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Abstract. In swarm robotics, hundreds or thousands of robots have to reach a 
common goal autonomously. Usually, the robots are small and their abilities are 
very limited. The autonomy of the robots requires that the robots’ behaviors are 
purely based on their local perceptions, which are usually rather limited. If the 
robot swarm is able to join multiple instances of individual perceptions to one 
big global picture (e.g. to collectively construct a sort of map), then the swarm 
can perform efficiently and such a swarm can target complex tasks. We here 
present two approaches to realize ‘collective perception’ in a robot swarm. Both 
require only limited abilities in communication and in calculation. We compare 
these strategies in different environments and evaluate the swarm’s perform-
ance in simulations of fluctuating environmental conditions and with varying 
parameter settings. 

1   Introduction 

In robot swarms, hundreds or thousands of small and simple robots have to perform in 
a well-organized and efficient way to pursue common goals. With increasing size of 
the swarms, external controllers that have a ‘global view’ of the swarm’s environment 
get inefficient because the control of each single robot within the swarm gets intracta-
ble even for strong computers. Also pre-calculated plans represent no solution with 
swarm sizes beyond a few hundred robots. Another problem is the inter-robot com-
munication in such huge swarms, because if every robot has to communicate with 
every other robot, the required width of the communication channel increases  
non-linearly with the swarm size. In the I-SWARM project [1][2][3], we want to im-
plement a swarm of very small robots (approx. 8mm³ size) that is able to perform col-
lective perception. To us, the term “collective perception” describes a way that allows 
taking advantage at the global (swarm) level from a mass of complex data sensed in 
parallel on the individual level. The final swarm decision is made at the conceptual 
level by a group of collaborative agents. This ability can enhance the performance of 
a swarm (e.g. optimize patch selection for foraging tasks [4]) and expands its range of 
application. The I-SWARM robots have only limited sensorial abilities and can com-
municate only at short distance by LED’s and photodiodes. These restrictions create a 
demand for simple solutions of collective perception strategies.  

Animal swarms demonstrate that a set of relatively primitive individual behaviors 
enhanced with local communication can produce a large set of complex swarm behav-
iors. Such animal swarms show self-organization [5] and swarm-intelligence [6][7]: 
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Bacteria, ants and bees are able to choose the optimal feeding site and to recruit an 
appropriate fraction of foragers to each food site. Ants use pheromones to manage this 
decision making collectively. Honeybees use a variety of dances performed near the 
hive entrance to choose their feeding sites and to recruit the appropriate number of 
forager bees and food-storage bees. In both cases, individual animals do not visit sev-
eral feeding sites and do not compare them individually. In contrast, pheromones and 
dances generate a structured environment that is regulated by positive and by negative 
feedback loops. These specialized environments act like ‘maps’ that are built up col-
lectively and that are ‘read’ by many individuals in parallel. The most fascinating 
examples of ‘collective perception’ are found in honeybees. Forager bees and storage 
bees evaluate simple cues like queuing delays [8][9][10], searching times for empty 
combs [11] and multiple nectar transfers [12] to assess the current global workload 
balancing, the global need for comb construction and the environmental nectar flow.  

Our approach to a bio-inspired technique for collective perception in swarm robot-
ics is inspired by one of these examples of ‘collective perception’ in honeybees: By 
evaluating trophallactic contacts1 forager bees can indirectly assess the current ratio of 
brood demand to pollen supply in the colony without inspecting brood area and pollen 
stores individually [13][14][15]. Nurse bees eat and digest pollen to derive a proteina-
ceous food (jelly) from it [16]. This jelly is fed to larvae and is exchanged frequently 
among adult bees. In times with high pollen demand, when a lot of brood has to be 
fed, the larvae consume the main part of the proteins, so that forager bees do not re-
ceive high amounts of proteins through trophallaxis. It is assumed that foragers are 
therefore more “protein hungry” and are more likely to forage for pollen instead of 
nectar. This way, the colony responds to a high pollen demand by recruiting more 
foragers to pollen collecting. The collective of forager bees indirectly perceives the 
current ratio of brood to food. In addition to proteins, the brood also consumes large 
amounts of nectar and nectar is also passed from bee to bee via trophallaxis. 

Our goal was to use mechanisms in our robot swarm that are as simple as the  
biological examples mentioned above. We tested two approaches, one is a rather 
technical solution and was already used in swarm robotics, and the other approach is 
inspired by the trophallactic interactions of honeybees. Both methods are compared in 
the same simulated environment. The bio-inspired strategy is evaluated in detail and 
the importance of its parameters is analyzed in detail. Finally, the bio-inspired ap-
proach had to demonstrate its advantages in a fluctuating environment. 

2   The Scenario 

In the experiments described here, we used our simulation platform LaRoSim (Large 
Robotswarm Simulator), which we already described in [17][18]. The simulator is a 
multi-agent simulation of approx. 1000 robots that move in an arena. These robots can 
communicate by LED’s and photodiodes and can also sense walls and obstacles this 
way. In addition to that, special (color) marks on the floor can be sensed, but only if 
the robot is located directly above such a mark. 

                                                           
1 Trophallaxis is the mouth-to-mouth transfer of fluid food between adult honeybees. 
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Fig. 1. A screen shot of our simulation platform LaRoSim. The two black areas (small left and 
huge right) represent target areas for aggregation. The gray circles indicate the zones in which 
we counted the robots for evaluating the aggregation success. Gray boxes represent robots. 

Figure 1 shows a screen shot of the scenario the robot swarm has to perform in. 
Two black marks indicate aggregation areas (e.g., places to work). These areas can be 
of different sizes. The goal of the swarm is: 

1. Explore the arena to detect these target sites. 
2. Communicate the location of the targets to the other robots, so that they can 

aggregate there. 
3. Recruit cohorts of robots to each target. The sizes of these cohorts should cor-

respond to the size of the target areas. 

In conclusion, the robot swarm has to manage to measure and to compare the sizes 
and the distances of the two target areas collectively. This goal can only be achieved 
collectively, because it goes far beyond the sensorial capabilities of a single robot. We 
chose a very simple example of work that has to be performed by the robot swarm 
(pure aggregation), because we wanted to concentrate on the problem of ‘collective 
perception’ in this study. More sophisticated work in LaRoSim, e.g. collective floor 
cleaning and optimal route finding, was already shown in [17][18]. To evaluate the  
 

 

Fig. 2. Morphology of the robots in the simulation environment. In the picture, the two robots 
can establish a bi-directional communication, because one receptor of each robot is within the 
light cone of the other robot. 
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recruitment of robot cohorts to the two targets, we measured the number of aggre-
gated robots in a radius of 10 robot-diameters (rd) around the center of each target 
area, as indicated by the gray circles around all black target areas in figure 1. Please 
note, that the robots have no ability for long-distance communication and no long-
range sensing for target areas. The information about the location of the target areas 
has to be propagated through the swarm by using only nearest-neighbor communica-
tion, as  depicted in figure 2. The communication radius is 3.5 rd. 

2.1   The Hop-Count Strategy 

The first strategy that we implemented in our robots is called ‘hop-count’ strategy. This 
strategy works as follows: The robots move randomly and try to avoid collisions and 
walls. Each robot i has an internal memory hc(i,t) that is set to the maximum possible 
hop-count hc(i,t)=hcmax. If a robot encounters a target area, it sets hc(i,t)=0. During the 
run, all robots communicate with their nearest neighbors within their communication 
radius. The focal robot i compares its own hop-count with every neighbor j. If the 
neighbor has a lower hop-count (hc(j,t)<hc(i,t)), robot i copies the hop-count value of 
the neighbor and increases it by 1. Every tf time steps, the robot i increases its hop-count 
value by 1 spontaneously (hc(i,t)=hc(i,t-1)+1). This process is called ‘forgetting’, be-
cause it forces wrong or out-dated information to leave the system over time. If hc(i,t) 
exceeds hcmax, hc(i,t) is set to hcmax. This way a gradient emerges within the robot 
swarm that points downhill to the target areas. A robot that experiences a neighbor with  
 

(a)  (b)  

Fig. 3. (a) The gradient of hop-counts that emerges in the ‘hop-count’ strategy. The robot on 
the target sets its hop-count to 0. All robots copy the lowest hop-count from their neighbors and 
increase it by 1. After some (tf) time steps, they increase the hop-count spontaneously (‘forget-
ting’). (b) Behavioral program of a robot in the ‘hop-count’ strategy. This program is executed 
every time step. 
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a hop-count that is smaller than or equal its own hop-count navigates towards this 
neighbor. If more than one neighbor has the same low hop-count, the robot calculates its 
direction by averaging the vectors towards these neighbors. Figure 3a depicts the emer-
gence of the gradient within the robot swarm. Figure 3b shows the behavioral program 
that is executed by each robot at every time step. 

2.2   The ‘Trophallaxis-inspired’ Strategy 

The ‘trophallaxis-inspired’ strategy is inspired by a behavior that is frequently found 
in social insects: The mouth-to-mouth transfer of liquid food between adult animals. 
In honeybees, beekeepers often install feeders in the hives to provide the bees with 
sugar-water. At these feeders, some bees fill their crops and then move away. On their 
way through the hive, they meet other bees and can share parts of their nectar load 
with them. It is assumed, that the more nectar the donor bee has and the less nectar the 
receiver bee has, the more nectar is transferred on average. On their way, the bees 
also consume a fraction of their nectar load to gain energy from it. 

In the robot-swarm, the nectar crop of the bee is represented by a memory place in-
side of the robot. Basically each robot i starts with random movement and with a 
memory value m(i,t)=0. If the robot encounters a target, it adds a defined amount of 
‘virtual nectar’ to its memory aa(i,t)=ra  (ra: addition-rate, aa(i,t): amount of addition). 
Every time step, robot i communicates with its local neighbors j and exchanges an 
amount of ‘virtual nectar’ with them. The amount at(i,t) of this exchange is propor-
tional to the differences in the memory values among the robots and is determined by 
the transfer-rate rt: at(i,t)=0.5*(m(j,t-1)-m(i,t-1))*rt/N. The variable N represents the 
number of local neighbors the focal robot communicates with. In case of N=0, the 
value of at(i,t) is set to 0. Every time-step, each robot i also decreases its memory 
value by an amount ac(i,t) which is defined by the consumption rate rc. ac(i,t)= 
m(i,t-1)*rc. After all  these in-flows and out-flows of ‘virtual nectar’ are calculated by 
each robot the memory-value can be updated according to the following equation: 
m(i,t)=m(i,t-1)+aa(i,t)+at(i,t)-ac(i,t). Please note that the ‘trophallaxis-inspired’ strat-
egy uses floating point numbers, while the ‘hop-count’ strategy uses integer values 
only. By the rules mentioned above, again a gradient of memory values emerges 
within the robot swarm. If a robot i reaches a memory value above a threshold 
(m(i,t)>thagg), the robot turns towards its local neighbor with the highest memory 
value. If the memory value is below or equal thagg, the robot i moves randomly.  

Figure 4a depicts how the gradient of ‘virtual nectar’ emerges in the robot swarm 
in the ‘trophallaxis-inspired’ strategy. Figure 4b depicts the behavioral program that is 
executed by every robot in every time step. In order to adjust the aggregation-
sensitivity of the swarm we implemented a behavioral threshold thagg. A robot will 
only follow the gradient if its memory value is above the threshold m(i,t)>thagg. If its 
memory value is below or equal thagg, the robot will move randomly. Figure 4a de-
picts how the gradient of ‘virtual nectar’ emerges in the robot swarm in the ‘trophal-
laxis-inspired’ strategy. Figure 4b depicts the behavioral program that is executed by 
every robot in every time step. 
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(a)    (b)

Is there a target?

Consume:
ac(i,t) = m(i,t)*rc

Turn randomly

Check for collision 
with neighbor j ?

Move forward

aa(i,t) = ra

Is there a neighbor j 
for transfer?

Turn away from j
yes

yes

no

no

no

in

out

aa(i,t)=at(i,t)=ac(i,t)=0 

at(i,t) = 0.5*(m(j,t-i)-m(i,t-1))*rt/N

Update internal state:
m(i,t)=m(i,t-1)+aa(i,t)+at(i,t)-ac(i,t)

 m(i,t)>thagg? Follow gradient

yes

yes

no

N=size of the set of neighbors
that the robot communicates with  

Fig. 4. (a) The gradient of ‘virtual nectar’ that emerges in the ‘trophallaxis-inspired’ strategy. 
The robot at the target adds ‘virtual nectar’ to its memory. All robots exchange fractions of the 
‘virtual nectar’ proportionally to the inter-robot differences. All robots consume ‘virtual nectar’ 
over time, thus they decrease their memory values (‘forgetting’). (b) Behavioral program of a 
robot in the ‘trophallaxis-inspired’ strategy. This program is executed every time step. 

3   Results 

In our simulation runs, both strategies were able to produce the desired aggregation 
behavior at the target areas. But this was not the main focus of this study. The main 
question was, whether or not the swarm will be able to collectively measure the sizes 
of the target areas and to proportionally recruit the appropriate number of robots to 
these targets. 

3.1   Scaling the Sizes of the Target Areas 

In this experiment, we tested both strategies in environments with varying differ-
ences in the size of the target areas. The sizes of the targets areas were defined by 
their radii. We tested the following ratios of radii: 1:5, 2:4, 3:3, 4:2, and 5:1. We 
started 375 robots that were (uniformly) randomly distributed within the arena. The 
results of these simulation runs are depicted in figure 5. The ‘hop-count’ strategy 
recruited more robots during the runtime of the experiments (=250 time steps) than 
the other strategy, but failed to recruit the robots according to the target sizes. The 
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aggregation was measured by counting the number of robots within a radius of 10 
robot-diameters around the center of each target (see figure 1). For the simulation 
runs, we used the following parameters: ra=50, rc=0.01, rt=1, hcmax=40, tf=5. The 
aggregation threshold thagg was set to 100. For collision avoidance, the robots tried 
to stay away from each other half of their communication radius (coll-dist=0.5). 
Robot speed was 0.25 robot-diameters per step. The trophallaxis-inspired strategy 
recruited lower robot numbers but managed to recruit the robots accordingly to the  
 

 

Fig. 5. Collective decisions made by the robot swarm in different environments. The dashed 
line shows the expected number of robots that would have been in the measurement area (ra-
dius=10 each) if there had been no aggregation behavior at all. N=10 per setting. Bars represent 
mean values and whiskers indicate standard deviations. Duration: 250 time steps. 
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Fig. 6. The dynamics of the emerging gradients in our experiment. (a-c): The dynamics of the 
gradient in the trophallaxis inspired strategy. For generating the picture, we assigned the maxi-
mum memory value of all visible robots to each location in the arena. (d-f): The dynamics of 
the gradient in the hop-count strategy. Here we assigned the minimum hop-count of all visible 
robots to each position in the arena. Both simulation runs used extreme environmental condi-
tions: The left target was very small (radius=1) and the right target was large (radius=5). 
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sizes of the target areas. An explanation for these results can be found in figure 6, 
which depicts two simulation runs with very extreme conditions: A small target on 
the left side (radius=1) and a huge target on the right side of the arena (radius=5). 
The hop-count strategy generates two bowl-shaped gradients that immediately reach 
the whole arena. The two bowls are of almost equal size and so the recruited co-
horts of robots were also of almost equal size. In the trophallaxis-inspired strategy, 
the emergence of the gradient is much slower. But the bigger target on the right side 
allows more robots to add ‘virtual nectar’ to the system through their addition- and 
transfer-rates. This leads to a much higher ‘mountain’ that is able to recruit the ma-
jority of the robots to the right side. Obviously, the hop-count strategy is only able 
to report the distance of the target to other robots, while the trophallaxis-inspired 
strategy is able to report also the sizes of the targets. 

3.2   The Importance of the Swarm Density 

In swarm robotics, the swarm density is an important factor. To test how swarm densi-
ties affect the abilities of swarms to perform collective perception we further investi-
gated the experiment with the biggest difference in target sizes (radii left:right = 1:5).  
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Fig. 7. Aggregation of robots to the small left target area (radius=1) and to the large right target 
area (radius=5) with varying swarm densities. The dashed line shows the expected number of 
robots that would have been in the measurement area (radius=10 each) if there had been no 
aggregation behavior at all. N=10 per setting. Duration: 250 time steps. 
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We only tested swarms using the trophallaxis-inspired strategy because swarms using 
the hop-count strategy couldn't differentiate between target sizes (see sub-section 3.1, 
figures 5,6). For the following analysis we used the same parameter settings as we 
used in sub-section 3.1. The only varied parameter was the density of the robots, 
which we scaled between 0.01 and 0.34, which corresponds to swarm sizes of 30 ro-
bots and 1047 robots. Figure 7 shows the results of these experiments: Aggregation 
was performed on both target areas. With a swarm density of 0.17, the maximum 
preferential aggregation was found at the large target. With higher densities (> 0.2), 
no increase in aggregation is found anymore, the number of robots increases linearly 
as a product of pure random walk (dashed line). This analysis was made with a value 
of thagg=-50 to demonstrate that with the trophallaxis-strategy the swarm can also 
perceive small target areas (see section 3.3 for details). With thagg=0, no aggregation 
on the small target size can be observed (data not shown), the number of robots 
around the small target is predictable by considering solely the random walk. 

3.3   The Role of the Aggregation Threshold (thagg) 

The results of the experiments in subsection 3.1 demonstrate that in the trophallaxis-
inspired strategy, the huge gradient that emerges from the large target area increases 
over time and dominates over the gradient emerging at the location of the small target 
area. Nevertheless, the small target also recruited a few robots (see figure 5). By ad-
justing the threshold thagg we were able to indirectly determine the minimum target 
size that lead to aggregation. In our strategy, the strength of aggregation was regulated 
by the variable weight(i,t), which represents the ratio of directed movements to ran-
dom movements. Robots with a low memory value m(i,t) have a low weight(i,t) and 
thus they perform a random walk most of the time, whereas robots with a high mem-
ory value m(i,t) have a high weight(i,t) and will move towards the target in a very 
directed way. Thus threshold thagg is used as an offset in our computation of 
weight(i,t). For example, with negative values of thagg we can achieve a more di-
rected movement of robots with a low memory value m(i,t). Figure 8 depicts the de-
pendency of the variable weight(i,t) on the variable m(i,t) and on the parameter thagg. 
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In the following experiment, we wanted to test, whether or not an adjustment of the 
threshold thagg can modulate the sensitivity of the swarm for smaller target areas.  
Figure 9 shows the results of this experiment: Between 0 < thagg <300, the aggrega-
tion at the large target is negatively correlated with the value of thagg, the small target 
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is almost ignored by the swarm. With negative values of thagg, the aggregation at the 
small target increases significantly, without affecting the aggregation at the large tar-
get area. This shows that adjustment of thagg leads to recruitment of previously non-
recruited robots around the small target. 

3.4   The Role of the Negative Feedback (rc) 

In swarm robotics, the decay of information is important as soon as the swarm of 
robots has to act in changing environments. It is needed to allow out-dated, thus not 
reinforced, information to leave the system. In the trophallaxis-inspired strategy, 
this is achieved by a constant consumption of ‘virtual nectar’. If a target area  
disappears, there will be no local addition of ‘virtual nectar’ and the gradient will 
disappear. To investigate this, we performed an experiment with very extreme dif-
ferences in target sizes (radii left:right = 1:5). After 500 time steps, we changed the 
sizes of the targets:  

The big area got small and the small area got big (radii left:right 5:1). After the 
same time span, we investigated how the swarm responded to this fluctuation by 
counting the newly recruited robots at the left target and the robots that abandoned the 
right target after 1000 time-steps. 

 

Fig. 8. Values of weight(i,t) as a measurement for directedness of a robot's movement depend-
ing on its memory value m(i,t) and the threshold thagg. Shown for a positive threshold 
thagg=300, no threshold thagg=0, and a negative threshold thagg=-300. 

We initially implemented the ‘forgetting’ also into the hop-count strategy (tf), but 
this strategy failed to recruit proportional cohort to differently sized target areas in a 
stable environment (sub-section 3.1, figures 5,6). Without such a proportional re-
sponse of the swarm, it is useless to perform such a test in a fluctuating environment, 
so we only analyzed the trophallaxis-inspired strategy here. We kept all parameter 
settings identical to the runs shown in subsection 3.1, but we varied the values of the  
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Fig. 9. Aggregation of robots to the small left target area (radius=1) and to the large right target 
area (radius=5) with varying threshold (thagg). The dashed line shows the expected number of 
robots that would have been in the measurement area (radius=10 each) if there had been no 
aggregation behavior at all. N=10 per setting. Duration: 250 time steps. 

 
Fig. 10. New recruitment and abandonment of robots in a changing environment and with vary-
ing values of the consumption-rate (rc). High values of new recruitment and of abandonment 
indicate a high flexibility of the collective decisions of the robots swarm. N=1 per setting. 
Measurements were made 500 time steps after the environmental fluctuation. 

consumption rate rc between 0 and 0.1. So we compared never-forgetting swarms, 
moderately fast forgetting swarms and quickly forgetting swarms. Figure 10 shows the 
results of this experiment: Never-forgetting swarms (rc< 0.01) failed to adjust to  
the switch because the strong gradient that had emerged around the right target before 
the switch kept dominating throughout the arena. Quickly forgetting swarms (rc>0.03) 
on the other hand were not able to establish a gradient that reached robots that were far 
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from the target and thus changes in the environment were not noticed by most robots. 
With a consumption-rate between 0.01 and 0.03, the swarm showed the highest  
flexibility in its decisions. 

4   Discussion 

Our simulation experiments focused purely on the questions of collective perception 
in a robot swarm. We showed that a system that exploits purely ‘hop-counts’ of mes-
sages is able to navigate robots to target areas but fails to perform a collective percep-
tion of target area sizes. Such ‘hop-count’-based strategies were used (and published) 
several times in swarm robotics [19][20][21][22]. Some times these techniques are 
called ‘virtual pheromones’, a term that we (as biologists) do not think is appropriate. 
A pheromone is a chemical substance that is released by an animal in the environment 
and that causes a behavioral change or a physiological change in a receiving animal. 
For a swarm robot, it is very difficult to deposit something in the environment; there-
fore hop-counts that are communicated from robot to robot are often used to mimic 
pheromone gradients. But such a system has significant differences to real phero-
mones, because hop-count values do not remain in place in the environment, they 
move with the robot that carries it. We think that these hop-counts and also the mem-
ory-values used in our trophallaxis-inspired strategies have much more analogies to 
the crop loads of (social) animals. They are bound to their ‘carrier’-animals and it is 
often found in nature, that crop volumes are transferred from one animal to another 
(ants, termites, bees, wasps, birds, vampire bats). In contrast to the hop-count strategy, 
the trophallaxis-inspired strategy [17] was able to perform collective perception suc-
cessfully (figure 5,6). By using this method, the swarm was able to collectively meas-
ure the size of the target areas and to communicate these sizes throughout the swarm. 

Please note that a single robot cannot measure the size of the target area, it can 
only determine whether or not it is located on a target area. The observed effect is 
caused by the fact that a larger target area can contain more robots and thus more ‘ad-
dition’ is made to the system. The three parameters ‘addition-rate’, ‘transfer-rate’, 
‘consumption-rate’ can be used to regulate the system. A higher addition makes the 
gradients higher. The transfer rate allows the gradient to reach further, thus it can be 
used to regulate the range of the attraction of the targets. We showed that in changing 
environments, a moderate forgetting of collective perceptions plays an important role. 
With a consumption-rate that was too low, the robot swarm was not able to re-decide 
after the environmental fluctuation. With a consumption-rate that was too high, the 
swarm was not able to perform any collective decision at all. The threshold thagg is an 
important factor to adjust the ‘collective sensitivity’ of the robot swarm. By adjusting 
this parameter, smaller target areas can be made invisible for the swarm, so that it 
focuses on the bigger target areas first. Our scenario (and the strategy) can be ex-
tended in several ways. In honeybees, the brood acts as a sink for food. In the case 
shown here, we used only target areas that led to an addition of ‘virtual nectar’. If the 
scenario contains also areas that should be preferentially avoided (e.g., holes [23]), we 
could easily add such a sink to our system. Robots that encounter such areas reduce 
their memory values to 0. The threshold thagg is currently a global parameter in our 
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strategy. It will be interesting to introduce habituation and reinforcement to adjust this 
parameter individually, based on the prior work experience of a robot. 

In conclusion, we demonstrated that collective perception of a robot swarm can be 
performed with simple nearest-neighbor communication, with rather narrow commu-
nication channels and with messages that include only little semantics. The system 
was shown to be robust, because our results were not significantly affected by random 
error (which we introduced in our simulation on motion, sensing and communication) 
or by initial conditions (robots were spread randomly in the arena). In addition, the 
collective decisions were flexible (see figure 10). Computational effort was low and 
the number of robots was rather high. All these features mentioned above indicate that 
the found collective perception was an emergent phenomenon of self-organization [5] 
and of swarm-intelligence [6][7]. 
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