control objectives and criteria: What am I trying to control?
What do I have to do to control the system? What kind of response do I
need? What are the possible (probable) system failure modes?

2. Determine the input and output relationships and choose a minimum
number of variables for input to the fuzzy logic engine (typically error
and rate–of–change of error).
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3. Using the rule–based structure of fuzzy logic, break the control problem
down into a series of IF X AND Y THEN Z rules that define the desired
system output response for given system input conditions. The number
and complexity of rules depends on the number of input parameters that
are to be processed and the number fuzzy variables associated with each
parameter. If possible, use at least one variable and its time derivative.
Although it is possible to use a single, instantaneous error parameter
without knowing its rate of change, this cripples the systems ability to
minimize overshoot for a step inputs.

4. Create fuzzy logic membership functions that define the meaning (values)
of Input/Output terms used in the rules.

5. Test the system, evaluate the results, tune the rules and membership
functions, and re–test until satisfactory results are obtained.

Therefore, fuzzy logic does not require precise inputs, is inherently robust,
and can process any reasonable number of inputs but system complexity in-
creases rapidly with more inputs and outputs. Distributed processors would
probably be easier to implement. Simple, plain–language rules of the form
IF X AND Y THEN Z are used to describe the desired system response in
terms of linguistic variables rather than mathematical formulas. The number
of these is dependent on the number of inputs, outputs, and the designers con-
trol response goals. Obviously, for very complex systems, the rule–base can
be enormous and this is actually the only drawback in applying fuzzy logic.

Evolving Fuzzy–Connectionist Systems

Recently, [Kas02] introduced a new type of fuzzy inference systems, denoted as
dynamic evolving (see next subsection) neuro–fuzzy inference system (DEN-
FIS), for adaptive online and off–line learning, and their application for
dynamic time series prediction. DENFIS system evolves through incremen-
tal, hybrid (supervised/unsupervised), learning, and accommodates new input
data, including new features, new classes, etc., through local element tuning.
New fuzzy rules are created and updated during the operation of the system.
At each time moment, the output of DENFIS is calculated through a fuzzy inf-
erence system based on m−most activated fuzzy rules which are dynamically
chosen from a fuzzy rule set. Two approaches are proposed: (i) dynamic cre-
ation of a first–order Takagi–Sugeno–type (see, e.g., [Tan93]) fuzzy rule set for
a DENFIS online model; and (ii) creation of a first–order Takagi–Sugeno–type
fuzzy rule set, or an expanded high–order one, for a DENFIS offline model. A
set of fuzzy rules can be inserted into DENFIS before or during its learning
process. Fuzzy rules can also be extracted during or after the learning process.
An evolving clustering method (ECM), which is employed in both online and
off–line DENFIS models, is also introduced. It was demonstrated that DEN-
FIS could effectively learn complex temporal sequences in an adaptive way
and outperform some well–known, existing models.
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Evolutionary Computation

In general, evolutionary computation (see [Fog98, ES03, BFM97]) is a CI–
subfield involving combinatorial optimization problems.153 It can be loosely
recognized by the following criteria:

1. iterative progress, growth or development;
2. population based;
3. guided random search;
4. parallel processing; and
5. often biologically inspired.

This mostly involves the so–called metaheuristic optimization algorithms,
such as evolutionary algorithms and swarm intelligence. In a lesser extent,
evolutionary computation also involves differential evolution, artificial life,
artificial immune systems and learnable evolution model .

Evolutionary Algorithms

In a narrow sense, evolutionary computation is represented by evolution-
ary algorithms (EAs), which are generic population–based metaheuristic
optimization algorithms [Bac96]. The so–called candidate solutions154 to the
optimization problem play the role of individuals in a population, and the
cost function155 determines the environment within which the solutions ‘live’.
Evolution of the population then takes place after the repeated application
of the above operators. Artificial evolution (AE) describes a process involving
153 Recall that combinatorial optimization is a branch of optimization in applied

mathematics and computer science, related to operations research, algorithm
theory and computational complexity theory . Combinatorial optimization algo-
rithms are often implemented in an efficient imperative programming language,
in an expressive declarative programming language such as Prolog, or some com-
promise, perhaps a functional programming language such as Haskell, or a multi–
paradigm language such as Lisp. A study of computational complexity theory
helps to motivate combinatorial optimization. Combinatorial optimization algo-
rithms are typically concerned with problems that are NP–hard. Such problems
are not believed to be efficiently solvable in general. However, the various approx-
imations of complexity theory suggest that some instances (e.g. ‘small’ instances)
of these problems could be efficiently solved. This is indeed the case, and such
instances often have important practical ramifications. The domain of combina-
torial optimization is optimization problems where the set of feasible solutions
is discrete or can be reduced to a discrete one, and the goal is to find the best
possible solution.

154 Recall that a candidate solution is a member of a set of possible solutions to a
given problem. A candidate solution does not have to be a likely or reasonable
solution to the problem. The space of all candidate solutions is called the feasible
region or the feasible area.

155 Recall that a generic optimization problem can be represented as:
Given: a function f : A → R from some set A to the real numbers,
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individual evolutionary algorithms; EAs are individual components that par-
ticipate in an AE. EAs perform consistently well approximating solutions to
all types of problems because they do not make any assumption about the
underlying fitness landscape, evidenced by success in fields as diverse as engi-
neering, art, biology, economics, genetics, operations research, robotics, social
sciences, physics, and chemistry. Apart from their use as mathematical opti-
mizers, EAs have also been used as an experimental framework within which to
validate theories about biological evolution and natural selection, particularly
through work in the field of artificial life. EAs involve biologically–inspired
techniques implementing mechanisms such as:

1. Reproduction, which is the biological process by which new individual
organisms are produced. Reproduction is a fundamental feature of all
known life; each individual organism exists as the result of reproduction.
The known methods of reproduction are broadly grouped into two main
types: sexual and asexual. In asexual reproduction, an individual can
reproduce without involvement with another individual of that species.
The division of a bacterial cell into two daughter cells is an example of
asexual reproduction. Asexual reproduction is not, however, limited to
single–celled organisms. Most plants have the ability to reproduce asexu-
ally. On the other hand, sexual reproduction requires the involvement of

Sought : an element x0 ∈ A such that f(x0) ≤ f(x) for all x ∈ A (‘minimiza-
tion’) or such that f(x0) ≥ f(x) for all x ∈ A (‘maximization’).

Typically, A is some subset of the Euclidean space Rn, often specified by
a set of constraints, equalities or inequalities that the members of A have to
satisfy. The elements of A are called feasible solutions. The function f is called
an objective function, or cost function. A feasible solution that minimizes (or
maximizes, if that is the goal) the objective function is called an optimal solution.
The domain A of f is called the search space, while the elements of A are called
candidate solutions or feasible solutions.

Generally, when the feasible region or the objective function of the problem
does not present convexity , there may be several local minima and maxima,
where a local minimum x∗ is defined as a point for which there exists some δ > 0
so that for all x such that ‖x− x∗‖ ≤ δ, the expression f(x∗) ≤ f(x) – holds;
that is to say, on some region around x∗ all of the function values are greater than
or equal to the value at that point. Local maxima are defined similarly. For twice–
differentiable functions, unconstrained problems can be solved by finding the
points where the gradient of the objective function is zero (that is, the stationary
points) and using the Hessian matrix to classify the type of each point. If the
Hessian is positive definite, the point is a local minimum, if negative definite,
a local maximum, and if indefinite it is some kind of saddle point. Constrained
problems can often be transformed into unconstrained problems with the help
of Lagrange multipliers. Note that a large number of algorithms proposed for
solving non–convex problems, including the majority of commercially available
solvers, are not capable of making a distinction between local optimal solutions
and rigorous optimal solutions, and will treat the former as actual solutions to
the original problem.
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two individuals, typically one of each sex. Normal human reproduction is
a common example of sexual reproduction. In general, more–complex or-
ganisms reproduce sexually while simpler, usually unicellular, organisms
reproduce asexually.

2. Mutation, which is the biological change to the genetic material (usu-
ally DNA or RNA). Mutations can be caused by copying errors in the
genetic material during cell division and by exposure to radiation, chem-
icals (mutagens), or viruses, or can occur deliberately under cellular con-
trol during processes such as meiosis or hypermutation. In multicellular
organisms, mutations can be subdivided into germline mutations, which
can be passed on to descendants, and somatic mutations. The somatic
mutations cannot be transmitted to descendants in animals. Plants some-
times can transmit somatic mutations to their descendants asexually or
sexually (in case when flower buds develop in somatically mutated part of
plant). Mutations create variation in the gene pool, and then less favor-
able (or deleterious) mutations are removed from the gene pool by natural
selection, while more favorable (beneficial or advantageous) ones tend to
accumulate – this is evolution. Neutral mutations are defined as muta-
tions whose effects do not influence the fitness of either the species or the
individuals who make up the species. These can accumulate over time due
to genetic drift. The overwhelming majority of mutations have no signif-
icant effect, since DNA repair is able to revert most changes before they
become permanent mutations, and many organisms have mechanisms for
eliminating otherwise permanently mutated somatic cells.

3. Recombination, which is the biological process of genetic recombination
and meiosis, a genetic event that occurs during the formation of sperm
and egg cells. It is also referred to as crossover or phase change.

4. Natural selection, which is the biological process by which individual
organisms with favorable traits are more likely to survive and reproduce
than those with unfavorable traits. Natural selection works on the whole
individual, but only the heritable component of a trait will be passed on to
the offspring, with the result that favorable, heritable traits become more
common in the next generation. Given enough time, this passive process
can result in adaptations and speciation. Natural selection is one of the
cornerstones of modern biology. The term was introduced by Charles Dar-
win in his 1859 book ‘The Origin of Species’, by analogy with artificial
selection, by which a farmer selects his breeding stock.

5. Survival of the fittest, a biological phrase, which is a shorthand for a
concept relating to competition for survival or predominance. Originally
applied by Herbert Spencer156 in his ‘Principles of Biology’ of 1864,
Spencer drew parallels to his ideas of economics with Charles Darwin’s

156 Herbert Spencer (27 April 1820 – 8 December 1903) was an English philosopher
and prominent liberal political theorist. He is best known as the father of Social
Darwinism, a school of thought that applied the evolutionist theory of survival of
the fittest (a phrase coined by Spencer) to human societies. He also contributed to
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theories of evolution by what Darwin termed natural selection. The phrase
is a metaphor, not a scientific description; and it is not generally used
by biologists, who almost exclusively prefer to use the phrase ‘natural
selection’.

Each evolutionary algorithm uses some mechanisms inspired by biological
evolution: reproduction, mutation, recombination, natural selection and sur-
vival of the fittest . Candidate solutions to the optimization problem play the
role of individuals in a population, and the cost function determines the en-
vironment within which the solutions ‘live’. Evolution of the population then
takes place after the repeated application of the above operators. The so–called
artificial evolution (AE) describes a process involving individual evolutionary
algorithms; EAs are individual components that participate in an AE.

Evolutionary algorithms perform consistently well approximating solutions
to all types of problems because they do not make any assumption about
the underlying fitness landscape, evidenced by success in fields as diverse as
engineering, art, biology, economics, genetics, operations research, robotics,
social sciences, physics, and chemistry. However, consider the no–free–lunch
theorem.

Apart from their use as mathematical optimizers, EAs have also been
used as an experimental framework within which to validate theories about
biological evolution and natural selection, particularly through work in the
field of artificial life. Techniques from evolutionary algorithms applied to the
modelling of biological evolution are generally limited to explorations of mi-
croevolutionary processes, however some computer simulations, such as Tierra
and Avida, attempt to model macroevolutionary dynamics.

In general, an evolutionary algorithm is based on three main statements:

1. It is a process that works at the chromosomic level. Each individual is
codified as a set of chromosomes.

2. The process follows the Darwinian theory of evolution, say, the survival
and reproduction of the fittest in a changing environment.

3. The evolutionary process takes place at the reproduction stage. It is in
this stage when mutation and crossover occurs. As a result, the progeny
chromosomes can differ from their parents ones.

Starting from a guess initial population, an evolutionary algorithm basi-
cally generates consecutive generations (offprints). These are formed by a set
of chromosomes, or character (genes) chains, which represent possible solu-
tions to the problem under consideration. At each algorithm step, a fitness
function is applied to the whole set of chromosomes of the corresponding gen-
eration in order to check the goodness of the codified solution. Then, according

a wide range of subjects, including ethics, metaphysics, religion, politics, rhetoric,
biology and psychology. Spencer is today widely criticized as a perfect example
of scientism, while he had many followers and admirers in his time.
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to their fitting capacity, couples of chromosomes, to which the crossover op-
erator will be applied, are chosen. Also, at each step, a mutation operator is
applied to a number of randomly chosen chromosomes.

The two most commonly used methods to randomly select the chromo-
somes are:

1. The roulette wheel algorithm. It consists in building a roulette, so that to
each chromosome corresponds a circular sector proportional to its fitness.

2. The tournament method . After shuffling the population, their chromo-
somes are made to compete among them in groups of a given size (gener-
ally in pairs). The winners will be those chromosomes with highest fitness.
If we consider a binary tournament, say the competition is between pairs,
the population must be shuffled twice. This technique guarantees copies
of the best individual among the parents of the next generation.

After this selection, we proceed with the sexual reproduction or crossing
of the chosen individuals. In this stage, the survivors exchange chromosomic
material and the resulting chromosomes will codify the individuals of the next
generation. The forms of sexual reproduction most commonly used are:

(i) With one crossing point. This point is randomly chosen on the chain
length, and all the chain portion between the crossing point and the chain
end is exchanged.

(ii) With two crossing points. The portion to be exchanged is in between
two randomly chosen points.

For the algorithm implementation, the crossover normally has an assigned
percentage that determines the frequency of its occurrence. This means that
not all of the chromosomes will exchange material but some of them will pass
intact to the next generation. As a matter of fact, there is a technique, named
elitism, in which the fittest individual along several generations does not cross
with any of the other ones and keeps intact until an individual fitter than itself
appears.

Besides the selection and crossover, there is another operation, mutation,
that produces a change in one of the characters or genes of a randomly chosen
chromosome. This operation allows to introduce new chromosomic material
into the population. As for the crossover, the mutation is handled as a percent-
age that determines its occurrence frequency. This percentage is, generally, not
greater than 5%, quite below the crossover percentage.

Once the selected chromosomes have been crossed and muted, we need
some substitution method. Namely, we must choose, among those individu-
als, which ones will be substituted for the new progeny. Two main substitution
ways are usually considered. In one of them, all modified parents are substi-
tuted for the generated new individuals. In this way an individual does never
coexist with its parents. In the other one, only the worse fitted individuals
of the whole population are substituted, thus allowing the coexistence among
parents and progeny.
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Since the answer to our problem is almost always unknown, we must
establish some criterion to stop the algorithm. We can mention two such
criteria [SRV04]:

(i) the algorithm is run along a maximum number of generations; and
(ii) the algorithm is ended when the population stabilization has been

reached, i.e., when all, or most of, the individuals have the same fitness.
A limitation of EAs is their lack of a clear genotype–phenotype distinction

[Bac96]. In nature, the fertilized egg cell undergoes a complex process known
as embryogenesis to become a mature phenotype. This indirect encoding is
believed to make the genetic search more robust (i.e., reduce the probability
of fatal mutations), and also may improve the evolvability of the organism.
Recent work in the field of artificial embryogeny, or artificial developmental
systems, seeks to address these concerns.

Evolutionary algorithms usually comprise: genetic algorithms, genetic pro-
gramming, evolutionary programming, evolution strategy and learning classi-
fier systems.

Genetic Algorithms

The genetic algorithm (GA) is a search technique pioneered by John Hol-
land157 [Hol92] and used in computing to find true or approximate solutions
to optimization and search problems (see [Gol89, Mit96, Vos99, Mic99]). GAs
find application in computer science, engineering, economics, physics, mathe-
matics and other fields. GAs are categorized as global search heuristics. GAs
are implemented as a computer simulation in which a population of abstract
representations (called chromosomes or the genotype) of candidate solutions
(called individuals, creatures, or phenotypes) to an optimization problem
evolves toward better solutions. Traditionally, solutions are represented in
binary as strings of 0s and 1s, but other encodings are also possible. The
evolution usually starts from a population of randomly generated individuals
and happens in generations. In each generation, the fitness of every individual
in the population is evaluated, multiple individuals are stochastically selected
from the current population (based on their fitness), and modified (mutated
or recombined) to form a new population. The new population is then used
157 John Henry Holland (February 2, 1929) is a pioneer in complex system and

nonlinear science. He is known as the father of genetic algorithms. Holland is
Professor of Psychology and Professor of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor. He is also a member of The
Center for the Study of Complex Systems (CSCS) at the University of Michigan,
and a member of Board of Trustees and Science Board of the Santa Fe Institute.
Holland is the author of a number of books about complex adaptive systems
(CAS), including Hidden Order: How Adaptation Builds Complexity (1995),
Emergence: From Chaos to Order (1998) and his ground–breaking book on ge-
netic algorithms, ‘Adaptation in Natural and Artificial Systems’ (1975,1992).
Holland also frequently lectures around the world on his own research, and on
current research and open questions in CAS studies (see [Hol95, Hol95]).
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in the next iteration of the algorithm. A typical GA requires two things to be
defined: (i) a genetic representation of the solution domain, and (ii) a fitness
function to evaluate the solution domain.

A standard representation of the solution is as an array of bits. Arrays
of other types and structures can be used in essentially the same way. The
main property that makes these genetic representations convenient is that
their parts are easily aligned due to their fixed size, that facilitates sim-
ple crossover operation. Variable length representations were also used, but
crossover implementation is more complex in this case. The fitness function158

is defined over the genetic representation and measures the quality of the
represented solution. The fitness function is always problem dependent. For
instance, in the knapsack problem, we want to maximize the total value of
objects that we can put in a knapsack of some fixed capacity. A represen-
tation of a solution might be an array of bits, where each bit represents a
different object, and the value of the bit (0 or 1) represents whether or not
the object is in the knapsack. Not every such representation is valid, as the
size of objects may exceed the capacity of the knapsack. The fitness of the
solution is the sum of values of all objects in the knapsack if the representa-
tion is valid, or 0 otherwise. In some problems, it is hard or even impossible
to define the fitness expression; in these cases, interactive genetic algorithms
are used. Once we have the genetic representation and the fitness function
defined, GA proceeds to initialize a population of solutions randomly, then
improve it through repetitive application of mutation, crossover, and selec-
tion operators. Another way of looking at fitness functions is in terms of a
fitness landscape,159 which shows the fitness for each possible chromosome
(see [Mit96]).

158 A fitness function is a particular type of objective function that quantifies the
optimality of a solution (that is, a chromosome) in a genetic algorithm so that
particular chromosome may be ranked against all the other chromosomes. Opti-
mal chromosomes, or at least chromosomes which are more optimal, are allowed
to breed and mix their datasets by any of several techniques, producing a new
generation that will (hopefully) be even better. An ideal fitness function corre-
lates closely with the algorithm’s goal, and yet may be computed quickly. Speed
of execution is very important, as a typical genetic algorithm must be iterated
many, many times in order to produce a useable result for a non–trivial problem.
Definition of the fitness function is not straightforward in many cases and often
is performed iteratively if the fittest solutions produced by GA are not what
is desired. In some cases, it is very hard or impossible to come up even with a
guess of what fitness function definition might be. Interactive genetic algorithms
address this difficulty by out–sourcing evaluation to external agents (normally
humans).

159 Fitness landscapes or adaptive landscapes are used to visualize the relationship
between genotypes (or phenotypes) and reproductive success. It is assumed that
every genotype has a well defined replication rate (often referred to as fitness).
This fitness is the ‘height’ of the landscape. Genotypes which are very similar
are said to be ‘close’ to each other, while those that are very different are ‘far’
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It is well–known in biology that any organism can be represented by its
phenotype, which virtually determines what exactly the object is in the real
world, and its genotype containing all the information about the object at the
chromosome set level. Each gene, that is the genotype’s information element,
is reflected in the phenotype. Thus, to be able to solve problems we have
to represent every attribute of an object in a form suitable for use in genetic
algorithms. All further operation of genetic algorithm is done on the genotype
level, making the information about the object’s internal structure redundant.
This is why this algorithm is widely used to solve all sorts of problems.

In the most frequently used variant of genetic algorithm, an object’s geno-
type is represented by bit strings. Each attribute of an object in the phenotype
has a single corresponding gene in the genotype. The gene is represented by a
bit string, usually of a fixed length, which represents the value of the attribute.

The simplest variant can be used to encode such attributes that is the bit
value of the attribute. Then it will be quite easy to use a gene of certain length,
sufficient to represent all possible values of such an attribute. Unfortunately
this encoding method is not perfect. Its main disadvantage is that neighboring
numbers differ in several bits’ values. Thus, for example, such numbers as 7
and 8 in the bit representation have four different bits, which complicates the
gene algorithm functioning and increases time necessary for its convergence.
To avoid this problem another encoding method should be used, in which
neighboring numbers have less differences, ideally differing in only one bit.

from each other. The two concepts of height and distance are sufficient to form
the concept of a ‘landscape’. The set of all possible genotypes, their degree
of similarity, and their related fitness values is then called a fitness landscape.
In evolutionary optimization problems, fitness landscapes are evaluations of a
fitness function for all candidate solutions.

Apart from the field of evolutionary biology, the concept of a fitness land-
scape has also gained importance in evolutionary optimization methods, in which
one tries to solve real–world engineering or logistics problems by imitating the
dynamics of biological evolution. For example, a delivery truck with a number of
destination addresses can take a large variety of different routes, but only very
few will result in a short driving time. In order to use evolutionary optimization,
one has to define for every possible solution s to the problem of interest (i.e.,
every possible route in the case of the delivery truck) how ‘good’ it is. This is
done by introducing a scalar–valued function f(s) (scalar valued means that f(s)
is a simple number, such as 0.3, while s can be a more complicated object, for
example a list of destination addresses in the case of the delivery truck), which
is called the fitness function or fitness landscape. A high f(s) implies that s is
a good solution. In the case of the delivery truck, f(s) could be the number of
deliveries per hour on route s. The best, or at least a very good, solution is then
found in the following way. Initially, a population of random solutions is created.
Then, the solutions are mutated and selected for those with higher fitness, until
a satisfying solution has been found.
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Binary coding Coding using the Gray code

Dec.code Bin.value Hex.value Dec.code Bin.value Hex.value

0 0000 0h 0 0000 0h

1 0001 1h 1 0001 1h

2 0010 2h 3 0011 3h

3 0011 3h 2 0010 2h

4 0100 4h 6 0110 6h

5 0101 5h 7 0111 7h

6 0110 6h 5 0101 5h

7 0111 7h 4 0100 4h

8 1000 8h 12 1100 Ch

9 1001 9h 13 1101 Dh

10 1010 Ah 15 1111 Fh

11 1011 Bh 14 1110 Eh

12 1100 Ch 10 1010 Ah

13 1101 Dh 11 1011 Bh

14 1110 Eh 9 1001 9h

15 1111 Fh 8 1000 8h

Table 1.2. Correspondence between decimal codes and the Gray codes.

One of such codes is the Gray code, which is appropriate to be used with
genetic algorithms. The table below shows the Gray code values:
Accordingly, when encoding an integer–valued attribute, we break it into
quadruples and then convert each quadruple according to Gray code. Usu-
ally, there is no need to convert attribute values into gene values in practical
use of GAs. In practice, inverse problem occurs, when it is necessary to find
the attribute value from the corresponding gene value. Thus, the problem of
decoding gene values, which have corresponding integer–valued attributes, is
trivial. The simplest coding method, which first comes to mind, is to use bit
representation. However, this variant is equally imperfect as in the case of
integers. For this reason, the following sequence is used in practice:

1. All the interval of the attribute’s allowed values is split into segments with
adequate accuracy.

2. The value of the gene is accepted as an integer defining the interval number
(using the Gray code).

3. The midpoint number of the interval is taken as the parameter value.

Let us consider a specific example of the sequence of operations described
above: Assume that the attribute values are located in the interval [0, 1].
During the encoding the segment is split into 256 intervals. Thus we will
need 8 bits to code their numbers. Let us suppose the number of the gene
is 00100101bG (the capital letter ‘G’ stands for ‘Gray code’). For a start we
shall find the corresponding interval number using the following Gray code:
25hG→ 36h→ 54d. Now let us see what interval corresponds to it . . . Simple
calculation gives us the interval: [ 0.20703125 , 0.2109375 ].
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Then, the value of the parameter is (0.20703125 + 0.2109375)/2 =
0.208984375.

To encode nonnumeric data, we have to convert it into numbers. More
detailed description can be found on our web site in the articles dedicated to
the use of neural nets.

Thus, to find an object’s phenotype (i.e., values of the attributes describing
the object) we only have to know the values of the genes corresponding to these
attributes, i.e., the object’s genotype. The aggregate of the genes describing
the object’s genotype represents the chromosome. In some implementations
it is called an individual. Thus, when implementing genetic algorithm, a chro-
mosome is a bit string of a fixed length. Each segment of a string has its
corresponding gene. Genes inside a chromosome can have equal or different
lengths. Genes of equal length are used most often. Let us consider an exam-
ple of a chromosome and interpretation of its value. Let us assume that the
object has five attributes, each encoded by a gene 4 elements long. Then, the
length of the chromosome is 5 · 4 = 20 bits:

0010 1010 1001 0100 1101

Now we can define the values of the attributes:

Attribute Gene value Binary value of
the attribute

Decimal value
of the attribute

Attribute 1 0010 0011 3

Attribute 2 1010 1100 12

Attribute 3 1001 1110 14

Attribute 4 0100 0111 7

Attribute 5 1101 1001 9

As it is known in the evolution theory, the way the parents’ attributes
are inherited by their offsprings is of high importance. In genetic algorithms
an operator called crossing (also known as crossover or crossing over) is in
charge of passing the attributes from parents to their offsprings. It works in
the following way:

1. Two individuals are selected from the population to become parents;
2. A break point is determined (usually at random); and
3. The offspring is determined as concatenation of the first and the second

parents’ parts.

Let us see how this operator works:
Now, if we put the break after the third bit of the chromosome, then we have:
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Chromosome 1: 0000000000

Chromosome 2: 1111111111

Chromosome 1: 0000000000 >> 000 1111111 Resulting chromosome 1

Chromosome 2: 1111111111 >> 111 0000000 Resulting chromosome 2

After that, one of the resulting chromosomes is taken as an offspring with
the 0.5 probability.

The next genetic operator is intended for maintaining the diversity of
individuals in the population. It is called mutation. When it is used on a
chromosome, each bit in it gets inverted with a certain probability.

Besides, one more operator is used, called inversion. Applying it makes a
chromosome break in two parts, which then trade places. This can be shown
schematically as follows:

000 1111111 >> 1111111 000

Theoretically, these two genetic operators are enough to make the genetic
algorithm work. However, in practice some additional operators are used, as
well as modifications of these two operators. For instance, in addition to the
single-point crossover (described above) there can be a multipoint one, when
several break points (usually two) are formed. Besides, in some implementa-
tions of the algorithm the mutation operator performs the inversion of only
one randomly selected bit of a chromosome.

Having found out how to interpret the values of the genes, we proceed to
describing the genetic algorithm operation. Let us consider the flow chart of
genetic algorithm operation in its classic variant.

1. Initialize the start time t = 0. At random fashion form the initial popula-
tion consisting of k individuals: B0 = {A1, A2, . . . , Ak).

2. Calculate the fitness of every individual: FAi = fit(Ai), (i = 1 . . . k), and
of the population as a whole: Ft = fit(Bt). The value of this function
determines how suitable for solving the problem the individual described
by this chromosome is.

3. Select the individual Ac from the population: Ac = Get(Bt).
4. With a certain crossover probability Pc select the second individual from

the population: Ac1 = Get(Bt), and apply the crossover operator: Ac =
Crossing(Ac, Ac1).

5. With a certain mutation probability Pm apply the mutation operator:
Ac = mutation(Ac).

6. With a certain inversion probability Pi apply the inversion operator: Ac =
inversion(Ac).

7. Place the resulting chromosome in the new population: insert(Bt+1, Ac).
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8. Repeat steps 3 to 7k times.
9. Increase the current epoch number t = t + 1.

10. If the stop condition is met, terminate the loop, else go to step 2.

Now let us examine in detail the individual steps of the algorithm. The
steps 3 and 4 play the most important role in the successful operation of the
algorithm when parent chromosomes are selected. Various alternatives are
possible. The most frequently used selection method is called roulette. When
using it, the probability of a chromosome selection is determined by its fitness,
i.e.,

PGet(Ai) ∼ Fit(Ai)/F it(Bt).

This method increases the probability of the attributes propagation that be-
long to the most adjusted individuals. Another frequently used method is the
tournament selection. It means that several individuals (usually two) are se-
lected in the population at random. The one wins which is more adjusted.
Besides, in some implementations of the algorithm the so–called elitism strat-
egy is used, which means that the best–adjusted individuals are guaranteed to
enter the new population. Using the elitism method is usually helpful to ac-
celerate the genetic algorithm convergence. The disadvantage of this strategy
is increased probability of the algorithm getting in the local minimum.

Another important point is the algorithm stop criteria determination. Usu-
ally the highest limit of the algorithm functioning epochs is taken as such, or
the algorithm is stopped upon stabilization of its convergence, normally mea-
sured by means of comparing the population’s fitness on various epochs.

Genetic Programming

The genetic programming (GP) is an automated methodology inspired by bio-
logical evolution to find computer programs that best perform a user–defined
task. It is therefore a particular machine learning technique that uses an evo-
lutionary algorithm to optimize a population of computer programs according
to a fitness landscape determined by a program’s ability to perform a given
computational task. The first experiments with GP were described in the book
‘Genetic Programming’ by John Koza (see [Koz92, Koz95, KBA99, KKS03].
Computer programs in GP can be written in a variety of programming
languages. In the early (and traditional) implementations of GP, program
instructions and data values were organized in tree–structures, thus favoring
the use of languages that naturally embody such a structure (an important
example pioneered by Koza is Lisp). Other forms of GP have been sug-
gested and successfully implemented, such as the simpler linear representation
which suits the more traditional imperative languages. The commercial GP
software Discipulus, for example, uses linear genetic programming combined
with machine code language to achieve better performance. Differently, the
MicroGP uses an internal representation similar to linear genetic programming
to generate programs that fully exploit the syntax of a given assembly lan-
guage. GP is very computationally intensive and so in the 1990s it was mainly
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used to solve relatively simple problems. However, more recently, thanks to
various improvements in GP technology and to the well known exponential
growth in CPU power, GP has started delivering a number of outstanding re-
sults. At the time of writing, nearly 40 human–competitive results have been
gathered, in areas such as quantum computing, electronic design, game play-
ing, sorting, searching and many more. These results include the replication
or infringement of several post–year–2000 inventions, and the production of
two patentable new inventions. Developing a theory for GP has been very
difficult and so in the 1990s genetic programming was considered a sort of
pariah amongst the various techniques of search. However, after a series of
breakthroughs in the early 2000s, the theory of GP has had a formidable and
rapid development. So much so that it has been possible to build exact proba-
bilistic models of GP (schema theories and Markov chain models) and to show
that GP is more general than, and in fact includes, GAs. On the other hand,
techniques have now been applied to evolvable hardware as well as computer
programs. Finally, the so–called meta–GP is the technique of evolving a GP–
system using GP itself; critics have argued that it is theoretically impossible,
but more research is needed.

Evolutionary Programming

The evolutionary programming (EP) was first used by Lawrence Fogel
[FOW66] in 1960 in order to use simulated evolution as a learning process
aiming to generate artificial intelligence. Fogel used finite state machines as
predictors and evolved them. Currently evolutionary programming is a wide
evolutionary computing dialect with no fixed structure, (representation), in
contrast with the other three dialects. It is becoming harder to distinguish
from evolutionary strategies. Its main variation operator is mutation; mem-
bers of the population are viewed as part of a specific species rather than
members of the same species therefore each parent generates an offspring,
using a (μ + μ) survivor selection.

Selection is the stage of a EP or GA in which individual genomes are chosen
from a population for later breeding (recombination or crossover). There are
several generic selection algorithms. One of the common ones is the so–called
roulette wheel selection, which can be implemented as follows:

1. The fitness function is evaluated for each individual, providing fitness
values, which are then normalized. Normalization means multiplying the
fitness value of each individual by a fixed number, so that the sum of all
fitness values equals 1.

2. The population is sorted by descending fitness values.
3. Accumulated normalized fitness values are computed (the accumulated

fitness value of an individual is the sum of its own fitness value plus the
fitness values of all the previous individuals). The accumulated fitness of
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the last individual should of course be 1 (otherwise something went wrong
in the normalization step).

4. A random number R between 0 and 1 is chosen.
5. The selected individual is the first one whose accumulated normalized

value is greater than R. There are other selection algorithms that do not
consider all individuals for selection, but only those with a fitness value
that is higher than a given (arbitrary) constant. Other algorithms select
from a restricted pool where only a certain percentage of the individuals
are allowed, based on fitness value.

Evolution Strategy

The evolution strategy (ES) is an optimization technique based on ideas of
adaptation and evolution [Bey01, BS02]. ESs primarily use real–vector cod-
ing, and mutation, recombination, and environmental selection as its search
operators. As common with EAs, the operators are applied in order:

1. mating selection,
2. recombination,
3. mutation,
4. fitness function evaluation, and
5. environmental selection.

Performing the loop one time is called a generation, and this is continued
until a termination criterion is met. The first ES variants were not population
based, but memorized only one search point (the parent) and one ((1+1)−ES)
or more offspring ((1 + λ)−ES) at a time. Contemporary versions usually
employ a population ((μ + λ)−ES) and are thus believed to be less prone
to get stuck in local optima. Mutation is performed by adding a gaussian
distributed random value simultaneously to each vector element. The step
size or mutation strength (ie. the standard deviation of this distribution) is
usually learned during the optimization. This process is called self–adaptation,
and it should keep the evolutionary process within the evolution window .

It was observed in ES that during an evolutionary search the progress to-
ward the fitness/objective function’s optimum, generally, happens in a narrow
band of mutation step size σ. That progress is called evolution window. So
far, there is not an optimum tunning method for the mutation step size σ
to keep the search inside the evolution window and how to fast achieve this
window, although there are some investigations about that subject.

Learning Classifier Systems

The learning classifier systems (LCS) are machine learning systems with close
links to reinforcement learning and genetic algorithms. First described by
John Holland (see [Hol92, Hol95, Hol95]), an LCS consists of a population of
binary rules on which a genetic algorithm altered and selected the best rules.



1.2 Artificial and Computational Intelligence 251

Instead of a using fitness function, rule utility is decided by a reinforcement
learning technique. Learning classifier systems can be split into two types
depending upon where the genetic algorithm acts. A Pittsburgh–type LCS
has a population of separate rule sets, where the genetic algorithm recombines
and reproduces the best of these rule sets. In a Michigan–style LCS there is
only a single population and the algorithm’s action focuses on selecting the
best classifiers within that ruleset. Michigan–style LCSs have two main types
of reinforcement learning, fitness sharing (ZCS) and accuracy–based (XCS).
Initially the classifiers or rules were binary, but recent research has focused on
improving this representation. This has been achieved by using populations
of neural networks and other methods. Learning classifier systems are not
well–defined mathematically and doing so remains an area of active research.
Despite this, they have been successfully applied in many problem domains.

Swarm Intelligence

The swarm intelligence (SI) is based around the study of collective behavior
in decentralized, self–organized systems (see, e.g., [Eng06]). The expression
‘swarm intelligence’ was introduced by Beni & Wang in 1989, in the context
of cellular automata160. SI–systems are typically made up of a population of
simple agents interacting locally with one another and with their environment.
Although there is normally no centralized control structure dictating how
individual agents should behave, local interactions between such agents often
lead to the emergence of global behavior. Examples of systems like this can be
found in nature, including ant colonies, bird flocking, animal herding, bacteria
molding and fish schooling. Application of swarm principles to large numbers
of robots is called as swarm robotics. SI–systems comprise:

1. The ant colony optimization (ACO), which is a metaheuristic optimiza-
tion algorithm that can be used to find approximate solutions to difficult
combinatorial optimization problems. In ACO artificial ants build solu-
tions by moving on the problem graph and they, mimicking real ants,
deposit artificial pheromone on the graph in such a way that future arti-
ficial ants can build better solutions. ACO has been successfully applied
to an impressive number of optimization problems.

160 Recall that a cellular automaton (plural: cellular automata, CA) is a discrete
dynamical system invented by Stanislaw Ulam and John von Neumann. CA are
studied in computability theory, mathematics, and theoretical biology. It consists
of an infinite, regular grid of cells, each in one of a finite number of states. The
grid can be in any finite number of dimensions. Time is also discrete, and the
state of a cell at time t is a function of the states of a finite number of cells
(called its neighborhood) at time t − 1. These neighbors are a selection of cells
relative to the specified cell, and do not change. Though the cell itself may be
in its neighborhood, it is not usually considered a neighbor. Every cell has the
same rule for updating, based on the values in this neighbourhood. Each time
the rules are applied to the whole grid a new generation is created. See below
for furhter details.



252 1 Introduction: Human and Computational Mind

2. The particle swarm optimization (PSO), which is a global optimization
algorithm for dealing with problems in which a best solution can be repre-
sented as a point or surface in an nD space. Hypotheses are plotted in this
space and seeded with an initial velocity, as well as a communication chan-
nel between the particles. Particles then move through the solution space,
and are evaluated according to some fitness criterion after each timestep.
Over time, particles are accelerated towards those particles within their
communication grouping which have better fitness values. The main ad-
vantage of such an approach over other global minimization strategies
such as simulated annealing is that the large number of members that
make up the particle swarm make the technique impressively resilient to
the problem of local minima.

3. The stochastic diffusion search (SDS), which is an agent based proba-
bilistic global search and optimization technique best suited to problems
where the objective function can be decomposed into multiple independent
partial–functions. Each agent maintains a hypothesis which is iteratively
tested by evaluating a randomly selected partial objective function para-
meterised by the agent’s current hypothesis. In the standard version of
SDS such partial function evaluations are binary resulting in each agent
becoming active or inactive. Information on hypotheses is diffused across
the population via inter–agent communication. Unlike the stigmergetic
communication used in ACO, in SDS agents communicate hypotheses via
a 1 − 1 communication strategy analogous to the tandem running pro-
cedure observed in some species of ant. A positive feedback mechanism
ensures that, over time, a population of agents stabilise around the global–
best solution. SDS is both an efficient and robust search and optimisation
algorithm, which has been extensively mathematically described.

In a lesser extent, evolutionary computation also involves:

1. The self–organization,161 comprising:
a) The self–organizing maps (SOMs, or Kohonen162 maps), which are

a subtype of ANNs (see above), trained using unsupervised learning

161 Recall that self–organization is a process in which the internal organization of a
system, normally an open system, increases in complexity without being guided
or managed by an outside source. Self–organizing systems usually display emer-
gent properties. Self-organization usually relies on four basic ingredients: (i) posi-
tive feedback, (ii) negative feedback, (iii) balance of exploitation and exploration,
and (iv) multiple interactions.

162 Teuvo Kohonen, Dr. Ing (born July 11, 1934), is a Finnish academican and
prominent researcher. He has made many contributions to the field of neural
networks, including the Learning Vector Quantization algorithm, fundamental
theories of distributed associative memory and optimal associative mappings,
the learning subspace method and novel algorithms for symbol processing like
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to produce low–dimensional representation of the training samples
while preserving the topological properties of the input space; this
makes SOMs especially good for visualizing high–dimensional data
[Koh82, Koh88, Koh91]. SOM is a single layer feedforward network
where the output neurons are arranged in low dimensional (usually
2D or 3D) grid. Each input is connected to all output neurons. At-
tached to every neuron there is a weight vector with the same di-
mensionality as the input vectors. The number of input dimensions is
usually a lot higher than the output grid dimension. SOMs are mainly
used for dimensionality reduction rather than expansion. The goal of
SOM training is to associate different parts of the SOM lattice to re-
spond similarly to certain input patterns. This is partly motivated by
how visual, auditory or other sensory information is handled in sepa-
rate parts of the cerebral cortex in the human brain. The weights of
the neurons are initialized either to small random values or sampled
evenly from the subspace spanned by the two largest principal com-
ponent eigenvectors. The latter alternative will speed up the training
significantly because the initial weights already give good approxima-
tion of SOM weights. The training utilizes competitive learning. Like
most ANNs, SOM has two modes of operation:
i. During the training process a map is built, the neural network

organises itself, using a competitive process. The network must be
given a large number of input vectors, as much as possible repre-
senting the kind of vectors that are expected during the second
phase (if any). Otherwise, all input vectors must be administered
several times.

ii. During the mapping process a new input vector may quickly be
given a location on the map, it is automatically classified or cate-
gorised. There will be one single winning neuron: the neuron whose
weight vector lies closest to the input vector (this can be simply
determined by calculating the Euclidean distance between input
vector and weight vector).

b) The growing neural gas (GNG), which is a self–organized neural net-
work proposed by B. Fritzke [Fri94]. It is based on the previously pro-
posed neural gas, a biologically inspired adaptive algorithm, coined
by Martinetz and Schulten in 1991, which sorts for the input signal
according to how far away they are; a certain number of them are
selected by distance in order, then the number of adaption units and
strength are decreased according to a fixed schedule. On the other
hand, GNG can add and delete nodes during algorithm execution.

redundant hash addressing. He has published several books and over 200 peer–
reviewed papers. His most famous contribution is the self–organizing map (SOM)
(also known as the Kohonen map, although Kohonen himself prefers SOM).
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The growth mechanism is based on growing cell structures and com-
petitive Hebbian learning.

c) The competitive learning (see, e.g., [Gro87]). In this area a large num-
ber of models exist which have a common goal to distribute a certain
number of vectors in a possibly high–dimensional space. The distrib-
ution of these vectors reflects the probability distribution of the input
signals which in general is not given explicitly but only through sam-
ple vectors. Two closely related concepts from computational geome-
try are the Voronoi tessellation and the Delaunay triangulation (see,
e.g., [PS90]).

2. The differential evolution (DE), which grew out of K. Price’s attempts
to solve the Chebyshev polynomial fitting problem that had been posed to
him by R. Storn. A breakthrough happened when Price came up with the
idea of using vector differences for perturbing the vector population. Since
this seminal idea a lively discussion between Price and Storn and endless
ruminations and computer simulations on both parts yielded many sub-
stantial improvements which make DE the versatile and robust tool it is
today. DE is a very simple population based, stochastic function mini-
mizer which is very powerful at the same time. DE managed to finish 3rd
at the First International Contest on Evolutionary Computation (Nagoya,
1996). DE turned out to be the best genetic type of algorithm for solving
the real–valued test function suite of the 1st ICEO (the first two places
were given to non–GA type algorithms which are not universally applica-
ble but solved the test–problems faster than DE). The crucial idea behind
DE is a scheme for generating trial parameter vectors. Basically, DE adds
the weighted difference between two population vectors to a third vector.
This way no separate probability distribution has to be used which makes
the scheme completely self–organizing (see, e.g., [Lam02]).

3. The artificial life (alife), which is the study of life through the use of
human–made analogs of living systems, evolving software that is more
alive than a virus (see, e.g., [Lev92]). Theoretically, later it will become
intelligent life. Computer scientist Christopher Langton coined the term
in the late 1980s when he held the first Int. Conference on the Synthe-
sis and Simulation of Living Systems (otherwise known as Artificial Life
I) at the Los Alamos National Laboratory in 1987. Researchers of al-
ife have focused on the ‘bottom–up’ nature of emergent behaviors. The
alife field is characterized by the extensive use of computer programs
and computer simulations which include evolutionary algorithms (EA),
genetic algorithms (GA), genetic programming (GP), swarm intelligence
(SI), ant colony optimization (ACO), artificial chemistries (AC), agent–
based models, and cellular automata (CA). Often those techniques are
seen as subfields of alife.The so–called strong alife position states that ‘life
is a process which can be abstracted away from any particular medium’.
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Notably, Tom Ray declared that his program ‘Tierra’163 was not simu-
lating life in a computer, but was synthesizing it. On the ther hand, the
weak alife position denies the possibility of generating a ‘living process’
outside of a carbon–based chemical solution. Its researchers try instead to
mimic life processes to understand the appearance of single phenomena.
The usual way is through an agent based model, which usually gives a
minimal possible solution. Closely related to alife is a digital organism,
which is a self–replicating computer program that mutates and evolves.
Digital organisms are used as a tool to study the dynamics of Darwinian
evolution, and to test or verify specific hypotheses or mathematical models
of evolution.

4. The artificial immune system (AIS), which is a type of optimisation
algorithm inspired by the principles and processes of the vertebrate
immune system (see [FPP86, Das99]). The algorithms typically exploit
the immune system’s characteristics of learning and memory to solve a
problem. They are closely related to GAs. Processes simulated in AlS in-
clude pattern recognition, hypermutation and clonal selection for B cells,

163 Tierra is a computer simulation developed by ecologist Thomas S. Ray in the
early 1990s in which computer programs compete for central processing unit
(CPU) time and access to main memory. The computer programs in Tierra are
evolvable and can mutate, self–replicate and recombine. Tierra is a frequently
cited example of an artificial life model; in the metaphor of the Tierra, the evolv-
able computer programs can be considered as digital organisms which compete
for energy (CPU time) and resources (main memory). The basic Tierra model
has been used to experimentally explore in silico the basic processes of evolu-
tionary and ecological dynamics. Processes such as the dynamics of punctuated
equilibrium, host–parasite co–evolution and density dependent natural selection
are amenable to investigation within the Tierra framework. A notable difference
to more conventional models of evolutionary computation, such as genetic algo-
rithms is that there is no explicit, or exogenous fitness function built into the
model. Often in such models there is the notion of a function being ‘optimized’; in
the case of Tierra, the fitness function is endogenous: there is simply survival and
death. According to Ray and others this may allow for more ‘open–ended’ evolu-
tion, in which the dynamics of the feedback between evolutionary and ecological
processes can itself change over time, although this promise has not been real-
ized, like most other open–ended digital evolution systems, it eventually comes
to a point where novelty ceases to be created, and the system at large begins
either looping or evolving statically; some descendant systems like Avida try to
avoid this pitfall. While the dynamics of Tierra are highly suggestive, the signif-
icance of the dynamics for real ecological and evolutionary behavior are still a
subject of debate within the scientific community. Tierra is an abstract model,
but any quantitative model is still subject to the same validation and verifica-
tion techniques applied to more traditional mathematical models, and as such,
has no special status. More detailed models in which more realistic dynamics
of biological systems and organisms are incorporated is now an active research
field.
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negative selection of T cells, affinity maturation and immune network
theory. In AIS, antibody and antigen representation is commonly imple-
mented by strings of attributes. Attributes may be binary, integer or
real–valued, although in principle any ordinal attribute could be used.
Matching is done on the grounds of Euclidean distance =

∑n
i=1(xi− yi)2,

Manhattan distance164 or Hamming distance.165 The so–called clonal se-
lection algorithms are commonly used for antibody hypermutation. This
allows the attribute string to be improved (as measured by a fitness func-
tion) using mutation alone.

5. The learnable evolution model (LEM), which is a novel, non–Darwinian
methodology for evolutionary computation that employs machine learning

164 The so–called taxicab geometry , considered by Hermann Minkowski in the 19th
century, is a form of geometry in which the usual metric of Euclidean geometry
is replaced by a new metric in which the distance between two points is the
sum of the (absolute) differences of their coordinates. More formally, we can
define the Manhattan distance, also known as the L1−distance, between two
points in an Euclidean space with fixed Cartesian coordinate system as the sum
of the lengths of the projections of the line segment between the points onto
the coordinate axes. Manhattan distance is also known as city block distance or
taxi-cab distance. It is named so because it is the shortest distance a car would
drive in a city laid out in square blocks, like Manhattan (discounting the facts
that in Manhattan there are one–way and oblique streets and that real streets
only exist at the edges of blocks, i.e., there is no 3.14th Avenue). Any route from
a corner to another one that is 3 blocks East and 6 blocks North, will cover at
least 9 blocks. All direct routes cover exactly 9. Taxicab geometry satisfies all of
Hilbert’s axioms except for the side–angle–side axiom, as one can generate two
triangles with two sides and the angle between the same and have them not be
congruent. A circle in taxicab geometry consists of those points that are a fixed
Manhattan distance from the center. These circles are squares whose sides make
a 45◦ angle with the coordinate axes.

In chess, the distance between squares on the chessboard for rooks is mea-
sured in Manhattan distance; kings and queens use Chebyshev distance, and
bishops use the Manhattan distance (between squares of the same color) on the
chessboard rotated 45 degrees, i.e., with its diagonals as coordinate axes. To
reach from one square to another, only kings require the number of moves equal
to the distance; rooks, queens and bishops require one or two moves (on an empty
board, and assuming that the move is possible at all in the bishop’s case).

165 The Hamming distance between two strings of equal length is the number of
positions for which the corresponding symbols are different. Put another way, it
measures the number of substitutions required to change one into the other, or
the number of errors that transformed one string into the other. For example: (i)
The Hamming distance between 1011101 and 1001001 is 2; (ii) The Hamming
distance between 2143896 and 2233796 is 3; (iii) The Hamming distance between
‘toned’ and ‘roses’ is 3. The Hamming weight of a string is its Hamming distance
from the zero string (string consisting of all zeros) of the same length. That is,
it is the number of elements in the string which are not zero: for a binary string
this is just the number of 1’s, so for instance the Hamming weight of 11101 is 4.
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to guide the generation of new individuals (candidate problem solutions)
[WM06]. Unlike standard, Darwinian–type evolutionary computation
methods that use random or semi–random operators for generating new
individuals (such as mutations and/or recombinations), LEM employs
hypothesis generation and instantiation operators. The hypothesis gener-
ation operator applies a machine learning program to induce descriptions
that distinguish between high–fitness and low–fitness individuals in each
consecutive population. Such descriptions delineate areas in the search
space that most likely contain the desirable solutions. Subsequently the
instantiation operator samples these areas to create new individuals.

Cellular Automata

It is common in nature to find systems whose overall behavior is extremely
complex, yet whose fundamental component parts are each very simple. The
complexity is generated by the cooperative effect of many simple identical
components. Much has been discovered about the nature of the components
in physical and biological systems; little is known about the mechanisms by
which these components act together to give the overall complexity observed.
According to Steve Wolfram [Wol02, Wol84], what is needed is a general math-
ematical theory to describe the nature and generation of complexity.

Cellular automata (CA) are examples of mathematical systems con-
structed from many identical components, each simple, but together capable
of complex behavior. From their analysis one may, on the one hand, develop
specific models for particular systems, and, on the other hand, hope to
abstract general principles applicable to a wide variety of complex systems.

1D Cellular Automata

Recall that a 1D CA consists of a line of sites, with each site carrying a value
0 or 1 (or in general 0, . . . , k − 1). The value αi of the site at each position i
is updated in discrete time steps according to an identical deterministic rule
depending on a neighborhood of sites around it [Wol02, Wol84]:

αt+1
i = ϕ[αt

i−r, α
t
i−r+1, . . . , α

t
i+r]. (1.30)

Even with k = 2 and r = 1 or 2, the overall behavior of CA constructed in
this simple way can be extremely complex.

Consider first the patterns generated by CA evolving from simple ‘seeds’
consisting of a few non–zero sites. Some local rules ϕ give rise to simple
behavior; others produce complicated patterns. An extensive empirical study
suggests that the patterns take on four qualitative forms (see Figure 1.44):

1. Disappears with time;
2. Evolves to a fixed finite size;
3. Grows indefinitely at a fixed speed; and
4. Grows and contracts irregularly.
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Fig. 1.44. Classes of patterns generated by the evolution of CA from simple ‘seeds’.
Successive rows correspond to successive time steps in the CA evolution. Each site is
updated at each time step according to equation (1.30) by CA rules that depend on
the values of a neighborhood of sites at the previous time step. Sites with values 0 and
1 are represented by white and black squares, respectively. Despite the simplicity of
their construction, patterns of some complexity are seen to be generated. The rules
shown exemplify the four classes of behavior found. In the third case, a self–similar
pattern is formed (adapted from [Wol02, Wol84]).

Patterns of type 3 are often found to be self–similar or scale invariant.
Parts of such patterns, when magnified, are indistinguishable from the whole.
The patterns are characterized by a fractal dimension, with the most common
value log23 � 1.59. Many of the self–similar patterns seen in natural systems
may in fact, be generated by CA evolution.

Different initial states with a particular CA rule yield patterns that differ
in detail, but are similar in form and statistical properties. Different CA rules
yield very different patterns. An empirical study, nevertheless, suggests that
four qualitative classes may be identified, yielding four characteristic limiting
forms:

1. Spatially homogeneous state;
2. Sequence of simple stable or periodic structures;
3. Chaotic aperiodic behavior; and
4. Complicated localized structures, some propagating.

All CA within each class, regardless of the details of their construction
and evolution rules, exhibit qualitatively similar behavior. Such universality
should make general results on these classes applicable to a wide variety of
systems modelled by CA.

CA Applications

Mathematical models of natural systems are usually based on differential equa-
tions which describe the smooth variation of one parameter as a function
of a few others. Cellular automata provide alternative and in some respects
complementary models, describing the discrete evolution of many (identical)
components. Models based on CA are typically most appropriate in highly
nonlinear regimes of physical systems, and in chemical and biological systems
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where discrete thresholds occur. Cellular automata are particularly suitable
as models when growth inhibition effects are important [Wol02, Wol84].

As one example, CA provide global models for the growth of dendritic crys-
tals (such as snowflakes). Starting from a simple seed, sites with values rep-
resenting the solid phase are aggregated according to a 2D rule that accounts
for the inhibition of growth near newly–aggregated sites, resulting in a fractal
pattern of growth. Nonlinear chemical reaction–diffusion systems give another
example: a simple CA rule with growth inhibition captures the essential fea-
tures of the usual partial differential equations, and reproduces the spatial
patterns seen. Turbulent fluids may also potentially be modelled as CA with
local interactions between discrete vortices on lattice sites [Wol02, Wol84].

If probabilistic noise is added to the time evolution rule (1.30), then CA
may be identified as generalized Ising–spin models. Phase transitions may
occur if retains some deterministic components, or in more than one dimen-
sion.

Cellular automata may serve as suitable models for a wide variety of
biological systems. In particular, they may suggest mechanisms for biolog-
ical pattern formation. For example, the patterns of pigmentation found on
many mollusc shells bear a striking resemblance to patterns generated by class
2 and 3 CA, and CA models for the growth of some pigmentation patterns
have been constructed [Wol02, Wol84].

Two Approaches to CA Mathematics

Rather than describing specific applications of CA, here we concentrate
on general mathematical features of their behavior. Two complementary
approaches provide characterizations of the four classes of behavior [Wol02,
Wol84].

In the first approach, CA are viewed as discrete dynamical systems (see,
e.g., [GH83]), or discrete idealizations of partial differential equations. The set
of possible (infinite) configurations of a CA forms a Cantor set . CA evolution
may be viewed as a continuous mapping on this Cantor set. Quantities such
as entropies, dimensions and Lyapunov exponents may then be considered
for CA.

In the second approach, CA are instead considered as information–
processing systems (see, e.g., [HU79]), or parallel–processing computers of
simple construction. Information represented by the initial configuration is
processed by the evolution of the CA. The results of this information process-
ing may then be characterized in terms of the types of formal languages
generated.166

166 Note that the mechanisms for information processing in natural system appear to
be much closer to those in CA than in conventional serial–processing computers:
CA may, therefore, provide efficient media for practical simulations of many
natural systems.
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CA Entropies and Dimensions

Most CA rules have the important feature of irreversibility: several differ-
ent configurations may evolve to a single configuration, and, with time, a
contracting subset of all possible configurations appears. Starting from all
possible initial configurations, the CA evolution may generate only special
‘organized’ configurations, and ‘self–organization’ may occur.

For class 1 CA, essentially all initial configurations evolve to a single final
configuration, analogous to a limit point in a continuous dynamical system.
Class 2 CA evolve to limit sets containing essentially only periodic configura-
tions, analogous to limit cycles. Class 3 CA yield chaotic aperiodic limit sets,
containing analogues of strange attractors [Wol02, Wol84].

Entropies and dimensions give a generalized measure of the density of the
configurations generated by CA evolution. The (set) dimension or limiting
(topological) entropy for a set of CA configurations is defined as (compare
with [GH83]):

d(x) = lim
X→∞

1
X

logk N(X), (1.31)

where N(X) gives the number of distinct sequences of X−site values that
appear. For the set of possible initial configurations, d(x) = 1. For a limit set
containing only a finite total number of configurations, d(x) = 0. For most
class 3 CA, d(x) decreases with time, giving, 0 < d(x) < 1, and suggesting
that a fractal subset of all possible configurations occurs.

A dimension or limiting entropy d(t) corresponding to the time series of
values of a single site may be defined in analogy with equation (1.31)167 d(t) =
0, for periodic sets of configurations.

Both d(x) and d(t) may be modified to account for the probabilities of
configurations by defining

d(x)
μ = − lim

X→∞
1
X

kμ∑
i=1

pi logk pi, (1.32)

and its d(t)−analogue, where pi are probabilities for possible length
X−sequences. These measure dimensions may be used to delineate the
large time behavior of the different classes of CA:168

1. d
(x)
μ = d

(t)
μ = 0;

2. d
(x)
μ > 0, d(t)

μ = 0;
3. d

(x)
μ > 0, d(t)

μ > 0.

167 The analogue of equation (1.31) for a sufficiently wide patch of sites yields a
topologically–invariant entropy for the CA mapping.

168 Dimensions are usually undefined for class 4 CA.
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CA Information Propagation

Cellular automata may also be characterized by the stability or predictability
of their behavior under small perturbations in initial configurations, usually
resulting from a change in a single initial site value (see Figure 1.45). Such
perturbations have characteristic effects on the four classes of CA:

1. No change in final state;
2. Changes only in a finite region;
3. Changes over an ever-increasing region; and
4. Irregular changes.

In class 1 and 2 CA, information associated with site values in the initial
state propagates only a finite distance; in class 3 CA, it propagates an infinite
distance at a fixed speed, while in class 4 CA, it propagates irregularly but
over an infinite range. The speed of information propagation is related to
the Lyapunov exponent for the CA evolution, and measures the degree of
sensitivity to initial conditions. It leads to different degrees of predictability
for the outcome of CA evolution [Wol02, Wol84]:

1. Entirely predictable, independent of initial state;
2. Local behavior predictable from local initial state;
3. Behavior depends on an ever–increasing initial region; and
4. Behavior effectively unpredictable.

Information propagation is particularly simple for the special class of
additive CA (whose local rule function ϕ is linear modulo k), in which pat-
terns generated from arbitrary initial states may be obtained by superposition
of patterns generated by evolution of simple initial states containing a single
non–zero site. A rather complete algebraic analysis of such CA may be given.
Most CA are not additive; however, with special initial configurations it is
often possible for them to behave just like additive rules. Thus, for example,
the evolution of an initial configuration consisting of a sequence of 00 and

Fig. 1.45. Evolution of small initial perturbations in CA, as shown by the difference
(modulo two) between patterns generated from two disordered initial states differing
in the value of a single site. The examples shown illustrate the four classes of behavior
found. Information on changes in the initial state almost always propagates only a
finite distance in the first two classes, but may propagate an arbitrary distance in
the third and fourth classes (adapted from [Wol02, Wol84]).
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01 diagrams under one rule may be identical to the evolution of the corre-
sponding ‘blocked’ configuration consisting of 0 and 1 under another rule.
In this way, one rule may simulate another under a blocking transformation
(analogous to a renormalization group transformation). Evolution from an
arbitrary initial state may be attracted to (or repelled from) the special set
of configurations for which such a simulation occurs. Often several phases
exist, corresponding to different blocking transformations: sometimes phase
boundaries move at constant speed, and one phase rapidly takes over; in
other cases, phase boundaries execute random walks, annihilating in pairs,
and leading to a slow increase in the average domain size. Many rules appear
to follow attractive simulation paths to additive rules, which correspond to
fixed points of blocking transformations, and thus exhibit self similarity. The
behavior of many rules at large times, and on large spatial scales, is therefore
determined by the behavior of additive rules.

CA Thermodynamics

Decreases with time in the spatial entropies and dimensions of equations
(1.31)–(1.32) signal irreversibility in CA evolution. Some CA rules are, how-
ever, reversible, so that each and every configuration has a unique predecessor
in the evolution, and the spatial entropy and dimension of equations (1.31)–
(1.32) remain constant with time.

Now, conventional thermodynamics gives a general description of systems
whose microscopic evolution is reversible; it may, therefore, be applied to
reversible CA. As usual, the ‘fine–grained’ entropy for sets (ensembles) of
configurations, computed as in (1.32) with perfect knowledge of each site
value, remains constant in time. The ‘coarse–grained’ entropy for configura-
tions is, nevertheless, almost always non–decreasing with time, as required by
the second law of thermodynamics. Coarse graining emulates the imprecision
of practical measurements, and may be implemented by applying almost any
contractive mapping to the configurations (a few iterations of an irreversible
CA rule suffice). For example, coarse–grained entropy might be computed
by applying (1.32) to every fifth site value. In an ensemble with low coarse–
grained entropy, the values of every fifth site would be highly constrained,
but arbitrary values for the intervening sites would be allowed. Then in the
evolution of a class 3 or 4 CA the disorder of the intervening site values
would ‘mix’ with the fifth–site values, and the coarse–grained entropy would
tend towards its maximum value. Signs of self–organization in such systems
must be sought in temporal correlations, often manifest in ‘fluctuations’ or
meta–stable ‘pockets’ of order.

While all fundamental physical laws appear to be reversible, macroscopic
systems often behave irreversibly, and are appropriately described by irre-
versible laws. Thus, for example, although the microscopic molecular dynam-
ics of fluids is reversible, the relevant macroscopic velocity field obeys the
irreversible Navier–Stokes equations. Conventional thermodynamics does not
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apply to such intrinsically irreversible systems; new general principles must
be found. Thus, for CA with irreversible evolution rules, coarse–grained en-
tropy typically increases for a short time, but then decreases to follow the fine
grained entropy. Measures of the structure generated by self–organization in
the large time limit are usually affected very little by coarse graining.

CA and Formal Language Theory

Quantities such as entropy and dimension, suggested by information theory,
give only rough characterizations of CA behavior. Computation theory sug-
gests more complete descriptions of self–organization in CA (and other
systems). Sets of CA configurations may be viewed as formal languages,
consisting of sequences of symbols (site values) forming words according to
definite grammatical rules.

The set of all possible initial configurations corresponds to a trivial formal
language. The set of configurations obtained after any finite number of time
steps are found to form a regular language. The words in a regular language
correspond to the possible paths through a finite graph representing a finite
state machine. It can be shown that a unique smallest finite graph repro-
duces any given regular language (see [HU79]). Examples of such graphs are
shown in Figure 1.46. These graphs give complete specifications for sets of CA
configurations (ignoring probabilities). The number of nodes in the smallest
graph corresponding to a particular set of configurations may be defined as
the ‘regular language complexity’ of the set. It specifies the size of the mini-
mal description of the set in terms of regular languages. Larger correspond to
more complicated sets.

The regular language complexity Ξ for sets generated by CA evolution
almost always seems to be nondecreasing with time. Increasing Ξ signals
increasing self–organization. Ξ may thus represent a fundamental property of
self–organizing systems, complementary to entropy. It may, in principle, be
extracted from experimental data [Wol02, Wol84].

Cellular automata that exhibit only class 1 and 2 behavior always appear
to yields sets that correspond to regular languages in the large time limit.
Class 3 and 4 behavior typically gives rise, however, to a rapid increase of
Ξ with time, presumably leading to limiting sets not described by regular
languages.

Formal languages are recognized or generated by idealized computers with
a ‘central processing unit’ containing a fixed finite number of internal states,
together with a ‘memory’. Four types of formal languages are conventionally
identified, corresponding to four types of computer:

1. Regular languages: no memory required.
2. Context–free languages: memory arranged as a last–in, first–out stack.
3. Context–sensitive languages: memory as large as input word required.
4. Unrestricted languages: arbitrarily large memory required (general Turing

machine).
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Fig. 1.46. Graphs representing the sets of configurations generated in the first
few time steps of evolution according to a typical class 3 CA rule (k = 2, r = 1,
rule number 126). Possible configurations correspond to possible paths through the
graphs, beginning at the encircled node. At t = 0, all possible configurations are
allowed. With time, a contracting subset of configurations are generated (e.g., after
one time step no configuration containing the sequence of site value 101 can appear)
At each time step, the complete set of possible configurations forms a regular formal
language: the graph gives a minimal complete specification of it. The number of
nodes in the graph gives a measure of the complexity Ξ of the set, viewed as a
regular language. As for other class 3 CA, the complexity of the sets Ξ grows rapidly
with time (modified and adapted from [Wol02, Wol84]).

Examples are known of CA whose limiting sets correspond to all four
types of language. Arguments can be given that the limit sets for class 3
CA typically form context–sensitive languages, while those for class 4 CA
correspond to unrestricted languages.169

CA and Computation Theory

While dynamical systems theory concepts suffice to define class 1, 2 and 3
CA, computation theory is apparently required for class 4 CA. Varied and
complicated behavior, involving many different time scales is evident. Persis-
tent structures are often generated. It seems that the structures supported by

169 While a minimal specification for any regular language may always be found,
there is no finite procedure to get a minimal form for more complicated formal
languages; no generalization of the regular language complexity may thus be
given.
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this and other class 4 CA rule may be combined to implement arbitrary infor-
mation processing operations. Class 4 CA would then be capable of universal
computation: with particular initial states, their evolution could implement
any finite algorithm. A few percent of CA rules with k > 2 or r > 1 are found
to exhibit class 4 behavior: all these would then, in fact, be capable of arbi-
trarily complicated behavior. This capability precludes a smooth infinite size
limit for entropy or other quantities: as the size of CA considered increases,
more and more complicated phenomena may appear [Wol02, Wol84].

CA evolution may be viewed as a computation. Effective prediction of the
outcome of CA evolution requires a short–cut that allows a more efficient
computation than the evolution itself. For class 1 and 2 CA, such short cuts
are clearly possible: simple computations suffice to predict their complete
future. The computational capabilities of class 3 and 4 CA may, however, be
sufficiently great that, in general, they allow no short-cuts. The only effective
way to determine their evolution from a given initial state would then be by
explicit observation or simulation: no finite formulae for their general behavior
could be given.170 Their infinite time limiting behavior could then not, in
general, be determined by any finite computational process, and many of their
limiting properties would be formally undecidable. Thus, for example, the
‘halting problem’ of determining whether a class 4 CA with a given finite initial
configuration ever evolves to the null configuration would be undecidable. An
explicit simulation could determine only whether halting occurred before some
fixed time, and not whether it occurred after an arbitrarily long time.

For class 4 CA, the outcome of evolution from almost all initial configura-
tions can probably be determined only by explicit simulation, while for class
3 CA this is the case for only a small fraction of initial states. Nevertheless,
this possibility suggests that the occurrence of particular site value sequences
in the infinite time limit is in general undecidable. The large time limit of
the entropy for class 3 and 4 CA would then, in general, be non-computable:
bounds on it could be given, but there could be no finite procedure to compute
it to arbitrary precision.171

Undecidability and intractability are common in problems of mathematics
and computation. They may well afflict all but the simplest CA. One may
speculate that they are widespread in natural systems, perhaps occurring
almost whenever nonlinearity is present. No simple formulae for the behav-
ior of many natural systems could then be given; the consequences of their
evolution could be found effectively only by direct simulation or observation.

For more details on CA, complexity and computation, see [Wol02].

170 If class 4 CA are indeed capable of universal computation, then the variety of
their possible behavior would preclude general prediction, and make explicit
observation or simulation necessary.

171 This would be the case if the limit sets for class 3 and 4 CA formed at least
context–sensitive languages.
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Adaptive Business Intelligence

Recall that businesses and government agencies are mostly interested in two
fundamental things [Mic06]: (i) knowing what will happen next (prediction),
and (ii) making the best decision under risk and uncertainty (optimization)
(see Figure 1.47). Therefore, from CI–perspective, the goal is to provide CI–
based solutions for modelling, simulation, and optimization to address these
two fundamental needs.

Information technology applications that support decision–making
processes and problem–solving activities have proliferated and evolved over
the past few decades. In the 1970s, these applications were simple and based
on spreadsheet software. During the 1980s, decision-support systems incorpo-
rated optimization models, which originated in the operations research and
management science communities. In the 1990s, these systems were further
enhanced with components from artificial intelligence and statistics [MSM05].
This evolution led to many different types of decision–support systems with
somewhat confusing names, including management information systems, in-
telligent information systems, expert systems, management–support systems,
and knowledge–based systems. Because businesses realized that data was a
precious asset, they often based these 1intelligent’ systems on data ware-
housing and online analytical processing technologies. They gathered and
stored a lot of data, assuming valuable assets were implicitly coded in it. Raw
data, however, is rarely beneficial. Its value depends on a user’s ability to
extract knowledge that is useful for decision support. Thousands of ‘business
intelligence’ companies thus emerged to provide such services. After analyzing
a corporation’s operational data, for example, these companies might return
intelligence (in the form of tables, graphs, charts, and so on) stating that, say,

Fig. 1.47. Adaptive business intelligence: the diagram shows the flow from data
acquisition to recommended action, including an adaptive feedback loop (adapted
from [Mic06]).
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Fig. 1.48. Adaptive business intelligence: the diagram shows the flow from data
acquisition to recommended action, including an adaptive feedback loop (adapted
from [MSM05]).

57 percent of the corporation’s customers are between 40 and 50, or product
Q sells much better in Florida than in Georgia.

Many businesses have realized, however, that the return on investment for
pure ‘business intelligence’ is much smaller than initially thought. The ‘discov-
ery’ that 57 percent of our customers are between 40 and 50 doesn’t directly
lead to decisions that increase profit or market share. Moreover, we live in
a dynamic environment where everything is in flux. Interest rates change,
new fraud patterns emerge, weather conditions vary, the stock markets rise
and fall, new regulations and policies surface, and so on. These economic
and environmental changes render some data obsolete and make other data—
which might have been useless just six weeks ago—suddenly meaningful.

Michalewicz et al. developed a software system (see Figure 1.48) to address
these complexities and implemented it on a real distribution problem for a
large car manufacturer. The system detects data trends in a dynamic envi-
ronment, incorporates optimization modules to recommend a near–optimum
decision, and includes self–learning modules to improve future recommenda-
tions. As Figure 1.48 shows, such a system lets enterprizes monitor business
trends, evolve and adapt quickly as situations change, and make intelligent
decisions based on uncertain and incomplete information. This intelligent sys-
tem combines three modules: prediction, optimization and adaptation.

Research Issues in Dynamic Optimization

Most data–mining and optimization algorithms assume static data and a
static objective. Typically, they search for a snapshot of ‘knowledge’ and a
near-optimum solution with respect to some fixed measure (or set of mea-
sures), such as profit maximization or minimization of task–completion time.
However, real–world applications operate in dynamic environments, where it’s
often necessary to modify the current solution due to changes in the problem
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setting, such as machine breakdown or employee illness; or the environment,
such as consumer trends or changes in weather patterns or economic indica-
tors. It’s therefore important to investigate adaptive algorithms that don’t
require restart every time a change is recorded. In many commercial situa-
tions, such restarts are not an option.

Evolutionary Techniques

An obvious starting point here is evolutionary computation techniques
[MF04], which are optimization algorithms inspired by the continuously
changing natural environment. However, it is important to investigate which
evolutionary algorithm extensions are actually useful in business scenarios.
Unfortunately, most current approaches ignore dynamics and assume that re–
optimization should occur at regular intervals. However, significant benefits
can be realized when researchers explicitly address dynamism.

Many researchers have proposed various benchmarks for studying opti-
mization in dynamic environments. Among the proposals are the moving peaks
benchmark, the dynamic knapsack problem, dynamic bit–matching, schedul-
ing with new jobs arriving over time, and the greenhouse control problem.
Researchers have also proposed various measures, including off–line error, per-
centage of covered peaks, and diversity. Among the partial conclusions reached
in this research [Bra01]:

• standard evolutionary algorithms get stuck on a single peak;
• diversity preservation slows down the convergence;
• random immigrants introduce high diversity from the beginning, but offer

limited benefits;
• memory without diversity preservation is counterproductive; and
• nonadaptive memory suffers significantly if peaks move.

However, several essential points are seemingly missing in the key research
on optimization in dynamic environments. Most researchers emphasize an ulti-
mate goal of approximating real–world environments, but they fail to address
several key issues for successful adaptive–system development. The following
issues, which constitute the conceptual research framework, are essential for
creating a methodology for building intelligent systems [MSM05].

Non–Stationary Constraints

Here, the task is to optimize a non–stationary objective function f(x, t), sub-
ject to non–stationary constraints, ci(x, t) ≤ 0, (i = 1, 2, . . . , k). This approach
was applied successfully in the context of a collision situation at sea [SM00]. By
accounting for particular maneuvering–region boundaries, along with informa-
tion on navigation obstacles and other moving ships, the authors reduced the
collision–avoidance problem to a dynamic optimization task with static and
dynamic constraints. The proposed algorithm computed a safe and optimum
ship path in both static and dynamic environments.
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Prediction Component

Environmental changes are seldom random. In a typical real–world scenario,
where constraints change over time, it’s possible to calculate some failure
probabilities by analyzing past data, and thus predict a possible environmen-
tal change. The above mentioned work on collisions at sea [SM00] offers a
good example here as well. The authors based a ship’s safe trajectory in a col-
lision situation on predicted speeds and the other ships’ directions. Studying
dynamic environments where change is somewhat predictable is important,
but so far, little work exists along these lines.

Parameter Adaptation

In nonstationary environments, researchers must study parameter control,
particularly when the adaptive system includes predictive methods [EHM99].

Solution Robustness

Research into robustness concentrates on questions such as: What consti-
tutes flexibility in the specific context? How can we integrate a flexibility goal
into the algorithm? To answer these questions, we must take into account a
predictive model (for environmental changes) and the prediction’s estimated
error. This has yet to occur [MSM05]. Many researchers have recognized the
importance of solution robustness [Bra01]. Existing approaches vary, from
techniques to ‘disturb’ individuals in the population to those using search
history. Some researchers have considered an aspect of robustness, sometimes
called flexibility, in which the problem requires sequential decision–making
under an uncertain future, and the decision influences the system’s future
state. In such situations, the decision–making process should anticipate future
needs. That is, rather than focusing exclusively on the primary objective func-
tion, it should try to move the system into a flexible state.



2

Chaotic Brain/Mind Dynamics

In this Chapter we present a chaos theory of the computational mind.

2.1 Chaos in Human EEG

During the last decade there has been a heated debate about whether chaos
theory can be applied to the dynamics of the human brain and mind [LEA00].
While it is obvious that nonlinear mechanisms are crucial in neural systems,
there has been strong criticism of attempts to identify at strange attractors in
brain signals and to measure their fractal dimensions, Lyapunov exponents,
etc. Conventional methods analyzing brain dynamics are largely based on lin-
ear models and on Fourier spectra. Regardless of the existence of strange
attractors (see below) in brain activity, the neuro–sciences should benefit
greatly from alternative methods that have been developed in recent years
for the analysis of nonlinear and chaotic behavior.

Recall that electroencephalography is the neurophysiologic measurement of
the electrical activity of the brain by recording from electrodes placed on the
scalp or, in special cases, subdurally or in the cerebral cortex. The resulting
traces are known as an electroencephalogram (EEG) and represent an electrical
signal (postsynaptic potentials) from a large number of neurons. These are
sometimes called brain–waves, though this use is discouraged [Cob83]. The
EEG is a brain function test, but in clinical use it is a ‘gross correlate of brain
activity’ [Ebe02]. Electrical currents are not measured, but rather voltage
differences between different parts of the brain. It is well established that the
electroencephalogram EEG! is directly proportional to the local field potential
recorded by electrodes on the brain’s surface [DLC01].

EEGs are frequently used in experimentation because the process is non–
invasive to the research subject. The subject does not need to make a decision
or behavioral action in order to log data, and it can detect covert responses to
stimuli, such as reading. The EEG is capable of detecting changes in electrical
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activity in the brain on a millisecond–level. It is one of the few techniques
available that has such high temporal resolution.1

Now, frequently asked question of researchers in brain dynamics over the
past decade has been [DBL02]: “Is there chaos in the brain?”, with this very
question the subject of serious experimental investigation over the past half–
decade [PD95]. Alongside these experimental endeavors has been the immense
corpus of research due to W. Freeman and colleagues over the past half–
century [Fre92]. Based on both his experimental and theoretical studies of the
mammalian olfactory system Freeman has suggested that chaos is the very
property which allows perception to take place and gives brains the flexibility
to rapidly respond in a coherent manner to perceptual stimuli [Fre91]. Accord-
ing to Freeman, brains create macroscopic order from microscopic disorder by
neurodynamics in perception [ABL00]. Freeman’s repeated exhortations of
the existence of chaos in the brain (as reflected by the existence of chaos in
its electrical dynamics) unfortunately has, up until recently, received scant
theoretical support, with other existing theories of the electroencephalogram
(EEG) either not showing chaos or being unable to do so because of the details
of their mathematical construction [Zha84, Nun00, RPW97, RSE82].

The general theory of the electroencephalogram developed by D. Liley
and collaborators [LCW99, LCD02, DLC01] leads to a mathematical model
describing the behavior of two coupled populations of neurones: excitatory
(being approximately representative of the pyramidal neurones of neocortex)
and inhibitory (being approximately representative of the inter–neurones of
neocortex). The scale of modelling here is approximately that of a cortical
macro–column, which is a small volume of neocortex containing approxi-
mately 105 neurones. Each of the two modelled populations is connected to
the other population and each population feeds back onto itself in either a
mutually excitatory (for the excitatory population) or mutually inhibitory (for
the inhibitory population) fashion. Both modelled populations have external
excitatory and inhibitory inputs. Inputs to each population, whether from
external sources, or from the other population, are modelled based on the
dynamics of fast–acting synapses. The mean soma membrane potential of the
excitatory population (he) is directly related to the local field potential of
the neuronal mass, which overwhelmingly dominates the composition of the
scalp–recorded electroencephalogram (EEG) [DLC01, Nun81].

Chaos in the brain would manifest itself as unpredictable and seemingly
random electrical activity in a population of nerve cells, or neurons. Chaos may
have an important neurological function: it could provide, as researchers have

1 The other common technique is magneto–encephalography (MEG), which is an
imaging technique used to measure the magnetic fields produced by electrical
activity in the brain via extremely sensitive devices such as SQUIDs. These
measurements are commonly used in both research and clinical settings. There are
many uses for the MEG, including assisting surgeons in localizing a pathology,
assisting researchers in determining the function of various parts of the brain,
neuro–feedback, and others.
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Fig. 2.1. Chaotic attractors in an EEG model (modified and adapted from
[DBL02]). (a) Two complementary views of a chaotic attractor from the model
shown from two different perspective. Note the shadowing and how it provides an
enhanced sense of the depth of the attractor. (b) Two different views of another
chaotic attractor. Note how the rendering provides a perspective on the interleaving
of the attractor’s sheets and folds. (c) Two different views of the parameter–space
plane of the model with the largest Lyapunov exponent of the system as the depen-
dent variable and the external excitatory input pulse density to the excitatory and
inhibitory populations as the independent variables.

speculated, a flexible and rapid means for the brain to discriminate between
different sounds, odors, and other perceptual stimuli.

EEGs record electrical activity in the cerebral cortex, but they, and all
other current experimental techniques, may never be able to detect clear and
unequivocal signs of chaos, since the cortex also emits a very large amount of
obscuring ‘noise’ or random electrical activity.

Using realistic models of brain physiology, many researchers are trying to
devise models which reproduce the output of EEGs yet also offer new insights
into the brain’s inner workings. However, previous models either do not allow
for chaos to appear, or have been unable to demonstrate that chaos can occur
under the conditions imposed by the structure of the brain.

In the present work, the researchers model the behavior of two large popu-
lations of neurons: excitatory (which bring other neurons closer to firing) and
inhibitory (which make it more difficult for other neurons to fire). Specifically,
they look at the ‘mean soma membrane potential,’ the electric potential
between the outside and inside of the neuron’s cell body (higher poten-
tial means more frequent firing).

Varying the rate of external electrical impulses to each neuron population,
they found the mean electrical activity was irregular and noise–like (it looked
like noise but really wasn’t) for a wide range of external inputs. Quantitatively
such behavior is associated with a positive Lyapunov exponent , a hallmark of
chaos. The existence of chaos, the researchers say, would provide a means
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for the brain to change its response rapidly to even slightly different stimuli
[DLC01].

It is a major source of contention in brain dynamics as to whether the
electrical rhythms of the brain show signs of chaotic behavior. In [DBL02]
the authors discussed the evidence for the existence of chaos in a theory of
brain electrical activity and provided unique depictions of the dynamics of
this model. They demonstrated the existence of chaotic attractor (see below)
in human brain’s EEG.

In a spontaneously bursting neuronal network in vitro, chaos can be
demonstrated by the presence of unstable fixed–point behavior (see Figure 2.1
above). The techniques of chaos control have been used to increase the perio-
dicity of neuronal population bursting behavior [Sch94].

2.2 Basics of Nonlinear Dynamics and Chaos Theory

Recall from [II06b] that the concept of dynamical system has its origins in
Newtonian mechanics .2 There, as in other natural sciences and engineering
2 Recall that a Newtonian deterministic system is a system whose present state is

fully determined by its initial conditions (at least, in principle), in contrast to
a stochastic (or, random) system, for which the initial conditions determine the
present state only partially, due to noise, or other external circumstances beyond
our control. For a stochastic system, the present state reflects the past initial
conditions plus the particular realization of the noise encountered along the way.
So, in view of classical science, we have either deterministic or stochastic systems.

However, “Where chaos begins, classical science stops ... After relativity and
quantum mechanics, chaos has become the 20th century’s third great revolution
in physical sciences.” [Gle87].

For a long time, scientists avoided the irregular side of nature, such as disorder
in a turbulent sea, in the atmosphere, and in the fluctuation of wild–life
populations [Sha06]. Later, the study of this unusual results revealed that irregu-
larity, nonlinearity, or chaos was the organizing principle of nature [Gle87]. Thus
nonlinearity, most likely in its extreme form of chaos, was found to be ubiquitous
[Hil94, CD98]. For example, in theoretical physics, chaos is a type of moderated
randomness that, unlike true randomness, contains complex patterns that are
mostly unknown [CD98]. Chaotic behavior appeared in the weather, the cluster-
ing of cars on an expressway, oil flowing in underground pipes [Gle87], convecting
fluid, simple diode-circuits [Hil94], neural networks, digital filters, electronic devi-
ces, non-linear optics, lasers [CD98], and in complex systems like thrust-vectored
fighter aircraft [Mos96]. No matter what the system, its behavior obeyed the same
newly discovered law of nonlinearity and chaos [Gle87]. Thus, nonlinear dynam-
ical system theory transcended the boundaries of different scientific disciplines,
because it appeared to be a science of the global nature of systems [Sha06]. As a
result, nonlinear dynamics found applications in physics, chemistry, meteorology,
biology, medicine, physiology, psychology, fluid dynamics, engineering and various
other disciplines. It has now become a common language used by scientists in
various domains to study any system that obeys the same universal law [Gle87].
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disciplines, the evolution rule of dynamical systems is given implicitly by a
relation that gives the state of the system only a short time into the future.
This relation is either a differential equation or difference equation. To deter-
mine the state for all future times requires iterating the relation many times–
each advancing time a small step. The iteration procedure is referred to as
solving the system or integrating the system. Once the system can be solved,
given an initial point it is possible to determine all its future points, a collection
known as a trajectory or orbit . All possible system trajectories comprise its
flow in the phase–space.

In more simpler words, the phase space (also known as the state space) is
the set of all possible states of a dynamical system. Solutions, such as a resting
state or oscillations, correspond to geometric objects, such as points or closed
curves, in phase space. Since it is usually impossible to derive an explicit
formula for the solution of a nonlinear equation, the phase space provides an
extremely useful way for visualizing and understanding qualitative features of
solutions.

More precisely, a dynamical system geometrically represents a vector–
field (or, more generally, a tensor–field) in the system’s phase–space mani-
fold M [II06b], which upon integration (governed by the celebrated existence
& uniqueness theorems for ordinary differential equations (ODEs)) defines a
phase–flow in M (see Figures 2.2 and 2.3). This phase–flow ft ∈M , describing
the complete behavior of a dynamical system at every time instant, can be
either linear, nonlinear or chaotic.

On the other hand, a modern scientific term deterministic chaos depicts
an irregular and unpredictable time evolution of many (simple) deterministic
dynamical systems, characterized by nonlinear coupling of its variables (see,

Fig. 2.2. Action of the phase–flow ft in the phase–space manifold M : (a) Trajectory
of a single initial point x(t) ∈ M , (b) Transporting the whole manifold M .
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Fig. 2.3. The phase plane. The right hand side of the 2D dynamical system defined
a vector–field. Solutions of the equations define curves or trajectories in the phase
plane. The vector–field always points in the direction that the trajectories are
flowing.

Fig. 2.4. Regular v.s. chaotic process.

e.g., [GOY87, YAS96, BG96, Str94]). Given an initial condition, the dynamic
equation determines the dynamic process, i.e., every step in the evolution.
However, the initial condition, when magnified, reveals a cluster of values
within a certain error bound. For a regular dynamic system, processes issuing
from the cluster are bundled together, and the bundle constitutes a predictable
process with an error bound similar to that of the initial condition. In a chaotic
dynamic system, processes issuing from the cluster diverge from each other
exponentially, and after a while the error becomes so large that the dynamic
equation losses its predictive power (see Figure 2.4).

For example, in a pinball game, any two trajectories that start out very
close to each other separate exponentially with time, and in a finite (and in
practice, a very small) number of bounces their separation δx(t) attains the
magnitude of L, the characteristic linear extent of the whole system. This
property of sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)|,
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where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent . For any finite accuracy |δx(0)| = δx of the initial data,
the dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L|,

despite the deterministic and infallible simple laws that rule the pinball
motion.

However, a positive Lyapunov exponent does not in itself lead to chaos
(see [CAM05]). One could try to play 1– or 2–disk pinball game, but it would
not be much of a game; trajectories would only separate, never to meet again.
What is also needed is mixing, the coming together again and again of trajec-
tories. While locally the nearby trajectories separate, the interesting dynamics
is confined to a globally finite region of the phase–space and thus the sepa-
rated trajectories are necessarily folded back and can re–approach each other
arbitrarily closely, infinitely many times. For the case at hand there are 2n

topologically distinct n bounce trajectories that originate from a given disk.
More generally, the number of distinct trajectories with n bounces can be
quantified as

N(n) ≈ ehn,

where the topological entropy h (h = ln 2 in the case at hand) is the growth
rate of the number of topologically distinct trajectories.

When a physicist says that a certain system “exhibits chaos”, he means
that the system obeys deterministic laws of evolution, but that the outcome is
highly sensitive to small uncertainties in the specification of the initial state.
The word “chaos” has in this context taken on a narrow technical meaning. If
a deterministic system is locally unstable (positive Lyapunov exponent) and
globally mixing (positive entropy), it is said to be chaotic.

While mathematically correct, the definition of chaos as “positive
Lyapunov exponent + positive entropy” is useless in practice, as a
measurement of these quantities is intrinsically asymptotic and beyond reach
for systems observed in nature. More powerful is Poincaré’s vision of chaos as
the interplay of local instability (unstable periodic orbits) and global mixing
(intertwining of their stable and unstable manifolds). In a chaotic system any
open ball of initial conditions, no matter how small, will in finite time overlap
with any other finite region and in this sense spread over the extent of the
entire asymptotically accessible phase–space. Once this is grasped, the focus
of theory shifts from attempting to predict individual trajectories (which is
impossible) to a description of the geometry of the space of possible outcomes,
and evaluation of averages over this space.

A definition of “turbulence” is even harder to come by. Intuitively, the
word refers to irregular behavior of an infinite–dimensional dynamical system
described by deterministic equations of motion – say, a bucket of boiling water
– described by the Navier–Stokes equations. But in practice the word “turbu-
lence” tends to refer to messy dynamics which we understand poorly. As soon
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as a phenomenon is understood better, it is reclaimed renamed as: “a route
to chaos”, or “spatio–temporal chaos”, etc. (see [CAM05]).

Before the advent of fast computers, solving a dynamical system required
sophisticated mathematical techniques and could only be accomplished for
a small class of linear dynamical systems. Numerical methods executed on
computers have simplified the task of determining the orbits of a dynamical
system.

For simple dynamical systems, knowing the trajectory is often sufficient,
but most dynamical systems are too complicated to be understood in terms
of individual trajectories. The difficulties arise because:

1. The systems studied may only be known approximately–the parameters of
the system may not be known precisely or terms may be missing from the
equations. The approximations used bring into question the validity or rel-
evance of numerical solutions. To address these questions several notions of
stability have been introduced in the study of dynamical systems, such as
Lyapunov stability or structural stability. The stability of the dynamical
system implies that there is a class of models or initial conditions for
which the trajectories would be equivalent. The operation for comparing
orbits to establish their equivalence changes with the different notions
of stability.

2. The type of trajectory may be more important than one particular tra-
jectory. Some trajectories may be periodic, whereas others may wander
through many different states of the system. Applications often require
enumerating these classes or maintaining the system within one class.
Classifying all possible trajectories has led to the qualitative study of
dynamical systems, that is, properties that do not change under coor-
dinate changes. Linear dynamical systems and systems that have two
numbers describing a state are examples of dynamical systems where the
possible classes of orbits are understood.

3. The behavior of trajectories as a function of a parameter may be what
is needed for an application. As a parameter is varied, the dynamical
systems may have bifurcation points where the qualitative behavior of
the dynamical system changes. For example, it may go from having only
periodic motions to apparently erratic behavior, as in the transition to
turbulence of a fluid.

4. The trajectories of the system may appear erratic, as if random. In these
cases it may be necessary to compute averages using one very long tra-
jectory or many different trajectories. The averages are well defined for
ergodic systems and a more detailed understanding has been worked out
for hyperbolic systems. Understanding the probabilistic aspects of dyna-
mical systems has helped establish the foundations of statistical mechanics
and of chaos.
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Dynamics Tradition and Chaos

Traditionally, a dynamicist would believe that to write down a system’s equa-
tions is to understand the system. How better to capture the essential features?
For example, for a playground swing , the equation of motion ties together the
pendulum’s angle, its velocity, its friction, and the force driving it. But because
of the little bits of nonlinearity in this equation, a dynamicist would find him-
self helpless to answer the easiest practical questions about the future of the
system. A computer can simulate the problem numerically calculating each
cycle (i.e., integrating the pendulum equation), but simulation brings its own
problem: the tiny imprecision built into each calculation rapidly takes over,
because this is a system with sensitive dependence on initial condition. Before
long, the signal disappears and all that remains is noise [Gle87].

For example, in 1960s, Ed Lorenz from MIT created a simple weather
model in which small changes in starting conditions led to a marked
(‘catastrophic’) changes in outcome, called sensitive dependence on initial
conditions , or popularly, the butterfly effect (i.e., “the notion that a butterfly
stirring the air today in Peking can transform storm systems next month in
New York, or, even worse, can cause a hurricane in Texas”). Thus long–range
prediction of imprecisely measured systems becomes an impossibility.

At about the same time, Steve Smale from Berkeley studied an oscillat-
ing system (the Van der Pol oscillator) and found that his initial conjecture
“that all systems tend to a steady state” – was not valid for certain nonlinear
dynamical systems. He represented behavior of these systems with topological
foldings called Smale’s horseshoe in the system’s phase–space. These foldings
allowed graphical display of why points close together could lead to quite
different outcomes, which is again sensitive dependence on initial conditions.

The unique character of chaotic dynamics may be seen most clearly by
imagining the system to be started twice, but from slightly different initial
conditions (in case of human motion, these are initial joint angles and angu-
lar velocities). We can think of this small initial difference as resulting from
measurement error. For non–chaotic systems, this uncertainty leads only to
an error in prediction that grows linearly with time. For chaotic systems, on
the other hand, the error grows exponentially in time, so that the state of the
system is essentially unknown after very short time. This phenomenon, firstly
recognized by H. Poincaré, the father of topology, in 1913, which occurs only
when the governing equations are nonlinear, with nonlinearly coupled vari-
ables, is known as sensitivity to initial conditions. Another type of sensitivity
of chaotic systems is sensitivity to parameters: a small variation of system
parameters (e.g., mass, length and moment of inertia of human body segm-
ents) results in great change of system output (dynamics of human movement).

If prediction becomes impossible, it is evident that a chaotic system can
resemble a stochastic system, say a Brownian motion. However, the source
of the irregularity is quite different. For chaos, the irregularity is part of
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the intrinsic dynamics of the system, not random external influences (for
example, random muscular contractions in human motion). Usually, though,
chaotic systems are predictable in the short–term. This short–term predictabil-
ity is useful in various domains ranging from weather forecasting to economic
forecasting.

Recall that some aspects of chaos have been known for over a hun-
dred years. Isaac Newton was said to get headaches thinking about the
3−body problem (Sun, Moon, and Earth). In 1887, King Oscar II of Sweden
announced a prize for anyone who could solve the n−body problem and hence
demonstrate stability of the solar system. The prize was awarded to Henri
Poincaré, who showed that even the 3−body problem has no analytical solu-
tion [Pet93, BG79]. He went on to deduce many of the properties of chaotic
systems including the sensitive dependence on initial conditions. With the
successes of linear models in the sciences and the lack of powerful comput-
ers, the work of these early nonlinear dynamists went largely unnoticed and
undeveloped for many decades. In 1963, Ed Lorenz from MIT published a
seminal paper [Lor63, Spa82] in which he showed that chaos can occur in
systems of autonomous (no explicit time dependence) ordinary differential
equations (ODEs) with as few as three variables and two quadratic nonlinear-
ities. For continuous flows, the Poincaré–Bendixson theorem [HS74] implies
the necessity of three variables, and chaos requires at least one nonlinearity.
More explicitly, the theorem states that the long–time limit of any ‘smooth’
two–dimensional flow is either a fixed–point or a periodic solution. With the
growing availability of powerful computers, many other examples of chaos
were subsequently discovered in algebraically simple ODEs. Yet the sufficient
conditions for chaos in a system of ODEs remain unknown [SL00].

So, necessary condition for existence of chaos satisfies any autonomous
continuous–time dynamical system (a vector–field) of dimension three
or higher, with at least two nonlinearly coupled variables (e.g., a single
human swivel joint like a shoulder or hip, determined by three joint angles
and three angular momenta). In case of non–autonomous continuous–time
systems, chaos can happen in dimension two, while in case of discrete–time
systems – even in dimension one. Now, whether the behavior (a flow), of
any such system will actually be chaotic or not depends upon the values of
its parameters and/or initial conditions. Usually, for some values of involved
parameters, the system behavior is oscillating in a stable regime, while for
another values of the parameters the behavior becomes chaotic, showing a
bifurcation, or a phase transition – from one regime/phase to a totally dif-
ferent one. If a change in the system’s behavior at the bifurcation point is
really sharp, we could probably be able to recognize one of the celebrated
polynomial catastrophes of R. Thom (see [Tho75, Arn92]). A series of such
bifurcations usually depicts a route to chaos.

Chaos theory has developed special mathematical procedures to under-
stand irregularity and unpredictability of low–dimensional nonlinear systems,
including Poincaré sections, bifurcation diagrams, power spectra, Lyapunov
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exponents, period doubling, fractal dimension, stretching and folding, special
identification and estimation techniques, etc. (see e.g., [Arn89, Arn78, Arn88,
Arn93, YAS96, BG96]). Understanding these phenomena has enabled science
to control the chaos (see, e.g., [OGY90, CD98]).

There are many practical reasons for controlling or ordering chaos. For
example, in case of a distributed artificial intelligence system, which is usually
characterized by a massive collection of decision–making agents, the fact that
an agent’s decision also depends on decisions made by other agents – leads to
extreme complexity and nonlinearity of the overall system. More often than
not, the information received by agents about the ‘state’ of the system may be
‘tainted’. When the system contains imperfect information, its agents tend to
make poor decisions concerning choosing an optimal problem–solving strategy
or cooperating with other agents. This can result in certain chaotic behavior
of the agents, thereby downgrading the performance of the entire system.
Naturally, chaos should be reduced as much as possible, or totally suppressed,
in these situations [CD98].

In contrast, recent research has shown that chaos may actually be useful
under certain circumstances, and there is growing interest in utilizing the
richness of chaos [Gle87, Mos96, DGY97]. Since a chaotic, or strange attractor ,
usually has embedded within it a dense set of unstable limit cycles, if any of
these limit cycles can be stabilized, it may be desirable to stabilize one that
characterizes certain maximal system performance [OGY90]. The key is, in
a situation where a system is meant for multiple purposes, switching among
different limit cycles may be sufficient for achieving these goals. If, on the
other hand the attractor is not chaotic, then changing the original system
configuration may be necessary to accommodate different purposes. Thus,
when designing a system intended for multiple uses, purposely building chaotic
dynamics into the system may allow for the desired flexibilities [OGY90].

Within the context of brain dynamics, there are suggestions that ‘the con-
trolled chaos of the brain is more than an accidental by–product of the brain
complexity, including its myriad connections’ and that ‘it may be the chief
property that makes the brain different from an artificial–intelligence machine
[FS92]. The so–called anti–control of chaos has been proposed for solving the
problem of driving the system trajectories of a human brain model away from
the stable direction and, hence, away from the stable equilibrium (in the case
of a saddle type equilibrium), thereby preventing the periodic behavior of
neuronal population bursting. Namely, in a spontaneously bursting neuronal
network in vitro, chaos can be demonstrated by the presence of unstable
fixed–point behavior. Chaos control techniques can increase the periodicity
of such neuronal population bursting behavior. Periodic pacing is also effec-
tive in entraining such systems, although in a qualitatively different fashion.
Using a strategy of anti–control such systems can be made less periodic. These
techniques may be applicable to in vivo epileptic foci [SJD94].
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2.2.1 Language of Nonlinear Dynamics

Recall that nonlinear dynamics is a language to talk about dynamical systems.
Here, brief definitions are given for the basic terms of this language.

• Dynamical system: A part of the world which can be seen as a self–
contained entity with some temporal behavior. In nonlinear dynamics,
speaking about a dynamical system usually means to speak about an
abstract mathematical system which is a model for such an entity. Mathe-
matically, a dynamical system is defined by its state and by its dynamics.
A pendulum is an example for a dynamical system.

• State of a system: A number or a vector (i.e., a list of numbers) defining the
state of the dynamical system uniquely. For the free (un–driven) pendu-
lum, the state is uniquely defined by the angle θ and the angular velocity
θ̇ = dθ/dt. In the case of driving, the driving phase φ is also needed
because the pendulum becomes a non–autonomous system. In spatially
extended systems, the state is often a field (a scalar–field or a vector–field).
Mathematically spoken, fields are functions with space coordinates as
independent variables. The velocity vector–field of a fluid is a well–known
example.

• Phase space: All possible states of the system. Each point in the phase–
space corresponds to a unique state (see Figure 2.5). In the case of the
free pendulum, the phase–space has 2D whereas for driven pendulum it
has 3D. The dimension of the phase–space is infinite in cases where the
system state is defined by a field.

• Dynamics, or equation of motion: The causal relation between the present
state and the next state in the future. It is a deterministic rule which tells
us what happens in the next time step. In the case of a continuous time,
the time step is infinitesimally small. Thus, the equation of motion is an
ordinary differential equation (ODE) (or a system of ODEs):

ẋ = f(x),

where x is the state and t is the time variable (overdot is the time derivative
– as always). An example is the equation of motion of an un–driven and
un–damped pendulum. In the case of a discrete time, the time steps are
nonzero and the dynamics is a map:

xn+1 = f(xn),

with the discrete time n. Note, that the corresponding physical time points
tn do not necessarily occur equidistantly. Only the order has to be the
same. That is,

n < m =⇒ tn < tm.

The dynamics is linear if the causal relation between the present state and
the next state is linear. Otherwise it is nonlinear. If we have the case in
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which the next state is not uniquely defined by the present one, this is
generally an indication that the phase–space is not complete. Thus, there
are important variables determining the state which had been forgotten.
This is a crucial point while modelling a real–life systems. Beside this, there
are two important classes of systems where the phase–space is incomplete:
the non–autonomuous and stochastic systems. A non–autonomous system
has an equation of motion which depends explicitly on time. Thus, the
dynamical rule governing the next state not only depends on the present
state but also at the time it applies. A driven pendulum is a classical
example of a non–autonomuous system. Fortunately, there is an easy way
to make the phase–space complete: we simply include the time into the
definition of the state. Mathematically, this is done by introducing a new
state variable: t. Its dynamics reads

ṫ = 1, or tn+1 = tn,

depending on whether time is continuous or discrete. For the periodically
driven pendula, it is also natural to take the driving phase as the new state
variable. Its equation of motion reads

θ̇ = 2πw,

where w is the driving frequency (so that the angular driving frequency
is 2πw). On the other hand, in a stochastic system, the number and the
nature of the variables necessary to complete the phase–space is usually
unknown. Therefore, the next state can not be deduced from the present
one. The deterministic rule is replaced by a stochastic one. Instead of the
next state, it gives only the probabilities of all points in the phase–space
to be the next state.

• Orbit or trajectory: A solution of the equation of motion. In the case of
continuous time, it is a curve in phase–space parametrized by the time
variable. For a discrete system it is an ordered set of points in the phase–
space.

• Phase Flow: The mapping (or, map) of the whole phase–space of a con-
tinuous dynamical system onto itself for a given time step t. If t is an
infinitesimal time step dt, the flow is just given by the right–hand side of
the equation of motion (i.e., f). In general, the flow for a finite time step is
not known analytically because this would be equivalent to have a solution
of the equation of motion. For example, Figure 2.5 shows the phase–flow
of a damped pendulum in the (θ, θ̇)−phase–plane.

Vector–Fields in the Phase Plane

Consider the following system of two first–order ODEs

ẋ = f(x, y), ẏ = g(x, y).
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Fig. 2.5. Phase–portrait of a damped pendulum: Arrows denote the phase–flow,
dashed line is a null–cline, filled dot is a stable fixed–point, open dot is an unstable
fixed–point, dark gray curves are trajectories starting from sample initial points,
dark lines with arrows are stable directions (manifolds), light lines with arrows are
unstable directions (manifolds), the area between the stable manifolds is basin of
attraction.

Here, f and g are given (smooth) functions. The phase space for this system
is simply the (x, y)−plane; this is usually referred to as the phase plane.
If (x(t), y(t)) is a solution of the system, then at each time t0, the vector
(x(t0), y(t0)) defines a point in the phase plane. The point changes with time,
so the entire solution, (x(t), y(t)), traces out a curve, or trajectory , in the
phase plane (see Figure 2.6).

Obviously, not every arbitrarily drawn curve in the phase plane represents
a solution. What is special about solution trajectories is that the velocity
vector at each point along the trajectory is given by the right hand side of
the dynamical system above. That is, the velocity vector of the trajectory
(x(t), y(t)) at a point (x0, y0) is given by

(ẋ(t), ẏ(t)) = (f(x0, y0), g(x0, y0)).

This geometrical property, that the vector (f(x, y), g(x, y)) always points in
the direction that the solution is flowing, completely characterizes the solution
trajectories. The set of all vectors (f, g) is called the vector–field .

Equilibria

Recall that equilibrium points (sometimes called fixed points or rest points) of
the dynamical system are where both f and g vanish; that is, (x0, y0) is an
equilibrium if

f(x0, y0) = g(x0, y0) = 0.

If (x0, y0) is an equilibrium, then (x(t), y(t)) ≡ (x0, y0) for all time is a
(constant) solution of the system. Equilibria can be either stable or unstable.
One can usually determine whether an equilibrium is stable or unstable using
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Fig. 2.6. Periodic solutions correspond to closed curves in the phase plane.

the linearization method. That is, suppose that (x0, y0) is an equilibrium and
consider the following Jacobian matrix

M =
[
∂xf(x0, y0) ∂yf(x0, y0)
∂xg(x0, y0) ∂yg(x0, y0)

]
.

If both eigenvalues of the matrix M have negative real part, then (x0, y0) is
stable, while if at least one eigenvalue has positive real part, then the equi-
librium is unstable. One can classify different types of equilibria on a phase
plane in terms of properties of the eigenvalues, as follows:

(i) A node: all eigenvalues are real and have the same sign. Stable (unstable)
nodes have negative (respectively positive) eigenvalues.

(ii) A saddle: all eigenvalues are real but have different signs. Saddles are
always unstable.

(iii) A focus: there is a pair of complex–conjugate eigenvalues. Stable (unsta-
ble) foci have eigenvalues with negative (resp. positive) real part. Foci
are often called spirals due to the shape of trajectories near them.

In higher dimensions, there could be other types of equilibria, such as
saddle–focus, focus–focus, focus–node.

In 2D systems, every bounded solution must be an equilibrium, a closed
orbit, or the solution must approach one of these in forwards and back-
wards time. This follows from the famous Poincaré–Bendixson theorem, which
states:

If a trajectory enters and does not leave a closed and bounded region of
phase space which contains no equilibria, then the trajectory must approach
a periodic orbit as t→∞.

This theorem can sometimes be used to establish the existence of a (stable)
periodic orbit for a planar vector–field. However, it does not hold in higher
dimensions and much more complicated dynamics, including chaos, may arise.
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Fig. 2.7. Several examples of linear vector–fields, generated in MathematicaTM :
(a) stable node, (b) unstable focus, (c) unstable node, and (d) saddle (unstable).

2.2.2 Linearized Autonomous Dynamics

Recall that linear dynamical systems can be solved in terms of simple functions
and the behavior of all orbits can be classified (see Figure 2.7). In a linear
system the phase–space is the nD Euclidean space, so any point in phase–
space can be represented by a vector with n numbers. The analysis of linear
systems is possible because they satisfy a superposition principle: if u(t) and
w(t) satisfy the differential equation for the vector–field (but not necessarily
the initial condition), then so will u(t) + w(t).

Flow of a Linear ODE

Fundamental theorem for linear autonomous ODEs states that if A is an n×n
real matrix then the initial value problem

ẋ = Ax, x(0) = a ∈ Rn (2.1)

has the unique solution

x(t) = etAa, for all t ∈ R. (2.2)

(Here a is the state at time t = 0 and etA is the state at time t). To prove the
existence, let x(t) = etAa then

dx

dt
=

d(etAa)
dt

= AetAa = Ax,

x(0) = e0a = Ia = a,

shows that x(t) satisfies the initial value problem (2.1) (here I denotes the
n× n identity matrix).

To prove the uniqueness, let x(t) be any solution of (2.1). It follows that

d

dt

[
e−tAx(t)

]
= 0.
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Thus e−tAx(t) = C, a constant. The initial condition implies that C = a and
hence x(t) = etAa.

The unique solution of the ODE (2.1) is given by (2.2) for all t. Thus, for
each t ∈ R, the matrix etAa maps

a �→ etAa.

The set {etA}t∈R is a 1−parameter family of linear maps of Rn into Rn, and
is called the linear flow of the ODE (for comparison with the general flow
notion, see [II06b]).

We write
gt = etA

– to denote the flow. The flow describes the evolution in time of the physical
system for all possible initial states. As the physical system evolves in time,
one can think of the state vector x as a moving point in state space, its motion
being determined by the flow gt = etA. The linear flow satisfies two important
properties, which also hold for nonlinear flows.

The linear flow gt = etA satisfies:

F1 : g0 = I, identity map, and
F2 : gt1+t2 = gt1 ◦ gt2 , composition.

Note that properties F1 and F2 imply that the flow {gt}t∈R forms a group
under composition of maps.

The flow gt of the ODE (2.1) partitions the state–space Rn into subsets
called orbits, defined by

γ(a) = {gta : t ∈ R}.
The set γ(a) is called the orbit of the ODE through a. It is the image in
Rn of the solution curve x(t) = etAa. It follows that for a, b ∈ Rn, either
γ(a) = γ(b) or γ(a) ∩ γ(b) = ∅, since otherwise the uniqueness of solutions
would be violated.

For example, consider

ẋ = Ax, for all x ∈ R2;

with

A =
(

0 1
−1 0

)
,

the linear flow is

etA =
(

cos t sin t
− sin t cos t

)
.

The action of the flow on R2, a �→ etAa corresponds to a clockwise rotation
about the origin. Thus if a 
= 0, the orbit γ(a) is a circle centered at the origin
passing through a. The origin is a fixed–point of the flow, since etA0 = 0, for
all t ∈ R. The orbit γ(0) = {0} is called a point orbit. All other orbits are
called periodic orbits since e2πAa = a, i.e., the flow maps onto itself after a
time t = 2π has elapsed.
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Classification of Orbits of an ODE

1. If gta = a for all t ∈ R, then γ(a) = {a} and it is called a point orbit .
Point orbits correspond to equilibrium points.

2. If there exists a T > 0 such that gTa = a, then γ(a) is called a periodic
orbit . Periodic orbits describe a system that evolves periodically in time.

3. If gta 
= a for all t 
= 0, then γ(a) is called a non–periodic orbit .

Note that:
1. Non–periodic orbits can be of great complexity even for linear ODEs if

n > 3 (for nonlinear ODEs if n > 2).
2. A solution curve of an ODE is a parameterized curve and hence contains

information about the flow of time t. The orbits are paths in state–space (or
subsets of state space). Orbits which are not point orbits are directed paths
with the direction defined by increasing time. The orbits thus do not provide
detailed information about the flow of time.

For an autonomous ODE, the slope of the solution curves depend only on
x and hence the tangent vectors to the solution curves define a vector–field
f(x) in x−space. Infinitely many solution curves may correspond to a single
orbit. On the other hand, a non–autonomous ODE does not define a flow or
a family of orbits.

Canonical Linear Flows in R2

Jordan Canonical Forms

For any 2× 2 real matrix A, there exists a non–singular matrix P such that

J = P−1AP,

and J is one of the following matrices:(
λ1 0
0 λ2

)
,

(
λ 1
0 λ

)
,

(
α β
−β α

)
.

Two linear ODEs, ẋ = Ax and ẋ = Bx, are linearly equivalent iff there exists
a non–singular matrix P and a positive constant k such that

A = kP−1BP.

In other words, the linear ODEs, ẋ = Ax and ẋ = Bx are linearly equivalent
iff there exists an invertible matrix P and a positive constant k such that

PetA = ektBP, for all t ∈ R.
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Case I: two eigen–directions

Jordan canonical form is

J =
(

λ1 0
0 λ2

)
.

The flow is

etJ =
(

eλ1t 0
0 eλ2t

)
,

and the eigenvectors are e1 =
(

1
0

)
and e2 =

(
0
1

)
. The solutions are y(t) =

etJb for all b ∈ R2, i.e., y1 = eλ1tb1 and y2 = eλ2tb2.

Ia. λ1 = λ2 < 0 : attracting focus;
Ib. λ1 < λ2 < 0 : attracting node;
Ic. λ1 < λ2 = 0 : attracting line;
Id. λ1 < 0 < λ2 : saddle;
Ie. λ1 = 0 < λ2 : repelling line;
If. 0 < λ1 < λ2 : repelling node;
Ig. 0 < λ1 = λ2 : repelling focus.

Case II: one eigen–direction

Jordan canonical form is

J =
(

λ 1
0 λ

)
.

The flow is

etJ = eλt

(
1 t
0 1

)
,

and the single eigenvector is e =
(

1
0

)
.

IIa. λ < 0 : attracting Jordan node;
IIb. λ = 0 : neutral line;
IIc. λ > 0 : repelling Jordan node.

Case III: no eigen–directions

Jordan canonical form is

J =
(

α β
−β α

)
.

The given ODE is linearly equivalent to ẏ = Jy.

IIIa. α < 0 : attracting spiral ;
IIIb. α = 0 : center ;
IIIc. α > 0 : repelling spiral .



290 2 Chaotic Brain/Mind Dynamics

In terms of the Jordan canonical form of two matrices A and B, the
corresponding ODEs are linearly equivalent iff:

1. A and B have the same number of eigen–directions, and
2. The eigenvalues of A are multiple (k) of the eigenvalues of B.

Topological Equivalence

Now, cases Ia, Ib, IIa, and IIIa have common characteristic that all orbits
approach the origin (an equilibrium point) as t → ∞. We would like these
flows to be ‘equivalent’ in some sense. In fact, it can be shown, that for all
flows of these types, the orbits of one flow can be mapped onto the orbits
of the simplest flow Ia, using a (nonlinear) map h : R2 → R2, which is a
homeomorphism on R2.

Recall that map h : Rn → Rn is a homeomorphism on Rn iff (i) h is one–
to–one and onto, (ii) h is continuous, and (iii) h−1 is continuous. Two linear
flows etA and etB on Rn are said to be topologically equivalent if there exists
a homeomorphism h on Rn and a positive constant k such that

h(etAx) = ektBh(x), for all x ∈ Rn, and for all t ∈ R.

A hyperbolic linear flow in R2 is one in which the real parts of the eigenvalues
are all non–zero (i.e., Re(λi) 
= 0, for i = 1, 2.)

Any hyperbolic linear flow in R2 is topologically equivalent to the linear
flow etA, where A is one of the following matrices:

1. A =
(
−1 0
0 −1

)
, standard sink .

2. A =
(

1 0
0 1

)
, standard source.

3. A =
(
−1 0
0 1

)
, standard saddle.

Any non–hyperbolic linear flow in R2 is linearly (and hence topologically)
equivalent to the flow etA, where A is one of the following matrices:(

0 0
0 0

)
,

(
0 −1
1 0

)
,

(
0 1
0 0

)
,

(
−1 0
0 0

)
,

(
1 0
0 0

)
.

These five flows are topologically equivalent.

2.2.3 Oscillations and Periodic Orbits

A non–constant solution (x(t), y(t)) of a dynamical system is periodic solution
if (x(0), y(0)) = (x(T ), y(T )) for some T > 0. The minimal T that satisfies
this requirement is called the period . As (x(t), y(t)) = (x(t + T ), y(t + T ))
for all t, a periodic solution corresponds to a closed curve in the phase plane
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Fig. 2.8. Oscillation shown as a time–series for a vector–field (left), as well as a
periodic orbit in phase space.

(see Figure 2.8). Periodic solutions can be either stable or unstable. Roughly
speaking, a periodic solution is stable if solutions that begin near the closed
curve remain near for all t > 0. An asymptotically stable periodic solution is
often referred to as a limit cycle.

It is usually much more difficult to locate periodic solutions than it is
to locate equilibria. An equilibrium point (x0, y0) satisfies the equations
f(x0, y0) = g(x0, y0) = 0 and these equations can usually be solved with
straightforward numerical methods. We also note that an equilibrium is a
local object – it is simply a point in phase space. Oscillations or limit cycles
are global objects; they correspond to an entire curve in phase space that
retraces itself. This curve may be quite complicated.

Higher–Dimensional Dynamical Systems

More generally, consider a system of n first order ordinary differential equa-
tions (ODEs) of the form:

ẋ = F (x), x ∈ Rn

The phase–space is simply nD Euclidean space and every solution, (x(t)),
corresponds to a trajectory in phase space parameterized by the independent
variable t. As before, F (x) defines a vector–field in the phase space; at each
point, x(t0), the vector F (x(t0)) must be tangent to the solution curve x(t).
Moreover, equilibria are where F (x) = 0 and periodic solutions correspond to
closed orbits.

Note that every system of ODEs is equivalent to a system of the form
above. Hence, every solution of every ODE can be viewed geometrically as a
trajectory in phase space. Clearly, the phase space may be quite complicated
to analyze, especially if n > 2.

Periodic Orbit for a Vector Field

Consider a system of ODEs,

ẋ = f(x), x ∈ Rn (n ≥ 2), or
ẋ = f(x, t), x ∈ Rn (n ≥ 1),
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corresponding to an autonomous or non–autonomous vector–field, respec-
tively. A non–constant solution to such a system, x(t), is periodic if there
exists a constant T > 0, such that x(t) = x(t+T ) for all t. The period of this
solution is defined to be the minimum such T . The image of the periodicity
interval under in the state space is called the periodic orbit or cycle.

Limit Cycle

A periodic orbit Γ on a plane (or on a 2D manifold) is called a limit cycle if
it is the α−limit set or ω−limit set of some point z not on the periodic orbit,
that is, the set of accumulation points of either the forward or backward
trajectory through z, respectively, is exactly Γ . Asymptotically stable and
unstable periodic orbits are examples of limit cycles.

For example, consider the vector–field given by ODEs

ẋ = αx− y − αx(x2 + y2)

ẏ = x + αy − αy(x2 + y2),

where α > 0 is a parameter. Transforming to radial coordinates, we see that
the periodic orbit lies on a circle with unit radius for any α > 0,

ṙ = αr(1− r2), θ̇ = 1.

This periodic orbit is a stable limit cycle for α > 0 and unstable limit cycle
for α < 0. When α = 0, the system above has infinite number of periodic
orbits and no limit cycles.

Periodic Orbit for a Map

A periodic orbit with period k for a map

xi+1 = g(xi), x ∈ Rn (n ≥ 1),

is the set of distinct points {pj = gj(p0)|j = 0, · · · , k − 1} with gk(p0) = p0

[GH83]. Here gk represents the composition of g with itself k times. The
smallest positive value of k for which this equality holds is the period of the
orbit. An example of a periodic orbit for a map is shown in the Figure 2.9.

Fig. 2.9. A periodic orbit for a map xi+1 = g(xi), consisting of distinct points
{pj = gj(p0)|j = 0, · · · , k − 1} with gk(p0) = p0.
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Fig. 2.10. Poincaré map for a vector–field.

Stability of a Periodic Orbit

The stability of a periodic orbit for an autonomous vector–field can be calcu-
lated by considering the Poincaré map, which replaces the flow of the nD
continuous vector–field with an (n− 1)D map [GH83, Str94]. Specifically, an
(n−1)D surface of section Σ is chosen such that the flow is always transverse
to Σ (see Figure 2.10). Let the successive intersections in a given direction of
the solution x(t) with Σ be denoted by xi. The Poincaré map

xi+1 = g(xi)

determines the (i + 1)th intersection of the trajectory with Σ from the ith
intersection. A periodic orbit of an autonomous vector–field corresponds to a
fixed point xf of this Poincaré map, characterized by . The linearization of
the Poincaré map about xf is usually written

ξi+1 = Dg(xf )ξi.

If all eigenvalues of Dg have modulus less than unity, then xf (and thus the
corresponding periodic orbit) is asymptotically stable. If any eigenvalues of Dg
have modulus greater than unity, then xf (and thus the corresponding periodic
orbit) is unstable. The stability properties of a periodic orbit are independent
of the cross section Σ [Wig90]. If xf is stable then it is an attractor of the
Poincaré map, and the corresponding periodic orbit is an attractor of the
vector–field.

Periodic Orbits, Bifurcations and Chaos

Recall that a bifurcation represents a qualitative change in the behavior of a
dynamical system as a system parameter is varied. This could involve a change
in the stability properties of a periodic orbit, and/or the creation or destruc-
tion of one or more periodic orbits. Bifurcation analysis3 can thus provide

3 Bifurcation theory studies and classifies phenomena characterized by sudden shifts
in behavior arising from small changes in circumstances, analyzing how the qual-
itative nature of equation solutions depends on the parameters that appear in
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another (analytical or numerical) method for establishing the existence or
non–existence of a periodic orbit.

Among codimension–1 bifurcations of periodic orbits for vector–fields, the
most important are the following [GH83]:

1. The Andronov–Hopf bifurcation,4 which results in the appearance of a
small–amplitude periodic orbit.

the equation. This may lead to sudden and dramatic changes, for example the
unpredictable timing and magnitude of a landslide. Closely related to the bifur-
cation theory is the catastrophe theory , which was originated with the work of
the French mathematician Ren Thom in the 1960s, and became very popular not
least due to the efforts of Christopher Zeeman in the 1970s, considers the special
case where the long–run stable equilibrium can be identified with the minimum
of a smooth, well–defined potential function (Lyapunov function). Small changes
in certain parameters of a nonlinear system can cause equilibria to appear or dis-
appear, or to change from attracting to repelling and vice versa, leading to large
and sudden changes of the behavior of the system. However, examined in a larger
parameter space, catastrophe theory reveals that such bifurcation points tend to
occur as part of well–defined qualitative geometrical structures.

Catastrophe theory analyzes degenerate critical points of the potential function
of a given dynamical system – points where not just the first derivative, but one
or more higher derivatives of the potential function are also zero. These are called
the germs of the catastrophe geometries. The degeneracy of these critical points
can be unfolded by expanding the potential function as a Taylor series in small
perturbations of the parameters. When the degenerate points are not merely ac-
cidental, but are structurally stable, the degenerate points exist as organizing
centers for particular geometric structures of lower degeneracy, with critical fea-
tures in the parameter space around them. If the potential function depends on
three or fewer active variables, and five or fewer active parameters, then there are
only seven generic structures for these bifurcation geometries, with corresponding
standard forms into which the Taylor series around the catastrophe germs can be
transformed by diffeomorphism (a smooth transformation whose inverse is also
smooth). These seven fundamental polynomial types for 1D and 2D systems are
given below, with the names that Thom gave them:

(i) Fold (1D): V = x3 + ax;
(ii) Cusp (1D): V = x4 + ax2 + bx;
(iii) Swallowtail (1D): V = x5 + ax3 + bx2 + cx;
(iv) Butterfly (1D): V = x6 + ax4 + bx3 + cx2 + dx;
(v) Hyperbolic umbilical (2D): V = x3 + y3 + axy + bx + cy;
(vi) Elliptic umbilical (2D): V = x3/3 − xy2 + a(x2 + y2) + bx + cy; and
(vii) Parabolic umbilical (2D): x2y + y4 + ax2 + by2 + cx + dy.

4 The Andronov–Hopf bifurcation is the birth of a limit cycle from an equilibrium
in dynamical systems generated by ODEs, when the equilibrium changes stability
via a pair of purely imaginary eigenvalues. The bifurcation can be supercritical
or subcritical, resulting in stable or unstable (within an invariant 2D manifold)
limit cycle, respectively.
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2. The saddle–node bifurcation5 of periodic orbits, in which two periodic
orbits coalesce and annihilate each other.

3. The saddle–node on invariant circle bifurcation (SNIC), in which a peri-
odic orbit appears from a homoclinic orbit to a saddle-node equilibrium
(along the central manifold).

4. The homoclinic bifurcations, in which periodic orbits appear from homo-
clinic orbits to a saddle, saddle–focus, or focus–focus equilibrium.

5. The period–doubling bifurcation (also known flip bifurcation), in which a
periodic orbit of period appears near a periodic orbit of period.

6. The Neimark–Sacker bifurcation, in which an invariant torus appears near
a periodic orbit.

7. The blue–sky bifurcation,6 in which a periodic orbit of large period appears
‘out of a blue sky’ (actually, the orbit is homoclinic to a saddle–node
periodic orbit).

These bifurcations result in the appearance or disappearance of periodic
orbits, depending on the direction in which the bifurcation parameter is varied.
The (dis)appearing orbits may be stable or unstable, depending, among other
factors, on whether the bifurcations are subcritical or supercritical.

On the other hand, as a system parameter is varied, chaotic behavior can
appear via an infinite sequence of period doubling bifurcations of periodic
orbits. This is known as the Feigenbaum phenomenon or the period doubling
route to chaos [Ott93]. Moreover, a chaotic attractor typically has a dense set
of unstable periodic orbits embedded within it. Suitable averages over such
periodic orbits can be used to approximate descriptive quantities for chaotic
attractors such as Lyapunov exponents and fractal dimensions. Such periodic
orbits can sometimes be stabilized (and the chaos thus suppressed) through
small manipulations of a system parameter, an approach called chaos control
[Ott93].

2.2.4 Conservative versus Dissipative Dynamics

Recall (see [II05, II06a, II06b]) that conservative–reversible systems are in
classical dynamics described by Hamilton’s equations

q̇i = ∂pi
H, ṗi = ∂qiH, (i = 1, . . . , n), (2.3)

5 The saddle–node bifurcation or tangential bifurcation (in continuous dynamical
systems) is a local bifurcation in which two fixed points (or, equilibria) of
a dynamical system collide and annihilate each other. In discrete dynamical
systems, the same bifurcation is often instead called a fold bifurcation. Saddle-
node bifurcations may be associated with hysteresis loops and catastrophes.
The normal form of a saddle–node bifurcation in a 1D phase–space is ẋ =
μ + x2, where x is the state variable and μ is the bifurcation parameter.

6 The blue–sky bifurcation is a codimension–1 bifurcation featuring a stable periodic
orbit of infinite period and length, far from equilibrium states.
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with a constant Hamiltonian energy function

H = H(q, p) = Ekin(p) + Epot(q) = E = const. (2.4)

Conservative dynamics visualizes the time evolution of a system in a phase–
space P , in which the coordinates are qi and pi. The instantaneous state of
the system is the representative point (q, p) in P . As time varies, the represen-
tative point (q, p) describes the phase trajectory . A particular case of a phase
trajectory is the position of equilibrium, in which both q̇i = 0 and ṗi = 0.

Dissipative Systems

In addition to conservative–reversible systems, we must consider systems that
give rise to irreversible processes and dissipative structures of Nobel Laureate
Ilya Prigogine (see [GN90, II06a]).

A typical example is a chemical reaction in which a molecule of species A
(say the hydroxyl radical OH) can combine with a molecule of species B say
molecular hydrogen H2) to produce one molecule of species C and one molecule
of species D (respectively H2O and atomic hydrogen H in our example). This
process is symbolized

A + B
k−→ C + D, (2.5)

in which k is the rate constant, generally a function of temperature and pres-
sure. On the l.h.s of (2.5), the reactants A and B combine and disappear in
the course of time, whereas on the r.h.s the products C and D are formed
and appear as the reaction advances. The rate at which particles of species A
are consumed is proportional to the frequency of encounters of molecules of
A and B – which, if the system is dilute, is merely proportional to the product
of their concentrations, c,

ċA = −k cA cB . (2.6)

Clearly, if we reverse time, t′ = −t, and denote by c′A, c′B the values of the
concentrations as functions of t′, (2.6) becomes

ċA = k cA cB ,

and describes a process in which cA would be produced instead of being con-
sumed. This is certainly not equivalent to the phenomenon described by (2.6).

Further examples are heat conduction, given by Fourier equation

∂tT = κ∇2T, κ > 0,
(
∂t ≡

∂

∂t

)
, (2.7)

and diffusion, described by Fick equation

∂tT = D∇2c, D > 0. (2.8)
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Here T is the temperature, c is the concentration of a certain substance
dissolved in the fluid, κ is the heat diffusivity coefficient and D is the mass
diffusivity. Both experiments and these two equations show that when a slight
temperature variation (respectively, inhomogeneity) is imposed in an isother-
mal (respectively, uniform) fluid, it will spread out and eventually disappear.

Again, if we reverse time, we get the completely different laws

∂tT = −κ∇2T, ∂tc = −D∇2c,

describing a situation in which an initial temperature or concentration distur-
bance would be amplified rather than damped.

Both the concentration and the temperature variables are examples of so–
called even variables, whose sign does not change upon time reversal. In con-
trast, the momentum of a particle and the convection velocity of a fluid are odd
variables, since they are ultimately expressed as time derivatives of position–
like variables and change their sign with time reversal.

This leads us to the following general property of the evolution equation of
a dissipative system. Let {Xi} denote a complete set of macroscopic variables
of such a system. Dissipative evolution laws have the form

∂tXi = Fi({Xj}, λ), (2.9)

where λ denote control parameters, and Fi are functions of {Xi} and λ.
The basic feature of (2.9) is that, whatever the form of the functions Fi, in

the absence of constraints they must reproduce the steady state of equilibrium

Fi ({Xj,eq}, λeq) = 0. (2.10)

More generally, for a non–equilibrium steady state,

Fi({Xj,s}, λs) = 0. (2.11)

These relations impose certain restrictions. For instance, the evolution laws
must ensure that positive values are attained for temperature or chemical
concentrations that come up as solutions, or that detailed balance is attained.
This is an important point, for it shows that the analysis of physical sys-
tems cannot be reduced to a mathematical game. In many respects physical
systems may be regarded as highly atypical, specific, or nongeneric from the
mathematical point of view. In these steady state relations, the nonlinearity ,
relating the control parameters λ to the steady state values Xj,s, begins to
play the prominent role.

Thermodynamic Equilibrium

In mechanics, (static) equilibrium is a particular ‘state of rest’ in which both
the velocities and the accelerations of all the material points of a system are
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equal to zero. By definition the net balance of forces acting on each point is
zero at each moment. If this balance is disturbed, equilibrium will be broken.
This is what happens when a piece of metal fractures under the effect of load
(see [GN90, II06a]).

Now, the notion of thermodynamic equilibrium is sharply different. Con-
trary to mechanical equilibrium, the molecules constituting the system are
subject to forces that are not balanced and move continuously in all possible
directions unless the temperature becomes very low. ‘Equilibrium’ refers here
to some collective properties {Xi} characterizing the system as a whole, such
as temperature, pressure, or the concentration of a chemical constituent.

Consider a system {Xi} embedded in a certain environment {Xie}. Dy-
namic role of the sets of properties {Xi} and {Xie} resides primarily in their
exchanges between the system and the environment. For instance, if the sys-
tem is contained in a vessel whose walls are perfectly rigid, permeable to heat
but impermeable to matter, one of these quantities will be identical to the
temperature, T and will control the exchange of energy in the form of heat
between the system and its environment.

We say that the system is in thermodynamic equilibrium if it is completely
identified with its environment, that is, if the properties Xi and Xie have
identical values. In the previous example, thermodynamic equilibrium between
the system and its surroundings is tantamount to T = Te at all times and at all
points in space. But because the walls of the vessel are impermeable to matter,
system and environment can remain highly differentiated in their chemical
composition, c. If the walls become permeable to certain chemical substances i,
thermodynamic equilibrium will prevail when the system and the environment
become indistinguishable as far as those chemicals are concerned. In simple
cases this means that the corresponding composition variables will satisfy the
equality ci = cie, but more generally equilibrium will be characterized by the
equality for a quantity known as the chemical potential, μi = μie. Similarly,
if the walls of the vessel are not rigid, the system can exchange mechanical
energy with its environment. Equilibrium will then also imply the equality of
pressures, p = pe.

According to the above definitions, equilibrium is automatically a station-
ary state, ∂Xi/∂t = 0: the properties Xi do not vary with time. As they are
identical in the properties Xi, the system and the environment have nothing
to exchange. We express this by saying that there are no net fluxes across the
system,

Jeq
i = 0. (2.12)

Nonlinearity

Here is a simple example. Let X be the unique state variable, k a parameter,
and let λ represent the applied constraint. We can easily imagine a mechanism
such as A � X � D in which X evolves according to
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Ẋ = λ− kX,

yielding a stationary state value given by λ − kXs = 0, or Xs = λ/k. In
the linear law linking the steady state value Xs to the control parameter λ
the behavior is bound to be qualitatively similar to that in equilibrium, even
in the presence of strongly correlated non–equilibrium constraints. In the non-
linear law linking the steady state value Xs to the control parameter λ there
is an unlimited number of possible forms describing nonlinear dependencies.
For the certain values of λ the system can present several distinct solutions.

Nonlinearity combined with non–equilibrium constraints allows for multi-
ple solutions and hence for the diversification of the behaviors presented by a
system (see [GN90, II06b]).

The Second Law of Thermodynamics

According to this law there exists a function of the state variables (usually
chosen to be the entropy , S) of the system that varies monotonically during
the approach to the unique final state of thermodynamic equilibrium:

Ṡ ≥ 0 (for any isolated system). (2.13)

It is usually interpreted as a tendency to increased disorder, i.e., an irreversible
trend to maximum disorder.

The above interpretation of entropy and a second law is fairly obvious for
systems of weakly interacting particles, to which the arguments developed by
Boltzmann referred.

Let us now turn to non–isolated systems, which exchange energy or matter
with the environment. The entropy variation will now be the sum of two
terms. One, entropy flux, deS, is due to these exchanges; the other, entropy
production, diS, is due to the phenomena going on within the system. Thus
the entropy variation is

Ṡ =
diS

dt
+

deS

dt
. (2.14)

For an isolated system deS = 0, and (2.14) together with (2.13) reduces to
dS = diS ≥ 0, the usual statement of the second law. But even if the system
is non–isolated, diS will describe those (irreversible) processes that would still
go on even in the absence of the flux term deS. We thus require the following
extended form of the second law:

Ṡ ≥ 0 (nonisolated system). (2.15)

As long as diS is strictly positive, irreversible processes will go on continuously
within the system. Thus, diS > 0 is equivalent to the condition of dissipa-
tivity as time irreversibility. If, on the other hand, diS reduces to zero, the
process will be reversible and will merely join neighboring states of equilibrium
through a slow variation of the flux term deS.
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Among the most common irreversible processes contributing to diS are
chemical reactions, heat conduction, diffusion, viscous dissipation, and relax-
ation phenomena in electrically or magnetically polarized systems. For each
of these phenomena two factors can be defined: an appropriate internal flux ,
Ji, denoting essentially its rate, and a driving force, Xi, related to the main-
tenance of the non–equilibrium constraint. A most remarkable feature is that
diS becomes a bilinear form of Ji and Xi. The following table summarizes
the fluxes and forces associated with some commonly observed irreversible
phenomena (see [GN90, II06a])⎡⎢⎢⎢⎢⎣

Phenomenon Flux Force Rank
Heat conduction Heat flux, Jth grad(1/T ) Vector
Diffusion Mass flux, Jd -[grad(μ/T )− F] Vector
Viscous flow Pressure tensor, P (1/T ) gradv Tensor
Chemical reaction Rate of reaction, ω Affinity of reaction Scalar

⎤⎥⎥⎥⎥⎦
In general, the fluxes Jk are very complicated functions of the forces Xi. A

particularly simple situation arises when their relation is linear, then we have
the celebrated Onsager relations (named after Nobel Laureate Lars Onsager),

Ji = LikXk, (2.16)

in which Lik denote the set of phenomenological coefficients. This is what
happens near equilibrium where they are also symmetric, Lik = Lki. Note,
however, that certain states far from equilibrium can still be characterized by
a linear dependence of the form of (2.16) that occurs either accidentally or
because of the presence of special types of regulatory processes.

Geometry of Phase Space

Now, we reduce (2.9) to the temporal systems, in which there is no space
dependence in the operator Fi, so that ∂ → d, and we have

Ẋi = Fi({Xj}, λ), i = 1, . . . , n. (2.17)

Moreover, we restrict ourselves to autonomous systems, for which Fi does not
depend explicitly on time, a consequence being that the trajectories in phase–
space are invariant. Note that in a Hamiltonian system n must be even and
Fi must reduce to the characteristic structure imposed by (2.3).

A first kind of phase–space trajectory compatible with (2.17) is given by

Ẋi = 0. (2.18)

It includes as particular cases the states of mechanical equilibrium encoun-
tered in conservative systems and the steady states encountered in dissipative
systems. In phase–space such trajectories are quite degenerate, since they are
given by the solutions of the n algebraic equations for n unknowns, Fi = 0.
They are represented by fixed–points.
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If (2.18) is not satisfied, the representative point will not be fixed but will
move along a phase–space trajectory defining a curve. The line element along
this trajectory for a displacement corresponding to (dX1, . . . , dXn) along the
individual axes is given by Euclidean metrics

ds2 = dXidXj = FiFj dt, (i, j = 1, . . . , n). (2.19)

Thus, the projections of the tangent of the curve along the axes are given by

dXα

ds
=

Fα√
FiFj

, (2.20)

and are well defined everywhere. The points belonging to such curves are
called regular points. In contrast, the tangent on the fixed–points is ill–defined
because of the simultaneous vanishing of all Fi’s. Therefore, the fixed–points
could be also referred to as the singular points of the flow generated by (2.17).
The set of fixed–points and phase–space trajectories constitutes the phase
portrait of a dynamical system.

One property that plays a decisive role in the structure of the phase por-
trait relates to the existence–uniqueness theorem of the solutions of ordinary
differential equations. This important result of A. Cauchy asserts that under
quite mild conditions on the functions Fi, the solution corresponding to an
initial condition not on a fixed–point exists and is unique for all times in a
certain interval (0, τ), whose upper bound τ depends on the specific structure
of the functions Fi. In the phase–space representation, the theorem automat-
ically rules out the intersection of two trajectories in any regular point (see
[GN90, II06a]).

A second structure of great importance is the existence and structure of
invariant sets of the flow. By this we mean objects embedded in the phase–
space that are bounded and are mapped onto themselves during the evolution
generated by (2.17). An obvious example of an invariant set is the ensemble of
fixed–points. Another is a closed curve in phase–space representing a periodic
motion.

The impossibility of self–intersection of the trajectories and the existence
of invariant sets of a certain form (fixed–points, limit circles,. . . ) determine,
to a large extent, the structure of the phase portrait in 2D phase–spaces,
and through it the type of behavior that may arise. In three or more dimen-
sions, however, the constraints imposed by these properties are much less
severe, since the trajectories have many more possibilities to avoid each other
by ‘gliding’ within the ‘gaps’ left between invariant sets, thus implying the
possibility for chaos.

In principle, the solution of (2.17) constitutes a well–posed problem, in
the sense that a complete specification of the state (X1, . . . , Xn) at any one
time allows prediction of the state at all other times. But in many cases such
a complete specification may be operationally meaningless. For example, in
a Hamiltonian system composed of particles whose number is of the order
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of Avogadro’s number, or in a chaotic regime, it is no longer meaningful to
argue in terms of individual trajectories. New modes of approach are needed,
and one of the most important is a description of the system in terms of
probability concepts. For this purpose we consider not the rather special case
of a single system, but instead focus attention on the Gibbs ensemble of a very
large number of identical systems, which are in general in different states, but
all subject to exactly the same constraints. They can therefore be regarded
as emanating from an initial ensemble of systems whose representative phase
points were contained in a certain phase–space volume V0 (see [GN90, II06a]).

2.2.5 Attractors

Roughly speaking, an attracting set, or more popularly an attractor , for a
certain dynamical system is a closed subset A of its phase space such that for
various initial conditions the system will evolve towards A. The word attrac-
tor is usually reserved for an attracting set which contains a dense orbit (this
condition insures that it is not just the union of smaller attracting sets). In
the case of an iterated map, with discrete time steps, the simplest attractors
are attracting fixed points . Similarly, for solutions of an autonomous differ-
ential equation, with continuous time, the simplest examples are attracting
equilibrium points. In both cases, the next simplest examples are attracting
periodic orbits. The union of all orbits which converge towards A is called the
basin of attraction (see Figure 2.11) and denoted B(A).

A simple example is that of a point particle moving in a two–well potential
V (x) with friction, as in Figure 2.11(a). Due to the friction, all initial condi-
tions, except those at x = ẋ = 0, or on its stable manifold eventually come to
rest at either x = x0 or x = −x0, which are the two attractors of the system.
A point initially placed on the unstable equilibrium point x = 0, will stay
there forever; and this state has a 1D stable manifold. Figure 2.11(b) shows

Fig. 2.11. (a) Double well potential V (x), and (b) the resulting basins of attraction
in the x − ẋ phase–plane.
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the basins of attraction of the two stable equilibrium points x = ±x0, where
the crosshatched region is the basin for the attractor at x = x0 and the blank
region is the basin for the attractor at x = −x0. The boundary separating
these two basins is the stable manifold of the unstable equilibrium x = 0.

It is very common for dynamical systems to have more than one attractor.
For each such attractor, its basin of attraction is the set of initial condi-
tions leading to long–time behavior that approaches that attractor. Thus the
qualitative behavior of the long–time motion of a given system can be funda-
mentally different depending on which basin of attraction the initial condition
lies in (e.g., attractors can correspond to periodic, quasi–periodic or chaotic
behaviors of different types). Regarding a basin of attraction as a region in
the state space, it has been found that the basic topological structure of such
regions can vary greatly from system to system. In what follows we give
examples and discuss several qualitatively different kinds of basins of
attraction and their practical implications.

Classical Examples of Attractors

Here we present numerical simulations of several popular chaotic systems (see,
e.g., [Wig90, BCB92, Ach97]). Generally, to observe chaos in continuous time
system, it is known that the dimension of the equation must be three or higher.
That is, there is no chaos in any phase plane (see [Str94]), we need the third
dimension for chaos in continuous dynamics. However, note that all forced
oscillators have actually dimension 3, although they are commonly written as
second–order ODEs.7 On the other hand, in discrete–time systems like logistic
map or Hénon map, we can see chaos even if the dimension is one.

Simple Pendulum

Recall (see [II05, II06a, II06b]) that a simple undamped pendulum (see
Figure 2.12), given by equation

θ̈ +
g

l
sin θ = 0, (2.21)

swings forever; it has closed orbits in a 2D phase–space (see Figure 2.13).
The conservative (un–damped) pendulum equation (2.21) does not take

into account the effects of friction and dissipation. On the other hand, a simple
damped pendulum (see Figure 2.12) is given by modified equation, including a
damping term proportional to the velocity,

θ̈ + γθ̇ +
g

l
sin θ = 0,

7 Both Newtonian equation of motion and RLC circuit can generate chaos, provided
they have a forcing term. This forcing (driving) term in second–order ODEs is
the motivational reason for development of the jet–bundle formalism for non–
autonomous dynamics (see [II06b]).
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Fig. 2.12. Force diagram of a simple gravity pendulum.

Fig. 2.13. Phase portrait of a simple gravity pendulum.

with the positive constant damping γ. This pendulum settles to rest (see
Figure 2.14). Its spiralling orbits lead to a point attractor (focus) in a 2D
phase–space. All closed trajectories for periodic solutions are destroyed, and
the trajectories spiral around one of the critical points, corresponding to the
vertical equilibrium of the pendulum. On the phase plane, these critical points
are stable spiral points for the underdamped pendulum, and they are stable
nodes for the overdamped pendulum. The unstable equilibrium at the inverted
vertical position remains an unstable saddle point. It is clear physically that
damping means loss of energy. The dynamical motion of the pendulum decays
due to the friction and the pendulum relaxes to the equilibrium state in the
vertical position.

Finally, a driven pendulum, periodically forced by a force term F cos(wDt),
is given by equation

θ̈ + γθ̇ +
g

l
sin θ = F cos(wDt). (2.22)
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Fig. 2.14. A damped gravity pendulum settles to a rest: its phase portrait (up)
shows spiralling orbits that lead to a focus attractor; its time plot (down) shows
three common damping cases.

It has a 3D phase–space and can exhibit chaos (for certain values of its para-
meters, see Figure 2.15).

Van der Pol Oscillator

The unforced Van der Pol oscillator has the form of a second order ODE

ẍ = α (1− x2) ẋ− ω2 x. (2.23)

Its celebrated limit cycle is given in Figure 2.16. The simulation is performed
with zero initial conditions and parameters α = random(0, 3), and ω = 1.
The Van der Pol oscillator was the first relaxation oscillator , used in 1928
as a model of human heartbeat (ω controls how much voltage is injected
into the system, and α controls the way in which voltage flows through the
system). The oscillator was also used as a model of an electronic circuit that
appeared in very early radios in the days of vacuum tubes. The tube acts like
a normal resistor when current is high, but acts like a negative resistor if the
current is low. So this circuit pumps up small oscillations, but drags down
large oscillations. α is a constant that affects how nonlinear the system is.
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Fig. 2.15. A driven pendulum has a 3D phase–space with angle θ, angular velocity
θ̇ and time t. Dashed lines denote steady states, while solid lines denote transients.
Right–down we see a sample chaotic attractor (adapted and modified from [TS01]).

For α equal to zero, the system is actually just a linear oscillator. As α grows
the nonlinearity of the system becomes considerable.

The sinusoidally–forced Van der Pol oscillator is given by equation

ẍ− α (1− x2) ẋ + ω2 x = γ cos(φt), (2.24)

where φ is the forcing frequency and γ is the amplitude of the forcing sinusoid.

Nerve Impulse Propagation

The nerve impulse propagation along the axon of a neuron can be studied
by combining the equations for an excitable membrane with the differential
equations for an electrical core conductor cable, assuming the axon to be an
infinitely long cylinder. A well known approximation of FitzHugh [Fit61] and
Nagumo [NAY60] to describe the propagation of voltage pulses V (x, t) along
the membranes of nerve cells is the set of coupled PDEs8

8 Note that the FitzHugh–Nagumo model is an approximation for the celebrated
Hodgkin–Huxley model (HH) for neural action potential [HH52, Hod64], described
by the nonlinear coupled ODEs for the four variables, V for the membrane poten-
tial, and m, h and n for the gating variables of sodium and potassium channels,

CV̇ = −gNam
3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Iext

j ,

ṁ = −(am + bm) m + am, ḣ = −(ah + bh) h + ah, ṅ = −(an + bn) n + an,
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Fig. 2.16. Cascade of 30 unforced Van der Pol oscillators, simulated using
MathematicaTM ; top–down: displacements, velocities and phase–plot (showing the
celebrated limit cycle).

where

am = 0.1 (V + 40)/[1 − e−(V +40)/10], bm = 4 e−(V +65)/18,

ah = 0.01 (V + 55)/[1 − e−(V +55)/10], bh = 0.125 e−(V +65)/80,
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Vxx − Vt = F (V ) + R− I, Rt = c(V + a− bR), (2.27)

where R(x, t) is the recovery variable, I the external stimulus and a, b, c
are related to the membrane radius, specific resistivity of the fluid inside the
membrane and temperature factor respectively.

When the spatial variation of V , namely Vxx, is negligible, (2.27) reduces
to the Van der Pol oscillator,

V̇ = V − V 3

3
−R + I, Ṙ = c(V + a− bR),

with F (V ) = −V +V 3

3 . Normally the constants in (2.27) satisfy the inequalities
b < 1 and 3a + 2b > 3, though from a purely mathematical point of view
this need not be insisted upon. Then with a periodic (ac) applied membrane
current A1 cosωt and a (dc) bias A0, the Van der Pol equation becomes

V̇ = V − V 3

3
−R + A0 + A1 cosωt, Ṙ = c(V + a− bR). (2.28)

Further, (2.28) can be rewritten as a single second–order ODE by differ-
entiating V̇ with respect to time and using Ṙ for R,

an = 0.07 e−(V +65)/20, bn = 1/[1 + e−(V +35)/10].

Here the reversal potentials of Na, an K channels and leakage are VNa = 50
mV, VK = −77 mV and VL = −54.5 mV; the maximum values of corresponding
conductivities are gNa = 120 mS/cm2, gK = 36 mS/cm2 and gL = 0.3 mS/cm2;
the capacity of the membrane is C = 1 μF/cm2. The external, input current is
given by

Iext
j = gsyn(Va − Vc)

∑
n

α(t − tin), (2.25)

which is induced by the pre–synaptic spike–train input applied to the neuron i,
given by

Ui(t) = Va

∑
n

δ(t − tin). (2.26)

In (2.25) and (2.26), tin is the nth firing time of the spike–train inputs, gsyn and
Vc denote the conductance and the reversal potential, respectively, of the synapse,
τ s is the time constant relevant to the synapse conduction, and α(t) is the alpha
function given by

α(t) = (t/τ s) e−t/τsΘ(t),

where Θ(t) is the Heaviside function. The HH model was originally proposed to
account for the property of squid giant axons [HH52, Hod64] and it has been gen-
eralized with modifications of ion conductances [Arb98]. The HH–type models
have been widely adopted for a study on activities of transducer neurons such as
motor and thalamus relay neurons, which transform the amplitude–modulated
input to spike–train outputs. In this section, we pay our attention to data–
processing neurons which receive and emit the spike–train pulses.
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V̈ − (1− bc)
{

1− V 2

1− bc

}
V̇ − c(b− 1)V +

bc

3
V 3

= c(A0b− a) + A1 cos(ωt + φ), (2.29)

where φ = tan−1 ω
bc . Using the transformation x = (1− bc)−(1/2)V , t −→ t′ =

t + φ
ω , (2.29) can be rewritten as

ẍ + p(x2 − 1)ẋ + ω2
0x + βx3 = f0 + f1 cosωt, where (2.30)

p = (1− bc), ω2
0 = c(1− b), β = bc

(1− bc)
3

,

f0 = c
(A0b− a)√

1− bc
, f1 =

A1√
1− bc

.

Note that (2.30), or its rescaled form

ẍ + p(kx2 + g)ẋ + ω2
0x + βx3 = f0 + f1 cosωt, (2.31)

is the Duffing–Van der Pol equation. In the limit k = 0, we have the Duffing
equation discussed below (with f0 = 0), and in the case β = 0 (g = −1,
k = 1) we have the forced van der Pol equation. Equation (2.31) exhibits
a very rich variety of bifurcations and chaos phenomena, including quasi–
periodicity, phase lockings and so on, depending on whether the potential
V = 1

2ω
2
0x

2 + βx4

4 is i) a double well, ii) a single well or iii) a double hump
[Lak97, Lak03].

Duffing Oscillator

The forced Duffing oscillator [Duf18] has the form similar to (2.24),

ẍ + b ẋ− a x (1− x2) = γ cos(φt). (2.32)

Stroboscopic Poincaré sections of a strange attractor can be seen (Figure 2.17),
with the stretch–and–fold action at work. The simulation is performed with
parameters: a = 1, b = 0.2, and γ = 0.3, φ = 1. The Duffing equation is
used to model a double well oscillator such as the magneto–elastic mechanical
system. This system consists of a beam positioned vertically between two
magnets, with the top end fixed, and the bottom end free to swing. The
beam will be attracted to one of the two magnets, and given some velocity
will oscillate about that magnet until friction stops it. Each of the magnets
creates a fixed–point where the beam may come to rest above that magnet
and remain there in equilibrium. However, when this whole system is shaken
by a periodic forcing term, the beam may jump back and forth from one
magnet to the other in a seemingly random manner. Depending on how big
the shaking term is, there may be no stable fixed–points and no stable fixed
cycles in the system.
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Fig. 2.17. Duffing strange attractor, showing stroboscopic Poincaré sections; sim-
ulated using Dynamics SolverTM .

Fig. 2.18. The celebrated Rossler attractor, simulated using Dynamics SolverTM .

Rossler System

Classical Rossler system is given by equations

ẋ = −y − z, ẏ = x + b y, ż = b + z (x− a). (2.33)

Using the parameter values a = 4 and b = 0.2, the phase–portrait is produced
(see Figure 2.18), showing the celebrated attractor. The system is credited to
O. Rossler and arose from work in chemical kinetics.
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Fig. 2.19. Ueda attractor in the (x, ẋ)−plane.

Ueda Attractor

The Ueda attractor, discovered by Y. Ueda in 1961, appears to be a trapped
attractor (see Figure 2.19). Here the plane is mapped into itself by following
the trajectory of the modified Duffing equation

ẍ + 0.05 ẋ + x3 = 7.5 cos(t),

for time 0 ≤ t ≤ 2π.

Fractal Basin Boundaries

In the above example of a point particle moving in a two–well potential V (x)
with friction (Figure 2.11), the basin boundary was a smooth curve. However,
other possibilities exist. An example of this occurs for the map

xn+1 = (3xn) mod 1, yn+1 = 1.5 + cos 2πxn

For almost any initial condition (except for those precisely on the boundary
between the basins of attraction), limn→∞ yn is either y = +∞ or y = −∞,
which we may regard as the two attractors of the system. Figure 2.20 shows
the basin structure for this map, with the basin for the y = −∞ attractor
black and the basin of the y = +∞ attractor blank. In contrast to the previous
example, the basin boundary is no longer a smooth curve. In fact, it is a fractal
curve with a box-counting dimension 1.62 ... . We emphasize that, although
fractal, this basin boundary is still a simple curve (it can be written as a
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Fig. 2.20. A fractal curve as a basin boundary.

continuous parametric functional relationship x = x(s), y = y(s) for 1 > s > 0
such that

(x(s1), y(s1)) 
= (x(s2), y(s2))

if s1 
= s2.
Another example of a system with a fractal basin boundary is the forced

damped pendulum equation,

θ̈ + 0.1 θ̇ + sin θ = 2.1 cos t.

For these parameters, there are two attractors which are both periodic orbits
[GOY87]. Figure 3 shows the basins of attraction of these two attractors with
initial θ values plotted horizontally and initial values of θ̇ plotted vertically.
The figure was made by initializing many initial conditions on a fine rectan-
gular grid. Each initial condition was then integrated forward to see which
attractor its orbit approached. If the orbit approached a particular one of the
two attractors, a black dot was plotted on the grid. If it approached the other
attractor, no dot was plotted. The dots are dense enough that they fill in a
solid black region except near the basin boundary. The speckled appearance
of much of this figure is a consequence of the intricate, fine–scaled structure
of the basin boundary. In this case the basin boundary is again a fractal set
(its box–counting dimension is about 1.8), but its topology is more compli-
cated than that of the basin boundary of Figure 2.21 in that the Figure 2.21
basin boundary is not a simple curve. In both of the above examples in which
fractal basin boundaries occur, the fractality is a result of chaotic motion (see
transient chaos) of orbits on the boundary, and this is generally the case for
fractal basin boundaries [MGO85].
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Fig. 2.21. Basins of attraction for a forced damped pendulum.

We have seen so far that there can be basin boundaries of qualitatively
different types. As in the case of attractors, bifurcations can occur in which
basin boundaries undergo qualitative changes as a system parameter passes
through a critical bifurcation value. For example, for a system parameter
p < pc, the basin boundary might be a simple smooth curve, while for p >
pc it might be fractal. Such basin boundary bifurcations have been called
metamorphoses [GOY87].

The Uncertainty Exponent

Fractal basin boundaries, like those illustrated above, are extremely common
and have potentially important practical consequences [Ott93]. In particular,
they may make it more difficult to identify the attractor corresponding to
a given initial condition, if that initial condition has some uncertainty. This
aspect is already implied by the speckled appearance of Figure 2.21. A quan-
titative measure of this is provided by the uncertainty exponent [MGO85].
For definiteness, suppose we randomly choose an initial condition with uni-
form probability density in the area of initial condition space corresponding
to the plot in Figure 2.21. Then, with probability one, that initial condition
will lie in one of the basins of the two attractors (the basin boundary has
zero Lebesgue measure (i.e., ‘zero area’) and so there is zero probability that
a random initial condition is on the boundary). Now assume that we are also
told that the initial condition has some given uncertainty, ε, and, for the sake
of illustration, assume that this uncertainty can be represented by saying that
the real initial condition lies within a circle of radius ε centered at the coor-
dinates (x0, y0) that were randomly chosen. We ask what is the probability
that the (x0, y0) could lie in a basin that is different from that of the true ini-
tial condition, i.e., what is the probability, ρ(ε), that the uncertainty ε could
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cause us to make a mistake in a determination of the attractor that the orbit
goes to. Geometrically, this is the same as asking what fraction of the area of
Figure 2.21 is within a distance ε of the basin boundary. This fraction scales as

ρ(ε) ∼ εα,

where α is the uncertainty exponent and is given by α = D − D0, where D
is the dimension of the initial condition space (D = 2 for Figure 2.21) and
is the box–counting dimension of the basin boundary. For the example of
Figure 2.21, since D0

∼= 1.8, we have α ∼= 0.2. For small α it becomes very
difficult to improve predictive capacity (i.e., to predict the attractor from the
initial condition) by reducing the uncertainty. For example, if α = 0.2, to
reduce ρ(ε) by a factor of 10, the uncertainty ε would have to be reduced
by a factor of 105. Thus, fractal basin boundaries (analogous to the butterfly
effect of chaotic attractors, see next subsection) pose a barrier to scientific
prediction, and this barrier is related to the presence of chaos [Ott93].

2.2.6 Chaotic Behavior

Lorenz Strange Attractor

Recall that an attractor is a set of system’s states (i.e., points in the system’s
phase–space), invariant under the dynamics, towards which neighboring states
in a given basin of attraction asymptotically approach in the course of dynamic
evolution.9 An attractor is defined as the smallest unit which cannot be itself
decomposed into two or more attractors with distinct basins of attraction.
This restriction is necessary since a dynamical system may have multiple
attractors, each with its own basin of attraction.

Conservative systems do not have attractors, since the motion is periodic.
For dissipative dynamical systems, however, volumes shrink exponentially, so
attractors have 0 volume in nD phase–space.

In particular, a stable fixed–point surrounded by a dissipative region is
an attractor known as a map sink .10 Regular attractors (corresponding to 0
Lyapunov exponents) act as limit cycles, in which trajectories circle around
a limiting trajectory which they asymptotically approach, but never reach.
The so–called strange attractors11 are bounded regions of phase–space (corre-
sponding to positive Lyapunov characteristic exponents) having zero measure
in the embedding phase–space and a fractal dimension. Trajectories within a
strange attractor appear to skip around randomly.
9 A basin of attraction is a set of points in the system’s phase–space, such that

initial conditions chosen in this set dynamically evolve to a particular attractor.
10 A map sink is a stable fixed–point of a map which, in a dissipative dynamical

system, is an attractor.
11 A strange attractor is an attracting set that has zero measure in the embedding

phase–space and has fractal dimension. Trajectories within a strange attractor
appear to skip around randomly.
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In 1963, Ed Lorenz from MIT was trying to improve weather forecasting.
Using a primitive computer of those days, he discovered the first chaotic att-
ractor. Lorenz used three Cartesian variables, (x, y, z), to define atmospheric
convection. Changing in time, these variables gave him a trajectory in a
(Euclidean) 3D–space. From all starts, trajectories settle onto a chaotic, or
strange attractor .12

More precisely, Lorenz reduced the Navier–Stokes equations for convec-
tive Bénard fluid flow into three first order coupled nonlinear ODEs and

12 Edward Lorenz is a professor of meteorology at MIT who wrote the first clear
paper on deterministic chaos. The paper was called ‘Deterministic Nonperiodic
Flow’ and it was published in the Journal of Atmospheric Sciences in 1963. Before
that, in 1960, Lorenz began a project to simulate weather patterns on a computer
system called the Royal McBee. Lacking much memory, the computer was unable
to create complex patterns, but it was able to show the interaction between major
meteorological events such as tornados, hurricanes, easterlies and westerlies. A
variety of factors was represented by a number, and Lorenz could use computer
printouts to analyze the results. After watching his systems develop on the com-
puter, Lorenz began to see patterns emerge, and was able to predict with some
degree of accuracy what would happen next. While carrying out an experiment,
Lorenz made an accidental discovery. He had completed a run, and wanted to
recreate the pattern. Using a printout, Lorenz entered some variables into the
computer and expected the simulation to proceed the same as it had before. To
his surprise, the pattern began to diverge from the previous run, and after a few
‘months’ of simulated time, the pattern was completely different. Lorenz even-
tually discovered why seemingly identical variables could produce such different
results. When Lorenz entered the numbers to recreate the scenario, the printout
provided him with numbers to the thousandth position (such as 0.617). However,
the computer’s internal memory held numbers up to the millionth position (such
as 0.617395); these numbers were used to create the scenario for the initial run.
This small deviation resulted in a completely divergent weather pattern in just
a few months. This discovery creates the groundwork of chaos theory: In a sys-
tem, small deviations can result in large changes. This concept is now known as
a butterfly effect.

Lorenz definition of chaos is: “The property that characterizes a dynamical
system in which most orbits exhibit sensitive dependence.” Dynamical systems
(like the weather) are all around us. They have recurrent behavior (it is always
hotter in summer than winter) but are very difficult to pin down and predict
apart from the very short term. ‘What will the weather be tomorrow?’ – can be
anticipated, but ‘What will the weather be in a months time?’ is an impossible
question to answer.

Lorenz showed that with a set of simple differential equations seemingly very
complex turbulent behavior could be created that would previously have been
considered as random. He further showed that accurate longer range forecasts in
any chaotic system were impossible, thereby overturning the previous orthodoxy.
It had been believed that the more equations you add to describe a system, the
more accurate will be the eventual forecast.
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demonstrated with these the idea of sensitive dependence upon initial con-
ditions and chaos (see [Lor63, Spa82]).
We rewrite the celebrated Lorenz equations here as

ẋ = a(y − x), ẏ = bx− y − xz, ż = xy − cz, (2.34)

where x, y and z are dynamical variables, constituting the 3D phase–space of
the Lorenz system; and a, b and c are the parameters of the system. Originally,
Lorenz used this model to describe the unpredictable behavior of the weather,
where x is the rate of convective overturning (convection is the process by
which heat is transferred by a moving fluid), y is the horizontal temperature
overturning, and z is the vertical temperature overturning; the parameters are:
a ≡ P−proportional to the Prandtl number (ratio of the fluid viscosity of a
substance to its thermal conductivity, usually set at 10), b ≡ R−proportional
to the Rayleigh number (difference in temperature between the top and bot-
tom of the system, usually set at 28), and c ≡ K−a number proportional to
the physical proportions of the region under consideration (width to height
ratio of the box which holds the system, usually set at 8/3). The Lorenz
system (2.34) has the properties:

1. Symmetry : (x, y, z) → (−x,−y, z) for all values of the parameters, and
2. The z−axis (x = y = 0) is invariant (i.e., all trajectories that start on it

also end on it).

Nowadays it is well–known that the Lorenz model is a paradigm for low–
dimensional chaos in dynamical systems in synergetics and this model or its
modifications are widely investigated in connection with modelling purposes
in meteorology, hydrodynamics, laser physics, superconductivity, electronics,
oil industry, chemical and biological kinetics, etc.

The 3D phase–portrait of the Lorenz system (2.189) shows the celebrated
‘Lorenz mask ’, a special type of fractal attractor (see Figure 2.22). It depicts
the famous ‘butterfly effect ’, (i.e., sensitive dependence on initial conditions)
– the popular idea in meteorology that ‘the flapping of a butterfly’s wings in

Fig. 2.22. Bénard cells, showing a typical vortex of a rolling air, with a warm air
rising in a ring and a cool air descending in the center (left). A simple model of
the Bénard cells provided by the celebrated ‘Lorenz–butterfly’ (or, ‘Lorenz–mask’)
strange attractor (right).
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Brazil can set off a tornado in Texas’ (i.e., a tiny difference is amplified until
two outcomes are totally different), so that the long term behavior becomes
impossible to predict (e.g., long term weather forecasting). The Lorenz mask
has the following characteristics:

1. Trajectory does not intersect itself in three dimensions;
2. Trajectory is not periodic or transient;
3. General form of the shape does not depend on initial conditions; and
4. Exact sequence of loops is very sensitive to the initial conditions.

Feigenbaum’s Universality

Mitchell Jay Feigenbaum (born December 19, 1944; Philadelphia, USA) is a
mathematical physicist whose pioneering studies in chaos theory led to the
discovery of the Feigenbaum constant .

In 1964 he began graduate studies at the MIT. Enrolling to study electrical
engineering, he changed to physics and was awarded a doctorate in 1970 for
a thesis on dispersion relations under Francis Low. After short positions at
Cornell University and Virginia Polytechnic Institute, he was offered a longer–
term post at Los Alamos National Laboratory to study turbulence. Although
the group was ultimately unable to unravel the intractable theory of turbulent
fluids, his research led him to study chaotic maps.

Many mathematical maps involving a single linear parameter exhibit
apparently random behavior known as chaos when the parameter lies in a
certain range. As the parameter is increased towards this region, the map
undergoes bifurcations at precise values of the parameter. At first there is one
stable point, then bifurcating to oscillate between two points, then bifurcating
again to oscillate between four points and so on. In 1975 Feigenbaum, using
the HP-65 computer he was given, discovered that the ratio of the differ-
ence between the values at which such successive period–doubling bifurcations
(called the Feigenbaum cascade) occur tends to a constant of around 4.6692.
He was then able to provide a mathematical proof of the fact, and showed
that the same behavior and the same constant would occur in a wide class
of mathematical functions prior to the onset of chaos. For the first time this
universal result enabled mathematicians to take their first huge step to unrav-
elling the apparently intractable ‘random’ behavior of chaotic systems. This
‘ratio of convergence’ is now known as the Feigenbaum constant.

More precisely, the Feigenbaum constant δ is a universal constant for func-
tions approaching chaos via successive period doubling bifurcations. It was
discovered by Feigenbaum in 1975, while studying the fixed–points of the it-
erated function f(x) = 1−μ|x|r, and characterizes the geometric approach of
the bifurcation parameter to its limiting value (see Figure 2.23) as the para-
meter μ is increased for fixed x [Fei79].

The Logistic map is a well known example of the maps that Feigenbaum
studied in his famous Universality paper [Fei78].
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Fig. 2.23. Feigenbaum constant: approaching chaos via successive period doubling
bifurcations. The plot on the left is made by iterating equation f(x) = 1 − μ|x|r
with r = 2 several hundred times for a series of discrete but closely spaced values
of μ, discarding the first hundred or so points before the iteration has settled down
to its fixed–points, and then plotting the points remaining. The plot on the right
more directly shows the cycle may be constructed by plotting function fn(x) −
x as a function of μ, showing the resulting curves for n = 1, 2, 4. Simulated in
MathematicaTM .

In 1986 Feigenbaum was awarded the Wolf Prize in Physics. He has been
Toyota Professor at Rockefeller University since 1986.

For details on Feigenbaum universality, see [Gle87].

May’s Logistic Map

Let x(t) be the population of the species at time t; then the conservation law
for the population is conceptually given by (see [Mur02])

ẋ = births− deaths + migration, (2.35)

where ẋ = dx/dt. The above conceptual equation gave rise to a series of popu-
lation models. The simplest continuous–time model, due to Thomas Malthus
from 1798 [Mal798],13 has no migration, while the birth and death terms are
proportional to x,

13 The Rev. Thomas Robert Malthus, FRS (February, 1766–December 23, 1834),
was an English demographer and political economist best known for his pes-
simistic but highly influential views. Malthus’s views were largely developed in
reaction to the optimistic views of his father, Daniel Malthus and his associates,
notably Jean-Jacques Rousseau and William Godwin. Malthus’s essay was also in
response to the views of the Marquis de Condorcet. In An Essay on the Principle
of Population, first published in 1798, Malthus made the famous prediction that
population would outrun food supply, leading to a decrease in food per person:
“The power of population is so superior to the power of the earth to produce
subsistence for man, that premature death must in some shape or other visit
the human race. The vices of mankind are active and able ministers of depopula-
tion. They are the precursors in the great army of destruction; and often finish the
dreadful work themselves. But should they fail in this war of extermination, sickly
seasons, epidemics, pestilence, and plague, advance in terrific array, and sweep
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ẋ = bx− dx =⇒ x(t) = x0e(b−d)t, (2.36)

where b, d are positive constants and x0 = x(0) is the initial population.
Thus, according to the Malthus model (2.36), if b > d, the population grows
exponentially, while if b < d, it dies out. Clearly, this approach is fairly over-
simplified and apparently fairly unrealistic. (However, if we consider the past
and predicted growth estimates for the total world population from the 1900,
we see that it has actually grown exponentially.)

This simple example shows that it is difficult to make long–term predic-
tions (or, even relatively short–term ones), unless we know sufficient facts
to incorporate in the model to make it a reliable predictor . In the long run,
clearly, there must be some adjustment to such exponential growth. François
Verhulst [Ver838, Ver845]14 proposed that a self–limiting process should ope-
rate when a population becomes too large. He proposed the so–called logistic
growth population model,

ẋ = rx(1− x/K), (2.37)

off their thousands and tens of thousands. Should success be still incomplete,
gigantic inevitable famine stalks in the rear, and with one mighty blow levels the
population with the food of the world.” This Principle of Population was based
on the idea that population if unchecked increases at a geometric rate, whereas
the food supply grows at an arithmetic rate. Only natural causes (eg. accidents
and old age), misery (war, pestilence, and above all famine), moral restraint and
vice (which for Malthus included infanticide, murder, contraception and homo-
sexuality) could check excessive population growth. Thus, Malthus regarded his
Principle of Population as an explanation of the past and the present situation of
humanity, as well as a prediction of our future. The eight major points regarding
evolution found in his 1798 Essay are: (i) Population level is severely limited by
subsistence. (ii) When the means of subsistence increases, population increases.
(iii) Population pressures stimulate increases in productivity. (iv) Increases in
productivity stimulates further population growth. (v) Since this productivity
can never keep up with the potential of population growth for long, there must
be strong checks on population to keep it in line with carrying capacity. (vi) It is
through individual cost/benefit decisions regarding sex, work, and children that
population and production are expanded or contracted. (vii) Positive checks will
come into operation as population exceeds subsistence level. (viii) The nature of
these checks will have significant effect on the rest of the sociocultural system.

Evolutionists John Maynard Smith and Ronald Fisher were both critical of
Malthus’ theory, though it was Fisher who referred to the growth rate r (used
in logistic equation) as the Malthusian parameter . Fisher referred to “... a relic
of creationist philosophy ...” in observing the fecundity of nature and deducing
(as Darwin did) that this therefore drove natural selection. Smith doubted that
famine was the great leveller that Malthus insisted it was.

14 François Verhulst (October 28, 1804–February 15, 1849, Brussels, Belgium) was
a mathematician and a doctor in number theory from the University of Ghent in
1825. Verhulst published in 1838 the logistic demographic model (2.37).
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where r,K are positive constants. In the Verhulst logistic model (2.37), the
constant K is the carrying capacity of the environment (usually determined by
the available sustaining resources), while the per capita birth rate rx(1−x/K)
is dependent on x. There are two steady states (where ẋ = 0) for (2.37): (i)
x = 0 (unstable, since linearization about it gives ẋ ≈ rx); and (ii) x =
K (stable, since linearization about it gives d

dt (x − K) ≈ −r(x − K), so
limt→∞ x = K). The carrying capacity K determines the size of the stable
steady state population, while r is a measure of the rate at which it is reached
(i.e., the measure of the dynamics) – thus 1/r is a representative timescale of
the response of the model to any change in the population. The solution of
(2.37) is

x(t) =
x0Kert

[K + x0(ert − 1)]
=⇒ lim

t→∞
x(t) = K.

In general, if we consider a population to be governed by

ẋ = f(x), (2.38)

where typically f(x) is a nonlinear function of x, then the equilibrium solutions
x∗ are solutions of f(x) = 0, and are linearly stable to small perturbations if
ḟ(x∗) < 0, and unstable if ḟ(x∗) > 0 [Mur02].

In the mid 20th century, ecologists realised that many species had no
overlap between successive generations and so population growth happens in
discrete–time steps xt, rather than in continuous–time x(t) as suggested by
the conservative law (2.35) and its Maltus–Verhulst derivations. This leads
to study discrete–time models given by difference equations, or, maps, of the
form

xt+1 = f(xt), (2.39)
where f(xt) is some generic nonlinear function of xt. Clearly, (2.39) is a
discrete–time version of (2.38). However, instead of solving differential equa-
tions, if we know the particular form of f(xt), it is a straightforward matter to
evaluate xt+1 and subsequent generations by simple recursion of (2.39). The
skill in modelling a specific population’s growth dynamics lies in determining
the appropriate form of f(xt) to reflect known observations or facts about the
species in question.

In 1970s, Robert May, a physicist by training, won the Crafoord Prize
for ‘pioneering ecological research in theoretical analysis of the dynamics of
populations, communities and ecosystems’, by proposing a simple logistic map
model for the generic population growth (2.39).15 May’s model of population
growth is the celebrated logistic map [May76, May73, May76],
15 Lord Robert May received his Ph.D. in theoretical physics from University of

Sydney in 1959. He then worked at Harvard University and the University of
Sydney before developing an interest in animal population dynamics and the
relationship between complexity and stability in natural communities. He moved
to Princeton University in 1973 and to Oxford and the Imperial College in 1988.
May was able to make major advances in the field of population biology through
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Fig. 2.24. Bifurcation diagram for the logistic map, simulated using
MathematicaTM .

xt+1 = r xt (1− xt), (2.40)

where r is the Malthusian parameter that varies between 0 and 4, and the
initial value of the population x0 = x(0) is restricted to be between 0 and
1. Therefore, in May’s logistic map (2.40), the generic function f(xt) gets a
specific quadratic form

f(xt) = r xt (1− xt).

For r < 3, the xt have a single value. For 3 < r < 3.4, the xt oscillate between
two values (see bifurcation diagram16 on Figure 2.24). As r increases, bifur-
cations occur where the number of iterates doubles. These period–doubling
bifurcations continue to a limit point at rlim = 3.569944 at which the period
is 2∞ and the dynamics become chaotic. The r values for the first two bifur-
cations can be found analytically, they are r1 = 3 and r2 = 1 +

√
6. We can

label the successive values of r at which bifurcations occur as r1, r2, ... The
universal number associated with such period doubling sequences is called the
Feigenbaum number ,

δ = lim
k→∞

rk − rk−1

rk+1 − rk
≈ 4.669.

the application of mathematics. His work played a key role in the development
of theoretical ecology through the 1970s and 1980s. He also applied these tools to
the study of disease and to the study of bio–diversity .

16 A bifurcation diagram shows the possible long–term values a variable of a system
can get in function of a parameter of the system.
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This series of period–doubling bifurcations says that close enough to rlim

the distance between bifurcation points decreases by a factor of δ for each
bifurcation. The complex fractal pattern got in this way shrinks indefinitely.

Hénon’s Map and Strange Attractor

Michel Hénon (born 1931 in Paris, France) is a mathematician and astro-
nomer. He is currently at the Nice Observatory. In astronomy, Hénon is well
known for his contributions to stellar dynamics, most notably the problem of
globular cluster (see [Gle87]). In late 1960s and early 1970s he was involved
in dynamical evolution of star clusters, in particular the globular clusters.
He developed a numerical technique using Monte Carlo methods, to follow
the dynamical evolution of a spherical star cluster much faster than the so–
called n−body methods. In mathematics, he is well known for the Hénon map,
a simple discrete dynamical system that exhibits chaotic behavior. Lately he
has been involved in the restricted 3−body problem.

His celebrated Hénon map [Hen69] is a discrete–time dynamical system
that is an extension of the logistic map (2.40) and exhibits a chaotic behav-
ior. The map was introduced by Michel Hénon as a simplified model of the
Poincaré section of the Lorenz system (2.34). This 2D–map takes a point
(x, y) in the plane and maps it to a new point defined by equations

xn+1 = yn + 1− ax2
n, yn+1 = bxn,

The map depends on two parameters, a and b, which for the canonical Hénon
map have values of a = 1.4 and b = 0.3 (see Figure 2.25). For the canonical
values the Hénon map is chaotic. For other values of a and b the map may
be chaotic, intermittent, or converge to a periodic orbit. An overview of the
type of behavior of the map at different parameter values may be obtained

Fig. 2.25. Hénon strange attractor (see text for explanation), simulated using
Dynamics SolverTM .
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Fig. 2.26. Bifurcation diagram of the Hénon strange attractor, simulated using
Dynamics SolverTM .

from its orbit (or, bifurcation) diagram (see Figure 2.26). For the canonical
map, an initial point of the plane will either approach a set of points known
as the Hénon strange attractor , or diverge to infinity. The Hénon attractor
is a fractal, smooth in one direction and a Cantor set in another. Numerical
estimates yield a correlation dimension of 1.42±0.02 (Grassberger, 1983) and
a Hausdorff dimension of 1.261±0.003 (Russel 1980) for the Hénon attractor.
As a dynamical system, the canonical Hénon map is interesting because, unlike
the logistic map, its orbits defy a simple description. The Hénon map maps
two points into themselves: these are the invariant points. For the canonical
values of a and b, one of these points is on the attractor: x = 0.631354477...
and y = 0.189406343... This point is unstable. Points close to this fixed–point
and along the slope 1.924 will approach the fixed–point and points along the
slope −0.156 will move away from the fixed–point. These slopes arise from the
linearizations of the stable manifold and unstable manifold of the fixed–point.
The unstable manifold of the fixed–point in the attractor is contained in the
strange attractor of the Hénon map. The Hénon map does not have a strange
attractor for all values of the parameters a and b. For example, by keeping
b fixed at 0.3 the bifurcation diagram shows that for a = 1.25 the Hénon
map has a stable periodic orbit as an attractor. Cvitanovic et al. [CGP88]
showed how the structure of the Hénon strange attractor could be understood
in terms of unstable periodic orbits within the attractor.

For the (slightly modified) Hénon map: xn+1 = ayn + 1− x2
n, yn+1 = bxn,

there are three basins of attraction (see Figure 2.27).
The generalized Hénon map is a 3D–system (see Figure 2.28)

xn+1 = a xn − z (yn − x2
n)), yn+1 = z xn + a (yn − x2

n)), zn+1 = zn,

where a = 0.24 is a parameter. It is an area–preserving map, and simulates
the Poincaré map of period orbits in Hamiltonian systems. Repeated ran-
dom initial conditions are used in the simulation and their gray–scale color is
selected at random.



324 2 Chaotic Brain/Mind Dynamics

Fig. 2.27. Three basins of attraction for the Hénon map xn+1 = ayn + 1 − x2
n,

yn+1 = bxn, with a = 0.475.

Fig. 2.28. Phase–plot of the area–preserving generalized Hénon map, simulated
using Dynamics SolverTM .

Other Famous 2D Chaotic Maps

1. The standard map:

xn+1 = xn + yn+1/2π, yn+1 = yn + a sin(2πxn).

2. The circle map:

xn+1 = xn + c + yn+1/2π, yn+1 = byn − a sin(2πxn).
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3. The Duffing map:

xn+1 = yn, yn+1 = −bxn + ayn − y3
n.

4. The Baker map:

xn+1 = bxn, yn+1 = yn/a if yn ≤ a,

xn+1 = (1− c) + cxn, yn+1 = (yn − a)/(1− a) if yn > a.

5. The Kaplan–Yorke map:

xn+1 = axn mod 1, yn+1 = −byn + cos(2πxn).

6. The Ott–Grebogi–Yorke map:

xn+1 = xn + w1 + aP1(xn, yn)mod 1,
yn+1 = yn + w2 + aP2(xn, yn)mod 1,

where the nonlinear functions P1, P2 are sums of sinusoidal functions
A

(i)
rs sin[2π(rx + sy + B

(i)
rs )], with (r, s) = (0, 1), (1, 0), (1, 1), (1,−1), while

A
(i)
rs , B

(i)
rs were selected randomly in the range [0, 1].

Mandelbrot and Julia Sets

Recall that Mandelbrot and Julia sets (see Figure 2.29) are celebrated fractals.
Recall that fractals are sets with fractional dimension (see Figure 2.30). The
Mandelbrot and Julia fractals are defined either by a quadratic conformal
z−map [Man80a, Man80b]

zn+1 = z2
n + c,

or by a real (x, y)−map

xn+1 =
√
xn −

√
yn + c1, yn+1 = 2xn yn + c2,

where c, c1 and c2 are parameters. For almost every c, this conformal trans-
formation generates a fractal (probably, only for c = −2 it is not a fractal).
Julia set Jc with c� 1, the capacity dimension is

dcap = 1 +
|c|2

4 ln 2
+ O(|c|3).

The set of all points for which Jc is connected is the Mandelbrot set.17

17 The Mandelbrot set has its place in complex–valued dynamics, a field first investi-
gated by the French mathematicians Pierre Fatou [Fat19, Fat22] and Gaston Julia
[Jul18] at the beginning of the 20th century. For general families of holomorphic
functions, the boundary of the Mandelbrot set generalizes to the bifurcation locus,
which is a natural object to study even when the connectedness locus is not use-
ful. A related Mandelbar set was encountered by mathematician John Milnor in
his study of parameter slices of real cubic polynomials; it is not locally connected;
this property is inherited by the connectedness locus of real cubic polynomials.
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Fig. 2.29. The celebrated conformal Mandelbrot (left) and Julia (right) sets in the
complex plane, simulated using Dynamics SolverTM .

Fig. 2.30. Fractal dimension of curves in R2: d = logN
log1/r

.

Let K = K(fc) be the filled Julia set, that is the union of all bounded
orbits, for the quadratic map

f(z) = fc(z) = z2 + c .

Here both the parameter c and the dynamic variable z range over the complex
numbers. The Mandelbrot set M can be defined as the compact subset of the
parameter plane (or c−plane) consisting of all complex numbers c for which
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Fig. 2.31. Julia set showing the six rays landing on a period–2 parabolic orbit
(adapted from [Mil99]).

K(fc) is connected. We can also identify the complex number c with one
particular point in the dynamic plane (or z−plane), namely the critical value
fc(0) = c for the map fc. The parameter c belongs to M if and only if the
orbit fc : 0 �→ c �→ c2 + c �→ · · · is bounded, or in other words if and only
if 0, c ∈ K(fc). Associated with each of the compact sets K = K(fc) in the
dynamic plane there is a potential function or Green’s function GK : C →
[0,∞) which vanishes precisely on K, is harmonic off K, and is asymptotic
to log |z| near infinity. The family of external rays of K can be described as
the orthogonal trajectories of the level curves GK = constant. Each such ray
which extends to infinity can be specified by its angle at infinity t ∈ R/Z, and
will be denoted by RK

t . Here c may be either in or outside of the Mandelbrot
set. Similarly, we can consider the potential function GM and the external
rays RM

t associated with the Mandelbrot set. We will use the term dynamic
ray (or briefly K−ray) for an external ray of the filled Julia set, and parameter
ray (or briefly M− ray) for an external ray of the Mandelbrot set M [Mil99].

There is a theorem due Douady and Hubbard [DH85] related to a Mandel-
brot set M saying that every parabolic point c 
= 1/4 in M is the landing point
for exactly two external rays with angles which are periodic under doubling.18

Figure 2.31 shows the six rays landing on a period–2 parabolic orbit for
the Julia set given by z �−→ z2 + (1

4e2πi/3 − 1).

Biomorphic Systems

Closely related to the Mandelbrot and Julia sets are biomorphic systems,
which look like one–celled organisms. The term ‘biomorph’ was proposed by C.

18 By definition, a parameter point is parabolic iff the corresponding quadratic map
has a periodic orbit with some root of unity as multiplier.
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Fig. 2.32. Pickover’s biomorphs (see text for details).

Pickover from IBM [Pic86, Pic87]. Pickover’s biomorphs inhabit the complex
plane like the Mandelbrot and Julia sets and exhibit a protozoan morphology .
Biomorphs began for Pickover as a ‘bug’ in a program intended to probe
the fractal properties of various formulas. He accidentally used an OR logical
operator instead of an AND operator in the conditional test for the size of
z′s real and imaginary parts. The cilia that project from the biomorphs are a
consequence of this ‘error’. Each biomorph is generated by multiple iterations
of a particular conformal map,

zn+1 = f(zn, c),

where c is a parameter. Each iteration takes the output of the previous
operations as the input of the next iteration. To generate a biomorph, one first
needs to lay out a grid of points on a rectangle in the complex plane [And01].
The coordinate of each point constitutes the real and imaginary parts of an
initial value, z0, for the iterative process. Each point is also assigned a pixel
on the computer screen. Depending on the outcome of a simple test on the
‘size’ of the real and imaginary parts of the final value, the pixel is colored
either black or white. The biomorphs presented in Figure 2.32 are generated
using the following conformal functions:

1. f(z, c) = z3,
2. f(z, c) = z3 + c, c = 10,
3. f(z, c) = z3 + c, c = 10− 10i,
4. f(z, c) = z5 + c, c = 0.77− 0.77i,
5. f(z, c) = z3 + sin z + c, c = 1− i,
6. f(z, c) = z6 + sin z + c, c = 0.5− 0.5i,
7. f(z, c) = z2 sin z + c, c = 0.78− 0.78i,
8. f(z, c) = zc, c = 5− i,
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9. f(z, c) = |z|c sin z, c = 4,
10. f(z, c) = |z|c cos z + c, c = 3 + 3i,
11. f(z, c) = |z|c(cos z + z) + c, c = 3 + 2i.

Lyapunov Exponents

The sensitive dependence on the initial conditions can be formalized in order
to give it a quantitative characterization. The main growth rate of trajectory
separation is measured by the first (or maximum) Lyapunov exponent , defined
as (see, e.g., [BLV01])

λ1 = lim
t→∞

lim
Δ(0)→0

1
t

ln
Δ(t)
Δ(0)

, (2.41)

As long as Δ(t) remains sufficiently small (i.e., infinitesimal, strictly speaking),
one can regard the separation as a tangent vector z(t) whose time evolution is

żi =
∂fi

∂xj
|x(t) · zj , (2.42)

and, therefore,

λ1 = lim
t→∞

1
t

ln
||z(t)||
||z(0)|| . (2.43)

In principle, λ1 may depend on the initial condition x(0), but this depen-
dence disappears for ergodic systems. In general there exist as many Lyapunov
exponents, conventionally written in decreasing order λ1 ≥ λ2 ≥ λ3 ≥ ..., as
the independent coordinates of the phase–space [BGG80]. Without entering
the details, one can define the sum of the first k Lyapunov exponents as the
growth rate of an infinitesimal kD volume in the phase–space. In particular,
λ1 is the growth rate of material lines, λ1 + λ2 is the growth rate of 2D sur-
faces, and so on. A numerical widely used efficient method is due to Benettin
et al. [BGG80].

It must be observed that, after a transient, the growth rate of any generic
small perturbation (i.e., distance between two initially close trajectories) is
measured by the first (maximum) Lyapunov exponent λ1, and λ1 > 0 means
chaos. In such a case, the state of the system is unpredictable on long times.
Indeed, if we want to predict the state with a certain tolerance Δ then our
forecast cannot be pushed over a certain time interval TP , called predictability
time, given by [BLV01]:

TP ∼
1
λ1

ln
Δ

Δ(0)
. (2.44)

The above relation shows that TP is basically determined by 1/λ1, seen its
weak dependence on the ratio Δ/Δ(0). To be precise one must state that,
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for a series of reasons, relation (2.44) is too simple to be of actual relevance
[BCF02].

Kolmogorov–Sinai Entropy

Deterministic chaotic systems, because of their irregular behavior, have many
aspects in common with stochastic processes. The idea of using stochas-
tic processes to mimic chaotic behavior, therefore, is rather natural [Chi79,
Ben84]. One of the most relevant and successful approaches is symbolic
dynamics [BS93]. For the sake of simplicity let us consider a discrete time
dynamical system. One can introduce a partition A of the phase–space formed
by N disjoint sets A1, . . . , AN . From any initial condition one has a trajectory

x(0) → x(1),x(2), . . . ,x(n), . . . (2.45)

dependently on the partition element visited, the trajectory (2.45), is associ-
ated to a symbolic sequence

x(0) → i1, i2, . . . , in, . . . (2.46)

where in (n = 1, 2, . . . , N) means that x(n) ∈ Ain
at the step n, for n =

1, 2, . . .. The coarse-grained properties of chaotic trajectories are therefore
studied through the discrete time process (2.46).

An important characterization of symbolic dynamics is given by the
Kolmogorov–Sinai entropy (KS), defined as follows. Let Cn = (i1, i2, . . . , in)
be a generic ‘word’ of size n and P (Cn) its occurrence probability, the quantity
[BLV01]

Hn = sup
A

[−
∑
Cn

P (Cn) lnP (Cn)], (2.47)

is called block entropy of the n−sequences, and it is computed by taking
the largest value over all possible partitions. In the limit of infinitely long
sequences, the asymptotic entropy increment

hKS = lim
n→∞

Hn+1 −Hn, (2.48)

is the Kolmogorov–Sinai entropy. The difference Hn+1 −Hn has the intuitive
meaning of average information gain supplied by the (n+1)−th symbol, pro-
vided that the previous n symbols are known. KS–entropy has an important
connection with the positive Lyapunov exponents of the system [Ott93]:

hKS =
∑
λi>0

λi. (2.49)

In particular, for low–dimensional chaotic systems for which only one Lya-
punov exponent is positive, one has hKS = λ1.
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We observe that in (2.47) there is a technical difficulty, i.e., taking the sup
over all the possible partitions. However, sometimes there exits a special parti-
tion, called generating partition, for which one finds that Hn coincides with its
superior bound. Unfortunately the generating partition is often hard to find,
even admitting that it exist. Nevertheless, given a certain partition, chosen by
physical intuition, the statistical properties of the related symbol sequences
can give information on the dynamical system beneath. For example, if the
probability of observing a symbol (state) depends only by the knowledge of the
immediately preceding symbol, the symbolic process becomes a Markov chain
(see [II06b]) and all the statistical properties are determined by the transition
matrix elements Wij giving the probability of observing a transition i → j
in one time step. If the memory of the system extends far beyond the time
step between two consecutive symbols, and the occurrence probability of a
symbol depends on k preceding steps, the process is called Markov process of
order k and, in principle, a k rank tensor would be required to describe the
dynamical system with good accuracy. It is possible to demonstrate that if
Hn+1 −Hn = hKS for n ≥ k + 1, k is the (minimum) order of the required
Markov process [Khi57]. It has to be pointed out, however, that to know the
order of the suitable Markov process we need is of no practical utility if k � 1.

Pinball Game and Periodic Orbits

Confronted with a potentially chaotic dynamical system, we analyze it through
a sequence of three distinct stages: (i) diagnose, (ii) count, (iii) measure. First
we determine the intrinsic dimension of the system – the minimum number of
coordinates necessary to capture its essential dynamics. If the system is very
turbulent we are, at present, out of luck. We know only how to deal with the
transitional regime between regular motions and chaotic dynamics in a few
dimensions. That is still something; even an infinite–dimensional system such
as a burning flame front can turn out to have a very few chaotic degrees of
freedom. In this regime the chaotic dynamics is restricted to a space of low
dimension, the number of relevant parameters is small, and we can proceed to
step (ii); we count and classify all possible topologically distinct trajectories of
the system into a hierarchy whose successive layers require increased precision
and patience on the part of the observer. If successful, we can proceed with
step (iii): investigate the weights of the different pieces of the system [CAM05].

With the game of pinball we are lucky: it is only a 2D system, free motion
in a plane. The motion of a point particle is such that after a collision with one
disk it either continues to another disk or it escapes. If we label the three disks
by 1, 2 and 3, we can associate every trajectory with an itinerary, a sequence
of labels indicating the order in which the disks are visited; for example, the
two trajectories in Figure 1.2 have itineraries 2313, 23132321 respectively.
The itinerary is finite for a scattering trajectory, coming in from infinity and
escaping after a finite number of collisions, infinite for a trapped trajectory,
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and infinitely repeating for a periodic orbit.19 Such labelling is the simplest
example of symbolic dynamics. As the particle cannot collide two times in
succession with the same disk, any two consecutive symbols must differ. This
is an example of pruning , a rule that forbids certain subsequences of symbols.
Deriving pruning rules is in general a difficult problem, but with the game of
pinball we are lucky, as there are no further pruning rules.20

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can – what would be a winning
strategy? The simplest thing would be to try to aim the pinball so it bounces
many times between a pair of disks – if you managed to shoot it so it starts out
in the periodic orbit bouncing along the line connecting two disk centers, it
would stay there forever. Your game would be just as good if you managed to
get it to keep bouncing between the three disks forever, or place it on any peri-
odic orbit. The only rub is that any such orbit is unstable, so you have to aim
very accurately in order to stay close to it for a while. So it is pretty clear that
if one is interested in playing well, unstable periodic orbits are important –
they form the skeleton onto which all trajectories trapped for long times cling.

Now, recall that a trajectory is periodic if it returns to its starting position
and momentum. It is custom to refer to the set of periodic points that belong
to a given periodic orbit as a cycle.

Short periodic orbits are easily drawn and enumerated, but it is rather
hard to perceive the systematics of orbits from their shapes. In mechanics a
trajectory is fully and uniquely specified by its position and momentum at
a given instant, and no two distinct phase–space trajectories can intersect.
Their projections on arbitrary subspaces, however, can and do intersect, in
rather unilluminating ways. In the pinball example, the problem is that we are
looking at the projections of a 4D phase–space trajectories onto its 2D sub-
space, the configuration space. A clearer picture of the dynamics is obtained
by constructing a phase–space Poincaré section.

The position of the ball is described by a pair of numbers (the spatial
coordinates on the plane), and the angle of its velocity vector. As far as a
classical dynamist is concerned, this is a complete description. Now, suppose
that the pinball has just bounced off disk 1. Depending on its position and
outgoing angle, it could proceed to either disk 2 or 3. Not much happens
in between the bounces – the ball just travels at constant velocity along a
straight line – so we can reduce the 4D flow to a 2D map f that takes the
coordinates of the pinball from one disk edge to another disk edge. Let us
state this more precisely: the trajectory just after the moment of impact is
defined by marking sn, the arc–length position of the nth bounce along the
19 The words orbit and trajectory here are synonymous.
20 The choice of symbols is in no sense unique. For example, as at each bounce we

can either proceed to the next disk or return to the previous disk, the above
3–letter alphabet can be replaced by a binary {0, 1} alphabet. A clever choice
of an alphabet will incorporate important features of the dynamics, such as its
symmetries.
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Fig. 2.33. A 3–disk pinball game. Up: (a) Elastic scattering around three hard
disks (simulated in Dynamics SolverTM ); (b) A trajectory starting out from disk
1 can either hit another disk or escape; (c) Hitting two disks in a sequence req-
uires a much sharper aim; the cones of initial conditions that hit more and more
consecutive disks are nested within each other. Down: Poincaré section for the 3–
disk pinball game, with trajectories emanating from the disk 1 with x0 = (arc −
length, parallel momentum) = (s0, p0), disk radius: center separation ratio a : R =
1 : 2.5; (d) Strips of initial points M12, M13 which reach disks 2, 3 in one bounce,
respectively. (e) Strips of initial points M121, M131 M132 and M123 which reach
disks 1, 2, 3 in two bounces, respectively; the Poincaré sections for trajectories
originating on the other two disks are obtained by the appropriate relabelling of the
strips (modified and adapted from [CAM05]).

billiard wall, and pn = p sinφn is the momentum component parallel to the
billiard wall at the point of impact (see Figure 2.33). Such a section of a flow
is called a Poincaré section, and the particular choice of coordinates (due to
Birkhoff) is particularly smart, as it conserves the phase–space volume. In
terms of the Poincaré section, the dynamics is reduced to the return map

P : (sn, pn) → (sn+1, pn+1),

from the boundary of a disk to the boundary of the next disk.
Next, we mark in the Poincaré section those initial conditions which do

not escape in one bounce. There are two strips of survivors, as the trajectories
originating from one disk can hit either of the other two disks, or escape
without further ado. We label the two strips M0,M1. Embedded within them
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there are four strips, M00,M10,M01,M11 of initial conditions that survive
for two bounces, and so forth (see Figure 2.33). Provided that the disks are
sufficiently separated, after n bounces the survivors are divided into 2n distinct
strips: the Mith strip consists of all points with itinerary i = s1s2s3...sn,
s = {0, 1}. The unstable cycles as a skeleton of chaos are almost visible here:
each such patch contains a periodic point s1s2s3...sn with the basic block
infinitely repeated. Periodic points are skeletal in the sense that as we look
further and further, the strips shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a navi-
gation chart through chaotic phase–space. There exists a unique trajectory
for every admissible infinite length itinerary, and a unique itinerary labels
every trapped trajectory. For example, the only trajectory labelled by 12 is
the 2–cycle bouncing along the line connecting the centers of disks 1 and 2;
any other trajectory starting out as 12 . . . either eventually escapes or hits
the 3rd disk [CAM05].

Now we can ask what is a good physical quantity to compute for the game
of pinball? Such system, for which almost any trajectory eventually leaves a
finite region (the pinball table) never to return, is said to be open, or a repeller .
The repeller escape rate is an eminently measurable quantity. An example of
such a measurement would be an unstable molecular or nuclear state which
can be well approximated by a classical potential with the possibility of escape
in certain directions. In an experiment many projectiles are injected into
such a non–confining potential and their mean escape rate is measured. The
numerical experiment might consist of injecting the pinball between the disks
in some random direction and asking how many times the pinball bounces
on the average before it escapes the region between the disks. On the other
hand, for a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball.

Here we briefly show how Cvitanovic’s periodic orbit theory [Cvi91] acc-
omplishes this for us. Each step will be so simple that you can follow even at
the cursory pace of this overview, and still the result is surprisingly elegant.
Let us consider Figure 2.33 again. In each bounce, the initial conditions get
thinned out, yielding twice as many thin strips as at the previous bounce. The
total area that remains at a given time is the sum of the areas of the strips,
so that the fraction of survivors after n bounces, or the survival probability is
given by

Γ̂1 =
|M0|
|M | +

|M1|
|M | , (2.50)

Γ̂2 =
|M00|
|M | +

|M10|
|M | +

|M01|
|M | +

|M11|
|M | ,

...

Γ̂n =
1
|M |

(n)∑
i=1

|Mi|,
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where i = 01, 10, 11, . . . is a label of the ith strip (not a binary number), |M |
is the initial area, and |Mi| is the area of the ith strip of survivors. Since at
each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (2.50) to fall off exponentially with n and tend to the limit

Γn+1/Γ̂n = e−γn → e−γ ,

where the quantity γ is called the escape rate from the repeller. In [Cvi91]
and subsequent papers, Cvitanovic has showed that the escape rate γ can be
extracted from a highly convergent exact expansion by reformulating the sum
(2.50) in terms of unstable periodic orbits.

2.2.7 Chaotic Repellors and Their Fractal Dimension

In addition to chaotic attractors, nonattracting chaotic sets (also called chaotic
saddles or chaotic repellors) are also of great practical importance. In partic-
ular, such sets arise in the consideration of chaotic scattering, boundaries
between basins of attraction, and chaotic transients. If a cloud of initial con-
ditions is sprinkled in a bounded region including a nonattracting chaotic set,
the orbits originating at these points eventually leave the vicinity of the set,
and there is a characteristic escape time, τ , such that, at late time, the fraction
of the cloud still in the region decays exponentially at the rate τ−1.

In this subsection, mainly following [SO00], we will study the fractal
dimension of nonattracting chaotic sets and their stable and unstable mani-
folds. Fractal dimension is of basic interest as a means of characterizing the
geometric complexity of chaotic sets. In addition, a knowledge of the fractal
dimension can, in some situations, provide quantitative information that is of
potential practical use. For example, in the case of boundaries between dif-
ferent basins, the basin boundary is typically the stable manifold of a nonat-
tracting chaotic set, and knowledge of the stable manifold’s box–counting
dimension (also called its capacity) quantifies the degree to which uncertain-
ties in initial conditions result in errors in predicting the type of long–term
motion that results (e.g., which attractor is approached; see [MGO85]). Our
focus is on obtaining the information dimension of a suitable ‘natural mea-
sure’ μ lying on the chaotic set. The information dimension is a member of a
one parameter (q) class of dimension definitions given by [SO00]

Dq = lim
ε→0

1
1− q

ln
∑

μq
i

ln(1/ε)
, (2.51)

where q is a real index, ε is the grid spacing for a dD rectangular grid dividing
the dD state space of the system, and μi is the natural measure of the ith

grid cube. The box–counting dimension is given by (2.51) with q = 0, and the
information dimension is given by taking the limit q → 1 in (2.51),

D1 = lim
ε→0

I(ε)
ln(1/ε)

, I(ε) =
∑

i

μi ln(1/μi). (2.52)
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In general, the information dimension is a lower bound on the box–counting
dimension, D1 ≤ D0. In practice, in cases where D1 and D0 have been deter-
mined for chaotic sets, it is often found that their values are very close.

Following [SO00], we are specifically concerned with investigating formulae
conjectured in [HOY96] that give the information dimensions for the nonat-
tracting chaotic set and its stable and unstable manifolds in terms of Lyapunov
exponents and the decay time, τ . These formulae generalize previous results
for nonattracting chaotic sets of 2D maps with one positive and one negative
Lyapunov exponent [KG85, HOG88], and for Hamiltonian systems of arbitrary
dimensionality [Do95]. In turn, these past results for nonattracting chaotic sets
were motivated by the Kaplan–Yorke conjecture which gives the information
dimension of a chaotic attractor in terms of its Lyapunov exponents [KY79].
A rigorous result for the information dimension of an ergodic invariant chaotic
set of a 2D diffeomorphism has been given by [LY85a, LY85b], and this result
supports the Kaplan–Yorke conjecture for attractors and the 2D map results
of [KG85] and [HOG88] for nonattracting chaotic sets.

Dimension Formulae

A chaotic saddle, Λ, is a nonattracting, ergodic, invariant set. By invariant we
mean that all forward and reverse time evolutions of points in Λ are also in Λ.
The stable manifold of Λ is the set of all initial conditions which converge to
Λ upon forward time evolution. The unstable manifold of Λ is the set of all
initial conditions which converge to Λ upon reverse time evolution. We say
Λ is nonattracting if it does not completely contain its unstable manifold.
In such a case there are points not in Λ that converge to it on backwards
iteration.

To define the characteristic escape time, τ , first define a bounded region,
R, which contains Λ and no other chaotic saddle. Uniformly sprinkle a large
number, N(0), of initial conditions in R. (In this section we take the dynamical
system to be a discrete time system, i.e., a map.) Iterate the sprinkled initial
conditions forward n � 1 times and discard all orbits which are no longer
in R. Denote the remaining number of orbits N(n). We define τ as [SO00]

e−n/τ ∼ N(n)
N(0)

, (2.53)

or, more formally, τ = limn→∞ limN(0)→∞ ln[N(0)/N(n)]/n. The Lyapunov
exponents are defined with respect to the natural transient measure of the
chaotic saddle [Ott93]. This measure is defined on an open set C ⊂ R as

μ(C) = lim
n→∞

lim
N(0)→∞

N(ξn, n, C)
N(n)

, (2.54)

where 0 < ξ < 1, and N(m,n,C) is the number of sprinkled orbits still in R
at time n that are also in C at the earlier time m < n. The above definition
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of μ(C) is presumed to be independent of the choice of ξ as long as 0 < ξ < 1
(e.g., ξ = 1/2 will do).

We take the system to be MD with U positive and S negative Lyapunov
exponents measured with respect to μ (where U + S = M) which we label
according to the convention,

h+
U ≥ h+

U−1 ≥ · · · ≥ h+
1 > 0 > −h−

1 ≥ · · · ≥ −h−
S−1 ≥ −h−

S .

Following [HOY96] we define a forward entropy,

H =
U∑

i=1

h+
i − τ−1.

We now define a natural transient measure μS on the stable manifold and
a natural transient measure μU on the unstable manifold. Using the notation
of (2.54),

μS(C) = lim
n→∞

lim
N(0)→∞

N(0, n, C)
N(n)

, (2.55)

μU (C) = lim
n→∞

lim
N(0)→∞

N(n, n,C)
N(n)

. (2.56)

Thus, considering the N(n) orbits that remain in R up to time n, the fraction
of those orbits that initially started in C gives μS(C), and the fraction that
end up in C at the final time n gives μU (C). We use the measure (2.54),
(2.55), (2.56) to define the information dimensions of the invariant set, the
stable manifold, and the unstable manifold, respectively.

According to [HOY96], the dimension of the unstable manifold is then
[SO00]

DU = U + I +
H − (h−

1 + · · ·+ h−
I )

h−
I+1

, (2.57)

where I is defined by

h−
1 + · · ·+ h−

I + h−
I+1 ≥ H ≥ h−

1 + · · ·+ h−
I .

The dimension of the stable manifold is [HOY96]

DS = S + J +
H − (h+

1 + · · ·+ h+
J )

h+
J+1

, (2.58)

where J is defined by

h+
1 + · · ·+ h+

J + h+
J+1 ≥ H ≥ h+

1 + · · ·+ h+
J .

Considering the chaotic saddle to be the (generic) intersection of its stable
and unstable manifolds, the generic intersection formula gives the dimension
of the saddle,
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DΛ = DU + DS −M. (2.59)

It is of interest to discuss some special cases of (2.57)–(2.59). In the case of
a chaotic attractor, the invariant set is the attractor itself, the stable manifold
is the basin of attraction, and we identify the unstable manifold with the
attractor. Thus DS = M and DΛ = DU . Since points near the attractor never
leave, we have τ =∞. Equation (2.57) then yields the Kaplan–Yorke formula
[KY79],

DΛ = U + I +
(h+

1 + · · ·+ h+
U )− (h−

1 + . . . + h−
I )

h−
I+1

, (2.60)

where I is the largest integer for which (h+
1 + . . . + h+

U )− (h−
1 + . . . + h−

I ) is
positive.

In the case of a 2D map with one positive Lyapunov exponent h+
1 and one

negative Lyapunov exponent h−
1 with the exponents satisfying h+

1 −h−
1 −1/τ ≤

0, equations (2.57) and (2.58) give the result of [KG85] and [HOG88],

DU = 1 +
h+

1 − 1/τ
h−

1

and DS = 1 +
h+

1 − 1/τ
h+

1

.

Another case is that of a nonattracting chaotic invariant set of a 1D map. In
this case S = 0 and U = 1. The unstable manifold of the invariant set has
dimension one, DU = 1. Recalling the definition of the stable manifold as the
set of points that approach the invariant set as time increases, we can identify
the stable manifold with the invariant set itself. This is because points in the
neighborhood of the invariant set are repelled by it unless they lie precisely
on the invariant set. Thus, DS = DΛ, and from (2.58) and (2.59) we have

DS = DΛ = H/h+
1 , where H = h+

1 − 1/τ .

Still another simple situation is the case of a 2D map with two positive
Lyapunov exponents. This case is particularly interesting because we will be
able to use it to gain understanding of the nature of the natural measure
whose dimension we are calculating. In this case U = 2 and S = 0. Thus
DU = 2 and DS = DΛ. There are two cases (corresponding to J = 0 and
J = 1 in (2.57)). For h+

2 τ ≤ 1, we have that DS = DΛ is between zero and
one,

DS = DΛ = 1 +
h+

2

h+
1

− 1
h+

1 τ
. (2.61)

For h+
2 τ ≥ 1, we have that DS = DΛ is between one and two,

DS = DΛ = 2− 1
h+

2 τ
. (2.62)

In the next section we will be concerned with testing and illustrating (2.61)
and (2.62) by use of a simple model.
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Illustrative Expanding 2D–Map Model

We consider the following example [SO00],

xn+1 = 2xn modulo 1, (2.63)

yn+1 = λ(xn)yn +
η

2π
sin(2πxn), (2.64)

where λ(x) > 1, and the map is defined on the cylinder –∞ ≤ y ≤ +∞,
1 ≥ x ≥ 0, with x regarded as angle-like. We take λ(x) to be the piecewise
constant function,

λ(x) =
{

λ1 0 < x < 1/2,
λ2 1/2 < x < 1, (2.65)

and, without loss of generality, we assume λ1 ≤ λ2.
For this map, almost every initial condition generates an orbit that either

tends toward y = +∞ or toward y = −∞. Initial conditions on the border of
these two regions stay on the border forever. Thus, the border is an invariant
set. It is also ergodic by virtue of the ergodicity of the map

xn+1 = 2xn mod 1.

We wish to apply (2.61) and (2.62) to this invariant set and its natural
measure.

The Jacobian matrix for this model is [SO00]

J (x) =
[

2 0
η cos 2πx λ(x)

]
.

Thus, for an ergodic invariant measure of the map, the two Lyapunov expo-
nents are

ha = p lnλ1 + (1− p) lnλ2 and (2.66)
hb = ln 2,

where p is the measure of the region x < 1/2. To find ha we thus need to
know the measure of the invariant set.

The Decay Time and the Natural Measure

Consider a vertical line segment of length �0 whose x coordinate is x0 and
whose center is at y = y0. After one iterate of the map (2.63)–(2.65), this
line segment will have length �1 = λ(x0)�0 and be located at x = x1 with
its center at y = y1, where (x1, y1) are the iterates of (x0, y0) using the map
(2.63)–(2.65). Thus we see that vertical line segments are expanded by the
multiplicative factor λ(x) ≥ λ1 > 1. Now consider the strip, −K ≤ y ≤ K,
and sprinkle many initial conditions uniformly in this region with density
ρ0. A vertical line segment, x = x0, −K ≤ y ≤ K, iterates to x = x1 and
with its center at y1 = (η/2π) sin 2πx0. We choose K > (η/2π)(λ1 − 1)−1

so that the iterated line segment spans the strip −K ≤ y ≤ K. After one
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iterate, the density will still be uniform in the strip: The region x < 1/2
(x > 1/2), −K ≤ y ≤ K, is expanded uniformly vertically by λ1 (λ2) and
horizontally by 2. Thus, after one iterate, the new density in the strip is
ρ1 = [(λ−1

1 + λ−1
2 )/2]ρ0, and, after n iterates, we have [SO00]

ρn = [(λ−1
1 + λ−1

2 )/2]nρ0.

Hence the exponential decay time for the number of orbits remaining in the
strip is

1
τ

= ln
[
1
2

(
1
λ1

+
1
λ2

)]−1

. (2.67)

To find the natural stable manifold transient measure of any x−interval
s
(n)
m = [m/2n, (m + 1)/2n], where m = 0, 1, . . . , 2n − 1, we ask what fraction

of the orbits that were originally sprinkled in the strip and are still in the
strip at time n started in this interval. Let s

(n)
m experience n1(m) vertical

stretches by λ1 and n2(m) = n − n1(m) vertical stretches by λ2. Then the
initial subregion of the s

(n)
m still in the strip after n iterates has vertical height

Kλ
−n1(m)
1 λ

−n2(m)
2 . Hence the natural measure of s

(n)
m is

μ(s(n)
m ) =

2−nλ
−n1(m)
1 λ

−n2(m)
2[

1
2 (λ−1

1 + λ−1
2 )

]n =
λ

n2(m)
1 λ

n1(m)
2

(λ1 + λ2)n
. (2.68)

(Note that this is consistent with μ([0, 1]) =
∑n−1

m=0 μ(s(n)
m ) = 1.) Thus the

measures of the intervals [0, 1/2] and [1/2, 1] are

p = μ(s(1)
0 ) =

λ2

λ1 + λ2

and
1− p = μ(s(1)

1 ) =
λ1

λ1 + λ2
.

It is important to note that our natural transient measures p and (1−p) for
the 2D map are different from the natural measures of the same x−intervals
for the 1D map,

xn+1 = 2xn mod 1,

alone. In that case, with probability one, a random choice of x0 produces an
orbit which spends half its time in [0, 1/2] and half its time in [1/2, 1], so that
in this case the natural measures of these regions are p = (1− p) = 1/2. The
addition of the y−dynamics changes the natural measure of x-intervals.

From (2.66) we get

ha =
λ2

λ1 + λ2
lnλ1 +

λ1

λ1 + λ2
lnλ2. (2.69)

For a general function f(Z) with d2f/dZ2 < 0, averaging over different values
of Z gives the well-known inequality 〈f(Z)〉 ≤ f(〈Z〉) where 〈(· · · )〉 denotes
the average of the quantity (· · · ). Using f(Z) = lnZ with Z = λ1 with
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probability p = λ2/(λ1 + λ2) and Z = λ2 with probability (1 − p), this
inequality and (2.67) and (2.69) yield the result that

ha ≤
1
τ
. (2.70)

Application of the Dimension Formulae

Let λ2 = rλ1, r > 1, and imagine that we fix r and vary λ1. Applying (2.61)
and (2.62) to our example we get three cases,

(a) hb > 1/τ > ha (λ1 small),
(b) 1/τ > hb > ha (λ1 moderate), and
(c) 1/τ > ha > hb (λ1 large).

Corresponding to these three cases (2.61) and (2.62) yield the following values
for DΛ, the dimension of the invariant set [SO00],

Da = 1 +
ln(1 + r−1)− lnλ1

ln 2
, for λ1 ≤ λa, (2.71)

Db =
ln(1 + r−1) + (1 + r)−1 ln r

lnλ1 + (1 + r)−1 ln r
, for λa ≤ λ1 ≤ λb, (2.72)

Dc =
ln(1 + r−1) + (1 + r)−1 ln r

ln 2
, for λb ≤ λ1, (2.73)

where lnλa = ln(1 + r−1) and lnλb = ln 2− (1 + r)−1 ln r. Note that for large
λ1, DΛ = Dc is independent of λ1.

It is also instructive to consider the case of uniform stretching (r = 1) for
which λ1 = λ2. In that case, ha = 1/τ , and there is a rigorous known result
for the dimension [KMY84]. For λ1 = λ2, (2.71)–(2.73) yield

DΛ =
{

2− ln λ1
ln 2 for 1 ≤ λ1 ≤ 2,

1 for λ1 ≥ 2.
(2.74)

(For r → 1 region (b), where DΛ = Db, shrinks to zero width in λ1). For r =
1 the natural transient measure is uniform; from (2.68) we have μ(s(n)

m ) =
2−n independent of the interval (i.e, independent of m). In this case there
is no difference between the capacity dimension of the invariant set and the
information dimension of its measure. Equation (2.74) agrees with the rigorous
known result, thus lending support to the original conjecture.

Numerical Tests

The formulae (2.71)–(2.73) were verified by numerical measurements of the
information dimension, D1, of Λ at various values of λ1 with r = λ2/λ1 fixed
at r = 3. Shown for comparison is the box–counting dimension, D0. The
values of the box–counting dimension are numerically indistinguishable from
the values of the information dimension when D0, D1 > 1, or λ1 < λa, the
region corresponding to formula (2.71). For λ1 > λa, Λ is a smooth curve and
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so has a box–counting dimension of D0 = 1. No points for D1 are shown near
λ1 = λb. It can be argued [SO00] that numerical convergence is too slow here
to yield accurate measurements of the dimension.

To numerically determine the information dimension of Λ, we place a
square x − y grid with a spacing ε between grid points over a region con-
taining Λ. Using the method dscribed in the next paragraph we compute the
natural measure in each grid box and repeat for various ε. The information
dimension is then given by

D1 = lim
ε→0

I(ε)
ln(1/ε)

, where

I(ε) =
N(ε)∑
i=1

μi ln(1/μi)

is a sum over the N(ε) grid boxes which intersect Λ and μi is the natural
measure in the ith box. The slope of a plot of I(ε) versus ln ε gives D1. The
box–counting dimension is given by:

D0 = lim
ε→0

lnN(ε)
ln 1/ε

and calculated in an analogous way.
To determine which boxes intersect Λ and what measure is contained in

each of them we take advantage of the fact that Λ is a function [Ott93]. That
is, for each value of x there is only one corresponding value of y in Λ, which
we denote y = yΛ(x). We divide the interval 0 ≤ x < 1 into 2n intervals of
width δ ≡ 2−n. We wish to approximate yΛ(x0) for x0 in the center of the
x−interval. To do this we iterate x0 forward using (2.63) m times until the
condition

δ

2
λm1

1 λm2
2 ≥ 1 (2.75)

is first met, where m1 (m2) is the number of times the orbit lands in 0 ≤
x < 1/2 (1/2 ≤ x < 1), and m1 + m2 = m (we will see the reason for
this condition below). All of the values, xi, of the iterates are saved. Starting
now from xm and taking ym = 0 we iterate backward m times. For η small
enough, Λ is contained in –1 ≤ y ≤ 1, so the point (xm, ym = 0) is within
a distance 1 in the y−direction of Λ. The m reverse iterations shrink the
segment ym ≤ y ≤ yΛ(xm) by a factor λm1

1 λm2
2 so that

|y0 − yΛ(x0)| ≤ δ/2

by condition (2.75). Thus, we have found a point y0 that approximates yΛ(x0)
to within δ. Since we will be using ε boxes with ε � δ, we may regard y0 as
being essentially equal to yΛ(x0). The measure in the δ width interval con-
taining x0 is found by iterating x0 forward n times and using equation (2.68),
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μ =
λn2

1 λn1
2

(λ1 + λ2)n
,

where n1 (n2) is the number of times the orbit lands in 0 ≤ x < 1/2 (1/2 ≤
x < 1), and n1 + n2 = n. We associate this measure with the point (x0, y0)
(with y0 found by the above procedure).

Note that for fractal yΛ(x) the y interval occupied by the curve y = yΛ(x)
in an x interval of width δ � 1 is of order δD0−1 which is large compared to δ.
We now cover the region with new grids having successively larger spacing,
εi = 2iδ = 2i−n, and calculate I(εi) and N(εi) based on the data taken from
the first δ−grid. For i large enough, such that the y extent of the curve yΛ(x)
in a typical δ width interval is less than εi (i.e., εi

∼
> δ2−D0 or i

∼
> (D0 − 1)n)

we observe linear scaling of log I(εi) and logN(εi) with log εi, and we use the
slope of such plots to determine D1 and D0. The dimensions D1 and D0 are
then determined as described above.

Atypical Case

The conjecture of [HOY96] is that the above dimension formulae apply for
‘typical’ systems. To see the need for this restriction consider (2.64) for the
case where η = 0. It is easily shown that the dimension formulae can be
violated in this case. The claim, however, is that η = 0 is special, or ‘atypical’,
in that, as soon as we give η any nonzero value, the validity of the dimension
formulae is restored. In this connection it is important to note that as long as
η 
= 0, the dimension of the invariant set is independent of the value of η. This
follows since if η 
= 0 we can always rescale the value of η to one by the change
of variables ỹ = y/η. To see the violation of the dimension formulae for η = 0,
we note that in this case, by virtue of (2.64), the line y = 0 is invariant. Thus
the measure is distributed on a 1D subspace, the x−axis. Using the definition
of the information dimension and dividing the x−axis into intervals of width
2−n, the information dimension of the natural measure is [SO00]

DΛ = lim
n→∞

∑n−1
m=0 μ(s(n)

m ) ln[1/μ(s(n)
m )]

ln(2n)
. (2.76)

The quantity whose limit is taken in (2.76) is in fact independent of n. Thus,
taking n = 1 we get for DΛ the result that, for η = 0,

DΛ = Dc,

for all λ1 and λ2 > 1, where Dc is given by (2.73). Thus, for ha < hb, DΛ is
greater when η 
= 0 than when η = 0, and, thus, the above conjectured stable
manifold dimension formula is violated. For ha > hb, DΛ is the same in both
cases.
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General Considerations

The previous considerations readily generalize to the case of an arbitrary
smooth function λ(x) > 1 and a general chaotic map, xn+1 = M(xn), which
replaces (3.1). Consider the finite time vertical Lyapunov exponent [SO00],

h̃(x, n) =
1
n

n∑
m=1

lnλ(Mm−1(x))

computed for the initial condition x. Choosing x randomly with uniform prob-
ability distribution in the relevant basin for chaotic motion [e.g., x in [0, 1]
for (2.63)], h̃(x, n) can be regarded as a random variable. Let P̃ (h, n) denote
its probability distribution function. For large n, we invoke large deviation
theory to write P̃ (h, n) as [Ott93]

ln P̃ (h, n) = −nG(h) + o(n),

or, more informally,
P̃ (h, n) ∼ e−nG(h), (2.77)

where the specific form of G(h) depends on M(x) and the specific λ(x), and
G(h) is convex, d2G(h)/dh2 ≥ 0. For the normalization,

∫
P̃ (h, n)dh = 1, to

hold for n→∞, we have that

min
h

G(h) = 0,

where h̄ denotes the value of h for which the above minimum is attained. As
n → ∞ we see that P̃ approaches a delta function, δ(h − h̄). Thus, h̄ is the
usual infinite time Lyapunov exponent for almost all initial conditions with
respect to Lebesgue measure in 0 ≤ x ≤ 1.

As described above P̃ (h, n) is the probability distribution of h(x, n) for
x chosen randomly with respect to a uniform distribution in [0, 1]. We now
ask what the probability distribution of h(x, n) is for x chosen randomly with
respect to the natural transient measure for our expanding map, xn+1 =
M(xn) and (2.64). To answer this question we proceed as before and consider
an initial vertical line segment |y| ≤ K starting at x (with K > (η/2π)(λmin−
1)−1, λmin = minx λ(x) > 1). After n iterations, this line segment lengthens
by the factor exp[nh̃(x, n)]. Thus, the fraction of the line still remaining in
the strip |y| < K is exp[−nh̃(x, n)]. Hence, the fraction of points sprinkled
uniformly in the strip that still remains after n iterates is

e−n/τ ∼
∫

e−nG(h)−nhdh, (2.78)

and the probability distribution of finite time vertical Lyapunov exponents for
x chosen randomly with respect to the natural transient measure is [SO00]



2.2 Basics of Nonlinear Dynamics and Chaos Theory 345

P (h, n) ∼ e−nG(h)−nh∫
e−nG(h)−nhdh

. (2.79)

Evaluating (2.78) for large n we have
∫

e−n[G(h)+h]dh ∼ e−n[G(h∗)+h∗], where
min[G(h)+h] = G(h∗)+h∗ and h∗ is the solution of dG(h∗)/dh∗ = −1. Thus,

1/τ = G(h∗) + h∗. (2.80)

The infinite time vertical Lyapunov exponent for the transient natural mea-
sure is

ha =
∫

hP (h, n)dh. (2.81)

Using (2.79) and again letting n be large (2.81) yields ha = h∗. We have

ha ≤ 1/τ ,

that is, (2.70) is valid for general M(x) and λ(x) and not just for M(x) and
λ(x) given by (2.63) and (2.65).

A 3D Billiard Chaotic Scatterer

We consider a 3 DOF billiard. The billiard is formed by a hard ellipsoid of
revolution, placed in a hard, infinitely long tube. The center of the ellipsoid is
placed at the center of the tube. Following [SO00], we consider two cases: (a)
the major axis of the ellipsoid coincides with the z−axis, (b) the major axis of
the ellipsoid lies in the y−z plane and makes an angle ξ with the z-axis. The
ratio of the minor radius of the ellipsoid (r‖) to the width of a side of the tube
is 1/4. This leaves the major radius, r⊥, and the tilt angle, ξ, as parameters.
A point particle injected into the system experiences specular reflection from
the ellipsoid and the walls (i.e., the angle of reflection is equal to the angle of
incidence, where both are taken with respect to the normal to the surface off
of which the particle bounces). When the orbit has passed the top (bottom)
of the ellipsoid, with positive (negative) z−velocity, we say that it has exited
upward (downward). We fix the conserved energy so that |v| = 1.

Pictures of the Stable Manifold

By the symmetry of the geometry of the billiard with the ellipsoid axis along
z, the chaotic saddle, Λ, of this system is the collection of initial conditions
satisfying z = vz = 0. Started with these initial conditions, an orbit will
have z = vz = 0 for all forward and reverse time. The surface normals of
the ellipsoid and walls at z = 0 lie in the z = 0 plane, and thus the particle
cannot acquire a non–zero vz. The z = 0 slice through the 3D billiard is a
2D billiard with concave walls. It is known [Ott93] that a typical orbit in
this billiard will fill the phase space ergodically. Near z = 0, we can picture
a typical point on the stable manifold (denoted SM) as having, for example,
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z slightly less than zero and vz slightly greater than zero. The particle will
hit the ellipsoid below its equator and, thus, vz will be decreased with each
bounce, yet remain positive. With successive bounces, the orbit on SM slowly
approaches z = vz = 0, the chaotic saddle.

To visualize SM , we note that it forms the boundary between initial con-
ditions which escape upward and those which escape downward. We say that
points which, when iterated, eventually escape upward (downward) are in
the basin of upward (downward) escape. Points which are on the boundary
between the two basins never escape at all, i.e. they are in SM . We initi-
ate a (2D) grid of orbits (500 × 500) on the plane, −3 < x < 3, y = 5.1,
−2.5 < z < 0, vx = 0, vz = 0.1, and vy is given by the condition |v| = 1. We
iterate each of these initial conditions forward until it escapes. The boundary
between the white and black regions is then the intersection of SM lying in
the phase space of the 5D billiard (x, y, z, vx, vy, vz constrained by |v| = 1)
with the specified 2D x, z−plane. SM appears to take the form of a nowhere–
differentiable curve. This is true in various 2D slices, none of which are chosen
specially, which suggests that SM has this form in a typical slice. A similar
procedure can be followed for the case of the tilted ellipsoid.

Lyapunov Exponents, Decay Times, and Approximate Formulae for the
Stable Manifold

Again, we begin with the untilted case. To construct a map from this system
we record the cylindrical coordinates (z, φ) and their corresponding z and φ
velocity components, which we denote (v, ω), each time the particle hits the
ellipsoid. The coordinate r is constrained, for a given z, by the shape of the
ellipsoid surface, and vr is given by the energy conservation condition |v| = 1.
The four components (z, v, φ, ω)n give the state of the system at discrete

time n, where n labels the number of bounces from the ellipsoid. Let z ≡
[
z
v

]
and φ ≡

[
φ
ω

]
. We express the map using the following notation [SO00],

zn+1 = Mz(zn,φn),
φn+1 = Mφ(zn,φn). (2.82)

In what follows, when we refer to an orbit, saddle, invariant set, stable mani-
fold, etc., we are referring to these quantities for the discrete time map (rather
than the original continuous time system).

In the case of the untilted ellipsoid, linearizing about an orbit on Λ, (i.e.,
zn = 0, φn), we get, for the evolution of differential orbit perturbations δz
and δφ,

δzn+1 = DMz(0,φn)δzn,
δφn+1 = DMφ(0,φn)δφn,

where φn+1 = Mφ(0,φn) is the map for the 2D billiard, DMz(0,φ) is the
tangent map for differential orbit perturbations in z evaluated at z = 0, and
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DMφ(0,φ) is the tangent map for differential perturbations lying in Λ. Let
±hz and ±hφ denote the Lyapunov exponents with respect to the natural
transient measure for perturbations in z and in φ, respectively (these expo-
nents occur in positive–negative pairs due to the Hamiltonian nature of the
problem).

In principle, one could numerically evaluate hz and hφ by sprinkling a
large number, N , of initial conditions in the vicinity of Λ, iterating n � 1
times, evaluating hz and hφ over those orbits still near Λ, and averaging hz

and hφ over those orbits. We could also find τ by this procedure; it is the
exponential rate of decay of the orbits from the vicinity of Λ. For cases where
the escape time τ is not long, this procedure, however, becomes problematic.
For finite N the number of retained orbits can be small or zero if n is too large.
Thus, we adopt an alternate procedure which we found to be less numerically
demanding.

In particular, we define the uniform measure as the measure generated by
uniformly sprinkling many initial conditions in Λ (the hyperplane z = vz = 0).
An average over these orbits of the tangent space stretching exponents would
yield uniform measure Lyapunov exponents. We denote the distribution of
finite-time Lyapunov exponents with respect to this measure by

P (h̃φ, h̃z, n) ∼ e−nG(h̃φ,h̃z)

(as in (2.77)), where the tilde indicates finite time exponents for initial con-
ditions distributed according to the uniform measure.

To compute the decay time and the Lyapunov exponents with respect to
the natural transient measure we note that orbits near a point φ in Λ iterate
away from Λ as exp[nh̃z(φ, n)]. Thus, the fraction of a large number of initial
conditions sprinkled near Λ which remain near Λ after n iterates is∫

P (h̃φ, h̃z, n)e−nh̃zdh̃z,

and hφ (the infinite time Lyapunov exponent with respect to the natural
transient measure) is

hφ = lim
n→∞

∫
h̃φP (h̃φ, h̃z, n)e−nh̃zdh∫
P (h̃φ, h̃z, n)e−nh̃zdh

.

This expression can be approximated numerically by choosing N initial con-
ditions, φi, uniformly in Λ and calculating

〈
nh̃φ

〉
n
≡ n

∑N
i=1 h̃φ(φi, n)e−nh̃z(φi,n)

N
∑N

i=1 e−nh̃z(φi,n)
.

We calculate the finite-time Lyapunov exponents h̃φ(φi, n) and h̃z(φi, n) using
the QR decomposition method [Aba96]. Since we chose the φi uniformly in
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Λ these exponents are distributed according to P (n, h̃φ, h̃z). N is taken to be
large enough that there are at least 100 terms contributing to 90% of each
sum. The range of n is from 10 to about 40. We find that

〈
nh̃φ

〉
n

versus n is
well-fitted by a straight line and we take its slope as our estimate of hφ.

To find τ , first note that we numerically find that hφ does not vary much
from h̄φ (.91 ≤ hφ/h̄φ ≤ 1) as we change the system parameter (the height of
the ellipsoid), where the overbar denotes an infinite–time Lyapunov exponent
with respect to the uniform measure on Λ. Thus, we make the approximation
P (h̃φ, h̃z, n) ≈ P (h̃z, n), G(h̃φ, h̃z) ≈ G(h̃z) and plot G(h̃z) versus h̃z. The
value of 1/τ is given by (2.80), and hz is given by dG(n, hz)/dh̃z = −1. (Note
that hz ≤ 1/τ ≤ h̄z.) A third order polynomial is fit to the data for G(h̃z)
and used to find τ and hz. This calculation is performed at a value of n which
allows a significant number of points in G(h̃z) versus h̃z to be collected near
in the range hz < h̃z < h̄z.

For the case of the tilted ellipsoid, we will consider a very small tilt angle,
ξ = 2π/100. With this small tilt angle, the Lyapunov exponents and decay
times for the tilted and the untilted cases are approximately the same. Thus,
for the tilted case, we will use the same Lyapunov exponent values, ±hz and
±hφ and decay time τ , that we numerically calculated for the untilted case.
The above dimension formula for SM becomes [SO00]

DS = 4− (hφτ)−1 for hφτ ≥ 1,
DS < 3 for hφτ < 1. (2.83)

If the tilt angle is made to be zero (ξ = 0), we find that DS is not given
by (2.83), but by the following formula

DS = 4− hz+1/τ
hφ

for hφ ≥ hz + 1/τ ,
DS < 3 for hφ < hz + 1/τ .

(2.84)

Since DS is given by (2.84) only if the tilt angle ξ is precisely zero, we say that
the untilted ellipsoid scattering system is atypical. As conjectured in [HOY96],
DS from (2.83) is greater than or equal to DS from (2.84). Note that DS from
the first line of (2.83) is larger that DS from the first line of (2.84) by the
factor hz/hφ. Although the transition of DS from ξ = 0 to ξ 
= 0 is strictly
discontinuous, there is also a continuous aspect: In numerically calculating
the dimension of a measure one typically plots ln I(ε) versus ln(1/ε), where

I(ε) =
∑

μi ln[1/μi]

and μi is the measure of the ith cube in an ε grid. One then estimates the
dimension as the slope of a line fitted to small ε values in such a plot. In the
case of very small tilt, such a plot is expected to yield a slope given by (2.84)
for ε

∼
> ε∗ and subsequently, for ε

∼
< ε∗, to yield a slope given by (2.83). Here

ε∗ is a small tilt–dependent cross–over value, where ε∗ → 0 as ξ → 0. In such
a case, the dimension, which is defined by the ε→ 0 limit, is given by (2.83).
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Numerical Computations for the Three-Dimensional Billiard
Scatterer

To verify that the untilted system is atypical we numerically calculated the
box–counting dimension of SM for various values of the parameter r⊥, then
introduced a small tilt perturbation in the form of a −2π/100 radian tilt of
the ellipsoid about the x−axis and repeated the dimension calculations. The
results confirm (2.83) and (2.84).

We compare measured values of the box–counting dimension to the pre-
dicted values of the information dimension [SO00]. The box–counting dimen-
sion gives an upper bound on the information dimension, but often the values
of the two dimensions are very close. In particular, we can compare the result
for the tilted ellipsoid system to the 2D map. In the regime hφ ≥ 1/τ , our
system is similar to case (a) studied above. Changing r⊥ while leaving r‖ fixed
changes τ while hφ changes only slightly. This is similar to varying λ1 of the
2D map while keeping λ2 fixed, i.e., varying r.

For hφτ < 1 (hφ < hz +1/τ) the information dimension of SM is predicted
to be less than three for the tilted (untilted) ellipsoid system.

The box–counting dimension of SM was computed using the uncer-
tainty dimension method [MGO85, Ott93]. This method gives the box–
counting dimension of the basin boundary which, as discussed above, coincides
with SM .

The uncertainty dimension method was carried out as follows [SO00]:

1. Choose a point, x, at random in a region of a 2D plane intersecting the
basin boundary and determine by iteration in which basin it lies.

2. Determine in which basins the perturbed initial points x ± δ lie (δ is some
small vector).

3. If the three points examined in (1) and (2) do not all lie in the same basin,
then x is called ‘uncertain’.

4. Repeat 1 to 3 for many points x randomly chosen in the 2D plane, and
get the fraction of these that are uncertain.

5. The fraction of points which is uncertain for a given δ, denoted f , scales
like [Pel85] f ∼ |δ|2−d0 , where d0 is the box–counting dimension of the
intersection of SM with the 2D plane. The box–counting dimension of
SM in the full 4D state space of the map is D0 = 2 + d0. (The dimension
of a generic intersection of a 2D plane with a set having dimension D0 in
a 4D space is d0 = 2 + D0 − 4, which gives D0 = 2 + d0.) Thus, plot ln f
versus ln |δ|, fit a straight line to the plot, and estimate D0 as 4 minus
the slope of this line.

Structure of the Stable Manifold

Untilted Ellipsoid

Due to the symmetry to the untilted ellipsoid billiard, the chaotic saddle of
the untilted ellipsoid system has a special geometry (i.e., it lies in z = v = 0),
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which, as we show, accounts for the dimension being lower than the predicted
value for a typical system. Similarly, the symmetry induces a special geometry
on the stable manifold (SM). The slice is at a fixed value of ω. The axes are
z, v, and φ, but one could have chosen an arbitrary line through (φ,ω) as
the third axes and seen a plot which was qualitatively the same. The stable
manifold is organized into rays emanating from the φ−axis with oscillations
along the φ−direction. The magnitude of the oscillations decreases to zero as
the φ−axis is approached.

To understand the structure of SM in more detail, assume that |z| is
small. Then, since |z| = 0 is invariant, we can approximate the dynamics by
expanding to first order in z [SO00],

zn+1
∼= DMz(0,φn)zn, (2.85)

φn+1
∼= Mφ(0,φn). (2.86)

Say (zSM ,φSM ) is a point on SM . As this point is iterated we have that
|z| → 0 with increasing n. However, since (2.85) is linear in zn, for any constant
α, and the initial condition, (αzSM ,φSM ), the subsequent orbit must also
have |z| → 0. Consequently, if (zSM ,φSM ) lies in SM , so does (αzSM ,φSM ).
Thus, for the system (2.85), (2.86), the stable manifold at any point φ lies
on a straight line through the origin of the 2D z−space. Put another way,
in the approximation (2.85), (2.86), the stable manifold can be specified by
an equation giving the angle of z as a function of φ. Thus, decomposing into
polar coordinates (ρ, χ), the stable manifold for |z| → 0 approaches the form

χ = χ(φ). (2.87)

For |z| finite the linearity of (2.85) is not exact, and we expect that the
behavior of the stable manifold at constant φ is not a straight line through the
origin of the z plane. Rather, as |z| becomes larger we expect (and numerically
observe) the straight line for small |z| to appear as a smooth curve through
z = 0.

Since for fixed φ SM varies smoothly with increasing ρ = |z|, the dimen-
sion of SM is not affected by the approximation (2.85) and (2.86). That is,
to find the dimension of SM , we can attempt to find it in the region of small
|z| where (2.85) and (2.86) are valid, and that determination will apply to the
whole of SM .

The task of analytically determining DS is too hard for us to accomplish
in a rigorous way for the system, (2.85), (2.86), applying to our billiard. Thus,
to make progress, we adopt a model system with the same structure as (2.85),
(2.86). In particular, we wish to replace the 2D billiard map (2.86) by a
simpler map, Mφ → M̄φ, that, like the original 2D billiard map, is chaotic
and describes a Hamiltonian system. For this purpose we choose the cat map
[SO00],

φn+1 = M̄φ(φn) ≡ Cφn modulo 1, (2.88)
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where C is the cat map matrix ,

C =
[

2 1
1 1

]
.

Similarly, we replace DMz(0,φ) in (2.85) by a simple symplectic map depend-
ing on φ,

zn+1 = M̄z(zn) =
[
λ f(φn)
0 λ−1

]
zn, (2.89)

where λ > 1, and f(φ) is a smooth periodic function with period one in φ
and π. Note that vertical (i.e., parallel to z) line segments are uniformly
expanded by the factor λ, and thus, by the same argument as above, we have
1/τ = lnλ and hz = 1/τ .

Since only the angle of z is needed to specify the stable manifold, we
introduce the variable ν = z/v = tanχ. We can then derive a map for ν:
From (2.89) we have

νn+1vn+1 = λνnvn + vnf(φn) and vn+1 = λ−1vn.

Dividing the first equation by the second, vn+1 and vn cancel and we get
[SO00]

νn+1 = λ2νn + λf(φ). (2.90)

We now consider the dynamical system consisting of (2.88) and (2.90). Note
that the system (2.88), (2.90) is a 3D map, unlike the system (2.88), (2.89),
which is a four D map.

For (2.88), (2.90), the stable manifold is given by

ν = νS(φ) = −λ−1
∞∑

i=0

λ−2if(Ciφ0), (2.91)

where C is the cat map matrix.
To verify that this is SM we note that points above SM , ν > νS(φ)

(below SM , ν < νS(φ)) are repelled toward ν → ∞ (ν → −∞). Thus,
on backwards iteration, points go toward SM . We take advantage of this
behavior to determine SM . Imagine that we iterate φ forward n iterates to
φn = Cnφmodulo 1, then choose a value of νn, and iterate it backwards using
(2.90). We find that the initial value of ν at time zero giving the chosen value
νn at time n is

ν0 = (νn/λ
2n)− λ−1

n−1∑
i=0

λ−2if(Ciφ).

Keeping νn fixed and letting n → +∞, the value of ν0 approaches νS(φ),
given by (2.91).
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Results proven in [KMY84] show that the box–counting dimension (the
capacity) of the graph of the function ν = νS(φ) given by (2.91) is

D̂S =
{

3− 2 ln λ
ln B , for λ ≤ B,

2, for λ > B,
(2.92)

where B = 3+
√

5
2 > 1 is the larger eigenvalue of the matrix C.The formula

for λ < B holds for almost all (with respect to Lebesgue measure) values
of λ. Since λ > 1, the sum in (2.91) converges absolutely, implying that νS(φ)
is a continuous function of φ. Thus, when the first result in (2.92) applies
(i.e., the surface is fractal with D̂S > 2), the stable manifold is a continuous
non–differentiable surface.

For example, evaluating (2.91) on the surface φ = sû+ where û+ is the unit
vector in the eigen–direction of C corresponding to the expanding eigenvalue
B, we have that ν versus s is of the form [SO00]

ν = −
∞∑

i=0

λ−2ig(Bis).

Thus, the graph of ν versus s for B > λ has the form of Weierstrass’ famous
example of a continuous, nowhere–differentiable curve.

To get (2.92) in another way, we again consider the map (2.88), (2.90).
We claim that (2.88), (2.90) can be regarded as a typical system, and that
the above dimension formulae should apply to it. That is, in contrast to the
existence of a symmetry for (2.89) [namely, z → −z leaves (2.89) invariant],
(2.90) has no special symmetry. The Lyapunov exponent corresponding to
(2.90) is hν = 2 lnλ. Note that for the system (2.88), (2.90) [and also for the
system (2.88), (2.89)] there are no fluctuations in the finite time Lyapunov
exponents and thus the decay time for the system (2.88), (2.90) is given by
τ−1

ν = hν . Noting that the Lyapunov exponents for the cat map are ± lnB
and applying (2.53) to the three D map (2.88), (2.90), we immediately recover
(2.92). As discussed in Appendix B, this point of view can also be exploited
for the original ellipsoid system [rather than just for the model system (2.88)
and (2.89)].

Returning now to the full 4D system, (2.88), (2.89), and noting that SM
is smooth along the direction that we eliminated when we went from (2.88),
(2.89) to (2.88), (2.90), we have that the dimension DS of the stable manifold
of the invariant set (z = 0) for (2.88), (2.89) is DS = D̂S + 1. The Lyapunov
exponents for z motion in the four-coordinate system are ±hz = ± lnλ and
±hφ = ± lnB for φ motion. In terms of the Lyapunov exponents, DS is

DS =
{

4− 2 hz

hφ
, for hz/hφ ≤ 1/2,

3, for hz/hφ > 1/2.
(2.93)

Since hz = 1/τ for (2.88) and (2.89) we see that, for hz/hφ ≤ 1/2,
(2.93) is the same as (2.84). Also, the system (2.88), (2.89) has no finite time
Lyapunov exponent fluctuations, and, thus, the information dimension and the
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box–counting dimensions are the same. Hence, DS = 3 when SM is smooth
(hz/hφ > 1/2). This is analogous to the situation r = 1 and (2.74) above.

Basin Boundary for a Map Modelling the Tilted Ellipsoid Billiard

We now wish to investigate the structure of the stable manifold when we
give the ellipsoid a small tilt. Again, following [SO00], we adopt the above
approach: we get a rigorous result by utilizing a simpler map model that
preserves the basic features of the tilted ellipsoid case. Here we again use
(2.88) but we now modify (2.89) to incorporate the main effect of a small
tilt. The effect of this modification is to destroy the invariance of z = 0.
Thinking of the first non-zero term in a power series expansion for small |z|,
this invariance results because the first expansion term is linear in z; i.e., the
z−independent term in the expansion is exactly zero. When there is tilt this
is not so. Thus we replace (2.89) by[

zn+1

vn+1

]
=

[
λ f(φn)
0 λ−1

] [
zn

vn

]
+
[
fz(φn)
fv(φn)

]
. (2.94)

The simplest version of (2.94) which still has the essential breaking of z→ −z
symmetry is the case where f = fv = 0. Because setting f = fv = 0 greatly
simplifies the analysis, we consider this case in what follows (we do not expect
our conclusion to change if f, fv 
= 0). Thus, we have [SO00][

zn+1

vn+1

]
=

[
λ 0
0 λ−1

] [
zn

vn

]
+
[
fz(φn)

0

]
. (2.95)

The problem of finding the stable manifold for the invariant set of the map,
(2.88) and (2.95), is now the same as for the previously considered case of
(2.88) and (2.90) (compare the equation

zn+1 = λzn + fz(φn)

with (2.90)). Thus, making use of this equivalence we can immediately write
down the equation for the stable manifold in the 4D state space (z, v, φ, ω) as

z = −v

∞∑
i=0

λ−ifz(Ciφ), (2.96)

which is obtained from (2.91) using the replacements ν → z/v, λf → fz, and
λ2 → λ. The rigorous results of [KMY84] again show that this is a continuous,
nowhere–differentiable surface for almost all λ in 1 < λ < B, and, furthermore,
when this is so (lnλ/ lnB = hz/hφ ≤ 1) we have

DS = 4− hz

hφ
. (2.97)

Also, DS = 3 when hz/hφ > 1. Since hz = 1/τ , this is the same as (2.83).
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Derivation of Dimension Formulae

DS for Typical Systems

Let R be the portion of the state space which contains all points within ε of
a nonattracting, ergodic, invariant set, Λ of an MD map, P . Let sm be the
portion of the stable manifold of Λ which is contained in R. The points in R
are within ε of sm since Λ is a subset of sm. If we sprinkle a large number,
N0, of orbit initial conditions in R, then the number of orbits left in R after
n � 1 iterates is assumed to scale like (2.53) Nn/N0 ∼ e−n/τ . Let the map,
P , have Lyapunov exponents [SO00]

h+
U ≥ h+

U−1 ≥ · · · ≥ h+
1 > 0 > −h−

1 ≥ · · · ≥ −h−
S−1 ≥ −h−

S ,

where U + S = M .
We will use the box–counting definition of dimension

N(ε) ∼ ε−D, (2.98)

where N(ε) is the minimum number of MD hypercubes (‘boxes’) needed to
cover sm and D is its box–counting dimension.

We wish to develop a covering of sm using small boxes and determine how
the number of boxes in that covering scales as the size of the boxes is decreased.
We will look at how the linearized system dynamics distorts a typical small
box. This will help us determine how the Lyapunov exponents are related to
the dimension of sm. Since we assume a smooth map, the dimension of the
stable manifold of the map is equal to that of sm.

Cover sm with boxes which are of length ε on each of their M sides. Call
this set of boxes C. The number of boxes in C is denoted N0. Iterate each
box forward n steps, where n is large, but not so large that the linearized
dynamics do not apply to the boxes. Call the set of iterated boxes Pn(C).
A typical iterated box in Pn(C) is a distorted MD parallelopiped and has
dimensions

εenh+
U × · · · × εenh+

1 × εe−nh−
1 × · · · × εe−nh−

S .

Each parallelopiped intersects sm since its preimage (a box) did.
To construct a refined covering of sm we begin by covering each paral-

lelopiped of Pn(C) with slabs of size

U factors

ε× · · · × ε× εe−nh−
1 × · · · × εe−nh−

S .

There are roughly exp[n(h+
U + · · ·+h+

1 )] such slabs. Only ∼ e−n/τ of these slab
are within ε of sm. Let C ′ denote the set of N ′ ∼ N0 exp[n(h+

U +···+h+
1 −1/τ)]

slabs needed to cover the part of sm lying in Pn(C). Let us define

H = h+
U + · · ·+ h+

1 − 1/τ ,

so that N ′ ∼ N0enH .
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Iterate each of the N ′ slabs backward n steps. We now have the set
P−n(C ′). It contains N ′ parallelopipeds of size

εe−nh+
U × · · · × εe−nh+

1 ×
S factors

ε× · · · × ε.

The set P−n(C ′) forms a covering of sm. To calculate the dimension (which
is defined in terms of boxes) we cover the N ′ parallelopipeds in P−n(C ′) with
boxes which are εj = εe−nh+

j+1 on each side. (We will choose the value of the
index j below.) The number of boxes needed to cover sm, for boxes of size εj ,
scales as

N ′′ ∼ N ′ εe
−nh+

j

εj
× εe−nh+

j−1

εj
× · · · × εe−nh+

1

εj
×
(

1
εj

)S

.

To cover the slabs with these boxes we need a factor of 1 boxes along each
direction of a slab which is shorter than the edge length of a box and a factor of
εe−nh+

k /εj boxes along each direction (here, the kth direction) which is longer
than the edge length of a box. In terms of N0,

N ′′ ∼ N0 exp
{
n[(S + j)hj+1 + H − h+

1 − h+
2 · · · −h+

j − 1/τ ]
}
.

To compute the dimension of sm, we compare N(ε) ≡ N0 to N(εj) ≡ N ′′

using (2.98). This gives N(εj)/N(ε) ∼ (ε/εj)D ∼ exp(nDh+
j+1) which yields

the following j-dependent dimension estimate [SO00],

D(j) = S + j +
H − h+

1 + h+
2 + · · ·h+

j

h+
j+1

. (2.99)

Our definition of box–counting dimension, (2.98), requires us to find the min-
imum number of boxes needed to cover the set. Since we are certain that the
set is covered, (2.99) yields an upper bound for the dimension for any j. Thus,
to find the best estimate of those given by (2.99), we minimize D(j) over the
index j. Comparing D(j) to D(j + 1) yields the condition

h+
1 + · · ·+ h+

J + h+
J ≥ H ≥ h+

1 + · · ·+ h+
J ,

where J is the best choice for j (i.e., the choice giving the minimum upper
bound). The conjecture is that this minimum upper bound D(J) from (2.99)
is the actual dimension of sm for typical systems. D(J) is the same as the
result (2.58) presented above for DS . The derivation of the dimension formula
for the unstable manifold, DU , is similar to that just presented for the stable
manifold.

[The derivation just presented gives the information dimension of the sta-
ble manifold, not the box–counting dimension. We were considering the sizes
of typical boxes in the system and covered only those. This leaves boxes that
have atypical stretching rates for large n (a box containing a periodic point,
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for example, will, in general, not stretch at the rates given by the Lyapunov
exponents) unaccounted for. What we have actually computed is the box–
counting dimension of most of the measure, which is the information dimen-
sion [Ott93], of the stable manifold. See [Ott93] for discussion of this point.]

As derived, D(J) gives an upper bound on the dimension. We saw in the
ellipsoid example above that the z → −z symmetry of the system lead to a
special geometry for its stable manifold and the formula just derived did not
apply (although it was an upper bound). It is the conjecture of [HOY96] that
this formula gives not the upper bound, but the exact dimension of the stable
manifold for typical systems. This is supported by the results for the tilted
ellipsoid example.

DS for the Untilted (Atypical) Case

Recall that our untilted ellipsoid map (which we call P here) has Lyapunov
exponents ±hz and ±hφ and decay time τ . Following [SO00], we consider
the case

hφ > hz + τ > 0

Let us cover the region of state space which is within ε/2 of Λ with N0

boxes with edge lengths ε× ε× ε× ε. Call this set C. The map, P , is linear in
z (in particular, the z portion is of the form zn+1 = DM(φ)zn) so that the
graph of SM in z space for a given value of φ is a straight line through z = 0,
i.e. z = vg(φ). We denote by sm the portion of the stable manifold which is
contained in C. Since SM contains Λ, each box in C intersects sm.

Iterate these boxes forward n � 1 steps. They become a set distorted of
parallelepipeds which we call Pn(C). Each parallelepiped has dimensions

εenhφ × εenhz × εe−nhz × εe−nhφ

and intersects sm. We cover Pn(C) by N0 exp[n(hz +hφ)] parallelepipeds with
dimensions

ε× ε× εe−nhz × εe−nhφ ,

and discard all of these parallelepipeds which do not intersect sm. There are
N ′ ∼ N0 exp[n(hz + hφ − 1/τ)] parallelepipeds remaining which cover sm.
The portions of these parallelepipeds which are in ε > |z| > εe−nhz do not
contain sm. Suppose some portion of sm did fall in ε > |z| > εe−nhz . Since
P is linear in z, this outlying portion of sm would, upon n reverse iterations,
map to the region εenhz > |z| > ε, which contradicts the definition of sm
given above (i.e. sm is within ε/2 of Λ). Therefore we can discard the portion
of each parallelepiped which lies is ε > |z| > εe−nhz . These N ′ parallelepipeds
now have dimensions

ε× εe−nhz × εe−nhz × εe−nhφ ,
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and are denoted C ′. We now iterate the parallelepipeds in C ′ backward n
times and call the resulting set P−n(C ′). This set contains N ′ parallelepipeds
with dimensions

εe−nhφ × εe−2nhz × ε× ε.

We cover P−n(C ′) (which covers sm) with hypercubes which have as their
edge length εe−nhφ . The number of hypercubes needed is N ′′ ∼ N0 exp[n(hz +
hφ − 1/τ − 2hz + 3hφ)]. The (information) dimension is again found by com-
paring the number of ε−sized hypercubes needed to cover sm to the number
of εe−nhφ sized hypercubes needed to cover sm,

N ′′

N0
∼

(
εe−nhz

ε

)−D

, which yields D = 4− hz + 1/τ
hφ

.

This expression is between three and four for (hz + 1/τ)/hφ < 1. For more
technical details, see [SO00].

2.2.8 Fractal Basin Boundaries and Saddle–Node Bifurcations

Recall from the subsection Attractors that it is common for dynamical sys-
tems to have two or more coexisting attractors. In predicting the long–term
behavior of a such a system, it is important to determine sets of initial condi-
tions of orbits that approach each attractor (i.e., the basins of attraction). The
boundaries of such sets are often fractal (see [MGO85], as well as [Ott93] and
references therein). The fine–scale fractal structure of such a boundary implies
increased sensitivity to errors in the initial conditions: Even a considerable
decrease in the uncertainty of initial conditions may yield only a relatively
small decrease in the probability of making an error in determining in which
basin such an initial condition belongs [MGO85, Ott93]. For discussion of
fractal basin boundaries in experiments, see [Vir00].

Thompson and Soliman [TS91] showed that another source of uncertainty
induced by fractal basin boundaries may arise in situations in which there is
slow (adiabatic) variation of the system. For example, consider a fixed point
attractor of a map (a node). As a system parameter varies slowly, an orbit
initially placed on the node attractor moves with time, closely following the
location of the solution for the fixed point in the absence of the temporal
parameter variation. As the parameter varies, the node attractor may suffer
a saddle–node bifurcation. For definiteness, say that the node attractor exists
for values of the parameter μ in the range μ < μ∗, and that the saddle–node
bifurcation of the node occurs at μ = μ∗. Now assume that, for a parameter
interval [μL, μR] with μL < μ∗ < μR, in addition to the node, there are
also two other attractors A and B, and that the boundary of the basin of
attractor A, attractor B and the node is a fractal basin boundary. We are
interested in the typical case where, before the bifurcation, the saddle lies on
the fractal basin boundary, and thus, at the bifurcation, the merged saddle–
node orbit is on the basin boundary. In such a case an arbitrarily small ball
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about the saddle–node at μ = μ∗ contains pieces of the basins of both A
and B. Thus, as μ slowly increases through μ∗, it is unclear whether the orbit
following the node will go to A or to B after the node attractor is destroyed
by the bifurcation. In practice, noise or round–off error may lead the orbit
to go to one attractor or the other, and the result can often depend very
sensitively on the specific value of the slow rate at which the system parameter
varies.

We note that the study of orbits swept through an indeterminate saddle–
node bifurcation belongs to the theory of dynamical bifurcations. Many
authors have analyzed orbits swept through other bifurcations, like the period
doubling bifurcation [Bae91], the pitchfork bifurcation [BG02, LP95], and the
transcritical bifurcation [LP95]. In all these studies of the bifurcations listed
above, the local structure before and after the bifurcation includes stable
invariant manifolds varying smoothly with the bifurcation parameter (i.e., a
stable fixed point that exists before or after the bifurcation, and whose loca-
tion varies smoothly with the bifurcation parameter). This particular feature
of the local bifurcation structure, not shared by the saddle–node bifurcation,
allows for well–posed, locally defined, problems of dynamical bifurcations.
The static saddle–node bifurcation has received much attention in theory and
experiments [Kuz95, PM80, CKP02], but so far, no dynamical bifurcation
problems have been defined for the saddle–node bifurcation. In this work,
we demonstrate that, in certain common situations, global structure (i.e., an
invariant Cantor set or a fractal basin boundary) adds to the local prop-
erties of the saddle–node bifurcation and allows for well–posed problems of
dynamical bifurcations.

Situations where a saddle–node bifurcation occurs on a fractal basin
boundary have been studied in 2D Poincaré maps of damped forced oscil-
lators [TS91, NOY95, BNO03]. Several examples of such systems are known
[TS91, BNO03], and it seems that this is a common occurence in dynamical
systems. In this subsection, following [BNO03], we first focus on saddle–node
bifurcations that occur for one parameter families of smooth 1D maps having
multiple critical points (a critical point is a point at which the derivative of
the map vanishes). Since 1D dynamics is simpler than 2D dynamics, inde-
terminate bifurcations can be more simply studied, without the distraction
of extra mathematical structure. Taking advantage of this, we are able to
efficiently investigate several scaling properties of these bifurcations. For 1D
maps, a situation dynamically similar to that in which there is indeterminacy
in which attractor captures the orbit can also occur in cases where there are
two rather than three (or more) attractors. In particular, we can have the situ-
ation where one attractor persists for all values of the parameters we consider,
and the other attractor is a node which is destroyed via a saddle–node bifurca-
tion on the basin boundary separating the basins of the two attractors. In such
a situation, an orbit starting on the node, and swept through the saddle–node
bifurcation, will go to the remaining attractor. It is possible to distinguish
different ways that the orbit initially on the node approaches the remaining
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attractor. We find that the way in which this attractor is approached can be
indeterminate.

Indeterminacy in Which Attractor is Approached

We consider the general situation of a 1D real map fμ(x) depending on a
parameter μ. We assume the following [BNO03]:

(i) the map is twice differentiable with respect to x, and once differentiable
with respect to μ (the derivatives are continuous);

(ii) fμ has at least two attractors sharing a fractal basin boundary for
parameter values in the vicinity of μ∗; and

(iii) an attracting fixed point x∗ of the map fμ(x) is destroyed by a saddle–
node bifurcation as the parameter μ increases through a critical value μ∗, and
this saddle–node bifurcation occurs on the common boundary of the basins of
the two attractors.

We first recall the saddle–node bifurcation theorem (see, e.g., [Kuz95]).
If the map fμ(x) satisfies:

(a) fμ∗(x∗) = x∗,
(b) ∂xfμ∗(x∗) = 1,
(c) ∂2

xfμ∗(x∗) > 0, and
(d) ∂μf(x∗;μ∗) > 0,
– then the map fμ undergoes a backward saddle–node bifurcation (i.e., the

node attractor is destroyed at x∗ as μ increases through μ∗). If the inequality
in either (c) or (d) is reversed, then the map undergoes a forward saddle–
node bifurcation, while, if both these inequalities are reversed, the bifurcation
remains backward. A saddle–node bifurcation in a 1D map is also called a
tangent or a fold bifurcation.

Example: a 1D Map

As an illustration of an indeterminate saddle–node bifurcation in a 1D map,
we construct an example in the following way. We consider the logistic map for
a parameter value where there is a stable period three orbit. We denote this
map g(x) and its third iterate g[3](x). The map g[3](x) has three stable fixed
points. We perturb the map g[3](x) by adding a function (which depends on a
parameter μ) that will cause a saddle–node bifurcation of one of the attracting
fixed points but not of the other two. We investigate [BNO03]

fμ(x) = g[3](x) + μ sin(3πx), where g(x) = 3.832x(1− x).

Numerical calculations show that the function fμ(x) satisfies all the conditions
of the saddle–node bifurcation theorem for having a backward saddle–node
bifurcation at x∗ ≈ 0.15970 and μ∗ ≈ 0.00279.

For μ < μ∗, each of these colored sets has infinitely many disjoint intervals
and a fractal boundary. As μ increases, the leftmost stable fixed point Bμ
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is destroyed via a saddle–node bifurcation on the fractal basin boundary.
In fact, in this case, for μ < μ∗, every boundary point of one basin is a
boundary point for all three basins.21 The basins are so–called Wada basins
[KY91]. This phenomenon of a saddle–node bifurcation on the fractal bound-
ary of Wada basins also occurs for the damped forced oscillators studied in
[NOY95, BNO03]. Alternatively, if we look at the saddle–node bifurcation as
μ decreases through the value μ∗, then the basin B[μ] of the newly created
stable fixed point immediately has infinitely many disjoint intervals and its
boundary displays fractal structure. According to the terminology of [RAO00],
we may consider this bifurcation an example of an ‘explosion’.

Dimension of the Fractal Basin Boundary

We can compute dimension D of the fractal basin boundary versus the para-
meter μ. For μ < μ∗, we observe that D appears to be a continuous function
of μ. Park et al. [PGO89] argue that the fractal dimension of the basin
boundary near μ∗, for μ < μ∗, scales as

D(μ) ≈ D∗ − k(μ∗ − μ)1/2,

with D∗ the dimension at μ = μ∗ (D∗ is less than the dimension of the phase
space), and k a positive constant.

The existence of a fractal basin boundary has important practical conse-
quences. In particular, for the purpose of determining which attractor eventu-
ally captures a given orbit, the arbitrarily fine-scaled structure of fractal basin
boundaries implies considerable sensitivity to small errors in initial conditions.
If we assume that initial points cannot be located more precisely than some
ε > 0, then we cannot determine which basin a point is in, if it is within ε of
the basin boundary. Such points are called ε−uncertain. The Lebesgue mea-
sure of the set of ε−uncertain points (in a bounded region of interest) scales
like εD0−D, where D0 is the dimension of the phase space (D0 = 1 for 1D
maps) and D is the box–counting dimension of the basin boundary [MGO85].
For the case of a fractal basin boundary (D0−D) < 1. When D0−D is small,
a large decrease in ε results in a relatively small decrease in εD0−D. This is
discussed in [MGO85] which defines the uncertainty dimension, Du, as follows.
Say we randomly pick an initial condition x with uniform probability density
in a state–space region S. Then we randomly pick another initial condition y
in S, such that |y − x| < ε. Let p(ε, S) be the probability that x and y are in
different basins. (We can think of p(ε, S) as the probability that an error will
be made in determining the basin of an initial condition if the initial condition
has uncertainty of size ε.) The uncertainty dimension of the basin boundary
Du is defined as the limit [MGO85]

21 That is, an arbitrarily small x−interval centered about any point on the boundary
of any one of the basins contains pieces of the other two basins.
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lim
ε→0

ln p(ε, S)/ ln(ε).

Thus, the probability of error scales as p(ε, S) ∼ εD0−Du , where for fractal
basin boundaries D0 −Du < 1. This indicates enhanced sensitivity to small
uncertainty in initial conditions. For example, if D0 −Du = 0.2, then a dec-
rease of the initial condition uncertainty ε by a factor of 10 leads to only a
relative small decrease in the final state uncertainty p(ε, S), since p decreases
by a factor of about 100.2 ≈ 1.6. Thus, in practical terms, it may be essentially
impossible to significantly reduce the final state uncertainty. In [MGO85] it
was conjectured that the box–counting dimension equals the uncertainty dim-
ension for basin boundaries in typical dynamical systems. In [NY92] it is
proven that the box–counting dimension, the uncertainty dimension and the
Hausdorff dimension are all equal for the basin boundaries of one and 2D
systems that are uniformly hyperbolic on their basin boundary.

Now, from [PV88] it follows that the box–counting dimension and the
Hausdorff dimension coincide for all intervals of μ for which the map fμ is hyp-
erbolic on the basin boundary, and that the dimension depends continuously
on the parameter μ in these intervals. For μ > μ∗, there are many parameter
values for which the map has a saddle–node bifurcation of a periodic orbit
on the fractal basin boundary. At such parameter values, which we refer to
as saddle–node bifurcation parameter values, the dimension is expected to
be discontinuous (as it is at the saddle–node bifurcation of the fixed point,
μ = μ∗). In fact, there exist sequences of saddle–node bifurcation parame-
ter values converging to μ∗ [BNO03]. Furthermore, for each parameter value
μ > μ∗ for which the map undergoes a saddle–node bifurcation, there exists
a sequence of saddle–node bifurcation parameter values converging to that
parameter value. The basins of attraction of the periodic orbits created by
saddle–node bifurcations of high period exist only for very small intervals of
the parameter μ. We did not encounter them numerically by iterating initial
conditions for a discrete set of values of the parameter μ, as we did for the
basin of our fixed point attractor.

Scaling of the Fractal Basin Boundary

Just past μ∗, the remaining green and red basins display an alternating stripe
structure. The red and green stripes are interlaced in a fractal structure.
As we approach the bifurcation point, the interlacing becomes finer and finer
scaled, with the scale approaching zero as μ approaches μ∗. Similar fine scaled
structure is present in the neighborhood of all preiterates of x∗.

Now, consider the second order expansion of fμ in the vicinity of x∗ and
μ∗ [BNO03]

f̂μ̂(x̂) = μ̂ + x̂ + ax̂2, where
{

x̂ = x− x∗,
μ̂ = μ− μ∗,

(2.100)
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and a ≈ 89.4315. The trajectories of f̂μ̂ in the neighborhood of x̂ = 0, for μ̂
close to zero, are good approximations to trajectories of fμ in the neighbor-
hood of x = x∗, for μ close to μ∗. Assume that we start with a certain initial
condition for f̂μ̂, x̂0 = x̂s, and we ask the following question: What are all
the positive values of the parameter μ̂ such that a trajectory passes through
a fixed position x̂f > 0 at some iterate n? For any given xf which is not on
the fractal basin boundary, there exists a range of μ such that iterates of xf

under fμ evolve to the same final attractor, for all values of μ in that range.
In particular, once ax̂2 appreciably exceeds μ̂, the subsequent evolution is
approximately independent of μ̂. Thus, we can choose x̂f �

√
μ̂/a, but still

small enough so that it lies in the region of validity of the canonical form
(2.100). There exists a range of such x̂f values satisfying these requirements
provided that |μ̂| is small enough.

Since consecutive iterates of f̂μ̂ in the neighborhood of x̂ = 0 for μ̂ close
to zero differ only slightly, we approximate the 1D map, [BNO03]

x̂n+1 = f̂μ̂(x̂n) = μ̂ + x̂n + ax̂2
n,

by the differential equation [PM80],

dx̂

dn
= μ̂ + ax̂2, (2.101)

where in (2.101) n is considered as a continuous, rather than a discrete, vari-
able. Integrating (2.101) from x̂s to x̂f yields

n
√

aμ̂ = arctan
(√

a

μ̂
x̂f

)
− arctan

(√
a

μ̂
x̂s

)
. (2.102)

Close to the saddle–node bifurcation (i.e., 0 < μ̂� 1, and x̂s,f close to zero),
f̂μ̂ is a good approximation to fμ. For |x̂s,f |

√
(a/μ̂)� 1 (2.102) becomes

n
√

aμ̂ ≈ π. (2.103)

The values of μ̂−1/2
n satisfying (2.103) increase with n in step of

√
a/π. For our

example we have a ≈ 89.4315, thus
√
a/π ≈ 3.010.

In order to investigate the structure of the fractal basin boundary in the
vicinity of the saddle–node bifurcation (i.e., x̂s close to x̂∗ = 0), we consider
(2.102) in the case where we demand only |x̂f |

√
(a/μ̂) � 1. Thus, (2.102)

becomes

n
√

aμ̂ ≈ π

2
− arctan

(√
a

μ̂
x̂s

)
. (2.104)

Let μ̂−1/2
n (x̂s) denote the solution of (2.104) for μ̂. Equation (2.104) implies

the behavior of μ̂−1/2
n (x̂s) as function of x̂s and n. For a fixed n, μ̂−1/2

n has
a horizontal asymptote at the value n

√
a/π as x̂s → −∞, and a vertical

asymptote to infinity at x̂s = 1/(an). For x̂s < 0, we have an infinite number
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of values of the parameter μ̂, for which an orbit of f̂μ̂ starting at x̂s passes
through the same position x̂f , after some number of iterations. For x̂s = 0
(i.e., xs = x∗), we also have an infinite number of μ̂−1/2

n (0), but with constant
step 2

√
a/π rather than

√
a/π. This is hard to verify from numerics, since ∂

x̂s
μ̂−1/2

n (0) = a3/2(2n/π)2

increases with n2, and the stripes become very tilted in the neighborhood of
x̂s = x̂∗ = 0. For x̂s > 0, μ̂−1/2

n has only a limited number of values with
nmax < 1/(ax̂0).

Sweeping Through an Indeterminate Saddle–Node Bifurcation

In order to understand the consequences of a saddle–node bifurcation on a
fractal basin boundary for systems experiencing slow drift, we imagine the
following experiment. We start with the dynamical system fμ at parameter
μs < μ∗, with x0 on the attractor to be destroyed at μ = μ∗ by a saddle–
node bifurcation (i.e., Bμ). Then, as we iterate, we slowly change μ by a small
constant amount δμ per iterate, thus increasing μ from μs to μf > μ∗,[BNO03]

xn+1 = fμn
(xn), (2.105)

μn = μs + n δμ.

When μ ≥ μf we stop sweeping the parameter μ, and, by iterating further,
we determine to which of the remaining attractors of fμf

the orbit goes.
Numerically, we observe that, if (μf − μ∗) is not too small, then, by the time
μf is reached, the orbit is close to the attractor of fμf

to which it goes. (From
the subsequent analysis, ‘not too small |μs,f − μ∗|’ translates to choices of δμ
that satisfy (δμ)2/3 � |μs,f − μ∗|.) We repeat this for different values of δμ
and we graph the final attractor position for the orbit versus δμ.

Once μ = μf , the orbit typically lands in the green or the red basin of
attraction and goes to the corresponding attractor. Due to sweeping, it is
possible for the orbit to switch from being in one basin of attraction of the
time–independent map fμ to the other, since the basin boundary between
G[μ] and R[μ] changes with μ. However, the sweeping of μ is slow (i.e., δμ is
small), and, once (μ − μ∗) is large enough, the orbit is far enough from the
fractal basin boundary, and the fractal basin boundary changes too little to
switch the orbit between G[μ] and R[μ].

In order to explain this result, we again consider the map f̂μ̂, the local
approximation of fμ in the region of the saddle–node bifurcation. Equations
(2.105) can be approximated by [BNO03]

x̂n+1 = f̂μ̂n
(x̂n) = μ̂n + x̂n + ax̂2

n, (2.106)
μ̂n = μ̂s + n δμ.
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We perform the following numerical experiment. We consider orbits of our
approximate 2D map given by (2.106) starting at x̂s = −

√
−μ̂s/a. We define

a final state function of an orbit swept with parameter δμ in the following way.
It is 0 if the orbit has at least one iterate in a specified fixed interval far from
the saddle–node bifurcation, and is 1, otherwise. In particular, we take the
final state of a swept orbit to be 0 if there exists n such that 100 < x̂n < 250,
and to be 1 otherwise.

We are now in a position to give a theoretical analysis explaining the
observed periodicity in 1/δμ. In particular, we now know that this can be
explained using the canonical map (2.106), and that the periodicity result is
thus universal (i.e., independent of the details of our particular example). For
slow sweeping (i.e., δμ small), consecutive iterates of (2.106) in the vicinity of
x̂ = 0 and μ̂ = 0 differ only slightly, and we further approximate the system
by the following Ricatti ODE , [BNO03]

dx̂

dn
= μ̂s + nδμ + ax̂2. (2.107)

The solution of (2.107) can be expressed in terms of the Airy functions Ai
and Bi and their derivatives, denoted by Ai′ and Bi′,

x̂(n) =
ηAi′(ξ) + Bi′(ξ)
ηAi(ξ) + Bi(ξ)

(
δμ

a2

)1/3

, where (2.108)

ξ(n) = −a1/3 μ̂s + n δμ

δμ2/3
,

and η is a constant to be determined from the initial condition. We are only
interested in the case of slow sweeping,

δμ� 1, and x̂(0) ≡ x̂s = −
√
−μ̂s/a,

which is the stable fixed point of f̂μ̂ destroyed by the saddle–node bifurcation
at μ̂ = 0. In particular, we will consider the case where μ̂s < 0 and |μ̂s| �
δμ2/3 (i.e., |ξ(0)| � 1). Using x̂(0) = −

√
−μ̂s/a to solve for η yields

η ∼ O[ξ(0)e2ξ(0)] � 1.

For positive large values of ξ(n) (i.e., for n small enough), using the corre-
sponding asymptotic expansions of the Airy functions [AS72], the lowest order
in δμ approximation to (2.108) is

x̂(n) ≈ −
√
− μ̂s + n δμ

a
,

with the correction term of higher order in δμ being negative. Thus, for n
sufficiently smaller than −μ̂s/δμ, the swept orbit lags closely behind the fixed
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point for f̂μ̂ with μ̂ constant. For ξ ≤ 0, we use the fact that η is large to
approximate (2.108) as

x̂(n) ≈ Ai′(ξ)
Ai(ξ)

(
δμ

a2

)1/3

. (2.109)

Note that

x̂(−μ̂s/δμ) ≈ Ai′(0)
Ai(0)

(
δμ

a2

)1/3

= (−0.7290...)
(
δμ

a2

)1/3

gives the lag of the swept orbit relative to the fixed point attractor eval-
uated at the saddle–node bifurcation. Equation (2.109) does not apply for
n > nmax, where nmax is the value of n for which ξ(nmax) = ξ̃, the largest
root of Ai(ξ̃) = 0 (i.e., ξ̃ = −2.3381...). At n = nmax, the normal form app-
roximation predicts that the orbit diverges to +∞. Thus, for n near nmax,
the normal form approximation of the dynamical system ceases to be valid.
Note, however, that (2.109) can be valid even for ξ(n) close to ξ(nmax). This
is possible because δμ is small. In particular, we can consider times up to the
time n′ where n′ is determined by

ξ′ ≡ ξ(n′) = ξ̃ + δξ, (δξ > 0 is small),

provided |x̂(n′)| � 1 so that the normal form applies. That is, we require

[Ai′(ξ′)/Ai(ξ′)](δμ/a2)1/3 � 1,

which can be satisfied even if [Ai′(ξ′)/Ai(ξ′)] is large. Furthermore, we will
take the small quantity δξ to be not too small (i.e., δξ/(a δμ)1/3 � 1), so that
(nmax − n′) � 1. We then consider (2.109) in the range, −(μ̂s/δμ) ≤ n < n′,
where the normal form is still valid.

We use (2.109) for answering the following question: What are all the
values of the parameter δμ (δμ small) for which an orbit passes exactly through
the same position x̂f > 0, at some iterate nf? All such orbits would further
evolve to the same final attractor, independent of δμ, provided ax̂2

f � μ̂s +
nf δμ; i.e., x̂f is large enough that

μ̂f = μ̂s + nf δμ

does not much influence the orbit after x̂ reaches x̂f . Let us denote ξ(nf ) as
ξ(nf ) ≡ ξf . Using (2.109) we can estimate when this occurs,

ax̂2
f = [Ai′(ξf )/Ai(ξf )]2(δμ2/a)1/3 � (μ̂s + nf δμ), or

[Ai′(ξf )/Ai(ξf )]2 � ξf .
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This inequality is satisfied when ξf gets near ξ̃, which is the largest zero of
Ai (i.e., ξf = ξ̃ + δξ, where δξ is a small positive quantity). We now rewrite
(2.109) in the following way [BNO03]

1
δμ

= − nf

μ̂s −
[

(δμ)2

a

]1/3

K

[(
a2

δμ

)1/3

x̂f

] , (2.110)

representing a transcedental equation in δμ where μ̂s and x̂f are fixed, nf is
a large positive integer (i.e., nf − 1 is the integer part of (μ̂f − μ̂s)/δμ), and
K(ζ) is the inverse function of Ai′(ξ)/Ai(ξ) in the neighborhood of

ζ = (a2/δμ)1/3 x̂f � 1, thus |K[(a2/δμ)1/3 x̂f ]| � |K(∞)| = |ξ̃|.

The difference [1/δμ(xf , nf + 1) − 1/δμ(xf , nf )], where δμ(xf , nf ) is the
solution of (2.110), yields the limit period of the attracting state versus 1/δμ
graph. We denote this limit period by Δ (1/δμ). For small δμ, the term inv-
olving K[(a2/δμ)1/3 x̂f ] in (2.110) can be neglected, and we get

Δ (1/δμ) = −μ̂−1
s = (−μs + μ∗)

−1.

An alternate point of view on this scaling property is as follows. For μ̂ < 0
(i.e., μ < μ∗) and slow sweeping (i.e., δμ small), the orbit closely follows the
stable fixed point attractor of f̂μ̂, until μ̂ ≥ 0, and the saddle–node bifurcation
takes place. However, due to the discreteness of n, the first nonnegative value
of μ̂ depends on μ̂s and δμ. Now consider two values of δμ, one δμm satisfying
μ̂s + mδμm = 0, and another δμm+1 satisfying

μ̂s + (m + 1) δμm+1 = 0.

Because δμm and δμm+1 are very close (for large m) and both lead μ̂(n) to
pass through μ̂ = μ̂∗ = 0 (one at time n = m, and the other at time n = m+1),
it is reasonable to assume that their orbits for μ̂s/δμ < n < n′ are similar
(except for a time shift n→ n + 1); i.e., they go to the same attractor. Thus,
the period of 1/δμ is approximately

Δ (1/δμ) = 1/δμm+1 − 1/δμm = −μ̂−1
s .

We now discuss a possible experimental application of our analysis. The
conceptually most straightforward method of measuring a fractal basin bound-
ary would be to repeat many experiments each with precisely chosen initial
conditions. By determining the final attractor corresponding to each initial
condition, basins of attraction could conceivably be mapped out [Vir00]. How-
ever, it is commonly the case that accurate control of initial conditions is not
feasible for experiments. Thus, the application of this direct method is limited,
and, as a consequence, fractal basin boundaries have received little experimen-
tal study, in spite of their fundamental importance. If a saddle–node bifurca-
tion occurs on the fractal basin boundary, an experiment can be arranged to
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take advantage of this. In this case, the purpose of the experiment would
be to measure the dimension D′ as an estimate of the fractal dimen-
sion of the basin boundary D. The measurements would determine the
final attractor of orbits starting at the attractor to be destroyed by the
saddle–node bifurcation, and swept through the saddle–node bifurcation at
different velocities. This does not require precise control of the initial condi-
tions of the orbits. It is sufficient for the initial condition to be in the basin
of the attractor to be destroyed by the saddle–node bifurcation; after enough
time, the orbit will be as close to the attractor as the noise level allows.
Then, the orbit may be swept through the saddle–node bifurcation. The final
states of the orbits are attractors; in their final states, orbits are robust to
noise and to measurement perturbations. The only parameters which require
rigorous control are the sweeping velocity (i.e., δμ) and the initial value of the
parameter to be swept (i.e., μs); precise knowledge of the parameter value
where the saddle–node bifurcation takes place (i.e., μ∗) is not needed. It is
also required that the noise level be sufficiently low.

Capture Time

A question of interest is how much time it takes for a swept orbit to reach the
final attracting state. Namely, we ask how many iterations with μ > μ∗ are
needed for the orbit to reach a neighborhood of the attractor having the green
basin. Due to slow sweeping, the location of the attractor changes slightly on
every iterate. If xμ is a fixed point attractor of fμ (with μ constant), then a
small change δμ in the parameter μ, yields a change in the position of the
fixed point attractor, [BNO03]

(xμ+δμ − xμ) ≡ δx = δμ
∂μf(xμ;μ)

1− ∂xfμ(xμ)
.

We consider the swept orbit to have reached its final attractor if consecutive
iterates differ by about δx (which is proportional to δμ). For numerical pur-
poses, we consider that the orbit has reached its final state if |xn+1 − xn| <
10 δμ. In our numerical experiments, this condition is satisfied by every orbit
before μ reaches its final value μf . We refer to the number of iterations with
μ > μ∗ needed to reach the final state as the capture time of the correspond-
ing orbit. Orbits swept with δμ at the centers of these intervals spend only
a small number of iterations close to the common fractal boundary of R[μ]
and G[μ]. Thus, the capture time of such similar orbits does not depend on
the structure of the fractal basin boundary. We use (2.109) as an approximate
description of these orbits. A swept orbit reaches its final attracting state as
x̂(n) becomes large. Then, the orbit is rapidly trapped in the neighborhood
of one of the swept attractors of fμ. Thus, we equate the argument of the
Airy function in the denominator to its first root [see (2.109)], solve for n,
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and substract −μ̂s/δμ (the time for μ̂ to reach the bifurcation value). This
yields the following approximate formula for the capture time

nC ≈ |ξ̃|(a δμ)−1/3,

where ξ̃ = −2.3381... is the largest root of the Airy function Ai. Thus, we
predict that for small δμ, a log-log plot of the capture time of the selected
orbits versus δμ is a straight line with slope −1/3.

Indeterminate Saddle–Node Bifurcation in the Presence of Noise

We now consider the addition of noise. Thus, we change our swept dynamical
system to [BNO03]

xn+1 = fμn
(xn) + Aεn, (2.111)

μn = μs + n δμ,

where εn is random with uniform probability density in the interval [−1, 1],
and A is a parameter which we call the noise amplitude.

Now we take advantage of the asymptotically periodic structure of the
noiseless final destination graph versus 1/δμ. We consider centers of the largest
intervals of 1/δμ for which an orbit reaches the middle attractor in the absence
of noise. We chose five such values of δμ, spread over two decades, where
the ratio of consecutive values is approximately 3. We notice that all the
curves have qualitatively similar shape. For a range from zero to small A, the
probability is 1, and as A increases, the probability decreases to a horizontal
asymptote. The rightmost curve in the family corresponds to the largest value
of δμ (δμ ≈ 3.445974 × 10−5), and the leftmost curve corresponds to the
smallest value of δμ (δμ ≈ 4.243522 × 10−7). All data collapse to a single
curve, indicating that the probability that a swept orbit reaches the attractor
Gμf

depends only on the reduced variable A/(δμ)5/6. Later, we provide a
theoretical argument for this scaling.

In order to gain some understanding of this result, we follow the above idea
and use the canonical form f̂μ̂ to propose a simplified setup of our problem.
We modify (2.106) by the addition of a noise term Aεn in the right hand side
of the first equation of (2.106). We are interested in the probability that a
swept orbit has at least one iterate, x̂n, in a specified fixed interval far from
the vicinity of the saddle–node bifurcation. More precisely, we analyze how
this probability changes versus A and δμ. Depending on the choice of interval
and the choice of δμ, the probability versus A graph (not shown) has various
shapes. For numerical purposes, we choose our fixed interval to be the same
as above, 100 ≤ x̂ ≤ 250. We then select values of δμ for which a noiseless
swept orbit, starting at x̂s = −

√
−μ̂s/a, reaches exactly the center of our

fixed interval. The inverse of these values of δμ are centers of intervals where
the final state of the swept orbits is 0. We consider five such values of δμ,
where the ratio of consecutive values is approximately 3.
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We now present a theoretical argument for why the probability of reaching
an attractor depends on δμ and A only through the scaled variable A/(δμ)5/6

when δμ and A are small. We know that the scaling we wish to demonstrate
should be obtainable by use of the canonical form f̂μ̂. Accordingly, we again
use the differential equation approximation (2.107), but with a noise term
added, [BNO03]

dx̂

dn
= n δμ + ax̂2 + Aε̂(n), (2.112)

where ε̂(n) is white noise,

〈ε̂(n)〉 = 0, 〈ε̂(n + n′)ε̂(n)〉 = δ(n′),

and we have redefined the origin of the time variable n so that the parameter
μ̂ sweeps through zero at n = 0 (i.e., we replaced n by n− |μ̂s|/δμ). Because
we are only concerned with scaling, and not with the exact solution of (2.112),
a fairly crude analysis will be sufficient.

First we consider the solution of (2.112) with the noise term omitted, and
the initial condition

x̂(0) = (−0.7290...)
(
δμ/a2

)1/3
.

We define a characteristic point of the orbit, x̂nl(nnl), where ax̂2
nl ≈ nnl δμ.

For n < nnl, n δμ ≤ dx̂/dn < 2n δμ, and we can approximate the noiseless
orbit as

x̂(n) ≈ x̂(0) + α(n)(n2 δμ),

where α(n) is a slowly varying function of n of order 1 (1/2 ≤ α(n) < 1 for
n < nnl). Setting ax̂2 ≈ n δμ, we find that nnl is given by

nnl ∼ (a δμ)−1/3,

corresponding to
x̂nl ∼ (δμ/a)1/3.

For n > nnl (i.e., x̂(n) > x̂nl), (2.112) can be approximated as dx̂/dn ≈ ax̂2.
Starting at x̂(n) ∼ x̂nl, integration of this equation leads to explosive growth
of x̂ to infinity in a time of order (a δμ)−1/3, which is of the same order as
nnl. Thus, the relevant time scale is (a δμ)−1/3.

Now consider the action of noise. For n < nnl, we neglect the nonlinear
term ax̂2, so that (2.112) becomes

dx̂/dn = n δμ + Aε̂(n).

The solution of this equation is the linear superposition of the solutions of

dx̂a/dn = n δμ, dx̂b/dn = Aε̂(n),
or x̂(n) = x̂a(n) + x̂b(n);
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x̂a(n) is given by
x̂a(n) = x̂(0) + n2δμ/2,

and x̂b(n) is a random walk. Thus, for n < nnl, there is diffusive spreading of
the probability density of x̂,

Δdiff(n) ≡
√
〈x̂2

b(n)〉 ∼ n1/2A.

This diffusive spreading can blur out the natural pattern. How large does the
noise amplitude A have to be to do this? We can estimate A by noting that
the periodic structure results from orbits that take different integer times to
reach x̂ ∼ x̂nl. Thus, for n ≈ nnl we define a scale Δnl in x̂ corresponding to
the periodicity in 1/δμ by

x̂nl ±Δnl ≈ x̂(0) + (nnl ± 1)2δμ

which yields
Δnl ∼ nnlδμ.

If by the time n ≈ nnl, the diffusive spread of the probability density of
x̂ becomes as large as Δnl, then the noise starts to wash out the periodic
variations with 1/δμ. Setting Δdiff(nnl) to be of the order of Δnl, we get
n

1/2
nl A ∼ nnlδμ, which yields

A ∼ (δμ)5/6.

Thus, we expect a collapse of the two parameter (A, δμ) data by means of a
rescaling of A by δμ raised to an exponent 5/6 (i.e., A/(δμ)5/6).

Scaling of Indeterminate Saddle–Node Bifurcations for a
Periodically Forced 2nd Order ODE

In this section we demonstrate the scaling properties of sweeping through an
indeterminate saddle–node bifurcation in the case of the periodically forced
Duffing oscillator [BNO03],

ẍ− 0.15 ẋ− x + x3 = μ cos t.

The unforced Duffing system (i.e., μ = 0) is an example of an oscillator in a
double well potential. It has two coexisting fixed point attractors correspond-
ing to the two minima of the potential energy. For small μ, the forced Duffing
oscillator has two attracting periodic orbits with the period of the forcing
(i.e., 2π), one in each well of the potential. At μ = μ∗ ≈ 0.2446, a new at-
tracting periodic orbit of period 6π arises through a saddle–node bifurcation.
In [AS02], it is argued numerically that for a certain range of μ > μ∗ the
basin of attraction of the 6π periodic orbit and the basins of attraction of
the 2π periodic orbits have the Wada property. Thus, as μ decreases through
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the critical value μ∗, the period 6π attractor is destroyed via a saddle–node
bifurcation on the fractal boundary of the basins of the other two attractors.
This is an example of an indeterminate saddle–node bifurcation of the Duffing
system which we study by considering the 2D map in the (ẋ, x) plane resulting
from a Poincaré section at constant phase of the forcing signal. We consider
orbits starting in the vicinity of the period three fixed point attractor, and, as
we integrate the Duffing system, we decrease μ from μs > μ∗ to μf < μ∗ at a
small rate of δμ per one period of the forcing signal. As μ approaches μ∗, (with
μ > μ∗,) the period three fixed point attractor of the unswept Duffing system
approaches its basin boundary, and the slowly swept orbit closely follows its
location. For μ − μ∗ < 0 small, the orbit will approximately follow the 1D
unstable manifold of the μ = μ∗ period three saddle–node pair. Thus, we can
describe the sweeping through the indeterminate bifurcation of the Duffing
oscillator by the theory we developed for 1D discrete maps. We believe that
the scaling properties of the indeterminate saddle–node bifurcation we found
in 1D discrete maps are also shared by higher dimensional flows [BNO03].

Indeterminacy in How an Attractor is Approached

In this section we consider the case of a 1D map fμ having two attractors A and
B, one of which (i.e., A) exists for all μ ∈ [μs, μf ]. The other (i.e., B) is a node
which is destroyed by a saddle–node bifurcation on the boundary between the
basins of A and B, as μ increases through μ∗ (μ∗ ∈ [μs, μf ]). When an orbit is
initially on B, and μ is slowly increased through μ∗, the orbit will always go to
A (which is the only attractor for μ > μ∗). However, it is possible to distinguish
between two (or more) different ways of approaching A. (In particular, we are
interested in ways of approach that can be distinguished in a coordinate–free
(i.e., invariant) manner.) As we show in this section, the way in which A is
approached can be indeterminate. In this case, the indeterminacy is connected
with the existence of an invariant nonattracting Cantor set embedded in the
basin of A for μ > μ∗.

As an illustration, we construct the following model [BNO03]

fμ(x) = −μ + x− 3x2 − x4 + 3.6x6 − x8.

Calculations show that fμ satisfies all the requirements of the saddle–node
bifurcation theorem for undergoing a backward saddle–node bifurcation at
x∗ = 0 and μ∗ = 0. For every value of μ we consider, the map fμ has invari-
ant Cantor sets. The trajectories of points which are located on an invariant
Cantor set, do not diverge to infinity. One way to display such Cantor sets, is
to select uniquely defined intervals whose end points are on the Cantor set.
For every fixed parameter value μ, the collection of points that are bound-
ary points of the red and green regions, constitutes an invariant Cantor set.
In order to describe these green and red regions, we introduce the following
notations. For each parameter value μ, let pμ be the leftmost fixed point of fμ.
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For every x0 < pμ, the sequence of iterates {xn = f
[n]
μ (x0)} is decreasing and

diverges to minus infinity. For each value of μ, let qμ be the fixed point of fμ

to the right of x = 0 at which ∂xfμ(qμ) > 1. A point (x;μ) is colored green
if its trajectory diverges to minus infinity and it passes through the interval
(qμ,∞), and it is colored red if its trajectory diverges to minus infinity and
it does not pass through the interval (qμ,∞). Denote the collection of points
(x;μ) that are colored green by G[μ], and the collection of points (x;μ) that
are colored red by R[μ]. Using the methods and techniques of [Nus87], it can
be shown that the collection of points (x;μ) which are common boundary
points of G[μ] and R[μ] is a Cantor set C[μ].22 In particular, the results of
[Nus87] imply that for μ = μ∗ = 0 the point x∗ = 0 belongs to the invariant
Cantor set C[μ∗].

As discussed above, past the saddle–node bifurcation of fμ at μ∗, infinitely
many other saddle–node bifurcations of periodic orbits take place on the inv-
ariant Cantor set C[μ]. We believe that μ∗∗ is an approximate value of μ where
such a saddle–node of a periodic orbit takes place.

• scaling of the fractal basin boundary of the static (i.e., unswept) system
near the saddle–node bifurcation,

• the scaling dependence of the orbit’s final destination with the inverse
of the sweeping rate,

• the dependence of the time it takes for an attractor to capture a swept
orbit with the −1/3 power of the sweeping rate,

• scaling of the effect of noise on the final attractor capture probability with
the 5/6 power of the sweeping rate.

2.2.9 Chaos Field Theory

In [Cvi00], Cvitanovic re–examined the path–integral formulation and the
role that the classical solutions play in quantization of strongly nonlinear
fields. In the path integral formulation of a field theory the dominant con-
tributions come from saddle–points, the classical solutions of equations of

22 For every μ (−0.3 < μ < 0.3), write p∗
μ = max{x ∈ R : fμ(x) = pμ} and

q∗μ = max{x ∈ R : fμ(x) = qμ}. The interval [qμ, q∗μ] also contains a Cantor
set. By coloring this whole segment green, this information is lost. Therefore,
the coloring scheme should be adapted if one wants to have the whole invariant
Cantor set represented for every μ. For example, if a trajectory that diverges to
minus infinity contains a point that is greater than p∗

μ then the initial point is
colored green, if a trajectory that diverges to minus infinity contains a point that
is greater than q∗μ but not greater than p∗

μ then the initial point is colored yellow.
A point is colored red, if its trajectory diverges to minus infinity and does not
have a point that is greater than q∗μ. Then the collection of boundary points (a
point x is a boundary point if every open neighborhood of x contains points of at
least two different colors) is a Cantor set that contains the Cantor set described
above.



2.2 Basics of Nonlinear Dynamics and Chaos Theory 373

Fig. 2.34. Path integrals and chaos field theory (see text for explanation).

motion. Usually one imagines one dominant saddle point, the ‘vacuum’ (see
Figure 2.34, (a)).

The Feynman diagrams of quantum electrodynamics (QED) and quan-
tum chromodynamics (QCD), associated to their path–integrals (see next
Chapter), give us a visual and intuitive scheme to calculate the correction
terms to this starting semiclassical, Gaussian saddlepoint approximation. But
there might be other saddles (Figure 2.34, (b)). That field theories might have
a rich repertoire of classical solutions became apparent with the discovery
of instantons [BPS75], analytic solutions of the classical SU(2) Yang–Mills
relation, and the realization that the associated instanton vacua receive con-
tributions from countable ∞’s of saddles. What is not clear is whether these
are the important classical saddles. Cvitanovic asks the question: could it
be that the strongly nonlinear theories are dominated by altogether different
classical solutions?

The search for the classical solutions of nonlinear field theories such as the
Yang–Mills and gravity has so far been neither very successful nor very sys-
tematic. In modern field theories the main emphasis has been on symmetries
(compactly collected in action functionals that define the theories) as guiding
principles in writing down the actions. But writing down a differential equa-
tion is only the start of the story; even for systems as simple as 3 coupled
ordinary differential equations one in general has no clue what the nature of
the long time solutions might be.
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These are hard problems, and in explorations of modern field theories
the dynamics tends to be is neglected, and understandably so, because the
wealth of the classical solutions of nonlinear systems can be truly bewildering.
If the classical behavior of these theories is anything like that of the field
theories that describe the classical world – the hydrodynamics, the magneto–
hydrodynamics, the Burgers dynamical system , Ginzburg–Landau equation,
or Kuramoto–Sivashinsky equation (see, e.g., [II06b]), there should be very
many solutions, with very few of the important ones analytical in form; the
strongly nonlinear classical field theories are turbulent, after all. Furthermore,
there is not a dimmest hope that such solutions are either beautiful or analytic,
and there is not much enthusiasm for grinding out numerical solutions as long
as one lacks ideas as what to do with them.

By late 1970’s it was generally understood that even the simplest nonlinear
systems exhibit chaos. Chaos is the norm also for generic Hamiltonian flows,
and for path integrals that implies that instead of a few, or countably few
saddles (Figure 2.34, (c)), classical solutions populate fractal sets of saddles
(Figure 2.34, (d)). For the path–integral formulation of quantum mechanics
such solutions were discovered and accounted for by Gutzwiller, in late 1960’s
(see [Gut90]). In this framework the spectrum of the theory is computed from
a set of its unstable classical periodic solutions and quantum corrections.
The new aspect is that the individual saddles for classically chaotic systems
are nothing like the harmonic oscillator degrees of freedom, the quarks and
gluons of QCD – they are all unstable and highly nontrivial, accessible only
by numerical techniques.

So, if one is to develop a semiclassical field theory of systems that are
classically chaotic or turbulent, the problem one faces is twofold [Cvi00]

1. Determine, classify, and order by relative importance the classical solu-
tions of nonlinear field theories.

2. Develop methods for calculating perturbative corrections to the corre-
sponding classical saddles.

2.3 Chaos Control

2.3.1 Feedback versus Non–Feedback Algorithms

Although the presence of chaotic behavior is generic and robust for suitable
nonlinearities, ranges of parameters and external forces, there are practical
situations where one wishes to avoid or control chaos so as to improve the per-
formance of the dynamical system. Also, although chaos is sometimes useful
as in a mixing process or in heat transfer, it is often unwanted or undesirable.
For example, increased drag in flow systems, erratic fibrillations of heart beats,
extreme weather patterns and complicated circuit oscillations are situations
where chaos is harmful. Clearly, the ability to control chaos, that is to convert
chaotic oscillations into desired regular ones with a periodic time dependence
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would be beneficial in working with a particular system. The possibility of pur-
poseful selection and stabilization of particular orbits in a normally chaotic
system, using minimal, predetermined efforts, provides a unique opportunity
to maximize the output of a dynamical system. It is thus of great practical
importance to develop suitable control methods and to analyze their efficacy.

Let us consider a general nD nonlinear dynamical system,

ẋ = F (x, p, t), (2.113)

where x = (x1, x2, x3, . . . , xn) represents the n state variables and p is a control
or external parameter. Let x(t) be a chaotic solution of (2.113). Different
control algorithms are essentially based on the fact that one would like to
effect the most minimal changes to the original system so that it will not be
grossly deformed. From this point of view, controlling methods or algorithms
can be broadly classified into two categories:

(i) feedback methods, and
(ii) non–feedback algorithms.
Feedback methods essentially make use of the intrinsic properties of chaotic

systems, including their sensitivity to initial conditions, to stabilize orbits
already existing in the systems. Some of the prominent methods are the
following (see, [Lak97, Lak03, Sch88, II06b]):

1. Adaptive control algorithm;
2. Nonlinear control algorithm;
3. Ott–Grebogi–Yorke (OGY) method of stabilizing unstable periodic orbits;
4. Singer’s method of stabilizing unstable periodic orbits; and
5. Various control engineering approaches.

In contrast to feedback control techniques, non–feedback methods make
use of a small perturbing external force such as a small driving force, a
small noise term, a small constant bias or a weak modulation to some system
parameter. These methods modify the underlying chaotic dynamical system
weakly so that stable solutions appear. Some of the important controlling
methods of this type are the following.

1. Parametric perturbation method
2. Addition of a weak periodic signal, constant bias or noise
3. Entrainment–open loop control
4. Oscillator absorber method.

Here is a typical example of adaptive control algorithm. We can control the
chaotic orbit Xs = (xs, ys) of the Van der Pol oscillator (2.30) by introducing
the following dynamics on the parameter A1:

ẋ = x− x3

3
− y + A0 + A1 cosωt, ẏ = c(x + a− by),

Ȧ1 = −ε[(x− xs)− (y − ys)], ε << 1.
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On the other hand, recall from [II06b] that a generic SISO nonlinear system

ẋ = f(x) + g(x)u y = h(x) (2.114)

is said to have relative degree r at a point xo if
(i) LgL

k
fh(x) = 0 for all x in a neighborhood of xo and all k < r − 1

(ii) LgL
r−1
f h(xo) 
= 0, where Lg denotes the Lie derivative in the direction

of the vector–field g.
Now, the Van der Pol oscillator (2.23) has the state space form

ẋ = f(x) + g(x)u =
[

x2

2ωζ (1− μx2
1)x2 − ω2x1

]
+
[

0
1

]
u. (2.115)

Suppose the output function is chosen as

y = h(x) = x1. (2.116)

In this case we have

Lgh(x) =
∂h

∂x
g(x) =

[
1 0

] [ 0
1

]
= 0, and (2.117)

Lfh(x) =
∂h

∂x
f(x) =

[
1 0

] [ x2

2ωζ (1− μx2
1)x2 − ω2x1

]
= x2. (2.118)

Moreover

LgLfh(x) =
∂(Lfh)

∂x
g(x) =

[
0 1

] [0
1

]
= 1 (2.119)

and thus we see that the Van der Pol oscillator system has relative degree 2
at any point xo.

However, if the output function is, for instance

y = h(x) = sinx2 (2.120)

then Lgh(x) = cosx2. The system has relative degree 1 at any point xo,
provided that (xo)2 
= (2k + 1)π/2. If the point xo is such that this condition
is violated, no relative degree can be defined.

Both adaptive and nonlinear control methods can be naturally extended
to other chaotic systems, e.g., Lorenz attractor (see Figure 2.35).

Hybrid Systems and Homotopy ODEs

Consider a hybrid dynamical system of variable structure, given by an nD
ODE–system (see [MWH01])

ẋ = f(t, x), (2.121)

where x = x(t) ∈ Rn and f = f(t, x) : R+ × Rn → Rn. Let the domain
G ⊂ R+ × Rn, on which the vector–field f(t, x) is defined, be divided into
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Fig. 2.35. Nonlinear control of the Lorenz system: targeting of unstable upper
and lower states in the Lorenz attractor (after applying random perturbations,
see [Pet96]), using a MIMO nonlinear controller (see [II06b]); simulated using
MatlabTM .

two subdomains, G+ and G−, by means of a smooth (n − 1)−manifold M .
In G+ ∪M , let there be given a vector–field f+(t, x), and in G− ∪M, let
there be given a vector–field f−(t, x). Assume that both f+ = f+(t, x) and
f− = f−(t, x) are continuous in t and smooth in x. For the system (2.121), let

f =
{

f+ when x ∈ G+

f− when x ∈ G− .

Under these conditions, a solution x(t) of ODE (2.121) is well–defined while
passing through G until the manifold M is reached.

Upon reaching the manifold M , in physical systems with inertia, the tran-
sition

from ẋ = f−(t, x) to ẋ = f+(t, x)

does not take place instantly on reaching M , but after some delay. Due to
this delay, the solution x(t) oscillates about M , x(t) being displaced along M
with some mean velocity.

As the delay tends to zero, the limiting motion and velocity along M are
determined by the linear homotopy ODE

ẋ = f0(t, x) ≡ (1− α) f−(t, x) + α f+(t, x), (2.122)

where x ∈M and α ∈ [0, 1] is such that the linear homotopy segment f0(t, x)
is tangential to M at the point x, i.e., f0(t, x) ∈ TxM , where TxM is the
tangent space to the manifold M at the point x.
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The vector–field f0(t, x) of the system (2.122) can be constructed as
follows: at the point x ∈ M, f−(t, x) and f+(t, x) are given and their ends
are joined by the linear homotopy segment. The point of intersection between
this segment and TxM is the end of the required vector–field f0(t, x). The
vector function x(t) which satisfies (2.121) in G− and G+, and (2.122) when
x ∈M, can be considered as a solution of (2.121) in a general sense.

However, there are cases in which the solution x(t) cannot consist of a finite
or even countable number of arcs, each of which passes through G− or G+

satisfying (2.121), or moves along the manifold M and satisfies the homotopic
ODE (2.122). To cover such cases, assume that the vector–field f = f(t, x) in
ODE (2.121) is a Lebesgue–measurable function in a domain G ⊂ R+ × Rn,
and that for any closed bounded domain D ⊂ G there exists a summable func-
tion K(t) such that almost everywhere in D we have |f(t, x)| ≤ K(t). Then
the absolutely continuous vector function x(t) is called the generalized solu-
tion of the ODE (2.121) in the sense of Filippov (see [MWH01]) if for almost
all t, the vector ẋ = ẋ(t) belongs to the least convex closed set containing all
the limiting values of the vector–field f(t, x∗), where x∗ tends towards x in an
arbitrary manner, and the values of the function f(t, x∗) on a set of measure
zero in Rn are ignored.

Such hybrid systems of variable structure occur in the study of nonlinear
electric networks (endowed with electronic switches, relays, diodes, rectifiers,
etc.), in models of both natural and artificial neural networks, as well as in
feedback control systems (usually with continuous–time plants and digital
controllers/filters).

2.3.2 Exploiting Critical Sensitivity

The fact that some dynamical systems showing the necessary conditions
for chaotic behavior possess such a critical dependence on the initial con-
ditions was known since the end of the last century. However, only in the
last thirty years, experimental observations have pointed out that, in fact,
chaotic systems are common in nature. They can be found, e.g., in chemistry
(Belouzov–Zhabotinski reaction), in nonlinear optics (lasers), in electronics
(Chua–Matsumoto circuit), in fluid dynamics (Rayleigh–Bénard convection),
etc. Many natural phenomena can also be characterized as being chaotic. They
can be found in meteorology, solar system, heart and brain of living organisms
and so on.

Due to their critical dependence on the initial conditions, and due to the
fact that, in general, experimental initial conditions are never known perfectly,
these systems are intrinsically unpredictable. Indeed, the prediction trajectory
emerging from an initial condition and the real trajectory emerging from the
real initial condition diverge exponentially in course of time, so that the error
in the prediction (the distance between prediction and real trajectories) grows
exponentially in time, until making the system’s real trajectory completely
different from the predicted one at long times.
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For many years, this feature made chaos undesirable, and most experi-
mentalists considered such characteristic as something to be strongly avoided.
Besides their critical sensitivity to initial conditions, chaotic systems exhibit
two other important properties. Firstly, there is an infinite number of unstable
periodic orbits embedded in the underlying chaotic set. In other words, the
skeleton of a chaotic attractor is a collection of an infinite number of peri-
odic orbits, each one being unstable. Secondly, the dynamics in the chaotic
attractor is ergodic, which implies that during its temporal evolution the sys-
tem ergodically visits small neighborhood of every point in each one of the
unstable periodic orbits embedded within the chaotic attractor.

A relevant consequence of these properties is that a chaotic dynamics can
be seen as shadowing some periodic behavior at a given time, and erratically
jumping from one to another periodic orbit. The idea of controlling chaos is
then when a trajectory approaches ergodically a desired periodic orbit emb-
edded in the attractor, one applies small perturbations to stabilize such an
orbit. If one switches on the stabilizing perturbations, the trajectory moves
to the neighborhood of the desired periodic orbit that can now be stabilized.
This fact has suggested the idea that the critical sensitivity of a chaotic sys-
tem to changes (perturbations) in its initial conditions may be, in fact, very
desirable in practical experimental situations. Indeed, if it is true that a small
perturbation can give rise to a very large response in the course of time, it is
also true that a judicious choice of such a perturbation can direct the trajec-
tory to wherever one wants in the attractor, and to produce a series of desired
dynamical states. This is exactly the idea of targeting [BGL00].

The important point here is that, because of chaos, one is able to produce
an infinite number of desired dynamical behaviors (either periodic and not
periodic) using the same chaotic system, with the only help of tiny perturba-
tions chosen properly. We stress that this is not the case for a non–chaotic
dynamics, wherein the perturbations to be done for producing a desired behav-
ior must, in general, be of the same order of magnitude as the un–perturbed
evolution of the dynamical variables.

The idea of chaos control was enunciated in 1990 at the University of
Maryland, by E. Ott, C. Grebogi and J.A. Yorke [OGY90], widely referred to
as Ott–Grebogi–Yorke (OGY, for short). In OGY–paper [OGY90], the ideas
for controlling chaos were outlined and a method for stabilizing an unstable
periodic orbit was suggested, as a proof of principle. The main idea consisted
in waiting for a natural passage of the chaotic orbit close to the desired peri-
odic behavior, and then applying a small judiciously chosen perturbation, in
order to stabilize such periodic dynamics (which would be, in fact, unstable for
the un–perturbed system). Through this mechanism, one can use a given lab-
oratory system for producing an infinite number of different periodic behavior
(the infinite number of its unstable periodic orbits), with a great flexibility in
switching from one to another behavior. Much more, by constructing appro-
priate goal dynamics, compatible with the chaotic attractor, an operator may
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apply small perturbations to produce any kind of desired dynamics, even not
periodic, with practical application in the coding process of signals.

A branch of the theory of dynamical systems has been developed with
the aim of formalizing and quantitatively characterizing the sensitivity to
initial conditions. The largest Lyapunov exponent λ (together with the related
Kaplan–Yorke dimension dKaplan) and the Kolmogorov–Sinai entropy hKS

are the two indicators for measuring the rate of error growth and information
produced by the dynamical system [ER85].

2.3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

The characteristic Lyapunov exponents are somehow an extension of the lin-
ear stability analysis to the case of aperiodic motions. Roughly speaking,
they measure the typical rate of exponential divergence of nearby trajecto-
ries. In this sense they give information on the rate of growth of a very small
error on the initial state of a system [BCF02].

Consider an nD dynamical system given by the set of ODEs of the form

ẋ = f(x), (2.123)

where x = (x1, . . . , xn) ∈ Rn and f : Rn → Rn. Recall that since the r.h.s
of equation (2.123) does not depend on t explicitly, the system is called auto-
nomous. We assume that f is smooth enough that the evolution is well–
defined for time intervals of arbitrary extension, and that the motion occurs
in a bounded region R of the system phase–space M . We intend to study the
separation between two trajectories in M , x(t) and x′(t), starting from two
close initial conditions, x(0) and x′(0) = x(0)+δx(0) in R0 ⊂M , respectively.

As long as the difference between the trajectories, δx(t) = x′(t) − x(t),
remains infinitesimal, it can be regarded as a vector, z(t), in the tangent space
TxM of M . The time evolution of z(t) is given by the linearized differential
equations:

żi(t) =
∂fi

∂xj

∣∣∣∣
x(t)

zj(t).

Under rather general hypothesis, Oseledets [Ose68] proved that for almost
all initial conditions x(0) ∈ R, there exists an orthonormal basis {ei} in the
tangent space TxM such that, for large times,

z(t) = ciei exp(λit), (2.124)

where the coefficients {ci} depend on z(0). The exponents λ1 ≥ λ2 ≥ · · · ≥ λd

are called characteristic Lyapunov exponents. If the dynamical system has an
ergodic invariant measure on M , the spectrum of LEs {λi} does not depend
on the initial conditions, except for a set of measure zero with respect to the
natural invariant measure.

Equation (2.124) describes how a dD spherical region R = Sn ⊂ M , with
radius ε centered in x(0), deforms, with time, into an ellipsoid of semi–axes
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εi(t) = ε exp(λit), directed along the ei vectors. Furthermore, for a generic
small perturbation δx(0), the distance between the reference and the per-
turbed trajectory behaves as

|δx(t)| ∼ |δx(0)| exp(λ1t) [1 + O (exp−(λ1 − λ2)t)] .

If λ1 > 0 we have a rapid (exponential) amplification of an error on the initial
condition. In such a case, the system is chaotic and, unpredictable on the long
times. Indeed, if the initial error amounts to δ0 = |δx(0)|, and we purpose to
predict the states of the system with a certain tolerance Δ, then the prediction
is reliable just up to a predictability time given by

Tp ∼
1
λ1

ln
(

Δ

δ0

)
.

This equation shows that Tp is basically determined by the positive leading
Lyapunov exponent , since its dependence on δ0 and Δ is logarithmically weak.
Because of its preeminent role, λ1 is often referred as ‘the leading positive
Lyapunov exponent’, and denoted by λ.

Therefore, Lyapunov exponents are average rates of expansion or contrac-
tion along the principal axes. For the ith principal axis, the corresponding
Lyapunov exponent is defined as

λi = lim
t→∞

{(1/t) ln[Li(t)/Li(0)]} , (2.125)

where Li(t) is the radius of the ellipsoid along the ith principal axis at time t.
For technical details on calculating Lyapunov exponents from any time series
data, see [WSS85].

An initial volume V0 of the phase–space region R0 evolves on average as

V (t) = V0e(λ1+λ2+···+λ2n)t, (2.126)

and therefore the rate of change of V (t) is simply

V̇ (t) =
2n∑
i=1

λiV (t).

In the case of a 2D phase area A, evolving as A(t) = A0e(λ1+λ2)t, a
Lyapunov dimension dL is defined as

dL = lim
ε→0

[
d(ln(N(ε)))
d(ln(1/ε))

]
,

where N(ε) is the number of squares with sides of length ε required to cover
A(t), and d represents an ordinary capacity dimension,

dc = lim
ε→0

(
lnN

ln(1/ε)

)
.
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Lyapunov dimension can be extended to the case of nD phase–space by
means of the Kaplan–Yorke dimension [KY79, YAS96, OGY90]) as

dKaplan = j +
λ1 + λ2 + · · ·+ λj

|λj+1|
,

where the λi are ordered (λ1 being the largest) and j is the index of the
smallest nonnegative Lyapunov exponent.

2.3.4 Kolmogorov–Sinai Entropy

The LE, λ, gives a first quantitative information on how rapidly we loose
the ability of predicting the evolution of a system [BCF02]. A state, initially
determined with an error δx(0), after a time enough larger than 1/λ, may be
found almost everywhere in the region of motion R ∈M . In this respect, the
Kolmogorov–Sinai (KS) entropy, hKS , supplies a more refined information.
The error on the initial state is due to the maximal resolution we use for obs-
erving the system. For simplicity, let us assume the same resolution ε for each
degree of freedom. We build a partition of the phase–space M with cells of
volume εd, so that the state of the system at t = t0 is found in a region R0 of
volume V0 = εd around x(t0). Now we consider the trajectories starting from
V0 at t0 and sampled at discrete times tj = j τ (j = 1, 2, 3, . . . , t). Since we are
considering motions that evolve in a bounded region R ⊂ M , all the trajec-
tories visit a finite number of different cells, each one identified by a symbol.
In this way a unique sequence of symbols {s(0), s(1), s(2), . . . } is associated
with a given trajectory x(t). In a chaotic system, although each evolution
x(t) is univocally determined by x(t0), a great number of different symbolic
sequences originates by the same initial cell, because of the divergence of
nearby trajectories. The total number of the admissible symbolic sequences,
Ñ(ε, t), increases exponentially with a rate given by the topological entropy

hT = lim
ε→0

lim
t→∞

1
t

ln Ñ(ε, t) .

However, if we consider only the number of sequences Neff (ε, t) ≤ Ñ(ε, t)
which appear with very high probability in the long time limit – those that
can be numerically or experimentally detected and that are associated with
the natural measure – we arrive at a more physical quantity, namely the
Kolmogorov–Sinai entropy [ER85]:

hKS = lim
ε→0

lim
t→∞

1
t

lnNeff (ε, t) ≤ hT . (2.127)

hKS quantifies the long time exponential rate of growth of the number of
the effective coarse-grained trajectories of a system. This suggests a link with
information theory where the Shannon entropy measures the mean asymptotic
growth of the number of the typical sequences – the ensemble of which has
probability almost one – emitted by a source.
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We may wonder what is the number of cells where, at a time t > t0, the
points that evolved from R0 can be found, i.e., we wish to know how big is the
coarse–grained volume V (ε, t), occupied by the states evolved from the volume
V0 of the region R0, if the minimum volume we can observe is Vmin = εd.
As stated above (2.126), we have

V (t) ∼ V0 exp(t
d∑

i=1

λi).

However, this is true only in the limit ε → 0. In this (unrealistic) limit,
V (t) = V0 for a conservative system (where

∑d
i=1 λi = 0) and V (t) < V0

for a dissipative system (where
∑d

i=1 λi < 0). As a consequence of limited
resolution power, in the evolution of the volume V0 = εd the effect of the
contracting directions (associated with the negative Lyapunov exponents) is
completely lost. We can experience only the effect of the expanding directions,
associated with the positive Lyapunov exponents. As a consequence, in the
typical case, the coarse grained volume behaves as

V (ε, t) ∼ V0 e

(∑
λi>0

λi

)
t
,

when V0 is small enough. Since Neff (ε, t) ∝ V (ε, t)/V0, one has

hKS =
∑
λi>0

λi.

This argument can be made more rigorous with a proper mathematical def-
inition of the metric entropy. In this case one derives the Pesin relation [Pes77,
ER85]

hKS ≤
∑
λi>0

λi. (2.128)

Because of its relation with the Lyapunov exponents – or by the definition
(2.127) – it is clear that also hKS is a fine-grained and global characterization
of a dynamical system.

The metric entropy is an invariant characteristic quantity of a dynamical
system, i.e., given two systems with invariant measures, their KS–entropies
exist and they are equal iff the systems are isomorphic [Bil65].

2.3.5 Chaos Control by Ott, Grebogi and Yorke)

Besides the occurrence of chaos in a large variety of natural processes, chaos
may also occur because one may wish to design a physical, biological or chemi-
cal experiment, or to project an industrial plant to behave in a chaotic manner.
The Ott–Grebogi–Yorke (OGY) idea is that chaos may indeed be desirable
since it can be controlled by using small perturbation to some accessible para-
meter.
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The major key ingredient for the OGY–control of chaos is the observation
that a chaotic set, on which the trajectory of the chaotic process lives, has
embedded within it a large number of unstable low–period periodic orbits.
In addition, because of ergodicity, the trajectory visits or accesses the neigh-
borhood of each one of these periodic orbits. Some of these periodic orbits
may correspond to a desired system’s performance according to some cri-
terion. The second ingredient is the realization that chaos, while signifying
sensitive dependence on small changes to the current state and henceforth
rendering unpredictable the system state in the long time, also implies that
the system’s behavior can be altered by using small perturbations. Then, the
accessibility of the chaotic systems to many different periodic orbits com-
bined with its sensitivity to small perturbations allows for the control and the
manipulation of the chaotic process. Specifically, the OGY approach is then as
follows. One first determines some of the unstable low–period periodic orbits
that are embedded in the chaotic set. One then examines the location and the
stability of these orbits and chooses one which yields the desired system per-
formance. Finally, one applies small control to stabilize this desired periodic
orbit. However, all this can be done from data by using nonlinear time series
analysis for the observation, understanding and control of the system. This is
particularly important since chaotic systems are rather complicated and the
detailed knowledge of the equations of the process is often unknown [BGL00].

Simple Example of Chaos Control: a 1D Map. The basic idea of
controlling chaos can be understood [Lai94] by considering May’s classical
logistic map [May76] (2.40)

xn+1 = f(xn, r) = rxn(1− xn),

where x is restricted to the unit interval [0, 1], and r is a control parameter.
It is known that this map develops chaos via the period–doubling bifurcation
route. For 0 < r < 1, the asymptotic state of the map (or the attractor of
the map) is x = 0; for 1 < r < 3, the attractor is a nonzero fixed–point
xF = 1 − 1/r; for 3 < r < 1 +

√
6, this fixed–point is unstable and the

attractor is a stable period-2 orbit. As r is increased further, a sequence of
period–doubling bifurcations occurs in which successive period–doubled orbits
become stable. The period–doubling cascade accumulates at r = r∞ ≈ 3.57,
after which chaos can arise.

Consider the case r = 3.8 for which the system is apparently chaotic.
An important characteristic of a chaotic attractor is that there exists an inf-
inite number of unstable periodic orbits embedded within it. For example,
there are a fixed–point xF ≈ 0.7368 and a period-2 orbit with components
x(1) ≈ 0.3737 and x(2) = 0.8894, where x(1) = f(x(2)) and x(2) = f(x(1)).

Now suppose we want to avoid chaos at r = 3.8. In particular, we want
trajectories resulting from a randomly chosen initial condition x0 to be as close
as possible to the period−2 orbit, assuming that this period−2 orbit gives the
best system performance. Of course, we can choose the desired asymptotic
state of the map to be any of the infinite number of unstable periodic orbits.
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Suppose that the parameter r can be finely tuned in a small range around
the value r0 = 3.8, i.e., r is allowed to vary in the range [r0 − δ, r0 + δ],
where δ << 1. Due to the nature of the chaotic attractor, a trajectory that
begins from an arbitrary value of x0 will fall, with probability one, into the
neighborhood of the desired period−2 orbit at some later time. The trajectory
would diverge quickly from the period−2 orbit if we do not intervene. Our task
is to program the variation of the control parameter so that the trajectory
stays in the neighborhood of the period−2 orbit as long as the control is
present. In general, the small parameter perturbations will be time dependent
[BGL00].

The logistic map in the neighborhood of a periodic orbit can be app-
roximated by a linear equation expanded around the periodic orbit. Denote the
target period−m orbit to be controlled as x(i), i = 1, . . . ,m, where x(i+1) =
f(x(i)) and x(m + 1) = x(1). Assume that at time n, the trajectory falls
into the neighborhood of component i of the period−m orbit. The linearized
dynamics in the neighborhood of component i + 1 is then

xn+1 − x(i + 1) =
∂f

∂x
[xn − x(i)] +

∂f

∂r
Δrn

= r0[1− 2x(i)][xn − x(i)] + x(i)[1− x(i)]Δrn,

where the partial derivatives are evaluated at x = x(i) and r = r0. We require
xn+1 to stay in the neighborhood of m. Hence, we set xn+1 − x(i + 1) = 0,
which gives

Δrn = r0
[2x(i)− 1][xn − x(i)]

x(i)[1− x(i)]
. (2.129)

Equation (2.129) holds only when the trajectory xn enters a small neigh-
borhood of the period-m orbit, i.e., when |xn − x(i)| << 1, and hence the
required parameter perturbation Δrn is small. Let the length of a small int-
erval defining the neighborhood around each component of the period−m
orbit be 2ε. In general, the required maximum parameter perturbation δ is
proportional to ε. Since ε can be chosen to be arbitrarily small, δ also can be
made arbitrarily small. The average transient time before a trajectory enters
the neighborhood of the target periodic orbit depends on ε (or δ). When the
trajectory is outside the neighborhood of the target periodic orbit, we do
not apply any parameter perturbation, so the system evolves at its nominal
parameter value r0. Hence we set Δrn = 0 when Δrn > δ. The parameter
perturbation Δrn depends on xn and is time–dependent.

The above strategy for controlling the orbit is very flexible for stabilizing
different periodic orbits at different times. Suppose we first stabilize a chaotic
trajectory around a period−2 orbit. Then we might wish to stabilize the fixed–
point of the logistic map, assuming that the fixed–point would correspond
to a better system performance at a later time. To achieve this change of
control, we simply turn off the parameter control with respect to the period-
2 orbit. Without control, the trajectory will diverge from the period-2 orbit
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exponentially. We let the system evolve at the parameter value r0. Due to
the nature of chaos, there comes a time when the chaotic trajectory enters
a small neighborhood of the fixed–point. At this time we turn on a new set
of parameter perturbations calculated with respect to the fixed–point. The
trajectory can then be stabilized around the fixed–point [Lai94].

In the presence of external noise, a controlled trajectory will occasionally
be ‘kicked’ out of the neighborhood of the periodic orbit. If this behavior
occurs, we turn off the parameter perturbation and let the system evolve by
itself. With probability one the chaotic trajectory will enter the neighborhood
of the target periodic orbit and be controlled again. The effect of the noise
is to turn a controlled periodic trajectory into an intermittent one in which
chaotic phases (uncontrolled trajectories) are interspersed with laminar phases
(controlled periodic trajectories). It is easy to verify that the averaged length
of the laminar phase increases as the noise amplitude decreases [Lai94].

2.3.6 Floquet Stability Analysis and OGY Control

Controlling chaos, or stabilization of unstable periodic orbits of chaotic sys-
tems, has established to a field of large interest since the seed paper of Ott,
Grebogi, Yorke [OGY90]. The idea is to stabilize by a feedback calculated at
each Poincaré section, which reduces the control problem to stabilization of
an unstable fixed–point of an iterated map. The feedback can, as in OGY
scheme, be chosen proportional to the distance to the desired fixed–point, or
proportional to the difference in phase–space position between actual and last
but one Poincaré section. This difference control scheme [BDG93], being a
time–discrete counterpart of the Pyragas approach [Pyr92, Pyr95], allows for
stabilization of inaccurately known fixed–points, and can be extended by a
memory term to overcome stability restrictions and to allow for tracking of
drifting fixed–points [CMP98a].

In this section the stability of perturbations x(t) around an unstable
periodic orbit being subject to a Poincaré–based control scheme is analyzed
by means of Floquet theory [HL93]. This approach allows to investigate view-
points that have not been accessible by considering only the iteration dynam-
ics between the Poincaré sections. Among these are primary the discussion of
small measurement delays and variable impulse lengths. The impulse length
is for both OGY and difference control usually a fixed parameter; and the
iterated dynamics is uniquely defined only as long as this impulse length is
not varied. The influence of the impulse length has not been point of consider-
ation before; if reported at all, usually for both OGY and difference control a
relative length of approximately 1/3 is chosen without any reported sensitivity
[Cla02b].

The linearized ODEs of both schemes are invariant under translation in
time, t→ t+T . Therefore we can expand the solutions after periodic solutions
u(t + T ) = u(t) according to

x(t) = eγTuγ(t).
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The necessary condition for stability of the solution is Re(γ) < 0; and x(t) ≡ 0
refers to motion along the orbit.

Whereas for the Pyragas control method (in which the delayed state feed-
back enforces a time–continuous description) a Floquet stability analysis is
known [JBO97], here the focus is on the time–discrete control schemes.

Time–Continuous Stability Analysis of OGY Control

Due to the mathematically elegant and practical convenient description and
application of OGY control in the Poincaré section up to now there seems
to have been no need to calculate explicitly the Floquet multiplicator for a
stability analysis. However, this allows a novel viewpoint on the differences
between the local dynamics around an instable periodic orbit of a dynamical
system being subject to Pyragas and OGY control.

For the 1D case, one has the dynamical system [Cla02b]

ẋ(t) = λx(t) + μεx(t− (t mod T )).

In the first time interval between t = 0 and t = T the differential equation
reads

ẋ(t) = λx(t)− μεx(0), for 0 < t < T.

Integration of this differential equation yields

x(t) =
(
(1− με

λ
)eλt +

με

λ

)
x(0).

This gives us an iterated dynamics (here we label the beginning of the time
period again with t)

x(t + T ) =
(
(1− με

λ
)eλT +

με

λ

)
x(t).

The Floquet multiplier of an orbit therefore is

eγT = (1− με

λ
)eλT +

με

λ
.

Influence of the Duration of the Control Impulse on OGY Control

The time–discrete viewpoint now allows to investigate the influence of timing
questions on control. First we consider the case that the control impulse is
applied timely in the Poincaré section, but only for a finite period T ·p within
the orbit period (0 < p < 1).

This situation is described by the differential equation [Cla02b]

ẋ(t) = λx(t)μεx(t− (t mod T )) ·Θ((t mod T )− p).
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Here Θ is a step function (Θ(x) = 1 for x > 0 and Θ(x) = 0 elsewhere). In the
first time interval between t = 0 and t = T · p the differential equation reads

ẋ(t) = λx(t) + μεx(0), for 0 < t < T · p.

Integration of this differential equation yields

x(t) =
(
(1 +

με

λ
)eλt − με

λ

)
x(0), x(T · p) =

(
(1 +

με

λ
)eλT ·p − με

λ

)
x(0).

In the second interval between t = T · p and t = T the differential equation is
the same as without control,

ẋ(t) = λx(t), for T · p < t < T.

From this one has immediately

x(t) = eλ(t−T ·p)x(T · p).

If the beginning of the integration period again is denoted by t, this defines
an iteration dynamics,

x(t + T ) = eλ(1−p)T
((

1 +
με

λ

)
eλT ·p − με

λ

)
x(t)

=
((

1 +
με

λ

)
eλT − με

λ
eλ(1−p)T

)
,

and the Floquet multiplier of an orbit is given by

eγT =
(
1− με

λ

)
eλT +

με

λ
eλ(1−p)T = eλT

(
1− με

λ

(
1− e−λpT

))
. (2.130)

One finds that in zero order the ‘strength’ of control is given by the product
p · με; in fact there is a weak linear correction in p. For λpT ≤ 1 one has

eγT = eλT

(
1 + μεpT +

1
2
μελp2T 2 + o

(
p3
))

= eλT

(
1 + μεpT

(
1− 1

2
λpT + o

(
p2
)))

,

i.e., to get a constant strength of control, one has to fulfill the condition

μεpT =
1

1− λT
2 p

= 1 +
λT

2
p + o(p2).

The result is, apart from a weak linear correction for OGY control the length
of the impulse can be chosen arbitrarily, and the ‘strength’ of control in zero
order is given by the time integral over the control impulse.
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Floquet Stability Analysis of Difference Control

Again the starting point is the linearized equation of motion around the
periodic orbit when control is applied. For difference control now there is
a dependency on two past time steps,

ẋ(t) = λx(t) + μεx(t− (t mod T ))− μεx(t− T − (t mod T )). (2.131)

Although the r.h.s of (2.131) depends on x at three different times, it can be
nevertheless integrated exactly, which is mainly due to the fact that the two
past times (of the two last Poincaré crossings) have a fixed time difference
being equal to the orbit length. This allows not only for an exact solution,
but also offers a correspondence to the time–discrete dynamics and the matrix
picture used in time–delayed coordinates [CMP98a, CS98, CMP98b].

Stability Analysis of Difference Control

Now also for difference control the experimentally more common situation of
a finite but small measurement delay T ·s is considered, together with a finite
impulse length T ·p (here 0 < p < 1 and 0 < (s + p) < 1) [Cla02b].

In the first time interval between t = 0 and t = T ·s the ODE reads

ẋ(t) = λx(t), for 0 < t < T · s.

The integration gives x(T · s) = eλT ·sx(0).
For the second interval between t = T · s and t = T · (s + p) we have

ẋ(t) = λx(t)−μεx(0) = λx(t)+με(x(0)−x(−T )), for T ·s < t < T ·(s+p).

Integration of this ODE yields

x(t)=−με

λ
(x(0)− x(−T )) +

με

λ
(x(0)− x(−T )) + eλsTx(0)eλ(t−sT )

x(T (s + p))=−με

λ
(x(0)− x(−T ))

με

λ
(x(0)− x(−T )) + eλpT + eλ(s+p)Tx(0).

For the third interval, the ODE is homogeneous again and one has

x(t) = eλ(t−(s+p)T )x(T · (s + p)), for T · (s + p) < t < T.

Insertion gives

x(T ) = x(0)eλT
(
1 +

με

λ
e−λsT (1− e−λpT )

)
− x(−T )eλT με

λ
e−λsT (1− e−λpT )

or, in time–delayed coordinates of the last and last but one Poincaré crossing
[Cla02b]

(
xn+1

xn

)
=

⎛⎝eλT

(
1+

με(1−e−λpT )
λeλsT

)
−eλT με(1−e−λpT )

λeλsT

1 0

⎞⎠( xn

xn−1

)
.
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If we identify with the coefficients of the time–discrete case, λd = eλT and
μdεd = e−λsT (1 − eλpT )με

λ , the dynamics in the Poincaré iteration t = nT
becomes identical with the pure discrete description; this again illustrates
the power of the concept of the Poincaré map. Due to the low degree of
the characteristic polynomial, one in principle can explicitly diagonalize the
iteration matrix, allowing for a closed expression for the nth power of the
iteration matrix. As for the stability analysis only the eigenvalues are needed,
this straightforward calculation is excluded here.

For the Floquet multiplier one has [Cla02b]

e2γT = eγT eλT
(
1 +

με

λ
e−λsT

(
1− e−λpT

))
− eλT με

λ
e−λsT

(
1− e−λpT

)
.

This quadratic equation yields two Floquet multipliers,

eγT =
1
2
eλT

(
1 +

με

λ
e−λsT

(
1− e−λpT

))
± 1

2

√(
eλT

(
1 +

με

λ
e−λsT (1− e−λpT )

))2

+ 4eλT
με

λ
e−λsT (1− e−λpT ).

For s = 0 one gets the special cases discussed above.

2.3.7 Blind Chaos Control

One of the most surprising successes of chaos theory has been in biology:
the experimentally demonstrated ability to control the timing of spikes of
electrical activity in complex and apparently chaotic systems such as heart
tissue [GSD92] and brain tissue [SJD94]. In these experiments, PPF control, a
modified formulation of OGY control [OGY90], was applied to set the timing
of external stimuli; the controlled system showed stable periodic trajectories
instead of the irregular inter–spike intervals seen in the uncontrolled system.
The mechanism of control in these experiments was interpreted originally as
analogous to that of OGY control: unstable periodic orbits riddle the chaotic
attractor and the electrical stimuli place the system’s state on the stable
manifold of one of these periodic orbits [KY79].

Alternative possible mechanisms for the experimental observations have
been described by Zeng and Glass [GZ94] and Christini and Collins [CC95].
These authors point out that the controlling external stimuli serve to trun-
cate the inter–spike interval to a maximum value. When applied, the control
stimulus sets the next interval sn+1 to be on the line

sn+1 = Asn + C. (2.132)

We will call this relationship the ‘control line.’ Zeng and Glass showed that
if the uncontrolled relationship between inter–spike intervals is a chaotic 1D
function, sn+1 = f(sn), then the control system effectively flattens the top of
this map and the controlled dynamics may have fixed points or other periodic
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orbits [GZ94]. Christini and Collins showed that behavior analogous to the
fixed–point control seen in the biological experiments can be accomplished
even in completely random systems [CC95]. Since neither chaotic 1D systems
nor random systems have a stable manifold, the interval–truncation interpre-
tation of the biological experiments is different than the OGY interpretation.
The interval–truncation method differs also from OGY and related control
methods in that the perturbing control input is a fixed–size stimulus whose
timing can be treated as a continuous parameter. This type of input is con-
ventional in cardiology (e.g., [HCT97]).

Kaplan demonstrated in [KY79] that the state–truncation interpretation
was applicable in cases where there was a stable manifold of a periodic orbit
as well as in cases where there were only unstable manifolds. He found that
superior control could be achieved by intentionally placing the system’s state
off of any stable manifold. That suggested a powerful scheme for the rapid
experimental identification of fixed points and other periodic orbits in systems
where inter–spike intervals were of interest.

The chaos control in [GSD92] and [SJD94] was implemented in two stages.
First, inter–spike intervals sn from the uncontrolled, ‘natural’ system were
observed. Modelling the system as a function of two variables

sn+1 = f(sn, sn−1),

the location s� of a putative unstable flip-saddle type fixed–point and the
corresponding stable eigenvalue λs were estimated from the data23 [CK97].
The linear approximation to the stable manifold lies on a line given by (2.132)
with

A = λs and C = (1− λs)s�.

Second, using estimated values of A and C, the control system was turned on.
Following each observed interval sn, the maximum allowed value of the next
inter–spike interval was computed as

Sn+1 = Asn + C.

If the next interval naturally was shorter than Sn+1 no control stimulus was
applied to the system. Otherwise, an external stimulus was provided to trun-
cate the inter–spike interval at sn+1 = Sn+1.

In practice, the values of s� and λs for a real fixed–point of the natural
system are known only imperfectly from the data. Insofar as the estimates
are inaccurate, the control system does not place the state on the true stable
manifold. Therefore, we will analyze the controlled system without presuming
that A and C in (2.132) correspond to the stable manifold.

If the natural dynamics of the system is modelled by

sn+1 = f(sn, sn−1),

23 Since the fixed–point is unstable, there is also an unstable eigenvalue λu.
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then the dynamics of the controlled system is given by [KY79]

sn+1 = min
{

f(sn, sn−1) : Natural Dynamics ,
Asn + C : Control Line . (2.133)

We can study the dynamics of the controlled system close to a natural
fixed–point, s�, by approximating the natural dynamics linearly as24

sn+1 = f(sn, sn−1) = (λs + λu)sn − λsλusn−1 + s�(1 + λsλu − λs − λu).

Since the controlled system (2.133) is nonlinear even when f() is linear, it
is difficult to analyze its behavior by algebraic iteration. Nonetheless, the
controlled system can be studied in terms of 1D maps.

Following any inter–spike interval when the controlling stimulus has been
applied, the system’s state (sn, sn−1) will lie somewhere on the control line.
From this time onward the state will lie on an image of the control line even
if additional stimuli are applied during future inter–spike intervals.

The stability of the controlled dynamics fixed–point and the size of its
basin of attraction can be analyzed in terms of the control line and its image.
When the previous inter–spike interval has been terminated by a control stim-
ulus, the state lies somewhere on the control line. If the controlled dynamics
are to have a stable fixed–point, this must be at the controller fixed–point x�

where the control line intersects the line of identity. However, the controller
fixed–point need not be a fixed–point of the controlled dynamics. For example,
if the image of the controller fixed–point is below the controller fixed–point,
then the inter–spike interval following a stimulus will be terminated naturally.

For the controller fixed–point to be a fixed–point of the controlled dynam-
ics, we require that the natural image of the controller fixed–point be at or
above the controller fixed–point. Thus the dynamics of the controlled system,
close to x�, are given simply by

sn+1 = Asn + C (2.134)

The fixed–point of these dynamics is stable so long as −1 < A < 1. In the
case of a flip saddle, we therefore have a simple recipe for successful state-
truncation control: position x� below the natural fixed–point s� and set −1 <
A < 1.

Fixed points of the controlled dynamics can exist for natural dynamics
other than flip saddles. This can be seen using the following reasoning: Let
ξ be the difference between the controller fixed–point and the natural fixed–
point: s� = x� + ξ. Then the natural image of the controller fixed–point can
be found from (2.134) to be [KY79]

sn+1 = (λs + λu)x� − λsλux
� + (1 + λsλu − λs − λu)(x� + ξ). (2.135)

24 Equation (2.134) is simply the linear equation sn+1 = asn + bsn−1 + c with a, b,
and c set to give eigenvalues λs and λu and fixed–point s�.
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Table 2.1. Cases which lead to a stable fixed–point for the controlled dynamics. In
all cases, it is assumed that |A| < 1. (For the cases where λs < −1, the subscript
s in λs is misleading in that the corresponding manifold is unstable. For the spiral,
there is no stable manifold (adapted from [KY79]).)

Type of FP λu λs x� Locat.

Flip saddle λu < −1 −1 < λs < 1 x� < s�

Saddle λu > 1 −1 < λs < 1 x� > s�

Single–flip repeller λu > 1 λs < −1 x� > s�

Double–flip repeller λu < −1 λs < −1 x� < s�

Spiral (complex λ) |λu| > 1 |λs| > 1 x� < s�

The condition that
sn+1 ≥ x� (2.136)

will be satisfied depending only on λs, λu, and ξ = s� − x�. This means that
for any flip saddle, so long as x� < s�, the point x� will be a fixed–point of
the controlled dynamics and will be stable so long as −1 < A < 1.

Equations (2.135) and (2.136) imply that control can lead to a stable
fixed–point for any type of fixed–point except those for which both λu and λs

are greater than 1 (so long as −1 < A < 1). Since the required relationship
between x� and s� for a stable fixed–point of the controlled dynamics depends
on the eigenvalues, it is convenient to divide the fixed points into four classes,
as given in Table 2.1.

Beyond the issue of the stability of the fixed–point of the controlled dyna-
mics, there is the question of the size of the fixed–point’s basin of attraction.
Although the local stability of the fixed–point is guaranteed for the cases in
Table 2.1 for −1 < A < 1, the basin of attraction of this fixed–point may be
small or large depending on A, C, s�, λu and λs.

The endpoints of the basin of attraction can be derived analytically
[KY79]. The size of the basin of attraction will often be zero when A and
C are chosen to match the stable manifold of the natural system. Therefore,
in order to make the basin large, it is advantageous intentionally to misplace
the control line and to put x� in the direction indicated in Table 2.1. In addi-
tion, control may be enhanced by setting A 
= λs, for instance A = 0.

If the relationship between x� and s� is reversed from that given in
Table 2.1, the controlled dynamics will not have a stable fixed points. To some
extent, these can also be studied using 1D maps. The flip saddle and double–
flip repeller can display stable period–2 orbits and chaos. For the non–flip
saddle and single–flip repeller, control is unstable when x� < s�.

The fact that control may be successful or even enhanced when A and
C are not matched to λs and s� suggests that it may be useful to reverse
the experimental procedure often followed in chaos control. Rather than first
identifying the parameters of the natural unstable fixed points and then apply-
ing the control, one can blindly attempt control and then deduce the natural
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dynamics from the behavior of the controlled system. This use of PPF control
is reminiscent of pioneering studies that used periodic stimulation to demon-
strate the complex dynamics of biological preparations [GGS81].

As an example, consider the Hénon map:

sn+1 = 1.4 + 0.3sn−1 − s2
n.

This system has two distinct fixed points. There is a flip–saddle at s� = 0.884
with λu = −1.924 and λs = 0.156 and a non–flip saddle at s� = −1.584 with
λu = 3.26 and λs = −0.092. In addition, there is an unstable flip–saddle orbit
of period 2 following the sequence 1.366 → −0.666 → 1.366. There are no
real orbits of period 3, but there is an unstable orbit of period 4 following the
sequence .893 → .305 → 1.575 → −.989 → .893. These facts can be deduced
by algebraic analysis of the equations.

In an experiment using the controlled system, the control parameter
x� = C/(1 − A) can be varied. The theory presented above indicates that
the controlled system should undergo a bifurcation as x� passes through s�.
For each value of x�, the controlled system was iterated from a random initial
condition and the values of sn plotted after allowing a transient to decay.
A bifurcation from a stable fixed–point to a stable period 2 as x� passes
through the flip–saddle value of s� = 0.884. A different type bifurcation occ-
urs at the non–flip saddle fixed–point at s� = −1.584. To the left of the
bifurcation point, the iterates are diverging to −∞ and are not plotted.

Adding gaussian dynamical noise (of standard deviation 0.05) does not
substantially alter the bifurcation diagram, suggesting that examination of
the truncation control bifurcation diagram may be a practical way to read off
the location of the unstable fixed points in an experimental preparation.

Unstable periodic orbits can be difficult to find in uncontrolled dynamics
because there is typically little data near such orbits. Application of PPF
control, even blindly, can stabilize such orbits and dramatically improve the
ability to locate them. This, and the robustness of the control, may prove
particularly useful in biological experiments where orbits may drift in time as
the properties of the system change [KY79].

2.4 Synchronization in Chaotic Systems

Recall that synchronization phenomena occur abundantly in nature and in
day to day life. A few well known examples are the observations in coupled
systems such as pendulum clocks, radio circuits, swarms of light–emitting
fireflies, groups of neurons and neuronal ensembles in sensory systems, chemi-
cal systems, Josephson junctions, cardiorespiratory interactions, etc. Starting
from the observation of pendulum clocks by Huygens, a vast literature al-
ready exists which studies synchronization in coupled nonlinear systems – in
systems of coupled maps as well as in oscillators and networks (see [PRK01]
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and references therein). In recent times, different kinds of synchronization
have been classified – mutual synchronization, lag synchronization, phase
synchronization and complete synchronization (see [RPK96, Bal06]).

2.4.1 Lyapunov Vectors and Lyapunov Exponents

Here, following [PGY06], we discuss a method to determine Lyapunov expo-
nents (LEs) from suitable ensemble averages. It is easy to write down a formal
meaningful definition, but the problem lies in translating it into a workable
procedure. With reference to an ND discrete–time system, given by the map

xt+1 = fd(xt), (x ∈ RN ), (2.137)

one can express the ith LE (as usual, LE are supposed to be ordered from the
largest to the smallest one) as

λ(i) =
1
2

∫
dxP (x) ln

[ ||∂xfdV(i)(x)||2
||V(i)(x)||2

]
(2.138)

where P (x) is the corresponding invariant measure, ∂xfd is the Jacobian of
the transformation, and the Lyapunov vector V(i)(x) identifies the ith most
expanding direction in x.

With reference to a continuous–time system, ruled by the ODE

ẋ = fc(x), (x ∈ RN ). (2.139)

the ith LE is defined by

λ(i) =
∫

dxP (x)
[∂xfcV(i)(x)] ·V(i)(x)

||V(i)(x)||2 , (2.140)

where · denotes the scalar product.
Unless a clear procedure to determine the LV is given, (2.138, 2.140) are

nothing but formal statements. As anticipated in the introduction, V(i)(x)
can be obtained by following a two–step procedure. We start with a generic
set of i linearly independent vectors lying in the tangent space and let them
evolve in time. This is the standard procedure to determine LEs, and it is
well known that the hyper–volume Y(i) identified by such vectors contains
for, large enough times, the i most expanding directions. Furthermore, with
reference to the set of orthogonal cordinates got by implementing the Gram–
Schmidt procedure, the component vk of a generic vector v evolves according
to the following ODE [EP98]

v̇k =
i∑

j=k

σk,j(x)vj , (1 ≤ k ≤ i), (2.141)
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where σk,j does not explicitly depend on time, but only through the position
x in the phase–space. As a result, the ith Lyapunov exponent can be formally
expressed as the ensemble average of the local expansion rate σi,i, i.e.,

λ(i) =
∫

dxP (x)σi,i(x). (2.142)

By comparing with (2.140), one finds the obvious equality

σi,i =
[∂xfcV(i)(x)] ·V(i)(x)

||V(i)(x)||2 . (2.143)

In subsection 2.4.1 below, we will apply this formalism to a phase–
synchronization problem, and we will find that the only workable way to
get an analytic expression for σi,i passes through the determination of the
direction of the corresponding LV vector V(i)(x).

Let us now consider the backward evolution of a generic vector V(i) ∈ Y(i).
Its direction is identified by the (i− 1)D vector

u ≡ (u1, u2, . . . , ui−1), (2.144)

where uk = vk/vi. From (2.141) and the definition of u, it follows that the
backward evolution follows the equation

u̇k = (σi,i − σk,k)uk −
i−1∑

j=k+1

σk,j(t)uj − σk,i, (1 ≤ k < i). (2.145)

This is a cascade of skew–product linear stable equations (they are stable
because the Lyapunov exponents are organized in descending order). The
overall stability is basically determined by the smallest (σk,k − σi,i) that is
got for k = i − 1. It is, therefore, sufficient to turn our attention to the last
(i− 1) component of the vector V. Its equation has the following structure

u̇(t) = γu + σ(t), (2.146)

where γ = λi − λi−1 < 0 and we have dropped the subscript i for simplicity.
The value of the direction u is got by integrating this equation. By neglecting
the temporal fluctuations of γ (it is not difficult to include them, but this is
not important for our final goal), the formal solution of (2.146) reads

u(x(t)) =
∫ t

−∞
eγ(t−τ)σ(x) dτ . (2.147)

This equation does not simply tell us the value of u at time t, but the value
of u when the trajectory sits in x(t). It is in fact important to investigate the
dependence of u on x. We proceed by determining the deviation δju induced
by a perturbation δxj of x along the jth direction,

δju =
∫ t

−∞
eγ(t−τ)δjσ(τ) dτ , (2.148)
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where, assuming a smooth dependence of σ on x,

δjσ(τ) ≈ σx(τ)δxj(τ) = σx(τ)δxj(t)eλj(t−τ) (2.149)

(notice that the dynamics is flowing backward). If the Lyapunov exponent λj

is negative, δjσ(τ) decreases for τ → −∞ and the integral over τ in (2.148)
converges. As a result, δju is proportional to δxj , indicating that the direction
of the LV is smooth along the jth direction. If λj is positive, δjσ(τ) diverges,
and below time t0, where

δxj(t)eλj(t−t0) = 1, (2.150)

linearization breaks down. In this case, δσ(τ) for τ < t0 is basically uncorre-
lated with its ‘initial value’ δjσ(t) and one can estimate δju, by limiting the
integral to the range [t0, t]

δju(t) = δxj(t)
∫ t

t0

dτe(λj+γ)(t−τ)σx(τ), (2.151)

where t0 is given by (2.150). By bounding σx with constant functions and
thereby performing the integral in (2.151), we finally get

δju(t) ≈ δxj(t) + δxj(t)−γ/λj . (2.152)

The scaling behavior is finally got as the smallest number between 1 and
−γ/λj . If we now introduce the exponent ηj to identify the scaling behavior
of the deviation of the LV direction when the point of reference is moved along
the jth direction in phase–space, the results are summarized in the following
way

ηj =
{

1, for λj ≤ −γ,
−γ/λj , for λj > −γ.

(2.153)

The former case corresponds to a smooth behavior (the derivative is finite),
while the latter one reveals a singular behavior that is the signature of a
generalized synchronization.

Forced Rössler Oscillator

The first model where phase synchronization has been explored is the period-
ically forced Rössler oscillator [RPK96]. In this section we derive a discrete–
time map describing a forced Rössler system in the limit of weak coupling
[PZR97]. We start with the ODE,

ẋ = −y − z + εy cos(Ωt + ψ0),
ẏ = x + a0y − εx sin(Ωt + ψ0), (2.154)
ż = a1 + z(x− a2),
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where ψ0 fixes the phase of the forcing term at time 0. It is convenient to
introduce cylindrical coordinates, namely u = (ϕ, r, z), (x = r cosφ, y =
r sinφ). For the future sake of clarity, let us denote with Sc the 3D space
parametrized by such coordinates, so that (2.154) reads

u̇ = F(u) + εG(u, Ωt + ψ0), where (2.155)

F =
[
1 +

z

r
sinφ +

a0

2
sin 2φ, a0r sin2 φ− z cosφ, a1 + z(r cosφ− a2),

]
G =

[
− sin2 φ cos(Ωt + ψ0)− cos2 φ sin(Ωt + ψ0),

r√
2

sin 2φ cos(Ωt + ψ0 + π/4), 0
]
.

Note that system (2.155) can be written in the equivalent autonomous form

u̇ = F(u) + εG(u, ψ), ψ̇ = Ω,

where ψ denotes the phase of the forcing term.
We pass to a discrete–time description, by monitoring the system each time

the phase φ is a multiple of 2π. In the new framework, the relevant variables
are r, z, and ψ, all measured when the Poincaré section is crossed. The task
is to determine the transformation map the state (r, z, ψ) onto (r′, z′, ψ′).

In order to get the expression of the map, it is necessary to formally
integrate the equations of motion from one to the next section. This can be
done, by expanding around the un–perturbed solution for ε = 0 (which must
nevertheless be obtained numerically). The task is anyhow worth, because it
allows determining the structure of the resulting map, which turns out to be
[PGY06]

ψ′ = ψ + 〈T (0)〉Ω + A1 + ε (Bc
1 cosψ + Bs

1 sinψ) ,
r′ = A2 + ε (Bc

2 cosψ + Bs
2 sinψ) , (2.156)

z′ = A3 + ε (Bc
3 cosψ + Bs

3 sinψ) ,

where 〈T (0)〉 is the average period of the un–perturbed Rössler oscillator and
Am’s and Bm’s are functions of z and r. They can be numerically determined
by integrating the appropriate set of equations. Up to first order in ε, the
structure of the model is fairly general as it is got for a generic periodically
forced oscillator represented in cylindrical coordinates (as long the phase of
the attractor can be unambiguously identified).

For the usual parameter values, the Rössler attractor is characterized by a
strong contraction along one direction [YML00]. As a result, one can neglect
the z dependence since this variable is basically a function of r, and thus write

ψ′ = ψ + 〈T (0)〉Ω + A1(r) + ε (Bc
1(r) cosψ + Bs

1(r) sinψ) ,
r′ = A2(r) + ε (Bc

2(r) cosψ + Bs
2(r) sinψ) , (2.157)
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where all the functions can be obtained by integrating numerically the equa-
tions of motion of the single Rössler oscillator.

To simplify further manipulations, we finally recast equation (2.157) in the
form

ψ′ = ψ + K + A1(r) + εg1(r) cos (ψ + β1(r)) , (2.158)
r′ = A2(r) + ε g2(r) cos (ψ + β2(r)) , where

Bc
i (r) = gi(r) cosβi(r), Bs

i (r) = −gi(r) sinβi(r)

for i = 1, 2. The parameter K = 〈T (0)〉Ω−2π represents the detuning between
the original Rössler–system average frequency and the forcing frequency Ω.

The GSF (2.158) generalizes the model introduced in [PZR97], where the
effect of the phase on the r dynamics was not included. This implies that the
GSF looses the skew–product structure. This has important consequences on
the orientation of the second Lyapunov vector that we determine in the next
sections. Notice also that the GSF (2.158) generalizes and justifies the model
invoked in [POR97].

For the sake of simplicity, we have analyzes the following model,

r′ = f(r) + 2εcg(r) cos(ψ + α)
ψ′ = ψ + K + Δr + εb cosψ, where (2.159)

f(r) = 1− 2|r|, g(r) = r2 − |r|,

with r ∈ [−1, 1]. The tent–map choice for r ensures that [−1, 0] and [0, 1] are
the two atoms of a Markov partion. Moreover, since g(r) is equal to 0 for
r = 0 and r = ±1, this remains true also when the perturbation is switched
on.

In this 2D setup, the formal expression of the ith LE (2.138) reads

λ(i) =
1
2

∫ 1

−1

dr

∫ 2π

0

dψP (r, ψ) ln
[ ||J(r, ψ)V(i)(r, ψ)||2

||V(i)(r, ψ)||2
]
, (2.160)

and the Jacobian is given by

J(r, ψ) =

(
fr(r) + 2εcgr(r) cos(ψ + α) −2εcg(r) sin(ψ + α)

Δ 1− εb sinψ

)
,

where the subscript r denotes the derivative with respect to r. The com-
putation of the Lyapunov exponent therefore, requires determining both the
invariant measure P (r, ψ) and the local direction of the Lyapunov vector V(i).

Second Lyapunov Exponent: Perturbative Calculation

Here we derive a perturbative expression for the second LE of the GSF (2.159),
by expanding (2.160). One of the key ingredients is the second LV, whose
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direction can be identified by writing V = (V, 1) (for the sake of clarity, from
now on, we omit the superscript i = 2 in V and λ, as we shall refer only to
the second direction). Due to the skew-product structure of the un–perturbed
map (2.159), the second LV is, for ε = 0, aligned along the ψ direction (i.e.,
V = 0). It is therefore natural to expand V in powers of ε

V ≈ εv1(r, ψ) + ε2v2(r, ψ). (2.161)

Accordingly, the logarithm of the norm of V is

ln ||V||2 = ln(1 + ε2v2
1) = ε2v2

1 ,

while its forward iterate writes as (including only those terms that contribute
up to second order in the norm),

JV =

(
εfr(r)v1 − 2cεg(r) sin(ψ + α)
1 + ε(Δv1 − b sinψ) + ε2Δv2)

)
, (2.162)

Notice that we have omitted the (r, ψ) dependence of v1 and v2 to keep the
notation compact [PGY06].

The Euclidean norm of the forward iterate is

||JV||2 = 1 + 2ε(Δv1 − b sinψ) + ε2
{
(Δv1 − b sinψ)2

+2Δv2 + [fr(r)v1 − 2cg(r) sin(ψ + α)]2
}
,

and its logarithm is

ln ||JV||2 = 2ε(Δv1 − b sinψ)− ε2
{
(Δv1 − b sinψ)2

−2Δv2 − [fr(r)v1 − 2cg(r) sin(ψ + α)]2
}
.

We now proceed by formally expanding the invariant measure in powers of ε

P (r, ψ) ≈ p0(ψ) + εp1(r, ψ) + ε2p2(r, ψ). (2.163)

The determination of the pi coefficients is presented in the next section, but
here we anticipate that, as a consequence of the skew-product structure for
ε = 0, the zeroth-order component of the invariant measure does not depend
on the phase ψ. Moreover, because of the structure of the tent-map, p0 is also
independent of r, i.e., p0 = 1/4π. The second Lyapunov exponent can thus be
written as

λ =
∫ 1

−1

dr

∫ 2π

0

dψ

(
1
4π

+ εp1(r, ψ)
){

2ε(Δv1(r, ψ) (2.164)

−b sinψ)− ε2[(Δv1(r, ψ)− b sinψ)2 − 2Δv2(r, ψ)
+[fr(r)v1(r, ψ) + 2cg(r) sin(ψ + α)]2 + v2

1(r, ψ)]
}

+ o(ε2).
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As the variable ψ is a phase, it is not a surprise that some simplifications
can be found by expanding the relevant functions into Fourier components.
We start writing the first component of the invariant measure as

p1(r, ψ) =
1
2π

∑
n

qi(r)einψ. (2.165)

We then consider the first order component v1(r, ψ) of the second LV (2.161).
Due to the sinusoidal character of the forcing term in the GSF (2.159), it is
easy to verify (see the next section) that v1(r, ψ) contains just the first Fourier
component,

v1(r, ψ) = c [L(r) sin(ψ + α) + R(r) cos(ψ + α)] . (2.166)

By now, inserting (2.165–2.166) into (2.164) and performing the integration
over ψ, we get

λ = ε2

∫ 1

−1

dr
{
Δc[qr

1[L(r) sinα + R(r) cosα]− qi
1[L(r) cosα−R(r) sinα]]

+bqi
1 −

b2

8
+ Δ

bc

4
[L(r) cosα−R(r) sinα] +

c2

8
(3−Δ2)

[
L2(r) + R2(r)

]
+

c2

2
g2(r) + c2

|r|
r

g(r)L(r)
}

+
ΔI2
4π

, (2.167)

where we have further decomposed q1(r) in its real and imaginary parts

q1(r) = qr
1(r) + iqi

1(r),

and we have defined

I2 =
∫ 1

−1

dr

∫ 2π

0

dψ v2(r, ψ), (2.168)

which accounts for the contribution arising from the second order correction
to the LV. This expansion shows that the highest–order contribution to the
second Lyapunov exponent of the GSF scales quadratically with the pertur-
bation amplitude. This is indeed a general result that does not depend on
the particular choice of the functions used to define the GSF, but only on
the skew–product structure of the un–perturbed time evolution and on the
validity of the expansion assumed in (2.163).

According to [PGY06], we finally get the perturbative expression for the
second LE,

λ = ε2

{
c2

30
− b2

4
+

∫ 1

−1

dr[bqi
1(r) +

c2

16
(6 − Δ2)[L2(r) + R2(r)] (2.169)

+Δcqr
1(r)[L(r) sin α + R(r) cos α] + Δc

(
b

4
− qi

1(r)
)

[L(r) cos α − R(r) sin α]

+c2 |r|
r

g(r)L(r) +
Δc2

4
r sin

(
Δ(1 − r)

2

)
[L(r) cos K − R(r) sin K]]

}
.
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Accordingly, the numerical value of the second LE can be obtained by
performing integrals which involve the four functions qr

1(r), qi
1(r), L(r),

and R(r).

2.4.2 Phase Synchronization in Coupled Chaotic Oscillators

Over the past decade or so, synchronization in chaotic oscillators [FY83,
PC90] has received much attention because of its fundamental importance in
nonlinear dynamics and potential applications to laser dynamics [DBO01],
electronic circuits [KYR98], chemical and biological systems [ESH98], and
secure communications [KP95]. Synchronization in chaotic oscillators is char-
acterized by the loss of exponential instability in the transverse direction
through interaction. In coupled chaotic oscillators, it is known, various types
of synchronization are possible to observe, among which are complete synchro-
nization (CS) [FY83, PC90], phase synchronization (PS) [RPK96, ROH98],
lag synchronization (LS) [RPK97] and generalized synchronization (GS)
[KP96].

One of the noteworthy synchronization phenomena in this regard is PS
which is defined by the phase locking between nonidentical chaotic oscil-
lators whose amplitudes remain chaotic and uncorrelated with each other:
|θ1−θ2| ≤ const. Since the first observation of PS in mutually coupled chaotic
oscillators [RPK96], there have been extensive studies in theory [ROH98] and
experiments [DBO01]. The most interesting recent development in this regard
is the report that the interdependence between physiological systems is repre-
sented by PS and temporary phase–locking (TPL) states, e.g., (a) human heart
beat and respiration [SRK98], (b) a certain brain area and the tremor activ-
ity [TRW98, RGL99]. Application of the concept of PS in these areas sheds
light on the analysis of non–stationary bivariate data coming from biological
systems which was thought to be impossible in the conventional statistical
approach. And this calls new attention to the PS phenomenon [KK00, KLR03].

Accordingly, it is quite important to elucidate a detailed transition route
to PS in consideration of the recent observation of a TPL state in biological
systems. What is known at present is that TPL[ROH98] transits to PS and
then transits to LS as the coupling strength increases. On the other hand, it is
noticeable that the phenomenon from non–synchronization to PS have hardly
been studied, in contrast to the wide observations of the TPL states in the
biological systems.

Here, following [KK00, KLR03], we study the characteristics of TPL states
observed in the regime from non–synchronization to PS in coupled chaotic
oscillators. We report that there exists a special locking regime in which a TPL
state shows maximal periodicity, which phenomenon we would call periodic
phase synchronization (PPS). We show this PPS state leads to local nega-
tiveness in one of the vanishing Lyapunov exponents, taking the measure by
which we can identify the maximal periodicity in a TPL state. We present a
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qualitative explanation of the phenomenon with a nonuniform oscillator model
in the presence of noise.

We consider here the unidirectionally coupled non–identical Ros̈sler oscil-
lators for first example:

ẋ1 = −ω1y1 − z1, ẏ1 = ω1x1 + 0.15y1, ż1 = 0.2 + z1(x1 − 10.0),
ẋ2 = −ω2y2 − z2, ẏ2 = ω2x2 + 0.165y2 + ε(y1 − y2), (2.170)
ż2 = 0.2 + z2(x2 − 10.0),

where the subscripts imply the oscillators 1 and 2, respectively, ω1,2(=
1.0 ± 0.015) is the overall frequency of each oscillator, and ε is the cou-
pling strength. It is known that PS appears in the regime ε ≥ εc and that 2π
phase jumps arise when ε < εc. Lyapunov exponents play an essential role in
the investigation of the transition phenomenon with coupled chaotic oscilla-
tors and as generally understood that PS transition is closely related to the
transition to the negative value in one of the vanishing Lyapunov exponents
[PC90].

A vanishing Lyapunov exponent corresponds to a phase variable of an
oscillator and it exhibits the neutrality of an oscillator in the phase direction.
Accordingly, the local negativeness of an exponent indicates this neutrality
is locally broken [RPK96]. It is important to define an appropriate phase
variable in order to study the TPL state more thoroughly. In this regard,
several methods have been proposed methods of using linear interpolation at
a Poincaré section [RPK96], phase–space projection [RPK96, ROH98], trac-
ing of the center of rotation in phase–space [YL97], Hilbert transformation
[RPK96], or wavelet transformation [KK00, KLR03]. Among these we take
the method of phase–space projection onto the x1 − y1 and x2 − y2 planes
with the geometrical relation

θ1,2 = arctan(y1,2/x1,2),

and get phase difference ϕ = θ1 − θ2.
The system of coupled oscillators is said to be in a TPL state (or laminar

state) when 〈ϕ〉 < Λc where 〈...〉 is the running average over appropriate
short time scale and Λc is the cutoff value to define a TPL state. The locking
length of the TPL state, τ , is defined by time interval between two adjacent
peaks of 〈ϕ〉.

In order to study the characteristics of the locking length τ , we introduce a
measure [KK00, KLR03]: P (ε) =

√
var(τ)/〈τ〉, which is the ratio between the

average value of time lengths of TPL states and their standard deviation. In
terminology of stochastic resonance, it can be interpreted as noise–to–signal
ratio [PK97, Jun93]. The measure would be minimized where the periodicity
is maximized in TPL states.

To validate the argument, we explain the phenomenon in simplified dynam-
ics. From (2.170), we get the equation of motion in terms of phase difference:
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ϕ̇ = Δω + A(θ1, θ2, ε) sinϕ + ξ(θ1, θ2, ε), where (2.171)

A(θ1, θ2, ε) = (ε + 0.15) cos(θ1 + θ2)−
ε

2

(
R1

R2

)
,

ξ(θ1, θ2, ε) =
ε

2
R1

R2
sin(θ1 + θ2) +

z1

R1
sin(θ1)−

z2

R2
sin(θ2)

+(ε + 0.015) cos(θ2) sin(θ2).

Here, Δω = ω1 − ω2, R1,2 =
√

x2
1,2 + y2

1,2.

And from (2.171) we get the simplified equation to describe the phase dyn-
amics:

ϕ̇ = Δω + 〈A〉 sin(ϕ) + ξ,

where 〈A〉 is the time average of A(θ1, θ2, ε). This is a nonuniform oscillator
in the presence of noise where ξ plays a role of effective noise [Str94] and
the value of 〈A〉 controls the width of bottleneck (i.e, non–uniformity of the
flow). If the bottleneck is wide enough, (i.e., faraway from the saddle–node
bifurcation point: Δω � −〈A〉), the effective noise hardly contributes to the
phase dynamics of the system. So the passage time is wholly governed by the
width of the bottleneck as follows:

〈τ〉 ∼ 1/
√

Δω2 − 〈A〉2 ∼ 1/
√

Δω2 − ε2/4,

which is a slowly increasing function of ε. In this region while the standard
deviation of TPL states is nearly constant (because the widely opened bot-
tlenecks periodically appears and those lead to small standard deviation), the
average value of locking length of TPL states is relatively short and the ratio
between them is still large.

On the contrary as the bottleneck becomes narrower (i.e., near the saddle–
node bifurcation point: Δω ≥ −〈A〉) the effective noise begins to perturb the
process of bottleneck passage and regular TPL states develop into intermittent
ones [ROH98, KK00]. It makes the standard deviation increase very rapidly
and this trend overpowers that of the average value of locking lengths of
the TPL states. Thus we understand that the competition between width
of bottleneck and amplitude of effective noise produces the crossover at the
minimum point of P (ε) which shows the maximal periodicity of TPL states.

Rosenblum et al. firstly observed the dip in mutually coupled chaotic osc-
illators [RPK96]. However the origin and the dynamical characteristics of the
dip have been left unclarified. We argue that the dip observed in mutually
coupled chaotic oscillators has the same origin as observed above in unidirec-
tionally coupled systems.

Common apprehension is that near the border of synchronization the phase
difference in coupled regular oscillators is periodic [RPK96] whereas in coupled
chaotic oscillators it is irregular [ROH98]. On the contrary, we report that the
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special locking regime exhibiting the maximal periodicity of a TPL state also
exists in the case of coupled chaotic oscillators. In general, the phase difference
of coupled chaotic oscillators is described by the 1D Langevin equation,

ϕ̇ = F (ϕ) + ξ,

where ξ is the effective noise with finite amplitude. The investigation with
regard to PS transition is the study of scaling of the laminar length around
the virtual fixed–point ϕ∗ where F (ϕ∗) = 0 [KK00, KT01] and PS transition
is established when

|
∫ ϕ∗

ϕ

F (ϕ)dφ| > max |ξ|.

Consequently, the crossover region, from which the value of P grows expo-
nentially, exists because intermittent series of TPL states with longer locking
length τ appears as PS transition is nearer. Eventually it leads to an exponen-
tial growth of the standard deviation of the locking length. Thus we argue that
PPS is the generic phenomenon mostly observed in coupled chaotic oscillators
prior to PS transition.

In conclusion, analyzing the dynamic behaviors in coupled chaotic oscilla-
tors with slight parameter mismatch we have completed the whole transition
route to PS. We find that there exists a special locking regime called PPS in
which a TPL state shows maximal periodicity and that the periodicity leads
to local negativeness in one of the vanishing Lyapunov exponents. We have
also made a qualitative description of this phenomenon with the nonuniform
oscillator model in the presence of noise. Investigating the characteristics of
TPL states between non–synchronization and PS, we have clarified the tran-
sition route before PS. Since PPS appears in the intermediate regime between
non–synchronization and PS, we expect that the concept of PPS can be used
as a tool for analyzing weak interdependences, i.e., those not strong enough
to develop to PS, between non–stationary bivariate data coming from biolog-
ical systems, for instance [KK00, KLR03]. Moreover PPS could be a possible
mechanism of the chaos regularization phenomenon [Har92, Rul01] observed
in neurobiological experiments.

2.4.3 The Onset of Synchronization in Chaotic Systems

Recall that systems of many coupled dynamical units are of great interest in
a wide variety of scientific fields including physics, chemistry and biology. In
particular, in [OSB02] Ott et al. were interested in the case of global coupling
in which each element was coupled to all others. Beginning with the work
of Kuramoto [Kur84] and Winfree [Win80], there has been much research on
synchrony in systems of globally coupled limit cycle oscillators. Here, mainly
following [OSB02], we present and apply a formal analysis of the stability of
the unsynchronized state (or ‘incoherent state’) of a general system of glob-
ally coupled heterogeneous, continuous–time dynamical systems. In this treat-
ment, no a priori assumption about the dynamics of the individual coupled
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elements is made; thus the systems can consist of elements whose natural
uncoupled dynamics is chaotic or periodic, including the case where both
types of elements are present.

We consider dynamical systems of the form

ẋi = G(xi(t),Ωi) + K(〈〈x〉〉∗ − 〈〈x(t)〉〉), (2.172)

where xi = (x(1)
i , x

(2)
i , . . . , x

(q)
i )T is a qD vector; G is a qD vector function;

K is a constant q × q coupling matrix; i = 1, 2, · · · , N is an index labeling
components in the ensemble of coupled systems (in our analytical work we take
the limit N → ∞, while in our numerical work N >> 1 is finite); 〈〈x(t)〉〉 is
the instantaneous average component state (referred to as the order parameter
by H. Haken in his synergetics [Hak83, Hak93]),

〈〈x(t)〉〉 = lim
N→∞

N−1
∑

i

〈xi(t)〉, (2.173)

and, for each i, 〈xi〉 is the average of xi over an infinite number of initial
conditions xi(0), distributed according to some chosen initial distribution on
the attractor of the ith uncoupled system

ẋi = G(xi,Ωi). (2.174)

Ωi is a parameter vector specifying the uncoupled (K = 0) dynamics, and
〈〈x〉〉∗ is the natural measure [Ott93] and i average of the state of the uncou-
pled system. That is, to compute 〈〈x〉〉∗, we set K = 0, compute the solutions
to (2.174), and get 〈〈x〉〉∗ from

〈〈x〉〉∗ = lim
N→∞

N−1
∑

i

[
lim

τ0→∞
τ−1

0

∫ τ0

0

xi(t) dt
]
.

In what follows we assume that the Ωi are randomly chosen from a smooth
probability density function ρ(Ω). Thus, we have

〈〈x〉〉∗ =
∫

xρ(Ω) dμΩ dΩ,

where μΩ is the natural invariant measure for the system ẋ = G(x,Ω).
By construction, 〈〈x〉〉 = 〈〈x〉〉∗ is a solution of the globally coupled sys-
tem (2.172). This solution is called the ‘incoherent state’ [OSB02] because the
coupling term cancels and the individual oscillators do not affect each other.
The question we address is whether the incoherent state is stable. In particu-
lar, as a system parameter such as the coupling strength varies, the onset of
instability of the incoherent state signals the start of coherent, synchronous
behavior of the ensemble.
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Stability Analysis

To perform the stability analysis, we assume that the system is in the inco-
herent state, so that at any fixed time t, and for each i, xi(t) is distributed
according to the natural measure. We then perturb the orbits

xi(t) → xi(t) + δxi(t),

where δxi(t) is an infinitesimal perturbation [OSB02]:

dδxi

dt
= DG(xi(t),Ωi) δxi −K〈〈δxi〉〉, where (2.177)

DG(xi(t),Ωi) δxi = δxi · ∂xi
G(xi(t),Ωi).

Introducing the fundamental matrix Mi(t) for system (2.177),

Ṁi = DG ·Mi, (2.178)

where Mi(0) ≡ 1, we can write the solution of (2.177) as

δxi(t) = −
∫ t

−∞
Mi(t)M−1

i (τ)K〈〈δx〉〉τ dτ , (2.179)

where we use the notation 〈〈δx〉〉τ to signify that 〈〈δx〉〉 is evaluated at time
τ . Note that, through (2.178), Mi depends on the unperturbed orbits xi(t) of
the uncoupled nonlinear system (2.174), which are determined by their initial
conditions xi(0) (distributed according to the natural measure).

Assuming that the perturbed order parameter evolves exponentially in
time (i.e., 〈〈δx〉〉 = Δest), (2.179) yields

{1 + M̃(s)K}Δ = 0, (2.180)

where s is complex, and

M̃(s) =
〈〈∫ t

−∞
e−s(t−τ)Mi(t)M−1

i (τ) dτ

〉〉
∗
. (2.181)

Thus the dispersion function determining s is

D(s) = det{1 + M̃(s)K} = 0. (2.182)

In order for equations (2.180) and (2.182) to make sense, the right side of
(2.181) must be independent of time. As written, it may not be clear that this
is so. We now demonstrate this, and express M̃(s) in a more convenient form.
To do this, we make the dependence of Mi in (2.181) on the initial condition
explicit,

Mi(t)M−1
i (τ) = Mi(t,xi(0))M−1

i (τ ,xi(0)).



408 2 Chaotic Brain/Mind Dynamics

From the definition of Mi, we have

Mi(t,xi(0))M−1
i (τ ,xi(0)) = Mi(t− τ ,xi(τ)) = Mi(T,xi(t− T )), (2.183)

where we have introduced T = t− τ . Using (2.183) in (2.181) we have

M̃(s) =
〈〈∫ ∞

0

e−sT Mi(T,xi(t− T ) dT
〉〉

∗
.

Note that our solution requires that the integral in the above converge. Since
the growth of Mi with increasing T is dominated by hi, the largest Lyapunov
exponent for the orbit xi, we require

Re(s) > Γ , Γ = max
xi,Ωi

hi.

In contrast with the chaotic case where Γ > 0, an ensemble of periodic
attractors has Γ = 0 (for an attracting periodic orbit hi = 0 corresponds
to orbit perturbations along the flow). With the condition Re(s) > Γ , the
integral converges exponentially and uniformly in the quantities over which
we average. Thus we can interchange the integration and the average,

M̃(s) =
∫ ∞

0

e−sT 〈〈Mi(T,xi(t− T ))〉〉∗dT. (2.184)

In (2.184) the only dependence on t is through the initial condition xi(t−T ).
However, since the quantity within angle brackets includes not only an average
over i, but also an average over initial conditions with respect to the natural
measure of each uncoupled attractor i, the time invariance of the natural
measure ensures that (2.184) is independent of t. In particular, invariance
of a measure means that if an infinite cloud of initial conditions xi(0) is
distributed on uncoupled attractor i at t = 0 according to its natural invariant
measure, then the distribution of the orbits, as they evolve to any time t via
the uncoupled dynamics (2.174), continues to give the same distribution as at
time t = 0. Hence, although Mi(T,xi(t− T )) depends on t, when we average
over initial conditions, the result 〈Mi(T,xi(t − T ))〉∗ is independent of t for
each i. Thus we drop the dependence of 〈〈Mi〉〉∗ on the initial values of the
xi and write

M̃(s) =
∫ ∞

0

e−sT 〈〈M(T )〉〉∗dT, (2.185)

where, for convenience we have also dropped the subscript i. Thus M̃ is the
Laplace transform of 〈〈M〉〉∗. This result for M̃(s) can be analytically contin-
ued into Re(s) < Γ , as explained below.25

25 Note that M̃(s) depends only on the solution of the linearized uncoupled system
(2.178). Hence the utility of the dispersion function D(s) given by (2.182) is that
it determines the linearized dynamics of the globally coupled system in terms of
those of the individual uncoupled systems.
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Analytic Continuation of M̃(s)

Consider the kth column of 〈〈M(t)〉〉∗, which we denote [〈〈M(t)〉〉∗]k.
According to our definition of Mi given by (2.178), we can interpret
[〈〈M(t)〉〉∗]k as follows. Assume that for each of the uncoupled systems i
in (2.174), we have a cloud of an infinite number of initial conditions sprin-
kled randomly according to the natural measure on the uncoupled attractor.
Then, at t = 0, we apply an equal infinitesimal displacement δk in the direc-
tion k to each orbit in the cloud. That is, we replace xi(0) by xi(0) + δkak,
where ak is a unit vector in x−space in the direction k. Since the particle
cloud is displaced from the attractor, it relaxes back to the attractor as time
evolves. The quantity [〈〈M〉〉∗]kδk gives the time evolution of the i-averaged
perturbation of the centroid of the cloud as it evolves back to the attractor
and redistributes itself on the attractor.

We now argue that 〈〈M〉〉∗ decays to zero exponentially with increasing
time. We consider the general case where the support of the smooth density
ρ(Ω) contains open regions of Ω for which the dynamical system (2.174) has
attracting periodic orbits as well as a positive measure of Ω on which (2.174)
has chaotic orbits. Numerical experiments on chaotic attractors (including
structurally unstable attractors) generally show that they are strongly mixing;
i.e., a cloud of many particles rapidly arranges itself on the attractor according
to the natural measure. Thus, for each Ωi giving a chaotic attractor, it is
reasonable to assume that the average of Mi over initial conditions xi(0),
denoted 〈Mi〉∗, decays exponentially. For a periodic attractor, however, 〈Mi〉∗
does not decay: a distribution of orbits along a limit cycle comes to the same
distribution after one period, and this repeats forever. Thus, if the distribution
on the limit cycle was noninvariant, it remains noninvariant and oscillates
forever at the period of the periodic orbit. On the other hand, periodic orbits
exist in open regions of Ω, and, when we average over Ω, there is the possibility
that with increasing time cancellation causing decay occurs via the process of
‘phase mixing’ [KT73]. For this case we appeal to an example. In particular,
the explicit computation of 〈Mi〉∗ for a simple model limit cycle ensemble
results in

〈Mi〉∗ =
1
2

[
cosΩit − sinΩit
sinΩit cosΩit

]
,

and indeed this oscillates and does not decay to zero. However, if we average
over the oscillator distribution ρ(Ω) we get [OSB02]

〈〈M̃〉〉∗ =
1
2

[
c(t) −s(t)
s(t) c(t)

]
, where

c(t) =
∫

ρ(Ω) cosΩt dΩ, s(t) =
∫

ρ(Ω) sinΩt dΩ.

For any analytic ρ(Ω) these integrals decay exponentially with time. Thus,
based on these considerations of chaotic and periodic attractors, we see that
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for sufficiently smooth ρ(Ω), there is reason to believe that 〈〈M〉〉∗, the average
of Mi over xi(0) and over Ωi, decays exponentially to zero with increasing
time. Conjecturing this decay to be exponential [OSB02], we see that the int-
egral in (2.185) converges for Re(s) > −ξ. Thus, while (2.185) was derived
under the assumption Re(s) > Γ > 0, using analytic continuation, we can
regard (2.185) as valid for Re(s) > −ξ. Note that, for our purposes, it suffices
to require only that ‖〈〈M(t)〉〉∗‖ be bounded, rather than that it decay expo-
nentially. Boundedness corresponds to ξ = 0, which is enough for us, since, as
soon as instability occurs, the relevant root of D(s) has Re(s) > 0.

The Distribution Function Approach

Much previous work has treated the Kuramoto problem and its various gen-
eralizations using a kinetic equation approach. Ott et al. [OSB02] have also
obtained the main result (2.182) for D(s) by this more traditional method.
We briefly outline their procedure below.

Let F (x,Ω, t) be the distribution function (actually a generalized function)
such that F (x,Ω, t) dxdΩ is the fraction of oscillators at time t whose state
and parameter vectors lie in the infinitesimal volume dxdΩ centered at (x,Ω).
Note that

∫
Fdx is time independent, since it is equal to the distribution

function ρ(Ω) of the oscillator parameter vector. The time evolution of F
is simply obtained from the conservation of probability following the system
evolution,

∂tF + ∂x · [(G(x,Ω) + K · (〈〈x〉〉∗ − 〈〈x〉〉))F ] = 0, where (2.186)

〈〈x〉〉 =
∫ ∫

F dxdΩx, 〈〈x〉〉∗ =
∫ ∫

F0 dxdΩx,

and F0 = F0(x,Ω) = f(x,Ω)ρ(Ω), in which f(x,Ω) is the density corre-
sponding to the natural invariant measure of the uncoupled attractor whose
parameter vector is Ω. Thus f(x,Ω), which is a generalized function, formally
satisfies

∂x · [G(x,Ω)f(x,Ω)] = 0.

Hence, F = F0 is a time–independent solution of (2.186) (the ‘incoherent
solution’). We examine the stability of the incoherent solution by linearly
perturbing F , F = F0 + δF , to get

∂tδF + ∂x · [G(x,Ω)δF −K〈〈δx〉〉F0] = 0, (2.187)

〈〈δx〉〉 =
∫ ∫

δF dxdΩx. (2.188)

We can then introduce the Laplace transform, solve the transformed version
of (2.187), and substitute into (2.188) to get the same dispersion function
D(s) as in the stability analysis above. The calculation is somewhat lengthy,
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involving the formal solution of (2.187) by integration along the orbits of the
uncoupled system.

We note that the computation outlined above is formal in that we treat
the distribution functions as if they were ordinary, as opposed to generalized,
functions. In this regard, we note that f(x,Ω) is often extremely singular both
in its dependence on x (because the measure on a chaotic attractor is typically
a multi–fractal) and on Ω (because chaotic attractors are often structurally
unstable). We believe that both these sources of singularity are sufficiently
mitigated by the regularizing effect of the averaging process over (x,Ω), and
that the above stability results are still valid. This remains a problem for future
study. We note, however, that for structurally unstable attractors, a smooth
distribution of system parameters ρ(Ω) is likely to be much less problematic
than the case of identical ensemble components, ρ(Ω) = δ(Ω − Ω̄). In the
case of identical structurally unstable chaotic components, an arbitrarily small
change of Ω̄ can change the character of the base state whose stability is being
examined. In contrast, a small change of a smooth distribution ρ(Ω) results
in a small change in the weighting of the ensemble members, but would seem
not to cause any qualitative change.

Bifurcations

It is natural to ask what happens as a parameter of the system passes from
values corresponding to stability to values corresponding to instability. Noting
that the incoherent state represents a time independent solution of (2.172), we
can seek intuition from standard results on the generic bifurcations of a fixed
point of a system of ODEs [GH83]. There are two linear means by which such
a fixed point can become unstable: (i) a real solution of D(s) = 0 can pass
from negative to positive s values, and (ii) two complex conjugate solutions, s
and s∗, can cross the imaginary s−axis, moving from Re(s) < 0 to Re(s) > 0.

In reference to case (i), we note that the incoherent steady state always
exists for our above formulation. In this situation, in the absence of a system
symmetry, the generic bifurcation of the system is a transcritical bifurcation.

In the presence of symmetry, the existence of a fixed point solution with
〈〈x〉〉∗−〈〈x〉〉 nonzero may imply the simultaneous existence of a second fixed
point solution with 〈〈x〉〉∗−〈〈x〉〉 nonzero, where these solutions map to each
other under the symmetry transformation of the system. In this case the tran-
scritical bifurcation is ruled out, and the generic bifurcation is the pitchfork
bifurcation, which can be either subcritical or supercritical .

In case (ii), where two complex conjugate solutions cross the Im(s) axis,
the generic bifurcations are the subcritical and supercritical Hopf bifurcations.
(In this case we note that although the individual oscillators may be behaving
chaotically, their average coherent behavior is periodic.)

In the numerical experiments in [OSB02] the authors found cases of app-
arent subcritical and supercritical Hopf bifurcations, as well as a case of
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a subcritical pitchfork bifurcation. As their globally coupled system was a
collection of coupled Lorenz equations [OSB02]

ẋ(1) = σ(x(2) − x(1))
ẋ(2) = rx(1) − x(2) − x(1)x(3)

ẋ(3) = −bx(3) + x(1)x(2)

, (2.189)

with the symmetry (x(1), x(2), x(3)) → (−x(1),−x(2), x(3)), and since the form
of the coupling used respects this symmetry, the transcritical bifurcation is
ruled out, which leaves only the pitchfork bifurcation.

Generalizations

One generalization is to consider a general nonlinear form of the coupling such
that we replace system (2.172) by

ẋi = Ĝ(xi,Ωi,y),
y = 〈〈x〉〉∗ − 〈〈x〉〉,

(2.190)

and the role of the uncoupled system (analogous to (2.174)) is played by the
equation

ẋi = G̃(xi,Ωi,0).

In this more general setting, following the steps of the above stability analysis
yields [OSB02]

D(s) = det{1 + Q̃(s)}, where (2.191)

Q̃(s) =
∫ ∞

0

dTe−st〈〈M(T )DyĜ(x,Ω,0)〉〉∗.

A still more general form of the coupling is

ẋi = ˆ̂G(xi,Ωi, 〈〈x〉〉). (2.192)

For (2.190) and (2.172), a unique incoherent solution 〈〈x〉〉∗ always exists
and can be obtained by solving the nonlinear equations for each xi(0) with
y = (〈〈x〉〉∗−〈〈x〉〉) set equal to zero. In the case of (2.192), the existence of a
unique incoherent state is not assured. By definition, 〈〈x〉〉 is time independent
in an incoherent state. Thus replacing 〈〈x〉〉 in (2.192) by a constant vector
u, imagine that we solve (2.192) for an infinite number of initial conditions
distributed for each i on the natural invariant measure of the system,

ẋi = ˆ̂G(xi,Ωi,u),

and then get the average 〈〈x〉〉u. This average depends on u, so that 〈〈x〉〉u =
F(u). We then define an incoherent solution 〈〈x〉〉∗ for (2.192) by setting
〈〈x〉〉u = u = 〈〈x〉〉∗, so that 〈〈x〉〉∗ is the solution of the nonlinear equation

〈〈x〉〉∗ = F(〈〈x〉〉∗).
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Generically, such a nonlinear equation may have multiple solutions or no
solution. In this setting, if a stable solution of this equation exists for some
paramter k < kc, then the solution of the nonlinear system (2.192) (with
appropriate initial conditions) will approach it for large t. If now, as k
approaches kc from below, a real eigenvalue approaches zero, then k = kc

generically corresponds to a saddle-node bifurcation. That is, an unstable
incoherent solution merges with the stable incoherent solution, and, for k > kc,
neither exist. In this case, loss of stability by the Hopf bifurcation is, of course,
still generic, and the incoherent solution continues to exist before and after the
Hopf bifurcation. D(s) for (2.192) is given by (2.191) with DyĜ replaced by

−D〈〈x〉〉
ˆ̂G evaluated at the incoherent state (〈〈x〉〉 = 〈〈x〉〉∗) whose stability

is being investigated.
Another interesting case is when the coupling is delayed by some linear

deterministic process. That is, the ith oscillator does not sense 〈〈x〉〉 immedi-
ately, but rather responds to the time history of 〈〈x〉〉. Thus, using (2.190) as
an example, the coupling term y is replaced by a convolution,

y(t) =
∫ t

−∞
Λ(t− t′) · (〈〈x〉〉∗ − 〈〈x〉〉t′) dt′.

In this case a simple analysis shows that (2.191) is replaced by

D(s) = det{1 + Q̃(s) ·Λ(s)}, where

Λ̃(s) =
∫ ∞

0

e−stΛ(t′) dt.

The simplest form of this would be a discrete delay

Λ(t) = Kδ(t− η),

in which case Λ̃(s) = 1e−ηs.

The Kuramoto Problem

As an example, we now consider a case that reduces to the well–studied
Kuramoto problem. We consider the ensemble members to be 2D,

xi = (xi(t), yi(t))T ,

and characterized by a scalar parameter Ωi. For the coupling matrix K we
choose k1. Thus (2.172) becomes

ẋi = G(x)(xi, yi, Ωi) + k(〈〈x〉〉∗ − 〈〈x〉〉),
ẏi = G(y)(xi, yi, Ωi) + k(〈〈y〉〉∗ − 〈〈y〉〉).
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We assume that in polar coordinates (x = r cos θ, y = r sin θ), the uncoupled
(k = 0) dynamical system is given by [OSB02]

θ̇i = Ωi, (2.193)
ṙi = (r0 − ri)/τ , (2.194)

where Ωiτ � 1. That is, the attractor is the circle ri = r0, and it attracts
orbits on a time scale τ that is very short compared to the limit cycle period.
For Ωiτ � 1 it will suffice to calculate Mi(t) for t� τ . To do this, we consider
an initial infinitesimal orbit displacement

Δoi = axdxoi + aydyoi,

where ax,y are unit vectors.
In a short time this displacement relaxes back to the circle, so that for

(2π/Ω) � t � τ we have r = r0, θ = θoi, Δi(t) � Δ+
oiaθ, where θoi is

the initial value θi(0), aθ is evaluated at θi(0), and Δ+
oi = − sin θoidxoi +

cos θoidyoi. For later time t � τ , we have r = r0, θi(t) = θoi + Ωit and
Δi(t) = Δ+

oiaθ, with aθ evaluated at θi(t). In rectangular coordinates this is[
dxi(t)
dyi(t)

]
=

[
sin(θoi + Ωit) sin θio − sin(θoi + Ωit) cos θio

− cos(θoi + Ωit) sin θoi cos(θoi + Ωit) cos θoi

][
dxoi

dyoi

]
.

By definition, the above matrix is Mi appearing in the stability analysis above.
Averaging (2.195) over the invariant measure on the attractor of (2.193) and
(2.194) implies averaging over θoi. This yields

〈Mi〉θ =
1
2

[
cosΩit − sinΩit
sinΩit cosΩit

]
.

Averaging the rotation frequencies Ωi over the distribution function ρ(Ω) and
taking the Laplace transform gives M̃(s),

M̃(s) =

[
(q+ + q−) i(q+ − q−)
−i(q+ − q−) (q+ + q−)

]
, where (2.195)

q±(s) =
1
4

〈
1

s∓ iΩ

〉
Ω

≡ 1
4

∫ +∞

−∞

ρ(Ω) dΩ
s∓ iΩ

, (2.196)

and, in doing the Laplace transform, we have neglected the contribution to the
Laplace integral from the short time interval 0 ≤ t ≤ 0(τ) (this contribution
approaches zero as Ωτ → 0). Using (2.195) and (2.196) in (2.182) then gives
D(s) = D+(s)D−(s), where D±(s) is the well–known result for the Kuramoto
model (e.g., [Str00]),

D±(s) = 1 +
k

2

∫ +∞

−∞

ρ(Ω) dΩ
s± iΩ

= 0, Re(s) > 0,
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and D±(s) for Re(s) ≤ 0 is obtained by analytic continuation [Str00]. Note
that the property D†

±(s) = D∓(s†), where † denotes complex conjugation,
insures that complex roots of D(s) = D+(s)D−(s) = 0 come in conjugate
pairs.

2.4.4 Neural Bursting and Consciousness

A neuron is said to fire a burst of spikes when it fires two or more action
potentials followed by a period of quiescence. A burst of two spikes is called
a doublet, of three spikes is called a triplet, four – quadruplet, etc. [Izh00]
Almost every neuron can burst if stimulated or manipulated pharmacolog-
ically. Many burst autonomously due to the interplay of fast ionic currents
responsible for spiking activity and slower currents that modulate the activity.
Below is the list of the more popular bursting neurons [Izh07]:

1. Neocortex
a) IB: Intrinsically bursting neurons, if stimulated with a long pulse of dc

current, fire an initial burst of spikes followed by shorter bursts, and
then tonic spikes [CG90]. These are predominantly pyramidal neurons
in layer 5.

b) CH: Chattering neurons can fire high–frequency bursts of 3–5 spikes
with a relatively short interburst period [GM96]. Some call them fast
rhythmic bursting (FRB) cells. These are pyramidal neurons in layer
2–4, mainly layer 3.

c) Interneurons: Some cortical interneurons exhibit bursting activity in
response to pulses of dc current [MTW04].

2. Hippocampus
a) LTB: Low–threshold bursters fire high–frequency bursts in response to

injected pulses of current. Some of these neurons burst spontaneously
[SUK01]. These are pyramidal neurons in CA1 region.

b) HTB: High–threshold bursters fire bursters only in response to strong
long pulses of current.

3. Thalamus
a) TC: Thalamocortical neurons can fire bursts if inhibited and then

released from inhibition. This rebound burst is often called a low–
threshold spike. Some fire bursts spontaneously in response to tonic
inhibition.

b) RTN: Reticular thalamic nucleus inhibitory neurons have bursting
properties similar to those of TC cells.

4. Cerebellum
a) PC: Purkinje cells in cerebellar slices usually fire tonically but when

synaptic input is blocked they can switch to a trimodal pattern which
includes a bursting phase [WK02].
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It is relatively easy to identify bursts in response to simple stimuli, such
as dc steps or sine waves, especially if recording intracellularly from a quiet
in vitro slice. The bursts fully evolve and the hallmarks of burst responses
are clear. However, responses to sensory stimuli are often comprised of dou-
blets or triplets embedded in spike trains. Furthermore, these responses are
usually recorded extracellularly so the experimenter does not have access to
the membrane potential fluctuations that are indicative of bursting. Thus, it
is difficult to distinguish burst responses from random multispike events. The
statistical analysis of spike trains addresses this problem. Bimodal inter–spike
interval (ISI) histograms can be indicative of burst responses. The rationale
is that short ISIs occur more frequently when induced by burst dynamics
than would occur if predicted by Poisson firing. Burst spikes with short ISIs
form the first mode while quiescent periods correspond to the longer ISIs of
the second mode. This is true for intrinsic or forced (stimulus driven and
network–induced) bursting. Furthermore, the trough between the two modes
may correspond to the refractory period of an intrinsic burst or the timescale
of the network–induced bursting [DLL02, DCM03]. This method defines a
criterion for burst identification so that further analysis and experimentation
can determine the mechanism and function of the bursts. See [BN01] for a
deeper analysis into burst detection from stochastic spike data.

Spiking versus Bursting Neural Networks

Recently, Izhikevich [HI97] discussed biological plausibility and computational
efficiency of some of the most useful models of spiking and bursting neurons
(see Figure 2.36). He compared their applicability to large–scale simulations
of cortical neural networks.

Following [HI97], we present some widely used models of spiking and burst-
ing neurons that can be expressed in the form of ODEs. Throughout this sub-
section, v denotes the membrane potential. All the parameters in the models
are chosen so that v has mV scale and the time has ms scale. To compare
computational cost, we assume that each model, written as a dynamical sys-
tem ẋ = f(x), is implemented using the simplest, fixed–step first–order Euler
method, with the integration time step chosen to achieve a reasonable numer-
ical accuracy.

Integrate–and–Fire Neuron

One of the most widely used models in computational neuroscience is the leaky
integrate–and–fire neuron, (I&F neuron, for short) given by

v̇ = I + a− bv, If v ≥ vtrsh Then v ← c,

where v is the membrane potential, I is the input current, and a, b, c, and vtrsh

are the parameters. When the membrane potential v reaches the threshold
value vtrsh, the neuron is said to fire a spike, and v is reset to c. The I&F
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Fig. 2.36. Neuro–computational features of biological neurons (with permission
from E. Izhikevich).

neuron can fire tonic spikes with constant frequency, and it is an integrator.
The I&F neuron is Class 1 excitable system [Izh99a]; it can fire tonic spikes
with constant frequency, and it is an integrator. It is the simplest model to
implement when the integration time step τ is 1 ms. Because I&F has only
one variable, it cannot have phasic spiking, bursting of any kind, rebound res-
ponses, threshold variability, bistability of attractors, or autonomous chaotic
dynamics. Because of the fixed threshold, the spikes do not have latencies.
In summary, despite its simplicity, I&F is one of the worst models to use in
simulations, unless one wants to prove analytical results [HI97].
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Integrate–and–Fire Neuron with Adaptation

The I&F model is 1D, hence it cannot burst or have other properties of cortical
neurons. One may think that having a second linear equation

v̇ = I + a− bv + g(d− v), ġ = (eδ(t)− g)/τ ,

describing activation dynamics of a high–threshold K−current, can make an
improvement, e.g., endow the model with spike–frequency adaptation. Indeed,
each firing increases the K−activation gate via Dirac δ−function and pro-
duces an outward current that slows down the frequency of tonic spiking.
This model is fast, yet still lacks many important properties of cortical spik-
ing neurons.

Integrate–and–Fire–or–Burst Neuron

The integrate–and–fire–or–burst neuron model is given by

v̇ = I + a− bv + gH(v − vh)h(vT − v),

If v ≥ vtrsh Then v ← c, ḣ =

{ −h
τ− , if v > vh,

1−h
τ+ , if v < vh

to model thalamo–cortical neurons. Here h describes the inactivation of the
calcium T−current, g, vh, vT , τ+ and τ− are parameters describing dynamics
of the T−current, and H is the Heaviside step function. Having this kind
of a second variable creates the possibility for bursting and other interesting
regimes [HI97], but is already a much slower (depending on the value of v).

Complex–Valued Resonate–and–Fire Neuron

The resonate–and–fire neuron is a complex–valued (i.e., 2D) analogue of the
I&F neuron [Izh01], given by

ż = I + (b + iw)z, if Im z = atrsh then z ←− z0(z), (2.197)

where z = x + iy ∈ C is a complex–valued variable that describes oscillatory
activity of the neuron. Here b, w, and atrsh are parameters, i =

√
−1, and

z0(z) is an arbitrary function describing activity–dependent after–spike reset.
(2.197) is equivalent to the linear system

ẋ = bx− wy, ẏ = wx + by,

where the real part x is the current–like variable, while the imaginary part y is
the voltage–like variable. The resonate–and–fire model is simple and efficient.
When the frequency of oscillation w = 0, it becomes an integrator.
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Quadratic Integrate–and–Fire Neuron

An alternative to the leaky I&F neuron is the quadratic I&F neuron, also
known as the theta–neuron, or the Ermentrout–Kopell canonical model
[Erm81, Gut98]. It can be presented as

v̇ = I + a(v − vrest)(v − vtrsh), If v = vtrsh Then v ← vrest,

where vrest and vtrsh are the resting and threshold values of the membrane
potential. This model is canonical in the sense that any Class 1 excitable
system [Izh99a] described by smooth ODEs can be transformed into this form
by a continuous change of variables. It takes only seven operations to simulate
1 ms of the model, and this should be the model of choice when one simulates
large–scale networks of integrators. Unlike its linear analogue, the quadratic
I&F neuron has spike latencies, activity dependent threshold (which is vtrsh

only when I = 0), and bistability of resting and tonic spiking modes.

FitzHugh–Nagumo Neuron

The parameters in the FitzHugh–Nagumo neuron model

v̇ = a + bv + cv2 + dv3 − u, u̇ = ε(ev − u),

can be tuned so that the model describes spiking dynamics of many resonator
neurons. Since one needs to simulate the shape of each spike, the time step
in the model must be relatively small, e.g., τ = 0.25ms. Since the model is
a 2D system of ODEs, without a reset, it cannot exhibit autonomous chaotic
dynamics or bursting. Adding noise to this, or some other 2D models, allows
for stochastic bursting.

Hindmarsh–Rose Neuron

The Hindmarsh–Rose thalamic neuron model [RH89] can be written as a 3D
ODE system

v̇ = I + u− F (v)− w, u̇ = G(v)− u, ẇ = (H(v)− w)/τ ,

where F,G, and H are some functions. This model is quite expensive to
implement as a large–scale spike simulator [HI97].

Morris–Lecar Neuron

Morris and Lecar [ML81] suggested a simple 2D model to describe oscillations
in barnacle giant muscle fiber. Because it has biophysically meaningful and
measurable parameters, the Morris–Lecar neuron model became quite popular
in computational neuroscience community. It consists of a membrane poten-
tial equation with instantaneous activation of Ca current and an additional
equation describing slower activation of K current,



420 2 Chaotic Brain/Mind Dynamics

CV̇ = I − gL(V − VL)− gCam∞(V )(V − VCa)− gKn(V − VK),
ṅ = λ(V )(n∞(V )− n), where

m∞(V ) =
1
2

(
1 + tanh

[
V − V1

V2

])
, and

n∞(V ) =
1
2

(
1 + tanh

[
V − V3

V4

])
, λ(V ) = λ̄ cosh

[
V − V3

2V4

]
,

with parameters: C = 20μF/cm2, gL = 2mmho/cm2, VL = −50mV ,
gCa = 4mmho/cm2, VCa = 10mV , gK = 8mmho/cm2, VK = −70mV ,
V1 = 0mV , V2 = 15mV , V3 = 10mV , V4 = 10mV , λ̄ = 0.1 s−1, and applied
current I(μA/cm2). The model can exhibit various types of spiking, but could
exhibit tonic bursting only when an additional equation is added, e.g., slow
inactivation of Ca current. In this case, the model becomes equivalent to the
Hodgkin–Huxley neuron model [HH52, Hod64], which is extremely expensive
to implement.

Burst as a Unit of Neuronal Information

There are many hypotheses on the importance of bursting activity in neural
computation [Izh07]:

1. Bursts are more reliable than single spikes in evoking responses in post-
synaptic cells. Indeed, excitatory post-synaptic potentials (EPSP) from
each spike in a burst add up and may result in a superthreshold EPSP.

2. Bursts overcome synaptic transmission failure. Indeed, postsynaptic
responses to a single presynaptic spike may fail (release does not occur),
however in response to a bombardment of spikes, i.e., a burst, synaptic
release is more likely [Lis97].

3. Bursts facilitate transmitter release whereas single spikes do not [Lis97].
Indeed, a synapse with strong short-term facilitation would be insensitive
to single spikes or even short bursts, but not to longer bursts. Each spike
in the longer burst facilitates the synapse so the effect of the last few
spikes may be quite strong.

4. Bursts evoke long–term potentiation and hence affect synaptic plasticity
much greater, or differently than single spikes [Lis97].

5. Bursts have higher signal–to–noise ratio than single spikes [She01]. Indeed,
burst threshold is higher than spike threshold, i.e., generation of bursts
requires stronger inputs.

6. Bursts can be used for selective communication if the postsynaptic cells
have subthreshold oscillations of membrane potential. Such cells are sen-
sitive to the frequency content of the input. Some bursts resonate with
oscillations and elicit a response, others do not, depending on the inter-
burst frequency [IDW03].

7. Bursts can resonate with short–term synaptic plasticity making a synapse
a band–pass filter [IDW03]. A synapse having short–term facilitation and
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depression is most sensitive to a burst having certain resonant interspike
frequency. Such a burst evokes just enough facilitation, but not too much
depression, so its effect on the postsynaptic target is maximal.

8. Bursts encode different features of sensory input than single spikes
[OCD04]. For example, neurons in the electro–sensory lateral–line lobe
(ELL) of weakly electric fish fire network induced–bursts in response
to communication signals and single spikes in response to prey signals
[DLL02, DCM03]. In the thalamus of the visual system bursts from
pyramidal neurons encode stimuli that inhibit the neuron for a period of
time and then rapidly excite the neuron [LS04]. Natural scenes are often
composed of such events.

9. Bursts have more informational content than single spikes when analyzed
as unitary events [RGS99]. This information may be encoded into the
burst duration or in the fine temporal structure of interspike intervals
within a burst.

In summary, burst input is more likely to have a stronger impact on the
postsynaptic cell than single spike input, so some believe that bursts are
all–or–none events, whereas single spikes may be noise.

Most spiking neurons can burst if stimulated with a current that slowly
drives the neuron above and below the firing threshold. Such a current could be
injected via an electrode or generated by the synaptic input (see Figure 2.37).
Below are some examples of forced bursters:

1. RA neurons in the songbird burst in response to drive from HVC neurons.
The bursting arises as a result of either network dynamics within RA or
is inherited from HVC [FKH04].

2. Network induced bursts of electric fish [DCM03]. Here bursting arises
because periodic inhibitory inputs reduce firing and create intervals of
quiescence.

3. Electroreceptor afferents in paddlefish. Bursting occurs because of a pre–
filtering of broadband stochastic stimuli that drives the receptors. The
receptor dynamics can be modeled as a simple excitable system and the
slow noise (filtered) pushes the neuron into periods of rapid firing and into
periods of quiescence [NR02].

Fig. 2.37. Forced bursting in response to injected input.
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Many neurons have slow intrinsic membrane currents that can modulate
fast spiking activity. Typically, the currents build up during continuous spik-
ing, hyperpolarize the cell and result in the termination of the spike train.
While the cell is quiescent, the currents slowly decay, the cell recovers, and it
is ready to fire another burst.

Different ionic mechanisms of bursting may result in different mathemati-
cal mechanisms, which in turn determine the neuro-computational properties
of bursters, i.e., how they respond to the input [Izh00, Izh07]. Most mathe-
matical models of bursters can be written in the fast–slow form:

ẋ = f(x, y), fast spiking
ẏ = μg(x, y), slow modulation

where vector x describes the state of the fast subsystem responsible for spiking
activity, vector y describes the state of the slow subsystem that modulates
spiking, f and g are some Hodgkin–Huxley–type functions, and μ << 1 is the
ratio of time scales.

A standard method of analysis of fast–slow bursters, as well as of any
singularly perturbed system, is to set and consider the fast and the slow sub-
systems separately. This is known as dissection of neuronal bursting [Rin85],
since it allows us to study the fast subsystem

ẋ = f(x, y),

and treat y as a vector of slowly changing bifurcation parameters. Typically,
the fast subsystem has a limit cycle (spiking) attractor for some values of
y and an equilibrium (resting) attractor for other values of y. As the slow
variable oscillates between the two values, the fast subsystem, and hence the
whole system, burst.

Now, what makes the slow variable oscillate? In the simplest case, the slow
subsystem

ẏ = μg(x, y)

may have a limit cycle attractor, which is relatively insensitive to the value
of the fast variable. In this case, the slow variable exhibits an autonomous
oscillation that periodically drives the fast subsystem over the threshold. Such
a bursting is called slow–wave bursting . The slow subsystem must be at least
2D to exhibit slow–wave bursting. Slow–wave bursting in conductance-based
models is usually more interesting than the simplest case described above. In
such models, the slow subsystem often consists of activation and inactivation
gates of slow currents.

When the equilibrium and limit cycle attractors of the fast subsystem
co–exits for the same value of y, there is a bi–stability of resting and spiking
states. This creates a hysteresis loop for the slow variable and such a bursting
is called hysteresis–loop bursting. The slow variable y may be 1D in this case,
oscillating between resting and spiking values via the hysteresis loop.
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When the fast variable x is in the spiking state, the slow variable, governed
by the equation, is pushed toward the region of quiescence (resting, rightward
in the figure), and spiking abruptly stops. When the fast variable is quiescent,
the slow variable is pushed toward the region of spiking (leftward in the figure)
and after a while spiking abruptly starts. These transitions from spiking to
resting and back correspond to bifurcations of the fast subsystem.

Bursters are distinguished qualitatively according to their topological type.
There are two important bifurcations of the fast subsystem that determine
the topological type:

1. Resting to spiking: Bifurcation of a stable equilibrium (resting) that
results in the transition to limit cycle attractor (spiking).

2. Spiking to resting: Bifurcation of a limit cycle attractor that results in the
transition to the equilibrium (resting).

Mathematical studies of bursters revealed that different topological types
have different neuro–computational properties [Izh00, Izh07]:

1. Bursters that involve Andronov–Hopf bifurcation act as resonators, i.e.,
they are sensitive to the frequency content of the synaptic input. In con-
trast, the other types (fold and circle) act as integrators.

2. Bursters that involve fold, subcritical Andronov–Hopf, saddle homoclinic
orbit, and fold limit cycle bifurcations have co–existence of resting and
spiking states, and hence have a bistable or multistable dynamics. An
appropriately timed input can switch bursting activity from spiking to
quiescence and back. The input does not even have to be excitatory.

3. Different topological types of bursters have different synchronization prop-
erties. Some tend to synchronize in–phase, others tend to de–synchronize.

2.5 Complexity of Humanoid Robots

2.5.1 General Complexity

The ability of science and technology to augment human performance depends
on an understanding of systems, not just components. The convergence of
technologies is an essential aspect of the effort to enable functioning systems
that include human beings and technology; and serve the human beings to
enhance their well–being directly and indirectly through what they do, and
what they do for other human beings. The recognition today that human
beings function in teams, rather than as individuals, implies that technological
efforts that integrate human beings across scales of tools, communication, bio-
logical and cognitive function are essential. Understanding the role of complex
systems concepts in technology integration requires a perspective on how the
concept of complexity is affecting science, engineering, and finally, technology
integration [BY04].
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The structure of scientific inquiry is being challenged by the broad
relevance of complexity to the understanding of physical, biological and
social systems [BY00, GA99]. Cross–disciplinary interactions are giving way
to trans–disciplinary and unified efforts to address the relevance of large
amounts of information to description, understanding and control of complex
systems. From the study of biomolecular interactions [Ser99, Nor99, WBI] to
the 21st Century Information Age, complexity has arisen as a unifying feature
of challenges to understanding and action. In this arena of complex systems,
information and action, structure and function are entangled. New approaches
that recognize the importance of patterns of behavior, the multi–scale space
of possibilities, and evolutionary or adaptive processes that select systems or
behaviors that can be effective in a complex world are central to advancing
our understanding and capabilities [BY97].

The failure of design and implementation of a new air–traffic control sys-
tem, failures of Intel processors, medical errors, failures of medical drugs,
even the failure of the Soviet Union, can be attributed to large system com-
plexities [BY04]. Systematic studies of large scale engineering projects have
revealed a remarkable proportion of failures in major high investment projects
[CH94]. The precursors of such failures: multi–system integration, high perfor-
mance constraints, many functional demands, high rates of response, and large
context specific protocols, are symptomatic of complex engineering projects.
The methods for addressing and executing major engineering challenges must
begin from the recognition of the central role of complexity and the modern
tools that can guide the design, or self–organize, highly complex systems. Cen-
tral to effective engineering is the evaluation of the complexity of function of a
system, and the recognition of fundamental engineering tradeoffs of structure,
function, complexity and scale in system capabilities, and the application of
indirection to specification, design and control of system development and the
system itself.

One way to identify a complex task is as a problem where the number
of distinct possibilities that must be considered, anticipated or dealt with is
substantially larger than can be reasonably named or enumerated. Intuitively,
the complexity of a task is the number of wrong choices for every right choice.
We can casually consider in an explicit way tens of possibilities, a professional
will readily deal with hundreds of possibilities, and a major project will deal
with thousands, the largest projects deal with tens of thousands. For larger
numbers of possibilities we must develop new strategies. Simplifying a complex
task by ignoring the need for different responses is what leads to errors or
failures that affect the success of the entire effort, leaving it as a gamble with
progressively higher risks.

The source of complex tasks is complex systems. Complex systems are
systems with interdependent parts. Interdependence means that we cannot
identify the system behavior by just considering each of the parts and com-
bining them. Instead we must consider how the relationships between the parts
affect the behavior of the whole. Thus a complex task is also one for which
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many factors must be considered to determine the outcome of an action. While
complex systems give rise to complex tasks, reliable responses to complex tasks
can only be achieved by complex systems. Thus, the complex challenges that
we face in the world can be met only by the development of complex systems
that can address them [BY97].

The rapid development of nanotechnology and the convergence of bio-
logical, information, and cognitive sciences is creating a context in which
complex systems concepts that enable effective organizations to meet com-
plex challenges can be realized through technological implementation. At the
same time, complex systems concepts and methods are an essential part of
the framework in which this convergence is taking place. From the fine scale
control of systems based upon nanotechnology to understanding the system
properties of the integrated socio–technical system consisting of human beings
and computer information networks, the synergy of complex systems and con-
verging technologies is apparent as soon as we consider the transition between
components and functions.

Human civilization, its various parts, including its technology, and its
environmental context, are all complex. The most reliable prediction possi-
ble is that this complexity will continue to increase. The great opportunity of
the convergence of nanotechnology, biomedical, information, and cognitive sci-
ences is an explosive increase in what is possible through combining advances
in all areas. This is, by definition, an increase in the complexity of the systems
that will be formed out of technology and of the resulting behaviors of people
who use them directly, or are affected by them. The increasing complexity
suggests that there will be a growing need for widespread understanding of
complex systems as a counter point to the increasing specialization of profes-
sions and professional knowledge. The insights of complex systems research
and its methodologies may become pervasive in guiding what we build, how
we build it, and how we use and live with it. Possibly the most visible out-
come of these developments will be an improved ability of human beings aided
by technology to address complex global social and environmental problems,
third world development, poverty in developed countries, war and natural dis-
asters. At an intermediate scale, the key advances will dramatically change
how individuals work together in forming functional teams that are more
directly suited to the specific tasks they are performing. In the context of
individual human performance, the key to major advances is recognizing that
the convergence of technology will lead to the possibility of designing (more
correctly adapting) the environment of each individual for his or her individual
needs and capabilities in play and work [BY00].

Fundamental Research in Complex Systems

Fundamental research in complex systems is designed to get characteriza-
tions of complex systems and relationships between quantities that charac-
terize them. When there are well defined relationships, these are formalized
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as theorems or principles, more general characterizations and classifications
of complex systems are described below in major directions of inquiry. These
are only a sample of the ongoing research areas.

A theorem or principle of complex systems should apply to physical,
biological, social and engineered systems. Similar to laws in physics, a law
in complex systems should relate various quantities that characterize the sys-
tem and its context. An example is Newton’s 2nd Law that relates force, mass
and acceleration. Laws in complex systems relate qualities of system, action,
environment, function and information. Three examples follow.

(i) Functional complexity. Given a system whose function we want to spec-
ify, for which the environmental (input) variables have a complexity of C(e),
and the actions of the system have a complexity of C(a), then the complexity
of specification of the function of the system is [BY97]: C(f) = C(a) · 2C(e),
where complexity is defined as the logarithm (base 2) of the number of possi-
bilities or, equivalently, the length of a description in bits. The proof follows
from recognizing that a complete specification of the function is given by a
table whose rows are the actions (C(a) bits) for each possible input, of which
there are 2C(e). Since no restriction has been assumed on the actions, all
actions are possible and this is the minimal length description of the function.
Note that this theorem applies to the complexity of description as defined by
the observer, so that each of the quantities can be defined by the desires of
the observer for descriptive accuracy. This theorem is known in the study of
Boolean functions (binary functions of binary variables) but is not widely
understood as a basic theorem in complex systems. The implications of
this theorem are widespread and significant to science and engineering. The
exponential relationship between the complexity of function and the complex-
ity of environmental variables implies that systems that have environmental
variables (inputs) with more than a few bits (i.e. 100 bits or more of rele-
vant input) have functional complexities that are greater than the number of
atoms in a human being, and thus cannot be reasonably specified. Since this
is true about most systems that we characterize as ‘complex’ the limitation
is quite general. The implications are that fully phenomenological approaches
to describing complex systems, such as the behaviorist approach to human
psychology, cannot be successful. Similarly, the testing of response or behav-
ioral descriptions of complex systems cannot be performed. This is relevant to
various contexts from the testing of computer chips, today with over 100 bits
of input, to testing of the effects of medical drugs in double blind population
studies, today used in various combinations with various quantities for syn-
ergistic effects, with a need to avoid harmful drug interactions. In each case
the number of environmental variables (inputs) is large enough that all cases
cannot be tested.

(ii) Requisite variety. The Law of Requisite Variety states: The larger
the variety of actions available to a control system, the larger the variety
of perturbations it is able to compensate [Ash56]. Quantitatively, it specifies
that the probability of success of a well adapted system in the context of
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its environment can be bounded: − log2(P ) < C(e) − C(a). Qualitatively,
this theorem specifies the conditions in which success is possible: a match-
ing between the environmental complexity and the system complexity, where
success implies regulation of the impact of the environment on the system.
The implications of this theorem are widespread in relating the complexity
of desired function to the complexity of the system that can succeed in the
desired function. This is relevant to discussions of the limitations of specific
engineered control system structures, to the limitations of human beings and
of human organizational structures.26

(iii) Non averaging. The Central Limit Theorem specifies that collective/
aggregate properties of independent components with bounded probability
distributions are Gaussian distributed with a standard deviation that dimin-
ishes as the square root of the number of components. This simple solution
to the collective behavior of non–interacting systems does not extend to the
study of interacting/interdependent systems. The lack of averaging of prop-
erties of complex systems is a statement that can be used to guide the study
of complex systems more generally. It also is related to a variety of other for-
mal results, including Simpson’s paradox [Sim51] which describes the inability
of averaged quantities to characterize the behavior of systems, and Arrow’s
Dictator Theorem which describes the generic dynamics of voting systems
[Arr63, MB98]. The lack of validity of the Central Limit Theorem has many
implications that affect experimental and theoretical treatments of complex
systems. Many studies rely upon unjustified assumptions in averaging obser-
vations that lead to misleading if not false conclusions. The development of
approaches that can identify the domain of validity of averaging and use more
sophisticated approaches (like clustering) when they do not apply, are essen-
tial to progress in the study of complex systems. Another class of implications
of the lack of validity of the Central Limit Theorem is the recognition of the
importance of individual variations between different complex systems even
when they appear to be within a single class. An example mentioned above is
the importance of individual differences and the lack of validity of averaging in
cognitive science studies. While snowflakes are often acknowledged as individ-
ual, research on human beings often is based on assuming their homogeneity.
More generally, we see that the study of complex systems is concerned with
their universal properties, and one of their universal properties is individual
differences. This apparent paradox, one of many in complex systems (see be-
low), reflects the importance of identifying when universality and common
properties apply and when they do not, a key part of the universal study of
complex systems [BY04].

26 Note that this theorem, as formulated, does not take into account the possibility
of avoidance (actions that compensate for multiple perturbations because they
anticipate and thus avoid the direct impact of the perturbations), or the rela-
tive measure of the space of success to that of the space of possibilities. These
limitations can be compensated for.
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2.5.2 Humanoid Robotics

Anthropomorphism of Humanoid Robots

Current development of robotics indicates that the spectrum of robotic
activities will expand significantly in the near future. Rapid development of
humanoid robots brings about new shifts of the boundaries of robotics as a
scientific and technological discipline.

New technologies of components, sensors, microcomputers, as well as new
materials, have recently shifted the barriers to real–time integrated control
of some very complex dynamic systems such as humanoid robots are, which
already today possess about fifty degrees of freedom, and are updated in
microseconds [VBB05].

For a long time already, robots have not been present only in industrial
plants, at the time their traditional workspace, but have been increasingly
more engaged in the close living and working environment of humans. This
fact inevitably leads to the need of a working coexistence of man and robot
and sharing their common working environment. The fact that no signifi-
cant rearrangement of the humans’ environment because of the presence of
robots could be expected, robots will have to further ‘adapt’ to the envi-
ronment previously dedicated only to man. However, in the time to come it
will be inevitable to accept the necessity of cooperative activities of man and
robot, and make a step in the direction of increasing comfort of their joint
action. Besides, it is expected that the robots cooperating with humans will
have operation efficiency as close as possible to that of humans. The working
and living environment, adapted to humans, imposes on robots with their
mechanical–control structure at least two classes of tasks: manipulating vari-
ous objects from the human environment and motion in a specific environment
with the obstacles of the type of staircases, thresholds, multi–level floors, etc.
For fulfillment of diverse tasks in the environment highly adapted to humans
the most promising is human–like design. The first step that would enable
robots to realize tasks in the manner and with the efficiency similar to those
of humans is to make robot’s structure close to that of humans, i.e., anthropo-
morphic. Hence, the necessary degree of the robot’s anthropomorphism may
be more concretely conceived as the degree of similarity of its motion and
global behavior, whereby the similarity should not be only visual, but some
other aspects of anthropomorphism have to be also satisfied.27

In relation to this, the work raises also some new fundamental questions.
One of them is surely to what extent ‘human design’ should be ‘copied’, or
to what extent robot design ought to be similar to human’s? This question
could also be formulated in the following, more practical, way: How complex
should be the robotic structure (i.e., how many degrees–of–freedom (DOFs)

27 Activities in the common working and living environment of man and robot imply
also some other similarities such as, for example, the interaction and man–robot
communication (including also emotional aspects).
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should the robot possess and which they are) in order it would be capable
of attaining the desired (high enough) degree of anthropomorphism? It is
clear that the mechanical complexity of the human skeleton is practically
impossible, and perhaps senseless, to mimic, either from the viewpoint of
mechanics or control. Besides, it is not a priori clear what are the DOFs that
predominantly influence the degree of anthropomorphism. Hence, a thought–
out and factuality–based answer to this delicate question is needed.

Another question is related to the anthropomorphism of the gait itself that
is to be performed by the humanoid robot mechanism under real conditions.
There are two aspects that should be borne in mind. The first is, how to
synthesize a gait with the highest possible degree of anthropomorphism, and
second, how to preserve the synthesized gait anthropomorphism in the course
of its realization in the presence of disturbances, i.e., how to realize ‘the most
anthropomorphic’ compensation of disturbances? [VBB05]

It should also be emphasized that in the control of legged locomotion,
and especially that of biped robots, in view of the possibility of occurrence of
unpowered (passive) DOFs between the foot and ground caused by larger dis-
turbances, apart from the complete conventional dynamic control (tracking,
i.e., maintaining the state of internal coordinates), it is essential to check all
the time the fulfillment of the conditions of dynamic balance of the humanoid
robot as a whole. In the case of an abrupt compensational movement, however,
there may appear such inertial forces that represent a real threat of robot’s
rotation about the foot edge. Hence, it is necessary to have as natural (mod-
erate) as possible compensation of disturbances, which will bring the robot
again to the previous state of dynamic balance.

A fundamental question is how to more precisely define the anthropomor-
phism of an artificial gait and how to quantify it. Instead of giving a definite
answer to this delicate question we will define some relevant attributes of
anthropomorphism that are, in our opinion, dominant, so that we will focus
our attention on them:

The amplitudes of particular DOFs of humanoid robots should be kept
within the possible moderate range, whereby a decisive influence has the
robot’s trunk, both in the frontal and sagittal plane. Lower consumption of
driving energy is therefore in correlation with smaller movements at robot’s
joints, namely of those realizing the compensational motion in the stage
of forming nominal dynamics, i.e., the dynamic balance under ideal condi-
tions of the synthesized artificial gait. Of course, it is necessary to mention
that one can also speak about the relation between the anthropomorphism
and compensational motion in the cases of real gait too, when the con-
trol mechanism is to solve the problem of maintaining dynamic balance of
the humanoid robot in the circumstances of the ever-present disturbances
of various types.

When speaking about the relationship between the magnitude of compen-
sational movements and energy consumption in both above cases (the forming
and maintaining of dynamic balance of humanoid robots) we should notice
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that our initial investigations of the model of gait dynamics with the imposed
flat–foot contact [VHC73] showed somewhat lower energy consumption in
comparison with the ‘natural’ gait, where the foot–ground contact is realized
in three phases (heel strike, flat foot and deploy phase). We should also men-
tion that, for example, in some types of parade marching step, the major part
of the half–step has a flat–foot contact with the ground, whereas a smaller
part of contact takes place in the form of deploy phase. In the case of walk
on stairs (ascending or descending) the contact with the support is usually
realized in the form of flat–foot and deploys phases. Finally, let us notice only
one more data that the Honda [HHH99] robot realizes its gait via flat–foot
contact with the ground [VBB05].

The number of prescribed Zero–Moment Points (ZMP) [VJ69, VBS90,
VB04] and their distribution within the support polygon, either in the single–
support or double–support gait phase influences the robot’s anthropomor-
phism. Namely, simulations have confirmed the intuitive expectations that
the increase in the number of ZMPs yields an increase in both the anthro-
pomorphism of dynamic balance nominal model and control model, with the
aim of maintaining dynamic balance in the real perturbation regimes, in which
artificial gait of the humanoid robot takes place.

And the last, but not least important, attribute concerning the functional
anthropomorphism of humanoid robots is related to the importance of the
choice of mechanical DOFs, such as active segmentation of the foot and trunk,
as well as the robot’s active rotation about the vertical axis.

The above remarks concerning the anthropomorphism of humanoid robots
testify to its significant complexity. The possibility to determine the degree of
this integral performance as a solution of the high–complexity optimization
problem involving numerous constraints seems to be rather unlikely. Hence we
think it more practical to use the approach in which, instead of attempting
to find an integral criterion of anthropomorphism, one considers a set of its
particular attributes (for example, those mentioned above). Then, taking into
account the maximal possible particular attributes of humanoid robots one
should arrive at the maximum of its possible overall anthropomorphism, even
when it has not been explicitly defined.

Basic Characteristics of Bipedal Systems

All of the biped mechanism joints are powered and directly controllable except
for the contact of the foot and the ground (it can be considered as an addi-
tional DOF), which is the only site at which the mechanism interacts with
the environment. This contact is essential for the walk realization because
the mechanism’s position with respect to the environment depends on the
relative position of the foot with respect to the ground. The foot cannot be
controlled directly but only in an indirect way – by ensuring appropriate
dynamics of the mechanism above the foot. Thus, the overall indicator of
the mechanism’s behavior is the point where the influence of all the forces



2.5 Complexity of Humanoid Robots 431

acting on the mechanism can be replaced by one single force. As mentioned
above, this point was termed Zero–Moment Point (ZMP). Recognition of the
significance and role of ZMP in biped artificial walk was a turning point in
gait planning and control. Thus, irrespective of their structure and number of
DOFs involved, a basic characteristic of all biped locomotion systems is the
possibility of the appearance of unpowered DOFs, formed by the contact of
the foot with the ground surface. In the case the motion takes place under
conditions of small perturbations the basic task of control is to minimize the
deviation of ZMP from its prescribed (nominal) position, which simultane-
ously ensures dynamic balance and prevents the loss of the regular contact of
the foot with the ground. If tracking of the internal trajectories of all joints
of the humanoid robot is thus ensured, we can speak of its overall dynamic
control. However, if in the case of intensive disturbances the ZMP comes out
of the support polygon or its zone from which it must not step out, the biped
system may face the loss of the regular contact with the ground. When the
regular contact with the ground is lost passive DOFs appear and the foot
becomes partly deployed from the ground, losing thus the feedback involving
dynamic reaction force, and the possibility of further maintaining dynamic
balance is essentially endangered. In such a situation, the main task of the
control system is to re-establish the broken foot-ground contact and reduce
large disturbances to small ones, i.e., to bring the system to the state in which
all feedback loops are operative, so that the usual procedure can be applied
to control the bipedal gait of the humanoid robot under conditions of small
perturbations.

The motion of a humanoid robot should be as anthropomorphic as possible.
Hence, it is necessary to synthesize the most anthropomorphic motion under
ideal conditions (in the absence of disturbances), which we call nominal. Then,
such motion should be realized by the real system, so that the deviations from
the nominal should be as small as possible, and corrections made in the most
anthropomorphic way. In this work, to our knowledge the first one intending
to call attention to the problem of anthropomorphism of humanoid robots,
we will confine ourselves to the analysis of the synthesized nominal motion
[VBB05].

For the gait synthesis (defining trajectories of all the mechanism joints)
of crucial importance is the semi–inverse method [VJ69, VBS90, VB04], in
which, upon prescribing the ZMP and trajectories for a part of mechanism
joints, trajectories of the remaining joints are calculated and thus the dynamic
balance of the overall humanoid robot is ensured. The motion of the mecha-
nism was synthesized by the semi-inverse method in the following way:

The legs’ motion was copied from a human subject’s motion and adopted
as the motion of the mechanism legs;

The trunk’s motion was determined in the way ensuring dynamic equi-
librium of the mechanism as a whole during the half-step, i.e., in the period
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considered, the point within the support polygon that at the given moment
represents the ZMP is characterized by the equalities M X = M Y = 028

Special attention should be paid to the role of the hands during the gait.
There are three ways in which the hands in relation to the trunk may be
treated and, consequently, participate in the process of gait synthesis. They
can freely hang on the shoulders as physical pendulums and move only under
the influence of inertial forces formed during the trunk motion. Further, the
hands’ joints can be powered and the hands can perform certain motion due
to the action of the moments at their own joints, and finally, they can be
immobile with respect to the trunk. In the first case, when the hands are freely
hanging (passively swinging) as physical pendulums, the motion of the hands
can also be synthesized along with the trunk motion, by prescribing additional
conditions at the suspension points at which the moments are naturally equal
to zero. In the second case, since their joints are powered, the hands can
perform certain predefined motion with respect to the trunk. Therefore, in
this case the motions of both the legs and hands are prescribed in advance and
compensational motion of the trunk is determined in the process of synthesis
in the way to satisfy the conditions of repeatability and dynamic balance.
In the third case, when the hands are fixed to the trunk [VBS90], it can be
assumed that they represent its constitutive part, augmenting only the mass
and changing thus the inertia moments. Compensational motion of the trunk
is calculated in the usual way.

If we want to consider the entire locomotion system of humanoid robot,
we ought to take care of the anthropomorphism of its two basic subsystems
that are strongly coupled: the legs’ subsystem and the subsystem of the upper
part (trunk). Evidently, different motions of the legs can cause different com-
pensational motion of the trunk. Hence, the variation in the motion of the
legs can influence the form of the synthesized trunk motion. Since the legs’
motion has been copied from a human, the requirement for anthropomor-
phism is inherently satisfied. However, since the copied motion can never be
faithfully reproduced by a humanoid system the question arises as to how the
simplification of legs’ motion can influence the trunk motion, i.e., how much
abandoning (blocking) of the motion at particular DOFs at the main leg joints
(the hip, knee, and ankle) can influence the anthropomorphism of the upper
part of the system. Besides, there is an essential difference in the complexity
of the human foot and the foots of humanoid robots that have been realized
up to now. Another very interesting question is how much the anthropomor-
phism of the trunk motion is influenced by the complexity of construction of
the foot of humanoid robot.

To answer the above questions it is necessary to find out the way how
to estimate the level of anthropomorphism. Since the motion of the mecha-
nism’s legs is based on the motion of the legs of humans we think that the

28 It can be also required that M X = M Y = M Z = 0 (all three components of the
moment at the ZMP).
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most essential attribute of anthropomorphism is the trunk swinging, i.e., its
relevant parameters of the amplitudes and mean value of trunk inclination in
the frontal and the sagittal plane, so that we will consider just these quanti-
ties to compare different types of gait of humanoid robots. The trunk motion
synthesized on the basis of the legs motion copied from the human can be
taken as the reference one. All other motions of the legs are derived from this
pattern by ‘excluding’ the motions of particular DOFs, which means that the
corresponding coordinates have been immobilized, i.e., kept constant. Com-
pensational motion of the trunk synthesized using thus obtained ‘new’ motion
of the legs, was compared with the reference one. In this way we could observe
how the absence of motion at some of DOFs influences the trunk motion in
the sense of its anthropomorphism.

We have also investigated the influence of the active motion of the hands
on the synthesized trunk motion. For the reference motion of the legs, hands
motions of different amplitudes were prescribed and the effect on the trunk
motion was followed. In addition to the motion of the hands and legs we also
investigated the effect of variation of the ZMP trajectory and change of the
gait rate (the gait was accelerated for the same trajectories of the joint angles)
on the synthesized motion of the trunk. Besides, in all the above cases, the
compensation of each of the ZMP moment components (M X and M Y ) was
realized with the aid of only one joint located just below the trunk link. In
view of the fact that the compensation of disturbances by humans is performed
using several DOFs, we have investigated how the gait anthropomorphism is
influenced by the distribution of the task of compensation of one moment
component (M X or M Y ) on more joints (we called it ‘distributed’ compen-
sation), whereby the hip DOFs were included in compensation in one case,
while the two–link trunk was modelled in the other [VBB05].

Basic Definitions Related to Humanoid Robots Locomotion

Let us consider first the definitions of some basic notions that appear in the
area of biped locomotion. These notions have been tacitly accepted, proba-
bly because they represent basic notions, so that everybody has thought for
himself (and from this stemmed also the collective acceptance) that they are
understandable by themselves. Hence these basic notions have never been for-
mally defined in the robotic literature. We think that these notions have still
to be defined and, although the lack of definitions caused no serious confusion,
it can be noticed that a number of very important notions have been defined
by various authors in different ways, so that it would be desirable to have a
unified terminology [VBP06].

Walk. According to [HCL74], under walk is understood the ‘move by
putting forward each foot in turn, not having both feet off the ground at
once’. From this definition it comes out that walk is characterized by such
displacement of legs in which both feet are not separated from the ground at
the same time, and which ensures that the body motion in space - usually
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forward, though it is possible to consider a backward walk too. We think that
this definition, though not originate from technical literature, satisfies the
needs of humanoid robotics.

Gait. It is known from experience that the walk of every individual is
specific and that a man walks differently in different situations. Each of these
particular ways of walking represents a particular gait. Therefore, it can be
said that gait represents the manner of walking or running [HCL74]. Hence,
any walk is realized by a certain gait. By recording time changes of the angles
at legs’ joints during one step, one is recording in fact a particular gait. The
basic notions that are related to gait and that should be considered are: step
and repeatability conditions, periodicity and symmetry.

Step. When speaking of gait it should be pointed out the fact that has
been indirectly pronounced by the formulation ‘... by putting forward each
foot in turn ... ’ [HCL74]. It suggests that in leg locomotion, even in the most
general case, there exists a certain kind of repeatability: ‘in the direction of
motion, during the contact with the ground, the leg from the front position
with respect to the trunk comes to the rear position, then it is deployed from
the ground and in the transfer phase moves to the front position, to make again
contact with the ground, and the cycle is repeated’. The described sequence
of actions represents a basic cycle of walk, and it is called a step. It should
be noticed that the instant from which we observe a step within this cycle
can be arbitrarily selected (we need not to start as in the above example with
the contact of the ‘front’ leg with the ground). The described repetition of
movements is the basis of locomotion activity. Still, we should emphasize that
each step can be generally different, an example being the staggering of a
drunk man. Although a step can be divided into a large number of phases,
we think that each step consists of at least two phases: ‘single-support phase,
when only one foot is in contact with the ground, and double-support phase in
which both feet are simultaneously on the ground’. The two phases alternate
regularly.

Periodic gait. If the gait is realized by repeating the same step in an
identical way then we speak of a periodic gait. In that case the relative position
of legs’ links is repeated periodically. This does not mean that the other parts
of the body (e.g., the arms or the head) behave obligatorily in a periodic
manner, but it still should be pointed out that it is the most common case.
Mathematically, the periodicity condition is expressed via the change of the
internal coordinates qj (joint angles) [VBP06]:

qj(t + T ) = qj(t), ∀t, j = 1, · · ·

where j changes per each legs’ joint of the locomotion mechanism, while T
represents the step duration. ‘Periodicity of the motion of legs’ joints is a
necessary and sufficient condition for a periodic gait t’. If all the body joints
move also periodically then we speak of a periodic gait, and it has actually
been considered in the majority of papers in the area of biped locomotion.
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Let us add that periodic gait can be realized only if the motion is performed
on the ground surface of appropriate characteristics that allows periodicity.

Repeatability conditions. In some literature sources, the attributes
periodic and repeatable are considered as being synonymous. However, the
term periodic has its firm footing in the mathematical definition of a periodic
function, whereas repeatability and repeatability conditions require certain
explanation. Namely, ‘to attain periodicity a necessary condition is the equal-
ity of the system state (more precisely, the state of lower extremities) at the
beginning of each step’. However, this condition is not sufficient because a
periodic gait (in the sense of the above definition) will be realized only under
the conditions that the humanoid performs each step on an identical ground,
obeying the same control law, and in the absence of disturbances. Mathemati-
cally, repeatability conditions can be expressed in the following way [VBP06]:

qj(ti) = qj(ti−1), q̇j(ti) = q̇j(ti−1), j = 1, · · · ,

where j changes per each joint of the locomotion mechanism legs, and ti
represents the instant of the beginning of the i-th step. Therefore, the identity
of the state at the beginning of each step offers the possibility to repeat the
preceding step and thus realize a periodic gait. In the literature [Vuk75], we
can find a somewhat different definition of repeatability conditions, requiring
that ‘the state at the end of a step is equal to the state at its beginning’. Such
formulation is identical to the previous one, with an additional explanation
that the end of a step coincides with the beginning of the next one, i.e.,
(ti+1 = ti + T ). Here, we should comment the fact that the walk segment
that represents a step can be chosen so that it ends by the foot touching the
ground. At this instant, the impact occurs that might cause discontinuity in
the system state (instantaneous change in velocities). The above definition
assumes that the impact and potential change in the state are an integral
part of a step.

A natural question is posed as to whether the notions of periodicity is
synonymous with repeatability. Thus, why should a human/humanoid aban-
don repeating the previous step provided it could be realized? Is this a purely
academic issue or something that can happen in reality? We think that it is a
real possibility. For example, there may arise such situation in which (because
of a certain disturbance) the robot performing periodic gait has to change the
motion of one leg in some step phase (e.g., the foot has to be lifted somewhat
higher because of the presence of an obstacle on the ground) and, after this
‘intervention’, return again to the previous trajectory, to complete the step
with a state identical to the one at its beginning.

It should also be mentioned that repeatability conditions are unavoidable
in gait synthesis, where the walk is formed by synthesizing one step that is
then repeated [JV72, Vuk73, Vuk75].

Symmetric step and gait. Symmetry is a characteristic of a step, but
a gait, being a sequence of symmetric steps, can also be called symmetric. A
prerequisite for a symmetric step and gait is the symmetry of the extremities,
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i.e., of the left and right legs (which is almost always considered as being
fulfilled). If a step can be divided in two equal time periods, and if the left
leg in one period behaves as the right leg in the other, then we speak of a
symmetric gait. The half–period and the motion realized in it are termed half-
step. The symmetry condition can be mathematically expressed as [VBP06]

qright
j (t + T/2) = qleft

j (t), ∀t, j = 1, . . . , n,

where j denotes the symmetric joints of the right and left leg, and T/2 is
the half-step duration. For a symmetric gait, this necessary and sufficient
condition should be fulfilled during the gait. If all the body joints move sym-
metrically29

It should be pointed out that a periodic and repeatable gait need not be
symmetric, and that symmetry does not necessarily assume either periodicity
of repeatability.

It is important to note that all above definitions assume implicitly the gait
continuation, i.e., the human/humanoid is not going to fall. Hence, let the gait
that is realized with two legs30 and for which there are no any additionally
preset conditions (symmetry, repeatability, etc.) be called – sustained gait .

Regular gait. Under the notion regular gait is understood a periodic gait
in which the leg in the single-support phase is in contact with the ground by
the whole foot area or with only its front part (the toes link with the two-link
foot), and in the case of double-support phase the requirement applies to at
least one foot. It should be noticed that regular gait can, but not necessarily,
be symmetric (e.g., when the robot performs a turn and the ‘internal’ leg
passes the shorter way). The gait consisting of the parts that are all regular is
also regular. For example, climbing the staircases, straight–line gait forward,
turning, etc., considered as a whole, represent also regular gaits.

Ideal gait. Ideal gait is a purely academic notion, and it represents a
regular gait for which the repeatability and symmetry conditions can be math-
ematically checked. In view of the fact that there is always some difference
between the data used in mathematical treatment (mechanism parameters,
time changes of joints angles, characteristics of the ground on which the

29 For the joints that have no their ‘symmetric pair’ (waist and neck), the condition
of gait symmetry is somewhat different

qj(t + T/2) = −qj(t),

we speak of a symmetric motion of human/humanoid and the above mathematical
expression expands to hold for the entire body. Symmetry assumes a straight–
line gait, but it is also important to emphasize the need for the ‘symmetry’ of the
support (ground), i.e., the equality of support conditions for the left and the right
leg. With a symmetric gait, all kinematic and dynamic analyzes can be carried
out on one half–step.

30 The motion by crawling or staggering while using hands to hold on to something,
cannot be considered a gait.
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humanoid is walking, etc.) and real data, the data used in mathematical
treatment are called ideal. Ideal gait is often used as a reference motion
that the system is attempting to realize. Although the ideal gait coincides
greatly (almost in full) with regular gait – the differences being in the level
of ‘refinement’, the authors consider this notion necessary, and the term as
being appropriate, because such gait is most often used in all theoretical
investigations in this area.

Support area.31 This is the surface determined by the contact of the foot
and the ground. With regular gait, there is always support area of a finite size:
‘in the single–support phase the support area coincides with the area of the
foot in contact with the ground, whereas in the double–support phase, the
support area is a convex area determined by the areas of the feet and the
ground and common tangents, so that the encompassed area is maximized’.
Support area does not exist only in the case when both feet are off the ground
(ruling or jumping) or the contact area degenerated to a point or a line (this,
however, means that the rigid foot rotates about an axis or point and that
the mechanism as whole is overturning). In the case of the occurrence of any
of the two instances, the gait of the humanoid cannot be considered regular
[VBP06].

Honda Humanoid Series

Corresponding to Honda’s Slogan ‘The Power of Dreams’, Honda set itself the
ambitious goal to create a two–legged walking robot by developing revolution-
ary new technology. Research began by envisioning the ideal robot form for
use in human society. The robot would need to be able to maneuver between
objects in a room, be able to go up and down stairs and need to be able to
walk on uneven ground. For this reason it had to have two legs, just like a
person.

The first Honda robot, E0, was made in 1986. A two legged robot was
made to walk. Walking by putting one leg before the other was successfully
achieved. However, taking nearly five seconds between steps, it walked very
slowly in a straight line. To increase walking speed, or to allow walking on
uneven surfaces or slopes, fast walking must be realized [HHH99].

In the period 1987–1991, Honda made the next three robots in E–series:
E1, E2, and E3. Human walking was thoroughly researched and analyzed.
Based on this data a fast walking program was created, input into the robot
and experiments were begun. The E2 robot achieved fast walking at a speed
of 1.2 km/h on a flat surface. The next step was realized fast, stable walking

31 Commonly used term is support polygon. This came out from the fact that all
realized walking robots had feet of a rectangular shape. However, the future robots
need not have such feet, which might be even of a shape close to that of human,
and thus far from a rectangle or any polygon, so that the support area will not
be of a polygonal shape.
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in the human living environment, especially on uneven surfaces, slopes and
steps, without falling down.

In the period 1991–1993, Honda made the next three robots in E–
series: E4, E5, and E6. Honda investigated techniques for stabilizing walk-
ing, and developed three control techniques: (i) floor reaction control, (ii)
target ZMP control, and (iii) foot planting location control. In particular,
E5 robot achieved stable, two legged walking, even on steps or slopping sur-
faces. The next step was to attach the legs to a body and create a humanoid
robot .

In the period 1994–1997, Honda made three humanoid robots in the new
P–series: P1, P2, and P3. The first humanoid, P1, can turn external electrical
and computer switches on and off, grab doorknobs, and pick up and carry
things. Its height is 1.91 m, and its weight is 175 kg.

P2, the world’s first self–regulating, two–legged humanoid walking robot
debuted in December, 1996. Using wireless techniques, the torso contained a
computer, motor drives, battery, wireless radio, all of which were build in. It
is 1.82 m tall and weights 210 kg.

In September 1997 the two–legged humanoid walking robot P3 was com-
pleted. Size and weight were reduced by changing component materials and
by decentralizing the control system. Its smaller size is better suited for use
in the human environment. It is 1.60 m tall, and weights 130 kg.

Finally, in 2000 Honda released a humanoid robot Asimo. Using the know–
how gained from the prototypes P2 and P3, research and development began
on new technology for actual use. Asimo represents the fruition of this pursuit.
Weight was reduced to 43 kg and height to 1.20 m.

Cerebellar Robotics

Now, a new trend in robotics research is the so–called cerebellar robotics. In
a series of papers published in prestigious journals, M. Kawato and his col-
laborators [AHP00, Kaw99, SKG93, GK96, BOF01, IMT00, IKM03, WK98]
investigated the information processing of the brain with the long–term goal
that machines, either computer programs or robots, could solve the same
computational problems as those that the human brain solves, while using
essentially the same principles. With these general approaches, they made
progresses in elucidating visual information processing, optimal control prin-
ciples for arm trajectory planning, internal models in the cerebellum, teaching
by demonstration for robots, human interfaces based on electromyogram, and
applications in rehabilitation medicine.

They developed a 30 DOF humanoid robot ‘DB’ for computational neu-
roscience research. DB is quick in movements, very compliant, with the same
dimension and weight with humans. It has four cameras, artificial vestibular
sensor, joint angle sensors and force sensors for all the actuators. DB can
demonstrate 24 different behaviors, classified into 3 main classes: (i) learning
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Fig. 2.38. Cerebellar feedback–error learning (see text for explanation).

from demonstration, (ii) eye movements, and (iii) behavior depending on task
dynamics, physical interaction, and learning.

Essential computational principles of some of these demonstrations are:
(i) cerebellar internal models, (ii) reinforcement learning in the basal ganglia,
and (iii) cerebral stochastic internal model.

Their feedback error learning for cerebellum (see Figure 2.38) includes
the following data: (1) Simple spike represents feedforward motor command;
(2) Parallel–fibre inputs represent desired trajectory; (3) Cerebellar cortex
constitutes inverse model; and (4) Complex spike represents error in motor–
command coordinate.

Theories of motor control postulate that the brain uses internal models
of the body to control movements accurately. Internal models are neural
representations of how, for instance, the arm would respond to a neural com-
mand, given its current position and velocity. The cerebellar cortex can acquire
internal models through motor learning. Because the human cerebellum is in-
volved in higher cognitive function as well as in motor control, they proposed
a coherent computational theory in which the phylogenetically newer part of
the cerebellum similarly acquires internal models of objects in the external
world (see Figure 2.39). While human subjects learned to use a new tool (a
computer mouse with a novel rotational transformation), cerebellar activity
was measured by functional magnetic resonance imaging. As predicted by
their theory, two types of activity were observed. One was spread over wide
areas of the cerebellum and was precisely proportional to the error signal that
guides the acquisition of internal models during learning. The other was con-
fined to the area near the posterior superior fissure and remained even after
learning, when the error levels had been equalized, thus probably reflecting
an acquired internal model of the new tool.
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Fig. 2.39. Cerebellar modular selection and identification control

2.5.3 Humanoid Complexity

Now, recall that human (humanoid) bio–dynamics is a science of human
(humanoid) motion. It is governed by both Newtonian dynamics and biological
control laws [IB05, II05, II06a, II06b]. In its modern computational form, it
also obeys computational rules. Thus, the human/humanoid bio–dynamics
includes dynamical, control and computational complexities. This study shows
that these three sources of complexity do not cancel each other. Instead, we
have either their superposition or a kind of ‘macro–entanglement’ (see below
in this subsection, as well as in the next Chapter) at work.

The mechanical part of a human bio–dynamical system determines the
lower limit of complexity , which is simply defined by the number of mechani-
cal degrees–of–freedom. The biological, in this case neuro–muscular, part of the
combined system efficiently controls the complex dynamics of the mechanical
skeleton. Such biological complexity cannot be explained by common complex-
ity models such as cellular automata (CA), for the following reasons:32

1. Human bones neither die nor grow during the simulation period, so there
is an absence of any cancellation of the physical degrees–of–freedom like
in CA.

2. Averaging of these degrees–of–freedom does not work in general either, as
explained below.

3. Low–dimensional linear physical systems can be successfully modelled
using CA (e.g, modelling a single linear 1D wave equation using a

32 The work presented in this subsection has been developed in collaboration with
Dr. Sanjeev Sharma, Lead Human Factors, BAE Systems Australia,
e-mail: Sanjeev.Sharma@baesystems.com
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Margolus rule [BY97]). However, we are dealing with a system of 500
nonlinearly–coupled differential equations (see below), which has a com-
pletely different complexity level 33.

4. Human neural control (as well as humanoid–robotic control) has a natural
hierarchical (multi–level) structure: spinal (reflex) level, cerebellar (syn-
ergetic) level, and cortical (planning) level. A system of this kind of com-
plexity cannot be efficiently controlled using a single control level.

There are over 200 bones in the human skeleton driven by over 600 muscu-
lar actuators. It is sufficient to have a glimpse at the structure and function of
a single skeletal muscle to get an impression of the natural complexity at work
in bio–dynamics. The efficient ‘orchestration’ of the whole musculo–skeletal
dynamics is naturally performed by several levels of neural motor control:

(i) Spinal level of autogenetic reflexes;
(ii) Cerebellar level of muscular synergy; and
(iii) Cortical level of motion planing.
Here we need to emphasize that human joints are significantly more flex-

ible than current robot joints, which implies their more general kinematics,
dynamics and control. Bio–dynamically speaking, in each human synovial joint
besides gross Eulerian rotational movements (roll, pitch and yaw), we also have
some hidden and restricted translations along (X,Y,Z)−axes. For example,
in the knee joint (see Figure 2.40), patella (knee cap) moves for about 7–10
cm from maximal extension to maximal flexion). It is well–known that even
greater are translational amplitudes in the shoulder joint. In other words,
within the realm of rigid body mechanics, a segment of a human arm or leg is
not properly represented as a rigid body fixed at a certain point, but rather
as a rigid body hanging on rope–like ligaments. More generally, the whole
skeleton mechanically represents a system of flexibly coupled rigid bodies.

We can immediately foresee here the increased problems of gait balance,
stability and control [VBB05], but we still cannot neglect reality.

Modern unified geometrical basis for both human biomechanics and
humanoid robotics represents the constrained SE(3)−group, i.e., the so–
called special Euclidean group of rigid–body motions in 3D space (see
[PC05, Iva06a, II05, II06a, II06b]). In other words, during human move-
ment, in each movable human joint there is an action of a constrained
SE(3)−group. In other words, constrained SE(3)−group represents gen-
eral kinematics of human–like joints. The corresponding nonlinear dynamics
problem (resolved mainly for aircraft and spacecraft dynamics) is called the
dynamics on SE(3)−group, while the associated nonlinear control prob-
lem (resolved mainly for general helicopter control) is called the control on
SE(3)−group.

33 When solving partial differential equations using CA, in a way we emulate the
classical finite element method (FEM). However, FEM, even in its most recent
(and most expensive software) versions is simply an unsuitable tool for any kind
of serious robotics.
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Fig. 2.40. Sagittal section through the knee joint.

The Euclidean SE(3)−group is defined as a semidirect (noncommutative)
product of 3D rotations and 3D translations, SE(3) := SO(3) � R3. Its most
important subgroups are the following:

Subgroup Definition
SO(3), group of rotations in 3D

(a spherical joint)
Set of all proper orthogonal
3× 3− rotational matrices

SE(2), special Euclidean group in 2D
(all planar motions)

Set of all 3× 3−matrices:⎡⎣ cos θ sin θ rx

− sin θ cos θ ry

0 0 1

⎤⎦
SO(2), group of rotations in 2D

subgroup of SE(2)− group
(a revolute joint)

Set of all proper orthogonal
2× 2− rotational matrices
included in SE(2)− group

R3, group of translations in 3D
(all spatial displacements) Euclidean 3D vector space

Using a ‘realistic model’ of human bio–dynamics comprising all above com-
plexities (see [IB05, II05, II06a]), as a well–defined example of both a general
bio–physical system and a general human behavior, we propose the follow-
ing conjecture: In a combined bio–physical system, where the action of the
physical laws (or engineering rules) cannot be neglected, it is the physical
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part that determines the lower limit of the total complexity. This complex-
ity is commonly defined as the number of physical degrees–of–freedom. The
biological part of the combined system, as being ‘more intelligent’, naturally
serves as a ‘controller’ for the physical ‘plant’. Although, in some special
cases, the behavior of the combined system might appear ‘simple’ externally
(i.e., have a low–dimensional output space), the realistic internal state–space
analysis shows that the complexity of the total system equals the sum of
the complexities of the two parts. Neither ‘mutual cancelling’ nor ‘averaging’
of the physical degrees–of–freedom generally occurs in such bio–physical sys-
tem. We demonstrate the validity of the above conjecture using the example
of the human bio–dynamical system and its realistic computer model. We fur-
ther discuss simplicity versus predictability (and controllability) in a complex
combined system. Then we identify self–organization with training in human
motion as a simple and well–defined example of general human behavior, and
finally propose a new measure of complexity: the observational resolution.

Finally, we argue that there is a possible route to bio–dynamical simplicity
in the form of oscillatory synchronization at the cost of long–term training.

Humanoid Bio–Dynamics Complexity

A physiologically realistic model of the human/humanoid bio–dynamics was
developed in [IB05, IS01, Iva02, IP01a, IP01b, Iva04, Iva06b] and implemented
in a software package called Human Biodynamics Engine (HBE) (for the pre-
liminary, Lagrangian version of the spinal only HBE–simulator, see [Iva06a]).
The model was developed using generalized Hamiltonian mechanics and non-
linear control on Lie groups. It includes 264 active degrees–of–freedom, driven
by 132 equivalent muscular actuators34 (each with its own excitation and con-
traction dynamics), as well as two levels of neural–like control (stretch–reflex
and cerebellum–like Lie–derivative stabilizer and target tracker). The cortical
level of motion planning is currently under development, using adaptive fuzzy
logic.

In this bio–dynamical SE(3)−based model (see Figure 2.41), rotational
joint dynamics is considered ‘active’, driven by Newton–Euler type forces and
torques, combined with neuro–muscular stretch–reflex and higher cerebellum
control. Translational dynamics is considered ‘passive’, representing interver-
tebral discs, joint tendons and ligaments as a nonlinear spring–damper system.
The model was initially applied for prediction of spinal injuries [Iva06a], rep-
resenting the total motion of the human spine as a dynamical chain of 25 con-
strained SE(3) groups (i.e., special Euclidean groups of rigid body motion).
34 An equivalent muscular actuator is a flexor–extensor pair of muscles, rotating a

body segment (with all the masses attached to it) around a certain Euler axis.
Each equivalent muscular actuator has its excitation dynamics, coming from the
neural stimulus, as well as contraction dynamics, which generate the muscular
torque in that joint. The muscular torque is the driving torque that counteracts
inertial and gravity torques as well as joint elasticity and viscosity.
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Fig. 2.41. Configuration manifold of human/humanoid skeleton, as modelled in the
Human Biodynamics Engine.

Once the constrained SE(3)−based configuration manifold MN is prop-
erly defined, we can define the full neuro–musculo–skeletal dynamics on its
momentum phase–space manifold T ∗MN . The generalized Hamiltonian HBE–
system is given, in a local canonical chart on T ∗MN , by (we skip here the
symplectic geometry derivations, see [IS01, Iva02, IP01a, IP01b, Iva04, Iva06b]
for technical details)

q̇i =
∂H0

∂pi
+

∂R

∂pi
, (2.198)

ṗi = Ti −
∂H0

∂qi
+

∂R

∂qi
, (2.199)

qi(0) = qi
0, pi(0) = p0

i , (2.200)
(i = 1, . . . , N)

including the contravariant velocity equation (2.198) and the covariant force
equation (2.199), with initial joint coordinates qi

0 and momenta p0
i . Here the

physical Hamiltonian function H0 : T ∗MN → R represents the total mechan-
ical energy of the human motion

H0(q, p) =
1
2
gij pi pj + V (q), (i, j = 1, . . . , N),

where gij = gij(q,m) denotes the contravariant material metric tensor
(associated with Riemannian metrics g : TMN → R on MN ), relating internal
joint coordinates qi and external Cartesian coordinates xr, and including n
segmental masses mμ
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gij(q,m) =
n∑

μ=1

mμδrs
∂qi

∂xr

∂qj

∂xs
,

(i, j = 1, . . . , N), (r, s = 1, . . . , 3n).

R = R(q, p) denotes the Rayleigh nonlinear (usually biquadratic) dissipation
function.

The driving covariant vector fields (i.e., one–forms),
Ti = Ti(t, qi

ang, p
ang
i , ui), are generalized muscular torques, depending on

joint angles and angular momenta (not on translational coordinates and
momenta), as well as on ui = ui(t, q, p)–corrections from the two neural
control levels. Physiologically speaking, the torques Ti in the force equation
(2.199) resemble neuro–muscular excitation dynamics, TEXC

i , and contrac-
tion dynamics TCON

i , of equivalent antagonistic muscular pairs in the ith
joint, i.e., Ti = TMUS

i = TEXC
i · TCON

i (see [IS01, IP01b, Iva04] for technical
details).

Now, to make the highly nonlinear and high–dimensional system (2.198–
2.200) even closer to bio–physical reality, namely to account for ever–present
external noise as well as imprecision of anthropometric and physiological mea-
surements, we had to add to it [IS01, Iva02]:

1. Stochastic forces, in the form of diffusion fluctuations Bij [qi(t), t] and
discontinuous jumps as N–dimensional Wiener process W j(t); and

2. Fuzzification of the system parameters (segmental lengths, masses, inertia
moments, joint dampings, tendon elasticities, etc.) and initial conditions
(body configurations),

to get the fuzzy–stochastic HBE system:

dqi =
(
∂H0(q, p, σμ)

∂pi
+

∂R

∂pi

)
dt, (2.201)

dpi = Bij [qi(t), t] dW j(t)+(
T̄i −

∂H0(q, p, σμ)
∂qi

+
∂R

∂qi

)
dt, (2.202)

qi(0) = q̄i
0, pi(0) = p̄0

i ,

where {σ}μ (with μ ≥ 1) denote fuzzy sets of conservative parameters (seg-
ment lengths, masses and moments of inertia), dissipative joint dampings and
actuator parameters (amplitudes and frequencies), while the bar (̄.) over a
variable (.) denotes the corresponding fuzzified variable.

It is clear that the fuzzy–stochastic HBE system (2.201–2.202) is even more
complex and nonlinear and therefore harder to predict/control, compared to
the crisp–deterministic system (2.198–2.199). However, it is much closer to
the reality of human motion.
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Humanoid Control Complexity

As already stated, control of human motion is naturally and necessarily
hierarchical, including three control levels: spinal, cerebellar and cortical. The
first two levels have already been implemented in the software package HBE,
while the cortical level is currently under the development. In this section, we
briefly describe these three levels, so that the reader can get a ‘feeling’ for the
control complexity involved.

Spinal–Like Reflex Force Control

The force HBE servo–controller is formulated as an affine control
HBE–system. Introducing the coupling Hamiltonians Hj = Hj(q, p),
j = 1, . . . , M ≤ N , corresponding to the system’s active joints, we define an
affine Hamiltonian function Ha : T ∗MN → R, in local canonical coordinates
on T ∗MN given as

Ha(q, p, u) = H0(q, p)−Hj(q, p)uj , (2.203)

where ui = ui(t, q, p) are feedback–controls. Using (2.203) we come to the
affine Hamiltonian control HBE–system, in deterministic form

q̇i =
∂H0(q, p)

∂pi
− ∂Hj(q, p)

∂pi
uj +

∂R

∂pi
, (2.204)

ṗi = T̄i −
∂H0(q, p)

∂qi
+

∂Hj(q, p)
∂qi

uj +
∂R

∂qi
,

oi = −∂Ha(q, p, u)
∂ui

= Hj(q, p),

qi(0) = qi
0, pi(0) = p0

i ,

(i = 1, . . . , N ; j = 1, . . . , M ≤ N).

and in fuzzy–stochastic form

dqi =
(
∂H0(q, p, σμ)

∂pi
− ∂Hj(q, p, σμ)

∂pi
uj +

∂R(q, p)
∂pi

)
dt,

dpi = Bij [qi(t), t] dW j(t) + (2.205)(
T̄i −

∂H0(q, p, σμ)
∂qi

+
∂Hj(q, p, σμ)

∂qi
uj +

∂R(q, p)
∂qi

)
dt,

dōi = −∂Ha(q, p, u, σμ)
∂ui

dt = Hj(q, p, σμ) dt,

qi(0) = q̄i
0, pi(0) = p̄0

i .
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Both affine control HBE–systems (2.204–2.205) resemble an autogenetic
motor servo [Hou79], acting on the spinal–reflex level of the human locomotion
control. A voluntary contraction force F of human skeletal muscle is reflexly
excited (positive feedback +F−1) by the responses of its spindle receptors to
stretch and is reflexly inhibited (negative feedback −F−1) by the responses
of its Golgi tendon organs to contraction. Stretch and unloading reflexes are
mediated by combined actions of several autogenetic neural pathways, forming
the so–called ‘motor servo.’ The term ‘autogenetic’ means that the stimulus
excites receptors located in the same muscle that is the target of the reflex
response. The most important of these muscle receptors are the primary and
secondary endings in the muscle–spindles, which are sensitive to length change
– positive length feedback +F−1, and the Golgi tendon organs, which are
sensitive to contractile force – negative force feedback −F−1.

The gain G of the length feedback +F−1 can be expressed as the positional
stiffness (the ratio G ≈ S = dF/dx of the force–F change to the length–x
change) of the muscle system. The greater the stiffness S, the less the muscle
will be disturbed by a change in load. The autogenetic circuits +F−1 and
−F−1 appear to function as servoregulatory loops that convey continuously
graded amounts of excitation and inhibition to the large (alpha) skeletomotor
neurons. Small (gamma) fusimotor neurons innervate the contractile poles of
muscle spindles and function to modulate spindle–receptor discharge.
Cerebellum–Like Velocity and Jerk Control

Nonlinear velocity and jerk (time derivative of acceleration) servo–
controllers, developed in HBE using the Lie–derivative formalism, resemble
self–stabilizing and adaptive tracking action of the cerebellum [HBB96]. By
introducing the vector–fields f and g, given respectively by

f =
(
∂H0

∂pi
, −∂H0

∂qi

)
, g =

(
−∂Hj

∂pi
,
∂Hj

∂qi

)
we get the affine controller in the standard nonlinear MIMO–system form (see
[Isi89, NS90])

ẋi = f(x) + g(x)uj . (2.206)

Finally, using the Lie derivative formalism [Iva04]35 and applying the con-
stant relative degree r to all HB joints, the control law for asymptotic tracking
35 Let F (M) denote the set of all smooth (i.e., C∞) real valued functions f : M → R

on a smooth manifold M , V (M) – the set of all smooth vector–fields on M , and
V ∗(M) – the set of all differential one–forms on M . Also, let the vector–field
ζ ∈ V (M) be given with its local flow φt : M → M such that at a point x ∈ M ,
d
dt
|t=0 φtx = ζ(x), and φ∗

t representing the pull–back by φt. The Lie derivative
differential operator Lζ is defined:

(i) on a function f ∈ F (M) as

Lζ : F (M) → F (M), Lζf =
d

dt
(φ∗

t f)|t=0,
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of the reference outputs oj
R = oj

R(t) could be formulated as (generalized from
[Isi89])

uj =
ȯ
(r)j
R − L

(r)
f Hj +

∑r
s=1 cs−1(o

(s−1)j
R − L

(s−1)
f Hj)

LgL
(r−1)
f Hj

, (2.207)

where cs−1 are the coefficients of the linear differential equation of order r for
the error function e(t) = xj(t)− oj

R(t)

e(r) + cr−1e(r−1) + · · ·+ c1e(1) + c0e = 0.

The affine nonlinear MIMO control system (2.206) with the Lie–derivative
control law (2.207) resembles the self–stabilizing and synergistic output track-
ing action of the human cerebellum. To make it adaptive (and thus more
realistic), instead of the ‘rigid’ controller (2.207), we can use the adaptive
Lie–derivative controller , as explained in the seminal paper on geometrical
nonlinear control [Si89].

Cortical–Like Fuzzy–Topological Control

For the purpose of our cortical control, the dominant, rotational part of
the human configuration manifold MN , could be first, reduced to an N–torus,
and second, transformed to an N–cube (‘hyper–joystick’), using the following
topological techniques (see [IS01, Iva02, IP01a]).

Let S1 denote the constrained unit circle in the complex plane, which is an
Abelian Lie group. Firstly, we propose two reduction homeomorphisms, using
the semidirect product � of the constrained SO(2)−groups:

SO(3) ≈ SO(2) � SO(2) � SO(2) and SO(2) ≈ S1.

Next, let IN be the unit cube [0, 1]N in RN and ‘∼’ an equivalence relation
on RN obtained by ‘gluing’ together the opposite sides of IN , preserving their
orientation. Therefore, MN can be represented as the quotient space of RN

(ii) on a vector–field η ∈ V (M) as

Lζ : V (M) → V (M), Lζη =
d

dt
(φ∗

t η)|t=0 ≡ [ζ, η]

– the Lie bracket , and
(iii) on a one–form α ∈ V ∗(M) as

Lζ : V ∗(M) → V ∗(M), Lζα =
d

dt
(φ∗

t α)|t=0.

In general, for any smooth tensor field T on M , the Lie derivative LζT geomet-
rically represents a directional derivative of T along the flow φt.
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by the space of the integral lattice points in RN , that is an oriented and
constrained N–dimensional torus TN :

RN/ZN = IN/ ∼≈
N∏

i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod2π}

= TN . (2.208)

Its Euler–Poincaré characteristic is (by the De Rham theorem) both for the
configuration manifold TN and its momentum phase–space T ∗TN given by
(see [IS01])

χ(TN , T ∗TN ) =
N∑

p=1

(−1)pbp ,

where bp are the Betti numbers defined as

b0 = 1,

b1 = N, . . . bp =
(
N

p

)
, . . . bN−1 = N,

bN = 1, (0 ≤ p ≤ N).

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation.
According to Tychonoff’s product–topology theorem (see, e.g., [AM78], [II05]),
for every such quotient space there exists a ‘selector’ such that their quo-
tient models are homeomorphic, that is, TN/ ∼∗≈ AN/ ∼∗. Therefore IN

q

represents a ‘selector’ for the configuration torus TN and can be used as an
N–directional ‘q̂–command–space’ for the feedback control (FC). Any subset
of degrees–of–freedom on the configuration torus TN representing the joints
included in HB has its simple, rectangular image in the rectified q̂–command
space – selector IN

q , and any joint angle qi has its rectified image q̂i.
In the case of an end–effector, q̂i reduces to the position vector in external–

Cartesian coordinates zr (r = 1, . . . , 3). If orientation of the end–effector can
be neglected, this gives a topological solution to the standard inverse kine-
matics problem.

Analogously, all momenta p̂i have their images as rectified momenta p̂i in
the p̂–command space – selector IN

p . Therefore, the total momentum phase–

space manifold T ∗TN obtains its ‘cortical image’ as the (̂q, p)–command space,
a trivial 2N–dimensional bundle IN

q × IN
p .

Now, the simplest way to perform the feedback FC on the cortical (̂q, p)–
command space IN

q × IN
p , and also to mimic the cortical–like behavior, is to

use the 2N– dimensional fuzzy–logic controller, in much the same way as in
the popular ‘inverted pendulum’ examples (see [Kos92]).
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We propose the fuzzy feedback–control map Ξ that maps all the rectified
joint angles and momenta into the feedback–control one–forms

Ξ : (q̂i(t), p̂i(t)) �→ ui(t, q, p), (2.209)

so that their corresponding universes of discourse, Q̂i = (q̂i
max − q̂i

min), P̂i =
(p̂max

i − p̂min
i ) and Ûi = (umax

i − umin
i ), respectively, are mapped as

Ξ :
N∏

i=1

Q̂i ×
N∏

i=1

P̂i →
N∏

i=1

Ûi. (2.210)

The 2N–dimensional map Ξ (2.209,2.210) represents a fuzzy inference sys-
tem, defined by (adapted from [IJB99a]):

1. Fuzzification of the crisp rectified–and–discretized angles, momenta and
controls using Gaussian–bell membership functions

μk(χ) = exp[− (χ−mk)2

2σk
], (k = 1, 2, . . . , 9),

where χ ∈ D is the common symbol for q̂i, p̂i and ui(q, p) and D
is the common symbol for Q̂i, P̂i and Ûi; the mean values mk of
the nine partitions of each universe of discourse D are defined as
mk = λkD + χmin, with partition coefficients λk uniformly spanning
the range of D, corresponding to the set of nine linguistic variables
L = {NL,NB,NM,NS,ZE,PS, PM, PB,PL}; standard deviations
are kept constant σk = D/9. Using the linguistic vector L, the 9 × 9
FAM (fuzzy associative memory) matrix (a ‘linguistic phase–plane’), is
heuristically defined for each human joint, in a symmetrical weighted
form

μkl = "kl exp{−50[λk + u(q, p)]2}, (k, l = 1, . . . , 9)

with weights: "kl ∈ {0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1.0}.
2. Mamdani inference is used on each FAM–matrix μkl for all human joints:

(i) μ(q̂i) and μ(p̂i) are combined inside the fuzzy IF–THEN rules using
AND (Intersection, or Minimum) operator,

μk[ūi(q, p)] = min
l
{μkl(q̂

i), μkl(p̂i)}.

(ii) the output sets from different IF–THEN rules are then combined
using OR (Union, or Maximum) operator, to get the final output, fuzzy–
covariant torques,

μ[ui(q, p)] = max
k
{μk[ūi(q, p)]}.
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3. Defuzzification of the fuzzy controls μ[ui(q, p)] with the ‘center of gravity’
method

ui(q, p) =
∫
μ[ui(q, p)] dui∫

dui
,

to update the crisp feedback–control one–forms ui = ui(t, q, p).

Now, it is easy to make this top–level controller adaptive, simply by weight-
ing both the above fuzzy–rules and membership functions, by the use of any
standard competitive neural–network (see, e.g., [Kos92]). Operationally, the
construction of the cortical (̂q, p)–command space IN

q × IN
p and the 2N–

dimensional feedback map Ξ (2.209,2.210), mimic the regulation of the motor
conditioned reflexes by the motor cortex [HBB96].

Humanoid Computational Complexity

A simplified version of the HBE system (2.201,2.202,2.205,2.206,2.207), with
crisp parameters derived from the user anthropometry and physiology data,
and simple random forces added to the crisp dynamics (2.198–2.200), has been
developed at DSTO, Australia (together with a neural–like control described
below), for the purpose of predicting the risk of musculo–skeletal injuries (see
[Iva06a]). The system considered had 264 DOF (fingers and toes are not mod-
elled), in the form of the set of 528 generalized Hamiltonian equations, with
132 Lie–derivative controllers. This huge set of nonlinearly–coupled nonlinear
differential equations, were derived in Mathematica and then implemented
in ‘Delphi’ compiler for MS Windows, using the specially developed matrix–
symplectic explicit integrator of the 6th order.

It is practically impossible to integrate such a complex system of differen-
tial equations, even for 1 second, even with the best possible integrator, like
Mathematica integrator NDSolve, the standard trick from modern mechanics
and nonlinear control was adopted: dynamical decoupling with simultaneous
inertial (static) coupling (see, e.g., [Sch98]).36 Once Hamiltonian equations are
decoupled, they can be both numerically solved (using a matrix symplectic
integrator) and efficiently controlled (using a linear or polynomial controller
derived by Lie–derivative formalism described above).

A sample HBE output is given in Figures 2.42–2.45, which simulate run-
ning with the speed of 5 m/s.

36 The basic idea of geometrical decoupling is to ‘free’ the angular momentum (resp.
angular velocity) and torque variables from the inertia matrix (i.e., metric tensor)
gij , by putting it on the other side of Hamiltonian (resp. Lagrangian) equations
[Isi89, NS90].
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Fig. 2.42. Sample output from the Human Biodynamics Engine: running with the
speed of 5 m/s – 3D animation view–port.

Fig. 2.43. Running HBE output: desired angular joint trajectories.
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Fig. 2.44. Running HBE output: actual angular joint trajectories.

Fig. 2.45. Running HBE output: muscular torques in the joints calculated using
half–inverse dynamics (forward dynamics starts with the test input torques; after
the user–defined reaction time is reached, it switches to the controller–determined
inverse dynamics).
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Simplicity, Predictability and ‘Macro–Entanglement’ in Humanoid
Bio–Dynamics

Here we argue that the simplification of the complex and realistic bio–
dynamical model described in the previous section results in inaccurate pre-
diction and control.

Mutual Cancellation of the Model Components

Cancellation of the skeletal components is technically called ‘amputation’.
Clearly, this is not an option for solving the enormous complexity problem
described in the previous sections. We cannot just cut–off human limbs to
reduce the overall complexity of human motion.

Reduction of Mechanical Degrees–of–Freedom and Associated
Controllers

It is possible to reduce the number of mechanical degrees–of–freedom, and
therefore the bio–dynamical configuration manifold, by the total factor of six:

1. By replacing three–axial joints with uniaxial ones, which reduces the sys-
tem’s dimension by a factor of three; and

2. By neglecting all (restricted) joint translations, as is done in robotics,
which reduces the system’s dimension by a factor of two.

It is also possible to simplify the control subsystem:

1. by replacing nonlinear controllers with linear ones; and
2. by reducing a hierarchical, three–level control to the single level.

The overall result of these two simplifications is commonly known as
‘dummy’. It can be very expensive and useful for crash–testing, but it cannot
be used for any human–like performance.

Averaging of Physical Degrees–of–Freedom

Let us consider the possibility of averaging the degrees–of–freedom in bio–
dynamics, using a technique similar to Maxwell’s techniques in thermody-
namics and statistical physics. In the past, it has been an old practice in
bio–dynamics to use the body’s ‘center–of–mass’ (CoM) motion as a simple
representative of the full human musculo–skeletal dynamics, which is a system-
atic kinematical procedure of averaging the segmental trajectories. However,
at present, it is used only for the low–resolution global positioning system
(GPS) tracking of soldiers. It simply fails in simulating/predicting any realis-
tic human movement, which is well–known to the researchers in robotics. For
example, if we use the Cartesian vector trajectory of the CoM to simulate
the motion of an athlete in a successful ‘high–jump’ event, we will see that
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the CoM trajectory passes under the bar while at the same time his whole
body passes over the bar, which is represented by all segmental trajectories.
This simple example shows that the averaging of physical degrees–of–freedom
simply does not work if realistic representation of human motion is needed.

Superposition of Complexities or ‘Macro–Entanglement’

From the standard engineering viewpoint, having two systems (biologi-
cal and mechanical) combined as a single ‘working machine’, we can expect
that the total ‘machine’ complexity equals the sum of the two partial ones.
For example, electrical circuitry has been a standard modelling framework
in neurophysiology (A. Hodkgin and A. Huxley won a Nobel Prize for their
circuit model of a single neuron, the celebrated HH–neuron [HH52]). Using
the HH–approach for modelling human neuro–muscular circuitry as electrical
circuitry, we get an electro–mechanical model for our bio–dynamical system,
in which the superposition of complexities is clearly valid.

On the other hand, in a recent research on dissipative quantum brain
modelling, one of the most popular issues has been quantum entanglement37

between the brain and its environment (see [PV03, PV04]) where the brain–
environment system has an entangled ‘memory’ state, identified with the
ground (vacuum) state |0 > N , that cannot be factorized into two single–
mode states.38 Similar to this microscopic brain–environment entanglement,
37 The quantum entanglement (see next Chapter) is a quantum–mechanical phenom-

enon in which the quantum states of two or more objects have to be described
with reference to each other, even though the individual objects may be spatially
separated. This leads to correlations between observable physical properties of the
systems. For example, it is possible to prepare two particles in a single quantum
state such that when one is observed to be spin–up, the other one will always be
observed to be spin–down and vice versa, this despite the fact that it is impossible
to predict, according to quantum mechanics, which set of measurements will be
observed. As a result, measurements performed on one system seem to be instan-
taneously influencing other systems entangled with it. Quantum entanglement
does not enable the transmission of classical information faster than the speed of
light.

Quantum entanglement is closely concerned with the emerging technologies of
quantum computing and quantum cryptography, and has been used to experi-
mentally realize quantum teleportation. At the same time, it prompts some of the
more philosophically oriented discussions concerning quantum theory. The corre-
lations predicted by quantum mechanics, and observed in experiment, reject the
principle of local realism, which is that information about the state of a system
should only be mediated by interactions in its immediate surroundings. Different
views of what is actually occurring in the process of quantum entanglement can
be related to different interpretations of quantum mechanics.

38 In the Vitiello–Pessa dissipative quantum brain model [PV03, PV04] (see next
Chapter), the evolution of the N–coded memory system was represented as a
trajectory of given initial condition running over time–dependent states |0(t) >N ,
each one minimizing the free energy functional.
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we propose a kind of macroscopic entanglement between the operating modes
of our neuro–muscular controller and mechanical skeleton.

In other words, we suggest that the diffeomorphism between the brain
motion manifold (N−cube) and the body motion manifold MN (which
can be reduced to the constrained N−torus), described as the cortical
motion control (subsection 3.3), can be considered a ‘long–range correla-
tion’.

Therefore, if the complexity of the two subsystems is not the ‘expected’
superposition of their partial complexities, then we have a kind of macro–
entanglement at work.

Self–Organization, Synchronization and Resolution in
Bio–Mechanics

Self–Organization versus Training

In the framework of human motion dynamics, self–organization represents
adaptive motor control , i.e., physiological motor training performed by iter-
ation of conditioned reflexes. For this, a combination of supervised and
reinforcement learning is commonly used, in which a number of (nonlin-
ear) control parameters are iteratively adjusted similar to the weights in
neural networks, using either backpropagation–type or Hebbian–type learn-
ing, respectively. Every human motor skill is mastered using this general
method. Once it is mastered, it appears as ‘self–organized’, and its output
space appears ‘low–dimensional’.

Therefore, bio–dynamical self–organization clearly represents an ‘evolu-
tion’ in the parameter-space of human motion control. One might argue that
such an evolution can be modelled using CA. However, this parameter–space,
though being a dynamical and possibly even a contractible structure, is not
an independent set of parameters – it is necessarily coupled to the mechanical
skeleton configuration space, the plant to be controlled.

The system of 200 bones and 600 muscles can an produce infinite number
of different movements. In other words, the output–space dimension of a skilled
human motion dynamics equals infinity – there is no upper limit to the number
of possible different human movements, starting with simple walk, run, jump,
throw, play, etc. Even for the simplest motions, like walking, a child needs
about 12 months to master it (and Honda robots took a decade to achieve
this).

Furthermore, as human motion represents a simplest and yet well–defined
example of a general human behavior, it is possible that other human behav-
ioral and performance skills are mastered (i.e., self–organized) in a similar
way.
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Observational Resolution: a True Measure for Humanoid
Bio–Dynamics Complexity

Similar to a GPS tracking of soldiers’ motion being reduced to the CoM
motion, the observational resolution represents a true criterion underlying
the apparent external complexity. For instance, if we ‘zoom–out’ sufficiently
enough to get to the ‘satellite–level’ observation, then the collective mo-
tion of a crowd of 100,000 people looks like a single ‘soliton’. On the other
hand, if we ‘zoom–in’ deep to get to the ‘Earth–level’, then the full bio–
dynamical system complexity and possibly an infinite–dimensional output
space of a single human member within the same crowd is seen. There is a
significant difference in the resolution of human motion while watching ‘sub-
tle’ hand movements playing a piano, or ‘coarse’ movements of the crowd
(on a football stadium) from an orbital satellite. CA can be a good model
for the crowd motion, but certainly not for hierarchical neural control of
the dynamics of human hands playing a piano. Thus, the eventual crite-
rion that determines apparent complexity is the observational resolution. In
other words, the bio–dynamical complexity is a resolution–dependent vari-
able.

Synchronization: A Route to Simplicity in Humanoid Bio–Dynamics

Finally, there is also a possible route to simplicity in bio–dynamics.
Namely, synchronization and phase–locking are ubiquitous in nature as well
as in human brain (see [HI97, HI99, Izh01, HI01]). Synchronization can occur
in cyclic forms of human motion (e.g., walking, running, cycling, swimming),
both externally, in the form of oscillatory dynamics, and internally, in the
form of oscillatory cortical–control . This oscillatory synchronization, e.g., in
walking dynamics, has three possible forms: in–phase, anti–phase, and out–
of–phase. The underlying phase–locking properties determined by type of
oscillator (e.g., periodic/chaotic, relaxation, bursting39, pulse-coupled, slowly

39 Periodic bursting behavior in neurons is a recurrent transition between a
quiescent state and a state of repetitive firing. Three main types of neural
bursters are: (i) parabolic bursting (‘circle/circle’), (ii) square–wave bursting
(‘fold/homoclinic’), and (iii) elliptic bursting (‘subHopf/fold cycle’). Most burster
models can be written in the singularly perturbed form:

x = f(x, y), y = μg(x, y),

where x ∈ Rm is a vector of fast variables responsible for repetitive firing (e.g.,
the membrane voltage and fast currents). The vector y ∈ Rk is a vector of slow
variables that modulates the firing (e.g., slow (in)activation dynamics and changes
in intracellular Ca2+ concentration). The small parameter μ << 1 is a ratio of
fast/slow time scales. The synchronization dynamics between bursters depends
crucially on their spiking frequencies, i.e., the interactions are most effective
when the presynaptic interspike frequency matches the frequency of postsynaptic
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connected, or connections with time delay) involved in the cortical control
system (motion planner). According to Izhikevich–Hoppensteadt work (ibid),
phase–locking is prominent in the brain: it frequently results in coherent
activity of neurons and neuronal groups, as seen in recordings of local field
potentials and EEG. In essence, the purpose of brain control of human motion
is reduction of mechanical configuration space; brain achieves this through
synchronization.

While cyclic movements indeed present a natural route to oscillatory bio–
dynamical synchronization, both on the dynamical and cortical–control level,
the various forms of synchronized group behavior in sport (such as synchro-
nized swimming, diving, acrobatics) or in military performance represent the
imperfect products of hard training. The synchronized team performance is
achievable, but the cost is a difficult long–term training and sacrifice of one’s
natural characteristics.

Summary on Humanoid Complexity

In this subsection we examined the complexity issues of a combined bio–
dynamical system. Using a physiologically realistic model of humanoid bio–
dynamics, the study demonstrated that in a combined bio–dynamical system,
where the action of the Newtonian laws cannot be neglected, the mechanical
part determines the lower limit of complexity of the combined system, de-
fined by the number of physical degrees–of–freedom. The biological part of
such system, being ‘more intelligent’ serves as a controller, of the mechanical
plant. Although, in some special cases, the behavior of the combined system
might appear ‘simple’, the analysis shows that the complexity of the total sys-
tem equals the sum of the complexities of its parts, unless we have a kind of
‘macro–entanglement’ at work. The simplicity versus complexity issues are re-
lated to the system’s predictability and controllability: a simple model can be
useful for explanation, but not for prediction and control. In human motion,
which represents a simple and well–defined example of general human behav-
ior, self–organization means training using iterative conditioned reflexes. The
true measure of complexity here is observational resolution.

The total complexity of the two subsystems, neuro–muscular and mechan-
ical, is either the superposition of their partial complexities, or a kind of
macro–entanglement.

Since human/humanoid motion is a simplest well–defined paradigm of gen-
eral human/humanoid behavior , it is possible that the observational resolution
underpins the apparent complexity of human behavior. This resolution–
dependent complexity of human motion/behavior is totally different from

oscillations. The synchronization dynamics between bursters in the cortical
motion planner induces synchronization dynamics between upper and lower limbs
in oscillatory motions.
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those proposed by CA. The number of physical degrees–of–freedom necessary
to perform the motion task (e.g., high–jump or playing the piano) determines
the lower limit of complexity. When this physical complexity is high, the
controller’s complexity needs to match it. And cortical motion planner
does match this complexity with its command–space: the motor area in
human cortex is not infinite – it is just high–dimensional. More important, it
is not an average (statistical) value – as it precisely controls motion of every
human bone (e.g., fingers playing the piano). Interestingly, the same human
body that can play the piano can perform the high–jump or participate in
the human crowd. Only the crowd movement can be modelled by CA.

Finally, a possible route to simplicity in bio–dynamics is represented by
oscillatory synchronization, which appears in the external dynamics of oscil-
latory motion as a result of the synchronization in the brain control.



3

Quantum Computational Mind

In this Chapter we present a quantum theory of the computational mind.

3.1 Dirac–Feynman Quantum Dynamics

The most important discoveries in natural sciences are in some or other way
connected to quantum mechanics. There is also a bias that biological phenom-
ena will be explained by quantum theory in the future, since quantum theory
already contains all basic principles of particle interactions and these princi-
ples had success in molecular dynamics, the basis of life. Recall that a little
book entitled What is Life?, written by Noble Laureate Erwin Schrödinger,
represents one of the great science classics of the twentieth century. A distin-
guished physicist’s exploration of the question which lies at the heart of bio-
logy, it was written for the layman, but proved one of the spurs to the birth
of molecular biology and the subsequent discovery of the structure of DNA,
by Schrödinger’s student, another Nobel laureate, Francis Crick.

If quantum phenomena really exist in the basis of life, then we can further
argue that they are also essential for understanding both the human and
computational mind. Therefore, before embarking on the journey into the
quantum mind, we need to briefly review the basis of quantum theory.

3.1.1 Non–Relativistic Quantum Mechanics

Recall that Heisenberg , with his discovery of quantum mechanics (1925; see
[Cas92]), introduced a new outlook on the nature of physical theory. Pre-
viously, it was always considered essential that there should be a detailed
description of what is taking place in natural phenomena, and one used this
description to calculate results comparable with experiment. Heisenberg put
forward the view that it is sufficient to have a mathematical scheme from
which one can calculate in a consistent manner the results of all experiments.

V.G. Ivancevic and T.T. Ivancevic: Quantum Computational Mind, Studies in Computational

Intelligence (SCI) 60, 461–638 (2007)
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That is, a detailed description in the traditional sense is unnecessary and may
very well be impossible to establish [Dir28a, Dir28b, Dir26e].

Heisenberg’s method focuses attention on the quantities which enter into
experimental results. It was first applied to the spectral theory , for which these
quantities are the energy levels of the atomic system and certain probability
coefficients, which determine the probability of a radiative transition taking
place from one level to another. The method sets up equations connecting
these quantities and allows one to calculate them, but does not go beyond
this. It does not provide any description of radiative transition processes. It
does not even allow one to deduce how the results of a calculation are to
be used, but requires one to assume Einstein’s laws of radiation (the laws
which tell how the probability of a radiative transition process depends on
the intensity of the incident radiation), and to assume that certain quantities
determined by the calculation are the coefficients appearing in the laws.

Shortly after Heisenberg’s discovery, Schrödinger set up independently
another form of quantum mechanics (1926; see [Moo89]), which also enables
one to calculate energy levels and probability coefficients and gives results
agreeing with those of Heisenberg, but which introduces an important new
feature. It connects together, in one calculation, a set of probability coeffi-
cients that act together under certain conditions in Nature; e.g., the set of
probability coefficients referring to transitions from one particular initial state
to any final state. In this respect, Schrödinger’s method is to be contrasted
with Heisenberg’s method, which connects together in one calculation all the
probability coefficients for a dynamical system, i.e., the probability coefficients
from all initial states to all final states.

This feature of Schrödinger’s method gives it two important advantages
[Dir25, Dir26e]. First, as a consequence of its enabling one to get fewer results
at a time, it makes the computation much simpler. Secondly, it supplies, in a
certain sense, a description of what is taking place in Nature, since a calcula-
tion leading to results that come into play together under certain conditions in
Nature will be in close correspondence with the physical process that is taking
place under those conditions, various points in the calculation having their
counterparts in the physical process. A description in this limited sense seems
to be the most that is possible for atomic processes. It implies a much less
complete connection between the mathematics and the physics than one has in
classical mechanics, and one might be disinclined to call it a description at all,
but one may at least consider it as an appropriate generalization of what one
usually means by a description. On account of Schrödinger’s method allowing
a description in this new sense while Heisenberg’s allows none, Schrödinger’s
method introduces an outlook on the nature of physical theory intermediate
between Heisenberg’s and the old classical (Newton–Maxwellian) one.

When Heisenberg’s and Schrödinger’s theories were developed it was soon
found by Dirac that they both rested on the same mathematical formalism and
differed only with regard to the method of physical interpretation (see [Dir82]).
Dirac’s formalism is a generalization of the Hamiltonian form of classical
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Newtonian dynamics, involving linear operators instead of ordinary algebraic
variables, and is so natural and beautiful as to make one feel sure of its
correctness as the foundation of the theory. The question of its interpretation,
however, which involved unifying Heisenberg’s and Schrödinger’s ideas into a
satisfactory comprehensive scheme, was not so easily settled.

The situation of a formalism (in this case, Dirac’s) becoming established
before one is clear about its interpretation should not be considered as surpris-
ing, but rather as a natural consequence of the drastic alterations which the
development of physics had required in some of the basic physical concepts.
This made it an easier matter to discover the mathematical formalism needed
for a fundamental physical theory than its interpretation, since the number
of things one had to choose between in discovering the formalism was very
limited, the number of fundamental ideas in pure mathematics being not very
great, while with the interpretation most unexpected things might turn up.

The best way of seeking the interpretation in such cases is probably from
a discussion of simple examples. This way was used for the theory of quantum
mechanics and led eventually to a satisfactory interpretation applicable to all
phenomena for which relativistic effects are negligible. This interpretation is
more closely connected with Schrödinger’s method than Heisenberg’s, as one
would expect on account of the former affording in some sense a description
of Nature, and is centered round a Schrödinger’s wave ψ−function, which is
one of the things that can be operated on by the linear operators which the
dynamical variables have become. The correspondence which the existence of
a description implies between the mathematics and the physics makes a wave
ψ−function correspond to a state of motion of the atomic system, in such
a way that, for example, a calculation which gives the transition probabili-
ties from a particular initial state to any final state would be based on that
wave ψ−function which represents the motion ensuing from this initial state.
A wave ψ−function is a complex function ψ = ψ(q1, q2, . . . , qn, t) of all the
coordinates q1, q2, . . . , qn, t of the system and of the time t, and it receives the
interpretation that the square of its modulus, |ψ(q1, q2, . . . , qn, t)|2, is the prob-
ability , for the state of motion it corresponds to, of the coordinates having
values in the neighborhood of q1, q2, . . . , qn, per unit volume of coordinate
space (or, configuration space), at the time t.

A wave ψ−function can be transformed so as to refer to other dynamical
variables, for example, the momenta p1, p2, . . . , pn, when it is said to be in
another representation. The square of its modulus |ψ(p1, p2, . . . , pn, t)|2 is then
the probability, per unit volume of momentum space (or, phase–space) , of the
momenta having values in the neighborhood of p1, p2, . . . , pn at the time t. A
wave ψ−function itself never has an interpretation, but only the square of its
modulus, and the need for distinguishing between two wave functions having
the same squares of their moduli arises only because, if they are transformed
to a different representation, the squares of their moduli will in general become
different. This brings out the incompleteness of description, which is possible
with quantum mechanics [Dir28a, Dir28b, Dir26e, Dir82].
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One may make a slight modification in the wave functions in any repre-
sentation by introducing a weight factor λ and arranging for the probability
to be λ|ψ|2 instead of |ψ|2. The weight factor may be any positive function of
the variables occurring in the wave ψ−function.

Wave functions have to satisfy a certain wave equation, namely, the
equation

i� ∂tψ = Hψ, (3.1)

where ∂t ≡ ∂/∂t, i =
√
−1, � is the Planck’s constant , and H is a Her-

mitian (self–adjoint) linear operator representing the Hamiltonian of the sys-
tem (expressed in the representation concerned). The wave equation (3.1) is
a generalization of the Hamilton–Jacobi equation of classical mechanics. If S
is a solution of the latter equation, then

ψ = eiS/� (3.2)

will give a first approximation to a solution of the former.
An important property of the wave equation (3.1) is that it yields the

probability conservation law : the total probability of the variables occurring
in the wave ψ−function having any value is constant. The wave ψ−function
should be normalized so as to make this probability initially unity and then it
always remains unity. This conservation law is a mathematical consequence of
the wave equation being linear in the operator ∂t and of H being a self–adjoint
operator.

The wave equation is linear and homogeneous in the wave ψ−function and
so are the transformation equations. In consequence, one can add together two
ψ’s and get a third. The correspondence between ψ’s and states of motion
now allows one to infer that there is a relationship between the states of
motion, such that one can add or superpose two states to get a third. This
relationship constitutes the Principle of superposition of states, one of the
general principles governing the interpretation of quantum mechanics.

Another of these principles is Heisenberg’s Principle of indeterminacy .
This is a consequence of the transformation laws connecting ψ(q) and ψ(p),
which show that each of these functions is the Fourier transform of the other,
apart from numerical coefficients, so that one meets the same limitations in
giving values to a q and p as in giving values to the position and frequency of
a train of waves [Dir26e, Dir82]. These general principles serve to bring out
the departures needed from ordinary classical (Newton–Maxwellian) ideas.
They are of so drastic and unexpected a nature that it is not to be won-
dered at that they were discovered only indirectly, as consequences of a pre-
viously established mathematical scheme, instead of being built up directly
from experimental facts.

Dirac’s Canonical Quantization

To make a leap into the quantum realm, recall that classical state–space for the
biodynamic system of n point–particles is its 6ND phase–space P, including
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all position and momentum vectors, ri = (x, y, z)i and pi = (px, py, pz)i,
respectively, for i = 1, . . . , n.

The quantization is performed as a linear representation of the real Lie
algebra LP of the phase–space P, defined by the Poisson bracket {f, g} of
classical variables f, g – into the corresponding real Lie algebra LH of the
Hilbert space H, defined by the commutator [f̂ , ĝ] of skew–Hermitian opera-
tors f̂ , ĝ. This sounds like a functor, however it is not; as J. Baez says, ‘First
quantization is a mystery, but second quantization is a functor’. Mathemat-
ically, if quantization were natural it would be a functor from the category
Symplec, whose objects are symplectic manifolds (i.e., phase–spaces) and
whose morphisms are symplectic maps (i.e., canonical transformations) to the
category Hilbert, whose objects are Hilbert spaces and whose morphisms are
unitary operators.

Historically first, the so–called canonical quantization is based on the so–
called Dirac rules for quantization. It is applied to ‘simple’ systems: finite
number of degrees–of–freedom and ‘flat’ classical phase–spaces (an open set
of R2n). Canonical quantization includes the following data [Dir82]:

1. Classical description. The system is described by the Hamiltonian or
canonical formalism: its classical phase–space is locally coordinated by a
set of canonical coordinates (qj , pj), the position and momentum coordi-
nates. Classical observables are real functions f(qj , pj). Eventually, a Lie
group G of symmetries acts on the system.

2. Quantum description. The quantum phase–space is a complex Hilbert
space H. Quantum observables are Hermitian (i.e., self–adjoint) operators
acting on H. (The Hilbert space is complex in order to take into account
the interference phenomena of wave functions representing the quantum
states. The operators are self–adjoint in order to assure their eigenvalues
are real.) The symmetries of the system are realized by a group of unitary
operators UG(H).

3. Quantization method. As a Hilbert space we take the space of square
integrable complex functions of the configuration space; that is, functions
depending only on the position coordinates, ψ(qj). The quantum opera-
tor associated with f(qj , pj) is obtained by replacing pj by −i� ∂

∂qj , and

hence we have the correspondence f(qj , pj) �→ f̂(qj ,−i� ∂
∂qj ). In this way,

the classical commutation rules between the canonical coordinates are
assured to have a quantum counterpart: the commutation rules between
the quantum operators of position and momentum (which are related to
the ‘uncertainty principle’ of quantum mechanics).

Quantum States and Operators

Quantum systems have two modes of evolution in time. The first, governed
by standard, time–dependent Schrödinger equation:

i� ∂t |ψ〉 = Ĥ |ψ〉 , (3.3)
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describes the time evolution of quantum systems when they are undisturbed
by measurements. ‘Measurements’ are defined as interactions of the quantum
system with its classical environment. As long as the system is sufficiently
isolated from the environment, it follows Schrödinger equation. If an interac-
tion with the environment takes place, i.e., a measurement is performed, the
system abruptly decoheres i.e., collapses or reduces to one of its classically
allowed states.

A time–dependent state of a quantum system is determined by a normal-
ized, complex, wave psi–function ψ = ψ(t). In Dirac’s words, this is a unit ket
vector |ψ〉, which is an element of the Hilbert space L2(ψ) with a coordinate
basis (qi). The state ket–vector |ψ(t)〉 is subject to action of the Hermitian
operators, obtained by the procedure of quantization of classical biodynamic
quantities, and whose real eigenvalues are being measured.

Quantum superposition is a generalization of the algebraic principle of lin-
ear combination of vectors. The Hilbert space has a set of states |ϕi〉 (where
the index i runs over the degrees–of–freedom of the system) that form a basis
and the most general state of such a system can be written as |ψ〉= ∑

i ci

|ϕi〉 . The system is said to be in a state |ψ(t)〉, describing the motion of the de
Broglie waves (named after Nobel Laureate, Prince Louis V.P.R. de Broglie),
which is a linear superposition of the basis states |ϕi〉 with weighting coeffi-
cients ci that can in general be complex. At the microscopic or quantum level,
the state of the system is described by the wave function |ψ〉 , which in general
appears as a linear superposition of all basis states. This can be interpreted
as the system being in all these states at once. The coefficients ci are called
the probability amplitudes and |ci|2 gives the probability that |ψ〉 will collapse
into state |ϕ〉 when it decoheres (interacts with the environment). By sim-
ple normalization we have the constraint that

∑
i |ci|2 = 1. This emphasizes

the fact that the wavefunction describes a real, physical system, which must
be in one of its allowable classical states and therefore by summing over all the
possibilities, weighted by their corresponding probabilities, one must get unity.
In other words, we have the normalization condition for the psi–function,
determining the unit length of the state ket–vector

〈ψ(t)|ψ(t)〉 =
∫

ψ∗ψ dV =
∫
|ψ|2 dV = 1,

where ψ∗ = 〈ψ(t)| denotes the bra vector, the complex–conjugate to the ket
ψ = |ψ(t)〉, and 〈ψ(t)|ψ(t)〉 is their scalar product, i.e., Dirac bracket. For
this reason the scene of quantum mechanics is the functional space of square–
integrable complex psi–functions, i.e., the Hilbert space L2(ψ).

When the system is in the state |ψ(t)〉, the average value 〈f〉 of any physical
observable f is equal to

〈f〉 = 〈ψ(t)| f̂ |ψ(t)〉,

where f̂ is the Hermitian operator corresponding to f .
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A quantum system is coherent if it is in a linear superposition of its basis
states. If a measurement is performed on the system and this means that
the system must somehow interact with its environment, the superposition is
destroyed and the system is observed to be in only one basis state, as required
classically. This process is called reduction or collapse of the wavefunction or
simply decoherence and is governed by the form of the wavefunction |ψ〉 .

Entanglement on the other hand, is a purely quantum phenomenon and
has no classical analogue. It accounts for the ability of quantum systems to
exhibit correlations in counterintuitive ‘action–at–a–distance’ ways. Entangle-
ment is what makes all the difference in the operation of quantum computers
versus classical ones. Entanglement gives ‘special powers’ to quantum com-
puters because it gives quantum states the potential to exhibit and maintain
correlations that cannot be accounted for classically. Correlations between
bits are what make information encoding possible in classical computers. For
instance, we can require two bits to have the same value thus encoding a rela-
tionship. If we are to subsequently change the encoded information, we must
change the correlated bits in tandem by explicitly accessing each bit. Since
quantum bits exist as superpositions, correlations between them also exist in
superposition. When the superposition is destroyed (e.g., one qubit is mea-
sured), the correct correlations are instantaneously ‘communicated’ between
the qubits and this communication allows many qubits to be accessed at
once, preserving their correlations, something that is absolutely impossible
classically.

More precisely, the first quantization is a linear representation of all
classical dynamical variables (like coordinate, momentum, energy, or angular
momentum) by linear Hermitian operators acting on the associated Hilbert
state–space L2(ψ), which has the following properties [Dir82]:

1. Linearity:
αf + βg → α f̂ + β ĝ,

for all constants α, β ∈ C;
2. A ‘dynamical’ variable, equal to unity everywhere in the phase–space,

corresponds to unit operator: 1→ Î; and
3. Classical Poisson brackets

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

quantize to the corresponding commutators

{f, g} → −i�[f̂ , ĝ], [f̂ , ĝ] = f̂ ĝ − ĝf̂ .

Like Poisson bracket, commutator is bilinear and skew–symmetric opera-
tion, satisfying Jacobi identity. For Hermitian operators f̂ , ĝ their commutator
[f̂ , ĝ] is anti–Hermitian; for this reason i is required in {f, g} → −i�[f̂ , ĝ].

Property (2) is introduced for the following reason. In Hamiltonian
mechanics each dynamical variable f generates some transformations in
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the phase–space via Poisson brackets. In quantum mechanics it generates
transformations in the state–space by direct application to a state, i.e.,

u̇ = {u, f}, ∂t|ψ〉 =
i

�
f̂ |ψ〉. (3.4)

Exponent of anti–Hermitian operator is unitary. Due to this fact, trans-
formations, generated by Hermitian operators

Û = exp
if̂ t

�
,

are unitary. They are motions – scalar product preserving transformations in
the Hilbert state–space L2(ψ). For this property i is needed in (3.4).

Due to property (2), the transformations, generated by classical variables
and quantum operators, have the same algebra.

For example, the quantization of energy E gives:

E → Ê = i� ∂t.

The relations between operators must be similar to the relations between the
relevant physical quantities observed in classical mechanics.

For example, the quantization of the classical equation E = H, where

H = H(pi, q
i) = T + U

denotes the Hamilton’s function of the total system energy (the sum of the
kinetic energy T and potential energy U), gives the Schrödinger equation of
motion of the state ket–vector |ψ(t)〉 in the Hilbert state–space L2(ψ)

i� ∂t|ψ(t)〉 = Ĥ |ψ(t)〉.

In the simplest case of a single particle in the potential field U , the operator
of the total system energy – Hamiltonian is given by:

Ĥ = − �2

2m
∇2 + U,

where m denotes the mass of the particle and ∇ is the classical gradient
operator. So the first term on the r.h.s denotes the kinetic energy of the
system, and therefore the momentum operator must be given by:

p̂ = −i�∇.

Now, for each pair of states |ϕ〉, |ψ〉 their scalar product 〈ϕ|ψ〉 is intro-
duced, which is [Nik95]:

1. Linear (for right multiplier):

〈ϕ|α1ψ1 + α2ψ2〉 = α1〈ϕ|ψ1〉+ α2〈ϕ|ψ2〉;
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2. In transposition transforms to complex conjugated:

〈ϕ|ψ〉 = 〈ψ|ϕ〉;

this implies that it is ‘anti–linear’ for left multiplier:

〈α1ϕ1 + α2ϕ2〉 = ᾱ1〈ϕ1|ψ〉+ ᾱ2〈ϕ2|ψ〉);

3. Additionally it is often required, that the scalar product should be posi-
tively defined:

for all |ψ〉, 〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 iff |ψ〉 = 0.

Complex conjugation of classical variables is represented as Hermitian
conjugation of operators. We remind some definitions:

– two operators f̂ , f̂+ are called Hermitian conjugated (or adjoint), if

〈ϕ|f̂ψ〉 = 〈f̂+ϕ|ψ〉 (for all ϕ,ψ).

This scalar product is also denoted by 〈ϕ|f̂ |ψ〉 and called a matrix element
of an operator.

– operator is Hermitian (self–adjoint) if f̂+ = f̂ and anti–Hermitian if
f̂+ = −f̂ ;

– operator is unitary, if Û+ = Û−1; such operators preserve the scalar
product:

〈Ûϕ|Ûψ〉 = 〈ϕ|Û+Û |ψ〉 = 〈ϕ|ψ〉.
Real classical variables should be represented by Hermitian operators; com-

plex conjugated classical variables (a, ā) correspond to Hermitian conjugated
operators (â, â+).

Multiplication of a state by complex numbers does not change the state
physically.

Any Hermitian operator in Hilbert space has only real eigenvalues:

f̂ |ψi〉 = fi|ψi〉, (for all fi ∈ R).

Eigenvectors |ψi〉 form complete orthonormal basis (eigenvectors with diff-
erent eigenvalues are automatically orthogonal; in the case of multiple eigen-
values one can form orthogonal combinations; then they can be normalized).

If the two operators f̂ and ĝ commute, i.e., [f̂ , ĝ] = 0 (see Heisenberg
picture below), than the corresponding quantities can simultaneously have
definite values. If the two operators do not commute, i.e., [f̂ , ĝ] 
= 0, the
quantities corresponding to these operators cannot have definite values simul-
taneously, i.e., the general Heisenberg’s uncertainty relation is valid:

(Δf̂)2 · (Δĝ)2 ≥ �

4
[f̂ , ĝ]2,
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where Δ denotes the deviation of an individual measurement from the mean
value of the distribution. The well–known particular cases are ordinary uncer-
tainty relations for coordinate–momentum (q − p), and energy–time (E − t):

Δq ·Δpq ≥
�

2
, and ΔE ·Δt ≥ �

2
.

For example, the rules of commutation, analogous to the classical ones
written by the Poisson’s brackets, are postulated for canonically–conjugate
coordinate and momentum operators:

[q̂i, q̂j ] = 0, [p̂i, p̂j ] = 0, [q̂i, p̂j ] = i�δi
j Î ,

where δi
j is the Cronecker’s symbol. By applying the commutation rules to

the system Hamiltonian Ĥ = Ĥ(p̂i, q̂
i), the quantum Hamilton’s equations

are obtained:
d(p̂i)
dt

= −∂Ĥ

∂q̂i
, and

d(q̂i)
dt

=
∂Ĥ

∂p̂i
.

A quantum state can be observed either in the coordinate q−representation,
or in the momentum p−representation. In the q−representation, operators of
coordinate and momentum have respective forms: q̂ = q, and p̂q = −i� ∂

∂q ,
while in the p–representation, they have respective forms: q̂ = i� ∂

∂pq
, and

p̂q = pq. The forms of the state vector |ψ(t)〉 in these two representations
are mathematically related by a Fourier–transform pair (within the Planck
constant).

Quantum Pictures

In the q−representation the quantum state is usually determined, i.e., the
first quantization is performed, in one of the three quantum pictures (see e.g.,
[Dir82]):

1. Schrödinger picture,
2. Heisenberg picture, and
3. Dirac interaction picture.

These three pictures mutually differ in the time–dependence, i.e., time–
evolution of the state vector |ψ(t)〉 and the Hilbert coordinate basis (qi)
together with the system operators.

1. In the Schrödinger (S) picture, under the action of the evolution operator
Ŝ(t) the state–vector |ψ(t)〉 rotates:

|ψ(t)〉 = Ŝ(t) |ψ(0)〉,

and the coordinate basis (qi) is fixed, so the operators are constant in time:

F̂ (t) = F̂ (0) = F̂ ,
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and the system evolution is determined by the Schrödinger wave equation:

i� ∂t|ψS(t)〉 = ĤS |ψS(t)〉.

If the Hamiltonian does not explicitly depend on time, Ĥ(t) = Ĥ, which is
the case with the absence of variables of macroscopic fields, the state vector
|ψ(t)〉 can be presented in the form:

|ψ(t)〉 = exp(−i
E

�
t) |ψ〉,

satisfying the time–independent Schrödinger equation

Ĥ |ψ〉 = E |ψ〉,

which gives the eigenvalues Em and eigenfunctions |ψm〉 of the Hamiltonian Ĥ.
2. In the Heisenberg (H) picture, under the action of the evolution operator

Ŝ(t), the coordinate basis (qi) rotates, so the operators of physical variables
evolve in time by the similarity transformation:

F̂ (t) = Ŝ−1(t) F̂ (0) Ŝ(t),

while the state vector |ψ(t)〉 is constant in time:

|ψ(t)〉 = |ψ(0)〉 = |ψ〉,

and the system evolution is determined by the Heisenberg equation of motion:

i� ∂tF̂
H(t) = [F̂H(t), ĤH(t)],

where F̂ (t) denotes arbitrary Hermitian operator of the system, while the
commutator, i.e., Poisson quantum bracket, is given by:

[F̂ (t), Ĥ(t)] = F̂ (t) Ĥ(t)− Ĥ(t) F̂ (t) = ı̂K.

In both Schrödinger and Heisenberg picture the evolution operator Ŝ(t) itself
is determined by the Schrödinger–like equation:

i� ∂tŜ(t) = Ĥ Ŝ(t),

with the initial condition Ŝ(0) = Î. It determines the Lie group of transfor-
mations of the Hilbert space L2(ψ) in itself, the Hamiltonian of the system
being the generator of the group.

3. In the Dirac interaction (I) picture both the state vector |ψ(t)〉 and
coordinate basis (qi) rotate; therefore the system evolution is determined by
both the Schrödinger wave equation and the Heisenberg equation of motion:

i� ∂t|ψI(t)〉 = ĤI |ψI(t)〉, and i� ∂tF̂
I(t) = [F̂ I(t), ĤO(t)].
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Here: Ĥ = Ĥ0 + ĤI , where Ĥ0 corresponds to the Hamiltonian of the free
fields and ĤI corresponds to the Hamiltonian of the interaction.

Finally, we can show that the stationary Schrödinger equation

Ĥ ψ = Ê ψ

can be obtained from the condition for the minimum of the quantum action:

δS = 0.

The quantum action is usually defined by the integral:

S = 〈ψ(t)| Ĥ |ψ(t)〉 =
∫

ψ∗Ĥψ dV,

with the additional normalization condition for the unit–probability of the
psi–function:

〈ψ(t)|ψ(t)〉 =
∫

ψ∗ψ dV = 1.

When the functions ψ and ψ∗ are considered to be formally independent and
only one of them, say ψ∗ is varied, we can write the condition for an extreme
of the action:

δS =
∫

δψ∗Ĥψ dV − E

∫
δψ∗ψ dV =

∫
δψ∗(Ĥψ − Eψ) dV = 0,

where E is a Lagrangian multiplier. Owing to the arbitrariness of δψ∗, the
Schrödinger equation Ĥψ − Êψ = 0 must hold.

Spectrum of a Quantum Operator

To recapitulate, each state of a system is represented by a state vector |ψ〉
with a unit–norm, 〈ψ|ψ〉 = 1, in a complex Hilbert space H, and vice versa.
Each system observable is represented by a Hermitian operator Â in a Hilbert
space H, and vice versa. A Hermitian operator Â in a Hilbert space H has
its domain DÂ ⊂ H which must be dense in H, and for any two state vectors
|ψ〉, |ϕ〉 ∈ DÂ holds 〈Âψ|ϕ〉 = 〈ψ|Âϕ〉 (see e.g., [Mes00]).

Discrete Spectrum. A Hermitian operator Â in a finite–dimensional
Hilbert space Hd has a discrete spectrum {ai, a ∈ R, i ∈ N}, defined as a set
of discrete eigenvalues ai, for which the characteristic equation

Â|ψ〉 = a|ψ〉 (3.5)

has the solution eigenvectors |ψa〉 
= 0 ∈ DÂ ⊂ Hd. For each particular
eigenvalue a of a Hermitian operator Â there is a corresponding discrete char-
acteristic projector π̂a = |ψa〉 〈ψa| (i.e., the projector to the eigensubspace of
Â composed of all discrete eigenvectors |ψa〉 corresponding to a).
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Now, the discrete spectral form of a Hermitian operator Â is defined as

Â = aiπ̂i =
∑

i

ai |i〉 〈i|, for all i ∈ N (3.6)

where ai are different eigenvalues and π̂i are the corresponding projectors
subject to ∑

i

π̂i = Î , π̂iπ̂j = δij π̂j ,

where Î is identity operator in Hd.
A Hermitian operator Â defines, with its characteristic projectors π̂i, the

spectral measure of any interval on the real axis R; for example, for a closed
interval [a, b] ⊂ R holds

π̂[a,b](Â) =
∑

ai∈[a,b]

π̂i, (3.7)

and analogously for other intervals, (a, b], [a, b), (a, b) ⊂ R; if ai ∈ [a, b] =Ø
then π̂[a,b](Â) = 0, by definition.

Now, let us suppose that we measure an observable Â of a system in
state |ψ〉. The probability P to get a result within the a‘priori given interval
[a, b] ⊂ R is given by its spectral measure

P ([a, b], Â, ψ) = 〈ψ|π̂[a,b](Â)|ψ〉. (3.8)

As a consequence, the probability to get a discrete eigenvalue ai as a result of
measurement of an observable Â equals its expected value

P (ai, Â, ψ) = 〈ψ|π̂i|ψ〉 = 〈π̂i〉,

where 〈B̂〉 in general denotes the average value of an operator B̂. Also, the
probability to get a result a which is not a discrete eigenvalue of an observable
Â in a state |ψ〉 equals zero.

Continuous Spectrum. A Hermitian operator Â in an infinite–
dimensional Hilbert space Hc (the so–called rigged Hilbert space) has both a
discrete spectrum {ai, a ∈ R, i ∈ N} and a continuous spectrum [c, d] ⊂ R.
In other words, Â has both a discrete sub–basis {|i〉 : i ∈ N} and a contin-
uous sub–basis {|s〉 : s ∈ [c, d] ⊂ R}. In this case s is called the continuous
eigenvalue of Â. The corresponding characteristic equation is

Â|ψ〉 = s|ψ〉. (3.9)

Equation (3.9) has the solution eigenvectors |ψs〉 
= 0 ∈ DÂ ⊂ Hc, given by
the Lebesgue integral

|ψs〉 =
∫ b

a

ψ (s) |s〉 ds, c ≤ a < b ≤ d,
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where ψ (s) = 〈s|ψ〉 are continuous, square integrable Fourier coefficients,∫ b

a

|ψ (s)| 2 ds < +∞,

while the continuous eigenvectors |ψs〉 are orthonormal,

ψ (t) = 〈t|ψs〉 =
∫ d

c

ψ (s) δ(s− t) ds, (3.10)

i.e., normed on the Dirac δ−function, with

〈t|s〉 = δ(s− t), s, t ∈ [c, d].

The corresponding continuous projectors π̂c
[a,b](Â) are defined as Lebesgue

integrals

π̂c
[a,b](Â) =

∫ b

a

|s〉 ds 〈s| = |s〉 〈s|, −c ≤ a < b ≤ d. (3.11)

In this case, projecting any vector |ψ〉 ∈ Hc using π̂c
[a,b](Â) is given by

π̂c
[a,b](Â) |ψ〉 =

(∫ b

a

|s〉 ds 〈s|
)
|ψ〉 =

∫ b

a

ψ (s) |s〉 ds.

Now, the continuous spectral form of a Hermitian operator Â is defined as

Â =
∫ d

c

|s〉 s ds 〈s| .

Total Spectrum. The total Hilbert state–space of the system is equal to
the orthogonal sum of its discrete and continuous subspaces,

H = Hd ⊕Hc. (3.12)

The corresponding discrete and continuous projectors are mutually comple-
mentary,

π̂ai
(Â) + π̂c

[c,d](Â) = Î .

Using the closure property∑
i

|i〉〈i|+
∫ b

a

|s〉 ds 〈s| = Î ,

the total spectral form of a Hermitian operator Â ∈ H is given by

Â =
∑

i

ai |i〉 〈i|+
∫ d

c

|s〉 s ds 〈s| , (3.13)
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while an arbitrary vector |ψ〉 ∈ H is equal to

|ψ〉 =
∑

i

ψi|i〉+
∫ d

c

ψ (s) |s〉 ds.

Here, ψi = 〈i|ψ〉 are discrete Fourier coefficients, while ψ (s) = 〈s|ψ〉 are
continuous, square integrable, Fourier coefficients,∫ b

a

|ψ (s)| 2 ds < +∞.

Using both discrete and continuous Fourier coefficients, ψi and ψ (s), the
total inner product of H is defined as

〈ϕ|ψ〉 = ϕ̄iψi +
∫ d

c

ϕ̄(s)ψ (s) ds, (3.14)

while the norm is

〈ψ|ψ〉 = ψ̄iψi +
∫ d

c

ψ̄(s)ψ (s) ds.

The total spectral measure is now given as

π̂[a,b](Â) =
∑

i

π̂i +
∫ b

a

|s〉 ds 〈s| ,

so the probability P to get a measurement result within the a‘priori given
interval [a, b] ∈ R ⊂H is given by

P ([a, b], Â, ψ) =
∑

i

〈ψ|π̂i|ψ〉+
∫ b

a

|ψ (s)| 2 ds, (3.15)

where |ψ (s)| 2 = 〈ψ|s〉 〈s|ψ〉 is called the probability density. From this the
expectation value of an observable Â is equal to

〈Â〉 =
∑

i

ai〈ψ|π̂i|ψ〉+
∫ b

a

s |ψ (s)| 2 ds = 〈ψ|Â|ψ〉,

General Representation Model

In quantum mechanics the total spectral form of the complete observable is
given by relation (3.13). We can split this total spectral form into:

1. Pure discrete spectral form,

Â =
∑

i

ai |i〉 〈i|,

with its discrete eigenbasis {|i〉 : i ∈ N}, which is orthonormal (〈i|j〉 =
δij) and closed (

∑
i |i〉 〈i| = Î); and
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2. Pure continuous spectral form,

B̂ =
∫ d

c

|s〉 s ds 〈s| ,

with its continuous eigenbasis {|s〉 : s ∈ [c, d] ⊂ R}, which is orthonormal
(〈s|t〉 = δ(s− t)) and closed (

∫ d

c
|s〉 ds 〈s| = Î).

The completeness property of each basis means that any vector |ψ〉 ∈ H
can be expanded/developed along the components of the corresponding basis.
In case of the discrete basis we have

|ψ〉 = Î |ψ〉 =
∑

i

|i〉 〈i|ψ〉 =
∑

i

ψi|i〉,

with discrete Fourier coefficients of the development ψi = 〈i|ψ〉.
In case of the continuous basis we have

|ψ〉 = Î |ψ〉 =
∫ d

c

|s〉 ds 〈s|ψ〉 =
∫ d

c

ψ(s) |s〉 ds.

with continuous Fourier coefficients of the two development ψ(s) = 〈s|ψ〉,
which are square integrable,

∫ b

a
|ψ (s)| 2 ds < +∞.

Direct Product Space

Let H1,H2, . . . ,Hn and H be n+ 1 given Hilbert spaces such that dimension
of H equals the product of dimensions of Hi, (i = 1, . . . , n in this section).
We say that the composite Hilbert space H is defined as a direct product of
the factor Hilbert spaces Hi and write

H = H1 ⊗H2 ⊗ ...⊗Hn

if there exists a one–to–one mapping of the set of all uncorrelated vectors
{|ψ1〉, |ψ2〉, . . . , |ψn〉}, |ψi〉 ∈ Hi, with zero inner product (i.e., 〈ψi|ψj〉 = 0, for
i 
= j) – onto their direct product |ψ1〉×|ψ2〉× . . .×|ψn〉, so that the following
conditions are satisfied:

1. Linearity per each factor:⎛⎝ J1∑
j1=1

bj1 |ψj1〉

⎞⎠×
⎛⎝ J2∑

j2=1

bj2 |ψj2〉

⎞⎠× . . .×

⎛⎝ Jn∑
jn=1

bjn
|ψjn

〉

⎞⎠
=

J1∑
j1=1

J2∑
j2=1

. . .

Jn∑
jn=1

bj1bj2 . . . bjn
|ψj1〉 × |ψj2〉 × . . .× |ψjn

〉.

2. Multiplicativity of scalar products of uncorrelated vectors |ψi〉, |ϕi〉 ∈
Hi:
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(|ψ1〉×|ψ2〉× . . .×|ψn〉 , |ϕ1〉×|ϕ2〉× . . .×|ϕn〉)
= 〈ψ1|ϕ1〉 × 〈ψ2|ϕ2〉 × . . .× 〈ψn|ϕn〉.

3. Uncorrelated vectors generate the whole composite space H, which
means that in a general case a vector in H equals the limit of linear com-
binations of uncorrelated vectors, i.e.,

|ψ〉 = lim
K→∞

K∑
k=1

bk|ψk
1〉×|ψk

2〉× . . .×|ψk
n〉.

Let {|ki〉} represent arbitrary bases in the factor spaces Hi. They induce
the basis {|k1〉×|k2〉× . . .×|kn〉} in the composite space H.

Let Âi be arbitrary operators (either all linear or all antilinear) in the fac-
tor spaces Hi. Their direct product, Â1⊗Â2⊗...⊗Ân acts on the uncorrelated
vectors (

Â1 ⊗ Â2 ⊗ . . .⊗ Ân

)
(|ψ1〉×|ψ2〉× . . .×|ψn〉 )

=
(
Â1|ψ1〉

)
×
(
Â2|ψ2〉

)
× . . .×

(
Ân|ψn〉

)
State–Space for n Quantum Particles

Classical state–space for the system of n particles is its 6ND phase–space
P, including all position and momentum vectors, ri = (x, y, z)i and pi =
(px, py, pz)i respectively, for i = 1, . . . , n.

The quantization is performed as a linear representation of the real Lie
algebra LP of the phase–space P, defined by the Poisson bracket {A,B}
of classical variables A,B – into the corresponding real Lie algebra LH of
the Hilbert space H, defined by the commutator [Â, B̂] of skew–Hermitian
operators Â, B̂.

We start with the Hilbert space Hx for a single 1D quantum particle, which
is composed of all vectors |ψx〉 of the form

|ψx〉 =
∫ +∞

−∞
ψ (x) |x〉 dx,

where ψ (x) = 〈x|ψ〉 are square integrable Fourier coefficients,∫ +∞

−∞
|ψ (x)| 2 dx < +∞.

The position and momentum Hermitian operators, x̂ and p̂, respectively, act
on the vectors |ψx〉 ∈ Hx in the following way:

x̂|ψx〉 =
∫ +∞

−∞
x̂ ψ (x) |x〉 dx,

∫ +∞

−∞
|xψ (x)| 2 dx < +∞,

p̂|ψx〉 =
∫ +∞

−∞
−i�

∂

∂x̂
ψ (x) |x〉 dx,

∫ +∞

−∞

∣∣∣∣−i�
∂

∂x
ψ (x)

∣∣∣∣2 dx < +∞.
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The orbit Hilbert space Ho
1 for a single 3D quantum particle with the full

set of compatible observable r̂ =(x̂, ŷ, ẑ), p̂ = (p̂x, p̂y, p̂z), is defined as

Ho
1 = Hx ⊗Hy ⊗Hz,

where r̂ has the common generalized eigenvectors of the form

|̂r〉 = |x〉×|y〉×|z〉 .

Ho
1 is composed of all vectors |ψr〉 of the form

|ψr〉 =
∫
Ho

ψ (r) |r〉 dr =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ψ (x, y, z) |x〉×|y〉×|z〉 dxdydz,

where ψ (r) = 〈r|ψr〉 are square integrable Fourier coefficients,∫ +∞

−∞
|ψ (r)| 2 dr < +∞.

The position and momentum operators, r̂ and p̂, respectively, act on the
vectors |ψr〉 ∈ Ho

1 in the following way:

r̂|ψr〉 =
∫
Ho

1

r̂ψ (r) |r〉 dr,
∫
Ho

1

|rψ (r)| 2 dr < +∞,

p̂|ψr〉 =
∫
Ho

1

−i�
∂

∂r̂
ψ (r) |r〉 dr,

∫
Ho

1

∣∣∣∣−i�
∂

∂r
ψ (r)

∣∣∣∣2 dr < +∞.

Now, if we have a system of n 3D particles, let Ho
i denote the orbit Hilbert

space of the ith particle. Then the composite orbit state–spaceHo
n of the whole

system is defined as a direct product

Ho
n = Ho

1 ⊗Ho
2 ⊗ . . .⊗Ho

n.

Ho
n is composed of all vectors

|ψn
r 〉 =

∫
Ho

n

ψ (r1, r2, . . . , rn) |r1〉×|r2〉× . . .×|rn〉 dr1dr2 . . . drn

where ψ (r1, r2, . . . , rn) = 〈r1, r2, . . . , rn|ψn
r 〉 are square integrable Fourier

coefficients ∫
Ho

n

|ψ (r1, r2, . . . , rn)|2 dr1dr2 . . . drn < +∞,

The position and momentum operators r̂i and p̂i act on the vectors |ψn
r 〉 ∈

Ho
n in the following way:

r̂i|ψn
r 〉 =

∫
Ho

n

{r̂i}ψ (r1, r2, . . . , rn) |r1〉×|r2〉× . . .×|rn〉 dr1dr2 . . . drn,

p̂i|ψn
r 〉 =

∫
Ho

n

{
−i�

∂

∂r̂i

}
ψ (r1, r2, . . . , rn) |r1〉×|r2〉× . . .×|rn〉 dr1dr2 . . . drn,
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with the square integrable Fourier coefficients∫
Ho

n

|{r̂i}ψ (r1, r2, . . . , rn)|2 dr1dr2 . . . drn < +∞,∫
Ho

n

∣∣∣∣{−i�
∂

∂ri

}
ψ (r1, r2, . . . , rn)

∣∣∣∣2 dr1dr2 . . . drn < +∞,

respectively. In general, any set of vector Hermitian operators {Âi} corres-
ponding to all the particles, act on the vectors |ψn

r 〉 ∈ Ho
n in the following

way:

Âi|ψn
r 〉 =

∫
Ho

n

{Âi}ψ (r1, r2, . . . , rn) |r1〉×|r2〉× . . .×|rn〉 dr1dr2 . . . drn,

with the square integrable Fourier coefficients∫
Ho

n

∣∣∣{Âi

}
ψ (r1, r2, . . . , rn)

∣∣∣2 dr1dr2 . . . drn < +∞.

3.1.2 Relativistic Quantum Mechanics and Electrodynamics

Difficulties of the Relativistic Quantum Mechanics

The theory outlined above is not in agreement with the Einstein’s restricted
Principle of relativity , as is at once evident from the special role played by
the time t. Thus, while it works very well in the non–relativistic region of low
velocities, where it appears to be in complete agreement with experiment, it
can be considered only as an approximation, and one must face the task of
extending it to make it conform to restricted relativity.1 One should be pre-
pared for possible further alterations being needed in basic physical concepts,
and hence one should follow the route of first setting up the mathematical
formalism and then seeking its physical interpretation.

Setting up the mathematical formalism is a fairly straightforward matter.
One must first put classical Newtonian mechanics into relativistic Hamiltonian
form. One must take into account that the various particles comprising the
dynamical system interact through the medium of the electromagnetic field,
and one must use Lorentz’s equations of motion for them, including the damp-
ing terms which express the reaction of radiation. This is done in subsection
3.1.2 below, where, with the help of the Dirac’s electrodynamic action princi-
ple, the equations of motion are obtained in the Hamiltonian form (3.62) with
the Hamiltonians Fi, one for each particle, given by (3.61). This Hamiltonian
formulation may now be made into a quantum theory by following rules

1 General relativity (i.e., gravitation theory) need not be considered here, since
gravitational effects are negligible in purely atomic theory.



480 3 Quantum Computational Mind

which have become standardized from the non–relativistic quantum mechan-
ics. The resulting formalism appears to be quite satisfactory mathematically,
but when one proceeds to consider its physical interpretation one meets with
serious difficulties [Dir26c, Dir26e, Dir32, Cha48].

Take an elementary example, that of a free particle without spin, moving
in the absence of any field. The classical Hamiltonian for this system is the
left–hand side of the equation

p2
0 − p2

1 − p2
2 − p2

3 −m2 = 0, (3.16)

where p0 is the energy and p1, p2, p3 the momentum of the particle, the
velocity of light being taken as unity. Passing over to quantum theory by the
standard rules, one gets from this Hamiltonian the so–called Klein–Gordon
wave equation

(�2� + m2)ψ = 0, (3.17)

where � is the Dalambertian wave operator,

� ≡ ∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

.

The wave function ψ here is a scalar, involving the coordinates x1, x2, x3 and
the time t = x0 on the same footing, and so it is suitable for a relativistic
theory.

If one now tries to use the old interpretation that |ψ|2 is the probability
per unit volume of the particle being in the neighborhood of the point x =
x1, x2, x3 at the time x0, one immediately gets into conflict with relativity,
since this probability ought to transform under Lorentz transformations like
the time–component of a 4–vector, while |ψ|2 is a scalar. Also the conservation
law for total probability would no longer hold, the usual proof of it failing on
account of the wave equation (3.17) not being linear in ∂x0 ≡ ∂/∂x0 .

An important step forward was taken by [Gor26] and [Kle27], who pro-
posed that instead of|ψ|2 one should use the expression

1
4πi

[ψ ∂x0 ψ̄ − ψ̄ ∂x0ψ], (3.18)

where ψ̄ = ψ̄(x0, x1, x2, x3) is the complex–conjugate wave ψ−function.
The expression (3.18) is the time component of a 4–vector. Further, it

is easily verified that the divergence of this 4–vector vanishes, which gives
the conservation law in relativistic form. Thus, (3.18) is evidently the correct
mathematical form to use.

However, this form leads to trouble on the physical side, since, although it
is real, it is not positive definite like |ψ|2. Its employment would result in one
having at times a negative probability for the particle being in a certain place.

This is not the only physical difficulty. Let us consider the energy and
momentum of the particle, and take for simplicity a state for which these
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variables have definite values. The corresponding wave ψ−function will be of
the form of plane waves,

ψ = exp[−i(p0x0 − p1x1 − p2x2 − p3x3)/�].

In order that the wave equation (3.17) may be satisfied, the energy and
momentum values p0, p1, p2, p3 here must satisfy the classical equation (3.16).
This equation allows of negative values for the energy p0 as well as positive
ones and is, in fact, symmetrical between positive and negative energies. The
negative energies occur also in the classical theory, but do not then cause
trouble, since a particle started off in a positive–energy state can never make
a transition to a negative–energy one. In the quantum theory, however, such
transitions are possible and do in general take place under the action of per-
turbing forces [Dir26c, Dir26e, Dir32].

The wave ψ−function may be transformed to the momentum and energy
variables. The Klein–Gordon expression (3.18) then goes over into

|ψ(p0, p1, p2, p3)|2p−1
0 dp1dp2dp3, (3.19)

as the probability of the momentum having a value within the small domain
dp1dp2dp3 about the value p1, p2, p3, with the energy having the value p0,
which must be connected with p1, p2, p3 by (3.16). The weight factor p−1

0

appears in (3.19) and makes it Lorentz invariant, since ψ(p) is a scalar
(it is defined in terms of ψ(x) to make it so), and the differential element
p−1
0 dp1dp2dp3 is also Lorentz invariant. This weight factor may be positive

or negative, and makes the probability positive or negative accordingly. Thus
the two undesirable things, negative energy and negative probability, always
occur together.

Let us pass on to another simple example, that of a free particle with
spin half a quantum. The wave equation is of the same form (3.17) as before,
but the wave ψ−function is no longer a scalar. It must have two compo-
nents, or four if there is a field present, and the way they transform under
Lorentz transformations is given by the general connection between the theory
of angular momentum in quantum mechanics and group theory. The expres-
sion

∑ |ψ(x)|2, summed for the components of ψ, turns out to be the time
component of a 4–vector, and further the divergence of this 4–vector vanishes.
Thus it is satisfactory to use this expression as the probability per unit volume
of the particle being at any place at any time. One does not now have any
negative probabilities in the theory. However, the negative energies remain,
as in the case of no spin.

We may go on and consider particles of higher spin. The general result
is that there are always states of negative energy as well as those of positive
energy. For particles whose spin is an integral number of quanta, the negative–
energy states occur with a negative probability and the positive– energy ones
with a positive probability, while for particles whose spin is a half–odd integral
number of quanta, all states occur with a positive probability [Dir26e, Dir32].
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Negative energies and probabilities should not be considered as nonsense.
They are well–defined concepts mathematically, like a negative sum of money,
since the equations which express the important properties of energies and
probabilities can still be used when they are negative. Thus negative energies
and probabilities should be considered simply as things which do not appear in
experimental results. The physical interpretation of relativistic quantum me-
chanics that one gets by a natural development of the non–relativistic theory
involves these things and is thus in contradiction with experiment. We there-
fore have to consider ways of modifying or supplementing this interpretation.

Particles of Half–Odd Integral Spin

Let us first consider particles with a half–odd integral spin, for which there is
only the negative–energy difficulty to be removed. The chief particle of this
kind for which a relativistic theory is needed is the electron, with spin half a
quantum. Now electrons, and also, it is believed, all particles with a half–odd
integral spin, satisfy the Pauli’s Exclusion Principle, according to which not
more than one of them can be in any quantum state.2 With this principle
there are only two alternatives for a state, either it is unoccupied or it is
occupied by one particle, and a symmetry appears with respect to these two
alternatives.

Dirac proposed a way of dealing with the negative–energy difficulty for
electrons, based on a theory in which nearly all their negative–energy states
are occupied (see [Dir36]). An unoccupied negative–energy state now appears
as a ‘hole’ in the distribution of occupied negative–energy states and thus has
a deficiency of negative energy, i.e., a positive energy. From the wave equation
one finds that a hole moves in the way one would expect a positively charged
electron to move. It becomes reasonable to identify the holes with the recently
discovered positrons, and thus to get an interpretation of the theory involving
positrons together with electrons. An electron jumping from a positive– to a
negative–energy state in the theory is now interpreted as an annihilation of
an electron and a positron, and one jumping from a negative– to a positive–
energy state as a creation of an electron and a positron.

The theory involves an infinite density of electrons everywhere. It becomes
necessary to assume that the distribution of electrons for which all positive–
energy states are unoccupied and all negative–energy states occupied, what
one may call the vacuum distribution, as it corresponds to the absence of all
electrons and positrons in the interpretation, is completely unobservable. Only
departures from this distribution are observable and contribute to the electric
density and current which give rise to electromagnetic field in accordance with
Maxwell’s equations.

The above theory does provide a way out from the negative–energy dif-
ficulty, but it is not altogether satisfactory. The infinite number of electrons
2 This principle is obtained in quantum mechanics from the requirement that wave

functions shall be antisymmetric in all the particles.
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that it involves requires one to deal with wave functions of very great com-
plexity and leads to such complicated mathematics that one cannot solve even
the simplest problems accurately, but must resort to crude and unreliable
approximations. Such a theory is a most inconvenient one to have to work
with, and on general philosophical grounds one feels that it must be wrong
[Dir26c, Dir26e, Dir36].

Let us see whether one can modify the theory so as to make it possible to
work out simple examples accurately, while retaining the basic idea of identify-
ing unoccupied negative–energy states with positrons. The simple calculations
that one can make involve simple wave functions, referring to only one or two
electrons, and thus referring to nearly all the negative–energy states being un-
occupied. The calculations therefore apply to a world almost saturated with
positrons, i.e., having nearly every quantum state for a positron occupied.
Such a world, of course, differs very much from the actual world. One can
now calculate the probability of any kind of collision process occurring in this
hypothetical world (in so far as electrons and positrons are concerned). One
can deduce the probability coefficient for the process, i.e., the probability per
unit number of incident particles or per unit intensity of the beam of incident
particles, for each of the various kinds of incident particle taking part in the
process. For this purpose one must use the laws of statistical mechanics, which
tell how the probability of a collision process depends on the number of inci-
dent particles, paying due attention to the modified form of these laws arising
from the Pauli’s exclusion principle.

Let us now assume that probability coefficients so calculated for the hypo-
thetical world are the same as those of the actual world. This single assumption
provides a general physical interpretation for the formalism, enabling one to
calculate collision probabilities in the actual world. It does not provide a com-
plete physical theory, since it enables one to calculate only those experimen-
tal results that are reducible to collision probabilities, and some branches of
physics, e.g., the structure of solids, do not seem to be so reducible. However,
collision probabilities are the things for which a relativistic theory is at present
most needed, and one may hope in the future to find ways of extending the
scope of the theory to make it include the whole of physics.

Comparing the new theory with the old, one may say that the new assump-
tion, identifying collision probability coefficients in the actual world with those
in a certain hypothetical world, replaces the old assumption about the non–
observability of the vacuum distribution of negative–energy electrons. The
approximations needed for working out simple examples in the old theory are
equivalent in their mathematical effect to making the new assumption; e.g.,
these approximations include the neglect of the Coulomb interaction between
electron and positron in the calculation of the prob ability of pair creation
and annihilation, and this interaction cannot appear in the new theory, since
the calculation there is concerned with a one–electron system. Thus the new
theory may be considered as a precise formulation of the old theory together
with some general approximations needed for applying it.
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The new theory for dealing with the negative–energy states of the elec-
tron may be applied to any kind of elementary particle with spin half a
quantum, and probably also to particles with other half–odd integral spin
values, provided, of course, they satisfy Pauli’s exclusion principle. It may
thus be applied to protons and neutrons. It requires for each particle the pos-
sibility of existence of an antiparticle of the opposite charge, if the original
particle is charged. If the original particle is uncharged, one can arrange for
the antiparticle to be identical with the original [Dir26c, Dir26e, Dir36].

Particles of Integral Spin

Most of the elementary particles of physics have half–odd integral spin, but
there is the important exception of the photon (or, light–quantum), with spin
one quantum, and there is the cosmic–ray particle, the meson, also probably
with spin one quantum. All these kinds of particle, it is believed, satisfy the
Bose–Einstein statistics, a statistics which allows any number of particles to
be in the same quantum state with the same a priori probability.3 For these
kinds of particles the previous method of dealing with the negative–energy
states is therefore no longer applicable, and there is the further difficulty of
the negative probabilities.

When dealing with particles satisfying the Bose–Einstein statistics, it is
useful to consider the operators corresponding to the absorption of a particle
from a given state or the emission into a given state. These operators can
be treated as dynamical variables, although they do not have any analogues
in classical mechanics. If one works out their equations of motion and trans-
formation equations, one finds a remarkable correspondence. The absorption
operators from a set of independent states have the same equations of motion
and transformation equations as the wave ψ−function representing a single
particle, and similarly for the emission operators and the conjugate com-
plex wave ψ̄−function. Thus one can pass from a one–particle theory to a
many–particle theory by making the ψ and ψ̄ describing the one particle into
absorption and emission operators (or anihilation and creation operators),
which must satisfy the appropriate commutation relations. Such a passage is
called second quantization.

One can get over the difficulties of negative energies and negative probabil-
ities for Bose–Einstein particles by abandoning the attempt to get a satisfac-
tory theory of a single particle and passing on to consider the problem of many
particles, using a method given by Pauli and Weisskopf [PE34] for electrons
having no spin and satisfying the Bose–Einstein statistics. 4 The method of
Pauli and Wiesskopf is to work entirely with positive–energy states. The oper-
ators of absorption from and emission into negative–energy states, arising in
3 This statistics is obtained in quantum mechanics from the requirement that wave

functions shall be symmetric in all the particles.
4 Such electrons are not known experimentally, but there is no known theoretical

reason why they should not exist.
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the application of second quantization to the one–electron theory, are replaced
by the operators of emission into and absorption from positive–energy states
of electrons with the opposite charge, respectively. This replacement does not
disturb the laws of conservation of charge, energy and momentum. The re-
sulting theory involves spinless electrons of both kinds of charge together,
and leads to pair creation and annihilation, as with ordinary electrons and
positrons [Dir26e, Dir26c].

The method of Pauli and Wiesskopf may be applied in a degenerate form
to photons and leads to the quantum electrodynamics of Heisenberg and Pauli
[HP29a, HP29b]. To take into account that photons have no charge, one must
start with a one–particle theory in which the wave functions are real, so that
ψ̄ = ψ. The part of the wave ψ−function referring to positive–energy states
is then made into the absorption operators from positive–energy states, and
the part referring to negative–energy states into the emission operators into
positive energy states. The resulting scheme of operators, involving only posi-
tive energy photon states, may then be put into correspondence with classical
electrodynamics, according to the usual laws governing the correspondence
between quantum and classical theory.

It would seem that in this way the difficulties of negative energies and
probabilities for Bose–Einstein particles can be overcome, but a new difficulty
appears. When one tries to solve the wave equation (or the wave equations if
there are several particles with their respective Hamiltonians) one gets diver-
gent integrals in the solution, of the form, in the case of photons,∫ ∞

0

f(v)dv, f(v) ∼ vn for large v, (3.20)

v being the frequency of a photon. The values 1, 0 and −1 for n are the
chief ones occurring in simple examples. Thus the wave equation really has
no solutions and the method fails [Dir26c, Dir26e].

Dirac had made a detailed study of the divergent integrals occurring in
quantum electrodynamics and had shown [Dir36] with even values of n can be
eliminated by introducing into the equations a certain limiting process, which
one can justify by showing that a corresponding limiting process is needed in
classical electrodynamics to get the equations of motion into Hamiltonian form
(which appears according to the Dirac’s electrodynamic action principle, see
subsection 3.1.2 below). The divergent integrals with odd values of n remain,
however, and indicate something more fundamentally wrong with the theory.

Divergent integrals are a general feature of quantum field theories, and
it has usually been supposed that they should be avoided by altering the
forces or the laws of interaction between the elementary particles at small
distances, so as to get the integrals cut off for some high value of v. However,
one can easily see that this is wrong, in the case of electrodynamics at any
rate, by referring to the corresponding classical theory. The wave ψ−function
should have its analogue in the solution of the Hamilton–Jacobi equation,
in accordance with equation (3.2), but already when one tries to solve the
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Hamilton–Jacobi equation of classical electrodynamics corresponding to the
wave equation of Heisenberg and Pauli’s quantum electrodynamics, one meets
with divergent integrals. Now the classical equations of motion concerned,
namely, Lorentz’s equations including radiation damping, have definite solu-
tions when treated by straightforward methods and if, on trying to get these
solutions by a Hamilton–Jacobi method, one meets with divergent integrals, it
means simply that the Hamilton–Jacobi method is an unsuitable one, and not
that one should try to alter the physical laws of interaction to get the integrals
to converge. The correspondence between the quantum and classical theories
is so close that one can infer that the corresponding divergent integrals in the
quantum theory must also be due to an unsuitable mathematical method.

The appearance of divergent integrals with odd n−values in Heisenberg
and Pauli’s form of quantum electrodynamics may be ascribed to the asym-
metrical treatment of positive– and negative–energy photon states. If instead
of using Pauli and Weisskopf’s method one keeps to plain second quantization,
one can build up a form of quantum electrodynamics symmetrical between
positive– and negative–energy photon states [Dir26e, Dir36]. The new theory
leads to similar equations as the old one, but with integrals of the type∫ ∞

−∞
f(v)dv, (3.21)

instead of (3.20), and since f(v) is always a rational algebraic function, and
it is reasonable on physical grounds to approach the upper and lower limits
of integration in (3.21) at the same rate, the divergencies with odd n−values
all cancel out.

Dirac had shown that the new form of quantum electrodynamics also cor-
responds to classical electrodynamics in accordance with the usual laws, with
the exception that operators corresponding to real dynamical variables in
the classical theory are no longer always self-adjoint. This exception is not
important, as it rather stands apart from the general mathematical connec-
tion between quantum and classical theory. The Hamilton–Jacobi equation
corresponding to the wave equation of the new quantum electrodynamics dif-
fers from that of the old one only through being expressed in terms of a
different set of coordinates, but the new Hamilton–Jacobi equation can be
solved without divergent integrals and is connected with a satisfactory action
principle [Dir32, Dir26e, Dir36]. Thus the correspondence with classical theory
of the new form of quantum electrodynamics is more far–reaching than that
of the old form, which provides a strong reason for preferring the new form.
It now becomes necessary to find some new physical interpretation to avoid
the difficulties of negative energies and probabilities.

Let us consider in more detail the relation between the two forms of quan-
tum electrodynamics. In either form the electromagnetic potentials A at two
points x’ and x” must satisfy the commutation relations

[Aμ(x’), Aν(x”)] = gμνΔ(x’− x”), (3.22)
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obtained from analogy with the classical theory, Δ being the four–dimensional
Lorentz–invariant function introduced by Jordan and Pauli (1928), which has
a singularity on the light–cone and vanishes everywhere else. In the quantum
electrodynamics of Heisenberg and Pauli the A’s are operators referring to
the absorption and emission of photons into positive energy states. Let us call
such operators A1. One could introduce a similar set of operators referring
to the absorption and emission of photons into negative–energy states. Let us
call these operators A2. They satisfy the same commutation relations (3.22)
and commute with the A1’s. One can now introduce a third set of operators

A3 =
√

2
2

(A1 + A2),

which operate on wave functions referring to photons in both positive– and
negative–energy states, and which satisfy the same commutation relations
(3.22). The use of this third set gives the new form of quantum electrodynam-
ics arising from plain second quantization.

The three sets of A’s may be expressed in terms of their Fourier compo-
nents as [Dir26e, Dir32, Dir36]

A1(x) =
∫

[Rkei(k,x) + R̄ke−i(kx)]k−1
0 dk1dk2dk3, with k0 =

√
k2
1 + k2

2 + k2
3,

(3.23)

where
∫

denotes the tripple integral, Rk is the emission operator and R̄k is
the absorption operator,

A1(x) =

∫
[Rkei(k,x) + R̄ke−i(kx)]k−1

0 dk1dk2dk3, with k0 = −
√

k2
1 + k2

2 + k2
3 ,

(3.24)

A3(x) =
√

2
2

∑
k0=±

√
k2
1+k2

2+k2
3

∫
[Rkei(k,x) + R̄ke−i(kx)]k−1

0 dk1dk2dk3. (3.25)

Since the three sets of A’s all satisfy the same commutation relations,
they must correspond merely to three different representations of the same
dynamical variables, and the passage from one to another must be a transfor-
mation of the linear type usual in quantum mechanics. Thus, after obtaining
the divergency–free solution of the wave equation in the representation corre-
sponding to A3, one could apply a transformation to get the solution in the A1

representation. However, the transformation would then introduce the same
divergent integrals as appear with the direct solution of the wave equation in
the A1 representation, so one would not get any further this way [Dir36].

In working with the A3 representation one has redundant dynamical vari-
ables. It is as though, in dealing with a system of one degree of freedom with
the variables q, p, one decided to treat it as a system of two degrees–of–freedom
by putting
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q =
√

2
2

(q1 + q2) and p =
√

2
2

(p1 + p2).

This would be quite a correct procedure, but would introduce an unnecessary
complication. In the case of quantum electrodynamics, the complication is a
necessary one, to avoid the divergent integrals. Let us put

B(x) =
√

2
2

[A1(x)−A2(x)]. (3.26)

Then the B’s commute with the A3’s, and thus with all the dynamical vari-
ables appearing in the Hamiltonian, so they are the redundant variables.

To determine the significance of redundant variables in quantum mechanics
one may consider a general case, and work in a representation which separates
the redundant variables from the non–redundant ones. One then sees imme-
diately that a solution of the wave equation corresponds in general, not to a
single state, but to a set of states with a certain probability for each, what in
the classical theory is called a Gibbs ensemble. The. probabilities of the var-
ious states depend on the weights attached to the various eigenvalues of the
redundant variables in the wave ψ−function, these weights being arbitrary,
depending on the weight factor in the representation used. If one works in
a representation which does not separate the redundant and non–redundant
variables, as is the case in quantum electrodynamics with the representation
corresponding to the use of A3, the general result that wave functions repre-
sent Gibbs ensembles and not single states must still be valid. Thus one can
conclude that there are no solutions of the wave equation of quantum elec-
trodynamics representing single states, but only solutions representing Gibbs
ensembles. The problem remains of interpreting the negative energies and
probabilities occurring with these Gibbs ensembles.

For any x, B(x) commutes with the Hamiltonian and is a constant of the
motion. We may give it any value we like, subject to not contradicting the
commutation relations. Instead of B(x) it is more convenient to work with
the potential field, B(x) say, obtained from B(x) by changing the sign of all
the Fourier components containing eik0x0 with negative values of k0. From
(3.26), (3.23) and (3.24), we have [Dir26e, Dir36]

B(x) =
√

2
2

∑
k0=±

√
k2
1+k2

2+k2
3

∫
[Rkei(k,x) − R̄ke−i(kx)]k−1

0 dk1dk2dk3. (3.27)

Let us now take B equal to the initial value of A3, a proceeding which
does not contradict the commutation relations since its consequences are self–
consistent. Then for the initial wave ψ−function we have

[B(x)−A3(x)]ψ = 0,

or, from (3.25) and (3.27),
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R̄kψ = 0, (3.28)

with k0 either positive or negative. Thus any absorption operator applied
to the initial wave ψ−function gives the result zero, which means that the
corresponding state is one with no photons present.

The following natural interpretation for the wave ψ−function at some later
time now appears. That part of it corresponding to no photons present may
be supposed to give (through the square of its modulus) the probability of no
change having taken place in the field of photons; that part corresponding to
one positive–energy photon present may be supposed to give the probability
of a photon having been emitted; that corresponding to one negative–energy
photon present may be supposed to give the probability of a photon having
been absorbed; and so on for the parts corresponding to two or more photons
present. The various parts of the wave ψ−function which referred to the ex-
istence’ of positive– and negative–energy photons in the old interpretation
now refer to the emissions and absorptions of photons. This disposes of the
negative–energy difficulty in a satisfactory way, conforming to the laws of con-
servation of energy and momentum. It is possible only because of the redun-
dant variables enabling one to arrange that the initial wave ψ−function shall
correspond in its entirety to no emissions or absorptions having taken place.

The interpretation is not yet complete, because the theory at present would
give a negative probability for a process involving the absorption of a photon,
or the absorption of any odd number of photons. To find the origin of these
negative probabilities, one must study the probability distribution of the pho-
tons initially present in the Gibbs ensemble, which one can do by transforming
to the representation corresponding to the A1 potentials. It is true that one
cannot apply this transformation to a solution of the wave equation without
getting divergent integrals, as has already been mentioned, but one can apply
it to the initial wave ψ−function, which is of a specially simple form in the
photon variables. In [Dir32, Dir26e, Dir36] it is found that the probability of
there being n photons initially in any photon state is Pn = ±2, according to
whether n is even or odd. Strictly, to make

∑∞
n=0 Pn converge to the limit

unity, one must consider Pn as a limit,

Pn = 2(ε− 1)n, (3.29)

with ε a small positive quantity tending to zero.
Probabilities 2 and −2 are, clearly, not physically understandable, but one

can use them mathematically in accordance with the rules for working with a
Gibbs ensemble. One can suppose a hypothetical mathematical world with the
initial probability distribution (3.29) for the photons, and one can work out
the probabilities of radiative transition processes occurring in this world. One
can deduce the corresponding probability coefficients, i.e., the probabilities per
unit intensity of each beam of incident radiation concerned, by using Einstein’s
laws of radiation. For example, for a process involving the absorption of a
photon, if the probability coefficient is B, the probability of the process is
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∞∑
n=0

nPnB = −1
2
B, (3.30)

and for a process involving the emission of a photon, if the probability
coefficient is A, the probability of the process is

∞∑
n=0

(n + 1)PnA =
1
2
A. (3.31)

Now the probability of an absorption process, as calculated from the theory,
is negative, and that for an emission process is positive, so that, equating
these calculated probabilities to (3.30) and (3.31) respectively, one obtains
positive values for both B and A. Generally, it is easily verified that any
radiative transition probability coefficient obtained by this method is positive.

It now becomes reasonable to assume that these probability coefficients
obtained for a hypothetical world are the same as those of the actual world.
One gets in this way a general physical interpretation for the quantum theory
of photons. When applied to elementary examples, it gives the same results as
Heisenberg and Pauli’s quantum electrodynamics with neglect of the divergent
integrals, since the extra factor

√
2/2 occurring in the matrix elements of the

present theory owing to the
√

2/2 in the right–hand side of (3.25) compensates
the factor 1/2 in the right–hand side of (3.30) or (3.31). The present general
method of physical interpretation is probably applicable to any kind of particle
with an integral spin [Dir32, Dir26e, Dir36, Cha48].

Therefore, it appears that, whether one is dealing with particles of integral
spin or of half-odd integral spin, one is led to a similar conclusion, namely,
that the mathematical methods at present in use in quantum mechanics are
capable of direct interpretation only in terms of a hypothetical world differ-
ing very markedly from the actual one. These mathematical methods can be
made into a physical theory by the assumption that results about collision
processes are the same for the hypothetical world as the actual one. One
thus gets back to Heisenberg’s view about physical theory, that all it does is
to provide a consistent means of calculating experimental results. The lim-
ited kind of description of Nature which Schrödinger’s method provides in the
non–relativistic case is possible relativistically only for the hypothetical world,
and even then is rather more indefinite (e.g., the principle of superposition
of states no longer applies), because of the need to use a Gibbs ensemble for
describing the photon distribution.

To have a description of Nature is philosophically satisfying, though not
logically necessary, and it is somewhat strange that the attempt to get such a
description should meet with a partial success, namely, in the non–relativistic
domain, but yet should fail completely in the later development. It seems to
suggest that the present mathematical methods are not final. Any improve-
ment in them would have to be of a very drastic character, because the source
of all the trouble, the symmetry between positive and negative energies arising
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from the association of energies with the Fourier components of functions of
the time, is a fundamental feature of them [Dir32, Dir26e, Dir36, Cha48].

Dirac’s Electrodynamics Action Principle

There are various forms which the action principle of classical electrodynam-
ics may take, but most of them involve awkward conditions concerning the
singularities of the field where the charged particles are situated and are not
suitable for a subsequent passage to quantum mechanics.

Fokker [Fok29] set up a form of action principle which does not refer to
the singularities of the field and which appears to be the best starting point
for getting a quantum theory. Fokker’s action integral may conveniently be
written with the help of the δ−function as

S = S1 + S2, where

S1 =
∑

i

mi

∫
dsi and (3.32)

S2 =
∑

i

∑
j 	=i

eiej

∫ ∫
δ(zi − zj)2(vi,vj)dsidsj (3.33)

Here, the scalar product notation is used as

(a,b) = aμbμ = a0b0 − a1b1 − a2b2 − a3b3,

and mi and ei are the mass and charge of the ith particle, the 4−vector zi

gives the four coordinates of the point on the world–line of the ith particle
whose proper–time is si, and vi is the velocity 4−vector of the ith particle
satisfying

vi =
dzi

dsi
, (3.34)

v2
i = 1. (3.35)

The integrals in (3.32–3.33) are taken along the world–lines of the particles,
and the occurrence of the δ−function δ(zi − zj)2 in S2 ensures that the only
values for zi and zj contributing to the double integral are those for which
(zi − zj)2 = 0, which means that each of the points zi, zj is on the past or
future light–cone from the other.

The action integral as it stands is not a general one covering all possible
states of motion. To make it general one must, as has been pointed out by the
Dirac (1938), add to it a term of the form

S3 =
∑

i

ei

∫
Mμ(zi)v

μ
i dsi. (3.36)
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The 4−vector potential Mμ(x) may be left for the present an arbitrary func-
tion of the field point x.

For the purpose of deducing the equations of motion, one may take the
limits of integration in the various integrals to be −∞ and ∞, as was done
by Fokker, but in order to introduce momenta and get the equations into
Hamiltonian form one must take finite limits. Let us therefore suppose that
each si goes from s0

i to s′i, and let the corresponding zi and vi be z0
i , z′i and

v0
i , v′

i. It is desirable to restrict the initial values s0
i so that the points z0

i

all lie outside each other’s light–cones, and similarly with the final values s′i.
Thus

(z0
i − z0

j )
2 < 0, (z′i − z′j)

2 < 0, (i 
= j). (3.37)

Now, before making variations in S, one should replace S1, by

S′
1 =

∑
i

mi

∫ √
v2

i dsi, (3.38)

so as to make S homogeneous of degree zero in the differential elements dsi,
vi counting as being of degree −1 [Dir26e]. The expression for S is then valid
with si any parameter on the world–line of the ith particle, so that vi defined
by (3.34) does not necessarily satisfy (3.35).

Let us now make variations ∂zi(si) in the world–lines of the particles,
∂M(x) in the field function M(x), and Ds′i in the final values of the si, so
that the end–points of the world–lines are changed by

Dz′i = ∂z′i + v′
iDs′i, (3.39)

∂z′i being written for ∂zi(s′i). The initial values of the si and the initial points
of the world–lines we suppose for simplicity to be fixed, since variations in
them would give rise to terms of the same form as those arising from variations
in the final values and would not lead to anything new.

Varying S′
1 given by (3.38) and using (3.35), after the variation process,

one gets with the help of (3.39),

S′
1 =

∑
i

mi

[
−
∫ s′

i

s0
i

(
dvi

dsi
, ∂zi

)
dsi + (v′

i, Dz′i)

]
. (3.40)

To get the variation in S2 given by (3.33) one may, owing to the symmetry
between i and j in the double sum, vary only quantities involving i and mul-
tiply by 2. The result is [Dir36]

∂S2 =
∑

i

∑
j �=i

eiej

{∫ s′i

s0
i

∫ s′j

s0
j

[
∂δ(zi − zj)

2

∂zi
(vi,vj) −

d

dsi
[δ(zi − zj)

2vj ]

]
∂zidsidsj

+

∫ s′i

s0
i

δ(z′
i − zj)

2(v′
j , Dz′

i)dsj

}
. (3.41)
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Finally, in varying S3 given by (3.36), one has to take into account that
the total variation in M at a point zi(si) on the ith world–line, let us call it
DM(zi), consists of two parts, a part ∂M(zi) arising from the variation in
the function M(x) and equal to the value of ∂M(x) at the point x = zi, and
a part arising from the variation in zi, equal to ∂M/∂x, at the point x = zi

multiplied into ∂zi; thus

DM(zi) = ∂M(zi) + (∂M/∂x)zi
∂zi. (3.42)

The variation in S3 is now [Dir36]

∂S3 =
∑

i

ei

{∫ s′
i

s0
i

[
∂Mμ(zi)vμi +

(
∂Mμ

∂xν

)
zi

vμi∂zνi −
dMμ(zi)

dsi
∂zμi

]
dsi

+Mμ(z′i)Dz′μi

}
. (3.43)

The total variation in S is given by the sum of the three expressions (3.40),
(3.41) and (3.43).

By equating to zero the total coefficient of ∂zμi, one gets the equation of
motion of the ith particle. It is

−mi
dvμ

i

dsi
+ ei

∑
j 	=i

ej

∫ s′
j

s0
j

[
∂δ(zi − zj)2

∂zi
(vi,vj)−

d

dsi
[δ(zi − zj)2vj ]

]
dsj

+ ei

[(
∂Mμ

∂xν

)
zi

vμi −
dMμ(zi)

dsi

]
= 0.

Introducing the field function

Aμ
i (x) = Mμ(x) +

∑
j 	=i

ej

∫ s′
j

s0
j

∂δ(x− zj)2v
μ
j dsj , (3.44)

the above equation of motion may be written

mi
dvμ

i

dsi
= ei

[(
∂Aμ

i

∂xν

)
zi

vμi −
dAμ(zi)

dsi

]
= ei

[
∂Aμ

i

∂xν
− ∂Aν

i

∂xμ

]
zi

vμi. (3.45)

It is the correct Lorentz equation of motion of the ith particle, provided
Aμ

i is connected with the ingoing and outgoing fields and the retarded and
advanced fields of the other particles by the relation, given by Dirac (1938),

Aμ
i =

1
2

[Aμ
in + Aμ

out] +
1
2

∑
j 	=i

[
Aμ

jret + Aμ
jadv

]
, or

Aμ
i (x) =

1
2

[Aμ
in(x) + Aμ

out(x)] +
∑
j 	=i

ej

∫ ∞

−∞
δ(x− zj)2v

μ
j dsj . (3.46)
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According to (3.44) this requires (in Dirac’s notation for integrals)

Mμ(x) =
1
2

[Aμ
in(x) + Aμ

out(x)]+
∑

j

ej

[∫ s0
j

−∞
+
∫ ∞

s′
j

]
δ(x−zj)2v

μ
j dsj , (3.47)

Note that we are summing here over all values of j [Dir36, Dir26e], as we
are dealing with a space–time region which lies inside the future light–cone
from z0

i and inside the past light–cone from z′i. By assuming that (3.47) holds
throughout space–time, one gets an expression for Mμ(x) independent of i, so
that the equations of motion of all the particles follow from the same Fokker’s
action integral.

One can now pass to the Hamiltonian formulation of the equations of
motion. For each point in space–time x, Mμ(x) may be counted as a coordi-
nate, depending on the proper–times s′i

5, and will have a conjugate momen-
tum, say Kμ(x). These momenta, together with the particle momenta pμ

i , are
defined, as in the general theory of [Wei36], by the coefficients of ∂Mμ(x) and
Dz′μi in the expression for ∂S, so that we have

∂S =
∑

i

pμ
i Dz′μi +

∫ ∞

−∞
Kμ(x)∂Mμ(x)dx0dx1dx2dx3, (3.48)

where the integral sign denotes the quadruple space–time integral. Comparing
(3.48) with the sum of (3.40), (3.41) and (3.43), one gets [Dir26e, Dir36]

Kμ(x) =
∑

i

ei

∫ s′
i

s0
i

δ(x0 − z0i)δ(x1 − z1i)δ(x2 − z2i)δ(x3 − z3i)vμidsi (3.49)

and pμ
i = miv

′μ
i + ei

⎡⎣Mμ(z′i) +
1
2

∑
j

ej

∫ s′
j

s0
j

Δ(z′i − zj + λ)vμ
j dsj

⎤⎦ , (3.50)

where λ is a small 4−vector whose direction is within the future light–cone (so
that λ2 > 0, λ0 > 0), Δ(y) denotes the Jordan and Pauli (1928) Δ−function
of any 4−vector y, satisfying the 4D wave equation

�Δ(y) = 0 which implies �Mμ(y) = 0,

and related to the corresponding δ−function by

Δ(y) = ±2δ(y2).

The momenta satisfy the Poisson bracket commutation relationships

[pμi, zvj ] = gμvδij , (3.51)

[Kμ(x),Mν(x′)] = gμvδ(x0 − x′
0)δ(x1 − x′

1)δ(x2 − x′
2)δ(x3 − x′

3), (3.52)

5 It also depends on the proper–times s0
i , but this does not here concern us.
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so that the Poisson bracket of any two momenta or of any two coordinates
vanishes. Instead of Kμ(x) it is more convenient to work with the momentum
field–function Nμ(x) defined by [Dir58, Dir29]

Nμ(x) =
1
2

∫ ∞

−∞
Δ(x− x′)Kμ(x′)dx′

0dx
′
1dx

′
2dx

′
3, (3.53)

and satisfying �Nμ(x) = 0. (3.54)

Instead of (3.52) one has

[Nμ(x),Mν(x′)] =
1
2
gμvΔ(x− x′). (3.55)

From (3.53) and (3.49) one gets

Nμ(x) =
1
2

∑
i

ei

∫ s′
i

s0
i

Δ(x− zi)vμvdsi, (3.56)

so that (3.50) may be written

pμ
i = miv

′μ
i + ei[Mμ(z′i) + Nμ(z′i + λ)]

= miv
′μ
i + eiA

μ(z′i), (3.57)

where Aμ(x) = Mμ(x) + Nμ(x + λ). (3.58)

From (3.54) the potentials Aμ(x) satisfy

�Aμ(x) = 0, (3.59)

showing that they can be resolved into waves travelling with the velocity of
light, and from (3.55) it follows

[Aμ(x), Aν(x′)] =
1
2
gμv[Δ(x− x′ + λ) + Δ(x− x′ − λ)]. (3.60)

From (3.35) and (3.57) it follows

Fi ≡ [pi − eiA(z′i)]
2 −m2

i = 0. (3.61)

There is one of these equations for each particle. The expressions Fi may be
used as Hamiltonians to determine how any dynamical variable ξ varies with
the proper–times s′i, in accordance with the equations [Dir58, Dir26e, Dir82]

κi
dξ

ds′i
= [ξ, Fi], (3.62)

were ξ is any function of the coordinates and momenta of the particles and of
the fields M,K,N,A, and the κ’s are multiplying factors not depending on
ξ. Taking ξ = z′μi, one finds that

κi = −2mi,
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to get agreement with (3.57). Taking ξ = pμ
i gives one back the equation of

motion (3.45) with the λ refinement. Taking ξ = Mμ(x), one gets from (3.58)
and (3.55),

Mμ(x)
ds′i

= eiv
′ν
i [Mμ(x), Aν(z′i)] =

1
2
eiv

′
μiΔ(x− z′i − λ).

This equation of motion for the field quantities Mμ(x) does not follow from
the variation principle, as it involves only coordinates and velocities and not
accelerations, and it has to be imposed as an extra condition in the variational
method.

The above Hamiltonian formulation of the equations of classical electro-
dynamics may be taken over into the quantum theory in the usual way, by
making the momenta into operators satisfying commutation relations corre-
sponding to the Poisson bracket relations (3.51), (3.52). Equation (3.60) in the
limit λ → O goes over into the quantum equation (3.22). The Hamiltonians
(3.61) provide the wave equations

Fiψ = 0,

in which the wave ψ−function is a function of the coordinates z′i of all the
particles and of the field variables Mμ(x). One can apply the theory to spin-
ning electrons instead of spinless particles, by modifying the Hamiltonians Fi

in the appropriate way. For more details, see [Dir58, Dir26e, Dir82].

3.1.3 Feynman’s Path–Integral Quantum Theory

The most complete quantum theory was developed by Richard Feynman6 in
the form of his celebrated path–integral and associated Feynman diagrams.

6 Richard Phillips (Dick) Feynman (May 11, 1918 in Queens, New York – February
15, 1988 in Los Angeles, California) was an influential American physicist known
for expanding greatly on the theory of quantum electrodynamics, particle theory,
and the physics of the superfluidity of supercooled liquid helium. For his work on
quantum electrodynamics, Feynman was one of the recipients of the Nobel Prize
in Physics in 1965, along with Julian Schwinger and Shin-Ichiro Tomonaga; in
this work, he developed a way to understand the behavior of subatomic particles
using pictorial tools now called Feynman diagrams.

Feynman received a Ph.D. from Princeton University in 1942; his thesis advisor
was John Archibald Wheeler. Feynman’s thesis applied the principle of stationary
action to problems of quantum mechanics, laying the ground work for his path–
integral method.

He helped in the development of the atomic bomb and was later a member
of the panel that investigated the Space Shuttle Challenger disaster. For all
his prolific contributions, Feynman wrote only 37 research papers in his career.
Apart from pure physics, Feynman is also credited with the revolutionary
concept and early exploration of quantum computing, and publicly envisioning
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nanotechnology, the ability to create devices at the molecular scale. He held the
Richard Chace Tolman professorship in theoretical physics at Caltech.

Feynman was a keen and influential popularizer of physics in both his books
and lectures, notably a seminal 1959 talk on top-down nanotechnology called
There’s Plenty of Room at the Bottom and The Feynman Lectures on Physics,
a three-volume set which has become a classic text. In his lifetime as well as in
the years after his death, he became one of the most publicly known scientists
of the century. Known for his insatiable curiosity, gentle wit, brilliant mind and
playful temperament [1], he is also famous for his many adventures, detailed in
the books Surely You’re Joking, Mr. Feynman!, What Do You Care What Other
People Think? and Tuva or Bust!. As well as being an inspiring lecturer, bongo
player, notorious practical joker, and decipherer of Mayan hieroglyphics, Richard
Feynman was, in many respects, an eccentric and a free spirit. He liked to pur-
sue many independent paths, such as biology, art, percussion, and lockbreaking.
Freeman Dyson once wrote that Feynman was ”half-genius, half-buffoon”, but
later changed this to ”all-genius, all-buffoon”.

Feynman did much of his best work while at Caltech, including research in:
(i) Quantum electrodynamics. The theory for which Feynman won his Nobel

Prize is known for its extremely accurate predictions. He helped develop a func-
tional integral formulation of quantum mechanics, in which every possible path
from one state to the next is considered, the final path being a sum over the
possibilities.

(ii) Physics of the superfluidity of supercooled liquid helium, where helium
seems to display a lack of viscosity when flowing. Applying the Schrödinger
equation to the question showed that the superfluid was displaying quantum
mechanical behavior observable on a macroscopic scale. This helped enormously
with the problem of superconductivity.

(iii) A model of weak decay, which showed that the current coupling in the
process is a combination of vector and axial. (An example of weak decay is the
decay of a neutron into an electron, a proton, and an anti-neutrino.) Although
E.C. George Sudharsan and Robert Marshak developed the theory nearly simulta-
neously, Feynman’s collaboration with Murray Gell-Mann was seen as the seminal
one, the theory was of massive importance, and the weak interaction was neatly
described.

He also developed Feynman diagrams, a bookkeeping device which helps in con-
ceptualizing and calculating interactions between particles in spacetime, notably
the interactions between electrons and their antimatter counterparts, positrons.
This device allowed him, and now others, to work with concepts which would have
been less approachable without it, such as time reversibility and other fundamen-
tal processes. Feynman famously painted Feynman diagrams on the exterior of
his van.

Feynman diagrams are now fundamental for String theory and M–theory,
and have even been extended topologically. Feynman’s mental picture for these
diagrams started with the hard sphere approximation, and the interactions could
be thought of as collisions at first. It was not until decades later that physi-
cists thought of analyzing the nodes of the Feynman diagrams more closely. The
world–lines of the diagrams have become tubes to better model the more
complicated objects such as strings and M–branes.
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Feynman’s Sum–Over–Histories

Alternative Probability Theory

Classical Probability Concept

Recall that a random variable X is defined by its distribution function f(x).
Its probabilistic description is based on the following rules: (i) P (X = xi) is
the probability that X = xi; and (ii) P (a ≤ X ≤ b) is the probability that X
lies in a closed interval [a, b]. Its statistical description is based on: (i) μX or
E(X) is the mean of expectation of X; and (ii) σX is the standard deviation
of X. There are two cases of random variables: discrete and continuous, each
having its own probability (and statistics) theory.

Discrete random variable

Here X has only a finite (or countable) number of values {xi}. The distri-
bution function f(xi) has the properties:

P (X = xi) = f(xi),
f(xi) ≥ 0,∑

i

f(xi) dx = 1.

From his diagrams of a small number of particles interacting in spacetime,
Feynman could then model all of physics in terms of those particles’ spins and
the range of coupling of the fundamental forces. Feynman attempted an expla-
nation of the strong interactions governing nucleons scattering called the parton
model. The parton model emerged as a rival to the quark model developed by his
Caltech colleague Murray Gell-Mann. The relationship between the two models
was murky; Gell–Mann referred to Feynman’s partons derisively as ‘put–ons’.
Feynman did not dispute the quark model; for example, when the 5th quark was
discovered, Feynman immediately pointed out to his students that the discovery
implied the existence of a 6th quark, which was duly discovered in the decade
after his death.

After the success of quantum electrodynamics, Feynman turned to quantum
gravity. By analogy with the photon, which has spin 1, he investigated the con-
sequences of a free massless spin 2 field, and was able to derive the Einstein field
equation of general relativity, but little more. However, a calculational technique
that Feynman developed for gravity in 1962 — ‘ghosts’ — later proved invalu-
able. In 1967 Fadeev and Popov quantized the particle behaviour of the spin 1
theories of Yang–Mills–Pauli, that are now seen to describe the weak and strong
interactions, using Feynman’s path integral technique. A ‘ghost’ is a field which
is spin 0 and so should be a boson, but which is a fermion, disobeying the spin–
statistics theorem. Because it does not propagate externally no effects of this are
seen. Unfortunately, at this time he became exhausted by working on multiple
major projects at the same time, including his Lectures in Physics. The Feynman
Lectures on Physics found an appreciative audience beyond the undergraduate
community.
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Statistical description of X is based on the following:

μX = E(X) =
∑

i

xif(xi),

σX =
√

E(X2)− μ2
X .

Continuous random variable

Here f(x) is a piecewise continuous function such that:

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx,

f(x) ≥ 0,∫ ∞

−∞
f(x) dx =

∫
R

f(x) dx = 1.

Statistical description of X is based on the following:

μX = E(X) =
∫ ∞

−∞
xf(x) dx,

σX =
√

E(X2)− μ2
X .

Observe the similarity between the two descriptions. The same kind of
similarity between discrete and continuous quantum spectrum stroke Dirac
and Feynman when they suggested the integral approach, denoted by

∫
Σ ,

emphasizing both the summation over discrete spectrum and the integration
over continuous one. To emphasize this similarity even further, as well as to
set–up the stage for the path integral, recall the notion of the cumulative
distribution function of a random variable X is the function F : R → R,
defined by

F (a) = P (X) ≤ a.

In particular, suppose that f(x) is the distribution function of X. Then

F (x) =
∑
xi≤x

f(xi) or F (x) =
∫ ∞

−∞
f(t) dt,

according as x is a discrete or continuous random variable. In either case,
F (a) ≤ F (b) whenever a ≤ b. Also,

lim
x→−∞

F (x) = 0 or lim
x→∞

F (x) = 1,

that is, F (x) is monotonic and its limit to the left is 0 and the limit to the
right is 1. Furthermore,

P (a ≤ X ≤ b) = F (b)− F (a)

and the Fundamental Theorem of Calculus tells us that, in the continuum
case,

f(x) = ∂xF (x).
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Quantum Probability Concept

An alternative concept of quantum probability is based on the following
physical facts:

1. The time–dependent Schrödinger equation represents a complex–valued
generalization of real–valued Fokker–Planck equation for describing the
spatio–temporal probability density function for the system exhibiting
continuous–time Markov stochastic process.

2. Feynman’s path integral
∫
Σ is a generalization of the time–dependent

Schrödinger equation, including both continuous–time and discrete–time
Markov stochastic processes (Markov chains, or random walks).

3. Both Schrödinger equation and path integral give ‘physical description’ of
any system they are modelling in terms of its physical energy, instead of
an abstract probabilistic description of the Fokker–Planck equation.

Therefore, the Feynman’s path integral
∫
Σ , as a generalization of the

time–dependent Schrödinger equation, gives a unique physical description
for the general Markov stochastic process, in terms of the physically based
generalized probability density functions, valid for both continuous–time and
discrete–time Markov systems.

Basic consequence:

Different way for calculating probabilities. The difference is rooted in the
fact that sum of squares is different from the square of sums, as is explained
in the following text.

Namely, in Dirac–Feynman quantum formalism, each possible route from
the initial system state A to the final system state B is called a history . This
history comprises any kind of a route (see Figure 3.1), ranging from continu-
ous and smooth deterministic (mechanical–like) paths to completely discon-
tinues and random Markov chains (see, e.g., [Gar85]). Each history (labelled
by index i) is quantitatively described by a complex number7 zi called the
‘individual transition amplitude’. Its absolute square, |zi|2, is called the indi-
vidual transition probability . Now, the total transition amplitude is the sum
of all individual transition amplitudes,

∑
i zi, called the sum–over–histories.

The absolute square of this sum–over–histories, |∑i zi|2, is the total transition
probability .

In this way, the overall probability of the system’s transition from some
initial state A to some final state B is given not by adding up the probabilities
7 Recall that a complex number z = x + iy, where i =

√
−1 is the imaginary unit ,

x is the real part and y is the imaginary part , can be represented also in its
polar form, z = r(cos θ + i sin θ), where the radius vector in the complex plane,

r = |z| =
√

x2 + y2, is the modulus or amplitude, and angle θ is the phase; as

well as in its exponential form z = reiθ. In this way, complex numbers actually
represent 2D vectors with usual vector ‘head–to–tail’ addition rule.



3.1 Dirac–Feynman Quantum Dynamics 501

Fig. 3.1. Two ways of physical transition from an initial state A to the correspond-
ing final state B. (a) Classical physics proposes a single deterministic trajectory , min-
imizing the total system’s energy. (b) Quantum physics proposes a family of Markov
stochastic histories, namely all possible routes from A to B, both continuous–time
and discrete–time Markov chains, each giving an equal contribution to the total
transition probability .

for each history–route, but by ‘head–to–tail’ adding up the sequence of ampli-
tudes making–up each route first (i.e., performing the sum–over–histories) –
to get the total amplitude as a ‘resultant vector’, and then squaring the total
amplitude to get the overall transition probability.

Quantum Coherent States

Recall that a quantum coherent state is a specific kind of quantum state of
the quantum harmonic oscillator whose dynamics most closely resemble the
oscillating behavior of a classical harmonic oscillator. It was the first exam-
ple of quantum dynamics when Erwin Schrödinger derived it in 1926 while
searching for solutions of the Schrödinger equation that satisfy the correspon-
dence principle. The quantum harmonic oscillator and hence, the coherent
state, arise in the quantum theory of a wide range of physical systems. For
instance, a coherent state describes the oscillating motion of the particle in a
quadratic potential well. In the quantum electrodynamics and other bosonic
quantum field theories they were introduced by the 2005 Nobel Prize winning
work of Roy Glauber in 1963 [Gla63a, Gla63b]. Here the coherent state of
a field describes an oscillating field, the closest quantum state to a classical
sinusoidal wave such as a continuous laser wave.

In classical optics, light is thought of as electromagnetic waves radiating
from a source. Specifically, coherent light is thought of as light that is emitted
by many such sources that are in phase. For instance, a light bulb radiates
light that is the result of waves being emitted at all the points along the
filament. Such light is incoherent because the process is highly random in
space and time. On the other hand, in a laser, light is emitted by a carefully
controlled system in processes that are not random but interconnected by
stimulation and the resulting light is highly ordered, or coherent. Therefore
a coherent state corresponds closely to the quantum state of light emitted by
an ideal laser. Semi–classically we describe such a state by an electric field
oscillating as a stable wave. Contrary to the coherent state, which is the most
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wave–like quantum state, the Fock state (e.g., a single photon) is the most
particle–like state. It is indivisible and contains only one quanta of energy.
These two states are examples of the opposite extremes in the concept of
wave–particle duality . A coherent state distributes its quantum–mechanical
uncertainty equally, which means that the phase and amplitude uncertainty
are approximately equal. Conversely, in a single–particle state the phase is
completely uncertain.

Formally, the coherent state |α〉 is defined to be the eigenstate of the
annihilation operator a, i.e., a|α〉 = α|α〉. Note that since a is not Hermitian,
α = |α|eiθ is complex. |α| and θ are called the amplitude and phase of the
state.

Physically, a|α〉 = α|α〉 means that a coherent state is left unchanged
by the detection (or annihilation) of a particle. Consequently, in a coherent
state, one has exactly the same probability to detect a second particle. Note,
this condition is necessary for the coherent state’s Poisson detection statistics.
Compare this to a single–particle’s Fock state: Once one particle is detected,
we have zero probability of detecting another.

Now, recall that a Bose–Einstein condensate (BEC) is a collection of boson
atoms that are all in the same quantum state. An approximate theoretical
description of its properties can be derived by assuming the BEC is in a
coherent state. However, unlike photons, atoms interact with each other so it
now appears that it is more likely to be one of the squeezed coherent states
(see [BSM97]). In quantum field theory and string theory, a generalization
of coherent states to the case of infinitely many degrees–of–freedom is used
to define a vacuum state with a different vacuum expectation value from the
original vacuum.

Sum–Over–Histories

Recall from above that Dirac described behavior of quantum systems in terms
of complex–valued ket–vectors |A >, living in the Hilbert space H, and their
duals, bra–covectors < B| living in the dual Hilbert space H∗. The Hermitian
inner product of kets and bras, the bra–ket < B|A >, is a complex number ,
which is the evaluation of the ket |A > by the bra < B|. This complex number,
say reiθ represents the system’s transition amplitude from its initial state A
to its final state B, i.e.,

TransitionAmplitude =< B|A >= reiθ.

That is, there is a process that can mediate a transition of a system from
initial state A to the final state B and the amplitude for this transition equals
< B|A >= reiθ. The absolute square of the amplitude, | < B|A > |2 rep-
resents the transition probability . Therefore, the probability of a transition
event equals the absolute square of a complex number, i.e.,

TransitionProbability = | < B|A > |2 = |reiθ|2.
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These complex amplitudes obey the usual laws of probability : when a tran-
sition event can happen in alternative ways then we add the complex numbers,

< B1|A1 > + < B2|A2 >= r1eiθ1 + r2eiθ2 ,

and when it can happen only as a succession of intermediate steps then we
multiply the complex numbers,

< B|A >=< B|c >< c|A >= (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+θ2).

In general,

1. The amplitude for n mutually alternative processes equals the sum∑n
k=1 rkeiθk of the amplitudes for the alternatives; and

2. If transition from A to B occurs in a sequence of m steps, then the total
transition amplitude equals the product

∏m
j=1 rjeiθj of the amplitudes of

the steps.

Formally, we have the so–called expansion principle, including both prod-
ucts and sums,

< B|A >=
n∑

i=1

< B|ci >< ci|A > . (3.63)

Now, iterating the Dirac’s expansion principle (3.188) over a complete set
of all possible states of the system, leads to the simplest form of the Feynman’s
path integral or sum–over–histories. Imagine that the initial and final states,
A and B, are points on the vertical lines x = 0 and x = n + 1, respectively,
in the x− y plane, and that (c(k)i(k), k) is a given point on the line x = k for
0 < i(k) < m (see Figure 3.2). Suppose that the sum of projectors for each
intermediate state is complete. Applying the completeness iteratively, we get
the following expression for the transition amplitude:

< B|A >=
∑∑

. . .
∑

< B|c(1)i(1)>< c(1)i(1)|c(2)i(2)> . . . < c(n)i(n)|A>,

Fig. 3.2. Analysis of all possible routes from the source A to the detector B is
simplified to include only double straight lines (in a plane).
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where the sum is taken over all i(k) ranging between 1 and m, and k ranging
between 1 and n. Each term in this sum can be construed as a combinatorial
route from A to B in the two–dimensional space of the x − y plane. Thus
the transition amplitude for the system going from some initial state A to
some final state B is seen as a summation of contributions from all the routes
connecting A to B.

Feynman used this description to produce his celebrated path–integral ex-
pression for a transition amplitude (see, e.g., [GS98, Sch81]). His path integral
takes the form

TransitionAmplitude =< B|A >=
∫
Σ D[x] eiS[x], (3.64)

where the sum–integral
∫
Σ is taken over all possible routes x = x(t) from the

initial point A = A(tini) to the final point B = B(tfin), and S = S[x] is the
classical action for a particle to travel from A to B along a given extremal
path x. In this way, Feynman took seriously Dirac’s conjecture interpreting
the exponential of the classical action functional (DeiS), resembling a complex
number (reiθ), as an elementary amplitude. By integrating this elementary
amplitude, DeiS , over the infinitude of all possible histories, we get the total
system’s transition amplitude.8

Basic Form of a Path Integral

In Feynman’s version of non–relativistic quantum mechanics, the time evolu-
tion ψ(x′, t′) �→ ψ(x′′, t′′) of the wave function ψ = ψ(x, t) of the elementary
1D particle may be described by the integral equation [GS98]

8 For the quantum physics associated with a classical (Newtonian) particle the ac-
tion S is given by the integral along the given route from a to b of the difference
T − V where T is the classical kinetic energy and V is the classical potential
energy of the particle.
The beauty of Feynman’s approach to quantum physics is that it shows the re-
lationship between the classical and the quantum in a particularly transparent
manner. Classical motion corresponds to those regions where all nearby routes
contribute constructively to the summation. This classical path occurs when the
variation of the action is null. To ask for those paths where the variation of the
action is zero is a problem in the calculus of variations, and it leads directly to
Newton’s equations of motion (derived using the Euler–Lagrangian equations).
Thus with the appropriate choice of action, classical and quantum points of view
are unified.
Also, a discretization of the Schrodinger equation

i�
dψ

dt
= − �2

2m

d2ψ

dx2
+ V ψ,

leads to a sum–over–histories that has a discrete path integral as its solution.
Therefore, the transition amplitude is equivalent to the wave ψ. The particle
travelling on the x−axis is executing a one–step random walk, see Figure 3.3.
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Fig. 3.3. Random walk (a particular case of Markov chain) on the x−axis.

Fig. 3.4. A piecewise linear particle path contributing to the discrete Feynman
propagator.

ψ(x′′, t′′) =
∫

R

K(x′′, x′; t′′, t′)ψ(x′, t′), (3.65)

where the propagator or Feynman kernel K = K(x′′, x′; t′′, t′) is defined
through a limiting procedure,

K(x′′, x′; t′′, t′) = lim
ε→0

A−N
N−1∏
k=1

∫
dxk ei

∑N−1

j=0
εL(xj+1,(xj+1−xj)/ε)

. (3.66)

The time interval t′′ − t′ has been discretized into N steps of length ε =
(t′′ − t′)/N , and the r.h.s. of (3.66) represents an integral over all piecewise
linear paths x(t) of a ‘virtual’ particle propagating from x′ to x′′, illustrated
in Figure 3.4.

The prefactor A−N is a normalization and L denotes the Lagrangian func-
tion of the particle. Knowing the propagator G is tantamount to having solved
the quantum dynamics. This is the simplest instance of a path integral, and
is often written schematically as

K(x′, t′;x′′, t′′) =
∫
Σ D[x(t)] eiS[x(t)],

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if we
Wick–rotate the time variable t to imaginary values t �→ τ = it, thereby
making all integrals real [RS75].
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Adaptive Path Integral

Now, we can extend the Feynman sum–over–histories (3.64), by adding the
synaptic–like weights wi = wi(t) into the measure D[x], to get the adaptive
path integral :

Adaptive TransitionAmplitude =< B|A >w=
∫
Σ D[w, x] eiS[x], (3.67)

where the adaptive measure D[w, x] is defined by the weighted product (of
discrete time steps)

D[w, x] = lim
n→∞

n∏
t=1

wi(t) dxi(t). (3.68)

In (3.68) the synaptic weights wi = wi(t) are updated by the unsupervised
Hebbian–like learning rule [Heb49]:

wi(t + 1) = wi(t) +
σ

η
(wi

d(t)− wi
a(t)), (3.69)

where σ = σ(t), η = η(t) represent local signal and noise amplitudes, respec-
tively, while superscripts d and a denote desired and achieved system states,
respectively. Theoretically, equations (3.67–3.69) define an ∞−dimensional
complex–valued neural network.9 Practically, in a computer simulation we can
use 107 ≤ n ≤ 108, approaching the number of neurons in the brain. Such
equations are usually solved using Markov–chain Monte–Carlo methods on
parallel (cluster) computers (see, e.g., [WW83a, WW83b]).

Path–Integral History

Extract from Feynman’s Nobel Lecture

In his Nobel Lecture, December 11, 1965, Richard (Dick) Feynman said that he
and his PhD supervisor, John Wheeler, had found the action A = A[x; ti, tj ],
directly involving the motions of the charges only,10

A[x; ti, tj ] = mi

∫
(ẋi

μẋ
i
μ)

1
2 dti +

1
2
eiej

∫ ∫
δ(I2

ij) ẋ
i
μ(ti)ẋj

μ(tj) dtidtj

with (i 
= j) (3.70)
I2
ij =

[
xi

μ(ti)− xj
μ(tj)

] [
xi

μ(ti)− xj
μ(tj)

]
,

9 For details on complex–valued neural networks, see e.g., complex–domain exten-
sion of the standard backpropagation learning algorithm [GK92, BP92].

10 Wheeler–Feynman Idea [WF49] “The energy tensor can be regarded only as a
provisional means of representing matter. In reality, matter consists of electrically
charged particles.”
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where xi
μ = xi

μ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋi

μ(ti) = dxi
μ(ti)/dti is the velocity four–vector.

The first term in the action A[x; ti, tj ] (3.70) is the integral of the proper
time ti, the ordinary action of relativistic mechanics of free particles of mass
mi (summation over μ). The second term in the action A[x; ti, tj ] (3.70) rep-
resents the electrical interaction of the charges. It is summed over each pair of
charges (the factor 1

2 is to count each pair once, the term i = j is omitted to
avoid self–action). The interaction is a double integral over a delta function
of the square of space–time interval I2 between two points on the paths. Thus,
interaction occurs only when this interval vanishes, that is, along light cones
(see [WF49]).

Feynman comments here: “The fact that the interaction is exactly one–
half advanced and half–retarded meant that we could write such a principle of
least action, whereas interaction via retarded waves alone cannot be written
in such a way. So, all of classical electrodynamics was contained in this very
simple form.”

“. . . The problem is only to make a quantum theory, which has as its
classical analog, this expression (3.70). Now, there is no unique way to make
a quantum theory from classical mechanics, although all the textbooks make
believe there is. What they would tell you to do, was find the momentum
variables and replace them by (�/i)(∂/∂x), but I couldn’t find a momentum
variable, as there wasn’t any.”

“The character of quantum mechanics of the day was to write things in
the famous Hamiltonian way (in the form of Schrödinger equation), which
described how the wave function changes from instant to instant, and in terms
of the Hamiltonian operator H. If the classical physics could be reduced to a
Hamiltonian form, everything was all right. Now, least action does not imply
a Hamiltonian form if the action is a function of anything more than positions
and velocities at the same moment. If the action is of the form of the integral
of the Lagrangian L = L(ẋ, x), a function of the velocities and positions at
the same time t,

S[x] =
∫

L(ẋ, x) dt, (3.71)

then you can start with the Lagrangian L and then create a Hamiltonian H
and work out the quantum mechanics, more or less uniquely. But the action
A[x; ti, tj ] (3.70) involves the key variables, positions (and velocities), at two
different times ti and tj and therefore, it was not obvious what to do to make
the quantum–mechanical analogue. . . ”

So, Feynman was looking for the action integral in quantum mechanics.
He says: “... I simply turned to Professor Jehle and said, ‘Listen, do you know
any way of doing quantum mechanics, starting with action – where the action
integral comes into the quantum mechanics?” ‘No”, he said, ‘but Dirac has
a paper in which the Lagrangian, at least, comes into quantum mechanics.”
What Dirac said was the following: There is in quantum mechanics a very
important quantity which carries the wave function from one time to another,
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besides the differential equation but equivalent to it, a kind of a kernel, which
we might call K(x′, x), which carries the wave function ψ(x) known at time
t, to the wave function ψ(x′) at time t + ε,

ψ(x′, t + ε) =
∫

K(x′, x)ψ(x, t) dx.

Dirac points out that this function K was analogous to the quantity in
classical mechanics that you would calculate if you took the exponential of
[iε multiplied by the Lagrangian L(ẋ, x)], imagining that these two positions
x, x′ corresponded to t and t + ε. In other words,

K(x′, x) is analogous to eiεL( x′−x
ε ,x)/�.

So, Feynman continues: “What does he mean, they are analogous; what does
that mean, analogous? What is the use of that?” Professor Jehle said, ‘You
Americans! You always want to find a use for everything!” I said that I thought
that Dirac must mean that they were equal. ‘No”, he explained, ‘he doesn’t
mean they are equal.” ‘Well”, I said, ‘Let’s see what happens if we make them
equal.”

“So, I simply put them equal, taking the simplest example where the
Lagrangian is

L =
1
2
Mẋ2 − V (x),

but soon found I had to put a constant of proportionality N in, suitably
adjusted. When I substituted for K to get

ψ(x′, t + ε) =
∫

N exp
[
iε
�
L(

x′ − x

ε
, x)

]
ψ(x, t) dx (3.72)

and just calculated things out by Taylor series expansion, out came the
Schrödinger equation. So, I turned to Professor Jehle, not really understand-
ing, and said, ‘Well, you see, Dirac meant that they were proportional.”
Professor Jehle’s eyes were bugging out – he had taken out a little notebook
and was rapidly copying it down from the blackboard, and said, ‘No, no, this
is an important discovery. You Americans are always trying to find out how
something can be used. That’s a good way to discover things!” So, I thought
I was finding out what Dirac meant, but, as a matter of fact, had made the dis-
covery that what Dirac thought was analogous, was, in fact, equal. I had then,
at least, the connection between the Lagrangian and quantum mechanics, but
still with wave functions and infinitesimal times.”

“It must have been a day or so later when I was lying in bed thinking about
these things, that I imagined what would happen if I wanted to calculate the
wave function at a finite interval later. I would put one of these factors eiεL in
here, and that would give me the wave functions the next moment, t+ ε, and
then I could substitute that back into (3.72) to get another factor of eiεL and
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give me the wave function the next moment, t + 2ε, and so on and so on. In
that way I found myself thinking of a large number of integrals, one after the
other in sequence. In the integrand was the product of the exponentials, which
was the exponential of the sum of terms like εL. Now, L is the Lagrangian
and ε is like the time interval dt, so that if you took a sum of such terms,
that’s exactly like an integral. That’s like Riemann’s formula for the integral∫
Ldt, you just take the value at each point and add them together. We are to

take the limit as ε→ 0. Therefore, the connection between the wave function
of one instant and the wave function of another instant a finite time later
could be get by an infinite number of integrals (because ε goes to zero), of
exponential where S is the action expression (3.71). At last, I had succeeded
in representing quantum mechanics directly in terms of the action S[x].”

Fully satisfied, Feynman comments: “This led later on to the idea of the
transition amplitude for a path: that for each possible way that the particle
can go from one point to another in space–time, there’s an amplitude. That
amplitude is e to the power of [i/� times the action S[x] for the path], i.e.,
eiS[x]/�. Amplitudes from various paths superpose by addition. This then is
another, a third way, of describing quantum mechanics, which looks quite
different from that of Schrödinger or Heisenberg, but which is equivalent to
them.”

“. . . Now immediately after making a few checks on this thing, what we
wanted to do, was to substitute the action A[x; ti, tj ] (3.70) for the other
S[x] (3.71). The first trouble was that I could not get the thing to work with
the relativistic case of spin one–half. However, although I could deal with
the matter only nonrelativistically, I could deal with the light or the photon
interactions perfectly well by just putting the interaction terms of (3.70) into
any action, replacing the mass terms by the non–relativistic Ldt = 1

2Mẋ2dt,

A[x; ti, tj ] =
1
2

∑
i

mi

∫
(ẋi

μ)2dti+
1
2

∑
i,j(i	=j)

eiej

∫ ∫
δ(I2

ij) ẋ
i
μ(ti)ẋj

μ(tj) dtidtj .

When the action has a delay, as it now had, and involved more than one time,
I had to lose the idea of a wave function. That is, I could no longer describe the
program as: given the amplitude for all positions at a certain time to calculate
the amplitude at another time. However, that didn’t cause very much trouble.
It just meant developing a new idea. Instead of wave functions we could talk
about this: that if a source of a certain kind emits a particle, and a detector is
there to receive it, we can give the amplitude that the source will emit and the
detector receive, eiA[x;ti,tj ]/�. We do this without specifying the exact instant
that the source emits or the exact instant that any detector receives, without
trying to specify the state of anything at any particular time in between, but
by just finding the amplitude for the complete experiment. And, then we could
discuss how that amplitude would change if you had a scattering sample in
between, as you rotated and changed angles, and so on, without really having
any wave functions ... It was also possible to discover what the old concepts
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of energy and momentum would mean with this generalized action. And, so
I believed that I had a quantum theory of classical electrodynamics – or
rather of this new classical electrodynamics described by the action A[x; ti, tj ]
(3.70) ...”

Lagrangian Path Integral

Dirac and Feynman first developed the lagrangian approach to functional
integration. To review this approach, we start with the time–dependent
Schrödinger equation

i� ∂tψ(x, t) = −∂x2ψ(x, t) + V (x)ψ(x, t)

appropriate to a particle of mass m moving in a potential V (x), x ∈ R. A solu-
tion to this equation can be written as an integral (see e.g., [Kla97, Kla00]),

ψ(x′′, t′′) =
∫

K(x′′, t′′;x′, t′)ψ(x′, t′) dx′ ,

which represents the wave function ψ(x′′, t′′) at time t′′ as a linear superposi-
tion over the wave function ψ(x′, t′) at the initial time t′, t′ < t′′. The integral
kernel K(x′′, t′′;x′, t′) is known as the propagator, and according to Feynman
[Fey48] it may be given by

K(x′′, t′′;x′, t′) = N
∫
D[x] e(i/�)

∫
[(m/2) ẋ2(t)−V (x(t))] dt,

which is a formal expression symbolizing an integral over a suitable set of
paths. This integral is supposed to run over all continuous paths x(t), t′ ≤
t ≤ t′′, where x(t′′) = x′′ and x(t′) = x′ are fixed end points for all paths.
Note that the integrand involves the classical Lagrangian for the system.

To overcome the convergence problems, Feynman adopted a lattice regular-
ization as a procedure to yield well–defined integrals which was then followed
by a limit as the lattice spacing goes to zero called the continuum limit. With
ε > 0 denoting the lattice spacing, the details regarding the lattice regular-
ization procedure are given by

K(x′′, t′′;x′, t′) = lim
ε→0

(m/2πi�ε)(N+1)/2

∫
· · ·

· · ·
∫

exp{(i/�)
N∑

l=0

[(m/2ε)(xl+1 − xl)2 − ε V (xl) ]}
N∏

l=1

dxl ,

where xN+1 = x′′, x0 = x′, and ε ≡ (t′′ − t′)/(N + 1), N ∈ {1, 2, 3, . . . }. In
this version, at least, we have an expression that has a reasonable chance of
being well defined, provided, that one interprets the conditionally convergent
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integrals involved in an appropriate manner. One common and fully acceptable
interpretation adds a convergence factor to the exponent of the preceding
integral in the form −(ε2/2�)

∑N
l=1 x2

l , which is a term that formally makes
no contribution to the final result in the continuum limit save for ensuring
that the integrals involved are now rendered absolutely convergent.

Hamiltonian Path Integral

It is necessary to retrace history at this point to recall the introduction of
the phase–space path integral by Feynman [Fey51, GS98]. In Appendix B to
this article, Feynman introduced a formal expression for the configuration or
q−space propagator given by (see e.g., [Kla97, Kla00])

K(q′′, t′′; q′, t′) = M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ −H(p, q) ] dt}.

In this equation one is instructed to integrate over all paths q(t), t′ ≤ t ≤ t′′,
with q(t′′) ≡ q′′ and q(t′) ≡ q′ held fixed, as well as to integrate over all paths
p(t), t′ ≤ t ≤ t′′, without restriction.

It is widely appreciated that the phase–space path integral is more gen-
erally applicable than the original, Lagrangian, version of the path integral.
For example, the original configuration space path integral is satisfactory for
Lagrangians of the general form

L(x) =
1
2
mẋ2 + A(x) ẋ− V (x) ,

but it is unsuitable, for example, for the case of a relativistic particle with the
Lagrangian

L(x) = −mqrt1− ẋ2

expressed in units where the speed of light is unity. For such a system – as
well as many more general expressions – the phase–space form of the path
integral is to be preferred. In particular, for the relativistic free particle, the
phase–space path integral

M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ − qrtp2 + m2 ] dt},

is readily evaluated and induces the correct propagator.

Feynman–Kac Formula

Through his own research, M. Kac was fully aware of Wiener’s theory of
Brownian motion and the associated diffusion equation that describes the
corresponding distribution function. Therefore, it is not surprising that he
was well prepared to give a path integral expression in the sense of Feynman
for an equation similar to the time–dependent Schrödinger equation save for
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a rotation of the time variable by −π/2 in the complex plane, namely, by
the change t → −it (see e.g., [Kla97, Kla00]). In particular, Kac [Kac51]
considered the equation

∂tρ(x, t) = ∂x2ρ(x, t)− V (x) ρ(x, t). (3.73)

This equation is analogous to Schrödinger equation but differs from it in
certain details. Besides certain constants which are different, and the change
t→ −it, the nature of the dependent variable function ρ(x, t) is quite different
from the normal quantum mechanical wave function. For one thing, if the
function ρ is initially real it will remain real as time proceeds. Less obvious
is the fact that if ρ(x, t) ≥ 0 for all x at some time t, then the function will
continue to be nonnegative for all time t. Thus we can interpret ρ(x, t) more
like a probability density; in fact in the special case that V (x) = 0, then ρ(x, t)
is the probability density for a Brownian particle which underlies the Wiener
measure. In this regard, ν is called the diffusion constant.

The fundamental solution of (3.73) with V (x) = 0 is readily given as

W (x, T ; y, 0) =
1

qrt2πνT
exp

(
− (x− y)2

2νT

)
,

which describes the solution to the diffusion equation subject to the initial
condition

lim
T→0+

W (x, T ; y, 0) = δ(x− y) .

Moreover, it follows that the solution of the diffusion equation for a general
initial condition is given by

ρ(x′′, t′′) =
∫

W (x′′, t′′;x′, t′) ρ(x′, t′) dx′ .

Iteration of this equation N times, with ε = (t′′ − t′)/(N + 1), leads to the
equation

ρ(x′′, t′′) = N ′
∫
· · ·

∫
e−(1/2νε)

∑N

l=0
(xl+1−xl)

2
N∏

l=1

dxl ρ(x′, t′) dx′,

where xN+1 ≡ x′′ and x0 ≡ x′. This equation features the imaginary time
propagator for a free particle of unit mass as given formally as

W (x′′, t′′;x′, t′) = N
∫
D[x] e−(1/2ν)

∫
ẋ2 dt,

where N denotes a formal normalization factor.
The similarity of this expression with the Feynman path integral [for

V (x) = 0] is clear, but there is a profound difference between these equations.
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In the former (Feynman) case the underlying measure is only finitely additive,
while in the latter (Wiener) case the continuum limit actually defines a gen-
uine measure, i.e., a countably additive measure on paths, which is a version
of the famous Wiener measure. In particular,

W (x′′, t′′;x′, t′) =
∫

dμν
W (x),

where μν
W denotes a measure on continuous paths x(t), t′ ≤ t ≤ t′′, for which

x(t′′) ≡ x′′ and x(t′) ≡ x′. Such a measure is said to be a pinned Wiener
measure, since it specifies its path values at two time points, i.e., at t = t′ and
at t = t′′ > t′.

We note that Brownian motion paths have the property that with proba-
bility one they are concentrated on continuous paths. However, it is also true
that the time derivative of a Brownian path is almost nowhere defined, which
means that, with probability one, ẋ(t) = ±∞ for all t.

When the potential V (x) 
= 0 the propagator associated with (3.73) is
formally given by

W (x′′, t′′;x′, t′) = N
∫
D[x]e−(1/2ν)

∫
ẋ2 dt−

∫
V (x) dt,

an expression which is well defined if V (x) ≥ c, −∞ < c <∞. A mathemati-
cally improved expression makes use of the Wiener measure and reads

W (x′′, t′′;x′, t′) =
∫

e−
∫

V (x(t)) dt dμν
W (x).

This is an elegant relation in that it represents a solution to the differential
equation (3.73) in the form of an integral over Brownian motion paths suitably
weighted by the potential V . Incidentally, since the propagator is evidently a
strictly positive function, it follows that the solution of the differential equa-
tion (3.73) is nonnegative for all time t provided it is nonnegative for any
particular time value.

Itô Formula

Itô [Ito60] proposed another version of a continuous–time regularization that
resolved some of the troublesome issues. In essence, the proposal of Itô takes
the form given by

lim
ν→∞

Nν

∫
D[x] exp{(i/�)

∫
[
1
2
mẋ2 − V (x)] dt} exp{−(1/2ν)

∫
[ẍ2 + ẋ2] dt}.

Note well the alternative form of the auxiliary factor introduced as a regulator.
The additional term ẍ2, the square of the second derivative of x, acts to smooth
out the paths sufficiently well so that in the case of (21) both x(t) and ẋ(t) are
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continuous functions, leaving ẍ(t) as the term which does not exist. However,
since only x and ẋ appear in the rest of the integrand, the indicated path
integral can be well defined; this is already a positive contribution all by itself
(see e.g., [Kla97, Kla00]).

Standard Path–Integral Quantization

Canonical versus Path–Integral Quantization

Recall that in the usual, canonical formulation of quantum mechanics, the
system’s phase–space coordinates, q, and momenta, p, are replaced by the
corresponding Hermitian operators in the Hilbert space, with real measurable
eigenvalues, which obey Heisenberg commutation relations.

The path–integral quantization is instead based directly on the notion
of a propagator K(qf , tf ; qi, ti) which is defined such that (see [Ryd96, CL84,
Gun03])

ψ(qf , tf ) =
∫

K(qf , tf ; qi, ti)ψ(qi, ti) dqi, (3.74)

i.e., the wave function ψ(qf , tf ) at final time tf is given by a Huygens principle
in terms of the wave function ψ(qi, ti) at an initial time ti, where we have
to integrate over all the points qi since all can, in principle, send out little
wavelets that would influence the value of the wave function at qf at the later
time tf . This equation is very general and is an expression of causality. We
use the normal units with � = 1.

According to the usual interpretation of quantum mechanics, ψ(qf , tf ) is
the probability amplitude that the particle is at the point qf and the time tf ,
which means that K(qf , tf ; qi, ti) is the probability amplitude for a transition
from qi and ti to qf and tf . The probability that the particle is observed at
qf at time tf if it began at qi at time ti is

P (qf , tf ; qi, ti) = |K(qf , tf ; qi, ti)|2 .

Let us now divide the time interval between ti and tf into two, with t
as the intermediate time, and q the intermediate point in space. Repeated
application of (3.74) gives

ψ(qf , tf ) =
∫ ∫

K(qf , tf ; q, t) dq K(q, t; qi, ti)ψ(qi, ti) dqi,

from which it follows that

K(qf , tf ; qi, ti) =
∫

dq K(qf , tf ; q, t)K(q, t; qi, ti).

This equation says that the transition from (qi, ti) to (qf , tf ) may be regarded
as the result of the transition from (qi, ti) to all available intermediate points
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q followed by a transition from (q, t) to (qf , tf ). This notion of all possible
paths is crucial in the path–integral formulation of quantum mechanics.

Now, recall that the state vector |ψ, t〉S in the Schrödinger picture is
related to that in the Heisenberg picture |ψ〉H by

|ψ, t〉S = e−iHt |ψ〉H ,

or, equivalently,
|ψ〉H = eiHt |ψ, t〉S .

We also define the vector

|q, t〉H = eiHt |q〉S ,

which is the Heisenberg version of the Schrödinger state |q〉. Then, we can
equally well write

ψ(q, t) = 〈q, t |ψ〉H . (3.75)

By completeness of states we can now write

〈qf , tf |ψ〉H =
∫
〈qf , tf |qi, ti〉H 〈qi, ti |ψ〉H dqi,

which with the definition of (3.75) becomes

ψ(qf , tf ) =
∫
〈qf , tf |qi, ti〉H ψ(qi, ti) dqi.

Comparing with (3.74), we get

K(qf , tf ; qi, ti) = 〈qf , tf |qi, ti〉H .

Now, let us calculate the quantum–mechanics propagator

〈q′, t′ |q, t〉H =
〈
q′|e−iH(t−t′) |q〉

using the path–integral formalism that will incorporate the direct quantization
of the coordinates, without Hilbert space and Hermitian operators.

The first step is to divide up the time interval into n + 1 tiny pieces:
tl = lε + t with t′ = (n + 1)ε + t. Then, by completeness, we can write
(dropping the Heisenberg picture index H from now on)

〈q′, t′ |q, t〉 =
∫

dq1(t1)...
∫

dqn(tn) 〈q′, t′ |qn, tn〉 ×

× 〈qn, tn |qn−1, tn−1〉 ... 〈q1, t1 |q, t〉 . (3.76)

The integral
∫
dq1(t1) . . . dqn(tn) is an integral over all possible paths, which

are not trajectories in the normal sense, since there is no requirement of
continuity, but rather Markov chains.
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Now, for small ε we can write

〈q′, ε |q, 0〉 =
〈
q′|e−iεH(P,Q) |q〉 = δ(q′ − q)− iε 〈q′|H(P,Q) |q〉 ,

where H(P,Q) is the Hamiltonian (e.g., H(P,Q) = 1
2P

2 + V (Q), where P,Q
are the momentum and coordinate operators). Then we have (see [Ryd96,
CL84, Gun03])

〈q′|H(P,Q) |q〉 =
∫

dp

2π
eip(q′−q)H

(
p,

1
2
(q′ + q)

)
.

Putting this into our earlier form we get

〈q′, ε |q, 0〉 �
∫

dp

2π
exp

[
i
{
p(q′ − q)− εH

(
p,

1
2
(q′ + q)

)}]
,

where the 0th order in ε → δ(q′ − q) and the 1st order in ε →
−iε 〈q′|H(P,Q) |q〉. If we now substitute many such forms into (3.76) we
finally get

〈
q′, t′ |q, t〉 = lim

n→∞

∫ n∏
i=1

dqi

n+1∏
k=1

dpk

2π
× (3.77)

× exp

{
i

n+1∑
j=1

[pj(qj − qj−1)] − H
(
pj ,

1

2
(qj + qj+1)

)
(tj − tj−1)]

}
,

with q0 = q and qn+1 = q′. Roughly, the above formula says to integrate over
all possible momenta and coordinate values associated with a small interval,
weighted by something that is going to turn into the exponential of the ac-
tion eiS in the limit where ε → 0. It should be stressed that the different qi

and pk integrals are independent, which implies that pk for one interval can
be completely different from the pk′ for some other interval (including the
neighboring intervals). In principle, the integral (3.77) should be defined by
analytic continuation into the complex plane of, for example, the pk integrals.

Now, if we go to the differential limit where we call tj − tj−1 ≡ dτ and
write (qj−qj−1)

(tj−tj−1)
≡ q̇, then the above formula takes the form

〈q′, t′ |q, t〉 =
∫
D[p]D[q] exp

{
i
∫ t′

t

[pq̇ −H(p, q)] dτ

}
,

where we have used the shorthand notation∫
D[p]D[q] ≡

∫ ∏
τ

dq(τ)dp(τ)
2π

.
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Note that the above integration is an integration over the p and q values at
every time τ . This is what we call a functional integral. We can think of a
given set of choices for all the p(τ) and q(τ) as defining a path in the 6D
phase–space. The most important point of the above result is that we have
get an expression for a quantum–mechanical transition amplitude in terms of
an integral involving only pure complex numbers, without operators.

We can actually perform the above integral for Hamiltonians of the type
H = H(P,Q). We use square completion in the exponential for this, defining
the integral in the complex p plane and continuing to the physical situation.
In particular, we have∫ ∞

−∞

dp

2π
exp

{
iε(pq̇ − 1

2
p2]

}
=

1√
2πiε

exp
[
1
2
iεq̇2

]
,

(see [Ryd96, CL84, Gun03]) which, substituting into (3.77) gives

〈q′, t′ |q, t〉 = lim
n→∞

∫ ∏
i

dqi√
2πiε

exp{iε
n+1∑
j=1

[
1
2
(
qj − qj−1

ε
)2 − V (

qj + qj+1

2
)]}.

This can be formally written as

〈q′, t′ |q, t〉 =
∫
D[q] eiS[q],

where ∫
D[q] ≡

∫ ∏
i

dqi√
2πiε

,

while

S[q] =
∫ t′

t

L(q, q̇) dτ

is the standard action with the Lagrangian

L =
1
2
q̇2 − V (q).

Generalization to many degrees–of–freedom is straightforward:

〈q1
′...qN

′, t′|q1...qN , t〉 =
∫
D[p]D[q] exp

{
i
∫ t′

t

[
N∑

n=1

pnq̇n −H(pn, qn)

]
dτ

}
,

with
∫
D[p]D[q] =

∫ N∏
n=1

dqndpn

2π
.

Here, qn(t) = qn and qn(t′) = qn
′ for all n = 1, . . . , N , and we are allowing for

the full Hamiltonian of the system to depend upon all the N momenta and
coordinates collectively.
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Basic Physical Applications of Path Integrals

(i) Consider first

〈q′, t′|Q(t0)|q, t〉

=
∫ ∏

dqi(ti) 〈q′, t′|qn, tn〉 . . . 〈qi0, ti0|Q(t0)|qi−1, ti−1〉 . . . 〈q1, t1|q, t〉 ,

where we choose one of the time interval ends to coincide with t0, i.e., ti0 = t0.
If we operate Q(t0) to the left, then it is replaced by its eigenvalue qi0 = q(t0).
Aside from this one addition, everything else is evaluated just as before and
we will obviously get

〈q′, t′|Q(t0)|q, t〉 =
∫
D[p]D[q] q(t0) exp

{
i
∫ t′

t

[pq̇ −H(p, q)]dτ

}
.

(ii) Next, suppose we want a path–integral expression for 〈q′, t′|Q(t1)Q(t2)|
q, t〉 in the case where t1 > t2. For this, we have to insert as intermediate states
|qi1, ti1〉 〈qi1, ti1| with ti1 = t1 and |qi2, ti2〉 〈qi2, ti2| with ti2 = t2 and since we
have ordered the times at which we do the insertions we must have the first
insertion to the left of the 2nd insertion when t1 > t2. Once these insertions
are done, we evaluate 〈qi1, ti1|Q(t1) = 〈qi1, ti1| q(t1) and 〈qi2, ti2|Q(t2) =
〈qi2, ti2| q(t2) and then proceed as before and get

〈q′, t′|Q(t1)Q(t2)|q, t〉 =
∫
D[p]D[q] q(t1) q(t2) exp

{
i
∫ t′

t

[pq̇ −H(p, q)]dτ

}
.

Now, let us ask what the above integral is equal to if t2 > t1? It is obvious
that what we get for the above integral is 〈q′, t′|Q(t2)Q(t1)|q, t〉 . Clearly, this
generalizes to an arbitrary number of Q operators.

(iii) When we enter into quantum field theory, the Q’s will be replaced
by fields, since it is the fields that play the role of coordinates in the 2nd
quantization conditions.

Sources

The source is represented by modifying the Lagrangian:

L→ L + J(t)q(t).

Let us define |0, t〉J as the ground state (vacuum) vector (in the moving frame,
i.e., with the eiHt included) in the presence of the source. The required tran-
sition amplitude is

Z[J ] ∝ 〈0,+∞|0,−∞〉J ,

where the source J = J(t) plays a role analogous to that of an electromagnetic
current, which acts as a source of the electromagnetic field. In other words,
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we can think of the scalar product JμA
μ, where Jμ is the current from a scalar

(or Dirac) field acting as a source of the potential Aμ. In the same way, we
can always define a current J that acts as the source for some arbitrary field
φ. Z[J ] (otherwise denoted by W [J ]) is a functional of the current J , defined
as (see [Ryd96, CL84, Gun03])

Z[J ] ∝
∫
D[p]D[q] exp

{
i
∫ t′

t

[p(τ)q̇(τ)−H(p, q) + J(τ)q(τ)]dτ

}
,

with the normalization condition Z[J = 0] = 1. Here, the argument of the
exponential depends upon the functions q(τ) and p(τ) and we then integrate
over all possible forms of these two functions. So the exponential is a functional
that maps a choice for these two functions into a number. For example, for
a quadratically completable H(p, q), the p integral can be performed as a q
integral

Z[J ] ∝
∫
D[q] exp

{
i
∫ +∞

−∞

(
L + Jq +

1
2
iεq2

)
dτ

}
,

where the addittion to H was chosen in the form of a convergence factor
− 1

2 iεq2.

Fields

Let us now treat the abstract scalar field φ(x) as a coordinate in the sense
that we imagine dividing space up into many little cubes and the average
value of the field φ(x) in that cube is treated as a coordinate for that little
cube. Then, we go through the multi–coordinate analogue of the procedure
we just considered above and take the continuum limit. The final result is

Z[J ] ∝
∫
D[φ] exp

{
i
∫

d4x

(
L (φ(x)) + J(x)φ(x) +

1
2
iεφ2

)}
,

where for L we would employ the Klein–Gordon Lagrangian form. In the
above, the dx0 integral is the same as dτ , while the d3x integral is sum-
ming over the sub–Lagrangians of all the different little cubes of space and
then taking the continuum limit. L is the Lagrangian density describing
the Lagrangian for each little cube after taking the many–cube limit (see
[Ryd96, CL84, Gun03]) for the full derivation).

We can now introduce interactions, LI . Assuming the simple form of the
Hamiltonian, we have

Z[J ] ∝
∫
D[φ] exp

{
i
∫

d4x (L (φ(x)) + LI (φ(x)) + J(x)φ(x))
}

,

again using the normalization factor required for Z[J = 0] = 1.



520 3 Quantum Computational Mind

For example of Klein Gordon theory, we would use

L = L0 + LI , L0
1
2
[∂μφ∂

μφ− μ2φ2], LI = LI(φ),

where ∂μ ≡ ∂xμ and we can freely manipulate indices, as we are working in
Euclidean space R3. In order to define the above Z[J ], we have to include a
convergence factor iεφ2,

L0 →
1
2
[
∂μφ∂

μφ− μ2φ2 + iεφ2
]
, so that

Z[J ] ∝
∫
D[φ] exp

{
i
∫

d4x

(
1
2
[
∂μφ∂

μφ− μ2φ2 + iεφ2
]
+ LI(φ(x))

+J(x)φ(x)
)}

is the appropriate generating function in the free field theory case.

Gauges

In the path integral approach to quantization of the gauge theory, we imple-
ment gauge fixing by restricting in some manner or other the path integral
over gauge fields

∫
D[Aμ]. In other words we will write instead

Z[J ] ∝
∫
D[Aμ] δ (some gauge fixing condition) exp{i

∫
d4xL (Aμ)}.

A common approach would be to start with the gauge condition

L = −1
4
FμνF

μν − 1
2
(∂μAμ)2

where the electrodynamic field tensor is given by Fμν = ∂μAν − ∂νAμ, and
calculate

Z[J ] ∝
∫
D[Aμ] exp

{
i
∫

d4x [L(Aμ(x)) + Jμ(x)Aμ(x)]
}

as the generating function for the vacuum expectation values of time ordered
products of the Aμ fields. Note that Jμ should be conserved (∂μJμ = 0) in order
for the full expression L(Aμ)+JμA

μ to be gauge–invariant under the integral
sign when Aμ → Aμ+∂μΛ. For a proper approach, see [Ryd96, CL84, Gun03].

3.2 Quantum Consciousness

3.2.1 EPR Paradox and Bell’s Theorem

EPR Paradox

Recall that the so–called EPR paradox in quantum mechanics is a thought
experiment11 which challenged long–held ideas about the relation between the
11 Recall that a thought experiment (coined by Hans Christian Ørsted) in the broad-

est sense is the use of an imagined scenario to help us understand the way things
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observed values of physical quantities and the values that can be accounted
for by a physical theory. ‘EPR’ stands for A. Einstein,12 B. Podolsky, and N.
Rosen, who introduced the thought experiment in a 1935 paper [EPR35a],
to argue that quantum mechanics is not a complete physical theory. It is
sometimes referred to as the EPRB paradox for David Bohm, who converted
the original thought experiment into something closer to being experimentally
testable.

The EPR experiment yields the following dichotomy:
(i) Either the result of a measurement performed on one part A of a

quantum system has a non–local effect on the physical reality of another
distant part B, in the sense that quantum mechanics can predict outcomes of
some measurements carried out at B, or

(ii) Quantum mechanics is incomplete in the sense that some element
of physical reality corresponding to B cannot be accounted for by quantum
mechanics (that is, some extra variable is needed to account for it.)

really are. The understanding comes through reflection on the situation. Thought
experiment methodology is a priori, rather than empirical, in that it does not
proceed by observation or physical experiment. Thought experiments are well–
structured hypothetical questions that employ ‘What if?’ reasoning. Thought
experiments have been used in philosophy, physics, and other fields. They have
been used to pose questions in philosophy at least since Greek antiquity, some
pre-dating Socrates. In physics and other sciences many famous thought experi-
ments date from the 19th and especially the 20th Century, but examples can be
found at least as early as Galileo.

Thought experiments in physics are intended to give us a priori knowledge of
the natural world, rather than a priori knowledge of our concepts, as philosophy
tries to do. A. Einstein and N. Tesla were famous for their thought experiment
methodology.

12 Albert Einstein (March 14, 1879 – April 18, 1955) was a German–born theoretical
physicist. He is widely regarded as one of the greatest physicists who ever lived.
He formulated the Special and General Relativity Theories. In addition, he made
significant contributions to quantum theory and statistical mechanics. While best
known for the Theory of Relativity (and specifically mass–energy equivalence,
E = mc2), he was awarded the 1921 Nobel Prize for Physics for his explanation
of the photoelectric effect in 1905 (his ‘wonderful year’ or ‘miraculous year’) and
‘for his services to Theoretical Physics’.

Following the May 1919 British solar-eclipse expeditions, whose later analysis
confirmed that light rays from distant stars were deflected by the Sun’s gravita-
tion as predicted by the Field Equation of general relativity, in November 1919
Albert Einstein became world–famous, an unusual achievement for a scientist.
The Times ran the headline on November 7, 1919: “Revolution in science – New
theory of the Universe – Newtonian ideas overthrown.” Nobel laureate Max Born
viewed General Relativity as the “greatest feat of human thinking about nature;”
fellow laureate Paul Dirac called it “probably the greatest scientific discovery
ever made.” In popular culture, the name ‘Einstein’ has become synonymous
with great intelligence and genius.
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Although originally devised as a thought experiment that would demon-
strate the incompleteness of quantum mechanics,13 actual experimental re-
sults ironically refutes the principle of locality ,14 invalidating the EPR trio’s
original purpose. The “spooky action at a distance” that so disturbed the

13 Incompleteness of quantum physics is the assertion that the state of a physical
system, as formulated by quantum mechanics, does not give a complete descrip-
tion for the system. A complete description is one which uniquely determines the
values of all its measurable properties. The existence of indeterminacy for some
measurements is a characteristic of quantum mechanics; moreover, bounds for
indeterminacy can be expressed in a quantitative form by the Heisenberg uncer-
tainty principle.

Incompleteness can be understood in two fundamentally different ways:
(i) QM is incomplete because it is not the ‘right’ theory; the right theory would

provide descriptive categories to account for all observable behavior and not leave
‘anything to chance’.

(ii) QM is incomplete, but it accurately reflects the way nature is.
Incompleteness understood as (i) is now considered highly controversial, since

it contradicts the impossibility of a hidden variables theory which is shown by
Bell test experiments. There are many variants of (ii) which is widely considered
to be the more orthodox view of quantum mechanics.

14 The principle of locality is that distant objects cannot have direct influence on
one another: an object is influenced directly only by its immediate surroundings.
This was stated as follows by Einstein in his article [Ein48].

The following idea characterizes the relative independence of objects far apart
in space (A and B): external influence on A has no direct influence on B; this is
known as the Principle of Local Action, which is used consistently only in field
theory. If this axiom were to be completely abolished, the idea of the existence of
quasi–enclosed systems, and thereby the postulation of laws which can be checked
empirically in the accepted sense, would become impossible.

Local realism is the combination of the principle of locality with the ‘realistic’
assumption that all objects must objectively have their properties already before
these properties are observed. Einstein liked to say that the Moon is ‘out there’
even when no one is observing it.

Local realism is a significant feature of classical mechanics, general relativ-
ity and Maxwell’s theory, but quantum mechanics largely rejects this principle
due the presence of distant quantum entanglements, most clearly demonstrated
by the EPR paradox and quantified by Bell’s inequalities. Every theory that,
like quantum mechanics, is compatible with violations of Bell’s inequalities must
abandon either local realism or counterfactual definiteness. (The vast majority
of physicists believe that experiments have demonstrated Bell’s violations, but
some local realists dispute the claim, in view of the recognized loopholes in the
tests.) Different interpretations of quantum mechanics reject different parts of
local realism and/or counterfactual definiteness.

In most of the conventional interpretations, such as the version of the Copen-
hagen interpretation and the interpretation based on Consistent Histories, where
the wave ψ−function is not assumed to have a direct physical interpretation or
reality it is realism that is rejected. The actual definite properties of a physical
system ‘do not exist’ prior to the measurement and the wave ψ−function has a
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authors of EPR consistently occurs in numerous and widely replicated ex-
periments. Einstein never really accepted quantum mechanics as a ‘real’ and
complete theory, struggling to the end of his career (and life) for an interpre-
tation that could comply with his Relativity without implying “God playing
dice,” as he condensed his dissatisfaction with QM’s intrinsic randomness and
(still to be resolved) counter–intuitivity.

The EPR paradox is a paradox in the following sense: if one takes quan-
tum mechanics and adds some seemingly reasonable conditions (referred to
as locality, realism, counter factual definiteness, and completeness), then one
obtains a contradiction. However, quantum mechanics by itself does not ap-
pear to be internally inconsistent, nor does it contradict relativity. As a result
of further theoretical and experimental developments since the original EPR

restricted interpretation as nothing more than a mathematical tool used to cal-
culate the probabilities of experimental outcomes, in agreement with positivism
in philosophy as the only topic that science should discuss.

In the version of the Copenhagen interpretation where the wave ψ−function is
assumed to have a physical interpretation or reality (the nature of which is un-
specified), the principle of locality is violated during the measurement process via
wave ψ−function collapse. This is a nonlocal process because Born’s Rule, when
applied to the system’s wave function, yields a probability density for all regions
of space and time. Upon measurement of the physical system, the probability den-
sity vanishes everywhere instantaneously, except where (and when) the measured
entity is found to exist. This ”vanishing” would be a real physical process, and
clearly non-local (faster–than–light–speed), if the wave ψ−function is considered
physically real and the probability density converged to zero at arbitrarily far
distances during the finite time required for the measurement process.

The Bohm interpretation always wants to preserve realism, and it needs to
violate the principle of locality to achieve the required correlations.

In the many–worlds interpretation realism and locality are retained but coun-
terfactual definiteness is rejected by the extension of the notion of reality to allow
the existence of parallel universes.

Because the differences between the different interpretations are mostly philo-
sophical ones (except for the Bohm and many–worlds interpretations), the physi-
cists usually use the language in which the important statements are independent
of the interpretation we choose. In this framework, only the measurable action at
a distance, a super–luminal propagation of real, physical information, would be
usually considered to be a violation of locality by the physicists. Such phenomena
have never been seen, and they are not predicted by the current theories (with
the possible exception of the Bohm theory).

Locality is one of the axioms of relativistic quantum field theory, as required
for causality. The formalization of locality in this case is as follows: if we have two
observables, each localized within two distinct spacetime regions which happen to
be at a space–like separation from each other, the observables must commute. This
interpretation of the word ‘locality’ is closely related to the relativistic version in
physics. In physics a solution is local if the underlying equations are either Lorentz
invariant or, more generally, generally covariant or locally Lorentz invariant.



524 3 Quantum Computational Mind

paper, most physicists today regard the EPR paradox as an illustration of
how quantum mechanics violates classical intuitions, and not as an indication
that quantum mechanics is fundamentally flawed.

The EPR paradox draws on a quantum entanglement phenomenon, to
show that measurements performed on spatially separated parts of a quantum
system can apparently have an instantaneous influence on one another. This
effect is now known as nonlocal behavior15. In order to illustrate this, let us
consider a simplified version of the EPR thought experiment due to David
Bohm.

Measurements on an Entangled State

We have a source that emits pairs of electrons, with one electron sent to
destination A,where there is an observer named Alice, and another is sent to
destination B, where there is an observer named Bob. According to quantum
mechanics, we can arrange our source so that each emitted electron pair occu-
pies a quantum state called a spin singlet. This can be viewed as a quantum
superposition of two states, which we call I and II. In state I, electron A has
spin pointing upward along the z−axis (+z) and electron B has spin pointing
downward along the z−axis (−z). In state II, electron A has spin −z and
electron B has spin +z. Therefore, it is impossible to associate either electron
in the spin singlet with a state of definite spin. The electrons are thus said to
be entangled.

Alice now measures the spin along the z−axis. She can get one of two
possible outcomes: +z or −z. Suppose she gets +z. According to quantum
mechanics, the quantum state of the system collapses into state I (different
interpretations of quantum mechanics have different ways of saying this, but

15 A physical theory is said to ‘exhibit nonlocality’ if, in that theory, it is not possible
to treat widely separated systems as independent. The term is most often reserved,
however, for interactions that occur outside the backward light cone, i.e. super–
luminal influences. Nonlocality does not imply a lack of causality only in the case
when ‘ethereal’, not ‘causal’, information is transmitted between systems.

Special Relativity shows that in the case where causal information is trans-
mitted at super–luminal rates, causality is violated. For example, if information
could be exchanged at super–luminal rates, it would be possible to arrange for
your grandfather to be killed before you are born, which leads to causal para-
doxes. Some effects that appear nonlocal in quantum mechanics may actually
obey locality, such as quantum entanglement . These interactions effect correla-
tions between states of particles (expressed by a wave ψ−function which may be
in a superposition of states), such as the infamous singlet state. Einstein criti-
cized this interpretation of quantum mechanics on the grounds that these effects
employed what he called “spooky action at a distance.”

This issue is very closely related to Bell’s theorem and the EPR paradox .
Quantum field theory, on the other hand, which is the relativistic generalization
of quantum mechanics, contains mathematical features that assure locality.
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Fig. 3.5. The EPR thought experiment, performed with electrons. A source (center)
sends electrons toward two observers, Alice (left) and Bob (right), who can perform
spin measurements.

the basic result is the same). The quantum state determines the probable
outcomes of any measurement performed on the system. In this case, if Bob
subsequently measures spin along the z−axis, he will get −z with 100% prob-
ability. Similarly, if Alice gets −z, Bob will get +z.

There is nothing special about our choice of the z axis. For instance,
suppose that Alice and Bob now decide to measure spin along the x−axis.
According to quantum mechanics, the spin singlet state may equally well be
expressed as a superposition of spin states pointing in the x−direction. We
will call these states Ia and IIa. In state Ia, Alice’s electron has spin +x and
Bob’s electron has spin −x. In state IIa, Alice’s electron has spin −x and Bob’s
electron has spin +x. Therefore, if Alice measures +x, the system collapses
into Ia, and Bob will get −x. If Alice measures −x, the system collapses into
IIa, and Bob will get +x.

In quantum mechanics, the x−spin and z−spin are incompatible
observables, which means that there is a Heisenberg uncertainty principle
operating between them: a quantum state cannot possess a definite value
for both variables. Suppose Alice measures the z−spin and obtains +z, so
that the quantum state collapses into state I. Now, instead of measuring the
z−spin as well, Bob measures the x−spin. According to quantum mechanics,
when the system is in state I, Bob’s x−spin measurement will have a 50%
probability of producing +x and a 50% probability of −x. Furthermore, it
is fundamentally impossible to predict which outcome will appear until Bob
actually performs the measurement.

So how does Bob’s electron know, at the same time, which way to point if
Alice decides (based on information unavailable to Bob) to measure x and also
how to point if Alice measures z? Using the usual Copenhagen interpretation
rules that say the wave function collapses at the time of measurement, there
must be action at a distance or the electron must know more than it is sup-
posed to. To make the mixed part quantum and part classical descriptions of
this experiment local, we have to say that the notebooks (and experimenters)
are entangled and have linear combinations of + and − written in them, like
Schrödinger’s Cat .
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Incidentally, although we have used spin as an example, many types of
physical quantities — what quantum mechanics refers to as quantum observ-
ables, can be used to produce quantum entanglement . The original EPR paper
used momentum for the observable. Experimental realizations of the EPR
scenario often use the polarization of photons, because polarized photons are
easy to prepare and measure.

In recent years, doubt has been cast on EPR’s conclusion due to
developments in understanding locality and especially quantum decoherence.
The word locality has several different meanings in physics. For example, in
quantum field theory locality means that quantum fields at different points of
space do not interact with one another. However, quantum field theories that
are local in this sense appear to violate the principle of locality as defined
by EPR, but they nevertheless do not violate locality in a more general
sense. A wave ψ−function collapse16 can be viewed as an epiphenomenon of

16 In certain interpretations of quantum mechanics, wave ψ−function collapse is
one of two processes by which quantum systems apparently evolve according to
the laws of quantum mechanics. It is also called collapse of the state vector or
reduction of the wave packet. The reality of wavefunction collapse has always
been debated, i.e., whether it is a fundamental phenomenon in its own right or
just an epiphenomenon of another process (e.g., quantum decoherence).

By the time John von Neumann wrote his famous treatise ‘Mathematische
Grundlagen der Quantenmechanik’ in 1932, the phenomenon of wave ψ−function
collapse was accommodated into the mathematical formulation of quantum me-
chanics by postulating that there were two processes of wave ψ−function change:

(1) The probabilistic, non–unitary, non–local, discontinuous change brought
about by observation and measurement, as outlined above.

(2) The deterministic, unitary, continuous time evolution of an isolated system
that obeys Schrödinger’s equation (or nowadays some relativistic, local equiva-
lent).

In general, quantum systems exist in superpositions of those basis states that
most closely correspond to classical descriptions, and – when not being measured
or observed, evolve according to the time dependent Schrödinger equation, rela-
tivistic quantum field theory or some form of quantum gravity or string theory,
which is process (2) mentioned above. However, when the wavefunction collapses –
process (1) – from an observer’s perspective the state seems to ‘leap’ or ‘jump’
to just one of the basis states and uniquely acquire the value of the property
being measured, e.i., that is associated with that particular basis state. After the
collapse, the system begins to evolve again according to the Schrödinger equation
or some equivalent wave equation.

Hence, in experiments such as the double–slit experiment each individual pho-
ton arrives at a discrete point on the screen, but as more and more photons are
accumulated, they form an interference pattern overall.

Consciousness causes collapse is the theory that observation by a conscious
observer is responsible for the wave ψ−function collapse. It is an attempt to solve
the Wigner’s friend paradox by simply stating that collapse occurs at the first
‘conscious’ observer. Supporters claim this is not a revival of substance dualism,
since (in a ramification of this view) consciousness and objects are entangled
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quantum decoherence,17 which in turn is nothing more than an effect of the
underlying local time evolution of the wavefunction of a system and all of its
environment. Since the underlying behaviour doesn’t violate local causality
it follows that neither does the additional effect of wavefunction collapse,
whether real or apparent. Therefore, as outlined in the example above, the
EPR experiment (nor any quantum experiment) does not demonstrate that
FTL signalling is possible.

Resolving the Paradox

There are several ways to resolve the EPR paradox. The one suggested by
EPR is that quantum mechanics, despite its success in a wide variety of
experimental scenarios, is actually an incomplete theory. In other words, there
is some yet undiscovered theory of nature to which quantum mechanics acts
as a kind of statistical approximation (albeit an exceedingly successful one).
Unlike quantum mechanics, the more complete theory contains variables cor-
responding to all the ‘elements of reality’. There must be some unknown
mechanism acting on these variables to give rise to the observed effects of
‘non–commuting quantum observables’, i.e., the Heisenberg uncertainty prin-
ciple. Such a theory is called a hidden variable theory .18

Another resolution of the EPR paradox is provided by Bell’s theorem.

and cannot be considered as separate. The consciousness causes collapse theory
can be considered as a speculative appendage to almost any interpretation of
quantum mechanics and many physicists reject it as unverifiable and introducing
unnecessary elements into physics.

In recent decades the latter view has gained popularity.
17 Quantum decoherence is the mechanism by which quantum systems interact with

their environments to exhibit probabilistically additive behavior (a feature of
classical physics) and give the appearance of wavefunction collapse. Decoherence
occurs when a system interacts with its environment, or any complex external sys-
tem, in such a thermodynamically irreversible way that ensures different elements
in the quantum superposition of the system + environment’s wave ψ−function
can no longer interfere with each other.

Decoherence does not provide a mechanism for the actual wave function col-
lapse; the quantum nature of the system is simply ‘leaked’ into the environment
so that a total superposition of the wavefunction still exists, but exists beyond
the realm of measurement; rather decoherence provides a mechanism for the ap-
pearance of wavefunction collapse.

Decoherence represents a major problem for the practical realization of quan-
tum computers, since these heavily rely on the undisturbed evolution of quantum
coherences.

18 A hidden variable theory is urged by a minority of physicists who argue that
the statistical nature of quantum mechanics implies that quantum mechanics
is incomplete; it is really applicable only to ensembles of particles; new physical
phenomena beyond quantum mechanics are needed to explain an individual event.
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Bell’s Theorem

Bell’s theorem is the most famous legacy of the late physicist John Bell.19 It
is notable for showing that the predictions of quantum mechanics (QM) differ
from those of intuition. It is simple and elegant, and touches upon fundamental
philosophical issues that relate to modern physics. In its simplest form, Bell’s
theorem states:

No physical theory of local hidden variables can ever reproduce all of the
predictions of quantum mechanics.

This theorem has even been called ”the most profound in science” (Stapp,
1975). Bell’s seminal 1964 paper was entitled ”On the Einstein Podolsky Rosen
paradox”. The Einstein Podolsky Rosen paradox (EPR paradox) assumes
local realism, the intuitive notion that particle attributes have definite values
independent of the act of observation and that physical effects have a finite
propagation speed. Bell showed that local realism leads to a requirement for
certain types of phenomena that are not present in quantum mechanics. This
requirement is called Bell’s inequality.

Different authors subsequently derived similar inequalities, collectively
termed Bell inequalities, that also assume local realism. That is, they assume
that each quantum-level object has a well defined state that accounts for all
its measurable properties and that distant objects do not exchange informa-
tion faster than the speed of light. These well defined properties are often
called hidden variables, the properties that Einstein posited when he stated
his famous objection to quantum mechanics: “God does not play dice.”

The inequalities concern measurements made by observers (often called
Alice and Bob) on entangled pairs of particles that have interacted and then
separated. Hidden variable assumptions limit the correlation of subsequent
measurements of the particles. Bell discovered that under quantum mechanics
this correlation limit may be violated. Quantum mechanics lacks local hidden
variables associated with individual particles, and so the inequalities do not
apply to it. Instead, it predicts correlation due to quantum entanglement of
the particles, allowing their state to be well defined only after a measurement
is made on either particle. That restriction agrees with the Heisenberg uncer-
tainty principle, one of the most fundamental concepts in quantum mechanics.

19 John S. Bell (June 28, 1928 – October 1, 1990) was a physicist who became well
known as the originator of Bell’s Theorem, regarded by some in the quantum
physics community as one of the most important theorems of the 20th century.

In 1964, after a year’s leave from CERN that he spent US, he wrote a paper
[Bel64, Bel66, Bel87] entitled ‘On the Einstein–Podoslky–Rosen paradox’. In this
work, he showed that the carrying forward EPR’s analysis [EPR35a] permits one
to derive the famous inequality. What is fascinating about this inequality is that
it can be derived from some quite innocent looking assumptions. . . . . . and yet
quantum mechanics itself is in conflict with it!
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Per Bell’s theorem, either quantum mechanics or local realism is wrong.
Experiments were needed to determine which is correct, but it took many
years and many improvements in technology to perform them.

Bell test experiments to date overwhelmingly show that the inequalities
of Bell’s theorem are violated. This provides empirical evidence against local
realism and demonstrates that some of the ”spooky action at a distance”
suggested by the famous Einstein Podolsky Rosen (EPR) thought experiment
do in fact occur. They are also taken as positive evidence in favor of QM. The
principle of special relativity is saved by the no-communication theorem, which
proves that the observers cannot use the inequality violations to communicate
information to each other faster than the speed of light.

John Bell’s papers examined both John von Neumann’s 1932 proof of
the incompatibility of hidden variables with QM and Albert Einstein and his
colleagues’ seminal 1935 paper on the subject.

Importance of the Theorem

After EPR, quantum mechanics was left in the unsatisfactory position that
it was either incomplete in the sense that it failed to account for some ele-
ments of physical reality, or it violated the principle of finite propagation
speed of physical effects. In the EPR thought experiment, two observers, now
commonly referred to as Alice and Bob, perform independent measurements
of spin on a pair of electrons, prepared at a source in a special state called a
spin singlet state. It was a conclusion of EPR that once Alice measured spin
in one direction (e.g. on the x axis), Bob’s measurement in that direction was
determined with certainty, whereas immediately before Alice’s measurement,
Bob’s outcome was only statistically determined. Thus, either the spin in each
direction is not an element of physical reality or the effects travel from Alice
to Bob instantly.

In QM predictions were formulated in terms of probabilities, for example,
the probability that an electron might be detected in a particular region of
space, or the probability that it would have spin up or down. However, there
still remained the idea that the electron had a definite position and spin,
and that QM’s failing was its inability to predict those values precisely. The
possibility remained that some yet unknown, but more powerful theory, such
as a hidden variable theory, might be able to predict these quantities exactly,
while at the same time also being in complete agreement with the probabilistic
answers given by QM. If a hidden variables theory were correct, the hidden
variables were not described by QM and thus QM would be an incomplete
theory.

The desire for a local realist theory was based on two ideas: first, that
objects have a definite state that determines the values of all other measur-
able properties such as position and momentum and second, that (as a result
of special relativity) effects of local actions such as measurements cannot
travel faster than the speed of light. In the formalization of local realism used
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by Bell, the predictions of a theory result from the application of classical
probability theory to an underlying parameter space. By a simple (but clever)
argument based on classical probability he then showed that correlations be-
tween measurements are bounded in a way that is violated by QM.

Bell’s theorem seemed to seal the fate of those that had local realist hopes
for QM.

Bell’s Thought Experiment

Bell considered a setup in which two observers, Alice and Bob, perform
independent measurements on a system S prepared in some fixed state. Each
observer has a detector with which to make measurements. On each trial,
Alice and Bob can independently choose between various detector settings.
Alice can choose a detector setting a to get a measurement A(a) and Bob can
choose a detector setting b to measure B(b). After repeated trials Alice and
Bob collect statistics on their measurements and correlate the results.

There are two key assumptions in Bell’s analysis: (1) each measurement
reveals an objective physical property of the system (2) a measurement taken
by one observer has no effect on the measurement taken by the other.

In the language of probability theory, repeated measurements of system
properties can be regarded as repeated sampling of random variables. One
might expect measurements by Alice and Bob to be somehow correlated with
each other: the random variables are assumed not to be independent, but
linked in some way. Nonetheless, there is a limit to the amount of correlation
one might expect to see. This is what the Bell inequality expresses.

A version of the Bell inequality appropriate for this example is given by
John Clauser, Michael Horne, Abner Shimony and R. A. Holt, and is called
the CHSH form,

C[A(a), B(b)] + C[A(a), B(b′)] + C[A(a′), B(b)]−C[A(a′), B(b′)] ≤ 2,

where C denotes correlation.

Fig. 3.6. Illustration of Bell test for spin 1/2 particles. Source produces spin singlet
pair, one particle sent to Alice another to Bob. Each performs one of the two spin
measurements.
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Description of the Bell’s Theorem

Continuing on from the situation explored in the EPR paradox, consider that
again a source produces paired particles, one sent to Alice and another to
Bob. When Alice and Bob measure the spin of the particles in the same axis,
they will get identical results; when Bob measures at right angles to Alice’s
measurements they will get the same results 50% of the time, the same as a
coin toss. This is expressed mathematically by saying that in the first case,
their results have a correlation of 1, or perfect correlation; in the second case
they have a correlation of 0; no correlation (a correlation of −1 would indicate
getting opposite results the whole time).

So far, this can be explained by positing local hidden variables; each pair of
particles is sent out with instructions on how to behave when measured in the
x−axis and the z−axis, generated randomly. Clearly, if the source only sends
out particles whose instructions are correlated for each axis, then when Alice
and Bob measure on the same axis, they are bound to get identical results;
but (if all four possible pairs of instructions are generated equally) when they
measure on perpendicular axes they will see zero correlation.

Now consider that B rotates their apparatus (by 45 degrees, say) relative
to that of Alice. Rather than calling the axes xA, etc., henceforth we will
call Alice’s axes a and a’, and Bob’s axes b and b’. The hidden variables
(supposing they exist) would have to specify a result in advance for every
possible direction of measurement. It would not be enough for the particles to
decide what values to take just in the direction of the apparatus at the time
of leaving the source, because either Alice or Bob could rotate their apparatus
by a random amount any time after the particles left the source.

Next, we define a way to ‘keep score’ in the experiment. Alice and Bob
decide that they will record the directions they measured the particles in, and
the results they got; at the end, they will tally up, scoring +1 for each time
they got the same result and −1 for an opposite result, except that if Alice
measured in a and Bob measured in b’, they will score +1 for an opposite
result and −1 for the same result. It turns out (see the mathematics below)
that however the hidden variables are contrived, Alice and Bob cannot average
more than 50% overall. For example, suppose that for a particular value of
the hidden variables, the a and b directions are perfectly correlated, as are
the a’ and b’ directions. Then, since a and a’ are at right angles and so have
zero correlation, a’ and b have zero correlation, as do a and b’. The unusual
‘scoring system’ is designed in part to ensure this holds for all possible values
of the hidden variables.

The question is now whether Alice and Bob can score higher if the particles
behave as predicted by quantum mechanics. It turns out they can; if the
apparatuses are rotated at 45◦ to each other, then the predicted score is
71%. In detail: when observations at an angle of θ are made on two entan-
gled particles, the predicted correlation between the measurements is cos θ. In
one explanation, the particles behave as if when Alice makes a measurement
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(in direction x, say), Bob’s particle instantaneously switches to take that
direction. When Bob makes a measurement, the correlation (the averaged–
out value, taking +1 for the same measurement and −1 for the opposite) is
equal to the length of the projection of the particle’s vector onto his measure-
ment vector; by trigonometry, cos θ. θ is 45◦, and cos θ is

√
2/2, for all pairs

of axes except (a, b’) , where they are 135◦ and −
√

2/2, but this last is taken
in negative in the agreed scoring system, so the overall score is

√
2/2; 0.707,

or 71%. If experiment shows (as it appears to) that the 71% score is attained,
then hidden variable theories cannot be correct; not unless information is be-
ing transmitted between the particles faster than light, or the experimental
design is flawed.

For the mathematical statement and proof of the Bell’s theorem, see
[Bel64, Bel66, Bel87].

3.2.2 Orchestrated Objective Reduction and Penrose Paradox

Orchestrated Objective Reduction (Orch OR) is a theory of consciousness
put forth in the mid–1990s by British mathematical physicist Sir Roger
Penrose and American anesthesiologist Stuart Hameroff (see [HW83, HW82]).
Whereas some theories assume consciousness emerges from the brain, and
among these some assume that mind emerges from complex computation at
the level of synapses among brain neurons, Orch OR involves a specific form
of quantum computation which underlies these neuronal synaptic activities.
The proposed quantum computations occur in structures inside the brain’s
neurons called microtubules.

Now, recall from above that to make a measurement or observation of the
quantum system means to concentrate on those aspects of the system that can
be simultaneously magnified to the classical level and from which the system
must then choose. Therefore, by measuring we are disturbing the quantum
system with the magnifying device, which results in decoherence. In other
words, we get classical probabilities, highly reminiscent of a standard particle–
like behavior. The ‘measurement/observation’ process has caused decoherence
of the wave ψ−function and thus led to its collapse to a specific state.

Until now, our approach to the quantum world involves two components:
the one component dubbed by Penrose [Pen89, Pen94, Pen97] the U−part,
involves the unitary evolution of the system, in a deterministic, continuous,
time–symmetric fashion, as described for example by the Schrödinger equation
(3.3), i.e.,

U : i� ∂tψ(t) = Ĥ ψ(t). (3.78)

Clearly such an evolution respects quantum coherence, as reflected by the
quantum complex superposition principle implicit in (3.78). The second
component, dubbed by Penrose the R−part, involves the reduction of the
state–vector or collapse of the wave ψ−function, that enforces coexisting
alternatives to resolve themselves into actual alternatives, one or the other,
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R : ψ =
∑

i

ciψi −→
∑

i

|ci|2|ψi|2, (3.79)

where |ci|2 are classical probabilities describing actual alternatives. It is the
R−part of quantum physics that introduces ‘uncertainties’ and ‘probabilities’,
thus involving discontinuous, time–asymmetric quantum jumps and leading to
gross violations of quantum coherence. It is fair to say that almost universally,
when physicists talk about quantum physics, they tacitly identify it with its
U−part only. It is the U−part that has absorbed all our attention for about
70 years now, and in its more advanced form, relativistic quantum field the-
ory, has become an icon of modern physics, with spectacular success, e.g.,
the Standard Model SU(3)× SU(2)× U(1). On the other hand, the R−part
has been vastly and conveniently forgotten, tacitly assumed to be some mere
technicality that gives us the right rules of ‘measurement’ or ‘observation’:
different aspects of a quantum system are simultaneously magnified at the
classical level, and between which the system must choose. This attitude has
brought us finally to the Penrose paradox , and we need to reconsider our strat-
egy. Actually, there is no way to deduce the R−part from the U−part, the
R−part being a completely different procedure from the U−part, and effec-
tively providing the other ‘half ’ of the interpretation of quantum mechanics.
It is the (U+R) parts together that are needed for the spectacular agreement
of quantum mechanics with the observed facts. So, one is after some new dy-
namics, N, that provides a unified and comprehensible picture of the whole
(U + R) process. In the work of [EMN92, EMN99, MN95a, MN95b, Nan95]
the above approach is presented by

U⊕R ⊆ N. (3.80)

It should be stressed that the New dynamics involved in the N−equation
(3.80), because they have to approach at appropriate limits the U−equation
(3.78) and the R−equation (3.79), i.e., almost anti–diametrical points of view,
cannot be some smooth generalization of some wave dynamics. Apparently,
the N−equation (3.80) has to contain seeds of non–relativistic invariance and
time asymmetry, but in such a way that when the R−part or emergence of
classicality is neglected, an approximately relativistic, time–symmetric (quan-
tum field) theory emerges.

Orchestrated Objective Reduction

In the 1970s and 1980s Hameroff attempted to show that consciousness
depends on computation within neurons in microtubules, self–assembling
cylindrical polymers of the protein tubulin. Microtubules organize neuronal
shape and function, e.g., forming and maintaining synapses (and help single
cells like paramecium swim, find food and mates, learn and have sex without
any synapses). Hameroff concluded that microtubules function as molecular–
level cellular automata, and that microtubules in each neuron of the brain
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had the computational power of 1016 operations per second. Neuronal–level
synaptic operations were regulated by these internal computations, Hameroff
claimed, so attempts by artificial intelligence (AI) workers to mimic brain
functions by simulating neuronal/synaptic activities would fail. Hence, as far
as explaining consciousness, why we have inner experience, feelings, subjec-
tivity, merely adding another layer of information processing within neurons
in microtubules did not help.

Meanwhile Roger Penrose, famous for his work in relativity, quantum
mechanics, geometry and other disciplines, had concluded for completely dif-
ferent reasons that AI computational approaches were inadequate to explain
consciousness. In his 1989 book ‘The Emperor’s New Mind’ Penrose used
Kurt Gödel’s theorem to argue that human consciousness and understand-
ing required a factor outside algorithmic computation, and that the missing
‘non–computable’ factor was related to a specific type of quantum computa-
tion involving what he termed ‘objective reduction’ (OR), his solution to the
measurement problem in quantum mechanics.

Penrose considered superposition as a separation in underlying reality at
its most basic level, the Planck scale. Tying quantum superposition to gen-
eral relativity, he identified superposition as spacetime curvatures in opposite
directions, hence a separation in fundamental spacetime geometry. However,
according to Penrose, such separations are unstable and will reduce at an
objective threshold, hence avoiding multiple universes.

The threshold for Penrose OR is given by the indeterminacy principle
E = �/t, where E is the gravitational self–energy (i.e., the degree of spacetime
separation given by the superpositioned mass), � is Planck’s constant over
2π, and t is the time until OR occurs. Thus the larger the superposition,
the faster it will undergo OR, and vice versa. Small superpositions, e.g. an
electron separated from itself, if isolated from environment would require 10
million years to reach OR threshold. An isolated one kilogram object (e.g.,
Schrodinger’s cat) would reach OR threshold in only 10–37 seconds. Penrose
OR is currently being tested.

An essential feature of Penrose OR is that the choice of states when OR
occurs is selected neither randomly (as are choices following measurement, or
decoherence) nor completely algorithmically. Rather, states are selected by
a ‘non–computable’ influence involving information embedded in the funda-
mental level of spacetime geometry at the Planck scale. Moreover, Penrose
claimed that such information is Platonic, representing pure mathematical
truth, aesthetic and ethical values. Plato had proposed such pure values and
forms, but in an abstract realm. Penrose placed the Platonic realm in the
Planck scale.

In ‘The Emperor’s New Mind’ [Pen89], Penrose suggested (and further
developed later in [Pen94, Pen97]) that consciousness required a form of quan-
tum computation in the brain.

Recall that quantum computation had been suggested by Richard
Feynman, Paul Benioff and David Deutsch in the 1980s. The idea is that
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classical information (e.g., bit states of either 1 or 0) could also be quantum
superpositions of both 1 and 0 (quantum bits, or qubits). Such qubits interact
and compute by nonlocal quantum entanglement, eventually being mea-
sured/observed and reducing to definite states as the solution. Quantum
computations were shown to have enormous capacity if they could be
constructed e.g., using qubits of ion states, electron spin, photon polar-
ization, current in Josephson junction, quantum dots, etc. During quantum
computation, qubits must be isolated from environmental interaction to avoid
loss of superposition, i.e., ‘decoherence’.

Penrose argued that quantum computation which terminated not by
measurement, but by his version of objective reduction, constituted conscious-
ness (allowing Platonic non–computable influences). Penrose had no definite
biological qubits for such quantum computation by OR, except to suggest the
possibility of superpositions of neurons both ‘firing and not firing’.

Hameroff read ‘The Emperor’s New Mind’ and suggested to Penrose that
microtubules within neurons were better suited for quantum computing with
OR than were superpositions of neuronal firings. The two met in the early
1990s and began to develop the theory now known as Orch OR. ‘Orch’ refers to
orchestration, the manner in which biological conditions including synaptic–
level neuronal events provide feedback to influence quantum computation with
OR in microtubules [Ham87, HP96, HP93, Ham98].

The Orch OR Model

For biological qubits, Penrose and Hameroff chose conformational states of
the tubulin subunit proteins in microtubules. Tubulin qubits would interact
and compute by entanglement with other tubulin qubits in microtubules in
the same and different neurons.

It was known that the peanut–shaped tubulin protein flexes 30 degrees,
giving two different conformational shapes. Could such different states exist as
superpositions, and if so, how? Penrose and Hameroff considered three possible
types of tubulin superpositions: separation at the level of the entire protein,
separation at the level of the atomic nuclei of the individual atoms within the
proteins, and separation at the level of the protons and neutrons (nucleons)
within the protein. Calculating the gravitational self–energy E of the three
types, separation at the level of atomic nuclei had the highest energy, and
would be the dominant factor. Penrose and Hameroff calculated E for super-
position/separation of one tubulin qubit at the level of atomic nuclei in all the
amino acids of the protein. They then related this to brain electrophysiology

There are claims that the best electrophysiological correlate of conscious-
ness can be seen in the so–called gamma–EEG waves , synchronized oscillations
in the range of 30 to 90 Hz (also known as ‘coherent 40 Hz’) mediated
by dendritic membrane depolarizations (not axonal action potentials). This
means that roughly 40 times per second (every 25 msec) neuronal dendrites
depolarize synchronously throughout wide regions of brain. On the other hand,
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there are also claims that relaxed alpha waves (8–12 Hz) or even meditative
theta waves (4–8 Hz), which have low frequency but high amplitude – are the
real source of human creativity.

Using the indeterminacy principle E = �/t for OR, Penrose and Hameroff
used 25 msec for t, and calculated E in terms of number of tubulins (since E
was known for one tubulin). Thus they were asking: how many tubulins would
be required to be in isolated superposition to reach OR threshold in 25 msec,
40 times per second, corresponding with membrane–level brain–wide effects?
The answer turned out to be 2 x 1011 tubulins.

There are roughly 107 tubulins per neuron. If all tubulins in microtubules
in a given neuron were involved, this would correspond with 2 x 104 (20,000)
neurons. However, because dendrites are apparently more involved in con-
sciousness than axons (which contain many microtubules), and because not
all microtubules in a given dendrite are likely to be involved at any one time,
an estimate of, say, 10 percent involvement gives 200,000 neurons involved
in consciousness every 25 msec. These estimates (20,000 to 200,000 neurons)
fit very well with others from more conventional approaches suggesting tens
to hundreds of thousands of neurons are involved in consciousness at any
one time.

How would microtubule quantum superpositions avoid environmental
decoherence? Cell interiors are known to alternate between liquid phases
(solution: ‘sol’) and quasi–solid (gelatinous: ‘gel’) phases due to polymer-
ization states of the ubiquitous protein actin. In the actin-polymerized gel
phase, cell water and ions are ordered on actin surfaces, so microtubules are
embedded in a highly structured (i.e., non–random) medium. Tubulins are
also known to have C termini ‘tails’, negatively charged peptide sequences
extending string–like from the tubulin body into the cytoplasm, attracting
positive ions and forming a plasma–like Debye layer which can also shield
microtubule quantum states. Finally, tubulins in microtubules were suggested
to be coherently pumped laser–like into quantum states by biochemical energy
(as proposed by Herbert Frohlich).

Actin gelation cycling with 40 Hz events permits input to, and output
from isolated microtubule quantum states. Thus during classical, liquid
phases of actin depolymerization, inputs from membrane/synaptic inputs
could ‘orchestrate’ microtubule states. When actin gelation occurs, quantum
isolation and computation ensues until OR threshold is reached, and actin
depolymerizes. The result of each OR event (in terms of patterns of tubulin
states) would proceed to organize intraneuronal activities including axonal
firing and synaptic modulation/learning. Each OR event (e.g., 40 per second)
is proposed to be a conscious event, equivalent in philosophical terms to what
philosopher Alfred North Whitehead called ‘occasions of experience’.

Thus one implication of the Orch OR model is that consciousness is a
sequence of discrete events, rather than a continuum. Yet conscious experi-
ence is subjectively uninterrupted, analogous to a movie appearing contin-
uous to observers despite being a series of frames. The difference is that in
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Orch OR, each conscious event is itself an intrinsic, subjective observation.
Moreover the frequency of conscious events may vary, 40 Hz being an aver-
age. If someone is excited and conscious events occur more often, (e.g., at
60 Hz), then subjectively the external world seems slower, as great athletes
report during peak performance. By E = �/t, more frequent conscious events
correspond with greater E, hence more tubulins/neurons per conscious eve-
nts and greater intensity of experience. Thus a spectrum of conscious events
may exist, similar to photons. There exists a spectrum of conscious quanta–
like events ranging from longer wavelength, low intensity events (large t, low
E) and shorter wavelength, higher intensity events (small t, large E).

3.2.3 Physical Science and Consciousness

Among all the human endeavors, physical science is usually considered to be
the most powerful for the maximum power it endows us to manipulate the
nature through an understanding of our position in it. This understanding
is gained when a set of careful observations based on tangible perceptions,
acquired by sensory organs and/or their extensions, is submitted to the logical
analysis of human intellect as well as to the intuitive power of imagination to
yield the abstract fundamental laws of nature that are not self–evident at the
gross level of phenomenal existence. There exists a unity in nature at the level
of laws that corresponds to the manifest diversity at the level of phenomena
[Sam99].

Can consciousness be understood in this sense by an appropriate use of the
methodology of science? The most difficult problem related to consciousness is
perhaps, ‘how to define it?’. Consciousness has remained a unitary subjective
experience, its various ‘components’ being reflective (the recognition by the
thinking subject of its own actions and mental states), perceptual (the state
or faculty of being mentally aware of external environment) and a free will
(volition). But how these components are integrated to provide the unique
experience called ‘consciousness’, familiar to all of us, remains a mystery.
Does it lie at the level of ‘perceptions’ or at the level of ‘laws’? Can it be
reduced to some basic ‘substance’ or ‘phenomenon’? Can it be manipulated
in a controlled way? Is there a need for a change of either the methodology
or the paradigm of science to answer the above questions?

Can Consciousness be reduced to its elements?

Now, most of the successes of science over the past five hundred years or so
can be attributed to the great emphasis it lays on the ‘reductionist paradigm’.
Following this approach, can consciousness be reduced either to ‘substance’
or ‘phenomena’ in the sense that by understanding which one can understand
consciousness?
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Physical Substratum

The attempts to reduce consciousness to a physical basis have been made in
the following ways by trying to understand the mechanism and functioning of
the human brain in various different contexts [Sam99].

• Physics
The basic substratum of physical reality is the ‘state’ of the system and
the whole job of physics can be put into a single question: Given the initial
state, how to predict its evolution at a later time? In classical world, the
state and its evolution can be reduced to events and their spatio–temporal
correlations. Consciousness has no direct role to play in this process of
reduction, although it is responsible to find an ‘objective meaning’ in such
a reduction.
But the situation is quite different in the quantum world as all relevant
physical information about a system is contained in its wave ψ−function
(or equivalently in its state vector), which is not physical in the sense of
being directly measurable. Consciousness plays no role in the deterministic
and unitary Schrödinger evolution (i.e., the U−process of Penrose [Pen89])
that the ‘un–physical’ wave ψ−function undergoes.
To extract any physical information from the wave ψ−function one has to
use the Born–Dirac rule and thus probability enters in a new way into the
quantum mechanical description despite the strictly deterministic nature
of evolution of the wave ψ−function. The measurement process forces the
system to choose an ‘actuality’ from all ‘possibilities’ and thus leads to
a non–unitary collapse of the general wave ψ−function to an eigenstate
(i.e., the R−process of Penrose [Pen89]) of the concerned observable. The
dynamics of this R−process is not known and it is here some authors like
Wigner have brought in the consciousness of the observer to cause the
collapse of the wave ψ−function. But instead of explaining the conscious-
ness, this approach uses consciousness for the sake of Quantum Mechanics
which needs the R−process along with the U−process to yield all its spec-
tacular successes.
The R−process is necessarily nonlocal and is governed by an irreducible
element of chance, which means that the theory is not naturalistic: the
dynamics is controlled in part by something that is not a part of the phys-
ical universe. Stapp [Sta95] has given a quantum–mechanical model of the
brain dynamics in which this quantum selection process is a causal process
governed not by pure chance but rather by a mathematically specified non-
local physical process identifiable as the conscious process. It was reported
that attempts have been made to explain consciousness by relating it to
the ‘quantum events’, but any such attempt is bound to be futile as the
concept of ‘quantum event’ in itself is ill–defined.
Keeping in view the fundamental role that the quantum vacuum plays in
formulating the quantum field theories of all four known basic interactions
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of nature spreading over a period from the Big–Bang to the present, it
has been suggested that if at all consciousness be reduced to anything
‘fundamental’ that should be the ‘quantum vacuum’ in itself. But in such
an approach the following questions arise:

• 1) If consciousness has its origin in the quantum vacuum that gives rise
to all fundamental particles as well as the force fields, then why is it that
only living things possess consciousness?

• 2) What is the relation between the quantum vacuum that gives rise to
consciousness and the space–time continuum that confines all our percep-
tions through which consciousness manifests itself?

• 3) Should one attribute consciousness only to systems consisting of ‘real’
particles or also to systems containing ‘virtual’ particles? Despite these
questions, the idea of tracing the origin of ‘consciousness’ to ‘substantial
nothingness’ appears quite promising because the properties of ‘quantum
vacuum’ may ultimately lead us to an understanding of the dynamics of
the R−process and thus to a physical comprehension of consciousness.
One of the properties that distinguishes living systems from the non–living
systems is their ability of self–organization and complexity. Since life is a
necessary condition for possessing consciousness, can one attribute con-
sciousness to a ‘degree of complexity’ in the sense that various degrees of
consciousness can be caused by different levels of complexity? Can one give
a suitable quantitative definition of consciousness in terms of ‘entropy’ that
describes the ‘degree of self–organization or complexity’ of a system? What
is the role of non-linearity and non–equilibrium thermodynamics in such
a definition of consciousness? In this holistic view of consciousness what
is the role played by the phenomenon of quantum nonlocality, first envis-
aged in EPR paper and subsequently confirmed experimentally [AGR82]?
What is the role of irreversibility and dissipation in this holistic view?

• Neurobiology
On the basis of the vast amount of information available on the structure
and the modes of communication (neurotransmitters, neuromodulators,
neurohormones) of the neuron, neuroscience has empirically found [Sam99]
the neural basis of several attributes of consciousness. With the help of
modern scanning techniques and by direct manipulations of the brain,
neurobiologists have found out that various human activities (both physi-
cal and mental) and perceptions can be mapped into almost unique regions
of the brain. Awareness, being intrinsic to neural activity, arises in higher
level processing centers and requires integration of activity over time at the
neuronal level. But there exists no particular region that can be attributed
to have given rise to consciousness. Consciousness appears to be a collec-
tive phenomena where the ‘whole’ is much more than the sum of parts.
Is each neuron having the ‘whole of consciousness’ within it, although it
does work towards a particular attribute of consciousness at a time?
Can this paradigm of finding neural correlates of the attributes of con-
sciousness be fruitful in demystifying consciousness? Certainly not. As
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it was aptly concluded [Sam99] the currently prevalent reductionist
approaches are unlikely to reveal the basis of such holistic phenomenon
as consciousness. There have been holistic attempts [Ham87, Pen89]
to understand consciousness in terms of collective quantum effects
arising in cytoskeletons and microtubules; minute substructures lying
deep within the brain’s neurons. The effect of general anaesthetics like
chloroform (CHCl3), isofluorane (CHF2OCHClCF3) etc. in switching off
the consciousness, not only in higher animals such as mammals or birds
but also in paramecium, amoeba, or even green slime mould has been
advocated [HW83] to be providing a direct evidence that the phenom-
enon of consciousness is related to the action of the cytoskeleton and to
microtubules. But all the implications of ‘quantum coherence’ regarding
consciousness in such approach can only be unfolded after we achieve a
better understanding of ‘quantum reality’, which still lies ahead of the
present–day physics.

• AI and CI
Can machines be intelligent? Within the restricted definition of ‘artificial
intelligence’, the neural network approach has been the most promising
one. But the possibility of realising a machine capable of artificial intel-
ligence based on this approach is constrained at present [Sam99] by the
limitations of ‘silicon technology’ for integrating the desired astronomi-
cal number of ‘neuron–equivalents’ into a reasonable compact space. Even
though we might achieve such a feat in the foreseeable future by using
chemical memories, it is not quite clear whether such artificially intel-
ligent machines can be capable of ‘artificial consciousness’. Because one
lacks at present a suitable working definition of ‘consciousness’ within the
framework of studies involving artificial intelligence.
Invoking Gödel’s incompleteness theorem, Penrose has argued [Pen89] that
the technology of electronic computer–controlled robots will not provide
a way to the artificial construction of an actually intelligent machine–in
the sense of a machine that ‘understands’ what it is doing and can act
upon that understanding. He maintains that human understanding (hence
consciousness) lies beyond formal arguments and beyond computability
i.e., in the Turing–machine–accessible sense.
Assuming the inherent ability of quantum mechanics to incorporate
consciousness, can one expect any improvement in the above situation by
considering ‘computation’ to be a physical process that is governed by the
rules of quantum mechanics rather than that of classical physics? In
‘Quantum computation’ [DF85] the classical notion of a Turing machine
is extended to a corresponding quantum one that takes into account the
quantum superposition principle. In ‘standard’ quantum computation,
the usual rules of quantum theory are adopted, in which the system
evolves according to the U−process for essentially the entire operation,
but the R−process becomes relevant mainly only at the end of the
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operation, when the system is ‘measured’ in order to ascertain either the
termination or the result of the computation.
Although the superiority of the quantum computation over classical com-
putation in the sense of complexity theory have been shown [Deu92],
Penrose insists that it is still a ‘computational’ process since U−process is
a computable operation and R−process is purely probabilistic procedure.
What can be achieved in principle by a quantum computer could also
be achieved, in principle, by a suitable Turing–machine–with–randomizer.
Thus he concludes that even a quantum computer would not be able
to perform the operations required for human conscious understanding.
But we think that such a view is limited because ‘computation’ as a
process need not be confined to a Turing–machine–accessible sense and
in such situations one has to explore the power of quantum computation
in understanding consciousness.

We conclude from the above discussions that the basic physical substrata
to which consciousness may be reduced are ‘neuron’, ‘event’ and ‘bit’ at the
classical level, whereas at the quantum level they are ‘microtubule’, ‘wave
ψ−function’ and ‘qubit’; depending on whether the studies are done in neu-
robiology, physics and computer science respectively [Sam99]. Can there be a
common platform for these trio of substrata?

We believe the answer to be in affirmative and the first hint regarding this
comes from John Wheeler’s [Whe89] remarkable idea: “Every particle, every
field of force, even the spacetime continuum itself, derives its function, its
meaning, its very existence entirely, even if in some contexts indirectly, from
the apparatus, elicited answers to yes or no questions, binary choices, bits”.
This view of the world refers not to an object, but to a vision of a world derived
from pure logic and mathematics in the sense that an immaterial source and
explanation lies at the bottom of every item of the physical world. In a recent
report [Wil99] the remarkable extent of embodiment of this vision in modern
physics has been discussed along with the possible difficulties faced by such
a scheme. But can this scheme explain consciousness by reducing it to bits?
Perhaps not unless it undergoes some modification.

Because consciousness involves an awareness of an endless mosaic of quali-
tatively different things, such as the color of a rose, the fragrance of a perfume,
the music of a piano, the tactile sense of objects, the power of abstraction, the
intuitive feeling for time and space, emotional states like love and hate, the
ability to put oneself in other’s position, the ability to wonder, the power to
wonder at one’s wondering etc. It is almost impossible to reduce them all to
the 0–or–1 sharpness of the definition of ‘bits’. A major part of human expe-
rience and consciousness is fuzzy and hence can not be reduced to yes or no
type situations. Hence we believe that ‘bit’ has to be modified to incorporate
this fuzzyness of the world. Perhaps the quantum superposition inherent to a
‘qubit’ can help. Can one then reduce the consciousness to a consistent theory
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of ‘quantum information’ based on qubits? Quite unlikely, till our knowl-
edge of ‘quantum reality’ and the ‘emergence of classicality from it’ becomes
more clear.

The major hurdles to be cleared are:
(1) Observer or Participator? In such equipment–evoked, quantum–

information–theoretic approach, the inseparability of the observer from the
observed will bring in the quantum measurement problem either in the form
of dynamics of the R−process or in the emergence of classicality of the
world from a quantum substratum. We first need the solutions to these
long–standing problems before attempting to reduce the ‘fuzzy’ world of
consciousness to ‘qubits’.

(2) Communication? Even if we get the solutions to the above problems
that enable us to reduce the ‘attributes of consciousness’ to ‘qubits’, still then
the ‘dynamics of the process that gives rise to consciousness’ will be beyond
‘quantum information’ as it will require a suitable definition of ‘communica-
tion’ in the sense expressed by [Fol75]: “Meaning is the joint product of all
evidence that is available to those who communicate.” Consciousness helps
us to find a ‘meaning’ or ‘understanding’ and will depend upon ‘communica-
tion’. Although all ‘evidence’ can be reduced to qubits, ‘communication’ as an
exchange of qubits has to be well–defined. Why do we say that a stone or a
tree is unconscious? Is it because we do not know how to ‘communicate’ with
them? Can one define ‘communication’ in physical terms beyond any verbal or
non–verbal language? Where does one look for a suitable definition of ‘com-
munication’? Maybe one has to define ‘communication’ at the ‘substantial
nothingness’ level of quantum vacuum.

(3) Time’s Arrow? How important is the role of memory in ‘possessing
consciousness’? Would our consciousness be altered if the world we experience
were reversible with respect to time? Can our consciousness ever find out why
it is not possible to influence the past?

Hence we conclude that although consciousness may be beyond ‘com-
putability’, it is not beyond ‘quantum communicability’ once a suitable defi-
nition for ‘communication’ is found that exploits the quantum superposition
principle to incorporate the fuzzyness of our experience. Few questions arise:

(1) How to modify the qubit?
(2) Can a suitable definition of ‘communication’, based on immaterial en-

tity like ‘qubit’ or ‘modified qubit’, take care of non–physical experience like
dream or thoughts? We assume, being optimistic, that a suitable modifica-
tion of ‘qubit’ is possible that will surpass the hurdles of communicability,
dynamics of R−process and irreversibility. For the lack of a better word we
will henceforth call such a modified qubit as ‘Basic Entity’ (BE) [Sam99].

Non–Physical Substratum

Unlike our sensory perceptions related to physical ‘substance’ and ‘phenom-
ena’ there exists a plethora of human experiences like dreams, thoughts and
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lack of any experience during sleep which are believed to be non–physical
in the sense that they cannot be reduced to anything basic within the con-
finement of space–time and causality. For example one cannot ascribe either
spatiality or causality to human thoughts, dreams etc. Does one need a frame-
work that transcends spatio–temporality to incorporate such non–physical
‘events’? Or can one explain them by using BE? The following views can be
taken depending on one’s belief [Sam99]:

• Modified BE, or M(BE)
What could be the basic substratum of these non–physical entities? Could
they be understood in terms of any suitably modified physical substra-
tum? At the classical level one might think of reducing them to ‘events’
which, unlike the physical events, do not have any reference to spatiality.
Attempts have been made [Sam99] to understand the non–physical enti-
ties like thoughts and dreams in terms of temporal events and correlation
between them. Although such an approach may yield the kinematics of
these non–physical entities, it is not clear how their dynamics i.e., evolu-
tion etc., can be understood in terms of temporal component alone without
any external spatial input, when in the first place they have arose from per-
ceptions that are meaningful only in the context of spatio–temporality?.
Secondly, it is not clear why the ‘mental events’ constructed after dropping
the spatiality should require new set of laws that are different from the
usual physical laws.
At the quantum level one might try to have a suitable modification of
the wave ψ−function to incorporate these non–physical entities. One may
make the wave ψ−function depend on extra parameters [Sam99], either
physical or non–physical, to give it the extra degrees–of–freedom to math-
ematically include more information. But such a wave ψ−function bound
to have severe problems at the level of interpretation. For example, if one
includes an extra parameter called ‘meditation’ as a new degree of freedom
apart from the usual ones, then how will one interpret squared modulus
of the wave ψ−function? It will be certainly too crude to extend the Born
rule to conclude that the squared modulus in this case will give the prob-
ability of finding a particle having certain meditation value. Hence this
kind of modification will not be of much help except for the apparent
satisfaction of being able to write an eigenvalue equation for dreams or
emotions. This approach is certainly not capable of telling how the wave
ψ−function is related to consciousness, let alone a mathematical equation
for the evolution of consciousness.
If one accepts consciousness as a phenomenon that arises out of execution
of processes then any suggested [Sam01] new physical basis can be shown to
be redundant. As we have concluded earlier, all such possible processes and
their execution can be reduced to BE and spatio–temporal correlations
among BE using a suitable definition of communication.
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Hence to incorporate non–physical entities as some kind of information one
has to modify the BE in a subtle way. Schematically M(BE) = BE ⊗X,
where ⊗ stands for a yet unknown operation and X stands for fundamental
substratum of non–physical information. X has to be different from BE;
otherwise it could be reducible to BE and then there will be no spatio–
temporal distinction between physical and non–physical information. But,
how to find out what is X? Is it evident that the laws for M(BE) will be
different from that for BE?

• Give up BE
One could believe that it is the ‘Qualia’ that constitutes consciousness
and hence consciousness has to be understood at a phenomenological
level without disecting it into BE or M(BE). One would note that
consciousness mainly consists of three phenomenological processes that
can be roughly put as retentive, reflective and creative. But keeping the
tremendous progress of our physical sciences and their utility to neuro-
sciences in view, it is not unreasonable to expect that all these three
phenomenological processes, involving both human as well as animal can
be understood one day in terms of M(BE).

• Platonic BE
It has been suggested [Sam99] that consciousness could be like mathemat-
ics in the sense that although it is needed to comprehend the physical
reality, in itself it is not ‘real’.
The ‘reality’ of mathematics is a controversial issue that brings in the old
debate between the realists and the constructivists whether a mathemati-
cal truth is ‘a discovery’ or ‘an invention’ of the human mind? Should one
consider the physical laws based on mathematical truth as real or not?.
The realist’s stand of attributing a Platonic existence to the mathematical
truth is a matter of pure faith unless one tries to get the guidance from
the knowledge of the physical world. It is doubtful whether our knowledge
of physical sciences provides support for the realist’s view if one considers
the challenge to ‘realism’ in physical sciences by the quantum world–view,
which has been substantiated in recent past by experiments [AGR82] that
violate Bell’s inequalities.
Even if one accepts the Platonic world of mathematical forms, this no way
makes consciousness non-existent or unreal. Rather the very fact that truth
of such a platonic world of mathematics yields to the human understanding
as much as that of a physical world makes consciousness all the more
profound in its existence.

Can Consciousness be manipulated?

Can consciousness be manipulated in a controlled manner? Experience tells
us how difficult it is to control the thoughts and how improbable it is to
control the dreams. We discuss below few methods prescribed by western
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psychoanalysis and oriental philosophies regarding the manipulation of con-
sciousness [Sam99]. Is there a lesson for modern science to learn from these
methods?

Self

The subject of ‘self’ is usually considered to belong to an ‘internal space’ in
contrast to the external space where we deal with others. We will consider the
following two cases here:

• Auto–suggestions
There have been evidences that by auto–suggestions one can control one’s
feelings like pain and pleasure. Can one cure oneself of diseases of physical
origin by auto–suggestions? This requires further investigations.

• Yoga and other oriental methods
The eight–fold Yoga of Patanjali is perhaps the most ancient method pre-
scribed [Iye81] to control one’s thought and to direct it in a controlled
manner. But it requires certain control over body and emotions before
one aspires to gain control over mind. In particular it lays great stress on
‘breath control’ (pranayama) as a means to relax the body and to still
the mind. In its later stages it provides systematic methods to acquire
concentration and to prolong concentration on an object or a thought.
After this attainment one can reach a stage where one’s awareness of self
and the surrounding is at its best. Then in its last stage, Yoga prescribes
one’s acute awareness to be decontextualized [Sam99] from all percep-
tions limited by spatio–temporality and thus to reach a pinnacle called
(samadhi) where one attains an understanding of everything and has no
doubts. In this sense the Yogic philosophy believes that pure consciousness
transcends all perceptions and awareness. It is difficult to understand this
on the basis of day to day experience. Why does one need to sharpen one’s
awareness to its extreme if one is finally going to abandon its use? How
does abandoning one’s sharpened awareness help in attaining a realisation
that transcends spatio–temporality? Can any one realise anything that
is beyond the space, time and causality? What is the purpose of such a
consciousness that lies beyond the confinement of space and time?

Non–Self

The Non–Self belongs to an external world consisting of others, both living and
non–living. In the following we discuss whether one can direct one’s conscious-
ness towards others such that one can affect their behavior [Sam99, Sam01].

• Hypnosis, ESP, and Paranormal
It is a well–known fact that it is possible to hypnotize a person and then
to make contact with his/her subconscious mind. Where does this subcon-
scious lie? What is its relation to the conscious mind? The efficacy of the
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method of hypnosis in curing people of deep–rooted psychological prob-
lems tells us that we are yet to understand the dynamics of the human
brain fully.
The field of Para–Psychology deals with ‘phenomena’ like Extra Sensory
Perception (ESP) and telepathy etc. where one can direct one’s conscious-
ness to gain insight into future or to influence others mind. It is not possible
to explain these on the basis of the known laws of the world. It has been
claimed that under hypnosis a subject could vividly recollect incidents
from the previous lives including near–death and death experiences which
is independent of spatio–temporality. Then, it is not clear, why most of
these experiences are related to past? If these phenomena are truly in-
dependent of space and time, then studies should be made to find out
if anybody under hypnosis can predict his/her own death, an event that
can be easily verifiable in due course of time, unlike the recollections of
past–life [Sam99].
Can mind influence matter belonging to outside of the body? The studies
dubbed as Psycho–Kinesis (PK) have been conducted to investigate the
‘suspect’ interaction of the human mind with various material objects such
as cards, dice, simple pendulum etc. An excellent historical overview of
such studies leading upto the modern era is available as a review paper,
titled “The Persistent Paradox of Psychic Phenomena: An Engineering
Perspective,” by Robert Jahn of Princeton University, published in Proc.
IEEE (Feb. 1982).
The Princeton Engineering Anomalies Research (PEAR) programme of
the Department of Applied Sciences and Engineering, Princeton Univer-
sity, has recently developed and patented a ‘Field REG’ (Field Random
Event Generator) device which is basically a portable notebook computer
with a built–in truly random number generator (based on a microelectronic
device such as a shot noise resistor or a solid–state diode) and requisite
software for on-line data processing and display, specifically tailored for
conducting ‘mind-machine interaction’ studies.
After performing large number of systematic experiments over the last two
decades, the PEAR group has reported [Sam99] the existence of such a con-
sciousness related mind–machine interaction in the case of ‘truly random
devices’. They attribute it to a ‘Consciousness Field Effect’. They have
also reported that deterministic random number sequences such as those
generated by mathematical algorithm or pseudo–random generators do
not show any consciousness related anomalous behavior. Another curious
finding is that ‘intense emotional resonance’ generates the effect whereas
‘intense intellectual resonance’ does not. It is also not clear what is the
strength of the ‘consciousness field’ in comparison to all the four known
basic force fields of nature.

One should not reject outright any phenomenon that cannot be explained
by the known basic laws of nature. Because each such phenomenon holds the
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key to extend the boundary of our knowledge further. But before accepting
these effects one should filter them through the rigors of scientific methodol-
ogy. In particular, the following questions can be asked [Sam99]:

• Why are these events rare and not repeatable?
• How does one make sure that these effects are not manifestations of yet

unknown facets of the known forces?
• Why is it necessary to have truly random processes? How does one make

sure that these are not merely statistical artifacts?

If the above effects survive the scrutiny of the above questions (or similar
ones) then they will open up the doors to a new world not yet known to
science. In such a case how does one accommodate them within the existing
framework of scientific methods? If these effects are confirmed beyond doubt,
then one has to explore the possibility that at the fundamental level of nature,
the laws are either different from the known physical laws or there is a need to
complement the known physical laws with a set of non–physical laws. In such
a situation, these ‘suspect’ phenomena might provide us with the valuable
clue for modifying BE to get M(BE) that is the basis of everything including
both physical and mental.

Is there a need for a change of paradigm?

Although reductionist approach can provide us with valuable clues regarding
the attributes of consciousness, it is the holistic approach that can only explain
consciousness. But the dualism of Descartes that treats physical and mental
processes in a mutually exclusive manner will not suffice for understanding
consciousness unless it makes an appropriate use of complementarity for men-
tal and physical events which is analogous to the complementarity evident in
the quantum world.

Where does the brain end and the mind begin? Brain is the physical means
to acquire and to retain the information for the mind to process them to find
a ‘meaning’ or a ‘structure’ which we call ‘understanding’ that is attributed
to consciousness. Whereas attributes of consciousness can be reduced to BE
(or to M(BE)), the holistic process of consciousness can only be understood
in terms of ‘quantum communication’, where ‘communication’ has an app-
ropriate meaning. Maybe one has to look for such a suitable definition of
communication at the level of ‘quantum vacuum’ [Sam99].

3.2.4 Quantum Brain

Biochemistry of Microtubules

Recent developments/efforts to understand aspects of the brain function at the
sub–neural level are discussed in [Nan95]. Microtubules (MTs), protein poly-
mers constructing the cytoskeleton of a neuron, participate in a wide variety
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of dynamical processes in the cell. Of special interest for this subsection is the
MTs participation in bioinformation processes such as learning and memory,
by possessing a well–known binary error–correcting code [K1(13, 26, 5)] with
64 words. In fact, MTs and DNA/RNA are unique cell structures that possess
a code system. It seems that the MTs’ code system is strongly related to a
kind of mental code in the following sense. The MTs’ periodic paracrystalline
structure make them able to support a superposition of coherent quantum
states, as it has been recently conjectured by Hameroff and Penrose [HP96],
representing an external or mental order, for sufficient time needed for efficient
quantum computing.

Living organisms are collective assemblies of cells which contain col-
lective assemblies of organized material, including membranes, organelles,
nuclei, and the cytoplasm, the bulk interior medium of living cells. Dynamic
rearrangements of the cytoplasm within eucaryotic cells, the cells of all animals
and almost all plants on Earth, account for their changing shape, move-
ment, etc. This extremely important cytoplasmic structural and dynamical
organization is due to the presence of networks of inteconnected protein
polymers, which are referred to as the cytoskeleton due to their bone–like
structure [HP96, Dus84]. The cytoskeleton consists of MT’s, actin microfil-
aments, intermediate filaments and an organizing complex, the centrosome
with its chief component the centriole, built from two bundles of microtubules
in a separated T shape. Parallel–arrayed MTs are interconnected by cross–
bridging proteins (MT–Associated Proteins: MAPs) to other MTs, organelle
filaments and membranes to form dynamic networks [HP96, Dus84]. MAPs
may be contractile, structural, or enzymatic. A very important role is played
by contractile MAPs, like dynein and kinesin, through their participation
in cell movements as well as in intra-neural, or axoplasmic transport which
moves material and thus is of fundamental importance for the maintenance
and regulation of synapses (see, e.g., [Ecc64]). The structural bridges formed
by MAPs stabilize MTs and prevent their disassembly. The MT–MAP ‘com-
plexes’ or cytoskeletal networks determine the cell architecture and dynamic
functions, such a mitosis, or cell division, growth, differentiation, movement,
and for us here the very crucial, synapse formation and function, all essential
to the living state. It is usually said that microtubules are ubiquitous through
the entire biology [HP96, Dus84].

MTs are hollow cylinders comprised of an exterior surface of cross–section
diameter 25 nm (1 nm = 10−9 meters) with 13 arrays (protofilaments) of
protein dimers called tubulines [Dus84]. The interior of the cylinder, of cross–
section diameter 14 nm, contains ordered water molecules, which implies the
existence of an electric dipole moment and an electric field. The arrangement
of the dimers is such that, if one ignores their size, they resemble triangu-
lar lattices on the MT surface. Each dimer consists of two hydrophobic pro-
tein pockets, and has an unpaired electron. There are two possible positions
of the electron, called α and β conformations. When the electron is in the
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β−conformation there is a 29o distortion of the electric dipole moment as
compared to the α conformation.

In standard models for the simulation of the MT dynamics [STZ93,
SZT98], the ‘physical’ DOF – relevant for the description of the energy
transfer – is the projection of the electric dipole moment on the longitudi-
nal symmetry axis (x−axis) of the MT cylinder. The 29o distortion of the
β−conformation leads to a displacement un along the x−axis, which is thus
the relevant physical DOF.

There has been speculation for quite some time that MTs are involved
in information processing: it has been shown that the particular geometrical
arrangement (packing) of the tubulin protofilaments obeys an error–correcting
mathematical code known as the K2(13, 26, 5)−code [KHS93]. Error correcting
codes are also used in classical computers to protect against errors while in
quantum computers special error correcting algorithms are used to protect
against errors by preserving quantum coherence among qubits.

Information processing occurs via interactions among the MT proto–
filament chains. The system may be considered as similar to a model of
interacting Ising chains on a triangular lattice, the latter being defined on the
plane stemming from filleting open and flattening the cylindrical surface of
MT. Classically, the various dimers can occur in either α or β conformations.
Each dimer is influenced by the neighboring dimers resulting in the possibility
of a transition. This is the basis for classical information processing, which
constitutes the picture of a (classical) cellular automaton.

Kink Soliton Model of MT–Dynamics

The quantum nature of an MT network results from the assumption that
each dimer finds itself in a superposition of α and β conformations. Viewed
as a two–state quantum mechanical system, the MT tubulin dimers couple to
conformational changes with 10−9−10−11sec transitions, corresponding to an
angular frequency ω ∼ O(1010)−O(1012) Hz [Nan95].

The quantum computer character of the MT network [Pen89] results from
the assumption that each dimer finds itself in a superposition of α and β
conformations [Ham87]. There is a macroscopic coherent state among the
various chains, which lasts for O(1 sec) and constitutes the ‘preconscious’
state [Nan95]. The interaction of the chains with (non–critical stringy) quan-
tum gravity, then, induces self–collapse of the wave function of the coherent
MT network, resulting in quantum computation.

In [EMN92, EMN99, MN95a, MN95b, Nan95] the authors assumed that
the collapse occurs mainly due to the interaction of each chain with quantum
gravity, the interaction from neighboring chains being taken into account by
including mean–field interaction terms in the dynamics of the displacement
field of each chain. This amounts to a modification of the effective potential
by anharmonic oscillator terms. Thus, the effective system under study is 2D,
possessing one space and one time coordinate.
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Let un be the displacement field of the nth dimer in a MT chain. The
continuous approximation proves sufficient for the study of phenomena asso-
ciated with energy transfer in biological cells, and this implies that one can
make the replacement

un → u(x, t), (3.81)

with x a spatial coordinate along the longitudinal symmetry axis of the MT.
There is a time variable t due to fluctuations of the displacements u(x) as a
result of the dipole oscillations in the dimers.

The effects of the neighboring dimers (including neighboring chains) can
be phenomenologically accounted for by an effective potential V (u). In the
kink–soliton model20 of ref. [STZ93, SZT98] a double–well potential was used,
leading to a classical kink solution for the u(x, t) field. More complicated inter-
actions are allowed in the picture of Ellis et al., where more generic polynomial
potentials have been considered.

The effects of the surrounding water molecules can be summarized by a
viscous force term that damps out the dimer oscillations,

F = −γ∂tu, (3.82)

with γ determined phenomenologically at this stage. This friction should be
viewed as an environmental effect, which however does not lead to energy
dissipation, as a result of the non–trivial solitonic structure of the ground–
state and the non–zero constant force due to the electric field. This is a well
known result, directly relevant to energy transfer in biological systems.

In mathematical terms the effective equation of motion for the relevant
field DOF u(x, t) reads:

u′′(ξ) + ρu′(ξ) = P (u), (3.83)

where ξ = x − vt, u′(ξ) = du/dξ, v is the velocity of the soliton, ρ ∝ γ
[STZ93, SZT98], and P (u) is a polynomial in u, of a certain degree, stemming
from the variations of the potential V (u) describing interactions among the
MT chains. In the mathematical literature there has been a classification of
solutions of equations of this form. For certain forms of the potential the
solutions include kink solitons that may be responsible for dissipation–free
energy transfer in biological cells:

u(x, t) ∼ c1 (tanh[c2(x− vt)] + c3) , (3.84)

where c1, c2, c3 are constants depending on the parameters of the dimer lattice
model. For the form of the potential assumed in the model of [STZ93, SZT98]
there are solitons of the form u(x, t) = c′1 + c′2−c′1

1+e
c′
3
(c′

2
−c′

1
)(x−vt) , where again

c′i, i = 1, . . . 3 are appropriate constants.
20 Recall that kinks are solitary (non–dispersive) waves arising in various 1D

(bio)physical systems.



3.2 Quantum Consciousness 551

A semiclassical quantization of such solitonic states has been considered
by Ellis et al.. The result of such a quantization yields a modified soliton
equation for the (quantum corrected) field uq(x, t) [TF91]

∂2
t uq(x, t)− ∂2

xuq(x, t) +M(1)[uq(x, t)] = 0, (3.85)

with the notation

M (n) = e
1
2 (G(x,y,t)−G0(x,y)) ∂2

∂z2 U (n)(z)|z=uq(x,t), U (n) ≡ dnU/dzn.

The quantity U denotes the potential of the original soliton Hamiltonian, and
G(x, y, t) is a bilocal field that describes quantum corrections due to the mod-
ified boson field around the soliton. The quantities M (n) carry information
about the quantum corrections. For the kink soliton (3.84) the quantum cor-
rections (3.85) have been calculated explicitly in [TF91], thereby providing us
with a concrete example of a large–scale quantum coherent state.

A typical propagation velocity of the kink solitons (e.g., in the model of
[STZ93, SZT98]) is v ∼ 2 m/sec, although, models with v ∼ 20 m/sec have
also been considered. This implies that, for moderately long microtubules of
length L ∼ 10−6 m, such kinks transport energy without dissipation in

tF ∼ 5× 10−7 s. (3.86)

Such time scales are comparable to, or smaller in magnitude than, the deco-
herence time scale of the above–described coherent (solitonic) states uq(x, t).
This implies the possibility that fundamental quantum mechanical phenom-
ena may then be responsible for frictionless energy (and signal) transfer across
microtubular arrangements in the cell [Nan95].

Open Liouville Neurodynamics and Self–Similarity

Recall that neurodynamics has its physical behavior both on the macro-
scopic, classical, inter–neuronal level, and on the microscopic, quantum,
intra–neuronal level. On the macroscopic level, various models of neural
networks (NNs, for short) have been proposed as goal–oriented models
of the specific neural functions, like for instance, function–approximation,
pattern–recognition, classification, or control (see, e.g., [Hay94]). In the
physically–based, Hopfield–type models of NNs [Hop82), Hop84] the infor-
mation is stored as a content–addressable memory in which synaptic strengths
are modified after the Hebbian rule (see [Heb49]. Its retrieval is made when
the network with the symmetric couplings works as the point–attractor
with the fixed points. Analysis of both activation and learning dynamics of
Hopfield–Hebbian NNs using the techniques of statistical mechanics [DHS91],
gives us with the most important information of storage capacity, role of noise
and recall performance.
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On the other hand, on the general microscopic intra–cellular level, energy
transfer across the cells, without dissipation, had been first conjectured to
occur in biological matter by [FK83]. The phenomenon conjectured by them
was based on their 1D superconductivity model: in 1D electron systems with
holes, the formation of solitonic structures due to electron–hole pairing results
in the transfer of electric current without dissipation. In a similar manner,
Frölich and Kremer conjectured that energy in biological matter could be
transferred without dissipation, if appropriate solitonic structures are formed
inside the cells. This idea has lead theorists to construct various models for
the energy transfer across the cell, based on the formation of kink classical
solutions (see [STZ93, SZT98].

The interior of living cells is structurally and dynamically organized by
cytoskeletons, i.e., networks of protein polymers. Of these structures, micro-
tubules (MTs, for short) appear to be the most fundamental (see [Dus84]).
Their dynamics has been studied by a number of authors in connection with
the mechanism responsible for dissipation–free energy transfer. Hameroff and
Penrose [Ham87] have conjectured another fundamental role for the MTs,
namely being responsible for quantum computations in the human neurons.
[Pen89, Pen94, Pen97] further argued that the latter is associated with cer-
tain aspects of quantum theory that are believed to occur in the cytoskele-
ton MTs, in particular quantum superposition and subsequent collapse of
the wave function of coherent MT networks. These ideas have been elab-
orated by [MN95a, MN95b] and [Nan95], based on the quantum–gravity
EMN–language of [EMN92, EMN99] where MTs have been physically mod-
elled as non-critical (SUSY) bosonic strings. It has been suggested that
the neural MTs are the microsites for the emergence of stable, macroscopic
quantum coherent states, identifiable with the preconscious states; stringy–
quantum space–time effects trigger an organized collapse of the coherent states
down to a specific or conscious state. More recently, [TVP99] have presented
the evidence for biological self–organization and pattern formation during
embryogenesis.

Now, we have two space–time biophysical scales of neurodynamics. Natu-
rally the question arises: are these two scales somehow inter-related, is there
a space–time self–similarity between them?

The purpose of this subsection is to prove the formal positive answer to the
self–similarity question. We try to describe neurodynamics on both physical
levels by the unique form of a single equation, namely open Liouville equation:
NN–dynamics using its classical form, and MT–dynamics using its quantum
form in the Heisenberg picture. If this formulation is consistent, that would
prove the existence of the formal neurobiological space–time self–similarity.

Hamiltonian Framework

Suppose that on the macroscopic NN–level we have a conservative Hamil-
tonian system acting in a 2ND symplectic phase–space T ∗Q = {qi(t), pi(t)},
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(i = 1 . . . N) (which is the cotangent bundle of the NN–configuration manifold
Q = {qi}), with a Hamiltonian function H = H(qi, pi, t) : T ∗Q× R → R and
an inverse metric tensor gij . The conservative dynamics is defined by classical
Hamiltonian canonical equations [II06b]

ẋi = gijpj/m, ṗi = Fi(x). (3.87)

Recall that within the conservative Hamiltonian framework, we can apply the
formalism of classical Poisson brackets: for any two functions A = A(qi, pi, t)
and B = B(qi, pi, t) their Poisson bracket is defined as

[A,B] =
(

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

Conservative Classical System

Any function A(qi, pi, t) is called a constant (or integral) of motion of the
conservative system (3.87) if

Ȧ ≡ ∂tA + [A,H] = 0, which implies ∂tA = −[A,H] . (3.88)

For example, if A = ρ(qi, pi, t) is a density function of ensemble phase–points
(or, a probability density to see a state x(t) = (qi(t), pi(t)) of ensemble at a
moment t), then equation

∂tρ = −[ρ,H] = −iLρ (3.89)

represents the Liouville theorem, where L denotes the (Hermitian) Liouville
operator

iL = [...,H] ≡
(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
= div(ρẋ),

which shows that the conservative Liouville equation (3.89) is actually equiv-
alent to the mechanical continuity equation

∂tρ + div(ρẋ) = 0. (3.90)

Conservative Quantum System

We perform the formal quantization of the conservative equation (3.89) in
the Heisenberg picture: all variables become Hermitian operators (denoted by
‘∧’), the symplectic phase–space T ∗Q = {qi, pi} becomes the Hilbert state–
space H = Hq̂i ⊗ Hp̂i

(where Hq̂i = Hq̂1 ⊗ ... ⊗ Hq̂N and Hp̂i
= Hp̂1 ⊗ ... ⊗

Hp̂N
), the classical Poisson bracket [ , ] becomes the quantum commutator

{ , } multiplied by −i/�

[ , ] −→ −i{ , } (� = 1 in normal units) . (3.91)
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In this way the classical Liouville equation (3.89) becomes the quantum
Liouville equation

∂tρ̂ = i{ρ̂, Ĥ} , (3.92)

where Ĥ = Ĥ(q̂i, p̂i, t) is the Hamiltonian evolution operator, while

ρ̂ = P (a)|Ψa >< Ψa|, with Tr(ρ̂) = 1,

denotes the von Neumann density matrix operator, where each quantum state
|Ψa > occurs with probability P (a); ρ̂ = ρ̂(q̂i, p̂i, t) is closely related to another
von Neumann concept: entropy S = −Tr(ρ̂[ln ρ̂]).

Open Classical System

We now move to the open (nonconservative) system: on the macroscopic NN–
level the opening operation equals to the adding of a covariant vector of
external (dissipative and/or motor) forces Fi = Fi(qi, pi, t) to (the r.h.s of)
the covariant Hamiltonian force equation, so that Hamiltonian equations get
the open (dissipative and/or forced) form

q̇i =
∂H

∂pi
, ṗi = Fi −

∂H

∂qi
. (3.93)

In the framework of the open Hamiltonian system (3.93), dynamics of any
function A(qi, pi, t) is defined by the open evolution equation:

∂tA = −[A,H] + Φ,

where Φ = Φ(Fi) represents the general form of the scalar force term.
In particular, if A = ρ(qi, pi, t) represents the density function of ensemble

phase–points, then its dynamics is given by the (dissipative/forced) open
Liouville equation:

∂tρ = −[ρ,H] + Φ . (3.94)

In particular, the scalar force term can be cast as a linear Poisson–bracket
form

Φ = Fi[A, qi] , with [A, qi] = − ∂A

∂pi
. (3.95)

Now, in a similar way as the conservative Liouville equation (3.89)
resembles the continuity equation (3.90) from continuum dynamics, also
the open Liouville equation (3.94) resembles the probabilistic Fokker–Planck
equation from statistical mechanics. If we have a ND stochastic process
x(t) = (qi(t), pi(t)) defined by the vector Itô SDE

dx(t) = f(x, t) dt + G(x, t) dW,

where f is a ND vector function, W is a KD Wiener process, and G is a
N ×KD matrix valued function, then the corresponding probability density
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function ρ = ρ(x, t|ẋ, t′) is defined by the ND Fokker–Planck equation (see,
e.g., [Gar85])

∂tρ = −div[ρ f(x, t)] +
1
2

∂2

∂xi∂xj
(Qij ρ) , (3.96)

where Qij =
(
G(x, t)GT (x, t)

)
ij

. It is obvious that the Fokker–Planck equa-
tion (3.96) represents the particular, stochastic form of our general open
Liouville equation (3.94), in which the scalar force term is given by the
(second–derivative) noise term

Φ =
1
2

∂2

∂xi∂xj
(Qij ρ) .

Equation (3.94) will represent the open classical model of our macroscopic
NN–dynamics.

Continuous Neural Network Dynamics

The generalized NN–dynamics, including two special cases of graded response
neurons (GRN) and coupled neural oscillators (CNO), can be presented in
the form of a stochastic Langevin rate equation

σ̇i = fi + ηi(t), (3.97)

where σi = σi(t) are the continual neuronal variables of ith neurons (repre-
senting either membrane action potentials in case of GRN, or oscillator phases
in case of CNO); Jij are individual synaptic weights; fi = fi(σi, Jij) are the
deterministic forces (given, in GRN–case, by

fi =
∑

j

Jij tanh[γσj ]− σi + θi,

with γ > 0 and with the θi representing injected currents, and in CNO–
case, by

fi =
∑

j

Jij sin(σj − σi) + ωi,

with ωi representing the natural frequencies of the individual oscillators); the
noise variables are given by

ηi(t) = lim
Δ→0

ζi(t)
√

2T/Δ,

where ζi(t) denote uncorrelated Gaussian distributed random forces and the
parameter T controls the amount of noise in the system, ranging from T = 0
(deterministic dynamics) to T = ∞ (completely random dynamics).

More convenient description of the neural random process (3.97) is pro-
vided by the Fokker–Planck equation describing the time evolution of the
probability density P (σi)

∂tP (σi) = − ∂

∂σi
(fiP (σi)) + T

∂2

∂σ2
i

P (σi). (3.98)
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Now, in the case of deterministic dynamics T = 0, equation (3.98) can be
put into the form of the conservative Liouville equation (3.89), by making the
substitutions:

P (σi) → ρ, fi = σ̇i, [ρ,H] = div(ρ σ̇i) ≡
∑

i

∂

∂σi
(ρ σ̇i) ,

where H = H(σi, Jij). Further, we can formally identify the stochastic forces,
i.e., the second–order noise–term T

∑
i

∂2

∂σ2
i

ρ with F i[ρ, σi] , to get the open
Liouville equation (3.94).

Therefore, on the NN–level deterministic dynamics corresponds to the con-
servative system (3.89). Inclusion of stochastic forces corresponds to the sys-
tem opening (3.94), implying the macroscopic arrow of time.

Open Quantum System

By formal quantization of equation (3.94) with the scalar force term defined
by (3.95), in the same way as in the case of the conservative dynamics, we get
the quantum open Liouville equation

∂tρ̂ = i{ρ̂, Ĥ}+ Φ̂, with Φ̂ = −iF̂i{ρ̂, q̂i}, (3.99)

where F̂i = F̂i(q̂i, p̂i, t) represents the covariant quantum operator of external
friction forces in the Hilbert state–space H = Hq̂i ⊗Hp̂i

.
Equation (3.99) will represent the open quantum–friction model of our

microscopic MT–dynamics. Its system–independent properties are [EMN92,
EMN99, MN95a, MN95b, Nan95]:

1. Conservation of probability P

∂tP = ∂t[Tr(ρ̂)] = 0.

2. Conservation of energy E, on the average

∂t 〈〈E〉〉 ≡ ∂t[Tr(ρ̂ E)] = 0.

3. Monotonic increase in entropy

∂tS = ∂t[−Tr(ρ̂ ln ρ̂)] ≥ 0,

and thus automatically and naturally implies a microscopic arrow of time,
so essential in realistic biophysics of neural processes.

Non–Critical Stringy MT–Dynamics

In EMN–language of non–critical (SUSY) bosonic strings, our MT–dynamics
equation (3.99) reads

∂tρ̂ = i{ρ̂, Ĥ} − iĝij{ρ̂, q̂i}ˆ̇qj , (3.100)
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where the target–space density matrix ρ̂(q̂i, p̂i) is viewed as a function of
coordinates q̂i that parameterize the couplings of the generalized σ−models
on the bosonic string world–sheet, and their conjugate momenta p̂i, while
ĝij = ĝij(q̂i) is the quantum operator of the positive definite metric in the
space of couplings. Therefore, the covariant quantum operator of external
friction forces is in EMN–formulation given as F̂i(q̂i, ˆ̇qi) = ĝij

ˆ̇qj .
Equation (3.100) establishes the conditions under which a large–scale

coherent state appearing in the MT–network, which can be considered
responsible for loss–free energy transfer along the tubulins.

Equivalence of Neurodynamic Forms

It is obvious that both the macroscopic NN–equation (3.94) and the micro-
scopic MT–equation (3.99) have the same open Liouville form, which implies
the arrow of time. These proves the existence of the formal neuro–biological
space–time self–similarity.

In this way, we have described neurodynamics of both NN and MT ensem-
bles, belonging to completely different biophysical space–time scales, by the
unique form of open Liouville equation, which implies the arrow of time. The
existence of the formal neuro–biological self–similarity has been proved.

Dissipative Quantum Brain Model

The conservative brain model was originally formulated within the frame-
work of the quantum field theory (QFT) by [RU67] and subsequently devel-
oped in [STU78, STU79, JY95, JPY96]. The conservative brain model has
been recently extended to the dissipative quantum dynamics in the work
of G. Vitiello and collaborators [Vit95, AV00, PV99, Vit01, PV03, PV04].

The motivations at the basis of the formulation of the quantum brain
model by Umezawa and Ricciardi trace back to the laboratory observations
leading Lashley to remark (in 1940) that “masses of excitations ... within gen-
eral fields of activity, without regard to particular nerve cells are involved in
the determination of behavior” [Las42, Pri91]. In 1960’s, K. Pribram, also
motivated by experimental observations, started to formulate his holographic
hypothesis. According to W. Freeman [Fre90, Fre96, Fre00], “information
appears indeed in such observations to be spatially uniform in much the way
that the information density is uniform in a hologram”. While the activity of
the single neuron is experimentally observed in form of discrete and stochastic
pulse trains and point processes, the ‘macroscopic’ activity of large assembly
of neurons appears to be spatially coherent and highly structured in phase
and amplitude.

Motivated by such an experimental situation, Umezawa and Ricciardi for-
mulated in [RU67] the quantum brain model as a many–body physics problem,
using the formalism of QFT with spontaneous breakdown of symmetry (which
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had been successfully tested in condensed matter experiments). Such a for-
malism provides the only available theoretical tool capable to describe long–
range correlations such as the ones observed in the brain – presenting almost
simultaneous responses in several regions to some external stimuli. The under-
standing of these long–range correlations in terms of modern biochemical and
electrochemical processes is still lacking, which suggests that these responses
could not be explained in terms of single neuron activity [Pri71, Pri91].

Lagrangian dynamics in QFT is, in general, invariant under some group
G of continuous transformations, as proposed by the famous Noether the-
orem. Now, spontaneous symmetry breakdown, one of the corner–stones of
Haken’s synergetics [Hak83, Hak93], occurs when the minimum energy state
(the ground, or vacuum, state) of the system is not invariant under the full
group G, but under one of its subgroups. Then it can be shown [IZ80, Ume93]
that collective modes, the so–called Nambu–Goldstone (NG) boson modes, are
dynamically generated. Propagating over the whole system, these modes are
the carriers of the long–range correlation, in which the order manifests itself as
a global property dynamically generated. The long–range correlation modes
are responsible for keeping the ordered pattern: they are coherently condensed
in the ground state (similar to e.g., in the crystal case, where they keep the
atoms trapped in their lattice sites). The long–range correlation thus forms
a sort of net, extending over all the system volume, which traps the system
components in the ordered pattern. This explains the “holistic” macroscopic
collective behavior of the system components.

More precisely, according to the Goldstone theorem in QFT [IZ80, Ume93],
the spontaneous breakdown of the symmetry implies the existence of long–
range correlation NG–modes in the ground state of the system. These modes
are massless modes in the infinite volume limit, but they may acquire a finite,
non-zero mass due to boundary or impurity effects [ARV02]. In the quantum
brain model these modes are called dipole–wave–quanta (DWQ). The density
of their condensation in the ground states acts as a code classifying the state
and the memory there recorded. States with different code values are unitarily
inequivalent states, i.e., there is no unitary transformation relating states of
different codes.21

Now, in formulating a proper mathematical model of brain, the conserva-
tive dynamics is not realistic: we cannot avoid to take into consideration the
dissipative character of brain dynamics, since the brain is an intrinsically open
system, continuously interacting with the environment. As Vitiello observed
in [Vit01, PV03, PV04], the very same fact of “getting an information” intro-
duces a partition in the time coordinate, so that one may distinguish between

21 We remark that the spontaneous breakdown of symmetry is possible since in QFT
there exist infinitely many ground states or vacua which are physically distinct
(technically speaking, they are “unitarily inequivalent”). In quantum mechanics
(QM), on the contrary, all the vacua are physically equivalent and thus there
cannot be symmetry breakdown.



3.2 Quantum Consciousness 559

before “getting the information” (the past) and after “getting the informa-
tion” (the future): the arrow of time is in this way introduced. ...“Now you
know it!” is the familiar warning to mean that now, i.e. after having received
a certain information, you are not the same person as before getting it. It has
been shown that the psychological arrow of time (arising as an effect of mem-
ory recording) points in the same direction of the thermodynamical arrow of
time (increasing entropy direction) and of the cosmological arrow of time (the
expanding Universe direction) [AMV00].

The canonical quantization procedure of a dissipative system requires to
include in the formalism also the system representing the environment (usually
the heat bath) in which the system is embedded. One possible way to do
that is to depict the environment as the time–reversal image of the system
[CRV92]: the environment is thus described as the double of the system in the
time–reversed dynamics (the system image in the mirror of time).

Within the framework of dissipative QFT, the brain system is described in
terms of an infinite collection of damped harmonic oscillators Aκ (the simplest
prototype of a dissipative system) representing the DWQ [Vit95]. Now, the
collection of damped harmonic oscillators is ruled by the Hamiltonian [Vit95,
CRV92]

H = H0 + HI , with
H0 = �Ωκ(A†

κAκ − Ã†
κÃκ), HI = i�Γκ(A†

κÃ
†
κ −AκÃκ),

where Ωκ is the frequency and Γκ is the damping constant. The Ãκ modes are
the ‘time–reversed mirror image’ (i.e., the ‘mirror modes’) of the Aκ modes.
They are the doubled modes, representing the environment modes, in such
a way that κ generically labels their degrees–of–freedom. In particular, we
consider the damped harmonic oscillator (DHO)

mẍ + γẋ + κx = 0, (3.101)

as a simple prototype for dissipative systems (with intention that thus get
results also apply to more general systems). The damped oscillator (3.101) is a
non–Hamiltonian system and therefore the customary canonical quantization
procedure cannot be followed. However, one can face the problem by resorting
to well known tools such as the density matrix ρ and the Wigner function
W = W (x, p, t).

Let us start with the special case of a conservative particle in the absence
of friction γ, with the standard Hamiltonian,

H = −(�∂x)2/2m + V (x).

Recall (from the previous subsection) that the density matrix equation of
motion, i.e., quantum Liouville equation, is given by

i�ρ̇ = [H, ρ]. (3.102)
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The density matrix function ρ is defined by

〈x +
1
2
y|ρ(t)|x− 1

2
y〉 = ψ∗(x +

1
2
y, t)ψ(x− 1

2
y, t) ≡W (x, y, t),

with the associated standard expression for the Wigner function (see [FH65]),

W (p, x, t) =
1

2π�

∫
W (x, y, t) e(−i py

� )dy.

Now, in the coordinate x−representation, by introducing the notation

x± = x± 1
2
y, (3.103)

the Liouville equation (3.102) can be expanded as

i� ∂t〈x+|ρ(t)|x−〉 = (3.104){
− �2

2m

[
∂2

x+
− ∂2

x−

]
+ [V (x+)− V (x−)]

}
〈x+|ρ(t)|x−〉,

while the Wigner function W (p, x, t) is now given by

i� ∂tW (x, y, t) = HoW (x, y, t), with

Ho =
1
m

pxpy + V (x +
1
2
y)− V (x− 1

2
y), (3.105)

and px = −i�∂x, py = −i�∂y.

The new Hamiltonian Ho (3.105) may be get from the corresponding
Lagrangian

Lo = mẋẏ − V (x +
1
2
y) + V (x− 1

2
y). (3.106)

In this way, Vitiello concluded that the density matrix and the Wigner func-
tion formalism required, even in the conservative case (with zero mechanical
resistance γ), the introduction of a ‘doubled’ set of coordinates, x±, or, alter-
natively, x and y. One may understand this as related to the introduction of
the ‘couple’ of indices necessary to label the density matrix elements (3.104).

Let us now consider the case of the particle interacting with a thermal
bath at temperature T . Let f denote the random force on the particle at the
position x due to the bath. The interaction Hamiltonian between the bath
and the particle is written as

Hint = −fx. (3.107)

Now, in the Feynman–Vernon formalism (see [Fey72]), the effective action
A[x, y] for the particle is given by

A[x, y] =
∫ tf

ti

Lo(ẋ, ẏ, x, y) dt + I[x, y],
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with Lo defined by (3.106) and

e
i
�

I[x,y] = 〈(e−
i
�

∫ tf

ti
f(t)x−(t)dt

)−(e
i
�

∫ tf

ti
f(t)x+(t)dt

)+〉, (3.108)

where the symbol 〈.〉 denotes the average with respect to the thermal bath;
‘(.)+’ and ‘(.)−’ denote time ordering and anti–time ordering, respectively;
the coordinates x± are defined as in (3.103). If the interaction between the
bath and the coordinate x (3.107) were turned off, then the operator f of the
bath would develop in time according to

f(t) = eiHγt/�fe−iHγt/�,

where Hγ is the Hamiltonian of the isolated bath (decoupled from the coor-
dinate x). f(t) is then the force operator of the bath to be used in (3.108).

The interaction I[x, y] between the bath and the particle has been evalu-
ated in [SVW95] for a linear passive damping due to thermal bath by following
Feynman–Vernon and Schwinger [FH65]. The final result from [SVW95] is:

I[x, y] =
1
2

∫ tf

ti

dt [x(t)F ret
y (t) + y(t)F adv

x (t)]

+
i

2�

∫ tf

ti

∫ tf

ti

dtdsN(t− s)y(t)y(s),

where the retarded force on y, F ret
y , and the advanced force on x, F adv

x , are
given in terms of the retarded and advanced Green functions Gret(t− s) and
Gadv(t− s) by

F ret
y (t) =

∫ tf

ti

dsGret(t− s)y(s), F adv
x (t) =

∫ tf

ti

dsGadv(t− s)x(s),

respectively. In (3.109), N(t − s) is the quantum noise in the fluctuating
random force given by

N(t− s) =
1
2
〈f(t)f(s) + f(s)f(t)〉.

The real and the imaginary part of the action are given respectively by

Re (A[x, y]) =
∫ tf

ti

Ldt, (3.109)

L = mẋẏ −
[
V (x +

1
2
y)− V (x− 1

2
y)
]

+
1
2
[
xF ret

y + yF adv
x

]
, (3.110)

and Im (A[x, y]) =
1
2�

∫ tf

ti

∫ tf

ti

N(t− s)y(t)y(s) dtds. (3.111)
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Equations (3.109–3.111), are exact results for linear passive damping due
to the bath. They show that in the classical limit ‘� → 0’ nonzero y yields
an ‘unlikely process’ in view of the large imaginary part of the action implicit
in (3.111). Nonzero y, indeed, may lead to a negative real exponent in the
evolution operator, which in the limit � → 0 may produce a negligible con-
tribution to the probability amplitude. On the contrary, at quantum level
nonzero y accounts for quantum noise effects in the fluctuating random force
in the system–environment coupling arising from the imaginary part of the
action (see [SVW95]).

When in (3.110) we use

F ret
y = γẏ and F adv

x = −γẋ we get,

L(ẋ, ẏ, x, y) = mẋẏ − V

(
x +

1
2
y

)
+ V

(
x− 1

2
y

)
+

γ

2
(xẏ − yẋ). (3.112)

By using

V

(
x± 1

2
y

)
=

1
2
κ

(
x± 1

2
y

)2

in (3.112), the DHO equation (3.101) and its complementary equation for the
y coordinate

mÿ − γẏ + κy = 0. (3.113)

are derived. The y−oscillator is the time–reversed image of the x−oscillator
(3.101). From the manifolds of solutions to equations (3.101) and (3.113), we
could choose those for which the y coordinate is constrained to be zero, they
simplify to

mẍ + γẋ + κx = 0, y = 0.

Thus we get the classical damped oscillator equation from a Lagrangian theory
at the expense of introducing an ‘extra’ coordinate y, later constrained to
vanish. Note that the constraint y(t) = 0 is not in violation of the equations
of motion since it is a true solution to (3.101) and (3.113).

Therefore, the general scheme of the dissipative quantum brain model can
be summarized as follows. The starting point is that the brain is permanently
coupled to the environment. Of course, the specific details of such a coupling
may be very intricate and changeable so that they are difficult to be measured
and known. One possible strategy is to average the effects of the coupling and
represent them, at some degree of accuracy, by means of some ‘effective’ inter-
action. Another possibility is to take into account the environmental influence
on the brain by a suitable choice of the brain vacuum state. Such a choice is
triggered by the external input (breakdown of the symmetry), and it actually
is the end point of the internal (spontaneous) dynamical process of the brain
(self–organization). The chosen vacuum thus carries the signature (memory)
of the reciprocal brain–environment influence at a given time under given
boundary conditions. A change in the brain–environment reciprocal influence
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then would correspond to a change in the choice of the brain vacuum: the
brain state evolution or ‘story’ is thus the story of the trade of the brain with
the surrounding world. The theory should then provide the equations describ-
ing the brain evolution ‘through the vacua’, each vacuum for each instant of
time of its history.

The brain evolution is thus similar to a time–ordered sequence of pho-
tograms: each photogram represents the ‘picture’ of the brain at a given
instant of time. Putting together these photograms in ‘temporal order’ one
gets a movie, i.e. the story (the evolution) of open brain, which includes the
brain–environment interaction effects.

The evolution of a memory specified by a given code value, say N , can be
then represented as a trajectory of given initial condition running over time–
dependent vacuum states, denoted by |0(t) >N , each one minimizing the free
energy functional. These trajectories are known to be classical trajectories
in the infinite volume limit: transition from one representation to another
inequivalent one would be strictly forbidden in a quantum dynamics.

Since we have now two–modes (i.e., non–tilde and tilde modes), the mem-
ory state |0(t) >N turns out to be a two–mode coherent state. This is known to
be an entangled state, i.e., it cannot be factorized into two single–mode states,
the non–tilde and the tilde one. The physical meaning of such an entanglement
between non-tilde and tilde modes is in the fact that the brain dynamics is
permanently a dissipative dynamics. The entanglement, which is an unavoid-
able mathematical result of dissipation, represents the impossibility of cutting
the links between the brain and the external world.22

In the dissipative brain model, noise and chaos turn out to be natural
ingredients of the model. In particular, in the infinite volume limit the chaotic
behavior of the trajectories in memory space may account for the high per-
ceptive resolution in the recognition of the perceptual inputs. Indeed, small
differences in the codes associated to external inputs may lead to diverging
differences in the corresponding memory paths. On the other side, it also hap-
pens that codes differing only in a finite number of their components (in the
momentum space) may easily be recognized as being the ‘same’ code, which

22 We remark that the entanglement is permanent in the large volume limit. Due to
boundary effects, however, a unitary transformation could disentangle the tilde
and non–tilde sectors: this may result in a pathological state for the brain. It is
known that forced isolation of a subject produces pathological states of various
kinds. We also observe that the tilde mode is not just a mathematical fiction.
It corresponds to a real excitation mode (quasi–particle) of the brain arising as
an effect of its interaction with the environment: the couples of non–tilde/tilde
dwq quanta represent the correlation modes dynamically created in the brain
as a response to the brain–environment reciprocal influence. It is the interaction
between tilde and non–tilde modes that controls the irreversible time evolution
of the brain: these collective modes are confined to live in the brain. They vanish
as soon as the links between the brain and the environment are cut.
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makes possible that ‘almost similar’ inputs are recognized by the brain as
‘equal’ inputs (as in pattern recognition).

Therefore, the brain may be viewed as a complex system with (infinitely)
many macroscopic configurations (the memory states). Dissipation is recog-
nized to be the root of such a complexity.

QED Brain

In this subsection, mainly following [Sta95], we formulate a quantum elec-
trodynamics brain model. Recall that quantum electrodynamics (extended to
cover the magnetic properties of nuclei) is the theory that controls, as far as
we know, the properties of the tissues and the aqueous (ionic) solutions that
constitute our brains. This theory is our paradigm basic physical theory, and
the one best understood by physicists. It describes accurately, as far as we
know, the huge range of actual physical phenomena involving the materials
encountered in daily life. It is also related to classical electrodynamics in a
particularly beautiful and useful way.

In the low–energy regime of interest here it should be sufficient to consider
just the classical part of the photon interaction defined in [Sta83]. Then the
explicit expression for the unitary operator that describes the evolution from
time t1 to time t2 of the quantum electromagnetic field in the presence of a set
L = {Li} of specified classical charged–particle trajectories, with trajectory
Li specified by the function xi(t) and carrying charge ei, is [Sta95]

U [L; t2, t1] = exp < a∗ · J(L) > exp < −J∗(L) · a > exp[−(J∗(L) · J(L)/2)],

where, for any X and Y ,

< X · Y >≡
∫

d4k(2π)−42πδ+(k2)X(k) · Y (k),

(X · Y ) ≡
∫

d4k(2π)−4i(k2 + iε)−1X(k) · Y (k),

and X · Y = XμY
μ = XμYμ. Also,

Jμ(L; k) ≡
∑

i

−iei

∫
Li

dxμ exp(ikx).

The integral along the trajectory Li is∫
Li

dxμ exp(ikx) ≡
∫ t2

t1

dt(dxiμ(t)/dt) exp(ikx).

The a∗(k) and a(k) are the photon creation and annihilation operators:

[a(k), a∗(k′)] = (2π)3δ3(k − k′)2k0.
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The operator U [L; t2, t1] acting on the photon vacuum state creates the
coherent photon state that is the quantum–theoretic analog of the classical
electromagnetic field generated by classical point particles moving on the set
of trajectories L = {Li} between times t1 and t2.

The U [L; t2, t1] can be decomposed into commuting contributions from the
various values of k. The general coherent state can be written [Sta95]

|q, p >≡ exp i(< q · P > − < p ·Q >)|0 >,

where |0 > is the photon vacuum state and

Q(k) = (ak + a∗k)/
√

2 and P (k) = i(ak − a∗k)/
√

2,

and q(k) and p(k) are two functions defined (and square integrable) on the
mass shell k2 = 0, k0 ≥ 0. The inner product of two coherent states is

< q, p|q′, p′ > = exp−(< q − q′ · q − q′ > + < p− p′ · p− p′ >

+ 2i < p− p′ · q + q′ >)/4.

There is a decomposition of unity

I =
∏

d4k(2π)−42πδ+(k2)
∫

dqkdpk/π

× exp(iqkPk − ipkQk)|0k >< 0k| exp−(iqkPk − ipkQk).

Here meaning can be given by quantizing in a box, so that the variable k is
discretized. Equivalently,

I =
∫

dμ(q, p)|q, p >< q, p|,

where μ(q, p) is the appropriate measure on the functions q(k) and p(k). Then
if the state |Ψ >< Ψ | were to jump to |q, p >< q, p| with probability density
< q, p|Ψ >< Ψ |q, p >, the resulting mixture would be [Sta95]∫

dμ(q, p)|q, p >< q, p|Ψ >< Ψ |q, p >< q, p|,

whose trace is ∫
dμ(q, p) < q, p|Ψ >< Ψ |q, p >=< Ψ |Ψ > .

To represent the limited capacity of consciousness let us assume, in this
model, that the states of consciousness associated with a brain can be exp-
ressed in terms of a relatively small subset of the modes of the electromagnetic
field in the brain cavity. Let us assume that events occurring outside the brain
are keeping the state of the universe outside the brain cavity in a single state,
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so that the state of the brain can also be represented by a single state. The
brain is represented, in the path–integral method of Feynman, by a super-
position of the trajectories of the particles in it, with each element of the
superposition accompanied by the coherent–state electromagnetic field that
this set of trajectories generates. Let the state of the electromagnetic field
restricted to the modes that represent consciousness be called |Ψ(t) >. Using
the decomposition of unity one can write

|Ψ(t) >=
∫

dμ(q, p)|q, p >< q, p|Ψ(t) > .

Hence the state at time t can be represented by the function < q, p|Ψ(t) >,
which is a complex-valued function over the set of arguments {q1, p1, q2, p2, . . . ,
qn, pn}, where n is the number of modes associated with |Ψ >. Thus in this
model the contents of the consciousness associated with a brain is represented
in terms of this function defined over a 2nD space: the ith conscious event is
represented by the transition

|Ψi(ti+1) >−→ |Ψi+1(ti+1) >= Pi|Ψi(ti+1) >,

where Pi is a projection operator.
For each allowed value of k the pair of numbers (qk, pk) represents the state

of motion of the kth mode of the electromagnetic field. Each of these modes
is defined by a particular wave pattern that extends over the whole brain
cavity. This pattern is an oscillating structure something like a sine wave or a
cosine wave. Each mode is fed by the motions of all of the charged particles in
the brain. Thus each mode is a representation of a certain integrated aspect
of the activity of the brain, and the collection of values q1, p1, . . . , pn is a
compact representation of certain aspects the over–all activity of the brain.

The state |q, p > represents the conjunction, or collection over the set of
all allowed values of k, of the various states |qk, pk >. The function

V (q, p, t) =< q, p|Ψ(t) >< Ψ(t)|q, p >

satisfies 0 ≤ V (q, p, t) ≤ 1, and it represents, according to orthodox thinking,
the ‘probability’ that a system that is represented by a general state |Ψ(t) >
just before the time t will be observed to be in the classically describable state
|q, p > if the observation occurs at time t. The coherent states |q, p > can, for
various mathematical and physical reasons, be regarded as the ‘most classical’
of the possible states of the electromagnetic quantum field.

To formulate a causal dynamics in which the state of consciousness it-
self controls the selection of the next state of consciousness one must specify
a rule that determines, in terms of the evolving state |Ψi(t) > up to time
ti+1, both the time ti+1 when the next selection event occurs, and the state
|Ψi+1(ti+1) > that is selected and actualized by that event.

In the absence of interactions, and under certain ideal conditions of con-
finement, the deterministic normal law of evolution entails that in each mode
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k there is an independent rotation in the (qk, pk) plane with a characteristic
angular velocity ωk = k0. Due to the effects of the motions of the particles
there will be, added to this, a flow of probability that will tend to concen-
trate the probability in the neighborhoods of a certain set of ‘optimal’ clas-
sical states |q, p >. The reason is that the function of brain dynamics is to
produce some single template for action, and to be effective this template
must be a ‘classical’ state, because, according to orthodox ideas, only these
can be dynamically robust in the room temperature brain. According to the
semi–classical description of the brain dynamics, only one of these classical–
type states will be present, but according to quantum theory there must be
a superposition of many such classical–type states, unless collapses occurs
at lower (i.e., microscopic) levels. The assumption here is that no collapses
occur at the lower brain levels: there is absolutely no empirical evidence, or
theoretical reason, for the occurrence of such lower–level brain events.

So in this model the probability will begin to concentrate around vari-
ous locally optimal coherent states, and hence around the various (generally)
isolated points (q, p) in the 2nD space at which the quantity [Sta95]

V (q, p, t) =< q, p|Ψi(t) >< Ψi(t)|q, p >

reaches a local maximum. Each of these points (q, p) represents a locally–
optimal solution (at time t) to the search problem: as far as the myopic local
mechanical process can see the state |q, p > specifies an analog-computed
‘best’ template for action in the circumstances in which the organism finds
itself. This action can be either intentional (it tends to create in the future a
certain state of the body/brain/environment complex) or attentional (it tends
to gather information), and the latter action is a special case of the former. As
discussed in [Sta93], the intentional and attentional character of these actions
is a consequence of the fact that the template for action actualized by the
quantum brain event is represented as a projected body–world schema, i.e.,
as the brains projected representation of the body that it is controlling and
the environment in which it is situated.

Let a certain time ti+1 > ti be defined by an (urgency) energy factor
E(t) = �(ti+1−ti)−1. Let the value of (q, p) at the largest of the local–maxima
of V (q, p, ti+1) be called (q(ti+1), p(ti+1))max. Then the simplest possible rea-
sonable selection rule would be given by the formula

Pi = |(q(ti+1), p(ti+1))max >< (q(ti+1), p(ti+1))max|,

which entails that

|Ψi+1 >< Ψi+1|
< Ψi+1|Ψi+1 >

= |(q(ti+1), p(ti+1))max >< (q(ti+1), p(ti+1))max|.

This rule could produce a tremendous speed up of the search process.
Instead of waiting until all the probability gets concentrated in one state
|q, p >, or into a set of isolated states |qi, pi > [or choosing the state randomly,
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in accordance with the probability function V (q, p, ti+1), which could often
lead to a disastrous result], this simplest selection process would pick the
state |q, p > with the largest value of V (q, p, t) at the time t = ti+1. This
process does not involve the complex notion of picking a random number,
which is a physically impossible feat that is difficult even to define.

One important feature of this selection process is that it involves the state
Ψ(t) as a whole: the whole function V (q, p, ti+1) must be known in order to
determine where its maximum lies. This kind of selection process is not avail-
able in the semi–classical ontology, in which only one classically describable
state exists at the macroscopic level. That is because this single classically
describable macro–state (e.g., some one actual state |q, p, ti+1 >) contains
no information about what the probabilities associated either with itself or
with the other alternative possibilities would have been if the collapse had not
occurred earlier, at some micro-level, and reduced the earlier state to some
single classically describable state, in which, for example, the action potential
along each nerve is specified by a well defined classically describable electro-
magnetic field. There is no rational reason in quantum mechanics for such a
micro–level event to occur. Indeed, the only reason to postulate the occur-
rence of such premature reductions is to assuage the classical intuition that
the action–potential pulse along each nerve ‘ought to be classically describable
even when it is not observed’, instead of being controlled, when unobserved,
by the local deterministic equations of quantum field theory. But the validity
of this classical intuition is questionable if it severely curtails the ability of
the brain to function optimally.

A second important feature of this selection process is that the actualized
state Ψi+1 is the state of the entire aspect of the brain that is connected
to consciousness. So the feel of the conscious event will involve that aspect
of the brain, taken as a whole. The ‘I’ part of the state Ψ(t) is its slowly
changing part. This part is being continually re–actualized by the sequence of
events, and hence specifies the slowly changing background part of the felt
experience. It is this persisting stable background part of the sequence of
templates for action that is providing the over–all guidance for the entire
sequence of selection events that is controlling the on–going brain process
itself [Sta95].

A somewhat more sophisticated search procedure would be to find the
state |(q, p)max >, as before, but to identify it as merely a candidate that
is to be examined for its concordance with the objectives imbedded in the
current template. This is what a good search procedure ought to do: first pick
out the top candidate by means of a mechanical process, but then evaluate
this candidate by a more refined procedure that could block its acceptance if
it does not meet specified criteria.

It may at first seem strange to imagine that nature could operate in such
a sophisticated way. But it must be remembered that the generation of a
truly random sequence is itself a very sophisticated (and indeed physically
impossible) process, and that what the physical sciences have understood, so
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far, is only the mechanical part of nature’s two–part process. Here it is the
not–well–understood selection process that is under consideration. We have
imposed on this attempt to understand the selection process the naturalistic
requirement that the whole process be expressible in natural terms, i.e., that
the universal process be a causal self–controlling evolution of the Hilbert–
space state–vector in which all aspects of nature, including our conscious
experiences, are efficacious.

It may be useful to describe the main features of this model in simple
terms. If we imagine the brain to be, for example, a uniform rectangular box
then each mode k would correspond to wave form that is periodic in all three
directions: it would be formed as a combination of products of sine waves and
cosine waves, and would cover the whole box–shaped brain. (More realistic
conditions are needed, but this is a simple prototype.) Classically there would
be an amplitude for this wave, and in the absence of interactions with the
charged particles this amplitude would undergo a simple periodic motion in
time. In analogy with the coordinate and momentum variables of an oscillating
pendulum there are two variables, qk and pk, that describe the motion of the
amplitude of the mode k. With a proper choice of scales for the variables qk

and pk the motion of the amplitude of mode k if it were not coupled to the
charges would be a circular motion in the (qk, pk)−plane. The classical theory
would say that the physical system, mode k, would be represented by a point in
qk, pk space. But quantum theory says that the physical system, mode k, must
be represented by a wave (i.e., by a wave ψ−function) in (qk, pk) space. The
reason is that interference effects between the values of this wave (function)
at different points (qk, pk) can be exhibited, and therefore it is not possible
to say the full reality is represented by any single value of (qk, pk): one must
acknowledge the reality of the whole wave. It is possible to associate something
like a ‘probability density’ with this wave, but the corresponding probability
cannot be concentrated at a point: in units where Planck’s constant is unity
the bulk of the probability cannot be squeezed into a region of the (qk, pk)
plane of area less that unity.

The mode k has certain natural states called ‘coherent states’, |qk, pk >.
Each of these is represented in (qk, pk)−space by a wave function that has
a ‘probability density’ that falls off exponentially as one moves in any direc-
tion away from the center–point (qk, pk) at which the probability density is
maximum. These coherent states are in many ways the ‘most classical’ wave
functions allowed by quantum theory [Gla63a, Gla63b], and a central idea of
the present model is to specify that it is to one of these ‘most classical’ states
that the mode-k component of the electromagnetic field will jump, or collapse,
when an observation occurs. This specification represents a certain ‘maximal’
principle: the second process, which is supposed to pick out and actualize
some classically describable reality, is required to pick out and actualize one
of these ‘most classical’ of the quantum states. If this selection/actualization
process really exists in nature then the classically describable states that are
actualized by this process should be ‘natural classical states’ from some point
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of view. The coherent states satisfy this requirement. This strong, specific pos-
tulate should be easier to disprove, if it is incorrect, than a vague or loosely
defined one.

If we consider a system consisting of a collection of modes k, then the gen-
eralization of the single coherent state |qk, pk > is the product of these states,
|q, p >. Classically this system would be described by specifying the values all
of the classical variables qk and pk as functions of time. But the ‘best’ that
can be done quantum mechanically is to specify that at certain times ti the
system is in one of the coherent states |q, p >. However, the equations of local
quantum field theory (here quantum electrodynamics) entail that if the sys-
tem starts in such a state then the system will, if no ‘observation’ occurs, soon
evolve into a superposition (i.e., a linear combination) of many such states. But
the next ‘observation’ will then reduce it again to some classically describable
state. In the present model each a human observation is identified as a human
conscious experience. Indeed, these are the same observations that the prag-
matic Copenhagen interpretation of Bohr refers to, basically. The ‘happening’
in a human brain that corresponds to such an observation is, according to the
present model, the selection and actualization of the corresponding coherent
state |q, p >.

The quantity V (q, p, ti+1) defined above is, according to orthodox quan-
tum theory, the predicted probability that a system that is in the state Ψ(ti+1)
at time ti+1 will be observed to be in state |q, p > if the observation occurs
at time ti+1. In the present model the function V (q, p, ti+1) is used to specify
not a fundamentally stochastic (i.e., random or chance–controlled) process but
rather the causal process of the selection and actualization of some particular
state |q, p >. And this causal process is controlled by features of the quan-
tum brain that are specified by the Hilbert space representation of the con-
scious process itself. This process is a nonlocal process that rides on the local
brain process, and it is the nonlocal selection process that, according to the
principles of quantum theory, is required to enter whenever an observation
occurs.

3.2.5 A Unified Theory of Matter and Mind

Most of the physicists today believe that we are very close to a unified the-
ory of matter (UTM) based on p−brane theory, a generalization of superstring
theory (see, e.g., [II06b]). This theory has been well motivated by the successes
(from microchips to satellites) and the difficulties (the presence of infinities) of
Quantum Gauge Field Theories (QED, Electro–Weak theory, GUT and SUSY
GUT etc.) most of which are based on solid experimental evidences (measur-
ing Lande g−factor of electron up to 10 significant places, prediction of Z
boson etc.). This ‘theory of everything ‘ tells us that all carbon atoms (after
they are born out of nucleosynthesis in the core of stars) in this universe are
the same in space and in time, and thus is unable to explain why the carbon
atoms present in a lump of roughly three pound of ordinary matter the human
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brain – give rise to such ineffable qualities as feeling, thought, purpose, aware-
ness and free will that are taken to be evidence for ‘consciousness’.

Is Consciousness an accident caused by random evolutionary processes in
the sense that it would not evolve again had the present universe to undergo
a ‘Big Crunch’ to start with another ‘Big Bang’? No. It is a fundamental
property that emerges as a natural consequence of laws of nature [Sam01].
Are these laws of nature different from laws of physics? Is there a way to
expand the UTM to incorporate consciousness?

Nature manifests itself not only at the gross level of phenomena (accessible
to direct senses) but also at the subtle level of natural laws (accessible to
‘refined’ senses). Consciousness is the ability to access nature at both these
levels. Hence everything in nature is conscious, but there is a hierarchy in the
level of consciousness. Although animals, plants and few machines today can
access to the gross level of nature, access to the subtle level seems to be purely
human. In this sense a layman is less conscious compared to a scientist or an
artist. (Is it possible that a level of consciousness exists compared to which
a scientist or an artist of today may appear a layman?) Once everything
(both matter and mind) is reduced to information it is possible to define
consciousness as the capability to process information. Because any form of
our access to nature is based on processing information with varying degree of
complexity. The words process and complexity will be defined in the following
subsection, mainly following [Sam01].

Matter

Phenomena

Some animals like dogs (in listening to ultrasound) and bats (in sensing prey
through echo technique) are better equipped than humans when it comes to
direct sense experiences. But unlike animals, humans have found out methods
to extend their sense experiences through amplification devices like telescopes,
microscopes etc. The summary [Sam89] of such sense experiences (direct and
extended) acquired over the last five hundred years (equivalent to one second
in a time–scale where the age of the universe is equal to a year) is that our
universe extends in space from the size of an electron (1017 cm as probed at
LEP colliders at CERN, Geneva) to size of galactic super–clusters (1030 cm as
probed by high red–shift measurements). The theoretical possibility of Planck
length (1033 cm) allows for further extension in space.

Our grand universe extending over more than 60 orders of magnitude
in space has been constantly changing over the last 12 billion years. Living
systems seem to have evolved out of non–living systems. Consciousness seems
to have evolved out of living systems. Is the dramatic difference between
animate and inanimate, conscious and unconscious simply a difference in their
ability to process information? At the level of phenomena nature is so vast and
diverse compared to the size and comprehension of human beings that one
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wonders how the collective inquiring human minds over the centuries could at
all fathom the unity behind this diversity. This simply testifies the triumph
of human mind over the physical limitations of its body. Because the human
mind is capable of reaching a synthesis (an advanced form of information
processing) based on careful observations of diverse phenomena [Sam01].

Inanimate

Manifold
Till Einstein, everybody thought ‘absolute space’ is the arena (mathemat-

ically, a manifold) on which things change with ‘absolute time’. In special the-
ory of relativity (STR) he redefined the manifold to be flat spacetime (3 + 1)
by making both space and time relative with respect to inertial observers
but keeping spacetime (SpT) absolute. In general theory of relativity (GTR)
he propounded this manifold to be curved spacetime that can act on matter
unlike the flat spacetime. Then the Quantum Theory (QT, the standard ver-
sion, not the Bohmian one) pointed out this manifold to be an abstract math-
ematical space called Hilbert space since the spacetime description of quantum
processes is not available. Quantum Field Theory (QFT) that originated in a
successful merge of QT and STR requires this manifold to be the Quantum
Vacuum (QV). Unlike the ordinary vacuum, QV contains infinite number of
‘virtual’ particles that give rise to all matter and interactions. Every quantum
field has its own QV and a successful amalgamation of QT and GTR (called
Quantum Gravity, and yet to be achieved) may connect the curved space-
time with the QV of gravitational field. Finally, Superstring (or, p−brane)
theory demands all fundamental entities to be strings (or p−branes) in 10D
spacetime. This evolution in our understanding clearly shows the necessity
and importance of a background manifold to formulate any scientific theory.

Basic Constituents
Energy and matter were considered to be the two basic constituents of

our universe till Einstein showed their equivalence through E=mc2. All forms
of energy are interconvertible. Matter in all its forms (solid, liquid, gas and
plasma) consists of atoms. The simplest of all atoms is the hydrogen atom
that contains an electron and a proton. If one considers the (now outdated)
Bohrian picture of hydrogen atom being a miniature solar system where the
electron revolves around the proton in circular orbit then one realizes that
most of the hydrogen atom is empty space. This means that if one blows up
the hydrogen atom in imagination such that both electron and proton acquire
the size of a football each then they need to be separated by 100 km or more.
Hence one would think that even if 99.99 % of the hydrogen atom consists of
vacuum the point–like electron and proton are material particles. But that is
not so.

The elementary particle physics tells us that all the visible matter (com-
position of dark matter is not yet surely known) in the universe is made of
six leptons and six quarks along with their antiparticles. Although they are
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loosely called particles they are not like the ordinary particles we experience
in daily life. A ‘classical’ particle is localized and impenetrable whereas a ‘clas-
sical’ wave can be extended from minus infinity to plus infinity in space and
many wave modes can simultaneously occupy the same space (like inside the
telephone cable). But with the advent of quantum mechanics this seemingly
contradictory differences between particle and wave lost their sharpness in the
quantum world. A quantum object can simultaneously ‘be’ a particle and a
wave until a measurement is made on it. According to QFT all fundamental
entities are quantum fields (not material in the conventional sense) that are
neither particle nor wave in the classical sense.

Evolution
Despite various specializations, all physical sciences share a common goal:

given the complete specification of a physical system at an initial time (called
the initial conditions) how to predict what will it be at a later time. To predict
with exactness one needs the accurate initial conditions and the laws that gov-
ern the evolution of the system (called the dynamical laws). Either the lack of
exact specifications of initial conditions or the intractability of huge number
of equations (that express dynamical laws) can lead to a probabilistic descrip-
tion rather than a deterministic one. However, there are chaotic systems that
can be both deterministic yet unpredictable because of their extreme sensitiv-
ity to initial conditions. Apart from dynamical laws there are other laws like
Einstein’s E = mc2, etc., which do not involve time explicitly. Could there be
laws at the level of initial conditions that guide us to choose a particular set
over another?

A physical law is like the hidden thread (unity) of a garland with various
flowers representing diverse natural phenomena. Its character seems to depend
on characteristic scales (denoted by fundamental constants like Planck length,
Planck’s constant, and speed of light etc). Why should there be different set
of laws at different scales? Most physicists believe that quantum mechanics is
universal in the applicability of its laws like Schrödinger’s equation and clas-
sicality of the everyday world is a limiting case. But there exists no consensus
at present regarding the emergence of this limiting case.

Guiding Principles
How does one formulate these physical laws? The principle of relativistic

causality helps. Do physical laws change? Is there a unity behind the diver-
sity of laws? Is it possible to understand nature without laws? The concept of
symmetry (invariance) with its rigorous mathematical formulation and gener-
alization has guided us to know the most fundamental of physical laws. Sym-
metry as a concept has helped mankind not only to define ‘beauty’ but also to
express the ‘truth’. Physical laws tries to quantify the truth that appears to
be ‘transient’ at the level of phenomena but symmetry promotes that truth
to the level of ‘eternity’.

Interactions
The myriad mosaic of natural phenomena is possible because, not only

each fundamental entity evolves with time but also it can interact with the
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other basic constituents. All the physical interactions (known so far) can be
put into four categories:

(i) gravitational interaction (the force that holds the universe),
(ii) electromagnetic interaction (the force that holds the atom, and hence all

of us),
(iii) strong nuclear interaction (the force that holds the nucleus), and
(iv) weak nuclear interaction (the force that causes radioactive decay).

At present (ii) and (iv) are known (observationally) to be unified to a single
force called Electro–Weak. Grand unified theories (GUT) and their extensions
(SUSY GUT) for (ii), (iii) and (iv) do exist. Ongoing research aims to unify
(i) with such theories.

According to QFT the basic matter fields interact by exchanging messen-
ger fields (technically called gauge fields) that define the most fundamental
level of communication in nature. Both matter fields and gauge fields originate
in the fluctuations of QV and in this sense everything in universe including
consciousness is, in principle, reducible to QV and its fluctuations. Commu-
nication in nature can happen either via the local channel mediated by gauge
fields or by the nonlocal EPR [EPR35a] type channels (through entanglement)
as was demonstrated by recent quantum teleportation experiments.

Composite Systems
Till the importance of quantum entanglement was realized in recent times

the whole was believed to be just the sum of parts. But the whole seems to
be much more than just the sum of parts in the ‘quantum’ world as well as
classical systems having complexity. It makes quantum entanglement a very
powerful resource that has been utilized in recent times for practical schemes
like quantum teleportation, quantum cryptography and quantum computa-
tion. Quantum nonlocality indicates that the universe may very well be holo-
graphic in the sense that the whole is reflected in each part [Sam01].

Animate

Manifold
A (3 + 1)−spacetime is the manifold for all biological functions at the

phenomenal level that can be explained by classical physics. If one aims to
have a quantum physical explanation of certain biological functions then the
manifold has to be the Hilbert space.

Basic Constituent
Cell is the basic constituent of life although the relevant information

seems to be coded at the subcell (genetic) level. Neuron (or, microtubules
and cytoskeletons) could be the physical substratum of brain depending on
classical (or, quantum) viewpoint.

Evolution
Does biological evolution happen with respect to the physical time? If yes,

then will the physical laws suffice to study biological evolution in the sense
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they do in chemistry? If no, then is the biological arrow of time different from
the various arrows of physical time (say, cosmological or the thermodynamical
arrow of time)? Is there a need for biological laws apart from physical laws to
understand the functioning of biological systems?

Guiding Principles
Survivability is the guiding principles in biological systems. Organisms

constantly adapt to each other through evolution, and thus organizing them-
selves into a delicately tuned ecosystem. Intentionality may also play a very
important role in the case of more complex bio–systems.

Interactions
The interaction occurs by exchange of chemicals, electric signals, gestures,

and language etc. at various levels depending upon the level of complexity
involved.

Composite Systems
Composite systems are built out of the basic constituents retaining the

relevant information in a holographic manner. The genetic information in the
zygote is believed to contain all the details of the biology to come up later when
the person grows up. The genes in a developing embryo organize themselves
in one way to make a liver cell and in another way to make a muscle cell
[Sam01].

Discussions

How ‘material’ is physical? Anything that is physical need not be ‘material’
in the sense we experience material things in everyday life. The concept of
energy is physical but not material. Because nobody can experience energy
directly, one can only experience the manifestations of energy through matter.
Similarly the concept of a ‘classical field’ in physics is very abstract and can
only be understood in terms of analogies. Still more abstract is the concept
of a ‘quantum field’ because it cannot be understood in terms of any classical
analogies. But at the same time it is a well–known fact in modern physics
that all fundamental entities in the universe are quantum fields. Hence one
has to abandon the prejudice that anything ‘physical’ has to be ‘material’.

Is reductionism enough? The reductionist approach: observing a system
with an increased resolution in search of its basic constituents has helped
modern science to be tremendously successful. The success of modern sci-
ence is the success of the experimental method that has reached an extreme
accuracy and reproducibility. But the inadequacy of reductionism in physical
sciences becomes apparent in two cases: emergent phenomena and quantum
nonlocality. Quantum nonlocality implies a holographic universe that neces-
sitates a holistic approach [BH93].

Though it is gratifying to discover that everything can be traced back
to a small number of quantum fields and dynamical laws it does not mean
that we now understand the origin of earthquakes, weather variations, the
growing of trees, the fluctuations of stock market, the population growth and
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the evolution of life? Because each of these processes refers to a system that
is complex, in the sense that a great many independent agents are interacting
with each other in a great many ways. These complex systems are adaptive
and undergo spontaneous self–organization (essentially nonlinear) that makes
them dynamic in a qualitatively different sense from static objects such as
computer chips or snowflakes, which are merely complicated. Complexity deals
with emergent phenomena. The concept of complexity is closely related to
that of understanding, in so far as the latter is based upon the accuracy of
model descriptions of the system obtained using condensed information about
it [BP97].

In this sense there are three ultimate frontiers of modern physics: the
very small, the very large and the very complex. Complex systems cease to
be merely complicated when they display coherent behavior involving collec-
tive organization of vast number of degrees–of–freedom. Wetness of water is
a collective phenomenon because individual water molecules cannot be said
to possess wetness. Lasers, superfluidity and superconductivity are few of the
spectacular examples of complexity in macroscopic systems, which cannot
be understood alone in terms of the microscopic constituents. In every case,
groups of entities seeking mutual accommodation and self–organization some-
how manage to transcend the individuality in the sense that they acquire
collective properties that they might never have possessed individually. In
contrast to the linear, reductionist thinking, complexity involves nonlinearity
and chaos and we are at present far from understanding the complexity in
inanimate processes let alone the complexity in living systems.

Emergence of Life
Is life nothing more than a particularly complicated kind of carbon chem-

istry? Or is it something subtler than putting together the chemical compo-
nents? Do computer viruses have life in some fundamental sense or are they
just pesky imitations of life? How does life emerge from the quadrillions of
chemically reacting proteins, lipids, and nucleic acids that make up a living
cell? Is it similar to the emergence of thought out of the billions of inter-
connected neurons that make up the brain? One hope to find the answer to
these questions once the dynamics of complexity in inanimate systems is well
understood [Sam01].

Mind

Phenomena

Mind is having three states: awake, dream, dreamless sleep. Mind is capable
of free–will, self–perception (reflective) and universal perception (perceptual)
in its ‘awake’ state. Can it be trained to have all these three attributes in the
states of dream and dreamless sleep? Can there be a fourth state of mind that
transcends all the above three states? Where do the brain end and the mind
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begin? Due to its global nature, mind cannot lie in any particular portion of
the brain. Does it lie everywhere in the brain? This would require nonlocal
interactions among various components of the brain. If there were no such
nonlocal communication then how does the mind emerge from the brain?

Can anybody think of anything that transcends spacetime? Is mind
capable of thinking something absolutely new that has not been experienced
(directly or indirectly) by the body? Nobody can think of anything absolutely
new. One can only think of a new way of arranging and/or connecting things
that one has ever learnt. In this sense intellect is constrained by reason whereas
imagination is not. But imagination is not acceptable to intellect unless it is
logically consistent with what is already known. Imagination helps to see a
new connection but intellect makes sure that the new connection is consis-
tent with the old structure of knowledge. This is the way a new structure in
knowledge is born and this process of acquiring larger and larger structure
(hence meaning or synthesis) is the learning process. Science is considered so
reliable because it has a stringent methodology to check this consistency of
imagination with old knowledge.

Can one aspire to study the mind using methodology of (physical) sciences?
Seeing the tremendous success of physical sciences in the external world one
would think its methodology to work for understanding the inner world. It is
not obvious a priori why should not QT work in this third ontology when it has
worked so successfully with two different ontologies? We aim to understand
nature at a level that transcends the inner and the outer worlds by synthesizing
them into a more fundamental world of quantum information [Sam01].

Formalism

Manifold
A physical spacetime description of mind is not possible because thoughts

that constitute the mind are acausal: it does not take 8 minutes for me to think
of the sun although when I look at the sun I see how it was 8 minutes ago. We
will assume that it is possible to define an abstract manifold for the space of
thoughts (say, T−space). An element of T−space is a thought–state (T−state)
and the manifold allows for a continuous change from one T−state to another.
I presume that T−space is identical with mind but it need not be so if mind
can exist in a thoughtless but awake state, called turiya state.

Basic Constituent
How does one define a T−state? That requires one to understand what is

a ‘thought’? A thought always begins as an idea (that could be based on self
and universal perception) and then undergoes successive changes in that idea
but roughly remaining focused on a theme. Change from one theme to another
is triggered by a new idea. Hence I would suggest that the basic constituent
of T−state is idea. An idea is like a ‘snapshot’ of experience complete with
all sense data whereas a thought (T−state) is like an ensemble (where each
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element is not an exact replica of the other but has to be very close copy to
retain the focus on the theme) of such snapshots.

Evolution
There are two types of evolution in T−space. First, the way an ensemble of

ideas evolves retaining a common theme to produce a thought. To concentrate
means to linger the focus on that theme. This evolution seems to be nonlinear
and nondeterministic. Hence the linear unitary evolution of QT may not suffice
to quantify this and will be perhaps best described in terms of the mathematics
of self–organization and far–from–equilibrium phenomena. 23 The second type
involves a change from one particular thought into another and this evolution
could be linear and perhaps can be calculated through a probability amplitude
description in the line of QT. Given the complete description of a thought at
an initial time the refutability of any theory of mind amounts to checking how
correctly it can predict the evolution of that thought at a later time.

Guiding Principles
If the guiding principle for evolution in biological world is survivability then

in T−space it is happiness–ability. A constant pursuit of happiness (although
its definition may vary from person to person) guides the change in a person’s
thoughts. Each and every activity (begins as mental but may or may not mat-
erialize) is directed to procure more and more happiness in terms of sensual
pleasures of the body, emotional joys of the imagination and rational delights
of the intellect.

Interactions
Can a thought (mind) interact with another thought (mind)? Can this

interaction be similar to that between quantum fields? Perhaps yes, only if
both thought and quantum fields can be reduced to the same basic entity.
Then it will be possible for thought (mind) to interact with matter. What
will be the messenger that has to be exchanged between interacting minds or
between interacting mind and matter? This ultimate level of communication
has to be at the level of QV and hence it may amount to silence in terms of
conventional languages. But can any receiver (either human mind or any other
mind or equipment) be made so sensitive to work with this ultimate level of
communication? Interaction with the environment is believed to decohere a
quantum system that causes the emergence of classicality in physical world.
A completely isolated system remains quantum mechanical. Can a completely
isolated mind exhibit quantum mechanical behavior in the sense of superpo-
sition and entanglement?

Composite Systems
In the T−Space a thought is an ensemble of ideas and a mind–state is

composed of thoughts. Behavior, feeling and knowledge of self and universe
are in principle reducible to composite subsets in the T−space [Sam01].

23 On the practical side the time–tested techniques of Yoga teach us how to linger the
focus on a theme through the practice of concentration, meditation and samadhi .
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Discussions

Working definition of Consciousness
Consciousness (at the first level) is related to one’s response R to one’s

environment. This response consists of two parts: habit H and learning L.
Once something is learnt and becomes a habit it seems to drop out of con-
sciousness. Once driving a bicycle is learnt one can think of something else
while riding the bicycle. But if the habit changes with time then it requires
conscious attention. We have defined learning earlier as a process to find com-
mensurability of a new experience with old knowledge. One has to learn anew
each time there is a change in the environment. Hence consciousness is not the
response to the environment but is the time of rate of change of the response
[Sam01],

C = ∂tR, where R = H + L.

The hierarchy in consciousness depends on the magnitude of this time
derivative. Everything in the universe can be fit in a scale of consciousness
with unconscious and super–conscious as the limit points. It is obvious that all
animals show response to their environment, so does some of the refrigerators,
but there is a hierarchy in their response. Through the use of ‘cresco–graph’
and ‘resonant cardio–graph’ of J.C. Bose, one can see the response of botanical
as well as inanimate world. We cannot conclude that a stone is unconscious
just because we cannot communicate with it using our known means of com-
munication. As technology progresses, we will be able to measure both the
response function R and its time derivative. If this is the definition what can
it tell about the future evolution of humans? My guess is that we would evolve
from conscious to super–conscious in the sense that genes will evolve to store
the cumulative learning of the human race.

Emergence of Consciousness
The first step in understanding consciousness consists of using reductionist

method to various attributes of consciousness. A major part of the studies
done by psychologists (and their equivalents doing studies on animals) and
neurobiologists falls under this category. Such studies can provide knowledge
about mind states (say, M1,M2,M3, . . .) but cannot explain the connection
between these mind states with the corresponding brain states (say B1, B2,
. . . ). Because this kind of dualistic model of Descartes would require to answer
a) where is mind located in the brain, and b) if my mind wants me to raise
my finger, how does it manage to trigger the appropriate nerves and so on in
order for that to happen without exerting any known forces of nature?

To find out how the mind actually works one needs to have a theory
of mind, that will relate the sequence of mental states M1,M2,M3,. . . by
providing laws of change (the dynamical laws for the two types of evolution
discussed above) that encompass the mental realm after the fashion of the
theory of matter that applies to the physical realm, with its specific laws.
Such a theory of mind is possible if we synthesize the results of studies on
attributes of consciousness to define the exact nature of the manifold and the
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basic entities of the T−space (or, Mind–Space). Once this is achieved then
one can attempt to explain the emergence of consciousness taking clues from
complexity theory in physical sciences. But such an extrapolation will make
sense provided both M−states and B−states can be reduced to something
fundamental that obeys laws of complexity theory. We propose in the next
section that information is the right candidate for such a reduction.

Role of Indian Philosophy (IP)
(1) Unlike the Cartesian dichotomy of mind and body some schools of IP

like Vaisheshika and Yoga treat both mind and body in a unified manner.
Since (western) science is based on Cartesian paradigm it cannot synthesize
mind and body unless it takes the clue from oriental philosophies and then
blend it with its own rigorous methodology.
(2) In terms of sense awareness, awake, dream and dream–less sleep states are
often called as conscious, subconscious and unconscious states. A great concep-
tual step taken by IP in this regard is to introduce a fourth state of mind called
turiya state that is defined to be none of the above but a combination of all of
the above states. This state is claimed to be the super–conscious state where
one transcends the limitations of perceptions constrained by spacetime (3+1).
Patanjali has provided very scientific and step by step instructions to reach
this fourth state through samyama (concentration, meditation and samadhi
are different levels of samyama). The scientific validity of this prescription can
be easily checked by controlled experiments. Nobody can understand the mod-
ern physics without going through the prerequisite mathematical training. It
will be foolish for any intelligent lay person to doubt the truth of modern
physics without first undergoing the necessary training. Similarly one should
draw conclusion about yogic methods only after disciplined practice of the
eight steps of yoga.
(3) IP can provide insights regarding the role of mind in getting happiness and
thus a better understanding of mind itself. Happiness lies in what the mind
perceives as pleasurable and hence the true essence of happiness lies in mind
and not in any external things. Once the body has experienced something
mind is capable of recreating that experience in the absence of the actual
conditions that gave rise to the experience in the first place. One can use this
capacity of mind to create misery or ecstasy depending on one’s ability to
guide one’s mind.
(4) There is a concept of the primordial sound in IP. Sometimes the possibility
of having a universal language to communicate with everything in the universe
is also mentioned. Modern physics tells us that the only universal language is
at the level of gauge bosons and QV. Is there any connection between these
two? Can a human mind be trained to transmit and receive at the level of QV?
(5) It is said that whole body is in the mind whereas the whole mind is not in
the body. How does mind affect the body? If one believes in the answer given
by IP then the results obtained in this regard by the western psychology
appears to be the tip of the iceberg only. Can science verify these oriental
claims through stringently controlled experiments?
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Unification

Information

Information seems to be abstract and not real in the sense that, it lies inside
our heads. But information can, not only exist outside the human brain (i.e.,
library, a CD, internet etc.) but also can be processed outside human brain
(i.e., other animals, computers, etc.). Imagine a book written in a dead lan-
guage, which nobody today can decipher. Does it contain information? Yes.
Information exists. It does not need to be perceived or understood to exist.
It requires no intelligence to interpret it. In this sense information is as real
as matter and energy when it comes to the internal structure of the universe
[Sto90]. But what we assume here is that information is more fundamental
than matter and energy because everything in the universe can be ultimately
reduced to information.

Information is neither material nor non–material. Both, quantum fields
and thoughts can be reduced to information. If the human mind is not capable
(by the methods known at present) of understanding this ultimate information
then it is the limitation of the human mind. This may not remain so as
time progresses. The whole of physical world can be reduced to information
[Fri99]. Is information classical or quantum? There are enough indications
from modern physics that although it can be classical at the everyday world
it is quantum at the most fundamental level. The quantum information may
have the advantage of describing the fuzziness of our experiences.

Formalism

Manifold
The manifold is an information field (I–field) for classical information (like

that of Shannon or Fisher, etc.) Hilbert space of QT is the manifold to study
quantum information. But if quantum information has to be given an onto-
logical reality then it may be necessary for the manifold to be an extended
Hilbert space.

Basic Constituent
A bit or a qubit is the basic entity of information depending on whether

it is treated as classical or quantum respectively. Information can be of
two types: kinetic and structural, but they are convertible to each other
[Sto90].

Evolution
All organized systems contain information and addition of information to

a system manifests itself by causing the system to become more organized
or reorganized. The laws for evolution of information are essentially laws of
organization. Are these laws different from the physical laws? Is there an
equivalent in the world of information of fundamental principles like principle
of least action in physical world?
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Guiding Principles
Optimization seems to be the guiding principle in the world of information.

What gives rise to the structure in the information such that we acquire an
understanding or meaning out of it? Is there a principle of least information
to be satisfied by all feasible structures?

Interactions
The interaction at the level of information has to be the ultimate univer-

sal language. What could be that language? The only fundamental language
known to us is that of the gauge fields that communicate at the level of QV.
Could the gauge fields serve as quanta of information? How far is this lan-
guage from the conventional language? Can this help us to communicate with
not only with other creatures incapable of our conventional language but also
with the inanimate world? Time is not yet ripe to answer these questions.

Composite Systems
How can every composite system of information (like a gene, or a galaxy)

be expressed in terms of bits or qubits? Does the holographic principle also
apply to information?

Discussions

Consciousness and Information
There is no doubt that sooner or later all attributes of consciousness can be

reduced to information. This is just a matter of time and progress in technol-
ogy. That will complete the understanding of consciousness at the gross level of
phenomena but will harbinger the understanding of consciousness at the sub-
tle level of laws. The synthesis of the phenomenological studies of conscious-
ness will be possible by treating information as the most basic ontological
entity, which can unify mind and matter. The emergence of consciousness will
be understood in terms of nonlinear, far–from–equilibrium complex processes
that lead to spontaneous self–organization and adaptation of structures in the
manifold of quantum information.

Consciousness will be seen as the ability to process quantum information in
an effective way. Depending on the degree of complexity involved the process-
ing would encompass activities starting from the way a planet knows which
is the path of least action to the way modern supercomputers do simulations
of reality to the way a scientist makes a discovery or an artist traps beauty
on a canvass through the nuances of truth. The limit points of unconscious
and super–conscious would correspond to the limiting cases of no information
processing and infinite information processing respectively. Subconscious will
be interpreted as partial information processing.

Every entity in the universe has to take a decision at every moment of
time for its existence although the word existence may mean different things
to different entities. The chance for continuation of existence is enhanced if the
best decision on the basis of available information is taken. This is a process
of optimization and the more conscious an entity is more is its ability to
optimize.
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Limitations of understanding
Is there any fundamental principle (or, theorem) that puts limit on the

understanding of both mind and matter by reducing them to information
and then applying methodology of physical sciences to understand life and
consciousness as emergent phenomena? Since this approach heavily relies on
mathematics the limitations of deductive logic as pointed out by Gödel in his
famous incompleteness theorem may put the first limit. The second constraint
may come from QT if it turns out (after having rigorous information theoretic
formulation of both matter and mind) that the information related to mind
is complementary to the information found in matter. I personally feel that
this is quite unlikely because I believe that information at the fundamental
level cannot be dualistic.

Conclusions

Unlike the Cartesian duality between mind and body, understanding con-
sciousness requires first to understand matter and mind in a unified way. This
can be achieved by giving information the most primary status in the uni-
verse. Then a generalized theory of quantum information dynamics has to be
formulated (see the Table 3.1). The line of attack here involves three steps
[Sam01]:

(1) understanding emergent phenomena and complexity in inanimate systems,
(2) understanding life as emergent phenomena, and
(3) understanding consciousness as emergent phenomena.

The attributes of consciousness can be understood only by a prudent appli-
cation of both reductionism and holism. But the emergence of consciousness
will be understood as an emergent phenomenon in the sense of structural
organizations in the manifold of information to yield feasible structures
through which we attribute meaning and understanding to the world.

3.2.6 Quantum Consciousness

For conscious states and brain states to mirror one another in any species,
thereby establishing what von Neumann calls a psycho–physical parallelism,
these intrinsically different states must evolve together and interact with one
other during their time of evolution. Standard physics makes no provision
for an interaction of this kind, but a quantum–mechanical opening for an
objective/subjective interaction is shown to exist in [Mou95, Mou98, Mou99].
In this subsection, following this approach, we present a model of quantum
consciousness.

Our theory of subjective evolution calls for the existence of a Central
Mechanism (CM) within an evolving organism, which contains presently
unknown components of the nervous system. The function of a CM is to
reduce quantum–mechanical superpositions within the nervous system, and to
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Table 3.1. A generalized structure of quantum information dynamics (modified and
adapted from [Sam01].)

Character Physical Biological Mental Information

Manifold SpT (3 + 1), SpT (3 + 1), M−Space I−Field,
Hilbert Space Hilbert Space (Abstract Extended
QV, SpT (10) Mathematical Hilbert Space

Space)

Basic Wave ψ−function Cell, Neuron, Idea (based Bit
Constituents Quantum fields Microtubule on self or (classical)

Strings Cytoskeleton universal Qubit
p−branes perception (quantum)

Evolution Physical Laws Physical Laws Laws for Laws for
(mostly diff. Biological Laws evolution of evolution of
equations) thought organization

Guiding Symmetry Survivability Happiness– Optimization
Principles (Group Intentionality Ability

Theoretical)

Interactions Gravity, Chemicals, Primordial Local, and
Electro–weak, Electric Sound or Nonlocal

Strong Signals, Vibrations (EPR)
Nuclear Language, channels

Interaction Gesture

Composite Many–body Plants, Thought Complex
Systems Systems with Animals (Ensemble of Systems with

or without Ideas with Hierarchy in
interactions ordering) Organization

simultaneously give rise to a conscious experience of the eigenvalues of the
reduction. This accords with von Neumann’s requirement that a quantum–
mechanical state reduction is accompanied by an observer’s conscious expe-
rience of the measured variables. At the present time, no one knows what
there is about a conscious organism that gives rise to either consciousness
or state reduction. We simply combined these two mysteries inside the CM ,
thereby placing our ignorance in a black–box so we can ask another question,
namely: how do physical and mental states evolve interactively to insure the
psycho–physical parallelism?

The model in [Mou95, Mou98, Mou99] requires that a conscious organ-
ism spontaneously creates a profusion of macroscopic quantum–mechanical
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superpositions consisting of different neurological configurations. A mecha-
nism for this generation is proposed by H. Stapp in [Sta93]. The result is a
superposition of different neurological states, each of which may be accompa-
nied by a different subjective experience. A reduction to a single eigenstate is
not assumed to be triggered microscopically along the lines of [GRW86]; but
rather, it is assumed to occur in response to a macroscopic event. It occurs
the moment an emerging subjective state becomes actively conscious in one
of the macroscopic neurological components of a Stapp superposition. The
consciousness that is associated with such a reduction is assumed to fade the
moment reduction is complete, and the resulting subjective pulse is suppos-
edly followed by similar pulses in rapid succession. This can make the subject
aware of an apparent continuum of consciousness.

Presumably, any reduction of this kind is accompanied by a reduction of
all other parts of the organism as well as all those parts of the external world
that are correlated with it. This means that a second observer, coming on
the heels of the first, will make an observation in agreement with the first.
More formally, a measurement interaction establishes correlations between the
eigenstates |ai〉 of some apparatus (with discrete variables ai), eigenstates of
a first observer |Φi〉, and eigenstates of a second observer |Θi〉, such that the
total state prior to reduction is given by [Mou95, Mou98, Mou99]

|Ψ〉 = ΣiCi|ai〉|Φi〉|Θi〉.

The coefficient Ci is the probability amplitude that the apparatus is in state
|ai〉. Let the first observer become consciously aware of the apparatus variable
ak. The resulting reduction is a projection in Hilbert space that is found by
applying the projection operator of that observer |Φk〉〈Φk| to the total state.

|Φk〉〈Φk||Ψ〉 = Ck|ak〉|Φk〉|Θk〉 (1st reduction)

Let the second observer then become consciously aware of the apparatus vari-
able am. The subsequent reduction is found by applying the projection oper-
ator of that observer |Φm〉〈Φm| to the first reduction.

|Θm〉〈Θm|Ck|ak〉|Φk〉|Θk〉=δkmCk|ak〉|Φk〉|Θm〉 (2nd reduction)

Only if m = k is the probability non–zero that the second observer will make
a measurement. The second observer therefore confirms the results of the first
observer that the apparatus has been left in the eigenstate |ak〉.

Again, many of the particulars of a reduction (such as its nonlinearly) are
ignored in this subsection so we can concentrate on the influence of subjective
states on physiological states. To this end we require that ‘when the emerging
subjective states of a neurological superposition are different from one another,
they will generally exert an influence on their relative probability amplitudes
that is a function of that difference’ [Mou95, Mou98, Mou99]. In particular,
we imagine that when a ‘painful’ subjective state emerges in superposition
with a ‘pleasurable’ subjective state, the probability amplitude of the painful
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Fig. 3.7. Nervous system of the first primitive organism (modified and adapted
from [Mou99] – see text for explanation).

state will be decreased relative to the probability amplitude of the pleasurable
state.

No currently known observation contradicts this conjecture, for no
previously reported experiment deals specifically with the creation of dif-
ferent observers experiencing different degrees of pain, arising on different
components of a quantum mechanical superposition.

Let N in Figure 3.7 represent the nervous system of the first primitive
organism that makes a successful use of the subjective experience of ‘pain’.
In [Mou95, Mou98, Mou99] this creature was imagined to be a fish. It is
supposed that the fish makes contact with an electric probe, at which time
its nervous system splits into a superposition (via the Stapp mechanism)
consisting of a withdrawal behavior W that is accompanied by [no pain], and
a continued contact behavior C that is accompanied by [pain]. The probability
of survival of each component in this highly artificial model is initially assumed
to be 0.5. However, because of the hypothetical influence of subjective pain on
probability amplitudes, only the withdrawal state is assumed to survive the
reduction in this idealized example. State reduction in Figure 3.7 is represented
by the horizontal arrow. If W is furthermore a good survival strategy from the
point of view of evolution, then the association W [no pain] and C[pain] will
serve the species well, whereas a wrong association W [pain] and C[no pain]
will lead to its demise.

It does not matter to the above argument if the variables are ‘pleasure/
pain’ or some other range of subjective experiences. If a subjective experience
like ‘A’ increases the probability amplitude of an escape behavior, and if a
subjective experience like ‘B’ diminishes the probability amplitude of that be-
havior, and if the escape is one that moves the creature away from something
that is dangerous to its health, then a distant descendent will experience ‘A’
associated with life supporting escapes, and ‘B’ associated with life threaten-
ing failures–to–escape. It is apparent that the quality of the experience does
not matter. We require only that the subjective experience in question has
a predictable plus or minus effect on the probability amplitudes within a su-
perposition, and the survival mechanisms of evolution will do the rest. They
will insure that the eventual subjective life of a surviving species mirrors its
experiences in a definite and predictable way thereby establishing a reliable
psycho–physical parallelism.

We assume that ordinary perception do not have this effect. They do not
give rise to the hypothetical feedback. In Figure 3.8 we imagine the exis-
tence of an externally imposed two component superposition consisting of
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Fig. 3.8. Pure state reduction (modified and adapted from [Mou99] – see text for
explanation).

Fig. 3.9. Pure state reduction with and without a ‘pain’ (modified and adapted
from [Mou99] – see text for explanation).

environments e1 and e2, which is produced by using, say, a β source. The
two environments are assumed to have equal probability, and are allowed to
interact with the subject’s nervous system given by N0. Before a reduction
can occur, two conscious states emerge from the interaction represented by
the superposition of (eN)1[x1] and (eN)2[x2], where the conscious part shown
in brackets is the observed eigenvalue x associated with components 1 and 2.
Since we require that an observer of the ‘perceived’ variable x cannot affect the
probability of x, the pure state reduces to a mixture having the same probabil-
ity as the initial superposition (horizontal arrows in Figure 3.8). State ei repre-
sents the relevant laboratory apparatus together with the wider environment
with which it is entangled. The phase angles φ and φ′ are definite, but they are
not localized to manageable parts of the apparatus [Mou95, Mou98, Mou99].
We call them ‘arbitrary’ to indicate that their values are not practically cal-
culable, and to emphasize the lack of coherence between these ‘macroscopic’
components.

On the other hand, if ‘pain’ were the variable in Figure 3.8 rather than
the externally perceived variable x, it is suggested by the hypothesis of
[Mou95, Mou98, Mou99] that the resulting mixture might no longer be a
50–50 split. This possibility is represented in Figure 3.9, where the final mix-
ture probabilities are left unspecified because they must be discovered by
observation.

The Experiment

Two scalers L and R recording local background radiation are placed
side–by–side in Figure 3.10. Their outputs are fed to a selector box that
chooses channels L or R, depending on which is the first to record a single
count after the selector has been turned on. A 20 V signal is then emitted from
the output of the chosen channel. The output on the R–channel is unused,
but the L–output closes a relay that puts 80 volts across two metal bars. Two
seconds after the selection, an L or R–light goes on indicating which channel
was selected. A finger placed across the metal bars will receive a painful 80V
shock when the L–channel is selected [Mou95, Mou98, Mou99].
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Fig. 3.10. The experimental set up (modified and adapted from [Mou99] – see text
for explanation).

This apparatus allows us to carry out the experiments diagramed in
Figures 3.8 and 3.9. If the selector is initiated in the absence of an observer,
we say that the system will become a macroscopic superposition given by
(eiφe1 + e2), where e1 is the entire apparatus following an L-channel activa-
tion, and e2 is the entire apparatus following an R–channel activation. The
incoherence of the two components (represented by the arbitrary angle φ)
is generally understood to mean that the system is indistinguishable from a
classical mixture, since interference between these macroscopic components is
not possible. However, for reasons given in previous papers, we claim that the
final state is really an incoherent quantum–mechanical superposition rather
than a classical mixture.24 The lack of interference between the components
has no bearing on our result because the hypothetical effect described here
relates to, and directly affects, probability amplitudes only. The effect we
are looking for should be observable with or without coherence between L
and R.

If an observer is present and exposed only to the L–light or the R–light,
then a reduction will occur like the one in Figure 3.8, where eigenvalues x1 and
x2 represent a conscious experience of one or the other of those lights. If the
observer is exposed only to a conscious experience of “pain or no pain” through
his finger across the metal bars, then a reduction like the one in Figure 3.9

24 The uncertainty associated with a classical mixture state represents an outsider’s
ignorance, whereas a pure quantum mechanical state superposition represents an
uncertainty that is intrinsic to the system. Following von Neumann, we assume
that the initial intrinsic uncertainty (concerning which of the scalers fires first)
will remain an intrinsic uncertainty until it is reduced by ‘observation’. Hence,
the apparatus will remain a macroscopic pure state quantum mechanical super-
position until an observation occurs.
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will occur. This experiment may not appear to be quantum–mechanical, but
it is quantum–mechanical by virtue of the particular hypothesis that is being
tested in Figure 3.9.

The equipment in Figure 3.10 was used for a total of 2500 trials, each
consisting of two parts. The experimenter’s finger was first placed across the
metal bars, the selector was turned on, and a ‘shock’ or ‘no shock’ was recorded
before the lights were observed. In the second part of each trial the finger was
replaced by an equivalent resistance, the selector was again initiated, and
the appearance of the L or R channel light was recorded [Mou95, Mou98,
Mou99].

Total number of trials . . . . . . . . . . . . . . . . . . . . . . . . . . N = 2500,
Number of shocks received in the first part . . . . . . . . . . . . . NS = 1244,
Number of times the L–light went on in the second part . . . . . NL = 1261.

There are three possible outcomes of a single trial. Either the difference
NL −NS increases, or it decreases, or it remains the same. The three pos-
sibilities are represented by the variables u (increase) occurring with a proba-
bility p, and d(decrease) with a probability q, and e (remain the same) with a
probability r. It was found in the experiment that u = 632 and d = 615 after
2500 trials.

If we approximate p0 = NL/N to be the probability that the left channel
fires in the second part of each trial (absent the finger), and q0 = 1 − p0 to
be the probability that the right channel fires in the second part of each trial,
then

p0 = 1261/2500 = 0.5044 q0 = 0.4956

Assuming as a null hypothesis that there is no statistical difference between
the displacement of a finger across the metal bars and an equivalent resistor,
we have p = p0q0, q = q0p0, and r = p2

0 + q2
0 , giving

p = 0.2500 q = 0.2500 r = 0.5000

The variances of (u + d) and (u− d) are [Mou95, Mou98, Mou99]

σ2(u + d) = < (u + d)2 > − < u + d >2= σ2(u) + σ2(d) + X

σ2(u− d) = < (u− d)2 > − < u− d >2= σ2(u) + σ2(d)−X

therefore

σ2(u− d) = 2σ2(u) + 2σ2(d)− σ2(u + d)
= 2p(q + r)N + 2q(p + r)N − r(p + q)N or

σ(u− d) = [[4pq + r(p + q)]N ]1/2 = [N/2]1/2 = 35.4

Our alternative hypothesis is that u − d is significantly different from 0.
But from the data, u − d = NL −NS = 17 after 2500 trials, and this is well
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within the above the standard deviation around 0. The separate variables u
and d are also within the standard deviation

σ(u) = σ(d) = [p(q + r)N ]1/2 = 21.7

of their expected value of 625.
One can always argue that the statistics are inadequate to reveal a sig-

nificant difference between u and d. However, they are sufficient to convince
us that the presence of pain on one component of this externally imposed
superposition has no significant effect on the outcome. We therefore conclude
that the reduction in Figure 3.9 is not affected by the subjective content of
the square brackets in that figure.

Bio–Active Peptides

Neurological communication depends on the diffusion of chemical neurotrans-
mitters across the synaptic junction between neurons. There is another com-
munication system within the body that makes use of chemicals that are
produced at one site and received at another; but in this case, the distances
between a production and receiver sites are macroscopic. About 95% of these
chemical communicators are peptides, which are mini–proteins consisting of
up to 100 amino acids having a maximum atomic mass of 10,000 u. Their clas-
sical dimensions are Δx =10 nm at most, which we assume approximates their
size close to the production site [Per97]. Therefore, Heisenberg tells us that
the minimum quantum–mechanical uncertainty in the velocity of one of these
free peptides is Δv =0.63 mm/s. Peptides are carried through intercellular
space by blood and cerebrospinal fluid. They do not move very far in a tenth
of a second, but in that time the Heisenberg uncertainty in position of a pep-
tide will be at least Δs = ΔvΔt = 63 mm. This is an enormous uncertainty of
position relative to one of the peptide receptor sites which has a size similar
to that of the peptide, and which is often separated from its neighbors by
comparable distances. Therefore, quantum–mechanical uncertainty is an im-
portant factor in determining the probability that a given peptide is captured
by a given receptor [Mou95, Mou98, Mou99].

Stapp’s mechanism for introducing quantum–mechanical superpositions
into the brain relies on the uncertainty in the position of calcium ions in
neuron synapses. We suggest that peptides represent another possible source
of super-positions that may be just as widespread. And because peptides play
an important role in the chemistry of the body, they too may have a significant
quantum–mechanical influence on behavior.

As with the Stapp mechanism, one might object that the uncertainty
associated with the peptide’s classical diffusion during its migration will
overwhelm the quantum–mechanical uncertainty, or that a large number of
migrating molecules will obscure all quantum–mechanical effects. However,
the classical uncertainty associated with many–particle ensembles has only to



3.2 Quantum Consciousness 591

do with our ignorance of initial conditions. In reality, the only uncertainties a
receptor will see are those associated with an incoherent quantum–mechanical
superposition of pure peptide states. This superposition will have as many
components as there are peptide molecules involved. And since our hypothet-
ical influence acts through the amplitude of these components, the presence
of a large number of independent particles will only increase the hypothetical
influence.

Drugs

There are many drugs that can be introduced into the body that will compete
with endogenous peptides to occupy the body’s receptor sites, and some
of these drug molecules are small enough to have a very large quantum
mechanical uncertainty of position. For this reason, peptide/drug superpo-
sitions are more promising for the purpose of experimental manipulation than
calcium ion super-positions.

For example, endorphins are peptides that unite with special receptors
to eliminate pain and/or produce euphoria. They and their receptors can be
found everywhere in the body, but they are most intensely located in the
limbic system of the brain. There is a drug called naloxone that is a strong
competitor with the endorphins to occupy the same receptors, and it has
the property that it reverses the analgesic/pleasurable effects of the endor-
phins [Per97, Sny86, Lev88] If endorphin molecules and externally adminis-
tered naloxone molecules are in quantum–mechanical superposition with one
another as their sizes and likely time together suggests, and if they both com-
pete with one another for successful attachment to the same receptor site, then
the ratio of endorphin attachments to naloxone attachments would (according
to our hypothesis) be a function of the competing subjective states.

Evolutionary Advantage

It was pointed out in [Mou95, Mou98, Mou99] that our evolutionary mecha-
nism of objective–subjective interaction (represented by Figure 3.7) does not
insure that a creature evolving under its influence will evolve more quickly or
be more successful than a creature evolving strictly as an automaton. That
will be true as well of the modified model in sects. 3-5. However, it is not
unreasonable to suppose that both conscious evolution and autonomic evo-
lution might work separately and in tandem with one another. The kinds of
neurological changes that are necessary for autonomic evolution might very
well be independent of the kinds of neurological changes that are necessary
for quantum/consciousness evolution. If that is so, and if these two processes
work in tandem, then the evolution of the organism will be faster than either
the autonomic route by itself, or the conscious route by itself. One would
then be able to say that the introduction of consciousness as proposed here
will always work to the advantage of the organism.
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3.2.7 Quantum–Like Psychodynamics

In this section, which is written in the fashion of the quantum brain, we present
the top level of natural biodynamics, using geometrical generalization of the
Feynman path integral . To formulate the basics of force–field psychodynamics,
we use the action–amplitude picture of the BODY � MIND adjunction:

↓ Deterministic (causal) world of Human BODY ↓

Action : S[qn] =
∫ tout

tin
(Ek − Ep + Wrk + Src±) dt

−−−−−−−−−−−−−−−−−−−
Amplitude : 〈out|in〉 =

∫
Σ D[wnq

n] eiS[qn]

↑ Probabilistic (fuzzy) world of Human MIND ↑

In the action integral, Ek, Ep,Wrk and Src± denote the kinetic end
potential energies, work done by dissipative/driving forces and other energy
sources/sinks, respectively. In the amplitude integral, the peculiar sign

∫
Σ

denotes integration along smooth paths and summation along discrete Markov
chains; i is the imaginary unit, wn are synaptic–like weights, while D is the
Feynman path differential (defined below) calculated along the configura-
tion trajectories qn. The action S[qn], through the least action principle
δS = 0, leads to all biodynamic equations considered so far (in generalized
Lagrangian and Hamiltonian form). At the same time, the action S[qn] figures
in the exponent of the path integral

∫
Σ , defining the probability transition am-

plitude 〈out|in〉. In this way, the whole body dynamics is incorporated in the
mind dynamics. This adaptive path integral represents an infinite–dimensional
neural network , suggesting an infinite capacity of human brain/mind.

For a long time the cortical systems for language and actions were
believed to be independent modules. However, according to the recent research
of [Pul05], as these systems are reciprocally connected with each other,
information about language and actions might interact in distributed neu-
ronal assemblies. A critical case is that of action words that are semantically
related to different parts of the body (e.g. ‘pick’, ‘kick’, ‘lick’,. . . ). The author
suggests that the comprehension of these words might specifically, rapidly and
automatically activate the motor system in a somatotopic manner, and that
their comprehension rely on activity in the action system.

Motivational Cognition in the Life Space Foam

Applications of nonlinear dynamical systems (NDS) theory in psychology have
been encouraging, if not universally productive/effective [Met97]. Its historical
antecedents can be traced back to Piaget’s [PHE92] and Vygotsky’s [Vyg82]
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interpretations of the dynamic relations between action and thought, Lewinian
theory of social dynamics and cognitive–affective development [Lew51, Gol67],
and Bernstein’s [Ber47] theory of self–adjusting, goal–driven motor action.

Now, both the original Lewinian force–field theory in psychology (see
[Lew51, Gol67]) and modern decision–field dynamics (see [BT93, RBT01,
BD02]) are based on the classical Lewinian concept of an individual’s life
space.25 As a topological construct, Lewinian life space represents a person’s
psychological environment that contains regions separated by dynamical per-
meable boundaries. As a field construct, on the other hand, the life space
is not empty: each of its regions is characterized by valence (ranging from
positive or negative and resulting from an interaction between the person’s
needs and the dynamics of their environment). Need is an energy construct,
according to Lewin. It creates tension in the person, which, in combination
with other tensions, initiates and sustains behavior. Needs vary from the most
primitive urges to the most idiosyncratic intentions and can be both internally
generated (e.g., thirst or hunger) and stimulus–induced (e.g., an urge to buy
something in response to a TV advertisement). Valences are, in essence, per-
sonal values dynamically derived from the person’s needs and attached to
various regions in their life space. As a field, the life space generates forces
pulling the person towards positively–valenced regions and pushing them away
from regions with negative valence. Lewin’s term for these forces is vectors.
Combinations of multiple vectors in the life space cause the person to move
from one region towards another. This movement is termed locomotion and
it may range from overt behavior to cognitive shifts (e.g., between alterna-
tives in a decision–making process). Locomotion normally results in crossing
the boundaries between regions. When their permeability is degraded, these
boundaries become barriers that restrain locomotion. Life space model, thus,
offers a meta–theoretical language to describe a wide range of behaviors, from
goal–directed action to intrapersonal conflicts and multi–alternative decision–
making.

In order to formalize the Lewinian life–space concept, a set of action princi-
ples need to be associated to Lewinian force–fields, (loco)motion paths (rep-
resenting mental abstractions of biomechanical paths [II05]) and life space
geometry. As an extension of the Lewinian concept, in this paper we intro-
duce a new concept of life–space foam (LSF, see Figure 3.11). According to
this new concept, Lewin’s life space can be represented as a geometrical func-
tor with globally smooth macro–dynamics, which is at the same time under-
pinned by wildly fluctuating, non–smooth, local micro–dynamics, describable
by Feynman’s: (i) sum–over–histories

∫
Σ paths , (ii) sum–over–fields

∫
Σ fields ,

and (iii) sum–over–geometries
∫
Σ

geom.

25 The work presented in this subsection has been developed in collaboration with
Dr. Eugene Aidman, Senior Research Scientist, Human Systems Integration, Land
Operations Division, Defence Science & Technology Organisation, Australia.
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Fig. 3.11. Diagram of the life space foam: Lewinian life space with an adaptive
path integral acting inside it and generating microscopic fluctuation dynamics.

LSF is thus a two–level geometrodynamical functor , representing these two
distinct types of dynamics within the Lewinian life space. At its macroscopic
spatio–temporal level, LSF appears as a ‘nice & smooth’ geometrical functor
with globally predictable dynamics – formally, a smooth n−dimensional man-
ifold M with local Riemannian metrics gij(x), smooth force–fields and smooth
(loco)motion paths, as conceptualized in the Lewinian theory. To model the
global and smooth macro–level LSF–paths, fields and geometry, we use the
general physics–like principle of the least action.

Now, the apparent smoothness of the macro–level LSF is achieved by the
existence of another level underneath it. This micro–level LSF is actually a col-
lection of wildly fluctuating force–fields, (loco)motion paths, curved regional
geometries and topologies with holes. The micro–level LSF is proposed as an
extension of the Lewinian concept: it is characterized by uncertainties and
fluctuations, enabled by microscopic time–level, microscopic transition paths,
microscopic force–fields, local geometries and varying topologies with holes.
To model these fluctuating microscopic LSF–structures, we use three instances
of adaptive path integral , defining a multi–phase and multi–path (also multi–
field and multi–geometry) transition process from intention to the goal–driven
action.

We use the new LSF concept to develop modelling framework for motiva-
tional dynamics (MD) and induced cognitive dynamics (CD).

According to Heckhausen (see [Hec77]), motivation can be thought of as a
process of energizing and directing the action. The process of energizing can be
represented by Lewin’s force–field analysis and Vygotsky’s motive formation
(see [Vyg82, AL91]), while the process of directing can be represented by
hierarchical action control (see [Ber47, Ber35, Kuh85]).

Motivation processes both precede and coincide with every goal–directed
action. Usually these motivation processes include the sequence of the follow-
ing four feedforward phases [Vyg82, AL91]: (*)

1. Intention Formation F , including: decision making, commitment building,
etc.

2. Action Initiation I, including: handling conflict of motives, resistance to
alternatives, etc.
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Fig. 3.12. Transition–propagator corresponding to each of the motivational phases
{F , I,M, T }, consisting of an ensemble of feedforward paths propagating through
the ‘wood of obstacles’. The paths affected by driving and restraining force–fields, as
well as by the local LSF–geometry. Transition goes from Intention, occurring at a
sample time instant t0, to Action, occurring at some later time t1. Each propagator
is controlled by its own Monitor feedback. All together they form the transition
functor T A.

3. Maintaining the Action M, including: resistance to fatigue, distractions,
etc.

4. Termination T , including parking and avoiding addiction, i.e., staying in
control.

With each of the phases {F , I,M, T } in (*), we can associate a transition
propagator – an ensemble of (possibly crossing) feedforward paths propagat-
ing through the ‘wood of obstacles’ (including topological holes in the LSF,
see Figure 3.12), so that the complete transition functor T A is a product
of propagators (as well as sum over paths). All the phases–propagators are
controlled by a unique Monitor feedback process.

In this subsection we propose an adaptive path integral formulation
for the motivational–transition functor T A. In essence, we sum/integrate
over different paths and make a product (composition) of different phases–
propagators. Recall that this is the most general description of the general
Markov stochastic process.

We will also attempt to demonstrate the utility of the same LSF–
formalisms in representing cognitive functions, such as memory, learning
and decision making. For example, in the classical Stimulus encoding →
Search→ Decision→ Response sequence [Ste69, Ash94], the environmental
input–triggered sensory memory and working memory (WM) can be inter-
preted as operating at the micro–level force–field under the executive control
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of the Monitor feedback, whereas search can be formalized as a control
mechanism guiding retrieval from the long–term memory (LTM, itself shaped
by learning) and filtering material relevant to decision making into the WM.
The essential measure of these mental processes, the processing speed (essen-
tially determined by Sternberg’s reaction–time) can be represented by our
(loco)motion speed ẋ.

Six Faces of the Life Space Foam

The LSF has three forms of appearance: paths + field + geometries, acting
on both macro–level and micro–level, which is six modes in total. In this sec-
tion, we develop three least action principles for the macro–LSF–level and
three adaptive path integrals for the micro–LSF–level. While developing our
psycho–physical formalism, we will address the behavioral issues of motiva-
tional fatigue, learning, memory and decision making.

General Formalism

At both macro– and micro–levels, the total LSF represents a union of transi-
tion paths, force–fields and geometries, formally written as

LSFtotal := LSFpaths

⋃
LSFfields

⋃
LSFgeom (3.114)

≡
∫
Σ paths +

∫
Σ fields +

∫
Σ geom .

Corresponding to each of the three LSF–subspaces in (3.114) we formulate:

1. The least action principle, to model deterministic and predictive, macro–
level MD & CD, giving a unique, global, causal and smooth path–field–
geometry on the macroscopic spatio–temporal level; and

2. Associated adaptive path integral to model uncertain, fluctuating and
probabilistic, micro–level MD & CD, as an ensemble of local paths–fields–
geometries on the microscopic spatio–temporal level, to which the global
macro–level MD & CD represents both time and ensemble average (which
are equal according to the ergodic hypothesis).

In the proposed formalism, transition paths xi(t) are affected by the force–
fields ϕk(t), which are themselves affected by geometry with metric gij .

Global Macro–Level of LSFtotal. In general, at the macroscopic LSF–
level we first formulate the total action S[Φ], the central quantity in our for-
malism that has psycho–physical dimensions of Energy×Time = Effort, with
immediate cognitive and motivational applications: the greater the action – the
higher the speed of cognitive processes and the lower the macroscopic fatigue
(which includes all sources of physical, cognitive and emotional fatigue that
influence motivational dynamics). The action S[Φ] depends on macroscopic
paths, fields and geometries, commonly denoted by an abstract field symbol
Φi. The action S[Φ] is formally defined as a temporal integral from the initial
time instant tini to the final time instant tfin,
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S[Φ] =
∫ tfin

tini

L[Φ] dt, (3.115)

with Lagrangian density given by

L[Φ] =
∫

dnxL(Φi, ∂xjΦi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF,
and ∂xjΦi are time and space partial derivatives of the Φi−variables over
coordinates.

Second, we formulate the least action principle as a minimal variation δ
of the action S[Φ]

δS[Φ] = 0, (3.116)

which, using techniques from the calculus of variations gives, in the form
of the so–called Euler–Lagrangian equations, a shortest (loco)motion path,
an extreme force–field, and a life–space geometry of minimal curvature (and
without holes). In this way, we effectively derive a unique globally smooth
transition functor

T A : INTENTIONtini
� ACTIONtfin

, (3.117)

performed at a macroscopic (global) time–level from some initial time tini to
the final time tfin.

In this way, we get macro–objects in the global LSF: a single path
described Newtonian–like equation of motion, a single force–field described
by Maxwellian–like field equations, and a single obstacle–free Riemannian
geometry (with global topology without holes).

For example, recall that in the period 1945–1949, John Wheeler and
Richard Feynman developed their action–at–a–distance electrodynamics
[WF49], in complete experimental agreement with the classical Maxwell’s
electromagnetic theory, but at the same time avoiding the complications
of divergent self–interaction of the Maxwell’s theory as well as eliminating
its infinite number of field degrees–of–freedom. In Wheeler–Feynman view,
“Matter consists of electrically charged particles,” so they found a form for
the action directly involving the motions of the charges only, which upon
variation would give the Newtonian–like equations of motion of these charges.
Here is the expression for this action in the flat space–time, which is in the
core of quantum electrodynamics:

S[x; ti, tj ] =
1
2
mi

∫
(ẋi

μ)2 dti +
1
2
eiej

∫ ∫
δ(I2

ij) ẋ
i
μ(ti)ẋj

μ(tj) dtidtj

with (3.118)
I2
ij =

[
xi

μ(ti)− xj
μ(tj)

] [
xi

μ(ti)− xj
μ(tj)

]
,

where xi
μ = xi

μ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋi

μ(ti) = dxi
μ/dti is the velocity four–vector. The
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first term in the action (3.118) is the ordinary mechanical action in Euclidean
space, while the second term defines the electrical interaction of the charges,
representing the Maxwell–like field (it is summed over each pair of charges;
the factor 1

2 is to count each pair once, while the term i = j is omitted to
avoid self–action; the interaction is a double integral over a delta function of
the square of space–time interval I2 between two points on the paths; thus,
interaction occurs only when this interval vanishes, that is, along light cones
[WF49]).

Now, from the point of view of Lewinian geometrical force–fields and
(loco)motion paths, we can give the following life–space interpretation to
the Wheeler–Feynman action (3.118). The mechanical–like locomotion term
occurring at the single time t, needs a covariant generalization from the flat
4D Euclidean space to the nD smooth Riemannian manifold, so it becomes
(see e.g., [II06b])

S[x] =
1
2

∫ tfin

tini

gij ẋ
iẋj dt,

where gij is the Riemannian metric tensor that generates the total ‘kinetic
energy’ of (loco)motions in the life space.

The second term in (3.118) gives the sophisticated definition of Lewinian
force–fields that drive the psychological (loco)motions, if we interpret electri-
cal charges ei occurring at different times ti as motivational charges – needs.

Local Micro–Level of LSFtotal. After having properly defined macro–
level MD & CD, with a unique transition map F (including a unique motion
path, driving field and smooth geometry), we move down to the microscopic
LSF–level of rapidly fluctuating MD & CD, where we cannot define a unique
and smooth path–field–geometry. The most we can do at this level of fluc-
tuating uncertainty, is to formulate an adaptive path integral and calculate
overall probability amplitudes for ensembles of local transitions from one LSF–
point to the neighboring one. This probabilistic transition micro–dynamics
functor is defined by a multi–path (field and geometry, respectively) and
multi–phase transition amplitude 〈Action|Intention〉 of corresponding to the
globally–smooth transition map (3.117). This absolute square of this proba-
bility amplitude gives the transition probability of occurring the final state of
Action given the initial state of Intention,

P (Action|Intention) = |〈Action|Intention〉|2.
The total transition amplitude from the state of Intention to the state of
Action is defined on LSFtotal

T A ≡ 〈Action|Intention〉total : INTENTIONt0 � ACTIONt1 , (3.119)

given by adaptive generalization of the Feynman’s path integral [FH65, Fey72,
Fey98]. The transition map (3.119) calculates the overall probability amplitude
along a multitude of wildly fluctuating paths, fields and geometries, perform-
ing the microscopic transition from the micro–state INTENTIONt0 occur-
ring at initial micro–time instant t0 to the micro–state ACTIONt1 at some
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later micro–time instant t1, such that all micro–time instants fit inside the
global transition interval t0, t1, . . . , ts ∈ [tini, tfin]. It is symbolically written as

〈Action|Intention〉total :=
∫
Σ D[wΦ] eiS[Φ], (3.120)

where the Lebesgue integration is performed over all continuous Φi
con =

paths + field + geometries, while summation is performed over all discrete
processes and regional topologies Φj

dis). The symbolic differential D[wΦ] in the
general path integral (3.120), represents an adaptive path measure, defined as
a weighted product

D[wΦ] = lim
N→∞

N∏
s=1

wsdΦ
i
s, (i = 1, . . . , n = con + dis), (3.121)

which is in practice satisfied with a large N corresponding to infinitesi-
mal temporal division of the four motivational phases (*). Technically, the
path integral (3.120) calculates the amplitude for the transition functor
T A : Intention � Action.

In the exponent of the path integral (3.120) we have the action S[Φ] and
the imaginary unit i =

√
−1 (i can be converted into the real number −1

using the so–called Wick rotation, see next subsection).
In this way, we get a range of micro–objects in the local LSF at the short

time–level: ensembles of rapidly fluctuating, noisy and crossing paths, force–
fields, local geometries with obstacles and topologies with holes. However,
by averaging process, both in time and along ensembles of paths, fields and
geometries, we recover the corresponding global MD & CD variables.

Infinite–Dimensional Neural Network. The adaptive path integral
(3.120) incorporates the local learning process according to the standard for-
mula: New V alue = Old V alue+Innovation. The general weights ws = ws(t)
in (3.121) are updated by the MONITOR feedback during the transition
process, according to one of the two standard neural learning schemes, in
which the micro–time level is traversed in discrete steps, i.e., if t = t0, t1, . . . , ts
then t + 1 = t1, t2, . . . , ts+1:

1. A self–organized, unsupervised (e.g., Hebbian–like [Heb49]) learning rule:

ws(t + 1) = ws(t) +
σ

η
(wd

s (t)− wa
s (t)), (3.122)

where σ = σ(t), η = η(t) denote signal and noise, respectively, while
superscripts d and a denote desired and achieved micro–states, respec-
tively; or

2. A certain form of a supervised gradient descent learning :

ws(t + 1) = ws(t)− η∇J(t), (3.123)

where η is a small constant, called the step size, or the learning rate and
∇J(n) denotes the gradient of the ‘performance hyper–surface’ at the
t−th iteration.
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Both Hebbian and supervised learning are used for the local decision making
process (see below) occurring at the intention formation faze F .

In this way, local micro–level of LSFtotal represents an infinite–
dimensional neural network. In the cognitive psychology framework, our
adaptive path integral (3.120) can be interpreted as semantic integration (see
[BF71, Ash94]).

Motion and Decision Making in LSFpaths

On the macro–level in the subspace LSFpaths we have the (loco)motion action
principle

δS[x] = 0,

with the Newtonian–like action S[x] given by

S[x] =
∫ tfin

tini

dt [
1
2
gij ẋ

iẋj + ϕi(xi)], (3.124)

where overdot denotes time derivative, so that ẋi represents processing speed,
or (loco)motion velocity vector. The first bracket term in (3.124) represents
the kinetic energy T ,

T =
1
2
gij ẋ

iẋj ,

generated by the Riemannian metric tensor gij , while the second bracket
term, ϕi(xi), denotes the family of potential force–fields, driving the
(loco)mo-tions xi = xi(t) (the strengths of the fields ϕi(xi) depend on
their positions xi in LSF, see LSFfields below). The corresponding Euler–
Lagrangian equation gives the Newtonian–like equation of motion

d

dt
Tẋi − Txi = −ϕi

xi , (3.125)

(subscripts denote the partial derivatives), which can be put into the standard
Lagrangian form

d

dt
Lẋi = Lxi , with L = T − ϕi(xi).

In the next subsection we use the micro–level implications of the action S[x]
as given by (3.124), for dynamical descriptions of the local decision–making
process.

On the micro–level in the subspace LSFpaths, instead of a single path
defined by the Newtonian–like equation of motion (3.125), we have an ensem-
ble of fluctuating and crossing paths with weighted probabilities (of the unit
total sum). This ensemble of micro–paths is defined by the simplest instance
of our adaptive path integral (3.120), similar to the Feynman’s original sum
over histories,
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〈Action|Intention〉paths =
∫
Σ D[wx] eiS[x], (3.126)

where D[wx] is a functional measure on the space of all weighted paths, and
the exponential depends on the action S[x] given by (3.124). This procedure
can be redefined in a mathematically cleaner way if we Wick–rotate the time
variable t to imaginary values t �→ τ = it, thereby making all integrals real:∫

Σ D[wx] eiS[x] ⇒Wick
∫
Σ D[wx] e−S[x]. (3.127)

Discretization of (3.127) gives the thermodynamic–like partition function

Z =
∑

j

e−wjEj/T , (3.128)

where Ej is the motion energy eigenvalue (reflecting each possible moti-
vational energetic state), T is the temperature–like environmental control
parameter, and the sum runs over all motion energy eigenstates (labelled
by the index j). From (3.128), we can further calculate all thermodynamic–
like and statistical properties of MD & CD (see e.g., [Fey72]), as for example,
transition entropy S = kB lnZ, etc.

From cognitive perspective, our adaptive path integral (3.126) calcu-
lates all (alternative) pathways of information flow during the transition
Intention→ Action.

In the language of transition–propagators, the integral over histories
(3.126) can be decomposed into the product of propagators (i.e., Fredholm
kernels or Green functions) corresponding to the cascade of the four motiva-
tional phases (*)

〈Action|Intention〉paths =
∫
Σ dxFdxIdxMdxT K(F , I)K(I,M)K(M, T ),

(3.129)

satisfying the Schrödinger–like equation (see e.g., [Dir49])

i ∂t〈Action|Intention〉paths = HAction 〈Action|Intention〉paths, (3.130)

where HAction represents the Hamiltonian (total energy) function available at
the state of Action. Here our ‘golden rule’ is: the higher the HAction, the lower
the microscopic fatigue.

In the connectionist language, our propagator expressions (3.129–3.130)
represent activation dynamics, to which our Monitor process gives a kind of
backpropagation feedback, a version of the basic supervised learning (3.123).

Mechanisms of Decision–Making under Uncertainty. The basic
question about our local decision making process, occurring under uncer-
tainty at the intention formation faze F , is: Which alternative to choose?
(see [RBT01, Gro82, Gro99, Gro88, Ash94]). In our path–integral language
this reads: Which path (alternative) should be given the highest probabil-
ity weight w? Naturally, this problem is iteratively solved by the learning
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process (3.122–3.123), controlled by the MONITOR feedback, which we term
algorithmic approach.

In addition, here we analyze qualitative mechanics of the local decision
making process under uncertainty, as a heuristic approach. This qualitative
analysis is based on the micro–level interpretation of the Newtonian–like
action S[x], given by (3.124) and figuring both processing speed ẋ and LTM
(i.e., the force–field ϕ(x), see next subsection). Here we consider three different
cases:

1. If the potential ϕ(x) is not very dependent upon position x(t), then the
more direct paths contribute the most, as longer paths, with higher mean
square velocities [ẋ(t)]2 make the exponent more negative (after Wick
rotation (3.127)).

2. On the other hand, suppose that ϕ(x) does indeed depend on position x.
For simplicity, let the potential increase for the larger values of x. Then
a direct path does not necessarily give the largest contribution to the
overall transition probability, because the integrated value of the potential
is higher than over another paths.

3. Finally, consider a path that deviates widely from the direct path. Then
ϕ(x) decreases over that path, but at the same time the velocity ẋ
increases. In this case, we expect that the increased velocity ẋ would
more than compensate for the decreased potential over the path.

Therefore, the most important path (i.e., the path with the highest weight w)
would be one for which any smaller integrated value of the surrounding field
potential ϕ(x) is more than compensated for by an increase in kinetic–like
energy m

2 ẋ2. In principle, this is neither the most direct path, nor the longest
path, but rather a middle way between the two. Formally, it is the path along
which the average Lagrangian is minimal,

<
m

2
ẋ2 + ϕ(x) >−→ min, (3.131)

i.e., the path that requires minimal memory (both LTM and WM, see
LSFfields below) and processing speed. This mechanical result is consis-
tent with the ‘filter theory’ of selective attention [Bro77], proposed in an
attempt to explain a range of the existing experimental results. This theory
postulates a low level filter that allows only a limited number of percepts
to reach the brain at any time. In this theory, the importance of conscious,
directed attention is minimized. The type of attention involving low level
filtering corresponds to the concept of early selection [Bro77].

Although we termed this ‘heuristic approach’ in the sense that we can
instantly feel both the processing speed ẋ and the LTM field ϕ(x) involved,
there is clearly a psycho–physical rule in the background, namely the averaging
minimum relation (3.131).

From the decision making point of view, all possible paths (alternatives)
represent the consequences of decision making. They are, by default, short–
term consequences, as they are modelled in the micro–time–level. However, the
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path integral formalism allows calculation of the long–term consequences, just
by extending the integration time, tfin →∞. Besides, this averaging decision
mechanics – choosing the optimal path – actually performs the ‘averaging lift’
in the LSF: from micro– to the macro–level.

Force–Fields and Memory in LSFfields

At the macro–level in the subspace LSFfields we formulate the force–field
action principle

δS[ϕ] = 0, (3.132)

with the action S[ϕ] dependent on Lewinian force–fields ϕi = ϕi(x) (i =
1, . . . , N), defined as a temporal integral

S[ϕ] =
∫ tfin

tini

L[ϕ] dt, (3.133)

with Lagrangian density given by

L[ϕ] =
∫

dnxL(ϕi, ∂xjϕi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF, and
∂xjϕi are partial derivatives of the field variables over coordinates.

On the micro–level in the subspace LSFfields we have the Feynman–type
sum over fields ϕi (i = 1, . . . , N) given by the adaptive path integral

〈Action|Intention〉fields =
∫
Σ D[wϕ] eiS[ϕ] ⇒Wick

∫
Σ D[wϕ] e−S[ϕ], (3.134)

with action S[ϕ] given by temporal integral (3.133). (Choosing special forms
of the force–field action S[ϕ] in (3.134) defines micro–level MD & CD, in the
LSFfields space, that is similar to standard quantum–field equations, see e.g.,
[II06b].) The corresponding partition function has the form similar to (3.128),
but with field energy levels.

Regarding topology of the force fields, we have in place n−categorical
Lagrangian–field structure on the Riemannian LSF manifold M ,

Φi : [0, 1] →M, Φi : Φi
0 �→ Φi

1,

generalized from the recursive homotopy dynamics [II06b], using

d

dt
fẋi = fxi −→ ∂μ

(
∂L
∂μΦi

)
=

∂L
∂Φi

,

with [x0, x1] −→ [Φi
0, Φ

i
1].

Relationship between Memory and Force–Fields. As already men-
tioned, the subspace LSFfields is related to our memory storage [Ash94].
Its global macro–level represents the long–term memory (LTM), defined by
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the least action principle (3.132), related to cognitive economy in the model
of semantic memory [Rat78, CQ69]. Its local micro–level represents working
memory (WM), a limited–capacity ‘bottleneck’ defined by the adaptive path
integral (3.134). According to our formalism, each of Miller’s 7±2 units [Mil56]
of the local WM are adaptively stored and averaged to give the global LTM
capacity (similar to the physical notion of potential). This averaging memory
lift, from WM to LTM represents retroactive interference, while the opposite
direction, given by the path integral (3.134) itself, represents proactive in-
terference. Both retroactive and proactive interferences are examples of the
impact of cognitive contexts on memory. Motivational contexts can exert their
influence, too. For example, a reduction in task–related recall following the
completion of the task is one of the clearest examples of force–field influ-
ences on memory: the amount of details remembered of a task declines as the
force–field tension to complete the task is reduced by actually completing it.

Once defined, the global LTM potential ϕ = ϕ(x) is then affecting the
locomotion transition paths through the path action principle (3.124), as well
as general learning (3.122–3.123) and decision making process (3.131).

On the other hand, the two levels of LSFfields fit nicely into the two levels
of processing framework, as presented by [CL72], as an alternative to theories
of separate stages for sensory, working and long–term memory. According to
the levels of processing framework, stimulus information is processed at mul-
tiple levels simultaneously depending upon its characteristics. In this frame-
work, our macro–level memory field, defined by the fields action principle
(3.132), corresponds to the shallow memory, while our micro–level memory
field, defined by the adaptive path integral (3.134), corresponds to the deep
memory.

Geometries, Topologies and Noise in LSFgeom

On the macro–level in the subspace LSFgeom representing an n−dimensional
smooth manifold M with the global Riemannian metric tensor gij , we formu-
late the geometrical action principle

δS[gij ] = 0,

where S = S[gij ] is the n−dimensional geodesic action on M ,

S[gij ] =
∫

dnx
√

gij dxidxj . (3.135)

The corresponding Euler–Lagrangian equation gives the geodesic equation of
the shortest path in the manifold M ,

ẍi + Γ i
jk ẋj ẋk = 0,

where the symbol Γ i
jk denotes the so–called affine connection which is the

source of curvature, which is geometrical description for noise (see [Ing97,
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Ing98]). The higher the local curvatures of the LSF–manifold M , the greater
the noise in the life space. This noise is the source of our micro–level fluctua-
tions. It can be internal or external; in both cases it curves our micro–LSF.

Otherwise, if instead we choose an n−dimensional Hilbert–like action (see
[MTW73]),

S[gij ] =
∫

dnx
√

det |gij |R, (3.136)

where R is the scalar curvature (derived from Γ i
jk), we get the n−dimensional

Einstein–like equation:
Gij = 8πTij ,

where Gij is the Einstein–like tensor representing geometry of the LSF
manifold M (Gij is the trace–reversed Ricci tensor Rij , which is itself the
trace of the Riemann curvature tensor of the manifold M), while Tij is
the n−dimensional stress–energy–momentum tensor. This equation explicitly
states that psycho–physics of the LSF is proportional to its geometry. Tij

is important quantity, representing motivational energy, geometry–imposed
stress and momentum of (loco)motion. As before, we have our ‘golden rule’:
the greater the Tij−components, the higher the speed of cognitive processes
and the lower the macroscopic fatigue.

The choice between the geodesic action (3.135) and the Hilbert action
(3.136) depends on our interpretation of time. If time is not included in
the LSF manifold M (non–relativistic approach) then we choose the geodesic
action. If time is included in the LSF manifold M (making it a relativistic–
like n−dimensional space–time) then the Hilbert action is preferred. The first
approach is more related to the information processing and the working mem-
ory. The later, space–time approach can be related to the long–term memory:
we usually recall events closely associated with the times of their happening.

On the micro–level in the subspace LSFgeom we have the adaptive sum
over geometries, represented by the path integral over all local (regional)
Riemannian metrics gij = gij(x) varying from point to point on M (mod-
ulo diffeomorphisms),

〈Action|Intention〉geom =
∫
Σ D[wgij ] eiS[gij ] ⇒Wick

∫
Σ D[wgij ] e−S[gij ],

(3.137)
where D[gij ] is diffeomorphism equivalence class of gij(x) ∈M .

To include the topological structure (e.g., a number of holes) in M , we can
extend (3.137) as

〈Action|Intention〉geom/top =
∑

topol.

∫
Σ D[wgij ] eiS[gij ], (3.138)

where the topological sum is taken over all connectedness–components
of M determined by the Euler characteristic χ of M . This type of
integral defines the theory of fluctuating geometries, a propagator between
(n− 1)−dimensional boundaries of the n−dimensional manifold M . One has
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to contribute a meaning to the integration over geometries. A key ingredient
in doing so is to approximate (using simplicial approximation and Regge
calculus [MTW73]) in a natural way the smooth structures of the manifold
M by piecewise linear structures (mostly using topological simplices Δ). In
this way, after the Wick–rotation (3.127), the integral (3.137–3.138) becomes
a simple statistical system, given by partition function Z =

∑
Δ

1
CΔ

e−SΔ ,
where the summation is over all triangulations Δ of the manifold M , while
CT is the order of the automorphism group of the performed triangulation.

Micro–Level Geometry: the source of noise and stress in LSF. The
subspace LSFgeom is the source of noise, fluctuations and obstacles, as well as
psycho–physical stress. Its micro–level is adaptive, reflecting the human ability
to efficiently act within the noisy environment and under the stress conditions.
By averaging it produces smooth geometry of certain curvature, which is at
the same time the smooth psycho–physics. This macro–level geometry directly
affects the memory fields and indirectly affects the (loco)motion transition
paths.

The Mental Force Law. As an effective summary of this section, we
state that the psychodynamic transition functor T A : INTENTIONtini

�
ACTIONtfin

, defined by the generic path integral (3.120), can be interpreted
as a mental force law , analogous to our musculo–skeletal covariant force law ,
Fi = mgija

j , and its associated covariant force functor F∗ : TT ∗M → TTM
[II05].

3.3 Quantum Computation and Chaos: Josephson
Junctions

This section addresses modern electronic devices called Josephson junctions,
which promise to be a basic building blocks of the future quantum comput-
ers. Apparently, they can exhibit chaotic behavior, both as single junctions
(which have macroscopic dynamics analogous to those of the forced nonlinear
oscillators), and as arrays (or ladders) of junctions, which can show high–
dimensional chaos.

A Josephson junction is a type of electronic circuit capable of switching at
very high speeds, i.e., frequency of typically 1010−1011 Hz, when operated at
temperatures approaching absolute zero. It is an insulating barrier separating
two superconducting materials and producing the Josephson effect . The terms
are named eponymously after British physicist Brian David Josephson, who
predicted the existence of the Josephson effect in 1962 [Jos74]. Josephson
junction exploits the phenomenon of superconductivity , the ability of cer-
tain materials to conduct electric current with practically zero resistance.
Josephson junctions have important applications in quantum–mechanical cir-
cuits. They have great technological promises as amplifiers, voltage standards,
detectors, mixers, and fast switching devices for digital circuits. They are
used in certain specialized instruments such as highly–sensitive microwave
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detectors, magnetometers, and QUIDs. Finally, Josephson junctions allow the
realisation of qubits, the key elements of quantum computers.

Josephson junctions have been particularly useful for experimental studies
of nonlinear dynamics as the equation governing a single junction dynamics is
the same as that for a pendulum [Str94]. Their dynamics can be analyzed both
in a simple overdamped limit and in the more complex underdamped one,
either for single junctions and for arrays of large numbers of coupled junctions.

A Josephson junction is made up of two superconductors, separated by
a weak coupling non–superconducting layer, so thin that electrons can cross
through the insulating barrier. It can be conceptually represented as:

Superconductor 1 : ψ1e
iφ1

Weak Coupling $
Superconductor 2 : ψ2e

iφ2

where the two superconducting regions are characterized by simple quantum–
mechanical wave functions, ψ1eiφ1 and ψ2eiφ2 , respectively. Normally, a much
more complicated description would be necessary, as there are ∼1023 electrons
to deal with, but in the superconducting ground state, these electrons form
the so–called Cooper pairs that can be described by a single macroscopic wave
function ψeiφ. The flow of current between the superconductors in the absence
of an applied voltage is called a Josephson current , and the movement of
electrons across the barrier is known as Josephson tunnelling (see Figure 3.13).
Two or more junctions joined by superconducting paths form what is called
a Josephson interferometer .

One of the characteristics of a Josephson junction is that as the tempera-
ture is lowered, superconducting current flows through it even in the absence
of voltage between the electrodes, part of the Josephson effect. The Josephson
effect in particular results from two superconductors acting to preserve their
long–range order across an insulating barrier. With a thin enough barrier,
the phase of the electron wave–function in one superconductor maintains a
fixed relationship with the phase of the wave–function in another supercon-
ductor. This linking up of phase is called phase coherence. It occurs through-
out a single superconductor, and it occurs between the superconductors in a
Josephson junction. The phase coherence, or long–range order , is the essence
of the Josephson effect.

While researching superconductivity, B.D. Josephson studied the proper-
ties of a junction between two superconductors. Following up on earlier work
by L. Esaki and I. Giaever, he demonstrated that in a situation when there
is electron flow between two superconductors through an insulating layer (in
the absence of an applied voltage), and a voltage is applied, the current stops
flowing and oscillates at a high frequency. The Josephson effect is influenced
by magnetic fields in the vicinity, a capacity that enables the Josephson junc-
tion to be used in devices that measure extremely weak magnetic fields, such
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Fig. 3.13. Josephson junction: the current–voltage curve obtained at low tem-
perature. The vertical portions (zero voltage) of the curve represent Cooper pair
tunnelling. There is a small magnetic field applied, so that the maximum Josephson
current is severely reduced. Hysteresis is clearly visible around 100 microvolts. The
portion of the curve between 100 and 300 microvolts is current independent, and is
the regime where the device can be used as a detector.

as superconducting quantum interference devices (SQUIDs). For their efforts,
Josephson, Esaki, and Giaever shared the Nobel Prize for Physics in 1973.

The Josephson–junction quantum computer was demonstrated in April
1999 by Nakamura, Pashkin and Tsai of NEC Fundamental Research Labora-
tories in Tsukuba, Japan [NPT99]. In the same month, only about one week
earlier, Ioffe, Geshkenbein, Feigel’man, Fauchère and Blatter, independently,
described just such a computer in Nature [IGF99].

Nakamura, Pashkin and Tsai’s computer is built around a Cooper pair
box , which is a small superconducting island electrode weakly coupled to a
bulk superconductor. Weak coupling between the superconductors creates a
Josephson junction between them. Like most other junctions, the Josephson
junction is also a capacitor, which is charged by the current that flows through
it. A gate voltage is applied between the two superconducting electrodes. If the
Cooper box is sufficiently small, e.g., as small as a quantum dot, the charging
current breaks into discrete transfer of individual Cooper pairs, so that ulti-
mately it is possible to just transfer a single Cooper pair across the junction.
The effectiveness of the Cooper pair transfer depends on the energy difference
between the box and the bulk and a maximum is reached when a voltage is
applied, which equalizes this energy difference. This leads to resonance and
observable coherent quantum oscillations [Ave99].
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This contraption, like the Loss–Vincenzo quantum dot computer [LD98],
has the advantage that it is controlled electrically. Unlike Loss–Vincenzo com-
puter, this one actually exists in the laboratory. Nakamura, Pashkin and Tsai
did not perform any computations with it though. At this stage it was enough
of an art to observe the coherence for about 6 cycles of the Cooper pair oscilla-
tions, while the chip was cooled to about and carefully shielded from external
electromagnetic radiation.

There are two general types of Josephson junctions: overdamped and
underdamped. In overdamped junctions, the barrier is conducting (i.e., it is a
normal metal or superconductor bridge). The effects of the junction’s internal
electrical resistance will be large compared to its small capacitance. An over-
damped junction will quickly reach a unique equilibrium state for any given
set of conditions.

The barrier of an underdamped junction is an insulator. The effects of the
junction’s internal resistance will be minimal. Underdamped junctions do not
have unique equilibrium states, but are hysteretic.

A Josephson junction can be transformed into the so–called Giaever tun-
nelling junction by the application of a small, well defined magnetic field. In
such a situation, the new device is called a superconducting tunnelling junc-
tion (STJ) and is used as a very sensitive photon detector throughout a wide
range of the spectrum, from infrared to hard X–ray. Each photon breaks up
a number of Cooper pairs. This number depends on the ratio of the photon
energy to approximately twice the value of the gap parameter of the material
of the junction. The detector can be operated as a photon-counting spectrom-
eter, with a spectral resolution limited by the statistical fluctuations in the
number of released charges. The detector has to be cooled to extremely low
temperature, typically below 1 kelvin, to distinguish the signals generated
by the detector from the thermal noise. Small arrays of STJs have demon-
strated their potential as spectro–photometers and could further be used in
astronomy [ESA05]. They are also used to perform energy dispersive X–ray
spectroscopy and in principle they could be used as elements in infrared imag-
ing devices as well [Ens05].

3.3.1 Josephson Effect and Pendulum Analog

Josephson Effect

The basic equations governing the dynamics of the Josephson effect are (see,
e.g., [BP82]):

U(t) =
�

2e
∂φ

∂t
, I(t) = Ic sinφ(t),

where U(t) and I(t) are the voltage and current across the Josephson junc-
tion, φ(t) is the phase difference between the wave functions in the two super-
conductors comprising the junction, and Ic is a constant, called the critical
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current of the junction. The critical current is an important phenomenolog-
ical parameter of the device that can be affected by temperature as well as
by an applied magnetic field. The physical constant �/2e is the magnetic flux
quantum, the inverse of which is the Josephson constant .

The three main effects predicted by Josephson follow from these relations:
1. The DC Josephson effect. This refers to the phenomenon of a direct

current crossing the insulator in the absence of any external electromagnetic
field, owing to Josephson tunnelling . This DC Josephson current is propor-
tional to the sine of the phase difference across the insulator, and may take
values between −Ic and Ic.

2. The AC Josephson effect. With a fixed voltage UDC across the junc-
tions, the phase will vary linearly with time and the current will be an AC
current with amplitude Ic and frequency 2e/�UDC . This means a Josephson
junction can act as a perfect voltage–to–frequency converter .

3. The inverse AC Josephson effect. If the phase takes the form

φ(t) = φ0 + nωt + a sin(ωt),

the voltage and current will be

U(t) =
�

2e
ω[n + a cos(ωt)], I(t) = Ic

∞∑
m=−∞

Jn(a) sin[φ0 + (n + m)ωt].

The DC components will then be

UDC = n
�

2e
ω, I(t) = IcJ−n(a) sinφ0.

Hence, for distinct DC voltages, the junction may carry a DC current and the
junction acts like a perfect frequency–to–voltage converter .

Pendulum Analog

To show a driven pendulum analog of a microscopic description of a single
Josephson junction, we start with:

1. The Josephson current–phase relation

I = Ic sinφ,

where Ic is the critical current , I is the bias current, and φ = φ2 − φ1 is the
constant phase difference between the phases of the two superconductors that
are weakly coupled; and

2. The Josephson voltage–phase relation

V =
�

2e
φ̇,
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where V = V (t) is the instantaneous voltage across the junction, � is the
Planck constant (divided by 2π), and e is the charge on the electron.

Now, if we apply Kirhoff’s voltage and current laws for the parallel RC–
circuit with resistence R and capacitance C, we come to the first–order ODE

CV̇ +
V

R
+ Ic sinφ = I,

which can be recast solely in terms of the phase difference φ as the second–
order pendulum–like ODE,

Josephson junction :
�C

2e
φ̈ +

�

2eR
φ̇ + Ic sinφ = I, (3.139)

Pendulum : ml2θ̈ + bθ̇ + mgl sin θ = τ .

This mechanical analog has often proved useful in visualizing the dynamics
of Josephson Junctions [Str94]. If we divide (3.139) by Ic and define a dimen-
sionless time

τ =
2eIcR

�
t,

we get the dimensionless oscillator equation for Josephson junction,

βφ′′ + φ′ + sinφ =
I

Ic
, (3.140)

where φ′ = dφ/dτ. The dimensionless group β, defined by

β =
2eIcR

2C

�
,

is called the McCumber parameter and represents a dimensionless capaci-
tance.

In a simple overdamped limit β << 1 with resistive loading , the ‘inertial
term’ βφ′′ may be neglected (as if oscillating in a highly–viscous medium),
and so (3.140) reduces to a non–uniform oscillator

φ′ =
I

Ic
− sinφ, (3.141)

with solutions approaching a stable fixed–point for I < Ic, and periodically
varying for I < Ic. To find the current–voltage curve in the overdamped limit,
we take the average voltage 〈V 〉 as a function of the constant applied current I,
assuming that all transients have decayed and the system has reached steady–
state, and get

〈V 〉 = IcR
〈
φ′〉 .

An overdamped array of N Josephson Junctions (3.141), parallel with a
resistive load R, can be described by the system of first–order dimensionless
ODEs [Str94]
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φ′
k = Ω + a sinφk +

1
N

N∑
j=1

sinφj , k = 1, . . . , N,

where

Ω = IbR0/Icr, a = −(R0 + r)/r, R0 = R/N,

Ib = Ic sinφk +
�

2eR
φ̇k +

�

2eR

N∑
j=1

φ̇j .

3.3.2 Dissipative Josephson Junction

The past decade has seen a considerable interest and remarkable activity in an
area which presently is often referred to as macroscopic quantum mechanics.
Specifically, one has been interested in quantum phenomena of macroscopic
objects [Leg86].

In particular, macroscopic quantum tunnelling [CL81] (quantum decay of a
meta–stable state), and quantum coherence [LCD87] have been studied. Soon,
it became clear that dissipation has a profound influence on these quantum
phenomena. Phenomenologically, dissipation is the consequence of an interac-
tion of the object with an environment which can be thought of as consisting
of infinitely many degrees of freedom. Specifically, the environmental degrees
of freedom may be chosen to be harmonic oscillators such that we may con-
sider the dissipation as a process where excitations, that are phonons, are
emitted and absorbed. This, Caldeira–Leggett model has been used in [CL81]
where the influence of dissipation on tunnelling has been explored.

As far as quantum coherence is concerned, the most simple system is an
object with two different quantum states: it is thought to represent the limiting
case of an object in a double-well potential where only the lowest energy
states in each of the two wells is relevant and where the tunnelling through
the separating barrier allows for transitions that probe the coherence. Since a
2–state system is equivalent to a spin–one–half problem, this standard system
is often referred to by this name. In particular, with the standard coupling to
a dissipative environment made of harmonic oscillators, it is called the spin–
boson problem which has been studied repeatedly in the past [LCD87, SW90].

Level quantization and resonant tunnelling have been observed recently
[Vaa95] in a double–well quantum–dot system. However, the influence of dis-
sipation was not considered in this experiment. On the other hand, it seems
that Josephson junctions are also suitable systems for obtaining experimental
evidence pertaining to macroscopic quantum effects. In this context, evidence
for level quantization and for quantum decay have been obtained [MDC85].

Recall that a Josephson junction may be characterized by a current–phase
relation

I(φ) = IJ sinφ, (3.142)
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where the phase φ is related to the voltage difference U by

�φ̇ = 2eU . (3.143)

Therefore, the phase of a Josephson junction shunted by a capacitance C and
biased by an external current Ix obeys a classical type of equation of motion

Mφ̈ = −∂V (φ)
∂φ

, with the mass (3.144)

M =
(

�

2e

)2

C, and the potential energy (3.145)

V (φ) = − �

2e
[IJ cosφ + Ixφ] . (3.146)

A widely discussed model of a dissipative object is the one where the
Josephson junction is also shunted by an Ohmic resistor R. In this case, the
classical equation of motion (3.144) has to be replaced by

Mφ̈ = −∂V (φ)
∂φ

− ηφ̇, η =
(

�

2e

)2 1
R

. (3.147)

The model of a dissipative environment according to the above specification
has been discussed by [CL81].

The potential energy V (φ) of (3.146) displays wells at φ � 2nπ with depth
shifted by an amount Δ � (2π�/2e)Ix. If the wells are sufficiently deep, one
needs to concentrate only on transitions between pairs of adjacent wells. Thus,
one arrives at the double well problem mentioned above.

The analysis in this paper goes beyond the limiting situation where only
the lowest level in each of the two wells is of importance. Roughly, this is
realized when the level separation �(2EJ/M)1/2 � (2e�IJ/C)1/2 is smaller
than or comparable with Δ. In particular, we will concentrate on resonance
phenomena which are expected to show up whenever two levels in the adjacent
wells happen to cross when the bias current Ix, that is Δ, is varied.

For such values of the bias current, there appear sharp asymmetric peaks in
the current-voltage characteristic of the Josephson junction. This phenomenon
has been studied by [LOS88] within the standard model in the one–phonon
approximation. For bias currents that correspond to crossings of the next
and next nearest levels (e.g., ground state in the left well and the first or
second excited state at the right side), it is possible to neglect processes in
the reverse direction provided that the temperature is sufficiently low. Thus,
the restriction to a double well system receives additional support.

The transfer of the object from the left to the right potential well is accom-
panied by the emission of an infinite number of phonons. Therefore, in [OS94]
the fact is taken into account that in the resonance region, the contribution of
phonons of small energy is important as well as the contribution of resonance
phonons with energy equal to the distance between levels in the wells.
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Junction Hamiltonian and its Eigenstates

The model of [MS95] consists of a particle, called ‘object’ (coordinate R1),
which is coupled (in the sense of [CL81]) to a ‘bath’ of harmonic oscillators
(coordinates Rj). We shall use the conventions j ∈ {2, . . . , N} for the bath
oscillators and k ∈ {1, . . . , N} for the indices of all coordinates in the model.
The double–well potential is approximated by two parabolas about the min-
ima of the two wells.

The phase φ of the Josephson contact then corresponds to the object
coordinate R1 of the model, and the voltage U is related to the tunnelling
rate J by 2eU = φ̇ = 2πJ . As it has already been remarked, the current Ix is
proportional to the bias Δ of the two wells. Thus, calculating the transition
rate for different values of the bias Δ is equivalent to the determination of the
I–V characteristics.

Specifically, following [MS95], we want to write the Hamiltonian of the
model in the form

Ĥ =
1

2m

∑
k

p̂2
k + v̂(R̂1) +

m

2

∑
j

ω2
j (R̂j − R̂1)2,

v̂(R̂1) ≈
m

2

∑
±

Ω2(R̂1 ± a)2 ± Δ

2
. (3.148)

The states for the two situations ‘object in the left well’ and ‘object in the right
well’ will be denoted by |ΛL, L〉 and |ΛR, R〉, respectively. If one projects onto
the eigenstates |n〉 of the 1D harmonic oscillator and takes into account the
shift of the wells, one arrives at the following decomposition (φn(R) = 〈R|n〉):

〈nL, {Rj}|ΛL, L〉 =
∫

dR1 φnL
(R1 + a)φL

ΛL
({Rk}), (3.149)

〈nR, {Rj}|ΛR, R〉 =
∫

dR1 φnR
(R1 − a)φR

ΛR
({Rk}) .

The situations ‘object on the left’ and ‘object on the right’ differ only
by the shift and the bias of the wells. Therefore, one can find a unified
representation by noting that φL

Λ({Rk}) = ΦΛ({Rk + a}) and φR
Λ({Rk}) =

ΦΛ({Rk − a}). The eigenstates ΦΛ are defined by the relations

ΦΛ({Rk}) = 〈{Rk}|Λ〉, Ĥ0|Λ〉 = EΛ|Λ〉,

Ĥ0 =
1

2m

∑
k

p̂2
k +

m

2

∑
j

ω2
j (R̂j − R̂1)2 +

m

2
Ω2R̂2

1 .

Thus, it follows from (3.149) that

〈nL, {Rj}|ΛL, L〉 = 〈nL, {Rj}| exp (ia
∑

j

p̂j) |ΛL >, (3.150)

〈nR, {Rj}|ΛR, R〉 = 〈nR, {Rj}| exp (−ia
∑

j

p̂j) |ΛR >,

where we have used the shift property of the momentum operator p̂.
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The coupling of the two wells is taken into account by means of a tunnelling
Hamiltonian ĤT which we represent in the form

〈ΛL, L|ĤT |ΛR, R〉 =
∫

d{Rj}
∑

nLnR

TnLnR
〈ΛL, L|nL, {Rj}〉〈nR, {Rj}|ΛR, R〉 .

Using again the momentum operator, one can write

|x〉〈x′| = eip̂(x′−x) |x′〉〈x′| = eip̂(x′−x) δ(x′ − x̂) .

From this, we conclude that

〈ΛL, L|ĤT |ΛR, R〉 =
∑

nLnR

TnLnR

∫
dR1dR

′
1

dQ

2π
φ∗

nR
(R′

1)φnL
(R1)

×〈ΛL, L|eip̂1(R
′
1−R1)eiQ(R′

1−R̂1)|ΛR, R〉 .

Transition Rate

The net transition rate from the left well to the right one is then in second
order perturbation theory given by [MS95]

J = 2πZ−1
0

∑
ΛL,ΛR

|〈ΛL, L|ĤT |ΛR, R〉|2 δ(EΛL
− EΛR

+ Δ)

× [e−βEΛL − eβEΛR ],

where Z0 = Tr exp (−βH0). The δ−function may be written in Fourier rep-
resentation, and the fact that the EΛ are eigen–energies of Ĥ0 serves us to
incorporate the energy conservation into Heisenberg time–dependent opera-
tors Â(t) = exp (iĤ0t)Â exp (−iĤ0t), i.e.,

〈ΛL, L|ĤT |ΛR, R〉 δ(EΛL
− EΛR

+ Δ)

=
∫

dt eiΔt 〈ΛL|e−ia
∑

k
p̂k(t) ĤT (t) e−ia

∑
k

p̂k(t)|ΛR〉 .

Then, collecting our results from above we arrive at the expression

J = Z−1
0 (1− e−βΔ)

∫
dt eiΔt

∑
nL,nR

∑
nL,nR

TnL,nR
T ∗

nL,nR

×
∫

dQdQ

(2π)2

∫
dR1dR

′
1dR1dR

′
1 φnL

(R1)φ∗
nR

(R′
1)φ

∗
nL

(R
′
1)φnR

(R1)

×Tr {e−βĤ0 e−2ia
∑

k
p̂k(t) eip̂1(t)(R

′
1−R1+2a) e−iQ(R̂1(t)−R′

1)

× e2ia
∑

k
p̂k eip̂1(R

′
1−R1−2a) e−iQ(R̂1−R

′
1)} .
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Let us now use the relation

e−i(Ĥ0+Ŵ )t = e−iĤ0t T̂ e−i
∫ t

0
dt′ Ŵ (t′)

which holds for t > 0 when T̂ is the time–ordering operator and for t < 0
when the anti time–ordering is used. If we define 〈Â〉 = Tr exp (−βĤ0)Â/Z0,
we can write the following result for the transition rate:

J = (1− e−βΔ)
∫

dt ei(Δ−2mΩ2a2)t
∑

nL,nR

∑
nL,nR

TnL,nR
T ∗

nL,nR

×
∫

dQdQ

(2π)2

∫
dRdR′dRdR

′
eiQ R+R′

2 +iQ R+R
′

2

×φnL
(R)φ∗

nR
(R′ − 2a)φ∗

nL
(R

′
)φnR

(R− 2a)

×<T̂ exp [−iQR̂1(t) + ip̂1(t)(R′ −R) + 2imΩ2a

∫ t

0

dt′ R̂1(t′)

−iQR̂1(0) + ip̂1(0)(R
′ −R)] > . (3.151)

We are now in the position to make use of the fact that the Hamiltonian
is quadratic in all coordinates so that we can evaluate exactly

〈T̂ ei
∫

dt′ η(t′)R̂1(t
′)〉 = e−

i
2

∫ ∫
dt′dt′′η(t′)D(t′,t′′)η(t′′), (3.152)

D(t′, t′′) = −i〈T̂ R̂1(t′)R̂1(t′′)〉 .

By comparison with the last two lines in eq. (3.151), the function η(t′) is
given by

η(t′) = −Qδ(t′ − t)−Qδ(t′) + 2mΩ2a[Θ(t′)−Θ(t′ − t)]

+ m(R−R′)δ′(t′ − t) + m(R−R
′
)δ′(t′) .

Θ(t) is meant to represent the step function. The derivatives of the δ−function
arise from a partial integration of terms containing p̂(t) = mdx̂(t)/dt. Note,
that these act only on the coordinates but not on the step functions which
arise due to the time ordering.

Moreover, the degrees of freedom of the bath can be integrated out in the
usual way [CL81] leading to a dissipative influence on the object. One is then
lead to the following form of the Fourier transform of D(t, t′) ≡ D(t− t′):

D(ω) =
DR(ω)

1− exp (−�ω/kBT )
+

DR(−ω)
1− exp (�ω/kBT )

, (3.153)

(DR)
−1

(ω) = m[(ω + i0)2 −Ω2] + iηω,

where we will use a spectral density J(ω) = ηω, 0 ≤ ω ≤ ωc for the bath
oscillators.
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Fig. 3.14. Josephson junction Ladder (JJL).

From (3.151) and (3.152) one can conclude that the integrations with
respect to Q,Q,R,R′, R,R

′
can be done exactly as only Gaussian inte-

grals are involved (note, that the eigenstates of the harmonic oscillator are
Gaussian functions and derivatives of these, respectively). Therefore, for given
nL, nR, nL, nR, one has to perform a 6D Gaussian integral [MS95].

3.3.3 Josephson Junction Ladder (JJL)

2D arrays of Josephson junctions have attracted much recent theoretical and
experimental attention. Interesting physics arises as a result of competing
vortex-vortex and vortex–lattice interactions. It is also considered to be a
convenient experimental realization of the so–called frustrated XY models.
Here, mainly following [DT95], we discuss the simplest such system, namely
the Josephson junction ladder (JJL, see Figure 3.14) [Kar84, Gra90].

To construct the system, superconducting elements are placed at the lad-
der sites. Below the bulk superconducting–normal transition temperature, the
state of each element is described by its charge and the phase of the super-
conducting wave ψ−function [And64]. In this section we neglect charging ef-
fects, which corresponds to the condition that 4e2/C � J , with C being the
capacitance of the element and J the Josephson coupling. Let θj (θ′j) denote
the phase on the upper (lower) branch of the ladder at the jth rung. The
Hamiltonian for the array [Tin75] can be written in terms the gauge invariant
phase differences [DT95],

γj = θj − θj−1 − (2π/φ0)
∫ j

j−1

Axdx, γ
′
j = θ′j − θ′j−1 − (2π/φ0)

∫ j′

j′−1

Axdx,

and αj = θ′j − θj − (2π/φ0)
∫ j′

j

Aydx as

H = −
∑

j

(Jx cos γj + Jx cos γ′
j + Jy cosαj), (3.154)
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where Ax and Ay are the components of the magnetic vector potential along
and transverse to the ladder, respectively, and φ0 the flux quantum. The sum
of the phase differences around a plaquette is constrained by

γj − γ′
j + αj − αj−1 = 2π(f − nj),

where nj = 0,±1,±2, . . . is the vortex occupancy number and f = φ/φ0 with
φ being the magnetic flux through a plaquette. With this constraint, it is
convenient to write (3.154) in the form

H = −J
∑

j

{2 cos ηj cos[(αj−1 − αj)/2 + π(f − nj)] + Jt cosαj},

where ηj = (γj + γ′
j)/2, J = Jx and Jt = Jy/Jx (3.155)

The Hamiltonian is symmetric under f → f+1 with nj → nj +1, and f → −f
with nj → −nj , thus it is sufficient to study only the region 0 ≤ f ≤ 0.5.
Since in one dimension ordered phases occur only at zero temperature, the
main interest is in the ground states of the ladder and the low temperature
excitations. Note that in (3.155) ηj decouples from αj and nj , so that all
the ground states have ηj = 0 to minimize H. The ground states will be
among the solutions to the current conservation equations: ∂αjH = 0, i.e.,
[DT95]

Jt sinαj = sin[(αj−1 −αj)/2 + π(f − nj)]− sin[(αj −αj+1)/2 + π(f − nj+1)].
(3.156)

For any given f there are a host of solutions to (3.156). The solution that
minimizes the energy must be selected to get the ground state.

If one expands the inter–plaquette cosine coupling term in (3.155) about
it’s maximum, the discrete sine–Gordon model is obtained. A vortex (nj = 1)
in the JJL corresponds to a kink in the sine–Gordon model. This analogy was
used by [Kar84] as an argument that this system should show similar behavior
to the discrete sine–Gordon model which has been studied by several authors
[AA80, CS83, PTB86]. This analogy is only valid for Jt very small so that
the inter–plaquette term dominates the behavior of the system making the
expansion about its maximum a reasonable assumption. However, much of
the interesting behavior of the discrete sine–Gordon model occurs in regions
of large Jt (Jt ∼ 1). Furthermore, much of the work by Aubry [AA80] on the
sine–Gordon model relies on the convexity of the coupling potential which we
do not have in the JJL.

Following [DT95], here we formulate the problem in terms of a transfer
matrix obtained from the full partition function of the ladder. The eigenvalues
and eigenfunctions of the transfer matrix are found numerically to determine
the phases of the ladder as functions of f and Jt. We study the properties of
various ground states and the low temperature excitations. As Jt is varied, all
incommensurate ground states undergo a superconducting–normal transition



3.3 Quantum Computation and Chaos: Josephson Junctions 619

at certain Jt which depends on f . One such transition will be analyzed. Finally
we discuss the critical current.

The partition function for the ladder, with periodic boundary conditions
and K = J/kBT , is

Z =
N∏
i

∫ π

−π

∑
{ni}

dαidηi exp {K(2 cos ηi cos[(αi−1 − αi)/2 + π(f − ni)]

+Jt cosαi)} .

The ηi can be integrated out resulting in a simple transfer matrix formalism
for the partition function involving only the transverse phase differences:

Z =
N∏
i

∫ π

−π

dαiP (αi−1, αi) = Tr P̂N .

The transfer matrix elements P (α, α′) are

P (α, α′) = 4π exp[KJt(cosα+cosα′)/2] I0(2K cos[(α−α′)/2+πf ]), (3.157)

where I0 is the zeroth order modified Bessel function. Note that the elements
of P̂ are real and positive, so that its largest eigenvalue λ0 is real, positive
and nondegenerate. However, since P̂ is not symmetric (except for f = 0 and
f = 1/2) other eigenvalues can form complex conjugate pairs. As we will see
from the correlation function, these complex eigenvalues determine the spatial
periodicity of the ground states.

The two point correlation function of αj ’s is [DT95]

〈ei(α0−αl)〉 = lim
N→∞

(∏N
i

∫ π

−π
dαiP (αi−1, αi)

)
ei(α0−αl)

Z
=

∑
n

cn

(
λn

λ0

)l

,

(3.158)

where we have made use of the completeness of the left and right eigen-
functions. (Note that since P̂ is not symmetric both right ψR

n and left ψL
n

eigenfunctions are need for the evaluation of correlation functions.) The λn

in (3.158) are the eigenvalues (|λn| ≥ |λn+1| and n = 0, 1, 2, . . .), and the
constants

cn =
∫ π

−π

dα′ψL
0 (α′)eiα′

ψR
n (α′)

∫ π

−π

dαψL
n(α)e−iαψR

0 (α).

In the case where λ1 is real and |λ1| > |λ2|, (3.158) simplifies for large l to

〈ei(α0−αl)〉 = c0 + c1

(
λ1

λ0

)l

, |λ1| > |λ2|.
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In the case where λ1 = λ∗
2 = |λ1|ei2πΞ , (3.158) for large l is 26

〈ei(α0−αl)〉 = c0 +
(
c1ei2πΞl + c2e−i2πΞl

) ∣∣∣∣λ1

λ0

∣∣∣∣l , λ1 = λ∗
2.

There is no phase coherence between upper and lower branches of the
ladder and hence no superconductivity in the transverse direction. In this
case, we say that the α’s are unpinned. If there exist finite intervals of α on
which ρ(α) = 0, there will be phase coherence between the upper and lower
branches and we say that the α’s are pinned. In term of the transfer matrix,
the phase density is the product of the left and right eigenfunctions of λ0

[GM79],
ρ(α) = ψL

0 (α)ψR
0 (α).

We first discuss the case where f < fc1. These are the Meissner–states in
the sense that there are no vortices (ni = 0) in the ladder. The ground state
is simply αi = 0, γj = πf and γ′

j = −πf , so that there is a global screening
current ±Jx sinπf in the upper and lower branches of the ladder [Kar84].
The phase density ρ(α) = δ(α). The properties of the Meissner state can be
studied by expanding (3.155) around αi = 0,

HM = (J/4)
∑

j

[cos(πf)(αj−1 − αj)2 + 2Jtα
2
i ].

The current conservation (3.156) becomes

αj+1 = 2 (1 + Jt/ cosπf)αj − αj−1. (3.159)

Besides the ground state αj = 0, there are other two linearly independent
solutions αj = e±j/ξM of (3.159) which describe collective fluctuations about
the ground state, where

1
ξM

= ln

⎡⎣1 +
Jt

cosπf
+

√
2Jt

cosπf
+
(

Jt

cosπf

)2
⎤⎦ . (3.160)

ξM is the low temperature correlation length for the Meissner state.27 As f
increases, the Meissner state becomes unstable to the formation of vortices.
A vortex is constructed by patching the two solutions of (3.159) together

26 While the correlation length is given by ξ = [ln |λ0/λ1|]−1 the quantity Ξ =
Arg(λ1)/2π determines the spatial periodicity of the state. By numerical calcu-
lation of λn, it is found that for f smaller than a critical value fc1 which depends
on Jt, both λ1 and λ2 are real. These two eigenvalues become degenerate at fc1,
and then bifurcate into a complex conjugate pair [DT95].

27 Here, ξM < 1 for Jt ∼ 1 making a continuum approximation invalid.



3.3 Quantum Computation and Chaos: Josephson Junctions 621

using a matching condition. The energy εv of a single vortex is found to be
[DT95]

εv ≈ [2 + (π2/8) tanh(1/2ξM )] cosπf − (π + 1) sinπf + 2Jt, (3.161)

for Jt close to one. The zero of εv determines fc1 which is in good agree-
ment with the numerical result from the transfer matrix. For f > fc1, εv

is negative and vortices are spontaneously created. When vortices are far
apart their interaction is caused only by the exponentially small over-
lap. The corresponding repulsion energy is of the order J exp(−l/ξM ),
where l is the distance between vortices. This leads to a free energy
per plaquette of F = εv/l + J exp(−l/ξM )/l [PTB86]. Minimizing this
free energy as a function of l gives the vortex density for f > fc1:
〈nj〉 = l−1 = [ξM ln |fc1 − f |]−1 where a linear approximation is used for
f close to fc1.

We now discuss the commensurate vortex states, taking the one with Ξ =
1/2 as an example. This state has many similarities to the Meissner state but
some important differences. The ground state is

α0 = arctan
[

2
Jt

sin(πf)
]
, α1 = −α0, αi±2 = αi;

n0 = 0, n1 = 1, ni±2 = ni, (3.162)

so that there is a global screening current in the upper and lower branches of
the ladder of ±2πJ(f − 1/2)/

√
4 + J2

t . The existence of the global screening,
which is absent in an infinite 2D array, is the key reason for the existence of
the steps at Ξ = p/q. It is easy to see that the symmetry of this vortex state
is that of the (antiferromagnetic) Ising model. The ground state is two-fold
degenerate. The low temperature excitations are domain boundaries between
the two degenerate ground states. The energy of the domain boundary Jεb

can be estimated using similar methods to those used to derive (3.161) for
the Meissner state. We found that εb = ε0b − (π2/

√
4 + J2

t )|f − 1/2|, where ε0b
depends only on

Jt = c arctan2(2/Jt)J2
t coth(1/ξb)/

√
4 + J2

t ,

with c being a constant of order one and

ξ−1
b = ln(1 + J2

t /2 + Jt

√
1 + J2

t /4).

Thus the correlation length diverges with temperature as ξ ∼ exp(2Jεb/kBT ).
The transition from the Ξ = 1/2 state to nearby vortex states happens when
f is such that εb = 0; it is similar to the transition from the Meissner state to
its nearby vortex states. All other steps Ξ = p/q can be analyzed similarly.
For comparison, we have evaluated ξ for various values of f and T from
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the transfer matrix and found that ξ fits ξ ∼ exp(2Jεb/kBT ) (typically over
several decades) at low temperature.

We now discuss the superconducting–normal transition in the transverse
direction. For Jt = 0, the ground state has γi = γ′

i = 0 and

αj = 2πfj + α0 − 2π
∑i=j

i=0
ni. (3.163)

The average vortex density 〈nj〉 is f ; there is no screening of the magnetic field.
α0 in (3.163) is arbitrary; the α’s are unpinned for all f . The system is simply
two un–coupled 1D XY chains, so that the correlation length ξ = 1/kBT . The
system is superconducting at zero temperature along the ladder, but not in the
transverse direction. As Jt rises above zero we observe a distinct difference
between the system at rational and irrational values of f . For f rational,
the α’s become pinned for Jt > 0 (ρ(α) is a finite sum of delta functions)
and the ladder is superconducting in both the longitudinal and transverse
directions at zero temperature. The behavior for irrational f is illustrated in
the following for the state with Ξ = ag, where ag ≈ 0.381966 · · · is one minus
the inverse of the golden mean.

Finally, we consider critical currents along the ladder. One can get an esti-
mate for the critical current by performing a perturbation expansion around
the ground state (i.e., {nj} remain fixed) and imposing the current constraint
of sin γj + sin γ′

j = I. Let δγj , δγ′
j and δαj be the change of γj , γ′

j and
αj in the current carrying state. One finds that stability of the ground state
requires that δαj = 0, and consequently δγj = δγ′

j = I/2 cos γj . The critical
current can be estimated by the requirement that the γj do not pass through
π/2, which gives Ic = 2(π/2 − γmax) cos γmax, where γmax = maxj(γj). In
all ground states we examined, commensurate and incommensurate, we found
that γmax < π/2, implying a finite critical current for all f . See [DT95] for
more details.

Underdamped JJL

Recall that the discrete sine–Gordon equation has been used by several groups
to model so-called hybrid Josephson ladder arrays [UMM93, WSZ95]. Such an
array consists of a ladder of parallel Josephson junctions which are inductively
coupled together (e.g., by superconducting wires). The sine-Gordon equation
then describes the phase differences across the junctions. In an applied mag-
netic field, this equation predicts remarkably complex behavior, including flux
flow resistance below a certain critical current, and a field–independent resis-
tance above that current arising from so–called whirling modes [WSZ95]. In
the flux flow regime, the fluxons in this ladder propagate as localized soli-
tons, and the IV characteristics exhibit voltage plateaus arising from the
locking of solitons to linear spin–wave modes . At sufficiently large values
of the anisotropy parameter ηJ defined later, the solitons may propagate
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‘ballistically’ on the plateaus, i.e., may travel a considerable distance even
after the driving current is turned off.

Here, mainly following [RYD96], we show that this behavior is all found in
a model in which the ladder is treated as a network of coupled small junctions
arranged along both the edges and the rungs of the ladder. This model is
often used to treat 2D Josephson networks, and includes no inductive cou-
pling between junctions, other than that produced by the other junctions.
To confirm our numerical results, we derive a discrete sine–Gordon equation
from our coupled–network model. Thus, these seemingly quite different mod-
els produce nearly identical behavior for ladders. By extension, they suggest
that some properties of 2D arrays might conceivably be treated by a similar
simplification. In simulations [Bob92, GLW93, SIT95], underdamped arrays
of this type show some similarities to ladder arrays, exhibiting the analogs of
both voltage steps and whirling modes.

We consider a ladder consisting of coupled superconducting grains, the ith

of which has order parameter

Φi = Φ0eiθi .

Grains i and j are coupled by resistively–shunted Josephson junctions (RSJ’s)
with current Iij , shunt resistance Rij and shunt capacitance Cij , with periodic
boundary conditions.

The phases θi evolve according to the coupled RSJ equations

�θ̇i/(2e) = Vi,

Mij V̇j = Iext
i /Ic − (R/Rij)(Vi − Vj)− (Iij/Ic) sin(θij −Aij).

Here the time unit is t0 = �/(2eRIc), where R and Ic are the shunt resistance
and critical current across a junction in the x−direction; Iext

i is the external
current fed into the ith node; the spatial distances are given in units of the
lattice spacing a, and the voltage Vi in units of IcR.

Mij = −4πeCIcR
2/h for i 
= j,

and Mii = −
∑
j 	=i

Mij ,

where C is the intergrain capacitance. Finally,

Aij = (2π/Φ0)
∫ j

i

A · dl,

where A is the vector potential. Following [RYD96], we assume N plaquettes
in the array, and postulate a current I uniformly injected into each node on
the outer edge and extracted from each node on the inner edge of the ring.
We also assume a uniform transverse magnetic field B ≡ fφ0/a

2, and use the
Landau gauge A = −Bx ŷ.
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We now show that this model reduces approximately to a discrete sine–
Gordon equation for the phase differences. Label each grain by (x, y) where
x/a = 0, . . . , N − 1 and y/a = 0, 1. Subtracting the equation of motion for
θ(x, 1) from that for θ(x, 2), and defining

Ψ(x) =
1
2
[θ(x, 1) + θ(x, 2)], χ(x) = [θ(x, 2)− θ(x, 1)],

we get a differential equation for χ(x) which is second-order in time. This
equation may be further simplified using the facts that Ax,y;x±1,y = 0 in the
Landau gauge, and that Ax,1;x,2 = −Ax,2;x,1, and by defining the discrete
Laplacian

χ(x + 1)− 2χ(x) + χ(x− 1) = ∇2χ(x).

Finally, using the boundary conditions,

Iext(x, 2) = −Iext(x, 1) ≡ I,

and introducing φ(x) = χ(x)−Ax,2;x,1, we get

[1− η2
c∇2]βφ̈ = i− [1− η2

r∇2]φ̇− sin(φ) + 2η2
J (3.164)

×
∑

i=±1

cos{Ψ(x)−Ψ(x + i)} sin{[φ(x)−φ(x + i)]/2},

where we have defined a dimensionless current i = I/Icy, and anisotropy
factors

2η2
r = Ry/Rx, 2η2

c = Cx/Cy, 2η2
J = Icx/Icy.

We now neglect all combined space and time derivatives of order three or
higher. Similarly, we set the cosine factor equal to unity(this is also checked
numerically to be valid a posteriori) and linearize the sine factor in the last
term, so that the final summation can be expressed simply as ∇2φ. With these
approximations, (3.164) reduces to discrete driven sine-Gordon equation with
dissipation:

βφ̈ + φ̇ + sin(φ)− η2
J∇2φ = i, where β = 4πeIcyR

2
yCy/h. (3.165)

Soliton Behavior

In the absence of damping and driving, the continuum version of (3.165) has,
among other solutions, the sine–Gordon soliton [Raj82], given by

φs(x, t) ∼ 4 tan−1

[
exp

{
(x− vvt)/

√
η2

J − βv2
v ,

}]
where vv is the velocity. The phase in this soliton rises from ∼0 to ∼2π in a
width dk ∼

√
η2

J − βv2
v .

The transition to the resistive state occurs at nmin = 4, 2, 2, 1 for η2
J =

0.5, 1.25, 2.5, 5. This can also be understood from the kink–phason resonance
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picture. To a phason mode, the passage of a kink of width dk will appear like
the switching on of a step–like driving current over a time of order dk/vv. The
kink will couple to the phasons only if dk/vv ≥ π/ω1, the half–period of the
phason, or equivalently

1√
βvv

≥
√

1 + π2

ηJ

=
3.3
ηJ

.

This condition agrees very well with our numerical observations, even though
it was obtained by considering soliton solutions from the continuum sine–
Gordon equation.

The fact that the voltage in regime I is approximately linear in f can be
qualitatively understood from the following argument. Suppose that φ for Nf
fluxons can be approximated as a sum of well–separated solitons, each moving
with the same velocity and described by

φ(x, t) =
Nf∑
j=1

φj , where φj = φs(x− xj , t).

Since the solitons are well separated, we can use following properties:

sin

⎡⎣∑
j

φj

⎤⎦ =
∑

j

sinφj and
∫

φ̇j φ̇idx ∝ δij .

By demanding that the energy dissipated by the damping of the moving soliton
be balanced by that the driving current provides (∝

∫
dxiφ̇(x)), one can show

that the Nf fluxons should move with the same velocity v as that for a single
fluxon driven by the same current. In the whirling regime, the f−independence
of the voltage can be understood from a somewhat different argument. Here,
we assume a periodic solution of the form

φ =
Nf∑
j

φw(x− ṽt− j/f),

moving with an unknown velocity ṽ where φw(ξ) describes a whirling solution
containing one fluxon. Then using the property φ(x + m/f) = φ(x) + 2πm,
one can show that [RYD96]

sin

⎡⎣Nf∑
j

φw(x− ṽt− j/f)

⎤⎦ = sin[Nfφw(x− ṽt)].

Finally, using the approximate property φw(ξ) ∼ ξ of the whirling state, one
finds ṽ = v/(Nf), leading to an f−independent voltage.
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Ballistic Soliton Motion and Soliton Mass

A common feature of massive particles is their ‘ballistic motion’, defined as
inertial propagation after the driving force has been turned off. Such prop-
agation has been reported experimentally but as yet has not been observed
numerically in either square or triangular lattices [GLW93]. In the so–called
flux–flow regime at ηJ = 0.71, we also find no ballistic propagation, presum-
ably because of the large pinning energies produced by the periodic lattice.

We can define the fluxon mass in our ladder by equating the charging
energy Ec = C/2

∑
ij V

2
ij to the kinetic energy of a soliton of mass Mv: Ekin =

1
2Mvv

2
v [GLW93]. Since Ec can be directly calculated in our simulation, while

vv can be calculated from 〈V 〉, this gives an unambiguous way to determine
Mv. For η2

J = 0.5, we find Ec/C ∼ 110(〈V 〉 /IcR)2, in the flux–flow regime.
This gives M I

v ∼ 3.4Cφ2
0/a

2, more than six times the usual estimate for the
vortex mass in a 2D square lattice. Similarly, the vortex friction coefficient γ
can be estimated by equating the rate of energy dissipation,

Edis = 1/2
∑
ij

V 2
ij/Rij , to

1
2
γv2

v .

This estimate yields γI ∼ 3.4φ2
0/(Ra2), once again more than six times the

value predicted for 2D arrays [GLW93]. This large dissipation explains the
absence of ballistic motion for this anisotropy [GLW93]. At larger values
η2

J = 5 and 2.5, a similar calculation gives M I
v ∼ 0.28 and 0.34φ2

0/(Ra2),
γI ∼ 0.28 and 0.34φ2

0/(Ra2). These lower values of γI , but especially the low
pinning energies, may explain why ballistic motion is possible at these values
of ηJ . See [RYD96] for more details.

3.3.4 Synchronization in Arrays of Josephson Junctions

The synchronization of coupled nonlinear oscillators has been a fertile area
of research for decades [PRK01]. In particular, Winfree–type phase models
[Win67] have been extensively studied. In 1D, a generic version of this model
for N oscillators reads

θ̇j = Ωj +
N∑

k=1

σj,kΓ (θk − θj) , (3.166)

where θj is the phase of oscillator j, which can be envisioned as a point moving
around the unit circle with angular velocity θ̇j = dθj/dt. In the absence of
coupling, this overdamped oscillator has an angular velocity Ωj . Γ (θk− θj) is
the coupling function, and σj,k describes the range and nature (e.g., attractive
or repulsive) of the coupling. The special case

Γ (θk − θj) = sin(θk − θj), σj,k = α/N, α = const,
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corresponds to the uniform, sinusoidal coupling of each oscillator to the
remaining N − 1 oscillators. This mean–field system is usually called the
globally–coupled Kuramoto model (GKM). Kuramoto was the first to show
that for this particular form of coupling and in the N → ∞ limit, there is
a continuous dynamical phase transition at a critical value of the coupling
strength αc and that for α > αc both phase and frequency synchronization
appear in the system [Kur84, Str00]. If σj,k = αδj,k±1 while the coupling func-
tion retains the form Γ (θj − θk) = sin(θk − θj), then we have the so–called
locally–coupled Kuramoto model (LKM), in which each oscillator is coupled
only to its nearest neighbors. Studies of synchronization in the LKM [SSK87],
including extensions to more than one spatial dimension, have shown that αc

grows without bound in the N →∞ limit [Sm88].
Watts and Strogatz introduced a simple model for tuning collections of

coupled dynamical systems between the two extremes of random and regu-
lar networks [WS98]. In this model, connections between nodes in a regular
array are randomly rewired with a probability p, such that p = 0 means the
network is regularly connected, while p = 1 results in a random connection
of nodes. For a range of intermediate values of p between these two extremes,
the network retains a property of regular networks (a large clustering coeffi-
cient) and also acquires a property of random networks (a short characteristic
path length between nodes). Networks in this intermediate configuration are
termed small–world networks. Many examples of such small worlds, both nat-
ural and human–made, have been discussed [Str]. Not surprisingly, there has
been much interest in the synchronization of dynamical systems connected in
a small–world geometry [BP02, NML03]. Generically, such studies have shown
that the presence of small–world connections make it easier for a network to
synchronize, an effect generally attributed to the reduced path length between
the linked systems. This has also been found to be true for the special case
in which the dynamics of each oscillator is described by a Kuramoto model
[HCK02a, HCK02b].

As an example of physically–controllable systems of nonlinear oscillators,
which can be studied both theoretically and experimentally, Josephson junc-
tion (JJ) arrays are almost without peer. Through modern fabrication tech-
niques and careful experimental methods one can attain a high degree of
control over the dynamics of a JJ array, and many detailed aspects of array
behavior have been studied [NLG00]. Among the many different geometries
of JJ arrays, ladder arrays deserve special attention. For example, they have
been observed to support stable time–dependent, spatially–localized states
known as discrete breathers [TMO00]. In addition, the ladder geometry is
more complex than that of better understood serial arrays but less so than
fully two–dimensional (2D) arrays. In fact, a ladder can be considered as a
special kind of 2D array, and so the study of ladders could throw some light
on the behavior of such 2D arrays. Also, linearly–stable synchronization of
the horizontal, or rung, junctions in a ladder is observed in the absence of a
load over a wide range of dc bias currents and junction parameters (such as
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junction capacitance), so that synchronization in this geometry appears to be
robust [TSS05].

In the mid 1990’s it was shown that a serial array of zero-capacitance,
i.e., overdamped, junctions coupled to a load could be mapped onto the GKM
[WCS96, WCS98]. The load in this case was essential in providing an all–to–all
coupling among the junctions. The result was based on an averaging process, in
which (at least) two distinct time scales were identified: the ‘short’ time scale
set by the rapid voltage oscillations of the junctions (the array was current
biased above its critical current) and ‘long’ time scale over which the junctions
synchronize their voltages. If the resistively–shunted junction (RSJ) equations
describing the dynamics of the junctions are integrated over one cycle of the
‘short’ time scale, what remains is the ‘slow’ dynamics, describing the syn-
chronization of the array. This mapping is useful because it allows knowledge
about the GKM to be applied to understanding the dynamics of the serial JJ
array. For example, the authors of [WCS96] were able, based on the GKM,
to predict the level of critical current disorder the array could tolerate be-
fore frequency synchronization would be lost. Frequency synchronization, also
described as entrainment, refers to the state of the array in which all junctions
not in the zero–voltage state have equal (to within some numerical precision)
time–averaged voltages: (�/2e)〈θ̇j〉t, where θj is the gauge–invariant phase dif-
ference across junction j. More recently, the ‘slow’ synchronization dynamics
of finite–capacitance serial arrays of JJ’s has also been studied [CS95, WS97].
Perhaps surprisingly, however, no experimental work on JJ arrays has verified
the accuracy of this GKM mapping. Instead, the first detailed experimen-
tal verification of Kuramoto’s theory was recently performed on systems of
coupled electrochemical oscillators [KZH02].

Recently, [DDT03] showed, with an eye toward a better understanding of
synchronization in 2D JJ arrays, that a ladder array of overdamped junctions
could be mapped onto the LKM. This work was based on an averaging process,
as in [WCS96], and was valid in the limits of weak critical current disorder
(less than about 10%) and large dc bias currents, IB, along the rung junctions
(IB/〈Ic〉 � 3, where 〈Ic〉 is the arithmetic average of the critical currents of the
rung junctions. The result demonstrated, for both open and periodic boundary
conditions, that synchronization of the current–biased rung junctions in the
ladder is well described by (3.166).

In this subsection, following [TSS05], we demonstrate that a ladder array
of underdamped junctions can be mapped onto a second–order Winfree–type
oscillator model of the form

aθ̈j + θ̇j = Ωj +
N∑

k=1

σj,kΓ (θk − θj), (3.167)

where a is a constant related to the average capacitance of the rung junc-
tions. This result is based on the resistively & capacitively–shunted junction
(RCSJ) model and a multiple time scale analysis of the classical equations for
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the array. Secondly, we study the effects of small world (SW) connections on
the synchronization of both overdamped and underdamped ladder arrays. It
appears that SW connections make it easier for the ladder to synchronize, and
that a Kuramoto or Winfree type model (3.166) and (3.167), suitably general-
ized to include the new connections, accurately describes the synchronization
of this ladder.

Phase Model for Underdamped JJL

Following [TSS05] we analyze synchronization in disordered Josephson junc-
tion arrays.The ladder geometry used consists of an array with N = 8 plaque-
ttes, periodic boundary conditions, and uniform dc bias currents, IB , along
the rung junctions (see Figure 3.15). The gauge–invariant phase difference
across rung junction j is γj , while the phase difference across the off–rung
junctions along the outer(inner) edge of plaquette j is ψ1,j(ψ2,j). The crit-
ical current, resistance, and capacitance of rung junction j are denoted Icj ,
Rj , and Cj , respectively. For simplicity, we assume all off–rung junctions are
identical, with critical current Ico, resistance Ro, and capacitance Co. We also

Fig. 3.15. A ladder array of Josephson junctions with periodic boundary conditions
and N = 8 plaquettes. A uniform, dc bias current IB is inserted into and extracted
from each rung as shown. The gauge–invariant phase difference across the rung
junctions is denoted by γj where 1 ≤ j ≤ N , while the corresponding quantities
for the off–rung junctions along the outer(inner) edge are ψ1,j(ψ2,j) (adapted and
modified from [TSS05]).
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assume that the product of the junction critical current and resistance is the
same for all junctions in the array [Ben95], with a similar assumption about
the ratio of each junction’s critical current with its capacitance:

IcjRj = IcoRo =
〈Ic〉
〈R−1〉 (3.168)

Icj

Cj
=

Ico

Co
=
〈Ic〉
〈C〉 , (3.169)

where for any generic quantity X, the angular brackets with no subscript
denote an arithmetic average over the set of rung junctions,

〈X〉 ≡ (1/N)
N∑

j=1

Xj .

For convenience, we work with dimensionless quantities. Our dimensionless
time variable is

τ ≡ t

tc
=

2e〈Ic〉t
�〈R−1〉 , (3.170)

where t is the ordinary time. In the following, derivatives with respect to τ
will be denoted by prime (e.g., ψ′ = dψ/dτ ). The dimensionless bias current is

iB ≡
IB

〈Ic〉
, (3.171)

while the dimensionless critical current of rung junction j is icj ≡ Icj/〈Ic〉.
The McCumber parameter in this case is

βc ≡
2e〈Ic〉〈C〉
�〈R−1〉2 . (3.172)

Note that βc is proportional to the mean capacitance of the rung junctions.
An important dimensionless parameter is

α ≡ Ico

〈Ic〉
, (3.173)

which will effectively tune the nearest–neighbor interaction strength in our
phase model for the ladder.

Conservation of charge applied to the superconducting islands on the outer
and inner edge, respectively, of rung junction j yields the following equations
in dimensionless variables [TSS05]:

iB − icj sin γj − icjγ
′
j − icjβcγ

′′
j − α sinψ1,j − αψ′

1,j

−αβcψ
′′
1,j + α sinψ1,j−1 + αψ′

1,j−1 + αβcψ
′′
1,j−1 = 0, (3.174)

−iB + icj sin γj + icjγ
′
j + icjβcγ

′′
j − α sinψ2,j − αψ′

2,j

−αβcψ
′′
2,j + α sinψ2,j−1 + αψ′

2,j−1 + αβcψ
′′
2,j−1 = 0, (3.175)
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where 1 ≤ j ≤ N . The result is a set of 2N equations in 3N unknowns: γj ,
ψ1,j , and ψ2,j . We supplement (3.175) by the constraint of fluxoid quantization
in the absence of external or induced magnetic flux. For plaquette j this
constraint yields the relationship

γj + ψ2,j − γj+1 − ψ1,j = 0. (3.176)

Equations (3.175) and (3.176) can be solved numerically for the 3N phases
γj , ψ1,j and ψ2,j [TSS05].

We assign the rung junction critical currents in one of two ways, randomly
or nonrandomly. We generate random critical currents according to a parabolic
probability distribution function (PDF) of the form

P (ic) =
3

4Δ3

[
Δ2 − (ic − 1)2

]
, (3.177)

where ic = Ic/〈Ic〉 represents a scaled critical current, and Δ determines the
spread of the critical currents. Equation (3.177) results in critical currents in
the range 1−Δ ≤ ic ≤ 1+Δ. Note that this choice for the PDF (also used in
[WCS96]) avoids extreme critical currents (relative to a mean value of unity)
that are occasionally generated by PDF’s with tails. The nonrandom method
of assigning rung junction critical currents was based on the expression

icj = 1 + Δ− 2Δ
(N − 1)2

[
4j2 − 4(N + 1)j + (N + 1)2

]
, 1 ≤ j ≤ N,

(3.178)

which results in the icj values varying quadratically as a function of position
along the ladder and falling within the range 1−Δ ≤ icj ≤ 1+Δ. We usually
use Δ = 0.05.

Multiple Time–Scale Analysis

Now, our goal is to derive a Kuramoto–like model for the phase differences
across the rung junctions, γj , starting with (3.175). We begin with two rea-
sonable assumptions. First, we assume there is a simple phase relationship
between the two off–rung junctions in the same plaquette [TSS05]:

ψ2,j = −ψ1,j , (3.179)

the validity of which has been discussed in detail in [DDT03, FW95]. As a
result, (3.176) reduces to

ψ1,j =
γj − γj+1

2
, (3.180)

which implies that (3.174) can be written as

icjβcγ
′′
j + icjγ

′
j +

αβc

2
[
γ′′

j+1 − 2γ′′
j + γ′′

j−1

]
+

α

2
[
γ′

j+1 − 2γ′
j + γ′

j−1

]
= iB − icj sin γj + α

∑
δ=±1

sin
(
γj+δ − γj

2

)
. (3.181)
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Our second assumption is that we can neglect the discrete Laplacian terms
in (3.181), namely

∇2γ′
j ≡ γ′

j+1 − 2γ′
j + γ′

j−1 and ∇2γ′′
j ≡ γ′′

j+1 − 2γ′′
j + γ′′

j−1.

We find numerically, over a wide range of bias currents iB , McCumber
parameters βc, and coupling strengths α that ∇2γ′

j and ∇2γ′′
j oscillate with

a time–averaged value of approximately zero. Since the multiple time scale
method is similar to averaging over a fast time scale, it seems reasonable to
drop these terms. In light of this assumption, (3.181) becomes

icjβcγ
′′
j + icjγ

′
j = iB − icj sin γj + α

∑
δ=±1

sin
(
γj+δ − γj

2

)
. (3.182)

We can use (3.182) as the starting point for a multiple time scale analysis.
Following [CS95] and [WS97], we divide (3.182) by iB and define the following
quantities:

τ̃ ≡ iBτ , β̃c ≡ iBβc, ε = 1/iB . (3.183)

In terms of these scaled quantities, (3.182) can be written as

icj β̃c

d2γj

dτ̃2 + icj

dγj

dτ̃
+ εicj sin γj − εα

∑
δ

sin
(
γj+δ − γj

2

)
= 1. (3.184)

Next, we introduce a series of four (dimensionless) time scales,

Tn ≡ εnτ̃ , (n = 0, 1, 2, 3), (3.185)

which are assumed to be independent of each other. Note that 0 < ε < 1 since
ε = 1/iB . We can think of each successive time scale, Tn, as being ‘slower’
than the scale before it. For example, T2 describes a slower time scale than
T1. The time derivatives in 3.184 can be written in terms of the new time
scales, since we can think of τ̃ as being a function of the four independent
Tn’s, τ̃ = τ̃(T0, T1, T2, T3). Letting ∂n ≡ ∂/∂Tn, the first and second time
derivatives can be written as [TSS05]

d

dτ̃
= ∂0 + ε∂1 + ε2∂2 + ε3∂3 (3.186)

d2

dτ̃2 = ∂2
0 + 2ε∂0∂1 + ε2

(
2∂0∂2 + ∂2

1

)
+ 2ε3 (∂0∂3 + ∂1∂2) , (3.187)

where in (3.187) we have dropped terms of order ε4 and higher.
Next, we expand the phase differences in an ε expansion

γj =
∞∑

n=0

εnγn,j(T0, T1, T2, T3). (3.188)
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Substituting this expansion into (3.184) and collecting all terms of order ε0

results in the expression

1 = icj β̃c∂
2
0γ0,j + icj∂0γ0,j , (3.189)

for which we find the solution

γ0,j =
T0

icj
+ φj(T1, T2, T3), (3.190)

where we have ignored a transient term of the form e−T0/β̃c , and where φj(Ti),
(i = 1, 2, 3) is assumed constant over the fastest time scale T0. Note that the
expression for γ0,j consists of a rapid phase rotation described by T0/icj and
slower–scale temporal variations, described by φj , on top of that overturning.
In essence, the goal of this technique is to solve for the dynamical behavior
of the slow phase variable, φj . The resulting differential equation for the φj

is [TSS05]:

βcφ
′′
j + φ′

j = Ωj + Kj

∑
δ=±1

sin
[
φj+δ − φj

2

]
+ Lj

∑
δ=±1

sin
[
3
(
φj+δ − φj

2

)]

+Mj

∑
δ=±1

{
cos

[
φj+δ − φj

2

]
− cos

[
3
(
φj+δ − φj

2

)]}
, (3.191)

where Ωj is given by the expression (letting xj ≡ icj/iB for convenience)

Ωj =
1
xj

[
1−

x4
j(

2β2
c + x2

j

)] , (3.192)

and the three coupling strengths are

Kj =
α

icj

[
1 +

x4
j

(
3x2

j + 23β2
c

)
16

(
β2

c + x2
j

)2
]
, (3.193)

Lj =
α

icj

x4
j

(
3β2

c − x2
j

)
16

(
β2

c + x2
j

)2 , (3.194)

Mj = − α

icj

x5
jβc

4
(
β2

c + x2
j

)2 . (3.195)

We emphasize that (3.191) is expressed in terms of the original, unscaled, time
variable τ and McCumber parameter βc.

We will generally consider bias current and junction capacitance values
such that x2

j � β2
c . In this limit, (3.193)–(3.195) can be approximated as

follows [TSS05]:

Kj →
α

icj

[
1 +O

(
1
i4B

)]
, (3.196)
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Lj →
α

icj

(
3x4

j

16β2
c

)
∼ O

(
1
i4B

)
, (3.197)

Mj → − α

icj

(
x5

j

4β3
c

)
∼ O

(
1
i5B

)
. (3.198)

For large bias currents, it is reasonable to truncate (3.191) at O(1/i3B), which
leaves

βcφ
′′
j + φ′

j = Ωj +
α

icj

∑
δ=±1

sin
[
φj+δ − φj

2

]
, (3.199)

where all the cosine coupling terms and the third harmonic sine term have
been dropped as a result of the truncation.

In the absence of any coupling between neighboring rung junctions (α = 0)
the solution to (3.199) is

φ
(α=0)
j = A + Be−τ/βc + Ωjτ ,

where A and B are arbitrary constants. Ignoring the transient exponential
term, we see that dφ

(α=0)
j /dτ = Ωj , so we can think of Ωj as the voltage across

rung junction j in the un–coupled limit. Alternatively, Ωj can be viewed as
the angular velocity of the strongly–driven rotator in the un–coupled limit.

Equation (3.199) is our desired phase model for the rung junctions of
the underdamped ladder [TSS05]. The result can be described as a locally–
coupled Kuramoto model with a second-order time derivative (LKM2) and
with junction coupling determined by α. In the context of systems of cou-
pled rotators, the second derivative term is due to the non–negligible rota-
tor inertia, whereas in the case of Josephson junctions the second derivative
arises because of the junction capacitance. The globally–coupled version of
the second–order Kuramoto model (GKM2) has been well studied; in this case
the oscillator inertia leads to a first–order synchronization phase transition as
well as to hysteresis between a weakly and a strongly coherent synchronized
state [TLO97, ABS00].

Comparison of LKM2 and RCSJ Models

We now compare the synchronization behavior of the RCSJ ladder array with
the LKM2. We consider frequency and phase synchronization separately. For
the rung junctions of the ladder, frequency synchronization occurs when the
time average voltages, 〈vj〉τ = 〈φ′

j〉τ are equal for all N junctions, within
some specified precision. In the language of coupled rotators, this corresponds
to phase points moving around the unit circle with the same average angular
velocity. We quantify the degree of frequency synchronization via an ‘order
parameter’ [TSS05]

f = 1− sv(α)
sv(0)

, (3.200)
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where sv(α) is the standard deviation of the N time–average voltages, 〈vj〉τ :

sv(α) =

√√√√∑N
j=1

(
〈vj〉τ − 1

N

∑N
k=1〈vk〉τ

)2

N − 1
(3.201)

In general, this standard deviation will be a function of the coupling strength
α, so sv(0) is a measure of the spread of the 〈vj〉τ values for N independent
junctions. Frequency synchronization of all N junctions is signaled by f = 1,
while f = 0 means all N average voltages have their un–coupled values.

Phase synchronization of the rung junctions is measured by the usual
Kuramoto order parameter

r ≡ 1
N

N∑
j=1

eiφj . (3.202)

Lastly in this subsection, we address the issue of the linear stability of the
frequency synchronized states (α > αc) by calculating their Floquet exponents
numerically for the RCSJ model as well as analytically based on the LKM2,
(3.199). The analytic technique used has been described in [TM01], giving as
a result for the real part of the Floquet exponents:

Re(λmtc) = − 1
2βc

[
1± Re

√
1− 4βc

(
K̄ + 3L̄

)
ω2

m

]
, (3.203)

where stable solutions correspond to exponents, λm, with a negative real
part. One can think of the ωm as the normal mode frequencies of the lad-
der. We find that for a ladder with periodic boundary conditions and N
plaquettes

ω2
m =

4 sin2
(

mπ
N

)
1 + 2 sin2

(
mπ
N

) , 0 ≤ m ≤ N − 1. (3.204)

To arrive at (3.203) we have ignored the effects of disorder so that K̄ and L̄
are obtained from (3.193) and (3.194) with the substitution icj → 1 through-
out. This should be reasonable for the levels of disorder we have consid-
ered (5%). Substituting the expressions for K̄ and L̄ into 3.203 results in
[TSS05]

Re(λmtc) = − 1
2βc

⎡⎣1± Re

√√√√1− 2βcα

{
1 +

2β2
c(

i2Bβ2
c + 1

)2
}

ω2
m

⎤⎦ . (3.205)

We are most interested in the Floquet exponent of minimum magnitude,
Re(λmintc), which essentially gives the lifetime of the longest–lived pertur-
bations to the synchronized state.



636 3 Quantum Computational Mind

‘Small–World’ Connections in JJL Arrays

Many properties of small world networks have been studied in the last several
years, including not only the effects of network topology but also the dynam-
ics of the node elements comprising the network [New00, Str]. Of particular
interest has been the ability of oscillators to synchronize when configured in a
small–world manner. Such synchronization studies can be broadly sorted into
several categories [TSS05]:

(1) Work on coupled lattice maps has demonstrated that synchronization
is made easier by the presence of random, long–range connections [GH00,
BPV03].

(2) Much attention has been given to the synchronization of continuous
time dynamical systems, including the first order locally–coupled Kuramoto
model (LKM), in the presence of small–world connections [HCK02a, HCK02b,
Wat99]. For example, Hong and coworkers [HCK02a, HCK02b] have shown
that the LKM, which does not exhibit a true dynamical phase transition in
the thermodynamic limit (N → ∞) in the pristine case, does exhibit such a
phase synchronization transition for even a small number of shortcuts. But
the assertion [WC02] that any small world network can synchronize for a
given coupling strength and large enough number of nodes, even when the
pristine network would not synchronize under the same conditions, is not
fully accepted [BP02].

(3) More general studies of synchronization in small world and scale–free
networks [BP02, NML03] have shown that the small world topology does not
guarantee that a network can synchronize. In [BP02] it was shown that one
could calculate the average number of shortcuts per node, ssync, required for a
given dynamical system to synchronize. This study found no clear relation be-
tween this synchronization threshold and the onset of the small world region,
i.e., the value of s such that the average path length between all pairs of nodes
in the array is less than some threshold value. [NML03] studied arrays with a
power–law distribution of node connectivities (scale–free networks) and found
that a broader distribution of connectivities makes a network less synchroniz-
able even though the average path length is smaller. It was argued that this
behavior was caused by an increased number of connections on the hubs of
the scale–free network. Clearly it is dangerous to assume that merely reducing
the average path length between nodes of an array will make such an array
easier to synchronize.

Now, regarding Josephson–junction arrays, if we have a disordered array
biased such that some subset of the junctions are in the voltage state, i.e.,
undergoing limit cycle oscillations, the question is will the addition of random,
long–range connections between junctions aid the array in attaining frequency
and/or phase synchronization? Can we address this question by using the
mapping discussed above between the RCSJ model for the underdamped ladder
array and the second–order, locally–coupled Kuramoto model (LKM2). Based
on the results of [DDT03], we also know that the RSJ model for an overdamped
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ladder can be mapped onto a first–order, locally–coupled Kuramoto model
(LKM). Because of this mapping, the ladder array falls into category (2) of
the previous paragraph. In other words, we should expect the existence of
shortcuts to drastically improve the ability of ladder arrays to synchronize
[TSS05].

We add connections between pairs of rung junctions that will result in
interactions that are longer than nearest neighbor in range. We do so by
adding two, nondisordered, off–rung junctions for each such connection. We
argue that the RCSJ equations for the underdamped junctions in the ladder
array can be mapped onto a straightforward variation of (3.199), in which
the sinusoidal coupling term for rung junction j also includes the longer–
range couplings due to the added shortcuts. Imagine a ladder with a shortcut
between junctions j and l, where l 
= j, j ± 1. Conservation of charge applied
to the two superconducting islands that comprise rung junction j will lead to
equations very similar to (3.175). For example, the analog to (3.174) will be

iB − icj sin γj − icjγ
′
j − βcicjγ

′′
j − α sinψ1,j − αψ′

1,j − βcαψ
′′
1,j + α sinψ1,j−1

+ αψ′
1,j−1 + βcαψ

′′
1,j−1 +

∑
l

[
α sinψ1;jl + αψ′

1;jl + βcαψ
′′
1;jl

]
= 0,

with an analogous equation corresponding to the inner superconducting island
that can be generalized from (3.175). The sum over the index l accounts for all
junctions connected to junction j via an added shortcut. Fluxoid quantization
still holds, which means that we can augment 3.176 with

γj + ψ2;jl − γl − ψ1;jl = 0. (3.206)

We also assume the analog of (3.179) holds:

ψ2;jl = −ψ1;jl. (3.207)

Equations (3.206) and (3.207) allow us to write the analog to (3.180) for the
case of shortcut junctions:

ψ1;jl =
γj − γl

2
(3.208)

Equation (3.206), in light of (3.208), can be written as

iB − icj sin γj − icjγ
′
j − βcicjγ

′′
j + α

∑
δ=±1

sin(
γj+δ − γj

2
) + α

∑
l

sin(
γj − γl

2
)

+
α

2
∇2γ′

j +
α

2
∇2γ′′

j +
α

2

∑
l

(
γ′

j − γ′
l

)
+

α

2

∑
l

(
γ′′

j − γ′′
l

)
= 0,

where the sums Σl are over all rung junctions connected to j via an added
shortcut. As we did with the pristine ladder, we will drop the two discrete
Laplacians, since they have a very small time average compared to the terms
icjγ

′
j + icjβcγ

′′
j . The same is also true, however, of the terms α/2

∑
l(γ

′
j − γ′

l)
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and α/2
∑

l(γ
′′
j − γ′′

l ), as direct numerical solution of the full RCSJ equations
in the presence of shortcuts demonstrates. So we shall drop these terms as
well. Then we have

iB − icj sin γj − icjγ
′
j − βcicjγ

′′
j +

α

2

∑
k∈Λj

sin
(
γk − γj

2

)
, (3.209)

where the sum is over all junctions in Λj , which is the set of all junctions
connected to junction j. From above results we can predict that a multiple
time scale analysis of (3.209) results in a phase model of the form

βc

d2φj

dτ2
+

dφj

dτ
= Ωj +

α

2

∑
k∈Λj

sin
(
φk − φj

2

)
, (3.210)

where Ωj is give by (3.192). A similar analysis for the overdamped ladder leads
to the result

φ′
j = Ω

(1)
j +

α

2

∑
k∈Λj

sin
(
φk − φj

2

)
, (3.211)

where the time-averaged voltage across each overdamped rung junction in the
un–coupled limit is

Ω
(1)
j =

√(
iB
icj

)2

− 1. (3.212)

Although the addition of shortcuts makes it easier for the array to syn-
chronize, we should also consider the effects of such random connections on
the stability of the synchronized state. The Floquet exponents for the syn-
chronized state allow us to quantify this stability. Using a general technique
discussed in [PC98], we can calculate the Floquet exponents λm for the LKM
based on the expression

λmtc = αEG
m, (3.213)

where EG
m are the eigenvalues of G, the matrix of coupling coefficients for the

array. A specific element, Gij , of this matrix is unity if there is a connection
between rung junctions i and j. The diagonal terms, Gii, is merely the negative
of the number of junctions connected to junction i. This gives the matrix the
property

∑
j Gij = 0. In the case of the pristine ladder, the eigenvalues of G

can be calculated analytically, which yields Floquet exponents of the form

λm
(p=0)tc = −4α sin2

(mπ

N

)
. (3.214)

See [TSS05] for more details.
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Jul18. Julia, G.: Mémoires sur l’itération des fonctions rationelles. J. Math. 8,
47–245, (1918)

Jun80. Jung, C.G.: Psychology and Alchemy. Princeton Univ. Press., Princeton,
New Jersey, (1980)

Jun93. Jung, P.: Periodically driven stochastic systems. Phys. Reports 234, 175,
(1993)

JV72. Juricic, D, Vukobratovic, M.: Mathematical Modeling of Biped Walking
Systems. ASME Publ. 72-WA/BHF-13, (1972)

JY95. Jibu, M., Yasue, K.: Quantum brain dynamics and consciousness. John
Benjamins, Amsterdam, (1995)

Kac51. Kac, M.: On Some Connection between Probability Theory, Differential
and Integral Equations. Proc. 2nd Berkeley Sympos. Math. Stat. Prob.,
189–215, (1951)

Kar84. Kardar, M.: Free energies for the discrete chain in a periodic potential
and the dual Coulomb gas. Phys. Rev. B 30, 6368–6378, (1984)

Kas02. Kasabov, N.: Evolving connectionist systems: Methods and applications
in bioinformatics, brain study and intelligent machines. Springer, London,
(2002)

Kaw99. Kawato, M.: Internal models for motor control and trajectory planning.
Current Opinion in Neurobiology, 9, 718–727, (1999)

Kay91. Kay, D.S.: Computer interaction: Debugging the problems. In
R.J. Sternberg, P.A. Frensch (eds.) Complex problem solving: Principles,
mechanisms (317–340) Hillsdale, NJ: Lawr. Erl. Assoc., (1991)

KBA99. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetic Programming
III: Darwinian Invention, Problem Solving. Morgan Kaufmann, (1999)

KG85. Kantz, H., Grassberger, P.: Repellers, semi-attractors and long-lived
chaotic transients. Physica D 17, 75–86, (1985)

Khi57. Khinchin, A.I.: Mathematical foundations of Information theory. Dover,
(1957)



References 657

KHS93. Koruga, D.L., Hameroff, S.I., Sundareshan, M.K., Withers, J., Loutfy,
R.: Fullerence C60: History, Physics, Nanobiology and Nanotechnology.
Elsevier Science Pub, (1993)

Kim95a. Kim, J.: Problems in the Philosophy of Mind. Oxford Companion to Phi-
losophy. Ted Honderich (ed.) Oxford Univ. Press, Oxford, (1995)

Kim95b. Kim, J.: Mind–Body Problem. Oxford Companion to Philosophy. Ted
Honderich (ed.) Oxford Univ. Press, Oxford, (1995)

KK00. Kye, W.-H., Kim, C.-M.: Characteristic relations of type-I intermittency
in the presence of noise. Phys. Rev. E 62, 6304–6307, (2000)

KKS03. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.:
Genetic Programming IV: Routine Human-Competitive Machine Intel-
ligence. Kluwer, Dordrecht, (2003)

Kla00. Klauder, J.R.: Beyond Conventional Quantization. Cambridge Univ.
Press, Cambridge, (2000)

Kla97. Klauder, J.R.: Understanding Quantization. Found. Phys. 27, 1467–1483,
(1997)

Kle27. Klein, O.: Z. Phys., 41, 407–442, (1927)
Kli00. Kline, P.: A Psychometrics Primer. Free Assoc. Books, London, (2000)
KLR03. Kye, W.-H., Lee, D.-S., Rim, S., Kim, C.-M., Park, Y.-J.: Periodic Phase

Synchronization in coupled chaotic oscillators. Phys. Rev. E 68, 025201–
025205(R), (2003)

KM78a. Kim, J., Mueller, C.W.: Introduction to factor analysis: What it is and
how to do it. Thousand Oaks, CA: Sage Publications, Quantitative Ap-
plications in the Social Sciences Series, 13, (1978)

KM78b. Kim, J., Mueller, C.W.: Factor Analysis: Statistical methods and practical
issues. Thousand Oaks, CA: Sage Publications, Quantitative Applications
in the Social Sciences Series, 14, (1978)

KMM94. Konen, W., Maurer, T., von der Malsburg, C.: A fast dynamic link match-
ing algorithm for invariant pattern recognition. Neural Networks, 7, 1019–
1030, (1994)

KMY84. Kaplan, J.L., Mallet-Paret, J., Yorke, J.A.: The Lyapunov dimension of
a nowhere dierentiable attracting torus. Ergod. Th. Dynam. Sys. 4, 261
(1984)

KN00. Kotz, S., Nadarajah, S.: Extreme Value Distributions. Imperial College
Press, London, (2000)

Koe64. Koestler, A. The Act of Creation. Penguin, London, (1964)
Koh82. Kohonen, T.: Self–Organized Formation of Toplogically Correct Feature

Maps. Biological Cybernetics 43, 59–69, (1982)
Koh88. Kohonen, T.: Self Organization, Associative Memory. Springer, (1988)
Koh91. Kohonen, T.: Self–Organizing Maps: Optimization Approaches. In: Arti-

ficial Neural Networks, ed. T. Kohonen etal. North-Holland, Amsterdam,
(1991)

Kos86. Kosko, B.: Fuzzy Cognitive Maps. Int. J. Man-Mach. Stud. 24, 65–75,
(1986)

Kos88. Kosko, B.: Bidirectional Associative Memory. IEEE Trans. Sys. Man Cyb.
18, 49–60, (1988)

Kos92. Kosko, B.: Neural Networks, Fuzzy Systems, A Dynamical Systems
Approach to Machine Intelligence. Prentice–Hall, New York, (1992)

Kos93. Kosko, B.: Fuzzy Thinking. Disney Books, Hyperion, (1993)



658 References

Kos96. Kosko, B.: Fuzzy Engineering. Prentice Hall, New York, (1996)
Kos99. Kosko, B.: The Fuzzy Future: From Society, Science to Heaven in a Chip.

Random House, Harmony, (1999)
Koz92. Koza, J.R.: Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, Cambridge, MA, (1992)
Koz95. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press, Cambridge, MA, (1995)
KP95. Kocarev, L., Parlitz, U.: General Approach for Chaotic Synchronization

with Applications to Communication. Phys. Rev. Lett. 74, 5028–5031,
(1995)

KP96. Kocarev, L., Parlitz, U.: Generalized Synchronization, Predictability and
Equivalence of Unidirectionally Coupled Dynamical Systems. Phys. Rev.
Lett. 76, 1816–1819, (1996)

KS02. Kasabov, N., Song, Q.: Denfis: Dynamic evolving neural fuzzy inference
systems and its application for time series prediction. IEEE Trans. Fuz.
Sys. 10(2), 144–154, (2002)

KT01. Kye, W.-H., Topaj, D.: Attractor bifurcation and on-off intermittency.
Phys. Rev. E 63, 045202–045206(R), (2001)

KT73. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-
Hill, New York, (1973)

Kuh85. Kuhl, J.: Volitional Mediator of cognition-Behaviour consistency: Self-
regulatory Processes, action versus state orientation (101–122) In: J.
Kuhl, S. Beckman (eds.) Action control: From Cognition to Behaviour.
Springer, Berlin, (1985)

Kur84. Kuramoto, Y.: Chemical Oscillations. Waves, Turbulence. Springer, New
York, (1984)

Kuz95. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Math-
ematical Sciences 112, Springer-Verlag, Berlin, (1995)

KY75. Kaplan, J.L., Yorke, J.A.: On the stability of a periodic solution of a
differential delay equation. SIAM J. Math. Ana. 6, 268–282, (1975)

KY79. Kaplan, J.L., Yorke, J.A.: Numerical Solution of a Generalized Eigenvalue
Problem for Even Mapping. Peitgen, H.O., Walther, H.O. (Eds.): Func-
tional Differential Equations, Approximations of Fixed Points, Lecture
Notes in Mathematics, 730, 228–256, Springer, Berlin, (1979)

KY79. Kaplan, J.L., Yorke, J.A.: Preturbulence: a regime observed in a fluid
flow of Lorenz. Commun. Math. Phys. 67, 93–108, (1979)

KY91. Kennedy, J., Yorke, J.A.: Basins of Wada. Physica D 51, 213–225, (1991)
KYR98. Kim, C.M., Yim, G.S., Ryu, J.W., Park, Y.J.: Characteristic Relations

of Type-III Intermittency in an Electronic Circuit. Phys. Rev. Lett. 80,
5317–5320, (1998)

KZH02. Kiss, I.Z., Zhai, Y., Hudson, J.L.: Emerging coherence in a population of
chemical oscillators. Science 296, 1676–1678, (2002)

Lai94. Lai, Y.-C.: Controlling chaos. Comput. Phys., 8, 62–67, (1994)
Lak03. Lakshmanan, M., Rajasekar, S: Nonlinear Dynamics: Integrability, Chaos

and Patterns, Springer-Verlag, New York, (2003)
Lak97. Lakshmanan, M.: Bifurcations, Chaos, Controlling and Synchronization

of Certain Nonlinear Oscillators. In Lecture Notes in Physics, 495, 206,
Y. Kosmann-Schwarzbach, B. Grammaticos, K.M. Tamizhmani (ed.),
Springer-Verlag, Berlin, (1997)



References 659

Lam02. Lampinen, J.: A Constraint Handling Method for the Differential Evo-
lution Algorithm. In: Sincak P., Vascak J., Kvasnicka V., Pospichal
J. (eds.) Intelligent Technologies – Theory, Applications, 152–158. IOS
Press, (2002)

Las42. Lashley, K.S.: The problem of cerebral organization in vision. In Biolog-
ical Symposia, VII, Visual mechanisms, 301–322. Jaques Cattell Press,
Lancaster, (1942)

LCD02. Liley, D.T.J., Cadusch, P.J., Dafilis MP.: A spatially continuous mean
field theory of electrocortical activity. Comp. Neu. Sys. 13(1), 67–113,
(2002)

LCD87. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Chang, A.,
Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod.
Phys. 59, 1, (1987)

LCW99. Liley, D.T.J., Cadusch, P.J., Wright, J.J.: A continuum theory of electro-
cortical activity. Neurocom. 26, 795–800, (1999)

LD98. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots.
Phys. Rev. A 57(1), 120–126, (1998)

LEA00. Lehnertz, K., Elger, C.E., Arnhold, J., Grassberger, P. (ed.): Chaos in
Brain. World Scientific, Singapore, (2000)

Lee90. Lee, C.C.: Fuzzy Logic in Control Systems. IEEE Trans. Sys., Man,
Cybern., 20(2), 404–435, (1990)

Leg86. Leggett, A.J.: In The Lesson of Quantum Theory. Niels Bohr Centenary
Symposium 1985; J. de Boer, E. Dal, O. Ulfbeck (ed.) North Holland,
Amsterdam, (1986)

Lei714. Leibniz, G.W.: Monadology, (1714)
Lev88. Levinthal, C.F.: Messengers of Paradice, Opiates and the Brain. Anchor

Press, Freeman, New York, (1988)
Lev92. Levy, S.: Artificial Life: A Report from the Frontier Where Computers

Meet Biology. Vintage Books: Random House, New York, (1992)
Lew51. Lewin, K.: Field Theory in Social Science. Univ. Chicago Press, Chicago,

(1951)
Lew97. Lewin, K.: Resolving Social Conflicts: Field Theory in Social Science,

American Psych. Assoc., New York, (1997)
Lis97. Lisman, J.: Bursts as a unit of neural information: making unreliable

synapses reliable. Trends in Neurosci. 20, 38–43, (1997)
LL91. Lesgold, A., Lajoie, S.: Complex problem solving in electronics. In R.

J. Sternberg, P.A. Frensch (eds.), Complex problem solving: Principles,
mechanisms (287–316) Hillsdale, NJ: Lawr. Erl. Assoc., (1991)

Lor63. Lorenz, E.N.: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–
141, (1963)

LOS88. Larkin, A.I., Ovchinnikov, Yu.N., Schmid, A.: Physica B 152, 266, (1988)
LP95. Lebovitz, N.R., Pesci, A.I.: Dynamics bifurcation in Hamiltonian systems

with one degree of freedom. SIAM J. Appl. Math. 55, 1117–1133, (1995)
LS04. Lesica, N.A, Stanley, G.B.: Encoding of Natural Scene Movies by Tonic

and Burst Spikes in the Lateral Geniculate Nucleus, J. Neurosci. 24,
10731–10740, (2004)

Lug02. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Pearson Educ (4th ed.) Ltd, Harlow, UK, (2002)



660 References

LVB93. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J.C. von der Malsburg,
C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the
dynamic link architecture. IEEE Transactions on Computers, 42(3), 300–
311, (1993)

LY85a. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms I.
Characterization of measures satisfying Pesin’s entropy formula. Ann. of
Math, 122, 509–539, (1985)

LY85b. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms II.
Relations between entropy, exponents and dimension. Ann. of Math. (2),
122(3), 540–574, (1985)

Mac59. Mach, E.: The Analysis of Sensations and the Relation of Physical to the
Psychical. (5th ed.) Dover, New York, (1959)

Mal798. Malthus, T.R.: An essay on the Principle of Population. Originally pub-
lished in 1798. Penguin, (1970)

Mal85. Von der Malsburg, C.: Nervous structures with dynamical links. Ber.
Bunsenges. Phys. Chem., 89, 703–710, (1985)

Mal88. Von der Malsburg, C.: Pattern recognition by labelled graph matching.
Neural Networks, 7, 1019–1030, (1988)

Man80a. Mandelbrot, B.: Fractal aspects of the iteration of z �→ λz(1 − z) for
complex λ, z, Annals NY Acad. Sci. 357, 249–259, (1980)

Man80b. Mandelbrot, B.: The Fractal Geometry of Nature. WH Freeman, Co.,
New York, (1980)

Mar99. Marsden, J.E.: Elementary Theory of Dynamical Systems. Lecture notes.
CDS, Caltech, (1999)

May73. May, R.M. (ed.): Stability and Complexity in Model Ecosystems. Prince-
ton Univ. Press, Princeton, NJ, (1973)

May76. May, R.: Simple Mathematical Models with Very Complicated Dynamics.
Nature, 261(5560), 459–467, (1976)

May76. May, R.M. (ed.): Theoretical Ecology: Principles and Applications. Black-
well Sci. Publ. (1976)

May92. Mayer, R.E.: Thinking, problem solving and cognition. Second edition.
New York: W. H. Freeman, Company, (1992)

MB98. Meyer, D.A., Brown, T.A.: Statistical mechanics of voting. Phys. Rev.
Lett. 81, 1718–1721, (1998)

MDC85. Martinis, J.M., Devoret, M.H., Clarke, J.: Energy-Level Quantization in
the Zero-Voltage State of a Current-Biased Josephson Junction. Phys.
Rev. Lett. 55, 1543–1546, (1985)

Mes00. Messiah, A.: Quantum Mechanics (two volumes bound as one). Dover
Pubs, (2000)

Met97. Metzger, M.A.: Applications of nonlinear dynamical systems theory in
developmental psychology: Motor and cognitive development. Nonlinear
Dynamics, Psychology, Life Sciences, 1, 55–68, (1997)

MF04. Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics, 2nd ed.,
Springer-Verlag, (2004)

MGO85. McDonald, S.W., Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin bound-
aries. Physica D 17, 125–153, (1985)

Mic06. Michalewicz, Z.: Adaptive Business Intelligence. Talk presented at DSTO-
Adelaide, (2006)

Mic99. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin, (1999)



References 661

Mil56. Miller, G.A.: The magical number seven, plus or minus two: Some limits
on our capacity for processing information, Psych. Rev., 63, 81–97, (1956)

Mil99. Milnor, J.: Periodic Orbits, Externals Rays and the Mandelbrot Set. Stony
Brook IMS Preprint # 1999/3, (1999)

Mit96. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, (1996)

ML81. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle
fiber. Biophys. J., 35, 193–213, (1981)

MN95a. Mavromatos, N.E., Nanopoulos, D.V.: A Non-critical String (Liouville)
Approach to Brain Microtubules: State Vector reduction and Memory
coding, Capacity. ACT-19/95, CTP-TAMU-55/95, OUTP-95-52P, (1995)

MN95b. Mavromatos, N.E., Nanopoulos, D.V.: Non-Critical String Theory Formu-
lation of Microtubule Dynamics and Quantum Aspects of Brain Function.
ENSLAPP-A-524/95, (1995)
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action value function, 133
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affine Hamiltonian function, 446

agent theory, 167

Airy functions, 364

algorithm theory, 237

algorithmic learning theory, 128

alife, 254

all possible routes, 501

all the routes, 504

alpha, 447

ambivert, 110
amplitude, 500, 502

analytic philosophy, 103
analytical philosophy, 101
analytical psychology, 106

and, 358
Andronov–Hopf bifurcation, 294
anima, 108

animus, 108
ant colony optimization, 251
antecedent, 216

anti–control of chaos, 281
antibody, 256
antibody hypermutation, 256

antigen, 256
archetypal psychology, 109
archetype, 107

archetypes, 109
area–preserving map, 323
array of N Josephson Junctions, 611

arrow of time, 559
artificial evolution, 240
artificial immune system, 255

artificial immune systems , 237
artificial intelligence, 111
artificial life, 237, 254

artificial neural network, 186
atmospheric convection, 315
attack function, 215

attracting equilibrium points, 302
attracting fixed points, 302
attracting focus, 289

attracting Jordan node, 289



676 Index

attracting line, 289
attracting node, 289
attracting spiral, 289
attractor, 302, 314
attractor associative memory ANNs,

206
attractor of the Poincaré map, 293
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connectionist approach, 186

connectionist learning, 122
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error function, 448
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extrovert, 109
extrovert/introvert model, 108

factor analysis, 33, 43, 45, 150
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feasible solutions, 237, 238
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feedback control, 449
feedback fuzzy systems, 235
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Feigenbaum cascade, 317
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Feigenbaum number, 321
Feigenbaum phenomenon, 295
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Feynman path integral, 503, 592
Feynman–Vernon formalism, 560
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Fick equation, 296
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filter, 52
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finite–dimensional Hilbert space, 472
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Floquet multiplicator, 387
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Flynn effect, 44
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Fourier equation, 296

Fourier transform, 464
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Lorentz transformations, 480
Lorenz attractor, 376
Lorenz mask, 316
Lorenz system, 316, 322
lower limit of complexity, 440
Lyapunov dimension, 381
Lyapunov exponent, 277, 295, 314, 329,

336, 395
Lyapunov function, 212
Lyapunov stability, 278
Lyapunov time, 277

M, 432, 433
machine learning, 121, 160
machine translation, 158
macroscopic entanglement, 456
magneto–encephalography, 272
Malthus model, 319
Malthusian parameter, 319, 321
Mamdani fuzzy controller, 232
Mamdani inference, 229, 450
management information systems, 266
management–support systems, 266
Mandelbrot and Julia sets, 325
Manhattan distance, 256
manifest variables, 48

map, 320, 395

map sink, 314

margin, 164

Markov assumption, 153

Markov blanket, 159

Markov chain, 331

Markov decision process, 132

Markov network, 159

Markov process, 153, 331

Markov property, 153

Markov–chain Monte–Carlo, 161, 506

mass communication, 18

Master equation, 153

match–based learning, 214

material metric tensor, 444

matrix cost function, 196

matrix–symplectic explicit integrator,
451

matroids, 156

maximum likelihood estimate, 158

maximum likelihood estimator, 48

maximum–entropy, 208

maximum–margin hyperplane, 164

McCulloch–Pitts neurons, 189

mean, 7, 47

mean square error, 190

means–ends reasoning, 181

mechanical–control structure, 428

meditation, 578

meiosis, 239

Meissner–states, 620

membership function, 219

memory, 89

memory recall, 123

mental abilities, 1

mental force law, 606

meta–GP, 249

metaheuristic optimization algorithm,
251

metaheuristic optimization algorithms,
237

metamorphoses, 313

Metaphysics, 38

method of least squares, 7

microtubules, 532, 547

mind, 89

mind maps, 39
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mind–body problem, 94
minimizing the error, 190
minimum–time reward functions, 132
Minu, 4
model fit, 56
modified Duffing equation, 311
modular feedforward networks, 201
modulus, 500
momentum learning, 195
momentum phase–space, 449
monism, 100
monitoring, 179
Monte–Carlo, 47
Monte–Carlo method, 133, 322
Moore’s law, 120
morphism, 52
Morris–Lecar neuron, 419
motor conditioned reflexes, 451
multi–agent systems, 168
multilayer perceptron, 188, 199
multiple–intelligence theories, 68
multivariate correlation statistical

method, 45
mutation, 240, 247, 249
mutually alternative processes, 503
Myers–Briggs Type Indicator, 107

natural measure, 406
natural selection, 240
natural transient measure, 336
Navier–Stokes equations, 262, 315
negative feedback loop, 117
Neimark–Sacker bifurcation, 295
network topology, 123
neural adaptation, 14
neural gas, 253
neurobiology, 105
neurology of creativity, 29
neuroticism, 33
neutral line, 289
Newton–Raphson method, 197
Newtonian deterministic system, 274
Newtonian dynamics, 440
Newtonian mechanics, 274
Newtonian method, 195
next chosen action, 136
node, 285
noise filtering, 123
non–autonomuous system, 283

non–periodic orbit, 65, 288

nonfuzzy, 219

nonlinear classification, 163

nonlinear function approximation, 224

nonlinearity, 297

nonlocal behavior, 524

nonlocal process, 523

nonrelativistic quantum mechanics , 63

nonrigid, 61

normal distribution, 47

normalization condition, 466

normalized, 219

normally distributed random variables,
47

number of mechanical degrees–of–
freedom, 440

number of physical degrees–of–freedom,
443

object relations theory, 111

object–oriented programming, 168

objective function, 238, 243, 268

oblique factor model, 61

observation, 42

observational resolution, 443, 457

observed variable, 154, 155

Oja–Hebb learning rule, 210

one–way functions, 125

Onsager relations, 300

operations research, 237

optimal hyperplane, 164

optimal solution, 238

optimal value function, 133

optimism, 99

optimization, 123, 165

orbit, 275, 287, 332

orbit Hilbert space, 478

orchestration, 441

order parameter, 406

ordering chaos, 281

organizational communication, 18

orthogonal sum, 474

oscillatory cortical–control, 457

oscillatory dynamics, 457

Ott–Grebogi–Yorke map, 325

output–space dimension, 456

overdamped junction, 628
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overdamped ladder, 637, 638
overdamped limit, 611

P–complete problem, 141
paradigm shift, 10
parameter ray, 327
parent node, 158
parsimony principle, 61
particle swarm optimization , 252
path–integral, 373, 496, 504
path–integral expression, 518
path–integral formalism, 515
path–integral formulation, 515
path–integral quantization, 514
pattern matching process, 214
pattern recognition, 123
pattern–recognition machine, 191
Penrose paradox, 533
perception, 89, 586
perceptron, 191
perceptual world, 4
perfect environment model, 133
performance surface, 190
period, 290
period doubling, 295
period–doubling bifurcation, 295, 317,

321, 384
periodic orbit, 65, 288, 292
periodic orbit theory, 334
periodic phase synchronization, 402
periodic solution, 290
personality, 2, 30
personality psychology, 109
personality tests, 68
phase, 500, 502
phase change, 239
phase coherence, 607
phase difference, 403, 610, 624
phase plane, 284
phase space, 275, 302
phase synchronization, 402
phase trajectory, 296
phase transition, 280
phase–flow, 275, 283
phase–locking, 457
phase–space, 296
phase–space path integral, 511
phenomenology, 104
phenotype, 244, 246

physical Hamiltonian function, 444
physically–controllable systems

of nonlinear oscillators, 627
Piaget theory, 71
Pickover’s biomorphs, 328
pinball game, 276
plan, 1
Planck’s constant, 464
planning, 179
playground swing, 279
Poincaré map, 293
Poincaré section, 309, 386
Poincaré–Bendixson theorem, 285
Poincaré map, 323
Poincaré section, 322, 333
Poincaré–Bendixson theorem, 280
point orbit, 65, 288
Poisson bracket, 494
Poisson detection statistics, 502
polar form, 500
policy, 131
political philosophy, 91
population models, 318
position of equilibrium, 296
positional stiffness, 447
positive leading Lyapunov exponent,

381
positive Lyapunov exponent, 273
posterior–mode estimate, 158
potential function, 294, 327
practical reasoning, 180
pragmatics, 19
Prakrti, 95
Prandtl number, 316
predicate calculus, 141
predicate logic, 216
predictability time, 381
prediction/forecasting, 123, 179
predictive validity, 69
premises, 216
Prigogine, 296
Prim’s algorithm, 156
primary factors, 31
primary term, 220
principal axis factoring, 54
principal component analysis networks,

204
principal components analysis, 52
principal factor analysis, 54
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principal factors, 60

principal intelligence factor, 45

principle of locality, 522

Principle of relativity, 479

Principle of superposition of states, 464

pristine, 636

probabilistic description, 498

probability, 6, 463

probability amplitude, 466, 514

probability conservation law, 464

probability density function, 47, 500

probability distribution, 150

probability distribution function, 631

probably approximately correct
learning, 127, 129

problem solving, 8

product–moment, 46

product–topology theorem, 449

production rule, 143

production–rule agents, 169

products, 296

Prolog atom, 143

Prolog term, 143

Promax rotation, 58

proof by contradiction, 142

propositional logic, 142, 216

protozoan morphology, 327

pruning, 332

psyche, 107

psychic energy, 110

psychoanalysis, 109

psychological continuum, 219

psychological tests, 68

psychology, 1

psychometric function, 79

psychometric testing, 41

psychometrics, 42

psychophysics, 76

psychoticism, 33

pull–back, 447

pulse, 585

punishment, 17

pure continuous spectral form, 476

pure delayed reward functions, 132

pure discrete spectral form, 475

Purusha, 95

Pyragas control, 387

Qlearning, 135
quadratic I&F neuron, 419
quadratic programming, 165
qualitative changes, 313
quantization, 465
quantum brain, 592
quantum coherent state, 501
quantum computation, 534
quantum computers, 607
quantum consciousness, 583
quantum decoherence, 527
quantum entanglement, 455, 467, 524,

526
quantum Hamilton’s equations, 470
quantum observables, 526
quantum pictures, 470
quantum superposition, 466
quantum teleportation, 455
quantum tunneling, 110
quantum–mechanical wave function,

607
quaternions, 38
qubits, 607

radial basis function, 166
radial basis function network, 203
random variable, 498
ransition–emission pair, 158
rate of error growth, 380
Raven’s Progressive Matrices, 44
Rayleigh–Bénard convection, 378
reactants, 296
real part, 500
reason, 1
reasoning ability, 44
recognize–act cycle, 180
recombination, 240
rectified–and–discretized, 450
recursive behaviour, 143
recursive homotopy dynamics, 603
reduce, 59
reflectance pattern, 212
reflection, 39
regression, 163
regular points, 301
reinforcement, 17
reinforcement learning, 84, 122, 130,

456
relative degree, 376
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relativistic Hamiltonian form, 479
relaxation oscillator, 305
reliable predictor, 319
repeller, 334
repelling focus, 289
repelling Jordan node, 289
repelling line, 289
repelling node, 289
repelling spiral, 289
representative point, 296
reproduction, 240
resistive loading, 611
resistively & capacitively–shunted

junction, 628
resistively–shunted Josephson junctions,

623
resistively–shunted junction, 628
resolution rule, 142
resonance, 608
resonate–and–fire neuron, 418
rest points, 284
return map, 333
reward–signal, 130
Ricatti ODE, 364
Riemann curvature tensor, 605
rigged Hilbert space, 473
Rosenblatt, 191
Rossler, 310
Rossler system, 310
roulette, 248
roulette wheel algorithm, 241
route to chaos, 280, 295
rules fire, 231
Russell Paradox, 102

saddle, 285, 289
saddle–node bifurcation, 295
saddle–node bifurcation theorem, 359
samadhi, 578
sample, 48
Sankaracharya, 160
Sankhya school, 95
Sarsa, 135
satisfiability, 142
Scholastic tradition, 99
Schrödinger, 462
Schrödinger equation, 501, 510
Schrödinger evolution, 538
Schrödinger picture, 470, 515

Schrödinger’s Cat, 525
Schrödinger’s method, 462
Schrödinger’s wave , 463
Scientific Community Metaphor, 140
scientific method, 84
scientific revolution, 10
scope, 137
score, 59
scoring function, 161
search, 190
search algorithm, 142
search for truth, 97
search space, 238
search strategy, 161
second quantization, 484
selection method, 248
Self, 108, 111
self–limiting process, 319
self–organization, 117, 252, 456
self–organizing maps, 252
semantic theory of truth, 97
semi–parametric classifiers, 186
semi–supervised learning, 122
semiotics, 19
sensation, 108, 174
sensitive dependence on initial

conditions, 279
sensitivity to initial conditions, 279
sensitivity to parameters, 279
sensory adaptation, 14
sensory analysis, 80
sensory threshold, 79
servo–controllers, 447
servoregulatory loops, 447
set, 218
set of high mountains, 218
set of probability coefficients, 462
set operation, 220
shadow, 108
short–term memory, 210
short–term predictability, 280
signal detection theory, 80
signal velocity, 210
simulated annealing, 84, 196, 252
single deterministic trajectory, 501
singleton, 219
singular value decomposition, 53
situation, 174
situation awareness, 174
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slope parameter, 189
slow–wave bursting, 422
Smale’s horseshoe, 279
small world, 629
small–world networks, 627
SMO algorithm, 166
social and emergent learning, 130
Social Darwinism, 239
social organization analysis, 184
sociolinguistics, 19
soft margin method, 167
SoftMax action selection, 136
solution, 378
solution curve, 288
space, 166
spatiotemporal networks, 215
spectral theorem, 53
spectral theory, 462
speech recognition, 158
speech–to–text translation, 157
spin–wave modes, 622
spindle receptors, 447
split–brain, 68
stable manifold, 302, 323, 336
Standard Additive Model, 228
standard deviation, 47
standard map, 324
standard normal distribution, 47
standard problem–solving techniques,

84
standard saddle, 290
standard sink, 290
standard source, 290
standardised likelihood, 162
Stanford–Binet, 44
state, 174, 282
state space, 275
state value function, 133
static backpropagation, 188
statistical learning theory, 127
steepest descent method, 191
step size, 191
stochastic diffusion search, 252
Stochastic forces, 445
stochastic processes, 116
stochastic system, 283
strange attractor, 118, 260, 281, 309,

314–316
stretch–and–fold, 309

strong AI, 112
strong alife, 254
structural equation modelling, 55
structural stability, 278
structure–finding algorithm, 161
substantial view, 90
subsumption architecture, 171
sum, 503
sum–over–histories, 500, 503
superconducting–normal transition, 617
superconductivity, 576, 606
superfluidity, 576
superposition principle, 286
supervised, 456
supervised learning, 122, 163
supervised network, 188
support, 219
support vector machine, 128, 129, 163
support vector regression, 167
support vectors, 164
supra–personal archetypes, 107
surjective, 26
survival of the fittest, 240
survival probability, 334
survivor selection, 249
swarm intelligence, 237, 251
syllogism, 4
symbol–based learning, 122
symbolic dynamics, 332
symmetric–key cryptography, 125
synchronicity, 107
synchronization, 394, 457
synchronization in chaotic oscillators,

402
synchronization of coupled nonlinear

oscillators, 626
synergetics, 406
system input–output relation, 224

tail recursion, 142
Tao, 100
targeting, 379
taste, 219
tautology, 142
taxicab geometry, 256
teleological mechanisms, 116
temperature value, 136
temporal dynamical systems, 211
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temporary phase–locking, 402
tensor–field, 275
term set, 220
the angle between the two vectors, 49
theoretical ecology, 321
theory of cognitive development, 71
thermodynamic equilibrium, 298
thermodynamics, 262
theta–neuron, 419
thinking, 108
thought, 89
thought experiment, 520
three–point iterative dynamics equation,

66
Tierra, 255
time–dependent Schrödinger equation,

465, 500
time–difference method, 133
time–independent, 363
time–lagged recurrent networks, 205
time–ordering operator, 616
TOGA meta–theory paradigms, 70
top–down object–based goal–oriented

approach, 70
topological entropy, 277
topologically equivalent, 290
torus, 448
total Hilbert state–space, 474
total spectral form, 474
total spectral measure, 475
total transition amplitude, 500
total transition probability, 500
tournament method, 241
tournament selection, 248
training data, 164
trajectory, 275, 284, 332
transcritical bifurcation, 411
transducer neurons, 308
transduction, 122
transformation rules, 105, 141
transition, 462, 501
transition amplitude, 502, 509
transition probability, 501, 502
trapdoor one–way function, 127
trapped attractor, 311
traveling salesman problem, 155
Triarchic theory of intelligence, 41
true beliefs, 13
truth as correspondence, 97

truth–in–itself, 105
turbulence, 278
Turing test, 119
turiya state, 577, 580
two forms of quantum electrodynamics,

486

uncertainty, 179
uncertainty dimension method, 349
uncertainty exponent, 313
unconscious complex, 107
undamped pendulum, 303
underdamped junction, 628
underdamped ladder array, 636
unification, 142
union, 220
universal approximation theorem, 198
universal quantifier, 216
universe of discourse, 218, 219
unstable manifold, 323, 336
unstable periodic orbits, 335
unsupervised/self–organized learning,

122
utility theory, 128
uzzy expert systems, 215

vacuum distribution, 482
vacuum state, 502, 562
value function, 132
Van der Pol oscillator, 375
Vapnik–Chervo-nenkis SVM theory, 166
Varimax rotation, 57
Vashishta, 160
vector–field, 275, 284
velocity and jerk, 447
very–large–scale integration, 111
Viterbi algorithm, 157
Viterbi path, 157
Vivekananda, 160
voltage–to–frequency converter, 610
Voronoi tessellation, 254

Wada basins, 360
wave equation, 464
wave psi–function, 466
wave–particle duality, 110, 502
weak AI, 112
weak alife, 255
weakly–connected neural network, 94
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Weber–Fechner law, 76
Wechsler Adult Intelligence Scale, 44
Wechsler–Bellevue I, 45
whirling modes, 622
whirling regime, 625
Wigner function, 559, 560
Wigner’s friend paradox, 526
will, 89
Winfree–type phase models, 626
wisdom, 2, 37
work domain analysis, 184

work organization analysis, 184
working coexistence, 428
wrapper, 52

yang, 110
Yang–Mills relation, 373
Yerkes–Dodson Law, 35
yin, 110
young people, 218

Zero–Moment Point, 431




