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Abstract. We study the self-organized aggregation of a swarm of robots
in a closed arena. We assume that the perceptual range of the robots are
smaller than the size of the arena and the robots do not have informa-
tion on the size of the swarm or the arena. Using a probabilistic aggrega-
tion behavior model inspired from studies of social insects, we propose a
macroscopic model for predicting the final distribution of aggregates in
terms of the parameters of the aggregation behavior, the arena size and
the sensing characteristics of the robots. Specifically, we use the parti-
tion concept, developed in number theory, and its related results to build
a discrete-time, non-spatial model of aggregation in swarm robotic sys-
tems under a number of simplifying assumptions. We provide simplistic
simulations of self-organized aggregation using the aggregation behavior
with different parameters and arena sizes. The results show that, de-
spite the fact that the simulations did not explicitly enforce to satisfy
the assumptions put forward by the macroscopic model, the final ag-
gregate distributions predicted by the macroscopic model and obtained
from simulations match.

1 Introduction

Aggregation, defined as “the collecting of units or parts into a mass or whole”[1],
can be considered as one of the fundamental behaviors of swarms. In nature, ag-
gregation behaviors, observed in organisms ranging from bacteria to social insects
and mammals[2], increase the survival chance of the swarm in hostile environ-
ments. Although some of these aggregations can be traced back to environmental
cues, others are self-organized.

We believe that self-organized aggregation, that do not require a cue from the
environment or centralized control, is an essential competence for swarm robotic
systems[3,4]. In these systems, aggregation behaviors can act as precursors for
more complex behaviors such as flocking, pattern formation or self-assembly[5].
However, like other behaviors that produce self-organization, engineering aggre-
gation behaviors is a major challenge. Although the general structure of aggre-
gation behaviors can be inspired from studies of social insects, the relationship
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of behavioral parameters, and environmental factors to the performance of self-
organized aggregation remains an open problem.

In this paper, we propose a probabilistic aggregation behavior for swarm
robotic systems and develop a macroscopic model to predict the performance
of the aggregation behavior under different parameters of the swarm system.

2 Related Studies

2.1 Aggregation

Studies of aggregation can be grouped in three different but related fields;
namely, social insect studies, control theory, and swarm robotics. In social insect
studies, aggregation, a rather common phenomenon in ants, cockroaches, etc.,
is a rather well-studied phenomenon. In [6], Deneubourg et al. studied the ag-
gregation behavior of cockroaches, that aggregate in hiding sites. They studied
the modulation of the resting time, defined as the time a cockroach spends in an
aggregation. They observed that the resting time of cockroaches is proportional
to the number of individuals in the aggregate. Hence, individuals tend to spend
more time in large aggregations, and that this provides a positive feedback for
growth of aggregations. In another study[7], Jeanson et al. presented a model of
aggregation in cockroach larvae in homogeneous conditions. It was observed that
the behavior of individuals depend on the number of larvae in their close vicinity.
The authors computed the parameters of their model through systematic exper-
iments on the larvae, and showed that similar aggregations can be obtained in
simulations using these parameters.

In control theory, aggregation is often referred as the gathering, the agreement
or the rendezvous problem. In most of these studies[8,9], however, the robots are
modeled as points without orientation neglecting even the physical embodiment
of the robots. Also, it is usually assumed that all robots can perceive the location
of all the other robots in the swarm. In these studies, the major axis of research
focus on the convergence characteristics of aggregation methods. For instance,
in [10], it was shown that explicit bounds on the swarm size and bounds on the
time of convergence can be obtained for aggregation.

When perception range is limited, however, aggregation of robots into a single
aggregate becomes a more difficult problem. Deterministic algorithms work only
when there are no isolated robots in the swarm [11]. Even without isolated
robots, it was noted that, convergence may take an infinitely long time [8] in some
scenarios. In the same study, Flocchini et. al proposed an aggregation algorithm
which can provide guaranteed aggregation in finite time that required limited
visibility with distinguishable robots and a common orientation decided by the
robots. In a similar approach proposed in [12], Lin et al. utilized the geometric
constraints on the behavior of robots to develop an aggregation behavior.

In swarm robotic systems, the problem of engineering and evaluation of ag-
gregation behaviors have been tackled by a number of studies. We would like
to first note that, aggregation refers to the forming of aggregates by the robots
themselves, and is fundamentally different from the aggregation of passive items
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(like pucks) by a swarm of robots. We consider the latter problem as the clus-
tering problem, and distinguish it from the aggregation problem.

In [13], one of the early studies on the problem, robots were required to form
aggregates of pre-determined size around infrared beacons. Inspired by birds
and frogs, the proposed method used a chorus consisting of individuals who can
approximate the size of the aggregates using variations in sound. This method
was also tested on systems without infrared beacons that trigger aggregation.
The results indicated that, self-organized aggregation can be obtained with this
method only in virtually noiseless environments.

In [14], Trianni et. al used genetic algorithms to study the evolution of neural
networks to generate aggregation behaviors for a swarm of robots. Aggrega-
tion behaviors that were evolved in simulation, were partially tested on physical
robots. It was shown that evolution was able to generate two different aggrega-
tion strategies: (1) static aggregation behaviors where robots remain still in ag-
gregates, and (2) dynamic aggregation behaviors where robots continue moving
in aggregates. It was shown that the evolved behaviors demonstrated a certain
degree of scalability to generating aggregates in larger swarm sizes and larger
arenas than the ones that the behaviors were evolved in.

Bahçeci et. al [15] investigated the use of evolutionary methods for develop-
ing aggregation behaviors. They systematically investigated the performance of
behaviors evolved with different evolution parameters for the aggregation task.
Based on the results of the systematic experiments, they proposed a number of
rule of thumbs that can be used for evolving behaviors for swarm robot systems.

In a former study[16], we used a probabilistic aggregation behavior for study-
ing aggregation in simulated swarm robotic systems. We investigated the effect
of probabilistic parameters on aggregation performance through systematic ex-
periments on a physics-based robot simulator, and identified different control
parameters that lead to dynamic and static aggregation strategies.

2.2 Modeling

The engineering and evaluation of behaviors that generate self-organization in
swarm robotic systems, such as self-organized aggregation, is a challenging prob-
lem. Although it is easy to propose generic behaviors for self-organization, it is
hard to set their parameters and predict their performances for different swarm
sizes and environments. Conducting systematic experiments is a difficult task,
even with simulated swarm robotic systems, requiring a large amount of compu-
tation time. Despite this, however, the results obtained from such experiments
provide little insight to the relationships between the performance of the behav-
iors and the parameters of the swarm system.

Constructing macroscopic models to describe the behavior of swarms can pro-
vide a viable approach to guide the design of swarm behaviors [17]. Macroscopic
models, once developed, can provide explicit relationships between the parame-
ters of the swarm system and its performance. Through such relationships, one
can derive or evaluate the performances of a behavior under different parameters
settings, and choose the optimum parameter values for a desired task. Despite
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these advantages, however, building macroscopic models for swarm robotic sys-
tems is a challenging task and there are few studies in the literature.

Most of the existing macroscopic models[17,18,19] used rate equations and
Markovian processes to model the behavior of swarm robotic systems. These
models generally represent the environment and behavioral states with proba-
bilistic variables and define the change of these variables. In [20], Martinoli et.
al proposed a probabilistic model for puck clustering task. In this problem, a
number of pucks that are initially dispersed within a bounded arena, are clus-
tered by a swarm of robots. The robots grip pucks in the arena and transporting
them closer to other puck clusters. The model developed in this study was val-
idated against the simulated and physical robots through experiments. In [19],
Agassounon et. al. extend the object aggregation model described in [20] to a
macroscopic level.

In [21], Kazadi defined the global goals as mathematical constraints an synthe-
size behaviors as to satisfy them. The behavior of the system can be investigated
using the goal constraints. Lee et. al applied this concept to robot aggregation
in their recent work [22] and showed that a controller for aggregation can be
constructed using results form the clustering algorithm.

3 Aggregation Problem

We define aggregation as the gathering of a swarm of robots, that are initially
dispersed into a closed arena, into preferably a single aggregate. We assume that;
(1) The arena is bounded. (2) The perceptual range of robots is smaller than
the size of the arena and that the initial positioning of the individuals may not
necessarily form a connected graph. (3) The individuals in the swarm do not
have any knowledge regarding the size of the arena or the swarm.

The first assumption removes the possibility that some robots may get lost
during the aggregation process and is very common in the aggregation studies
with social insects[7] and swarm robotic systems[13,14]. The second assumption
makes the aggregation problem more realistic and difficult. It also rules out any
centralized coordination mechanisms that may be proposed for the problem. The
third assumption rules out any solutions to the aggregation problem that may
be specific for a particular swarm and/or arena size.

4 Aggregation Behavior

In this study, we use an aggregation behavior that is implemented as a finite
state machine as shown in Figure 1(a). The behavior consists of three basic
behaviors, namely random walk, wait and approach. The random walk behavior,
once activated, controls the robot for a certain pre-specified duration, moving
the robot in the arena randomly while avoiding other robots and the walls of
the arena. After the expiration of the random walk behavior, if the robot has an
aggregate in its perceptual view, the robot switches to the approach behavior,
else, the robot switches into the wait behavior, creating a one-robot aggregate.



A Macroscopic Model for Self-organized Aggregation 31

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robot 
close

Pleave 

Robot 
perceived 

No robot 
perceived 

Random 
Walk

Approach 

Wait 

 
 
 
 
 
 
 
 
 
 
 
 
  

A 

S1 

robots 

S3 

(a) (b)

Fig. 1. (a) Aggregation behavior. Ovals display the simple behaviors and arrows rep-
resent the behavior transitions. (b) A sketch of the environment. The square frame
represents the arena. The gray circles represent the robots and dashed circles represent
the part of environment where the robot aggregate can be perceived by another robot,
i.e Sm’s. See text for more details.

In the wait behavior, the robot remains still with a certain probability to
switch to the random walk behavior. The probability of leaving the wait behavior
is denoted as Pleave. In the approach behavior, the robot moves toward the
closest aggregate perceived. When the robot gets into the close proximity of the
aggregate, the robot switches into the wait behavior.

We believe that the proposed aggregation behavior is consistent with the
ones observed in natural swarms and is generic enough to represent different
aggregation strategies through changes in transition probabilities. However, the
performance comparison of different aggregation strategies that can be generated
from this generic behavior, remains a challenge, and will be our motivation for
constructing a macroscopic model.

5 A Macroscopic Model for Aggregation

We assume that there are n robots randomly placed in a closed arena of size A.
We define an aggregate of robots as the group of robots who are in local proximity
of each other, i.e. a connected group of robots who can sense each other through
their proximity sensors. An aggregate which consists of m robots is called as an
m-aggregate. The area within which an m-aggregate can be perceived by another
robot is called as Sm, representing the area of the attraction region for the
aggregate. Although, Sm would depend on the grouping of the m-aggregate, we
will assume that all m-aggregates have a rather compact grouping and that the
area of their attraction regions can be approximated with a single Sm value.
Figure 1(b) shows an exemplary sketch of the environment.

In the macroscopic model, the state of the swarm aggregation is denoted as a
configuration Ca1,a2,..,ak

, where each ak represent the existence of an ak-aggregate
in the arena and that

∑
i=1..k ak = n. The configuration of a sample aggregation
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state shown in Figure 1(b) is denoted as C4,3,1,1,1 indicating that there exist
five aggregates in the arena with sizes 4, 3, 1, 1 and 1. Such a representation
corresponds to the notion of partition in mathematics which is formally defined
as an unordered set of positive integers whose sum is n [23]. Finally, we would
like to note that, in this representation the spatial positioning of the aggregates
are ignored, and two distributions are considered equivalent if they have equal
number of aggregates, all with the same size.

In order to analyze the evolution of the configuration of the robots, we need
to consider possible changes in the size of aggregates. These changes occur when
robots leave their current aggregates to form a new one-robot aggregate or to
join an existing aggregate. Such changes can be modeled as transitions in the
configuration of the swarm. Our ultimate goal is to construct a macroscopic
model that can model these transitions to make predictions about the time
evolution and performance of a certain aggregation strategy. However, within
this paper, we will construct a constrained macroscopic model which will make
two simplifying constraints; (1) Only single robot transitions happen among the
aggregates. (2) The probability of robot transitions between two aggregates is
independent of the distance in between.

The first constraint assumes that the probability of multi-robot transitions
among aggregates is small and can be neglected to simplify the temporal analysis
of the aggregation process. In swarm robotic systems, such an assumption can be
approximately made to hold by choosing a small Pleave value for the aggregation
behavior. The second constraint assumes that the probability for a robot, which
left its current aggregate, to join another aggregate is independent of the distance
between the two aggregates. This assumption is made to simplify the spatial
analysis and can be considered to approximately hold when the duration of the
random walk behavior is chosen long enough with respect to the size of the arena.

The changes in configurations can be modeled as probabilistic transitions and
that a graph can be constructed to visualize them, as shown in Figure 2. In this
graph, each node corresponds to a configuration and directed weighted edges
represent the probabilistic transitions from one configuration to another. The
central view of our macroscopic model is that, if one can compute the probability
of transitions between these configurations from the parameters of the swarm
system, it is possible to deduce the evolution of the aggregation in time. Here,
the parameters of a swarm system consists of the parameters of the aggregation
behavior, Pleave, the sensing characteristics of the robots through Sm values, the
size of the swarm n, and the area of the arena A.

Note that the limitation of transitions to single-robot transitions simplifies
the connectivity of the graph greatly reducing the complexity of the model.
However, despite this, the number of possible configurations and the probabilistic
transitions among them grows exponentially making it difficult, if not impossible,
to compute the transition probabilities of the model.

Here, we would like to point out that, the ultimate goal of aggregation is to form
a single aggregate that contains all the individuals in the arena. Hence, we pro-
pose to use the size of the largest aggregate in a configuration, as its performance
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Fig. 2. Configuration graph re-ordered according to equivalence classes

C1 . . . Cm−1 Cm

Pg(n,m)

Ps(n,m)

Pr(n,m)

Cm+1 . . . Cn

Fig. 3. Equivalence classes and the transitions between them

metric. With this metric, we can group all the different configurations with the
same metric value, into equivalence classes. All the configurations that contain
one or more m-aggregates as their largest aggregate(s) can be lumped into a single
equivalence class denoted by Cm. Hence, the transition graph of different config-
urations can be arranged according to their equivalence classes.

As a result of this grouping , in a swarm of size n, there can be only n equiv-
alence classes. Also, using the single-robot transition assumption, we can limit
the probabilistic transitions among these classes to transitions among consecu-
tive equivalence classes in Figure 3.

Figure 4 shows all possible configurations of n = 7 robots as grouped into 7
equivalence classes. Note that, the spatial location of the aggregates is left out
by our representation, and that the locations of the aggregates drawn on the
figure is only exemplary.

With this representation, the system can only stay in one equivalence class
or change into a neighboring equivalence class in one transition. The transitions
between the equivalence classes will be denoted with three probabilities:

P s(n, m): the probability that the largest aggregate shrinks.
P g(n, m): the probability that the largest aggregate grows.
P r(n, m): the probability that the largest aggregate remains the same.

5.1 Probabilities for Shrinking

Shrinking is defined as a change in the configuration such that the largest ag-
gregate is reduced by one as the result of a single-robot transition. Effectively,
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Fig. 4. All configurations of 7 robots grouped into equivalence classes

it means a transition from a configuration in equivalence class Cm to another
configuration in equivalence class Cm−1.

First, note that the number of m-aggregates must be 1 such that shrinking can
occur. Let’s call the number of m-1-aggregates as k. If k = 0, meaning there is no
aggregate with size m − 1 then there is a single aggregate the robot should not
join for shrinking to occur, that is the aggregate it left. If k > 0 then the robot
should not join any of these k aggregates and the aggregate it left. Therefore,
the probability of shrinking when there are k m-1-aggregates is

A − (k + 1) · Sm−1

A
,

which denotes the probability that the robot would not end up in the attraction
regions of the m-1-aggregates in the arena.

The transition probabilities between configurations in consecutive classes
needs to be integrated over all the configurations in the initial class. Hence,
the probability of being in a configuration that included only one m-aggregate
and a certain number of m-1-aggregates over all possible configurations need to
be calculated. In order to calculate these probabilities, we will depend heavily
on number theory concepts. A partition function q(n, m), gives the number of
ways to write n in terms of positive integers where the largest one is less than
or equal to m [24] . If we fix the first aggregate to size m, the number of ways
to write the rest with the largest being m gives us the number of configurations
in Cm. This is equivalent to q(n − m, m).
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In Cm, the number of configurations that contain k m-1-aggregates and a
single m-aggregate can be calculated using the partition function

q(n − m − k(m − 1), m − 2).

This formulation guarantees that the rest of the aggregates are neither of size
m nor of size m − 1 by limiting the required largest aggregate size to m − 2.

Combining these, we can derive the shrinking probability for Cm as:

P s(n, m)=
m · Pleave

n
·
�n−m

m−1 �∑

k=0

·q(n − m − k · (m − 1), m − 2)
q(n − m, m)

A − (k + 1) · Sm−1

A
,

where k ranges from 0 to the maximum number of aggregates of size m − 1 in
Cm, which can be computed as

⌊
n−m
m−1

⌋
.

Note that for n = m, corresponding to the case that there is a single cluster
that contains all robots, q(0, m) = 1 as zero is considered to have a single
partition which is the empty partition. Therefore, Ps(n, n) is reduced to

Pleave · A − Sn−1

A
,

which reflects the case that the single large cluster will shrink if any of the robots
leaves the cluster and does not come back.

5.2 Probabilities for Growth

Growth is defined as a change in the configuration such that the largest aggregate
is increased by one as the result of a single-robot transition. Effectively, it means a
transition from a configuration in equivalence class Cm to another configuration
in equivalence class Cm+1.

First, note that the growth probabilities depend on two factors: the size of the
aggregate that the robot is and the number of m-aggregates, denoted by t and k
respectively. For given t and k, the probability of growth can be computed as:

α

q(n − m, m)
· t · Pleave

n
· k · Sm

A
,

where α is the number of t-aggregates in all configurations of Cm that also contain
k m-aggregates.

Here, the value of α can be computed using p̂(n, t) and q̂(n, m, t) functions.
p̂(n, t) corresponds to the number of occurrences of t in all partitions of n and
q̂(n, m, t) corresponds to the number of occurrences of t in all partitions of n
where largest term is less than or equal to m. p̂(n, t) can be calculated with the
following recurrence relation:

p̂(n, t) =

⎧
⎨

⎩

0 t > n
1 t = n
q(n − t, n − t) + p̂(n − t, t) t < n.
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In the recursion step, we can add t to all possible partitions of n − t, that
will each have one more t. Since partitions of n − t may contain more t’s we add
p̂(n − t, t). We now define q̂(n, m, t) as:

q̂(n, m, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t > m
q(n − t, m) + q̂(n − t, m, t) t = m, t < n
q̂(n, m − 1, t) + q̂(n − m, m, t) t < m < n, t < n
p̂(n, t) otherwise.

In the first recursion case, we follow a similar construction with p̂(n, t). This
time, q(n − t, m) is used instead of q(n − t, n − t) since we want to limit largest
aggregate size to m. The second recursion case splits the partitions into two
disjoint sets; the first one containing no terms equal to m, and the second one
containing at least one term equal to m. The number of occurrences of t is sum
of occurrences in these two sets. Note that, t < m in this case, hence the number
of occurrences in the second set discounts this mandatory term m.

If there are k m-aggregates, the number of occurrences of t in all such config-
urations is:

q̂(n − k · m, m − 1, t).

Using q̂ and the previous result, we can calculate the total probability of growth
for all aggregates of size t. We call this function γ:

γ(n, m, t, k) =
q̂(n − k · m, m − 1, t)

q(n − m, m)
· t · Pleave

n
· k · Sm

A
; t < m.

Note that this definition of γ is only valid for t < m since the transitions
between m-aggregate do not fit the rule explained above. Handling this special
case is not very difficult since we know that there are exactly k aggregates of
size m. The number of configurations with exactly k aggregates of size m can
be computed with q(n − k · m, m − 1). In each of these configurations, a robot
from k different aggregates can join one of the k − 1 aggregates to increase the
size of largest aggregate. So we extend the definition of γ as follows:

γ(n, m, k, t) =

{
q̂(n−k·m,m−1,t)

q(n−m,m) · t·Pleave

n · k·Sm

A ; t < m
k·q(n−k·m,m−1)

q(n−m,m) · t·Pleave

n · (k−1)·Sm

A ; t = m

The total probability of growth is the sum of these probabilities for all possible
k and t values. For each different number of aggregates of size m, we need to
consider all aggregate sizes that can lose a robot that could increase the size of the
largest aggregate. These separate cases add up to the total growth probability.

Pg(n, m) =
� n

m�∑

k=1

m∑

t=1

γ(n, m, k, t).
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5.3 Probabilities to Remain Same

Once the shrinking and the growth probabilities are derived, the probability of
remaining in the same equivalence class can be derived as:

P r(n, m) = 1 − P s(n, m) − P g(n, m).

5.4 Macroscopic Model

The probability distribution of being at different equivalence classes Cm at time
t is represented with F (t) which is a probability vector (i.e. have positive real-
valued entries summing up to 1) with n entries. Using M we can calculate the
value of F (t + 1) with:

F (t + 1) = M · F (t).

Here, M is called the system matrix which consist of the probability values
derived above as:

Mm,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P g(n, m) m = i − 1
P s(n, m) m = i + 1
P r(n, m) m = i

0 otherwise.

The steady state behavior of the system can then be obtained by iterating the
system for infinite number of steps:

F (∞) = M∞ · F (0).

Notice that M is a left-stochastic matrix since its rows are probability vectors.
Stochastic matrices can be considered as representations of the transition proba-
bilities of a first-order finite Markov chain. Furthermore, the M matrix is regular
since the matrix power Mk will contain only strictly positive entries for some
k [25]. According to the Perron-Frobenius theorem, such a system has a unique
convergence point [26] meaning that it will converge to a steady-state vector
representing the distribution of configurations as time goes to infinity. The final
steady-state of the system would be the eigenvector of the matrix corresponding
to the eigenvalue of unity.

6 Experimental Results

The predictions of the macroscopic model beg to be compared against results
obtained from simulated or real robots. We have developed a simple 2D robot
simulator for this purpose. The simulator supported simplified physical interac-
tions between the robots, and the robot and the environment based on collision
detection and recovery. The simulated robots have a radius of 3 units. They have
infrared proximity sensors around them, to detect the existence of other robots
and also avoid the walls of the arena. The characteristics of the proximity sensors
control the Robot close condition which ends the approach behavior. The robots



38 O. Soysal and E. Şahin

are also equipped with a omnidirectional long-range sensor through which they
can sense each other within 30 units. This sensor, gives the center of mass for the
robots in the perceptual view of the robot and determine the attraction regions
(Sm) of the aggregates. The S1 is computed as 2826 unit2 (computed as π·30·30)
using the range of the long-range sensor. Through empirical experiments, S20
was measured to be approximately 5800 unit2. The Sm values for the aggregate
sizes in between was obtained using a linear interpolation between these two
values. The random walk behavior duration is determined experimentally to be
20,000 simulation steps where robots can move around 1 units per simulation
step. Finally, we would like to note that, the simulator does not restrict the
movement of the robots and that more than one robot can be on the move at a
given time.

We have conducted two sets of experiments and compared the final aggregate
distributions obtained in simulation against those predicted by the macroscopic
model. In the first set of experiments, we have studied the effect of the Pleave

on the performance of the self-organized aggregation. In natural swarm sys-
tems, individuals are known to perceive the aggregates that they are in, and to
modulate their leaving probability with respect to the size of the aggregate[7].
Specifically, we simulated three different strategies for setting the leave proba-
bility: (1) Constant: Pleave(i) = G, (2) Inversely proportional to aggregate size:
Pleave(i) = G/i and (3) Inversely proportional to the square of aggregate size:
Pleave(i) = G/i2. G is chosen to be 0.00002 in all the experiments.

Each strategy was tested with three different swarm and arena sizes: (1) 5
robots in a 150×150 arena, (2) 10 robots in a 212×212 arena and, (3) 20 robots
in a 300 × 300 arena. These setups keep the robot density approximately same
while increasing the number of robots. Each simulation run lasted for 50,000,000
simulation steps, which was observed to be sufficient for stabilization.

For each of the nine cases, 50 simulation runs were made, and the largest
aggregate formed at the end of the simulations are recorded. Similarly, we used
the macroscopic model to predict the final distribution of the aggregates for
the same given parameters. The predictions of the model and the histogram of
the largest aggregates obtained from simulations are plotted in Figure 5. The
results indicate good match between model and the results of the simulation
experiments. The model correctly predicts that constant leave probabilities, that
is Pleave = G, should lead to small aggregates, whose mean size is determined by
the size of the swarm as shown in the top row of the figure. The plots shown in the
middle row indicates a phase transition from the top row to the bottom row. The
plots in the bottom row of the figure clearly show that for leave probabilities set
to be inversely proportional to the square of the aggregate size, that is Pleave(i) =
G/i2), the aggregation performance of the swarm is high. For three different
arena sizes, it can be seen that the aggregation behavior was able to generate
aggregates that contain all of the robots in the swarm for most runs.

These results are in aggreement with the results in [7]. In that study, Jeanson
et. al reported poor aggregation performance when the agents ignored the num-
ber of agents in their close proximity, which corresponds to constant probabilities
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Fig. 5. The comparison of macroscopic model predictions against results obtained from
simulations. Each plot shows the histogram of largest aggregates at the end of each
run. White boxes show the prediction of the macroscopic model and black boxes show
the results of experiments. Top row: Pleave(i) = G. Middle row: Pleave(i) = G

i
. Bottom

row: Pleave(i) = G
i2

. Note that, the black boxes do not have any error bars, since they
represent the normalized histograms obtained from 50 runs.

in our model. They also reported successful aggregation when rest durations are
increased more than linearly with respect to aggregate size which is similar to
the quadratic case in our experiments. The results with quadratic probabilities
are also comparable to results by Lee et. al, in which the controller is defined to
use decreasing leave probabilities for aggregates [22].

In a second set of experiments, we investigate the effect of swarm density,
which can be defined as the number of robots in the swarm divided by the arena
size, on the performance of the aggregation. We studied the aggregation behavior
of 5 robots in three different arenas: 150 × 150, 212 × 212 and 300 × 300.

When we used the leave probability setting, Pleave(i) = G/i2, which was
shown to be the best performer in the first set of experiments. The results of
the simulations and the predictions of the model are plotted in Figure 6. It can be
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Fig. 6. Comparison of model predictions with experimental results with respect to
arena size. Each diagram shows the histogram of largest aggregates at the end of each
run. White boxes show the prediction of macroscopic model and black boxes show
the results of experiments. Pleave(i) = G

i2
where i is the number of robots in the

aggregate. Note that, the black boxes do not have any error bars, since they represent
the normalized histograms obtained from 50 runs.

seen that there is an approximate match between the model’s predictions and
the results of the simulations. The results show that the aggregation performance
degrades with decreasing robot density, indicating that the constant used in the
leave probability is related to the density of the robots in the area for a desired
performance.

7 Conclusion

In this study we proposed a macroscopic model for self-organized aggregation
behavior in swarm robotic systems and compared its aggregation performance
predictions against results obtained from simulations. The macroscopic model,
resulting in a simple mathematical form allows detailed analysis, such as the op-
timization of behavioral parameters for desired aggregation performance if given
the number of robots, their perception range and the size of the environment.

However, we would like to explicitly state that the work presented in this
paper is not complete yet and the model presented here relies on a number of
restricting assumptions. As a possible result of these, there are a number of small
discrepancies between the model predictions and the simulation results, such as
the middle plot in Figure 6. There are many potential sources for these discrep-
ancies. As stated, the macroscopic model relies on a number of assumptions,
which are not fully satisfied in the simulations: (1) Single-robot transitions were
not explicitly enforced in the simulations, (2) spatial information regarding the
positions of the aggregates were excluded from the model, and (3) attraction
regions of the aggregates were based on rough estimations. Other than these,
cases like two aggregates joining into a single aggregate through a interconnect-
ing robot were completely neglected. A detailed analysis of these unsatisfied
assumptions on the performance of the aggregation remains a future challenge
for our studies.
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Oğulları” Career Project (Project no: 104E066) awarded to Erol Şahin by TÜBİ-
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