

Lecture Notes in Computer Science 4433
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Erol Şahin William M. Spears
Alan F. T. Winfield (Eds.)

Swarm
Robotics

Second SAB 2006 International Workshop
Rome, Italy, September 30-October 1, 2006
Revised Selected Papers

13

Volume Editors

Erol Şahin
KOVAN Research Lab - Dept. of Computer Engineering
Middle East Technical University
06531, Ankara, Turkey
E-mail: erol@ceng.metu.edu.tr

William M. Spears
University of Wyoming
Computer Science Department
Laramie, WY, 82071, USA
E-mail: wspears@cs.uwyo.edu

Alan F. T. Winfield
University of the West of England
Computing, Engineering and Mathematical Sciences
Bristol, UK
E-mail: Alan.Winfield@uwe.ac.uk

Library of Congress Control Number: 2007925713

CR Subject Classification (1998): F.1, I.2.9, I.2.11, C.2.4, E.1, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71540-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71540-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12038909 06/3180 5 4 3 2 1 0

Preface

Swarm robotics is the study of how large numbers of relatively simple physically
embodied agents can be designed such that a desired collective behavior emerges
from the local interactions among agents and between the agents and the envi-
ronment. Swarm robotics has emerged as a novel approach to the coordination
of large numbers of robots and is inspired from observation of social insects –
ants, termites, wasps and bees – which stand as fascinating examples of how a
large number of simple individuals can interact to create collectively intelligent
systems. Social insects are known to coordinate their actions to accomplish tasks
that are far beyond the capabilities of a single individual: termites build large
and complex mounds, army ants organize impressive foraging raids, ants can
collectively carry large prey. Such coordination capabilities are still well beyond
the reach of current multi-robot systems.

Research on swarm robotics has seen a significant increase in the last 5 years.
A number of successful swarm robotic systems have now been demonstrated
in the laboratory and the study of the design, modelling, implementation and
analysis of swarm robotic systems has become a hot topic of research. This
workshop was organized within SAB 2006, as a sequel to the successful first
swarm robotics workshop in 2004, with the aim of reviewing and updating recent
advances on the topic.

We received 21 full papers (20 research + 1 review) and accepted 14 (13
research + 1 review). Overall, we, as organizers, were pleased with the number
of submissions, and a number of our reviewers explicitly commented on the
generally high quality of the papers.

The workshop was held in Rome, Italy, as a two-day event at the SAB
2006 conference (From Animals to Animats) on October 31 and November 1.
The workshop opened with an invited talk given by Marco Dorigo. In his talk
Dorigo reviewed the results obtained from the successful Swarm-bots project
and briefly introduced the research visions for the new EU FP6 Swarmanoids
project. The workshop took place in a warm atmosphere with high-quality pre-
sentations1on recent research on swarm robotics, interspersed with lively and
thought-provoking discussions.

The papers included in this volume can be split into four groups: (1) Al-
gorithms, (2) Modelling and Analysis, (3) Hardware, and (4) Evolutionary Ap-
proaches.

Algorithms: In their paper, Schmickl and Crailsheim present a novel naviga-
tion principle for swarm robotics based on slime mold signal propagation. Using
this principle, simulated robots successfully performed a collective cleaning task

1 The presentations are available at http://www.swarm-robotics.org/SAB06/.

VI Preface

and showed the ability to find the shortest path between two targets. Liu et.
al. propose a simple adaptation mechanism for a swarm foraging task, enabling
the swarm to be more energy efficient by dynamically changing the number of
foragers. Their results demonstrate successful adaptive emergent dynamic task
allocation (division of labor) between foragers and resters and show that robots
need to cooperate more when energy is scarce. Schmickl et. al. investigate the
issue of “collective perception,” i.e., how a robot swarm is able to join mul-
tiple instances of individual perceptions to obtain a global picture. First they
examine the “hop-count” strategy, which is often used in swarm robotics. Then
they propose a novel trophallaxis-inspired strategy. They conclude that the lat-
ter strategy was successful at measuring sizes of target areas, while the former
strategy was not. Miller et. al. examine the important issue of “task selection” in
multi-agent swarms. The goal is to allocate the desired number of swarm robots
to each task while reducing inter-task latencies and communication overhead.
The authors propose a polynomial-time heuristic-based algorithm for the NP-
Complete distributed task selection problem. Their results indicate that those
heuristics in which each swarm robot considers both the effects of other robots
on tasks and its own relative position to other robots achieve better efficiency.

Modelling and analysis: Soysal and Şahin study the self-organized aggre-
gation of a swarm of robots in a closed arena. They then propose a macro-
scopic model for predicting the final distribution of the aggregates. Their results
indicate that the simulated final aggregate distributions match those of their
model, despite the fact that the simulations do not explicitly enforce all the as-
sumptions of the model. Hamann and Woern also examine swarm foraging and
present a macroscopic model based on partial differential equations, using vir-
tual pheromones as the medium for communication. Robot density, food flow,
and a qualitative description of the stability of the system can be extracted
from the model. Berman et. al. propose a three-level macroscopic/microscopic
methodology that can be used to characterize, analyze and synthesize swarm
behaviors. The methodology is applied to a dynamical model of ant house hunt-
ing. Their multi-level simulations demonstrate that they produced a rigorously
correct microscopic model from the macroscopic descriptions. Gazi and Fidan
give a review of the field of multi-agent dynamic systems, from the system dy-
namic and control perspective. They present a number of classic problems with
respect to the coordination and control of multi-agent systems, and summarize
some of the recent results on stability, robustness and performance. They con-
clude with a number of open problems, such as asynchronism, and sensor and
communication delays. These problems are also inherent in swarm robotics.

Hardware: Cianci et. al. present swarm robotics from an educational perspec-
tive. They first discuss the “e-puck,” a low-cost small-scale mobile robotic plat-
form designed for educational use. Then they present a custom module for local
radio communication, enabling communication between robots and any other
IEEE 802.15.4-compatible device. Finally, they conclude with a demonstration
of this module facilitating a collective decision among a group of ten robots.

Preface VII

As De Nardi and Holland state, achieving flocking or swarming of real vehi-
cles with complex dynamics is still an unsolved problem. To address this issue,
the authors present their work on the development of autonomous miniature
helicopters. Since no detailed dynamic model of the helicopter is available, a
controller is designed using artificial evolution. Preliminary results of tackling
the problem of flocking are presented. Spears et. al. present a novel platform-
independent swarm robotics localization technique, based on the use of ultrasonic
and RF transceivers. The technique is fully distributed, inexpensive, scalable, ro-
bust and provides a unified framework for merging localization with information
exchange between robots. Furthermore, it does not rely on global information
provided by GPS, beacons, landmarks or maps. This localization technique is
tested on three robots in a number of applications, including a quite difficult
chemical plume tracing task.

Evolutionary approaches: Ampatzis et. al. also consider the issue of commu-
nication in swarms of robots. Artificial evolution is used as a means to engineer
robot neuro-controllers capable of guiding groups of robots in a categorization
task. Communication behavior emerges, despite the absence of explicit selec-
tive pressure to favor signaling over non-signaling groups. Finally, one evolved
controller is ported to real robots. Eiben et. al. examine the role of specializa-
tion in a collective search and find task. The authors propose a novel collective
neuro-evolution method and compare it with a heuristic method. Results indi-
cate that the best performing group converged to a specialized group composi-
tion that resembled the group composition of the highest performing specialized
group tested with the heuristic method. The authors conclude that conventional
neuro-evolution techniques fail due to their lack of specialization. Vicentini and
Tuci investigate the important issue of scalability in swarm robotics. The au-
thors also evolve neural network controllers using evolutionary algorithms. The
results indicate that the controllers are potentially scalable. However, an analysis
of a single controller identified elements that can significantly hinder scalability.
This analysis helps in understanding the principles underlying the concepts of
scalability and in designing more scalable solutions.

We are completely satisfied with the quality of the event, and are confi-
dent that the workshop is now recognized as one of the premier venues for
swarm robotics research. We would like to thank all contributors for this success:
SAB 2006 organizers Stefano Nolfi, Gianluca Baldassarre, Raffaele Calabretta,
John C.T. Hallam, Davide Marocco, Jean-Arcady Meyer, Orazio Miglino and
Domenico Parisi, for giving us the opportunity to organize this workshop within
the SAB conference; all the authors for submitting their papers; and the Program
Committee members for making the review process smooth through their high-
quality and on-time reviews that provided detailed and thorough feedback to the
authors. The Program Committee consisted of: Marco Dorigo, John Feddema,
Paolo Gaudiano, Veysel Gazi, Kristina Lerman, Alcherio Martinoli, Francesco
Mondada, Lynne E. Parker, David Payton, Joerg Seyfried, Kasper Støy, Guy
Théraulaz, Cem Unsal, and Richard Vaughan.

VIII Preface

Erol Şahin thanks Levent Bayındır for his help during the organization of
the workshop. Erol Şahin also acknowledges the support of the Department
of Computer Engineering, Middle East Technical University. Alan Winfield is
grateful for the support of the Bristol Robotics Laboratory and the Faculty
of Computing, Engineering and Mathematics at the University of the West of
England, Bristol.

February 2007 Erol Şahin
William M. Spears
Alan F.T. Winfield

Organization

The Second International Workshop on Swarm Robotics was organized by the
Middle East Technical University (Turkey), the University of Wyoming (USA),
and the University of the West of England (UK), in cooperation with SAB 2006.

Organization Committee

Erol Şahin (Middle East Technical University, Ankara, Turkey)
William M. Spears (University of Wyoming, Laramie, Wyoming, USA)
Alan F. T. Winfield (University of the West of England, Bristol, UK)

Program Committee

Marco Dorigo (Université Libre de Bruxelles, Brussels, Belgium)
John Feddema (Sandia National Laboratory, Albuquerque, New Mexico, USA)
Paolo Gaudiano (Icosystem Corporation, Cambridge, Massachusetts, USA)
Veysel Gazi (TOBB University of Economics and Technology, Ankara, Turkey)
Kristina Lerman (USC Information Sciences Institute, Marina del Rey,

California, USA)
Alcherio Martinoli (École Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland)
Francesco Mondada (Laboratoire de Systèmes Robotiques, Lausanne,

Switzerland)
Lynne E. Parker (University of Tennessee, Knoxville, Tennessee, USA)
David Payton (HRL Laboratories, Malibu, California, USA)
Joerg Seyfried (Universitaet Karlsruhe, Karlsruhe, Germany)
Kasper Støy (University of Southern Denmark, Odense, Denmark)
Guy Théraulaz (Université Paul Sabatier, Toulouse, France)
Cem Unsal (Yoriwa Inc., San Jose, CA, USA)
Richard Vaughan (Simon Fraser University, Burnaby, British Columbia,

Canada)

Table of Contents

A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold
Aggregation . 1

Thomas Schmickl and Karl Crailsheim

Strategies for Energy Optimisation in a Swarm of Foraging Robots 14
Wenguo Liu, Alan Winfield, Jin Sa, Jie Chen, and Lihua Dou

A Macroscopic Model for Self-organized Aggregation in Swarm Robotic
Systems . 27

Onur Soysal and Erol Şahin

An Analytical and Spatial Model of Foraging in a Swarm of Robots 43
Heiko Hamann and Heinz Wörn

Algorithms for the Analysis and Synthesis of a Bio-inspired Swarm
Robotic System . 56

Spring Berman, Ádám Halász, Vijay Kumar, and Stephen Pratt

Coordination and Control of Multi-agent Dynamic Systems: Models
and Approaches . 71

Veysel Gazi and Barış Fidan

Communication in a Swarm of Miniature Robots: The e-Puck as an
Educational Tool for Swarm Robotics . 103

Christopher M. Cianci, Xavier Raemy, Jim Pugh, and
Alcherio Martinoli

UltraSwarm: A Further Step Towards a Flock of Miniature
Helicopters . 116

Renzo De Nardi and Owen Holland

Where Are You? . 129
William M. Spears, Jerry C. Hamann, Paul M. Maxim,
Thomas Kunkel, Rodney Heil, Dimitri Zarzhitsky,
Diana F. Spears, and Christer Karlsson

Collective Perception in a Robot Swarm . 144
Thomas Schmickl, Christoph Möslinger, and Karl Crailsheim

Distributed Task Selection in Multi-agent Based Swarms Using
Heuristic Strategies . 158

David Miller, Prithviraj Dasgupta, and Timothy Judkins

XII Table of Contents

Evolution of Signalling in a Group of Robots Controlled by Dynamic
Neural Networks . 173

Christos Ampatzis, Elio Tuci, Vito Trianni, and Marco Dorigo

Collective Specialization for Evolutionary Design of a Multi-robot
System . 189

Agoston E. Eiben, Geoff S. Nitschke, and Martijn C. Schut

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots
in a Navigation Task . 206

Federico Vicentini and Elio Tuci

Author Index . 221

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 1–13, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Navigation Algorithm for Swarm Robotics Inspired by
Slime Mold Aggregation

Thomas Schmickl and Karl Crailsheim

Department for Zoology, Karl-Franzens-University Graz,
Universitaetsplatz 2, A-8010 Graz, Austria

schmickl@nextra.at,
karl.crailsheim@uni-graz.at

http://zool33.uni-graz.at/schmickl/

Abstract. This article presents a novel bio-inspired navigation principle for
swarm robotics that is based on a technique of signal propagation that was in-
spired by slime mold. We evaluated this strategy in a variety of simulation ex-
periments that simulates a collective cleaning scenario. This scenario includes
several sub-tasks like exploration, information propagation and path finding.
Using the slime mold-inspired strategy, the simulated robots successfully per-
formed a collective cleaning scenario and showed the ability of finding the
shortest path between two target places. Finally, the parameters of the strategy
were optimized by artificial evolution and the discovered optima are discussed.

1 Motivation

In swarm robotics a high number of robots is used to perform tasks collectively. The
high number of robots usually results in a miniaturization of the single robot unit. The
abilities of these miniaturized robots are usually rather limited, so that a single robot
cannot reach the collective goal; but the whole swarm of robots can succeed by coop-
eration. These limitations of the robots ask for simple navigation strategies and for
simple communication protocols.

During our research for the I-SWARM project [1], we browsed the biological
world for possible coordination algorithms that can be transformed into robot control
algorithms for the I-SWARM robots. The final swarm size of the I-SWARM project
will be 1000 robots, one single robot will be very small (approx. 8mm³) and it will be
significantly limited in motion (speed, d.o.f.) and in communication (LED-light
pulses). To allow testing of suggested control algorithms, a special robot platform
(JASMINE) was designed that is bigger in size (approx. 16 cm³) but offers similar
communication principles [2] [3]. Based on simulation of both platforms (I-SWARM,
JASMINE), we recently published two swarm control strategies: the ‘trophallaxis-
inspired’ strategy [4] and the ‘vector-based’ strategy [5]. Both strategies were
analyzed in our multi-agent simulation platform ‘LaRoSim’ (Large Robot-Swarm
Simulator), which implements the basic architecture of both robot types in a cleaning
scenario [4][5]. Figure 1 shows the basic morphology of the JASMINE robot and the

2 T. Schmickl and K. Crailsheim

communication principle it uses. In contrast to the situation depicted in figure 1, the
strategy that we present in this article does not rely on bi-directional communication,
and in contrast to the strategies that we published in [4] and [5], our new strategy uses
much more narrow communication channels, thus we assume it is better suitable for
hardware platforms with limited abilities in communication.

Fig. 1. Morphology of the robots in the used simulation environment with special emphasis on
the communication system (infrared LEDs, photo-diodes) and on the movement systems. In the
picture, the two robots can establish a bidirectional communication, because one receptor of
each robot is within the light cone of the other robot.

Fig. 2. A screenshot of our simulation platform LaRoSim. In the upper right corner and in the
lower left corner, two ‘dust’ areas are located (gray floor patches, square). The ‘dump’ area is
located in the center of the arena (gray floor patches, circular). The arena is occupied by empty
robots (small gray cubes) that explore the arena. A good swarm strategy will guide loaded
robots (black cubes) directly towards the ‘dump’ area.

a

b

 A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation 3

2 The Simulation Platform and the Swarm Scenario

LaRoSim basically implements a scenario of collective ‘floor cleaning’. Within this
scenario, the robot swarm has to explore the arena collectively for areas that contain a
number of dust particles and propagate information about found dust sites within the
whole swarm. With the final I-SWARM robot, these particles can be small dust parti-
cles. For the JASMINE robot, a magnetic gripper for metal objects is currently under
development. The propagation of information about the location of the dust sites is
then used to aggregate empty (unloaded) robots at these dust sites. Loaded robots, that
are robots that have picked up one particle, then have to move to a designated ‘dump’
area to drop the item there. The empty robots also have to explore the location of the
dump area first. The information about the location of the dump has then to be propa-
gated throughout the swarm. Figure 2 shows a screenshot of LaRoSim.

3 The ‘Slime Mold’ Strategy

An impressive biological aggregation scenario inspired the control strategy we sug-
gest in this article: the aggregation of tens of thousands of slime mold amoebas. Simi-
lar collective behaviors are also found in bacteria [6]. In nature, the amoebas of the
slime mold Dictyostelium discoideum feed on bacteria and move almost randomly. If
their food gets scarce, they starve and dramatically change their behavior: They pro-
duce cAMP (a chemical substance called ‘cyclic adenosine 3’,5’-monophosphate’)
and release it to their outside (extracellular) environment. This releasing was found to
happen in an oscillatory way with a frequency of 5 to 10 minutes. It was found that
higher cAMP concentrations lead to higher cAMP production and that the amoebas
use the cAMP gradient in the environment to navigate. So far, this process represents
a positive feedback loop, which can already serve as inspiration for an algorithm of
swarm aggregation. Many other cases are found in nature where the releasing of
pheromones is used for aggregation (e.g., ants, bark beetles) and several approaches
in swarm robotics have been performed to establish similar gradients within a robot
swarm [4] [7] [8] [9] [10]. But in D. discoideum, a second process is working simul-
taneously that makes the aggregation principle unique: If the extracellular cAMP
concentration exceeds a certain threshold, the amoebas release their intercellular re-
serve of cAMP in a very large pulse. A high concentration of extracellular cAMP
desensitizes the receptors for cAMP, so that amoebas fall into a ‘refractory’ state for
some time after such a large pulse. During this refractory state, the amoebas do not
release an additional pulse of cAMP secretion. This process leads to travelling waves
of cAMP pulses that head through the ‘swarm’ of amoebas from an initial triggering
cell, at least if the packing of amoebas is already dense enough. The emergence of
these waves (which can be circular or spiral shaped) leads to the impressive aggrega-
tion patterns that are found in nature: The cells move along nested, self-organized
trails towards the aggregation center (‘cell streaming’, see photographs in [6]).

To imitate these processes in a control algorithm for swarm robotics, we had to
omit several aspects of the biological source of inspiration. For our swarm robots, it is
impossible to deposit something that represents cAMP in the environment. Thus we
decided to implement only the cAMP pulses in our swarm strategy. The chemical

4 T. Schmickl and K. Crailsheim

cAMP pulses are represented by light signals (boolean) that are emitted by robots in
all directions (broadcast). This sort of communication does not require bi-directional
communication channels. Because we did not implement the chemical cAMP gradi-
ent, we call this version of the slime mold strategy also the ‘binary slime mold strat-
egy’. In section 4.5, we show results of another version of this strategy, which is
called the ‘gradient slime mold strategy’.

A robot that finds a target emits a light pulse. Each of the neighboring robots that
receive this light pulse starts in turn to emit one light pulse for a given time
(fire_time). Afterwards, each robot switches to the refractory state for a given time
(refractory_time). In this state, a robot is insensitive for further light pulses. The
global pattern that emerges in the swarm of robots is a wave of light pulses that trav-
els away from the place where it was initially triggered. In our cleaning scenario, the
robot swarm exploits 2 different kinds of light pulses, e.g., distinguishable by color.
One type of wave emerges from the discovered dust areas and one emerges from the
discovered dump areas. The empty robots mostly head against the direction of the
first type of wave, the loaded robots move mostly against the direction of the latter
one. See figure 3 for a scheme of the finite state automatons that we implemented into
our robots and that collectively generate these waves.

If the robots aggregate too densely at the target places, the space between the targets
may become sparsely filled with robots what might prevent the signal waves from
reaching all parts of the arena. To overcome this problem, we implemented two addi-
tional features: The parameter ‘fraction_random_walkers’ designates a certain fraction
of the robots to the role ‘random-walker’. These robots do not aggregate; they perform a
pure random walk and therefore continue to explore the arena throughout the runtime of
the cleaning experiment. They also act as communicational bridges that connect the
areas of aggregation and allow the waves to reach the whole arena. Additionally, the
robots that are not ‘random-walkers’ do not always move against the travelling wave.
The parameters weight_dust and weight_dump adjust the strength of this directed navi-
gation. A weight of 0.0 represents pure random walk and a weight of 1.0 represents only
directed navigation. In addition to that, we implemented collision avoidance by a
method that uses virtual potential fields. To allow preferential avoidance of loaded ro-
bots and of random-walkers, we implemented two additional boolean (on/off) signals
that are emitted (see table 1). The parameter priority_collision_dist determines the
strength of the repellence of random-walkers and of loaded robots. The parameters
loaded_coll_avoid_dist and empty_coll_avoid_dist determine how far these two robot
cohorts try to move away from other robots.

4 Detailed Description of the Strategy and of the Simulator

In the following section, we describe the ‘slime mold’ strategy in the cleaning sce-
nario according to 6 sub-domains of the global problem. We suggest using this
scheme of describing swarm strategies, because it allows addressing similarities and
differences between strategies and between scenarios in a well-structured way.

 A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation 5

Table 1. Swarm scenario classification. Description of the „slime mold’-inspired control strat-
egy for robot swarms.

Sub-domain Description
Collective goal The swarm should clean up all 72 dust particles in the arena

as fast as possible.
Individual goal Empty robot: find dust particle as soon as possible.

Loaded robot: find dump as soon as possible.
Random-walker: minimize collisions with other robots.

Individual states ‘I’: Inactive (ready to perceive a light pulse)
‘A’: Activated (emitting a light pulse)
‘R’: Refractory (insensitive for light pulses).

Collective states Our swarm never changes its collective global state.
Individual
behavior

Empty robot: Head against the direction of wave 1 (dust).
Loaded robot: Head against the direction of wave 2 (dump).
Random-walker: Random walk with collision avoidance

Collective
behavior

The empty robots aggregate at the dust, the loaded robots
aggregate at the dump. Random-walkers fill the empty space
in between and work as bridges for the travelling waves.

Internal implemen-
tation of robots

Finite state automatons as depicted in figure 3.

Communication
domain

Signal 1 (1 bit) for the wave emerging at the dust.
Signal 2 (1 bit) for the wave emerging at the dump.
Signal 3 (1 bit) Emitted by loaded robots for preferential
collision avoidance.
Signal 4 (1 bit) Emitted by random-walkers (for coll. avoid).

Table 2. Robot constraints. Our simulator works scale-free, so the unit ‘rd’ (‘robot diameter’) is
used for modeling distance measurements.

Constraint Parameter Units Value
Max. communication radius Com_radius rd 3.5
Error distance-measurement Err_distance % 10%
False communication P(comm_break) % 5%
Robot speed Robot_speed rd 0.5/step

In addition to the detailed implementation of the robot, our simulation platform
deals also with several important constraints. These are given in table 2. Our simula-
tor assumes that robots have no long-distance perception for dump or for dust areas,
so that the robots can detect these areas only when they are located directly above
them. We furthermore assumed that robots could measure robot-to-robot distances
only within 3 range classes ‘near’, ‘medium’, and ‘far’. These measurements are only
used in the potential-fields based collision avoidance functions. The robots cannot
detect the exact angle to another robot but they can determine which photodiode re-
ceived the message and therefore assume the ‘side’ the other robot is located. If sev-
eral robots are located within one LED-emitted light cone, only the nearest robot can
perceive the signal (shadow).

6 T. Schmickl and K. Crailsheim

(a)

Drop particle if loaded

Empty robot, no dust, no dump

Random-walker: move randomly,
else: follow wave 1

Find dump

Loaded robot, no dust, no dump

Random-walker: move randomly,
else: follow wave 2

Find dust

Find
 dump

On dump

Emit light pulse (type 2),

Emit light pulse (type 1),
Pick up particle, if empty

If empty

If empty
On dust

If loaded

If loaded

(b)

Fig. 3. State diagram of the internal finite state automatons. (a) The state automaton that is
responsible for the wave. (b) The state automaton that is responsible for navigation. Please note
that we implemented the left state automaton twice into each robot (one per wave type). The
right state automaton is implemented only once per robot.

Fig. 4. The propagation of the light pulses throughout the robots swarm. The upper row shows
the dynamics of the wave emerging from the dump; the lower row shows the dynamics of the
waves emerging form the dust areas. Colliding waves extinguish each other. The very left
column shows time step 3, the very right column shows step 15. The waves travel much faster
than the robots move, as it is also in the biological counterpart (D. discoideum). Parameters:
500 robots, fire_dump = fire_dust = 2 steps, refractory_dump = refractory_dust = 7 steps.

5 Results

Our experiments successfully generated wave propagation within the robot swarm.
These waves emerge, as expected, from the target areas (dump, dust) and the robots
can exploit these waves for navigation. Figure 4 shows how the waves move through
the robot swarm and figure 5 shows how loaded robots were directed towards the
dump area in the center of the arena.

 A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation 7

(a) (b)

Fig. 5. Resulting collective behavior. (a) The loaded robots (dark cubes) form trails heading
towards the dump area. The empty robots (gray) are spread throughout the arena. (b) The cu-
mulative paths of loaded robots reveal that the navigation of the loaded robots is directed from
the dust towards the central dump area. The darker a floor-patch is, the more often a loaded
robot was located on this floor patch. Parameter settings: fire_dump = fire_dust = 2 time steps,
refractory_dump = refractory_dust = 7 time steps, weight_dust = 0.3, weight_dump = 1.0,
density_of_robots = 0.18, fraction_random_walkers = 5%, simulated period = 800 time steps.

(a) (b) (c)

Fig. 6. Results of 3 runs of artificial evolution that shaped the parameters of the slime mold
strategy. The fitness function accounts for the number of picked up dust items and for the num-
ber of dust items that were successfully delivered to the dump. N=3000 simulations / run.

5.1 Evolving Optimal Parameters

We performed three runs of an ‘Evolutionary Strategy’ (ES) to shape the parameters
of the slime mold strategy. In each ES, we used a population size of 20 swarms. The
fitness function accounts for the number of picked up dust items (+20 points each),
for delivered dust items (+40 points each), and for the number of collisions (-40
points each divided by the number of robots). As soon as a swarm delivers its first
dust particle at the dump, it earns a bonus of 200 points. For results, see figure 6
and table 3. In the ES, we used a mutation rate of 0.5, a crossover rate of 0.2. The
best 3 swarms were transferred to the next generation unchanged (elitism). Each
evolution was performed for 50 generations. In total, 3000 simulation runs were
performed.

8 T. Schmickl and K. Crailsheim

5.2 Evaluation of Critical Parameters

In a swarm of robots that depends on information propagation, the density of the ro-
bots is a critical factor. A swarm that has a low density has problems with the spread
of information due to the limited communication radius of the single robot. In contrast
to that, swarms with high density of robots have problems with ‘traffic jams’ that lead
to unwanted clustering of robots. So we assumed that a swarm with a medium density
represents an optimal solution. The three evolutionary runs led to swarms with densi-
ties between 0.12 and 0.16 which means that 12% to 16% of the arena floor was cov-
ered with robots. We performed an additional analysis run to investigate the role of
robot densities. We chose the fittest swarm of the three evolutionary runs, which
achieved an absolute fitness of 3001 fitness points and varied the swarm density be-
tween 5% and 40%. In total, 2401 robots fill the arena, so a density of 15% represents
360 robots. A run lasted for a maximum of 1800 time steps, but was terminated earlier
as soon as the robots picked up all dust particles and delivered 66 particles at the
dump. Figure 7 shows that a swarm density of 15% represents an optimal solution.
Robot collisions are still in a moderate range and the work can be performed on a
straight and quick way.

Table 3. Evolved parameters in the top 250 swarms of each evolutionary run (means ± st.d.)

Parameter name Run 1 Run 2 Run 3
Density_of_robots 0.16 ± 0.02 0.12 ± 0.01 0.17 ± 0.02
Fraction_random_walkers 0.04 ± 0.02 0.05 ± 0.03 0.07 ± 0.03
Robot_speed 0.46 ± 0.03 0.49 ± 0.01 0.45 ± 0.04
Weight_dust 0.63 ± 0.07 0.45 ± 0.06 0.40 ± 0.07
Weight_dump 0.97 ± 0.03 0.85 ± 0.05 0.94 ± 0.04
Priority_collision_dist 0.37 ± 0.08 0.41 ± 0.13 0.41 ± 0.14
Loaded_coll_avoid_dist 0.31 ± 0.05 0.32 ± 0.03 0.34 ± 0.04
Empty_coll_avoid_dist 0.86 ± 0.05 0.91 ± 0.07 0.78 ± 0.20
Fire_dust (fdust) 4.05 ± 0.74 5.85 ± 1.96 3.55 ± 1.75
Refractory_dust (rdust) 16.32 ± 2.17 9.49 ± 2.37 10.89 ± 4.29
Fire_dump (fdump) 2.07 ± 0.26 3 ± 0.42 1.78 ± 0.83
Refractory_dump (rdump) 6.68 ± 0.73 8.6 ± 1.54 7.18 ± 1.09
rdust/fdust 4.26 ± 1.53 2.25 ± 2.12 4.11 ± 2.74
rdump/fdump 3.26 ± 0.48 2.92 ± 0.74 4.92 ± 2.02

5.3 Alternative ‘Good’ Parameter Settings

The trails formed by the loaded robots that lead to the fastest cleaning of the arena are
rather loose (see figure 5), which is efficient, because it minimizes the problem of
traffic jams. We were interested if we could generate more solid (and thus more
slime-mold-like trails) by changing parameters of our strategy. We did this by reduc-
ing the robot speed from 0.5 to 0.1 and by increasing the density of robots to 25% to
ensure good wave propagation. As figure 8 shows, the slower robots form now more
dense trails towards the dump.

 A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation 9

time efficiency

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

density of robots

co
m

p
le

ti
o
n
 t

im
e

(a)

goal achievment

0

10

20

30

40

50

60

70

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

density of robots

p
ar

ti
cl

es
 d

el
iv

er
ed

(b)

collisions

0

100

200

300

400

500

600

700

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

density of robots

co
lli

si
o
n
s

/
ro

b
o
t

(c)

straightness of work

0

200

400

600

800

1000

1200

1400

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

density of robots

m
ea

n
 c

ar
ry

-t
im

e
/

p
ar

ti
cl

e

(d)

Fig. 7. Simulation runs with varying densities of robot swarms (medians and third quartiles,
N=6). fire_dump = 2, fire_dust = 4, refractory_dump = 7, refractory_dust = 15, weight_dust =
0.66, weight_dump = 1.0, fraction_random_walkers = 4%, simulated period = 1800 time steps.

(a) (b)

Fig. 8. Resulting collective behavior with reduced robot speed. (a) The loaded robots (dark
cubes) form now better directed trails heading towards the dump. (b) The cumulative paths of
loaded robots. The darker a floor-patch is, the more often a loaded robot was located on this
floor patch. Parameter settings: fire_dump = fire_dust = 2, refractory_dump = refractory_dust =
7, weight_dust = 0.75, weight_dump = 1.0, density_of_robots = 0.20, fraction_random_walkers
= 5%, priority_collision_dist = 0.50, loaded_coll_avoid_dist = 0.1, empty_coll_avoid_dist =
0.81, simulated period = 3000 time steps.

5.4 Way Finding and Trail Formation

After we found parameter settings that produced slime-mold-like trails of robots, we
were interested which further collective abilities the swarm possesses. Recent studies
have shown, that another slime mold species (Physarum polycephalum) is able to find
the shortest path in a labyrinth [11]. It is assumed that waves like those that exist in

10 T. Schmickl and K. Crailsheim

excitable media can be exploited for such ‘optimal route finding’ problems [12]. Our
robot swarm represents such an excitable media. To test the abilities of our swarm in
a route finding problem, we modified the arena by adding a barrier that contains three
gates. Through these gates, the trails can move from the dust area (lower left corner)
to the dump area (upper right corner). The waves of excitation (pulses) are passing
through these gates and are annihilating each other as soon as they collide. So only
the wave on the shortest path manages to pass the whole way from dump to dust. This
fact suffices to allow the swarm to perform an optimal path finding. The three ways
had different lengths. We used the same parameter settings that we used in sub-
section 4.3. Figure 9 shows the resulting trails. The loaded robots in the swarm fol-
lowed always the available shortest path. After we closed some gates, the swarm
made a different (optimal!) collective decision.

(b)(a) (c)

Fig. 9. Resulting collective behavior in a setup with barriers. For this experiment we used one
dust area in the lower left corner of the arena and one dump area in the upper right corner. (a)
Cumulative paths of loaded robots that take the shortest way. (b) After we closed the gate for
the shortest path, the robots took the second shortest one. (c) After we also closed the second
shortest path, the loaded robots took the last remaining possible path from the dust area to the
dump area. This path was neglected in the prior runs. All figures: The darker the color of a floor
patch is, the more often a loaded was located on this patch. Parameter settings were the same
that for the run in figure 7. Run time = 2000 time steps.

5.5 The ‘Gradient Version’ of the Slime Mold Algorithm

In section 3 we mentioned that we did not implement the cAMP gradient in our ‘bi-
nary’ slime mold algorithm. But we were interested if we can generate slime-mold-
like aggregation behavior if we also mimic such a chemical gradient. For mimicking
the cAMP gradient we used another method of robot-to-robot communication: Float-
ing-point numbers that are passed among robots. We already used such numbers in
the ‘trophallaxis-inspired’ strategy described in [4]. A robot that finds a target in-
creases an internal memory place by a value of 300 units. Neighboring robots adjust
their memory values by bi-directional communication and share always half of the
experienced difference. This process mimics ‘diffusion’ and allows a gradient to
spread. Each time step, each robot decreases its memory value by 25%, a process that
leads to exponential decay. If a robot which is not in ‘refractory’ state (see figure 3),
experiences a neighbor with a memory value above a threshold (70 units), it in turn
releases again 300 units, switches to the state ‘activated’ and switches then to the
internal state ‘refractory’. The robots navigate always uphill in the gradient: Each
robot turns into the direction of the neighbor that broadcasts the highest memory
value. We set the simulation to the following parameters: robots_speed = 0.2rd/step,

 A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation 11

fraction_random_walkers = 0%. We introduced four aggregation targets in the arena.
As figure 10 shows, the robots aggregate in a ‘dentritic’ way: nested streams of robots
aggregate to each target. The pulses of high memory vales (represents cAMP) are
running down these nested streams, emerging at the target areas. This result resembles
the picture of aggregating slime mold amoebas very much.

(a) (b) (c) (d)

Fig. 10. Resulting collective behavior in the ‘gradient version’ of the slime mold strategy. The
robots aggregate in nested streams at the aggregation targets. Pulses of high memory values in
robots (representing local cAMP peaks) move down the nested streams, emerging from the
aggregation targets. (a) Initial conditions, (b) 25 time steps, (c) 250 steps, (d) the traveling
waves in the streams. Parameters: 1000 robots, fire =4, refractory = 20, weight = 1.0, den-
sity_of_robots = 0.2, fraction_random_walkers = 0%, all collision_dist’s = 0.1, simulated
period = 2000 time steps.

6 Discussion

Swarm robotics has been a growing field in the science of robotics in the last decade.
Huge swarms of robots, like the I-SWARM, require miniaturized robots with very
limited abilities. Such robots need intelligent communication principles and robust
navigation to show self-organization [6] and swarm intelligence [13] in collective
behavior. Several strategies have been suggested and evaluated for the hardware of
the I-SWARM robot (and for the JASMINE robot). Compared to the strategy pre-
sented here, the ‘trophallaxis-inspired’ strategy [4] and the ‘vector based’ strategy [5]
use a more complex internal implementation and more complex communication.
Some approaches have been made to mimic the spread of ‘virtual pheromones’ within
a robot swarm, some use hop-count techniques [7][8][10], other extend the arena with
external equipment [9]. A cricket-inspired oscillator-based strategy described in [14]
uses also a binary signal and a travelling wave to navigate the robots. In contrast to
the oscillator-based strategy, our internal implementation of the robots is very much
different. No intrinsic oscillator is used; instead a state automaton is implemented.
The difference is that in times with no dust sites found, there is no excitation, and no
waves are produced. This is more efficient; it increases the exploration in these times.
We present here a novel decentralized control strategy for robot swarms. The strategy
uses broadcast communication in a very narrow communication channel (one bit per
target). The details of the strategy were inspired from a biological example, the ag-
gregation behavior of D. discoideum. By using artificial evolution, the algorithm
could be tailored to perform our cleaning task as fast as possible. Reduced robot speed

12 T. Schmickl and K. Crailsheim

led to a slower task completion but also led to better trails that resemble the biological
counterpart. Like the biological example [11], the swarm was able to collectively find
the shortest path between two points of the arena. By adding a second strategy that
mimics the spread of cAMP within the swarm (‘gradient version’ of slime mold strat-
egy), we could also re-generate slime-mold aggregation behavior in a swarm of 1000
simulated micro-robots. In conclusion, we can say that our strategy is robust and
flexible, it uses only broadcast communication, and it uses a narrow communication
channel. It allows generating robot swarms that show ‘intelligent’ collective behavior.
In future, we will continue to investigate this strategy with hardware experiments and
will further develop the gradient version of the slime-mold strategy.

Acknowledgement

This work is partially supported by: EU IST-FET-project ‘I-Swarm’, no. 507006.

References

1. Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., Wörn, H.: The I-SWARM
Project: Intelligent Small World Autonomous Robots for Micro-Manipulation. In: Sahin,
E., Spears, W.M. (eds.) Swarm Robotics. Springer LNCS 3342, (2005) 70 – 83

2. Kornienko, S., Kornienko, O., Levi, P.: Minimalistic approach towards communication
and perception in microrobotic swarms. In: Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Edmonton, Alberta, Canada (2005) 4005 –
4011

3. Kornienko, S., Kornienko, O., Levi, P.: Collective AI: Context awareness via communica-
tion. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), 1464-1470, Edinburg, Scotland, (2005) 1464 – 1470

4. Schmickl, T., Crailsheim, K.: Trophallaxis among swarm-robots: A biological inspired
strategy for swarm robotics. In: Proceedings of BioRob 2006, Biomedical Robotics and
Biomechatronics, Pisa, Italy. (2006) ISBN 1-4244-0040-6

5. Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., Dario,
P.: Micromanipulation, communication and swarm intelligence issues in a microrobotic
platform. Robotics and Automation Systems (in press).

6. Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton University Press, NJ, USA (2001)

7. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone Robotics.
Autonomous Robots 11 (2001) 319 – 324

8. Payton, D., Estkowski, R., Howard, M.: Compound behaviors in pheromone robotics. Ro-
botics and Autonomous Systems 44 (2003) 229 – 240

9. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with vir-
tual pheromone. In: Proceedings of IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, Sendai, Japan (2004) 3074 – 3079

10. Stoy, K., How do construct dense objects with self-reconfigurable robots. In: Christensen,
H.I. (eds.) European Robotics Symposium 2006, STAR 22 (2006) 27 – 37

11. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152 (2001)
767 – 770

 A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation 13

12. Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths: Optimal paths
from chemical waves. Science 267 (1995) 868 – 871

13. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial
systems. Oxford University Press, New York, NY, USA (1999)

14. Hartbauer, M., Römer, H.: Decentralized microrobot swarm communication via coupled
oscillators. In: Proceedings of BioRob 2006, Biomedical Robotics and Biomechatronics,
Pisa, Italy. (2006) ISBN 1-4244-0040-6

Strategies for Energy Optimisation in a Swarm

of Foraging Robots

Wenguo Liu1,2, Alan Winfield1, Jin Sa1, Jie Chen2, and Lihua Dou2

1 Bristol Robotics Lab, UWE, Bristol BS16 1QY, UK
2 Intellectual Information Technology Lab, BIT, Beijing 100081, China

Abstract. This paper presents a simple adaptation mechanism to auto-
matically adjust the ratio of foragers to resters (division of labour) in a
swarm of foraging robots and hence maximise the net energy income to
the swarm. Three adaptation rules are introduced based on local sensing
and communications. Individual robots use internal cues (successful food
retrieval), environmental cues (collisions with teammates while searching
for food) and social cues (teammate success in food retrieval) to dynam-
ically vary the time spent foraging or resting. The paper investigates
the effectiveness of a number of strategies based upon different combina-
tions of cues, and demonstrates successful adaptive emergent division of
labour. Strategies which employ the social cues are shown to lead to the
fastest adaptation to changes in food density and we see that social cues
have most impact when food density is low: robots need to cooperate
more when energy is scarce.

1 Introduction

Foraging is a widely used metaphor for cooperative behaviour in swarm robotics
research due to its strong biological basis. Some researchers point out that a
major factor that impacts the efficiency of a group is the interference caused by
competition for space. Lerman analyses the effect the size of a swarm has on
the group performance based on a probabilistic model and points out that there
should be an optimal number of robots to perform the foraging task in order to
get the best group performance [1]. Krieger and Billeter take a threshold-based
approach [2], first introduced by Théraulaz et al. in investigating the division of
labour in social insects [3], to allocate their robots to each task: resting (loaf-
ing) or foraging. In their experiment each robot has to be characterized with
a different randomly chosen threshold in order to regulate the activity of the
team. Labella et al. introduce a simple adaptive mechanism to change the ratio
of foragers to resters to improve the performance of the system by adjusting the
probability of leaving home based on successful retrieval of food [4]. They reward
successful food retrieval and punish failure in order to adjust the probability of
leaving home. A disadvantage of this approach is the absence of knowledge about
the other robots. Jones and Matarić describe an adaptive labour division ap-
proach in which robots observe each other but do not communicate directly [5].
Guerrero and Oliver present an auction-like task allocation model [6], partially

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 14–26, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Strategies for Energy Optimisation in a Swarm of Foraging Robots 15

inspired by auction and threshold-based methods, to try to determine the op-
timal number of robots needed for foraging, however, the demands of commu-
nication between robots during the auction process constrains the scalability of
their method for large numbers of robots.

This paper builds upon previous work in task allocation or division of labour
in a number of ways. Firstly, our overall goal is that the swarm maximises its
net energy income. Secondly, we investigate a richer set of adaptation rules, or
cues, for individual robots: internal cues (successful food retrieval), environmen-
tal cues (collisions with teammates while searching for food) and social cues
(teammate success in food retrieval). Social cues are triggered by pheromone-
like local communication between robots. Thirdly, we evaluate a number of
control strategies based upon different combinations of these internal, environ-
mental and social cues, in order to discover the relative merit of the cues in
optimising the net energy income to the swarm. Our foraging swarm makes
use of local sensing and communication only, but the overall swarm exhibits
properties of emergence and adaptive self-organisation; that is adaptation to
environmental changes (in food density). The approach presented in this pa-
per thus meets the criteria for swarm robotics articulated by Şahin [7] and
Beni [8].

This paper proceeds as follows. In section 2 we introduce the basic adaptation
mechanism for the individual robots in the swarm. In section 3, a description of
the foraging task and the experimental environment are given. Section 4 presents
the experimental results, in which we compare the performance of the system
with different adaptation rules. We conclude the paper in section 5.

2 Adaptation Mechanism

Our inspiration comes from the widely observed phenomena in nature, such as
in schools of fish, flocks of birds etc. The group behaviour emerges from the
interactions of individuals by essentially following the rule “I do what you do”,
“I go where you go” [9]. Consider swarm foraging: the goal of the swarm is to
forage as much food as possible over time. Assume that:

– each robot will consume energy at A units per second while searching or
retrieving and at B units per second while resting, where A > B.

– each food item collected by a robot will provide C units of energy to the
swarm.

– average retrieval time (the time spent on one successful search and retrieval
cycle), denoted by t, is a function of the number of forager robots, denoted
by x, and the density of the food, denoted by ρ, in the environment, say:

t = f(x, ρ) (1)

According to [1], because of interference between robots, the average retrieval
time increases with number of foragers increasing and decreases with density of

16 W. Liu et al.

food increasing when there are more robots than the food available allows. So
we have

Econsumed = Ax + B(N − x) (/sec)

Eretrieval = Cx/t =
Cx

f(x, ρ)
(/sec) (2)

Thus the average energy income for the swarm is:

Eaverage = Eretrieval − Econsumed =
(

C

f(x, ρ)
− (A − B)

)
x − BN (3)

where N is the size of the swarm.
Equation (3) shows that in order to maximize energy income for the swarm

we need to either increase the number of foragers x or decrease the average
retrieval time f(x, ρ). Since f(x, ρ) increases with x increasing when ρ stays the
same1, there should be an optimal value X∗ for x, that is, number of foragers
in the swarm, for a given food density. Moreover, X∗ changes with ρ changing.
However, the function f(x, ρ) is quite complex and hard to model because of the
complexity of the interactions between robots. Although it may ultimately be
possible to develop a detailed mathematical model in order to find an optimal
value of X∗, using for example the approach of [10], we first need a controller
design. Thus, in this paper we adopt a bottom-up design process (a typical
characteristic of the swarm robotics methodology), resulting in a swarm that is
able to dynamically adapt the ratio of foragers to resters through the interaction
between robots and between robots and the environment.

grabfood

movetohome movetofood

deposit homing scanarena

resting randomwalk

leavinghome

find food

close to foodsuccess

at home

success

Tr > Thr in search area

scan time out

find foodlost food

Ts > Ths

Ts > Ths

Ts > Ths

at home

Fig. 1. State transition diagram of foraging task

1 In order to investigate how the adaptation mechanism can improve the performance
of the system, we only consider the situation of over-crowded robots in the search-
ing area in which interference has a negative impact on system performance. Thus
increasing the number of foragers results in more interference between robots and
robots take longer to find and retrieve a food-item.

Strategies for Energy Optimisation in a Swarm of Foraging Robots 17

Figure 1 represents the control program for each robot in our system. The
transition between states randomwalk, scanarena, movetofood and state homing
is triggered by parameter searching time (Ts); such a transition will reduce the
number of foragers which in turn minimizes the interference due to overcrowd-
ing, thus reducing the average retrieval time. The transition between state rest
and state leavinghome, which is triggered by parameter resting time (Tr), will
drive the robot back to work to collect more food for the colony, which means
increasing the number of foragers in the swarm. The efficiency of the swarm
might be improved if robots are able to autonomously adjust their searching
time Ths and resting time Thr thresholds. In order to achieve this, we introduce
three rules to change these two parameters based on (i) environmental cues, (ii)
internal cues and (iii) social cues, explained as follows:

– Environmental cues. For a robot that is foraging (searching for food), if it
collides with other robots it will reduce Ths and increase Thr because “there
are already enough foragers in the arena, I’d better go back to the nest sooner
so I don’t get in the others’ way”.

– Internal cues. After a successful food retrieval cycle, a robot will reduce
Thr because “there may be more food, I’d better go back to work as soon as
possible”. Alternatively, if a robot fails to find food, indicated by searching
time is up, the robot will increase Thr since “there seems to be little food
available, I’d better rest for longer”

As a social cue, we introduce a pheromone-like mechanism into the swarm.
A robot will broadcast a message indicating its success or failure to find food
after it has returned to the nest. All the robots resting at home will receive these
messages and adjust their Ths and Thr based on the following rules:

– Social cues. If the robot returning home broadcasts a successful retrieval
message, then the robots resting at home will reduce Thr and increase Ths

because “somebody else has found food, there may be more so I’d better get
back to work sooner”. On receiving a failed retrieval message, the resting
robots will increase Tr and reduce Ts because “somebody else failed to find
food, there may be a food shortage so I’d better stay in the nest for longer”

Table 1 shows all of the cues for adjusting the time thresholds in summary.
The pseudocode of Algorithm 1 shows the adaptation procedure in each robot’s

Table 1. Cues to adjust time threshold

increase decrease

Ths
�5 �3 �4

Thr
�1 �3 �4 �2 �5

internal cues:

{ �1 failure retrieval
�2 success retrieval

environmental cues: �3 collision with other robots while searching

social cues:

{ �4 failure retrieval by teammates
�5 success retrieval by teammates

18 W. Liu et al.

Algorithm 1. Adaptation mechanism
initialization:

robotid = id
Thr ← 0; Ths ← Ths max

teammate success[id] ← 0;teammate failure[id] ← 0
loop:

teammate success[id] ← teammate success[id] − δs ∗ (Tt − Tt−1)
teammate failure[id] ← teammate failure[id] − δf ∗ (Tt − Tt−1)
if teammate success[id] < 0 then

teammate success[id] ← 0
end if
if teammate failure[id] < 0 then

teammate failure[id] ← 0
end if
if collision with other robots while foraging then

Thr ← Thr + Δtari

Ths ← Ths − Δtasd

else if food retrieved then
Thr ← Thr − Δtsrd

teammate sucess[k] ← teammate sucess[k] + 1, (k = 0, 1, . . . , N − 1; k �= id)
else if searching time times-out then

Thr ← Thr + Δtfri

teammate failure[k] ← teammate failure[k] + 1, (k = 0, 1, . . . , N − 1; k �= id)
else if resting at home then

Thr ← Thr − Δttsrd ∗ teammate success[id] + Δttfri ∗ teammate failure[id]
Ths ← Ths + Δttssi ∗ teammate success[id] − Δttfsd ∗ teammate failure[id]
teammate success[id] ← 0;teammate failure[id] ← 0

end if
loop again

Table 2. Adjustment factor and corresponding cues

adjustment factor comments corresponding cues∗

Δtari increase Thr
�3

Δtasd decrease Ths
�3

Δtfri increase Thr
�1

Δtsrd decrease Thr
�2

Δttsrd decrease Thr
�5

Δttfri increase Thr
�4

Δttssi increase Ths
�5

Δttfsd decrease Ths
�4

∗ See Table 1 for details of cues

control system. teammate success and teammate failure store the retrieval
information of teammates. Attenuation factors δs and δf are introduced here
to simulate gradually decaying rather than instantly disappearing social cues,
somewhat akin to ants leaving a decaying pheromone trail while foraging. Such

Strategies for Energy Optimisation in a Swarm of Foraging Robots 19

a mechanism should be readily implemented in a real robot implementation. As
shown in Table 2, adjustment factors Δtari, Δtasd, Δtfri, Δtsrd, Δttsrd, Δttfri,
Δttssi and Δttfsd indicate how the Ths and Thr will be changed based on the
above three different cues.

3 Experimental Set-Up

We have tested our swarm foraging adaptation scheme using the sensor-based
simulation tools Player/Stage [11]. Figure 2 is a snapshot of the simulation. Eight
robots work in a 8m × 8m octagonally shaped arena. The nest area is indicated
with a green (grey) colour, with one homing spot light source located at point
A to indicate the direction of the nest. Each robot is size 0.26m × 0.26m, the
same as the real robots (Linuxbots) in our laboratory, and is equipped with 3
light intensity sensors, 3 Infra-Red proximity sensors, 1 camera, 1 colour sensor
and 1 gripper. Thus the robot can sense food at a distance using the camera
then grab the food using its gripper; the robot also has the ability to find its
way back to the nest using the three front mounted light intensity sensors and
to know whether it is at home or not with the bottom mounted colour sensor.
The control programs for each robot are identical, as shown in Fig.1. Note that
to keep the diagram clear, with the exception of state resting, each state will
transition to state avoidance, not shown in Fig.1, whenever the proximity sensors
are triggered. The behaviours for the foraging task are:

leavinghome: robot exits the nest region and resumes its search.
randomwalk: robot moves forward and at random intervals turns left or right

through a random arc.

A

(a) robots working

view angle

IR sensors

(b) close up view of robot

Fig. 2. Snapshot of simulation

20 W. Liu et al.

movetofood: if food is sensed, move towards the food.
grabfood: if the food is close enough, close the gripper and grab the food.
scanarena: because of interference between robots, sometimes a robot will lose

sight of its target food item when moving towards it, the robot will then
scan the area by turning a random angle to find the lost food. If successful,
it will move to the food again, if not, then randomwalk.

movetohome: move towards the home location with the food.
deposit: food.
resting: rest at home.
homing: if searching time is up and no food has been grabbed, return home.
avoidance: robot avoids obstacles, walls and other robots whenever its proxim-

ity sensors are triggered; after completing a successful avoidance behaviour,
the robot returns to the state it was in before the collision.

At the start of the simulation, all robots are in state resting with the same time
threshold Ths(= Ths max) and Thr(= 0). In order to maintain the food density
ρ at a reasonably constant level over time, a new food item is placed randomly in
the searching arena with probability Pnew each second. Collected food deposited
in the home area will be removed to prevent robots from retrieving the food
that has already been collected. In each time step of the simulation, a robot will
consume an amount of energy varying with its state since the robot uses different
sensors and actuators in different states. For example, a robot will consume more
energy when carrying food back to the nest than when wandering in the search
area because the grippers are used in the former state. Table 3 shows the energy
consumed per second for each state. Note that the energy consumed in state
avoidance also varies depending on whether the robot is carrying a food item.
Moreover, the robot will consume a small amount of energy even when resting
at home, currently 1 unit/sec. A successful food retrieval will deliver 2000 units
of energy to the swarm.

Table 3. Energy consumed

state energy consumed(units/sec)

leavinghome 6
randomwalk 8
movetofood 8
grabfood 12
scanarena 8
movetohome 12
deposit 12
resting 1
homing 6
avoidance 6 or 9

Strategies for Energy Optimisation in a Swarm of Foraging Robots 21

4 Experimental Results and Analysis

In order to investigate whether and how our foraging adaptation mechanism can
improve the energy efficiency of the swarm, we run four types of experiments
(strategies) in simulation (10 times each), each with a different combination of
cues. Table 4 shows the cue configuration of each experiment. Each simulation
lasts for 10000 seconds and Pnew is set to 0.03 during the whole experiment,
Ths max is set to 100 seconds, the value of parameters for adjusting Ths and
Thr are given in Table 5.

Table 4. The four strategies: cue combinations

with internal cues with environment cues with social cues

S1 × × ×
S2 � × ×
S3 � × �
S4 � � �

Table 5. Value of time adjustment factors

Δtari Δtasd Δtfri Δtsrd Δttsrd Δttfri Δttssi Δttfsd δs δf

5 5 20 20 20 40 10 10 0.1 0.1

0

100

200

300

400

S1 S2 S3 S4

fo
o
d

u
n
it
s

produced
collected

Fig. 3. Food produced and collected

0

4

8

12

16

20

24

28

32

S2 S3 S4

en
er

g
y

o
f
sw

a
rm

×104(units)

S1

Fig. 4. Energy of swarm after 10000 sec

With equal Pnew, the total amount of food appearing in the search area over
time is almost the same in all four experiments, and as we would expect almost
all of the food is collected by the robots, as shown in Fig.3. However, from Fig.4,
it is clear that the swarm which makes use of all cues S4 can gain much more
net energy than the one which does not use any cues S1. Swarm S1 uses up
all of the energy collected while swarm S4 saves 37.8% of the energy collected

22 W. Liu et al.

−8

−4

0

4

8

12

16

20

24

28

0 5000 10000
t(sec)

S1

S2

S3

S4

en
er

g
y

o
f
sw

a
rm

×104(units)

Fig. 5. Instantaneous net energy of swarm

0

2

4

6

8

0 5000 10000
t(sec)

S2

S3

S4

ro
b
o
ts

Fig. 6. Number of foraging robots

0

2

4

6

8

S1 S2 S3 S4

ro
b
o
ts

Fig. 7. Average foragers

(300 food items donate 60 × 104 energy units to the swarm while the average
energy for S4 after 10000 sec is 22.7 × 104). Figure 4 also shows that the social
cues have a greater impact than the environmental cues, comparing the final
energy in experiments S2, S3 and S4. The instantaneous energies of the four
swarms are plotted in Fig. 5, and we are surprised to see the rates of increase of
swarm energy for experiments S2, S3 and S4 are almost linear, and the swarm
using all cues has the fastest rate of energy increase of all experiments.

Measuring the number of foragers in the swarm in the four experiments, which
is 8.0, 5.55, 4.32, 3.95 on average for S1, S2, S3 and S4 respectively, the swarm
with all cues used has the lowest average number of foragers over time, as shown
in Fig.7, i.e. more energy is saved using fewer foragers for a given food source

Strategies for Energy Optimisation in a Swarm of Foraging Robots 23

density. A more interesting result is seen in Fig.6: the number of foragers in
experiments S3 and S4 keep oscillating with time, while staying near an av-
erage value. That means that a dynamic equilibrium between the number of
foragers and the number of resters is reached when we introduce the adaptation
mechanism into the swarm system. Thus, the overall swarm task allocation (di-
vision of labour) emerges from the low-level interactions between robots, and the
environment.

0

2

4

6

8

0 5000 10000 15000
t(sec)

S2

S3

S4

ro
b
o
ts

stage1 stage2 stage3

Fig. 8. Number of foraging robots: food density changes at t = 5000 and t = 10000

We now introduce a step change of probability Pnew from 0.03 to 0.015 at
t = 5000 and then from 0.015 to 0.045 at t = 10000 and run the four types of
experiments 10 times each, see Fig.8. The simulation lasts 15000 seconds and
other parameters remain as above. As expected, a new dynamic equilibrium for
the number of foragers in the swarm is observed each time the food source den-
sity is changed. The swarms using social cues, experiments S3 and S4, adapt
more rapidly to the change of environment than the swarm without social cues,
experiment S2. The reason for this is that social cues provide more information
about the environment (food density) for the individuals. Figure 8 also shows
the steady-state average number of foragers in the different stages. The relative
change in average foragers between experiments S3 and S4 is bigger when Pnew

is smaller, 0.37/4.32, 0.30/2.37, 0.44/6.08 for stages 1, 2 and 3 respectively, so
the environmental cues have a bigger impact on the performance of the swarm
when the food source is poor (Pnew = 0.015) than when the food source is rich

24 W. Liu et al.

−24
−20
−16
−12
−8
−4

0
4
8

12
16
20
24
28
32
36
40

0 5000 10000 15000
t(sec)

S1

S2

S3

S4

en
er

g
y

o
f
sw

a
rm

×104(units)

stage1 stage2 stage3

Fig. 9. Instantaneous net energy of swarm: food density changes at t = 5000 and
t = 10000

(Pnew = 0.03 or 0.045); this is because the robots not carrying food collide with
each other more often in a low density food source environment. Figure 9 plots
the energy of the swarm for each experiment, as we might now expect the gra-
dient changes when food density changes for a specific experiment. However,
surprisingly the energy gradient seems to be very close for the high food density
Pnew = 0.045 in experiments S2, S3 and S4. This is because in this situation
the average number of foragers in each experiment is high and close, 5.06, 5.26,
5.14 for experiments S2, S3 and S4 respectively. The relative change in average
foragers between experiments S2 and S3 is 0.47/6.56 in stage 3 but 1.22/5.55
and 0.98/3.35 for stage 1 and stage 2. Thus we can deduce that the social cues
have less impact on the performance of the swarm when the food source is rich,
but more impact when the food source is poor; robots need to cooperate more
when energy is scarce.

5 Conclusion

In this paper, we have proposed a simple adaptation mechanism for a swarm
foraging task which is able to dynamically change the number of foragers and
thus make the swarm more energy efficient. The individuals in the swarm use
only internal cues (successful or unsuccessful food retrieval), environmental cues
(collision with other robots while searching) and social cues (teammate food
retrieval success or failure) to determine whether they will rest in the nest for
longer to either save energy or minimize interference, or be actively engaged

Strategies for Energy Optimisation in a Swarm of Foraging Robots 25

in foraging, which costs more energy for the individual but potentially gains
more energy for the swarm. With the adaptation mechanism, the swarm system
demonstrates:

– Significantly improved performance compared with the swarm with no adap-
tation mechanism

– Emergent dynamic task allocation (division of labour) between foraging and
resting

– Robustness to environmental change (in food density)

The most interesting conclusions are, firstly, that the swarms utilising social
cues (communication between teammates) achieve the highest net energy income
to the swarm and the fastest adaptation in ratio of foragers to resters when the
food density changes; and, secondly, that the same social cues have the greatest
impact when the food density is low.

This is a work in progress and so we have not tested the scalability or robust-
ness of the approach, however given the minimal local communication between
robots we have good reason to suppose the approach is scalable. We also believe
that the approach will exhibit a high level of robustness to failure of individual
robots, in keeping with the level of robustness commonly seen in swarm robotic
systems.

Currently, in Algorithm 1, all values of time adjustment factors are chosen
on a trial and error basis and all experiments in this paper use the same time
adjustment values (see Table 5). Future work will include: (i) introducing a
learning mechanism so that the swarm can find its own time adjustment values,
and (ii) analysing both how these values affect the performance of the swarm
and to what extent the system will be able to remain robust over a range of time
adjustment values. Future work will also (iii) seek to develop a probabilistic
model for our foraging swarm.

References

1. Lerman, K.: Mathematical model of foraging in a group of robots: Effect of inter-
ference. Autonomous Robots 13(2) (2002) 127–141

2. Krieger, M.J.B., Billeter, J.B.: The call of duty: Self-organised task allocation in
a population of up to twelve mobile robots. Robotics and Autonomous Systems
30(1-2) (January 2000) 65–84

3. Théraulaz, G., Bonabeau, E., Deneubourg, J.L.: Response threshold reinforce-
ment and division of labour in insect societies. In: the Royal Society B: Biological
Sciences. Volume 265. (1998) 327–332

4. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Efficiency and task allocation in
prey retrieval. In: Proceedings of the First International Workshop on Biologically
Inspired Approaches to Advanced Information Technology. Volume 3141. (2004)
32–47

5. Jones, C., Matarić, M.J.: Adaptive division of labor in large-scale multi-robot sys-
tems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). (2003) 1969–1974

26 W. Liu et al.

6. Guerrero, J., Oliver, G.: Multi-robot task allocation strategies using auction-like
mechanisms. In: Artificial Research and Development in Frontiers in Artificial
Intelligence and Applications. (2003)

7. Şahin, E.: Swarm robotics: From sources of inspiration to domains of appliction.
In Şabin, E., Spears, W., eds.: Swarm Robotics Workshop: State-of-the-art Survey.
Volume 3342 of Lecture Notes in Computer Science., Springer (2005) 10–20

8. Beni, G.: From swarm intelligence to swarm robotics. In Şahin, E., Spears, W.,
eds.: Swarm Robotics Workshop: State-of-the-art Survey. Volume 3342 of Lecture
Notes in Computer Science., Springer (2005) 1–9

9. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Théraulaz,
G.: Self-Organization in Biological Systems. Princeton University Press (2001)

10. Martinoli, A., Easton, K.: Modeling swarm robotic systems. International Journal
of Robotics Research 23(4) (2004) 415–436

11. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for
multi-robot and distributed sensor systems. In: Proceedings of the International
Conference on Advanced Robotics. (2003) 317–323

A Macroscopic Model for Self-organized

Aggregation in Swarm Robotic Systems

Onur Soysal and Erol Şahin

KOVAN Research Lab.
Department of Computer Engineering

Middle East Technical University,
06531, Ankara, Turkey

{soysal,erol}@ceng.metu.edu.tr
http://kovan.ceng.metu.edu.tr/{∼soysal,∼erol}

Abstract. We study the self-organized aggregation of a swarm of robots
in a closed arena. We assume that the perceptual range of the robots are
smaller than the size of the arena and the robots do not have informa-
tion on the size of the swarm or the arena. Using a probabilistic aggrega-
tion behavior model inspired from studies of social insects, we propose a
macroscopic model for predicting the final distribution of aggregates in
terms of the parameters of the aggregation behavior, the arena size and
the sensing characteristics of the robots. Specifically, we use the parti-
tion concept, developed in number theory, and its related results to build
a discrete-time, non-spatial model of aggregation in swarm robotic sys-
tems under a number of simplifying assumptions. We provide simplistic
simulations of self-organized aggregation using the aggregation behavior
with different parameters and arena sizes. The results show that, de-
spite the fact that the simulations did not explicitly enforce to satisfy
the assumptions put forward by the macroscopic model, the final ag-
gregate distributions predicted by the macroscopic model and obtained
from simulations match.

1 Introduction

Aggregation, defined as “the collecting of units or parts into a mass or whole”[1],
can be considered as one of the fundamental behaviors of swarms. In nature, ag-
gregation behaviors, observed in organisms ranging from bacteria to social insects
and mammals[2], increase the survival chance of the swarm in hostile environ-
ments. Although some of these aggregations can be traced back to environmental
cues, others are self-organized.

We believe that self-organized aggregation, that do not require a cue from the
environment or centralized control, is an essential competence for swarm robotic
systems[3,4]. In these systems, aggregation behaviors can act as precursors for
more complex behaviors such as flocking, pattern formation or self-assembly[5].
However, like other behaviors that produce self-organization, engineering aggre-
gation behaviors is a major challenge. Although the general structure of aggre-
gation behaviors can be inspired from studies of social insects, the relationship

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 27–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://kovan.ceng.metu.edu.tr/{~soysal,~erol}

28 O. Soysal and E. Şahin

of behavioral parameters, and environmental factors to the performance of self-
organized aggregation remains an open problem.

In this paper, we propose a probabilistic aggregation behavior for swarm
robotic systems and develop a macroscopic model to predict the performance
of the aggregation behavior under different parameters of the swarm system.

2 Related Studies

2.1 Aggregation

Studies of aggregation can be grouped in three different but related fields;
namely, social insect studies, control theory, and swarm robotics. In social insect
studies, aggregation, a rather common phenomenon in ants, cockroaches, etc.,
is a rather well-studied phenomenon. In [6], Deneubourg et al. studied the ag-
gregation behavior of cockroaches, that aggregate in hiding sites. They studied
the modulation of the resting time, defined as the time a cockroach spends in an
aggregation. They observed that the resting time of cockroaches is proportional
to the number of individuals in the aggregate. Hence, individuals tend to spend
more time in large aggregations, and that this provides a positive feedback for
growth of aggregations. In another study[7], Jeanson et al. presented a model of
aggregation in cockroach larvae in homogeneous conditions. It was observed that
the behavior of individuals depend on the number of larvae in their close vicinity.
The authors computed the parameters of their model through systematic exper-
iments on the larvae, and showed that similar aggregations can be obtained in
simulations using these parameters.

In control theory, aggregation is often referred as the gathering, the agreement
or the rendezvous problem. In most of these studies[8,9], however, the robots are
modeled as points without orientation neglecting even the physical embodiment
of the robots. Also, it is usually assumed that all robots can perceive the location
of all the other robots in the swarm. In these studies, the major axis of research
focus on the convergence characteristics of aggregation methods. For instance,
in [10], it was shown that explicit bounds on the swarm size and bounds on the
time of convergence can be obtained for aggregation.

When perception range is limited, however, aggregation of robots into a single
aggregate becomes a more difficult problem. Deterministic algorithms work only
when there are no isolated robots in the swarm [11]. Even without isolated
robots, it was noted that, convergence may take an infinitely long time [8] in some
scenarios. In the same study, Flocchini et. al proposed an aggregation algorithm
which can provide guaranteed aggregation in finite time that required limited
visibility with distinguishable robots and a common orientation decided by the
robots. In a similar approach proposed in [12], Lin et al. utilized the geometric
constraints on the behavior of robots to develop an aggregation behavior.

In swarm robotic systems, the problem of engineering and evaluation of ag-
gregation behaviors have been tackled by a number of studies. We would like
to first note that, aggregation refers to the forming of aggregates by the robots
themselves, and is fundamentally different from the aggregation of passive items

A Macroscopic Model for Self-organized Aggregation 29

(like pucks) by a swarm of robots. We consider the latter problem as the clus-
tering problem, and distinguish it from the aggregation problem.

In [13], one of the early studies on the problem, robots were required to form
aggregates of pre-determined size around infrared beacons. Inspired by birds
and frogs, the proposed method used a chorus consisting of individuals who can
approximate the size of the aggregates using variations in sound. This method
was also tested on systems without infrared beacons that trigger aggregation.
The results indicated that, self-organized aggregation can be obtained with this
method only in virtually noiseless environments.

In [14], Trianni et. al used genetic algorithms to study the evolution of neural
networks to generate aggregation behaviors for a swarm of robots. Aggrega-
tion behaviors that were evolved in simulation, were partially tested on physical
robots. It was shown that evolution was able to generate two different aggrega-
tion strategies: (1) static aggregation behaviors where robots remain still in ag-
gregates, and (2) dynamic aggregation behaviors where robots continue moving
in aggregates. It was shown that the evolved behaviors demonstrated a certain
degree of scalability to generating aggregates in larger swarm sizes and larger
arenas than the ones that the behaviors were evolved in.

Bahçeci et. al [15] investigated the use of evolutionary methods for develop-
ing aggregation behaviors. They systematically investigated the performance of
behaviors evolved with different evolution parameters for the aggregation task.
Based on the results of the systematic experiments, they proposed a number of
rule of thumbs that can be used for evolving behaviors for swarm robot systems.

In a former study[16], we used a probabilistic aggregation behavior for study-
ing aggregation in simulated swarm robotic systems. We investigated the effect
of probabilistic parameters on aggregation performance through systematic ex-
periments on a physics-based robot simulator, and identified different control
parameters that lead to dynamic and static aggregation strategies.

2.2 Modeling

The engineering and evaluation of behaviors that generate self-organization in
swarm robotic systems, such as self-organized aggregation, is a challenging prob-
lem. Although it is easy to propose generic behaviors for self-organization, it is
hard to set their parameters and predict their performances for different swarm
sizes and environments. Conducting systematic experiments is a difficult task,
even with simulated swarm robotic systems, requiring a large amount of compu-
tation time. Despite this, however, the results obtained from such experiments
provide little insight to the relationships between the performance of the behav-
iors and the parameters of the swarm system.

Constructing macroscopic models to describe the behavior of swarms can pro-
vide a viable approach to guide the design of swarm behaviors [17]. Macroscopic
models, once developed, can provide explicit relationships between the parame-
ters of the swarm system and its performance. Through such relationships, one
can derive or evaluate the performances of a behavior under different parameters
settings, and choose the optimum parameter values for a desired task. Despite

30 O. Soysal and E. Şahin

these advantages, however, building macroscopic models for swarm robotic sys-
tems is a challenging task and there are few studies in the literature.

Most of the existing macroscopic models[17,18,19] used rate equations and
Markovian processes to model the behavior of swarm robotic systems. These
models generally represent the environment and behavioral states with proba-
bilistic variables and define the change of these variables. In [20], Martinoli et.
al proposed a probabilistic model for puck clustering task. In this problem, a
number of pucks that are initially dispersed within a bounded arena, are clus-
tered by a swarm of robots. The robots grip pucks in the arena and transporting
them closer to other puck clusters. The model developed in this study was val-
idated against the simulated and physical robots through experiments. In [19],
Agassounon et. al. extend the object aggregation model described in [20] to a
macroscopic level.

In [21], Kazadi defined the global goals as mathematical constraints an synthe-
size behaviors as to satisfy them. The behavior of the system can be investigated
using the goal constraints. Lee et. al applied this concept to robot aggregation
in their recent work [22] and showed that a controller for aggregation can be
constructed using results form the clustering algorithm.

3 Aggregation Problem

We define aggregation as the gathering of a swarm of robots, that are initially
dispersed into a closed arena, into preferably a single aggregate. We assume that;
(1) The arena is bounded. (2) The perceptual range of robots is smaller than
the size of the arena and that the initial positioning of the individuals may not
necessarily form a connected graph. (3) The individuals in the swarm do not
have any knowledge regarding the size of the arena or the swarm.

The first assumption removes the possibility that some robots may get lost
during the aggregation process and is very common in the aggregation studies
with social insects[7] and swarm robotic systems[13,14]. The second assumption
makes the aggregation problem more realistic and difficult. It also rules out any
centralized coordination mechanisms that may be proposed for the problem. The
third assumption rules out any solutions to the aggregation problem that may
be specific for a particular swarm and/or arena size.

4 Aggregation Behavior

In this study, we use an aggregation behavior that is implemented as a finite
state machine as shown in Figure 1(a). The behavior consists of three basic
behaviors, namely random walk, wait and approach. The random walk behavior,
once activated, controls the robot for a certain pre-specified duration, moving
the robot in the arena randomly while avoiding other robots and the walls of
the arena. After the expiration of the random walk behavior, if the robot has an
aggregate in its perceptual view, the robot switches to the approach behavior,
else, the robot switches into the wait behavior, creating a one-robot aggregate.

A Macroscopic Model for Self-organized Aggregation 31

Robot
close

Pleave

Robot
perceived

No robot
perceived

Random
Walk

Approach

Wait

A

S1

robots

S3

(a) (b)

Fig. 1. (a) Aggregation behavior. Ovals display the simple behaviors and arrows rep-
resent the behavior transitions. (b) A sketch of the environment. The square frame
represents the arena. The gray circles represent the robots and dashed circles represent
the part of environment where the robot aggregate can be perceived by another robot,
i.e Sm’s. See text for more details.

In the wait behavior, the robot remains still with a certain probability to
switch to the random walk behavior. The probability of leaving the wait behavior
is denoted as Pleave. In the approach behavior, the robot moves toward the
closest aggregate perceived. When the robot gets into the close proximity of the
aggregate, the robot switches into the wait behavior.

We believe that the proposed aggregation behavior is consistent with the
ones observed in natural swarms and is generic enough to represent different
aggregation strategies through changes in transition probabilities. However, the
performance comparison of different aggregation strategies that can be generated
from this generic behavior, remains a challenge, and will be our motivation for
constructing a macroscopic model.

5 A Macroscopic Model for Aggregation

We assume that there are n robots randomly placed in a closed arena of size A.
We define an aggregate of robots as the group of robots who are in local proximity
of each other, i.e. a connected group of robots who can sense each other through
their proximity sensors. An aggregate which consists of m robots is called as an
m-aggregate. The area within which an m-aggregate can be perceived by another
robot is called as Sm, representing the area of the attraction region for the
aggregate. Although, Sm would depend on the grouping of the m-aggregate, we
will assume that all m-aggregates have a rather compact grouping and that the
area of their attraction regions can be approximated with a single Sm value.
Figure 1(b) shows an exemplary sketch of the environment.

In the macroscopic model, the state of the swarm aggregation is denoted as a
configuration Ca1,a2,..,ak

, where each ak represent the existence of an ak-aggregate
in the arena and that

∑
i=1..k ak = n. The configuration of a sample aggregation

32 O. Soysal and E. Şahin

state shown in Figure 1(b) is denoted as C4,3,1,1,1 indicating that there exist
five aggregates in the arena with sizes 4, 3, 1, 1 and 1. Such a representation
corresponds to the notion of partition in mathematics which is formally defined
as an unordered set of positive integers whose sum is n [23]. Finally, we would
like to note that, in this representation the spatial positioning of the aggregates
are ignored, and two distributions are considered equivalent if they have equal
number of aggregates, all with the same size.

In order to analyze the evolution of the configuration of the robots, we need
to consider possible changes in the size of aggregates. These changes occur when
robots leave their current aggregates to form a new one-robot aggregate or to
join an existing aggregate. Such changes can be modeled as transitions in the
configuration of the swarm. Our ultimate goal is to construct a macroscopic
model that can model these transitions to make predictions about the time
evolution and performance of a certain aggregation strategy. However, within
this paper, we will construct a constrained macroscopic model which will make
two simplifying constraints; (1) Only single robot transitions happen among the
aggregates. (2) The probability of robot transitions between two aggregates is
independent of the distance in between.

The first constraint assumes that the probability of multi-robot transitions
among aggregates is small and can be neglected to simplify the temporal analysis
of the aggregation process. In swarm robotic systems, such an assumption can be
approximately made to hold by choosing a small Pleave value for the aggregation
behavior. The second constraint assumes that the probability for a robot, which
left its current aggregate, to join another aggregate is independent of the distance
between the two aggregates. This assumption is made to simplify the spatial
analysis and can be considered to approximately hold when the duration of the
random walk behavior is chosen long enough with respect to the size of the arena.

The changes in configurations can be modeled as probabilistic transitions and
that a graph can be constructed to visualize them, as shown in Figure 2. In this
graph, each node corresponds to a configuration and directed weighted edges
represent the probabilistic transitions from one configuration to another. The
central view of our macroscopic model is that, if one can compute the probability
of transitions between these configurations from the parameters of the swarm
system, it is possible to deduce the evolution of the aggregation in time. Here,
the parameters of a swarm system consists of the parameters of the aggregation
behavior, Pleave, the sensing characteristics of the robots through Sm values, the
size of the swarm n, and the area of the arena A.

Note that the limitation of transitions to single-robot transitions simplifies
the connectivity of the graph greatly reducing the complexity of the model.
However, despite this, the number of possible configurations and the probabilistic
transitions among them grows exponentially making it difficult, if not impossible,
to compute the transition probabilities of the model.

Here, we would like to point out that, the ultimate goal of aggregation is to form
a single aggregate that contains all the individuals in the arena. Hence, we pro-
pose to use the size of the largest aggregate in a configuration, as its performance

A Macroscopic Model for Self-organized Aggregation 33

C1 C1,1,1,...

C2 C2,1,1,... C2,2,1,... C2,2,2,1,... . . .

C3 C3,1,1,... C3,2,1,... C3,2,2,1,... C3,3,2,1,... . . .

C4 C4,1,1,... C4,2,1,... C4,3,2,1,... C4,3,3,1,... . . .

.

Fig. 2. Configuration graph re-ordered according to equivalence classes

C1 . . . Cm−1 Cm

Pg(n,m)

Ps(n,m)

Pr(n,m)

Cm+1 . . . Cn

Fig. 3. Equivalence classes and the transitions between them

metric. With this metric, we can group all the different configurations with the
same metric value, into equivalence classes. All the configurations that contain
one or more m-aggregates as their largest aggregate(s) can be lumped into a single
equivalence class denoted by Cm. Hence, the transition graph of different config-
urations can be arranged according to their equivalence classes.

As a result of this grouping , in a swarm of size n, there can be only n equiv-
alence classes. Also, using the single-robot transition assumption, we can limit
the probabilistic transitions among these classes to transitions among consecu-
tive equivalence classes in Figure 3.

Figure 4 shows all possible configurations of n = 7 robots as grouped into 7
equivalence classes. Note that, the spatial location of the aggregates is left out
by our representation, and that the locations of the aggregates drawn on the
figure is only exemplary.

With this representation, the system can only stay in one equivalence class
or change into a neighboring equivalence class in one transition. The transitions
between the equivalence classes will be denoted with three probabilities:

P s(n, m): the probability that the largest aggregate shrinks.
P g(n, m): the probability that the largest aggregate grows.
P r(n, m): the probability that the largest aggregate remains the same.

5.1 Probabilities for Shrinking

Shrinking is defined as a change in the configuration such that the largest ag-
gregate is reduced by one as the result of a single-robot transition. Effectively,

34 O. Soysal and E. Şahin

C1 C2 C3 C4 C5 C6 C7

C1,1,1,1,1,1,1 C2,1,1,1,1,1 C3,1,1,1,1

C2,2,1,1,1

C3,2,2

C3,3,1

C5,1,1 C4,1,1,1 C6,1 C7

C3,2,1,1 C4,2,,1 C5,2

C2,2,2,1 C4,3

Fig. 4. All configurations of 7 robots grouped into equivalence classes

it means a transition from a configuration in equivalence class Cm to another
configuration in equivalence class Cm−1.

First, note that the number of m-aggregates must be 1 such that shrinking can
occur. Let’s call the number of m-1-aggregates as k. If k = 0, meaning there is no
aggregate with size m − 1 then there is a single aggregate the robot should not
join for shrinking to occur, that is the aggregate it left. If k > 0 then the robot
should not join any of these k aggregates and the aggregate it left. Therefore,
the probability of shrinking when there are k m-1-aggregates is

A − (k + 1) · Sm−1

A
,

which denotes the probability that the robot would not end up in the attraction
regions of the m-1-aggregates in the arena.

The transition probabilities between configurations in consecutive classes
needs to be integrated over all the configurations in the initial class. Hence,
the probability of being in a configuration that included only one m-aggregate
and a certain number of m-1-aggregates over all possible configurations need to
be calculated. In order to calculate these probabilities, we will depend heavily
on number theory concepts. A partition function q(n, m), gives the number of
ways to write n in terms of positive integers where the largest one is less than
or equal to m [24] . If we fix the first aggregate to size m, the number of ways
to write the rest with the largest being m gives us the number of configurations
in Cm. This is equivalent to q(n − m, m).

A Macroscopic Model for Self-organized Aggregation 35

In Cm, the number of configurations that contain k m-1-aggregates and a
single m-aggregate can be calculated using the partition function

q(n − m − k(m − 1), m − 2).

This formulation guarantees that the rest of the aggregates are neither of size
m nor of size m − 1 by limiting the required largest aggregate size to m − 2.

Combining these, we can derive the shrinking probability for Cm as:

P s(n, m)=
m · Pleave

n
·
�n−m

m−1 �∑
k=0

·q(n − m − k · (m − 1), m − 2)
q(n − m, m)

A − (k + 1) · Sm−1

A
,

where k ranges from 0 to the maximum number of aggregates of size m − 1 in
Cm, which can be computed as

⌊
n−m
m−1

⌋
.

Note that for n = m, corresponding to the case that there is a single cluster
that contains all robots, q(0, m) = 1 as zero is considered to have a single
partition which is the empty partition. Therefore, Ps(n, n) is reduced to

Pleave · A − Sn−1

A
,

which reflects the case that the single large cluster will shrink if any of the robots
leaves the cluster and does not come back.

5.2 Probabilities for Growth

Growth is defined as a change in the configuration such that the largest aggregate
is increased by one as the result of a single-robot transition. Effectively, it means a
transition from a configuration in equivalence class Cm to another configuration
in equivalence class Cm+1.

First, note that the growth probabilities depend on two factors: the size of the
aggregate that the robot is and the number of m-aggregates, denoted by t and k
respectively. For given t and k, the probability of growth can be computed as:

α

q(n − m, m)
· t · Pleave

n
· k · Sm

A
,

where α is the number of t-aggregates in all configurations of Cm that also contain
k m-aggregates.

Here, the value of α can be computed using p̂(n, t) and q̂(n, m, t) functions.
p̂(n, t) corresponds to the number of occurrences of t in all partitions of n and
q̂(n, m, t) corresponds to the number of occurrences of t in all partitions of n
where largest term is less than or equal to m. p̂(n, t) can be calculated with the
following recurrence relation:

p̂(n, t) =

⎧⎨
⎩

0 t > n
1 t = n
q(n − t, n − t) + p̂(n − t, t) t < n.

36 O. Soysal and E. Şahin

In the recursion step, we can add t to all possible partitions of n − t, that
will each have one more t. Since partitions of n − t may contain more t’s we add
p̂(n − t, t). We now define q̂(n, m, t) as:

q̂(n, m, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 t > m
q(n − t, m) + q̂(n − t, m, t) t = m, t < n
q̂(n, m − 1, t) + q̂(n − m, m, t) t < m < n, t < n
p̂(n, t) otherwise.

In the first recursion case, we follow a similar construction with p̂(n, t). This
time, q(n − t, m) is used instead of q(n − t, n − t) since we want to limit largest
aggregate size to m. The second recursion case splits the partitions into two
disjoint sets; the first one containing no terms equal to m, and the second one
containing at least one term equal to m. The number of occurrences of t is sum
of occurrences in these two sets. Note that, t < m in this case, hence the number
of occurrences in the second set discounts this mandatory term m.

If there are k m-aggregates, the number of occurrences of t in all such config-
urations is:

q̂(n − k · m, m − 1, t).

Using q̂ and the previous result, we can calculate the total probability of growth
for all aggregates of size t. We call this function γ:

γ(n, m, t, k) =
q̂(n − k · m, m − 1, t)

q(n − m, m)
· t · Pleave

n
· k · Sm

A
; t < m.

Note that this definition of γ is only valid for t < m since the transitions
between m-aggregate do not fit the rule explained above. Handling this special
case is not very difficult since we know that there are exactly k aggregates of
size m. The number of configurations with exactly k aggregates of size m can
be computed with q(n − k · m, m − 1). In each of these configurations, a robot
from k different aggregates can join one of the k − 1 aggregates to increase the
size of largest aggregate. So we extend the definition of γ as follows:

γ(n, m, k, t) =

{
q̂(n−k·m,m−1,t)

q(n−m,m) · t·Pleave

n · k·Sm

A ; t < m
k·q(n−k·m,m−1)

q(n−m,m) · t·Pleave

n · (k−1)·Sm

A ; t = m

The total probability of growth is the sum of these probabilities for all possible
k and t values. For each different number of aggregates of size m, we need to
consider all aggregate sizes that can lose a robot that could increase the size of the
largest aggregate. These separate cases add up to the total growth probability.

Pg(n, m) =
� n

m�∑
k=1

m∑
t=1

γ(n, m, k, t).

A Macroscopic Model for Self-organized Aggregation 37

5.3 Probabilities to Remain Same

Once the shrinking and the growth probabilities are derived, the probability of
remaining in the same equivalence class can be derived as:

P r(n, m) = 1 − P s(n, m) − P g(n, m).

5.4 Macroscopic Model

The probability distribution of being at different equivalence classes Cm at time
t is represented with F (t) which is a probability vector (i.e. have positive real-
valued entries summing up to 1) with n entries. Using M we can calculate the
value of F (t + 1) with:

F (t + 1) = M · F (t).

Here, M is called the system matrix which consist of the probability values
derived above as:

Mm,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P g(n, m) m = i − 1
P s(n, m) m = i + 1
P r(n, m) m = i

0 otherwise.

The steady state behavior of the system can then be obtained by iterating the
system for infinite number of steps:

F (∞) = M∞ · F (0).

Notice that M is a left-stochastic matrix since its rows are probability vectors.
Stochastic matrices can be considered as representations of the transition proba-
bilities of a first-order finite Markov chain. Furthermore, the M matrix is regular
since the matrix power Mk will contain only strictly positive entries for some
k [25]. According to the Perron-Frobenius theorem, such a system has a unique
convergence point [26] meaning that it will converge to a steady-state vector
representing the distribution of configurations as time goes to infinity. The final
steady-state of the system would be the eigenvector of the matrix corresponding
to the eigenvalue of unity.

6 Experimental Results

The predictions of the macroscopic model beg to be compared against results
obtained from simulated or real robots. We have developed a simple 2D robot
simulator for this purpose. The simulator supported simplified physical interac-
tions between the robots, and the robot and the environment based on collision
detection and recovery. The simulated robots have a radius of 3 units. They have
infrared proximity sensors around them, to detect the existence of other robots
and also avoid the walls of the arena. The characteristics of the proximity sensors
control the Robot close condition which ends the approach behavior. The robots

38 O. Soysal and E. Şahin

are also equipped with a omnidirectional long-range sensor through which they
can sense each other within 30 units. This sensor, gives the center of mass for the
robots in the perceptual view of the robot and determine the attraction regions
(Sm) of the aggregates. The S1 is computed as 2826 unit2 (computed as π·30·30)
using the range of the long-range sensor. Through empirical experiments, S20

was measured to be approximately 5800 unit2. The Sm values for the aggregate
sizes in between was obtained using a linear interpolation between these two
values. The random walk behavior duration is determined experimentally to be
20,000 simulation steps where robots can move around 1 units per simulation
step. Finally, we would like to note that, the simulator does not restrict the
movement of the robots and that more than one robot can be on the move at a
given time.

We have conducted two sets of experiments and compared the final aggregate
distributions obtained in simulation against those predicted by the macroscopic
model. In the first set of experiments, we have studied the effect of the Pleave

on the performance of the self-organized aggregation. In natural swarm sys-
tems, individuals are known to perceive the aggregates that they are in, and to
modulate their leaving probability with respect to the size of the aggregate[7].
Specifically, we simulated three different strategies for setting the leave proba-
bility: (1) Constant: Pleave(i) = G, (2) Inversely proportional to aggregate size:
Pleave(i) = G/i and (3) Inversely proportional to the square of aggregate size:
Pleave(i) = G/i2. G is chosen to be 0.00002 in all the experiments.

Each strategy was tested with three different swarm and arena sizes: (1) 5
robots in a 150×150 arena, (2) 10 robots in a 212×212 arena and, (3) 20 robots
in a 300 × 300 arena. These setups keep the robot density approximately same
while increasing the number of robots. Each simulation run lasted for 50,000,000
simulation steps, which was observed to be sufficient for stabilization.

For each of the nine cases, 50 simulation runs were made, and the largest
aggregate formed at the end of the simulations are recorded. Similarly, we used
the macroscopic model to predict the final distribution of the aggregates for
the same given parameters. The predictions of the model and the histogram of
the largest aggregates obtained from simulations are plotted in Figure 5. The
results indicate good match between model and the results of the simulation
experiments. The model correctly predicts that constant leave probabilities, that
is Pleave = G, should lead to small aggregates, whose mean size is determined by
the size of the swarm as shown in the top row of the figure. The plots shown in the
middle row indicates a phase transition from the top row to the bottom row. The
plots in the bottom row of the figure clearly show that for leave probabilities set
to be inversely proportional to the square of the aggregate size, that is Pleave(i) =
G/i2), the aggregation performance of the swarm is high. For three different
arena sizes, it can be seen that the aggregation behavior was able to generate
aggregates that contain all of the robots in the swarm for most runs.

These results are in aggreement with the results in [7]. In that study, Jeanson
et. al reported poor aggregation performance when the agents ignored the num-
ber of agents in their close proximity, which corresponds to constant probabilities

A Macroscopic Model for Self-organized Aggregation 39

5 robots 10 robots 20 robots

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Fig. 5. The comparison of macroscopic model predictions against results obtained from
simulations. Each plot shows the histogram of largest aggregates at the end of each
run. White boxes show the prediction of the macroscopic model and black boxes show
the results of experiments. Top row: Pleave(i) = G. Middle row: Pleave(i) = G

i
. Bottom

row: Pleave(i) = G
i2

. Note that, the black boxes do not have any error bars, since they
represent the normalized histograms obtained from 50 runs.

in our model. They also reported successful aggregation when rest durations are
increased more than linearly with respect to aggregate size which is similar to
the quadratic case in our experiments. The results with quadratic probabilities
are also comparable to results by Lee et. al, in which the controller is defined to
use decreasing leave probabilities for aggregates [22].

In a second set of experiments, we investigate the effect of swarm density,
which can be defined as the number of robots in the swarm divided by the arena
size, on the performance of the aggregation. We studied the aggregation behavior
of 5 robots in three different arenas: 150 × 150, 212 × 212 and 300 × 300.

When we used the leave probability setting, Pleave(i) = G/i2, which was
shown to be the best performer in the first set of experiments. The results of
the simulations and the predictions of the model are plotted in Figure 6. It can be

40 O. Soysal and E. Şahin

5 robots 5 robots 5 robots

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Fig. 6. Comparison of model predictions with experimental results with respect to
arena size. Each diagram shows the histogram of largest aggregates at the end of each
run. White boxes show the prediction of macroscopic model and black boxes show
the results of experiments. Pleave(i) = G

i2
where i is the number of robots in the

aggregate. Note that, the black boxes do not have any error bars, since they represent
the normalized histograms obtained from 50 runs.

seen that there is an approximate match between the model’s predictions and
the results of the simulations. The results show that the aggregation performance
degrades with decreasing robot density, indicating that the constant used in the
leave probability is related to the density of the robots in the area for a desired
performance.

7 Conclusion

In this study we proposed a macroscopic model for self-organized aggregation
behavior in swarm robotic systems and compared its aggregation performance
predictions against results obtained from simulations. The macroscopic model,
resulting in a simple mathematical form allows detailed analysis, such as the op-
timization of behavioral parameters for desired aggregation performance if given
the number of robots, their perception range and the size of the environment.

However, we would like to explicitly state that the work presented in this
paper is not complete yet and the model presented here relies on a number of
restricting assumptions. As a possible result of these, there are a number of small
discrepancies between the model predictions and the simulation results, such as
the middle plot in Figure 6. There are many potential sources for these discrep-
ancies. As stated, the macroscopic model relies on a number of assumptions,
which are not fully satisfied in the simulations: (1) Single-robot transitions were
not explicitly enforced in the simulations, (2) spatial information regarding the
positions of the aggregates were excluded from the model, and (3) attraction
regions of the aggregates were based on rough estimations. Other than these,
cases like two aggregates joining into a single aggregate through a interconnect-
ing robot were completely neglected. A detailed analysis of these unsatisfied
assumptions on the performance of the aggregation remains a future challenge
for our studies.

A Macroscopic Model for Self-organized Aggregation 41

Acknowledgements

This work was partially funded by the “KARİYER: Kontrol Edilebilir Robot
Oğulları” Career Project (Project no: 104E066) awarded to Erol Şahin by TÜBİ-
TAK (Turkish Scientific and Technical Council).

The authors would like to thank Maya Çakmak for her help on both the
discussions that led to the development of this model as well as her help on
writing the manuscript.

References

1. “aggregation”: (Merriam-webster online dictionary, 2006.)
http://www.merriam-webster.com.

2. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraulaz,
G.: Self-Organization in Biological Systems. Princeton University Press, Princeton,
NJ, USA (2001) ISBN: 0691012113.

3. Dorigo, M., Şahin, E.: Swarm robotics - special issue editorial. Autonomous Robots
17(2) (2004)

4. Şahin, E.: Swarm robotics: From sources of inspiration to domains of application.
In Şahin, E., Spears, W., eds.: Swarm Robotics Workshop: State-of-the-art Survey.
Number 3342 in Lecture Notes in Computer Science, Berlin Heidelberg, Springer-
Verlag (2005) 10–20

5. Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T.H., Nouyan, S., Ampatzis,
C.: The swarm-bots project. In Şahin, E., Spears, W., eds.: Swarm Robotics
Workshop: State-of-the-art Survey. Number 3342 in Lecture Notes in Computer
Science, Berlin Heidelberg, Springer-Verlag (2005) 31–44

6. Deneubourg, J.L., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence
of cooperation. Biological Bulletin 202 (2002) 262–267

7. Jeanson, R., Rivault, C., Deneubourg, J., Blanco, S., Fournier, R., Jost, C., Ther-
aulaz, G.: Self-organised aggregation in cockroaches. Animal Behaviour 69 (2005)
169–180

8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science 337(1-3) (2005)
147–168

9. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts
with limited sensing capabilities. In: Lecture Notes in Computer Science. Volume
3172. (2004) 142–153

10. Gazi, V., Passino, K.M.: A class of attractions/repulsion functions for stable swarm
aggregations. International Journal of Control 77(18) (2004) 1567–1579

11. Lin, Z., Francis, B., Ma, M.: Necessary and sufficient graphical conditions for
formation control of unicycles. IEEE Transactions on Automatic Control 50(1)
(2005) 121–127

12. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. In:
42nd IEEE Conference on Decision and Control. Volume 2. (2003) 1508–1513

13. Melhuish, C., Holland, O., Hoddell, S.: Convoying: using chorusing to form travel-
ling groups of minimal agents. Journal of Robotics and Autonomous Systems 28
(1999) 206–217

http://www.merriam-webster.com

42 O. Soysal and E. Şahin

14. Trianni, V., Groß, R., Labella, T., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In Banzhaf, W., Christaller, T., Dittrich, P., Kim,
J.T., Ziegler, J., eds.: Advances in Artificial Life - Proceedings of the 7th European
Conference on Artificial Life (ECAL). Volume 2801 of Lecture Notes in Artificial
Intelligence., Springer Verlag, Heidelberg, Germany (2003) 865–874

15. Bahçeci, E., Şahin, E.: Evolving aggregation behaviors for swarm robotic systems:
A systematic case study. In: Proc. of the IEEE Swarm Intelligence Symposium,
Pasadena, California (2005) 333–340

16. Soysal, O., Şahin, E.: Probabilistic aggregation strategies in swarm robotic systems.
In: Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, California (2005)
325–332

17. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic
models for swarm robotic systems. In Şahin, E., Spears, W., eds.: Swarm Robotics
Workshop: State-of-the-art Survey. Number 3342, Berlin Heidelberg, Springer-
Verlag (2005) 143–152

18. Kazadi, S., Chung, M., Lee, B., Cho, R.: On the dynamics of clustering systems.
Robotics and Autonomous Systems 46 (2004) 1–27

19. Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation
experiments using embodied agents in teams of constant and time-varying sizes.
Autonomous Robots 17 (2004) 163–192

20. Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems 29 (1999) 51–63

21. Kazadi, S.T.: Swarm Engineering. PhD thesis, Caltech (2000)
22. Lee, C., Kim, M., Kazadi, S.: Robot clustering. In: IEEE International Conference

on Systems, Man and Cybernetics. Volume 2. (2005) 1449–1454
23. Weisstein, E.W.: Partition from mathworld–a wolfram web resource (2005)

http://mathworld.wolfram.com/Partition.html.
24. Weisstein, E.W.: Partition function q from mathworld–a wolfram web resource

(2002) http://mathworld.wolfram.com/PartitionFunctionq.html.
25. Wikipedia: Stocastic matrix from wikipedia, the free encyclopedia (2006)

http://en.wikipedia.org/wiki/Stochastic matrix.
26. Wikipedia: Perron - frobenius theorem from wikipedia, the free encyclopedia (2006)

http://en.wikipedia.org/w/index.php?title=Perron-Frobenius theorem.

http://mathworld.wolfram.com/Partition.html
http://mathworld.wolfram.com /PartitionFunctionq.html
http://en.wikipedia.org/wiki/Stochastic_matrix
http://en.wikipedia.org/w/index.php?title=Perron-Frobenius_theorem

An Analytical and Spatial Model of Foraging

in a Swarm of Robots

Heiko Hamann and Heinz Wörn

Institute for Process Control and Robotics,
Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

{hamann,woern}@ira.uka.de

Abstract. The foraging scenario is important in robotics, because it
has many different applications and demands several fundamental skills
from a group of robots, such as collective exploration, shortest path find-
ing, and efficient task allocation. Particularly for large groups of robots
emergent behaviors are desired that are decentralized and based on local
information only. But the design of such behaviors proved to be difficult
because of the absence of a theoretical basis. In this paper, we present a
macroscopic model based on partial differential equations for the forag-
ing scenario with virtual pheromones as the medium for communication.
From the model, the robot density, the food flow and a quantity de-
scribing qualitatively the stability of the behavior can be extracted. The
mathematical model is validated in a simulation with a large number of
robots. The predictions of the model correspond well to the simulation.

Keywords: macroscopic model, foraging, swarm robotics, mathematical
analysis.

1 Introduction

The ongoing advances in electronics and robotics have made it possible to build
small robots of sizes below 3×3×3 cm3 at low cost. See website [6] for example
which is part of the European project I-SWARM [18] and also gives an overview
over other existing platforms. This evolution made it feasible to implement large
groups of 50 or more robots. While the hardware is available, the development
of the control software is still a problem. To minimize the complexity of the
entire system, the development targets simple rules and, in an allusion to nature,
one hopes for emergent behavior of the robot group that leads to the solution
of the predefined task. However, both the design of the general strategy and
the configuration of many influential parameters are in general not supported
by any guideline based on theoretical results. Therefore, the software is just
implemented using simple heuristics based on experience and a trial-and-error
process. To fill this gap, a scientific basis that describes the behavior of robot
swarms would be desirable.

A first step could be the development of analytical models, that support us in
understanding the results obtained by simulations and experiments in a better

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 43–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

44 H. Hamann and H. Wörn

way. Additionally, such models help to save resources, because they are usually
faster than simulations and they give some insights before a single robot is
implemented. The use of such models for finding optimal parameters is limited
but possible, if a mapping from the abstract level to reality exists [13].

Although research in this field has just begun, a lot of results have been pub-
lished recently: A probabilistic, analytic, and macroscopic model based on rate
equations has been introduced and applied to several different scenarios by Ler-
man, Martinoli, Matarić, and others and performs very well in predicting the
ratios of robots being in a certain state at a certain time [9,12,11]. It is based on
the assumption that the space is uniform, so that for example scenarios involving
pheromones cannot be represented using this model. However, there exist many
models that approximate spatial characteristics: For example the dimensionality
of space is reduced by modeling the movement of agents as a graph or a line
of decision points [5,4], space is discretized using cellular automata [3], or space
is fully but only microscopically modeled using Monte Carlo simulations [21,2].
An analytical microscopic model with respect to space based on Brownian mo-
tion has been presented by Schweitzer [15,16]. In some cases the derivation of a
macroscopic model from the microscopic descriptions has been performed and
presented.

The foraging scenario is an old problem in robotics and hence it has been in-
vestigated intensively. There are many variants of this scenario: A single robot or
a group of robots has to find and collect or basically only transport (food) items
to some random locations or to one defined place. A brief overview of the work
in robotics on this scenario is given in [10]. Here we focus on the situation having
one place where food can be found (we will refer to this as food) and another
place where the food should be delivered (nest). Our approach will make use
of pheromones as the tool for communication and will utilize a large number of
robots. In [14] an overview of simulations connected to this special scenario is
given and an approach is presented using two dynamic pheromones, i.e. their
distributions change over time.

An analytical macroscopic model for a variant of foraging is presented in [10].
The given rate equations are based on the assumption of homogeneous space
and no pheromones are used in the investigated scenario. In [17,15], a spatial
model for trail formation by ants using two pheromones is given. The model is
based on differential equations that describe the agents microscopically.

2 Simulation

The analytical model will be validated with results of a simulation. As the frame-
work for our simulation we use the Breve simulator by J. Klein [8]. Here, we
simulate a homogeneous swarm in continuous space combined with a discrete
implementation of the pheromones. Since we want to simulate big numbers of
robots over many runs, we depend on a rather simple model of the robot, that
is computationally easy to handle. In our model, the robot has circumferential
visibility, can measure distances to objects within the coverage of its sensors,

An Analytical and Spatial Model of Foraging in a Swarm of Robots 45

and can distinguish between other robots, the nest, food, and the wall, that
circumscribes the arena. It is also able to perceive a pheromone gradient in two
mutually orthogonal directions and to drop a certain amount of pheromone. The
robots’ locomotion is assumed to be ideal, i.e. an acceleration towards an arbi-
trary direction is possible at all times (holonomic drive mechanism). The control
of the robot is totally reactive and based on the principle of virtual physics (po-
tential field techniques), i.e. other objects have a repelling effect on it depending
on their distance and visibility [19,7,1]. This defines the avoidance behavior to
be similar to the collision of two particles in our real physical world.

A robot is in one of two possible states: looking for food (sf) or returning
home to the nest (sn). Initially, all robots are randomly positioned close to the
nest with a random velocity heading to a random direction and all start in state
sf . If a robot in state sf perceives the food, it transitions to state sn. Robots
in state sn perform a transition to state sf , if they perceive the nest. We are
using two pheromones: one that should be established to increase in intensity
towards the food (pf) and another one that increases towards the nest (pn).
To avoid immense instabilities and to simplify the scenario, pheromone pn is
chosen to be present and constant at all times. It is always guaranteed to have
a smooth gradient leading to the nest at any position. However, at least in a
grid world based on a concept of dying agents it has been shown, as mentioned
above, that a stable behavior can be reached with two dynamic pheromones
with the advantage of finding shortest paths around obstacles [14]. As a second
consequence, the robots will only be able to deposit the pheromone pf , which
they will do in state sn. The amount that is dropped by the robot at each
simulation step is set to an initial value (drop size, see Table 1) at the state
transition and decreases exponentially over time thereafter (drop decrease rate).

The pheromones are implemented by a grid of so-called patches that is laid
over the whole arena. The patches are quadratic and we have chosen a size of
s = 6 cm (for comparison: a patch fits into the area covered by the robot’s
sensors). The performance of the swarm is independent of this size as long as it
is reasonably small and both the evaporation and the diffusion rate are adapted
to it. But choosing the patch size is computationally critical because the evap-
oration and diffusion process of pheromone pf is executed at every time step,
which has to handle every single patch (complexity is O(1

s2)), another option
could be to update the grid only every m time steps for m > 1). Every patch
has an associated pheromone intensity i that is updated per step by

it+1 = (1 − e − d)it +
∑
n∈N

n(1 − e)
d

4
, (1)

where e denotes the evaporation rate, d the diffusion rate and N the set of
intensities of the patches in the von Neumann neighborhood of range one except
the current patch itself. If a robot deposits some pheromone pf , the dropped
amount will be added to the intensity associated with the patch where the robot
is located at that moment. Pheromone pn is time-invariant as discussed above
(see Section 4 for the definition).

46 H. Hamann and H. Wörn

To implement the gradient ascending, the two components of the gradient
are computed from the intensities of the neighboring patches independent of the
robot’s orientation: gx = nx+ − nx−, where nx+ denotes the intensity of the
neighboring patch in positive x-direction and nx− in negative x-direction; gy is
computed analogously. The overall acceleration vector of the robot is a weighted
sum of (gx,gy)T

|(gx,gy)T | (if |(gx, gy)T | = 0 the term is set to 0) and another vector
depending on sensed objects that implements the avoidance behavior.

Table 1. Simulation parameters

Parameter Value

arena size 258 cm × 258 cm
nest position (129 cm, 195 cm)
food position (129 cm, 63 cm)
patch size 6 cm
agent diameter 2 cm
proximity sensor range 5 cm

iteration step 0.05 s
max. speed 7 cm/s
evaporation rate 0.0392 1/s
diffusion rate 0.1568 1/s
drop decrease rate 0.095 1/s
initial drop size 0.5

3 Analytical Model

In [16] macroscopic equations are presented, that are derived from microscopic
equations to describe the behavior of so-called “heatbugs”. The “heatbug” sim-
ulation bears resemblance to the scenario addressed here: Corresponding to the
pheromone, it is also a spatial property – the heat, that influences the move-
ments of the bugs and which is also manipulated by them. We use the equation
of the agent density from [16] as a starting point:

∂

∂t
S(r, t) = D

∂2S(r, t)
∂r2

− α
∂

∂r

[
∂P (r, t)

∂r
S(r, t)

]
(2)

= D∇2S(r, t) − α∇ [∇P (r, t)S(r, t)] , (3)

where S(r, t) denotes the density of robots at position r at time t, P (r, t) the in-
tensity of the pheromone, D the diffusion constant, α the greediness of following
the gradient, and ∇ the gradient.

The first term describes a standard diffusion process according to Fick’s
Second Law that models the exploring robots as well as robots avoiding col-
lisions. The underlying assumption to motivate the application of this equa-
tion to the scenario investigated here is: If the density of robots in the arena is

An Analytical and Spatial Model of Foraging in a Swarm of Robots 47

inhomogeneous then the robots tend to move away from spots of higher density
into areas with less density. Please note that our approach of using virtual physics
in our simulation meets this assumption. Thus, the diffusion term is a suitable
mathematical description of robots performing some kind of random walk.

Because the rate of diffusion usually depends on the local density, the choice
of using a constant diffusion coefficient is a simplification justified by two con-
siderations: First, in the steady state the regions of highest density are most
relevant and these densities reside within a small interval. Second, typically the
diffusion constant has to be measured in an experiment or simulation. Having
to measure the diffusion as a function of the density means higher overhead and
demands longer running times to reach a reasonable accuracy.

The second term describes for α > 0 a gradient ascent of the robots pro-
portional to the pheromone gradient. Although applications of the pheromone
scenario could exist in which such a behavior of the robots might be desired, we
drop the proportionality to the pheromone intensity of the gradient ascent, be-
cause this corresponds to a more efficient control software of robots and results
in better stability in both the simulation and the used numerical solver of the
analytical model. This is achieved by normalizing the gradient of P to one:

∂

∂t
S(r, t) = D∇2S(r, t) − α∇

[
∇P (r, t)
|∇P (r, t)|S(r, t)

]
. (4)

In the case of |∇P (r, t)| = 0 the second term is set to 0. However, this model
does not support several states, several pheromones, or state transitions and an
extention is necessary (note that in [15] another way of incorporating internal
states and several potential fields is given). First, we introduce the densities Sf

and Sn that describe the densities of robots in state sf and sn respectively.
Accordingly, we introduce the pheromone intensities Pf and Pn that correspond
to the pheromones introduced in the previous section. This leads to two partial
differential equations (PDE) in the same form as equation 4:

∂

∂t
Sf (r, t) = Df∇2Sf (r, t) − αf∇

[
∇Pf (r, t)
|∇Pf (r, t)|Sf (r, t)

]
, (5)

∂

∂t
Sn(r, t) = Dn∇2Sn(r, t) − αn∇

[
∇Pn(r, t)
|∇Pn(r, t)|Sn(r, t)

]
. (6)

Now we are investigating a system with multicomponent diffusion but we are
still using Fick’s law that does not model the coupling of the two diffusion
coefficients and is only exact for two components. However, this is a common
approximation in physics and is the more accurate the higher the concentration
of the supporting medium (here: space) is, which is a suitable assumption here.
Thus these two PDE are coupled only indirectly by the state transitions and the
pheromones, which will be defined in the following.

The nest and the food are modeled as areas with special boundary conditions
that implement the state transitions. Say ∂Ωn is the boundary of the arena

48 H. Hamann and H. Wörn

around the nest. Then we define the boundary conditions at the nest as the
following:

∀r ∈ ∂Ωn :
∂Sf

∂t
(r, t) = Df∇2Sf (r, t) − αf∇

[
∇Pf (r, t)
|∇Pf (r, t)|Sf (r, t)

]

+Dn∇2Sn(r − εn, t) − αn∇
[

∇Pn(r − εn, t)
|∇Pn(r − εn, t)|Sn(r − εn, t)

] (7)

∀r ∈ ∂Ωn : Sn(r, t) = 0, (8)

where n denotes the exterior normal to the boundary (pointing towards the nest
center). The intuitive interpretation of these equations is simple: The robots in
state sn, that are close to the nest, perform a transition to sf , because they have
finished their mission to find the nest. In a trivial grid discretization of these
PDE, the boundary conditions are implemented by adding the amount of Sn

to Sf and setting Sn = 0 within the area of the nest after each iteration. The
boundary conditions at the food are defined in an analog way. The boundaries
of the arena are modeled as total isolation.

The pheromone Pn leading to the nest is assumed to be constant over time
and is just defined as it is implemented in the simulation:

Pn(r) = c1(
√

dmax −
√

d(r, rn)), (9)

where d(r, rn) is the distance to the center of the nest, dmax the maximal possible
distance, and some constant c1 that is used to adapt Pn to the absolute intensities
of Pf (see Table 2). However, every function that provides a gradient pointing
towards the nest at all positions could be used, since our model as well as the
simulation are both independent of the absolute values.

Pheromone Pf is modeled to depend on Sn directly:

Pf (r, t) = Sn(r, t)cc3d(r,rf)
2 , (10)

where d(r, rf) is the distance to the center of the food, and some constants
c2 < 1 and c3 depending on the pheromone dropping procedure. The underlying
consideration is that the amount of pheromone dropped per step by a robot
decreases exponentially with time. Thus the amount of pheromone that can be
dropped by a robot at a certain spot is limited by the time a robot needs to travel
from the food to this spot. Assuming a constant velocity this time is proportional
to the distance to the food.

Note that no dependency on the history of Sn is incorporated. Intuitively, one
might argue, that this direct coupling corresponds to a high evaporation rate
of the pheromone and thus could cause instabilities in the modeled overall be-
havior of the swarm, that would not emerge for appropriate parameter settings.
However, for reasonable values of diffusion D, the history is intrinsically mod-
eled. For the steady state this is quantitatively true and can be shown under the
assumption that at each patch the pheromone diffusion net flux is zero. Since

An Analytical and Spatial Model of Foraging in a Swarm of Robots 49

the robots depend on the normalized gradient only, a qualitatively correct repre-
sentation of the gradient is sufficient. For visualization, imagine a large group of
robots in state sn starting at the food and moving towards the nest following the
gradient greedily and leaving behind only few other robots that moved to dif-
ferent directions due to diffusion. On the line between food and nest they would
create a pheromone trail starting high at the food and decreasing exponentially
towards the nest because of the dropping method. Since the density of the robots
left behind would not exponentially increase towards the nest, this situation is
represented qualitatively correct in our model. Similar considerations imply that
equation 10 is a good approximation.

Table 2. Pheromone parameters

Parameter Value

c1 1.4 · 10−4

c2 0.998
c3 10

4 Results

To simplify the following investigations, we restrict ourselves to a special case
and set αf = αn := α and Df = Dn := 1 − α = D. This class of parameter
settings is of special interest, because for example one would expect that the
configuration with the maximal flow of food belongs to this class of symmetric
diffusion settings, which is also supported by the results of our simulations. Now
only a single variable that connects the model to the simulation is left – the
diffusion D.

This diffusion parameter might be directly extracted from the robot control, if
the control method enforces a certain amount of diffusion. However, the diffusion
will typically depend on the local density also and here the diffusion is not
explicitly implemented in our control software. Thus it has to be determined from
the overall behavior in the simulation. This was done by measuring the amount
of robots that follow the pheromone gradient approximately in comparison to
those that move to any other direction at many different positions in the arena.
The average diffusion was computed by weighting these values by their local
density averaged over time.

The solution of the PDE provides us basically with the stationary density
distributions of robots in states sf and sn, if they exist. Fig. 1(a) shows a typical
solution and Fig. 1(b) the corresponding averaged density of 30 simulation runs.
The accuracy of the model is good at positions between nest and food. However,
close to the nest and the food it suffers from the unmodeled acceleration processes
of the robots and the impossibility to represent the infinite slope of the densities
in the simulation.

Furthermore, we are interested in the resulting flow of food that is the same as
the rate of robots that perform a transition from sn to sf per time. The amount

50 H. Hamann and H. Wörn

(a) Prediction of the model for the steady-state

(b) Averaged over 30 simulation runs with N = 100 agents

Fig. 1. Distribution of Sf for D ≈ 0.55

of robots that perform a transition at the boundaries of the nest and the food
per time in our model gives a good prediction of the flow. Another estimate of
the converged flow, that turned out to be less sensitive to correctly measuring the
diffusion, is obtained by integrating the densities of the steady-state over a line in
the mid between nest and food, that is orthogonal to the shortest path between
nest and food. Say the result of this integration is I then the prediction of the
flow for the given diffusion constant D would be I(1 − D) = Iα. This is a good
approximation because the component of the pheromone gradient in the direction
orthogonal to this plane is typically small. Thus the diffusion in this direction will
also be small following Fick’s First Law that gives the diffusion flux in the steady
state: J(r) = −D ∂P (r)

∂r . This is the method we used to predict the flow.
In every simulation run, we drew 36 samples equidistant in time after a tran-

sient. The results are averaged over the samples of 30 runs. More runs would be

An Analytical and Spatial Model of Foraging in a Swarm of Robots 51

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.5 0.6 0.7 0.8 0.9 1

model
simulation N=100

D

fl
ow

(a) 100 agents

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.5 0.6 0.7 0.8 0.9 1

model
simulation N=150

D

fl
ow

(b) 150 agents

Fig. 2. Average normalized flow of food as a function of the diffusion D

desirable for a better statistical significance, however, due to limited resources and
the high computational demand of the simulation, that could not be achieved.
Two sets of simulation runs with two different swarm sizes N ∈ {100, 150} were

52 H. Hamann and H. Wörn

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 50 100 150 200 250 300 350 400

time

fl
ow

(a) model

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 50 100 150 200 250 300 350 400

time

fl
ow

(b) averaged over 30 simulation runs

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200 250 300 350 400

time

fl
ow

(c) single simulation run showing stable
behavior

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 50 100 150 200 250 300 350 400

time

fl
ow

(d) single simulation run showing unstable
behavior

Fig. 3. Food flow over time

performed and we could only reach diffusion rates in the interval 0.5 < D < 0.9.
The flow decreases with the diffusion, as expected (see Fig. 2, the error bars show
the 95% confidence interval based on the t-distribution).

In order to maximize the flow and following these results one would like to set
the diffusion as low as possible. However, our observations of the simulation in-
dicate that the lower the diffusion rate is the more unstable the system becomes.
Please note that the situation described here will only occur in simulations that
implement interference effects between agents and an unbiased gradient ascent.
If the robots follow the pheromone gradient ∂Pf

∂r very greedily, it becomes highly
probable that they accumulate at certain spots. This might be caused by and
lead itself to local maxima in the pheromone intensities Pf , where robots of state
sf are attracted. These groups of robots block others in state sn traveling in the
opposite direction. Hence, the local intensities Pf are reinforced and more and
more robots accumulate at this spot. As a consequence, the flow of food might
even break down temporarily (compare to Fig. 3). This fact is not directly rep-
resented by the flow prediction of our model as it only gives the average flow of
a functioning swarm without modeling effects of interference. While in the flow
diagram of the model the intensity and number of oscillations only increases

An Analytical and Spatial Model of Foraging in a Swarm of Robots 53

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

model
simulation N=100

D

d
a
m

p
in

g

Fig. 4. Damping as a function of the diffusion D

with decreasing diffusion, the batch-wise flow caused by robots moving in large
groups and the temporary stop of the flow appears as an overshooting in the
flow diagram of the simulation. These observations give rise to another measure
introduced in the following.

As a qualitative measure for the instability of the system we use a damping
constant d as it is used in control theory. The run of the flow over time can
be interpreted as a step response and modeled by a 2nd-order lag element (P-
T2). Such an element is stable for 0 < d < 1 (underdamped) as well as for
d ≥ 1 (overdamped) and shows oscillating behavior in the former region. Our
observations showed that as well in the model as in the simulation the number
and amplitude of these oscillations decrease with the diffusion.

To get reasonable results, we had to average over all available simulation
results and thus cannot give any statistical measure. For too high numbers of
robots leading to high densities the effects by interference induce a higher damp-
ing for low diffusion rates than predicted. However, a trend can be noticed in
Fig. 4 and shows that the damping of the P-T2 element can serve as a qualitative
model for the stability of the swarm behavior.

5 Conclusion and Outlook

The application of this analytical model to the foraging scenario has shown
that the overall behavior of large groups of robots can be predicted well and
described by the use of mathematical methods. Compared to the simulation the
average behavior is computed faster by three or more orders of magnitude. The

54 H. Hamann and H. Wörn

diffusion constant can be measured by the simulation within minutes. However,
this constant models abstractly a variety of basic behaviors like exploration and
collision avoidance. A direct connection to the control software does usually not
exist. Thus a found optimal diffusion constant can only serve as a broad guideline
for the development of the software.

There are a variety of possible extensions to this model: At first, it would be
desirable to model also the interferences between robots that accumulate densely
at one place, to investigate the characteristics of scalability in this scenario.
This might be achieved by combining this model and the one presented in [10]
or by better approximations of the diffusion process (Wilke or Maxwell-Stefan
diffusion). Furthermore, a scenario with two dynamic pheromones and obstacles
as well as the adaptability to food sources that change in position or quality over
time could be investigated.

We plan to implement the presented scenario on real robots following the
approach of Sugawara et al., that implemented it for a number of up to three
robots [20]. At our institute, a swarm of 40 Jasmine robots is available (see [6]),
that will be extended soon. We also have a combination of a video projector
and a video camera installed above the arena. Additionally, light sensors on the
top of the robots are under development and will be used by the robots to per-
ceive the virtual pheromone gradient, i.e. a light gradient. The robots are able
to drop pheromones by lighting an LED on their top, which will be detected
by a computer connected to the camera and it will adapt the image projected
onto the arena accordingly. With this setting it is easily possible to simulate
scenarios physically that would actually need more technical overhead, e.g. fol-
lowing a gradient of temperature or gas concentrations. Even the combination
of the two paradigms of self-organization and central control (on demand) might
lead to synergies for example in microassembly. Self-organizing techniques pro-
vide robustness and scalability while central control techniques provide highest
accuracy if needed.

Acknowledgments. The authors want to thank the anonymous referees for
their excellent report, which has largely improved the clarity and content of the
paper. This work was partially supported by the German Research Foundation
(DFG) within the Research Training Group GRK 1194 Self-organizing Sensor-
Actuator Networks.

References

1. Arkin, R. C.: Motor schema based mobile robot navigation. International Journal
of Robotics Research 8 (1989) 92–112

2. Bonabeau, E., Thraulaz, G., Fourcassi, V. and Deneubourg, J.: The phase-ordering
kinetics of cemetery organization in ants. Technical Report 98-01008, Santa Fe
Institute, 1998.

3. Cole, B.J. and Cheshire, D.: Mobile Cellular Automata Models of Ant Behav-
ior: Movement Activity of Leptothorax allardycei. American Naturalist, Vol. 148
(1996), pp. 1–15

An Analytical and Spatial Model of Foraging in a Swarm of Robots 55

4. Deneubourg, J.L., Aron, S., Goss, S. and Pasteels, J.M.: The self-organizing ex-
ploratory pattern of the Argentine ant. Journal of Insect Behavior 3 (1990) 159–168

5. Goss, S., Aron, S. , Deneubourg, J.L. and Pasteels, J.M.: Self-organized shortcuts
in the Argentine ant. Naturwissenschaften 76 (1989) 579–581

6. Jasmine Robot - Project Website. http://www.swarmrobot.org/. (2006)
7. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In-

ternational Journal of Robotics Research 5 (1986) 90–98
8. Klein, J.: Continuous 3D Agent-Based Simulations in the breve Simulation Envi-

ronment. In: Proceedings of NAACSOS Conference (North American Association
for Computational, Social, and Organizational Sciences). (2003)

9. Lerman, K.: A model of adaptation in collaborative multi-agent systems. Adaptive
Behavior 12 (2004) 187–198

10. Lerman, K., Galstyan, A. Mathematical Model of Foraging in a Group of Robots:
Effect of Interference. Autonomous Robots 13 (2002) 127–141

11. Lerman, K., Jones, C., Galstyan, A. and Mataric, M.: Analysis of Dynamic Task
Allocation in Multi-Robot Systems. Int. J. of Robotics Research (2006)

12. Lerman, K., Martinoli, A. and Galstyan, A.: A Review of Probabilistic Macro-
scopic Models for Swarm Robotic Systems In: Sahin, E., Spears, W. (eds.): Swarm
Robotics Workshop: State-of-the-art Survey. Springer-Verlag, Berlin Heidelberg
New York (2005)

13. Martinoli, A., Easton, K. and Agassounon, W.: Modeling Swarm Robotic Systems:
A Case Study in Collaborative Distributed Manipulation. In: Siciliano, B. (editor):
Special Issue on Experimental Robotics, Int. Journal of Robotics Research 23
(2004) 415–436.

14. Panait, L. and Luke, S.: Ant Foraging Revisited. In: Pollack, J., Bedau, M., Hus-
bands, P. and Ikegami, T. (eds.): ALife IX Proceedings. MIT Press, Cambridge
(2004)

15. Schweitzer, F.: Brownian Agents and Active Particles. On the Emergence of Com-
plex Behavior in the Natural and Social Sciences. Springer-Verlag, Berlin Heidel-
berg New York (2003)

16. Schweitzer, F.: Brownian Agent Models for Swarm and Chemotactic Interaction.
In: Polani, D., Kim, J., Martinetz, T. (eds.): Fifth German Workshop on Artificial
Life. Abstracting and Synthesizing the Principles of Living Systems. Akademische
Verlagsgesellschaft Aka (2002)

17. Schweitzer, F., Lao, K., Family, F.: Active Random Walker Simulate Trunk Trail
Formation by Ants. BioSystems 41 (1997) 153–166

18. Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M. and Wörn, H.:
The I-SWARM project: Intelligent Small World Autonomous Robots for Micro-
manipulation. In: Sahin, E. and Spears, W. (eds.): Swarm Robotics Workshop:
State-of-the-art Survey. Springer-Verlag, Berlin Heidelberg New York (2005)

19. Spears, W.M. and Gordon, D.F.: Using Artificial Physics to control agents. In:
IEEE International Conference on Information, Intelligence, and Systems. (1999)

20. Sugawara, K., Kazama, T. and Watanabe, T.: Foraging Behavior of Interacting
Robots with Virtual Pheromone. In: Proceedings of 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems. (2004)

21. Theraulaz, G., Gautrais, J., Camazine S. and Deneubourg, J.L.: The formation of
spatial patterns in social insects: from simple behaviours to complex structures.
Phil. Trans. R. Soc. Lond. A 361 (2003), 1263–1282

http://www.swarmrobot.org/

Algorithms for the Analysis and Synthesis of a

Bio-inspired Swarm Robotic System

Spring Berman1, Ádám Halász1, Vijay Kumar1, and Stephen Pratt2

1 University of Pennsylvania, Philadelphia PA 19104, USA
{spring,halasz,kumar}@grasp.upenn.edu

2 Arizona State University, Tempe AZ 85287, USA
Stephen.Pratt@asu.edu

Abstract. We present a methodology for characterizing, analyzing, and
synthesizing swarm behaviors using both a macroscopic continuous model
that represents a swarm as a continuum and a macroscopic discrete model
that enumerates individual agents. Our methodology is applied to a dy-
namical model of ant house hunting, a decentralized process in which a
colony attempts to emigrate to the best site among several alternatives.
The model is hybrid because the colony switches between different sets
of behaviors, or modes, during this process. Using the model in [1], we
investigate the relation of site population growth to initial system state
with an algorithm called Multi-Affine Reachability analysis using Conical
Overapproximations (Marco) [2]. We then derive a microscopic hybrid
dynamical model of an agent that respects the specifications of the global
behavior at the continuous level. Our multi-level simulations demonstrate
that we have produced a rigorously correct microscopic model from the
macroscopic descriptions.

Keywords: multiscale modeling, synthesis, abstractions of swarms,
reachability analysis, stochastic simulation, insect house hunting.

1 Introduction

Coordinated multi-agent systems have yielded robust, efficient, and cost-effective
solutions to diverse objectives, such as the establishment of a mobile sensor
network for environmental monitoring, surveillance, or reconnaissance; object
manipulation and transportation; and search-and-rescue tasks. One multi-agent
paradigm is a swarm robotic system, which consists of many anonymous agents
that operate autonomously under decentralized control laws. Although each
agent follows relatively simple rules, the group can collectively achieve complex
tasks at the macroscopic level. In this sense, robot swarm systems can draw in-
spiration from the self-organized processes of natural aggregations such as social
insect colonies [3], which accomplish global objectives such as nest construction,
foraging, brood sorting, and colony relocation through local interactions, both
among individuals and between individuals and their environment. In a robotics

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 56–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algorithms for the Analysis and Synthesis 57

context, the simplicity and identical nature of swarm agents offer the advantages
of system robustness and control scalability with population size.

Our goal in this paper is to establish a generalmethodology to solve the so-called
inverse problem: the design of individual behaviors to achieve a desired macro-
scopic behavior for the group. This work is related in spirit to the work of [4],
whichpresents a systematic approach to translate groupbehaviors,modeled as vec-
tor fields on a low-dimensional abstract manifold, into agent behaviors in a high-
dimensional manifold derived from copies of an agent’s state space. As in recent
work on modeling and analyzing swarm robotic systems [5] [6] [7], we employ a
multi-level representation of swarm activity. At the highest level, we consider a
macro-continuous model, also called the Rate Equation model [8], characterized
by differential equations in which the state variables represent population fractions
engaged in different tasks or roles. We distinguish the macro-discrete level, which
models a discrete number of agents in each task according to the Stochastic Mas-
ter Equation [9], as an intermediate level. This level permits behaviors synthesized
at the highest level to be translated into difference equations involving integers, in
effect representing the system as a finite automaton. At the bottom of the hierar-
chy, the microscopic level [8] models agents in a physical setting, incorporating the
geometry and dynamics of individual agents and possibly modeling heterogeneity.

Several types of distributed robot systems have been modeled by translating
an individual robot controller into a description of collective behavior. Collabora-
tive stick-pulling [5] and object clustering [6] have been modeled with Probabilis-
tic Finite State Machines, whose states represent both (a) the possible behaviors
of a single agent at the microscopic level, and (b) the average number of agents
in each task at a certain time step at the macro-continuous level. The robots
obey the semi-Markovian property: their state transitions depend only on their
present state and the amount of time they have occupied the state. Adaptive
robots that change their task based on a history of local observations have been
modeled in a multi-foraging scenario [7]. In this work, the macro-continuous and
macro-discrete levels are derived from a microscopic model that abstracts away
physical robot behaviors. In all of the systems, it is assumed that robots and
their stimuli are uniformly spatially distributed. The state transition rates in the
macro-continuous model are computed from physical robot parameters, sensor
measurements, and geometrical considerations. The macro-continuous models
are validated by comparing steady-state variables and other quantities of inter-
est to the results of embodied simulations and experiments.

In addition to the bottom-up design methodology just described, a top-down
approach has been used to synthesize agent controllers [10]. An algorithm is first
designed assuming that agents have global information, which is then replaced
with local information that is exchanged among agents. In an application to
the multi-foraging scenario [7], the probability of a state transition is generated
through the gradient descent of an objective function with a minimum at the
robot state distribution that matches the task type distribution.

In the methods just discussed, the main challenge is to derive an appropri-
ate mathematical form for the task state transition rates [8]. In contrast, the

58 S. Berman et al.

top-down design approach that we present assumes that these rates are known
beforehand. To investigate the effect of changing them, we do not need to simu-
late the system under many different conditions; instead, our macroscopic anal-
ysis technique allows us to determine the global influence of ranges of such
parameters. In addition, we provide a framework for synthesizing a desired sys-
tem outcome and then translating the macroscopic behaviors into individual
agent behaviors. This technique does not require progressive model decentral-
ization and calibration of the fully distributed system, as does the top-down
approach in [10]. Finally, our macro-discrete level can capture phenomena that
occur at the microscopic level but are lost at the macro-continuous level. This
is because the stochastic formulation of a system has a more legitimate physi-
cal basis than the deterministic formulation [9]. Examples of such phenomena
include state fluctuations in relatively small populations, potentially leading to
stochastic transitions between equilibria of multi-stable systems [11].

We apply our methodology to a model inspired by the work of [1], which
studies the process by which a colony of Temnothorax albipennis ants chooses a
new home from several sites and emigrates through quorum-dependent recruit-
ment mechanisms. The quorum dependency creates a hybrid system in which
the ants switch tasks, which can be thought of as sets of controllers, based
on their surroundings. The quorum sensing mechanism is key to the collective
decision-making process of nest site selection. The authors present models at the
two macroscopic levels. However, because they were not interested in models of
individual ants and their dynamics, the microscopic-level modeling is absent.

From a robotics perspective, an analogy can be drawn between the ants and
robotic agents with limited communication that must distribute themselves or
transport objects optimally among several locations. We are concerned with
three interesting questions on the biological phenomena and their implications
for robotics. (1) Why do the ants behave as they do and is their behavior optimal
in any sense? (2) Can we prove that this behavior leads to successful migration to
the best nest? (3) Can this behavior be realized on robotic systems? Our paper
addresses the second and third questions. We answer (2) using a reachability
analysis technique that permits us to explore all possible states reached by a
macro-continuous level model. We answer (3) by deriving a methodology that
allows macro-continuous level abstract behaviors (as in [4]) to be realized at the
macro-discrete level and then at the microscopic level.

2 Methodology

We consider a population of N agents moving in the continuous state space
Xa ⊂ R

2. At any given time, an agent’s actions are determined by one of a set La

of la controllers or behaviors. We can describe the agent as a hybrid automaton,
Ha = {Xa, La}, to indicate that its activity is governed by both continuous
and discrete dynamics. Figure 1a shows how this high-dimensional microscopic
level can be mapped to lower-dimensional representations, the macro-discrete
and macro-continuous levels, through the abstractions Fd and Fc, respectively.

Algorithms for the Analysis and Synthesis 59

Representing the swarm as a continuous quantity, the macro-continuous level
models its dynamics with a set of differential equations whose variables, xi

(i = 1, ..., b), are the population fractions associated with different tasks or roles.
Each agent mode l ∈ La corresponds to one of these tasks, and possibly to a
subdivision of activity within a task. It is assumed that the population is con-
served, so one variable may be removed through the conservation constraint. The
variables therefore comprise a continuous state space Xp ⊂ R

b−1. If the model is
a hybrid system, then the state space is divided into a set Lp of lp regions, called
population modes, each of which is associated with different continuous dynam-
ics. The system may then be described by a hybrid automaton Hp = {Xp, Lp}.
The macro-discrete level, which considers a swarm as a collection of discrete
agents rather than a continuum, maintains a count of the number of agents in
each of the b tasks or roles.

As Figure 1b shows, our methodology for designing a swarm system and an-
alyzing its behavior relies on all three of these levels of abstraction. We shall
illustrate our methodology with the concept of an emigrating ant colony whose
rules of behavior, either known (as in biological systems) or designable (as in
artificial swarms), are within our control.

Fig. 1. (a) Levels of abstraction of a swarm; (b) Analysis and synthesis methodologies

The macro-continuous level is used to define and plan the execution of the gen-
eral task that the system should achieve. In nature, a signature of self-organizing
systems is multi-stability, with the most adequate stable states selected accord-
ing to their fitness [12]. This trait lends robustness to the system under per-
turbations. In our engineered house-hunting scenario, however, we may want to
control the system so that there is always one outcome: the emigration of the
entire colony to the optimal nest among several available sites. In addition, let
us suppose that we want the emigration to allow at most a fraction of the colony,
say 25%, to be separated from the rest for no more than T time units.

60 S. Berman et al.

The macro-continuous level analysis checks whether or not the continuous
model satisfies the requirements. The first condition can be verified by using
steady-state analysis to ensure that the model has a single stable equilibrium
that corresponds to the entire colony’s settlement in the best site. The traditional
approach to checking the second condition, or to identifying a range of parameter
values that produces a desired result, is to solve the continuous model for many
different initial states and parameter sets. This verification can be done more
efficiently with reachability analysis, which determines the set of states that are
attainable from an initial set A. If set B consists of the states in which over 25%
of the colony is separated from the rest, then the analysis can show whether (1)
A ever reaches B and, if so, whether (2) the system remains there for longer than
time T . Problem (1) is a standard reachability question that can be investigated
by overapproximating the reachable set on a discrete abstraction of the system
or on the state space directly. Problem (2) can be converted into (1) by adding
a clock s for which ṡ = 1 if the system is in B and ṡ = 0 otherwise, and seeing
whether the augmented system reaches the set s > T . Similarly, the system
behavior over a parameter range can be analyzed by adding the parameter p
as a state with ṗ = 0 and including an interval over p in set A. The macro-
continuous model may be solved with the parameters that are chosen from this
analysis to ensure that they produce the desired system evolution.

If reachability analysis reveals that the system exhibits undesirable behav-
ior, then control terms can be added to the macro-continuous model to meet
the requirements. [13] presents a method of defining feedback control laws on
a piecewise-linear hybrid system. Control inputs are defined at the vertices of
a polytope state-space region that corresponds to a mode, and a convex com-
bination of these inputs is used to drive states inside the polytope to the next
desired mode.

The macro-discrete level connects the macro-continuous level to the micro-
scopic level, which is needed for the ultimate implementation. This level is still
a macroscopic model that abstracts away agent identities; however, now we con-
sider an integer number of agents. We simulate transitions between tasks by in-
crementing and decrementing the number of agents in each task. To synthesize
this level, we apply a simulation algorithm from [9], which has been used in the
mathematically similar problem of replacing a differential equation description of
chemical kinetics with individual molecular reactions. The algorithm generates
a sequence of transitions and their times according to a probability density func-
tion that is rigorously derived from the known physical principles that govern the
underlying chemical processes. In our case, the rules producing the transitions
may be stochastic, intrinsically and/or by design, or deterministic. Transition
times in the house-hunting model are governed by a Poisson distribution. As
N → ∞, the Poisson transition probabilities per unit time become transition
rates, and the macro-discrete level simulation approaches the macro-continuous
level solution. Transitions have a deterministic component if they are delayed by
the time an agent takes to perform an action necessary to change its state, such
as navigation.

Algorithms for the Analysis and Synthesis 61

If we wish to construct a robot swarm that behaves similarly to the ant colony,
we need to prescribe the behavior of each agent in all situations it may encounter.
This occurs at the microscopic level, where agent identities and spatial consider-
ations become important. At this level, travel between two sites is implemented
using navigation functions [14], which can be defined on environments of a cer-
tain topological class to guide an agent to a goal while steering it away from
obstacles. The resulting mean travel times are used as time delays in the macro-
discrete level. For the microscopic level to be abstracted to the macro-discrete
level, state transitions should not depend on the previous history of the agent
(the Markov property), and spatial information must be either discarded or con-
verted into substates associated with regions in the physical space.

We note that aside from its specification of navigation controllers, our micro-
scopic model is still a coarse-grained representation [8] since it abstracts away
ant behaviors such as quorum estimation, recruiter-recruitee communication,
and avoidance of collisions with other ants. Thus, the model still requires more
detail in order to constitute an executable robot controller. We point out that
the quorum dependency does not pose a theoretical impediment to synthesizing
such a controller. In our model, only the ants that visit a nest know whether it
has attained a quorum population. From the perspective of transition dynamics,
an ant that has perceived a quorum is in a different state than an ant that has
not, but the two ants are otherwise identical. Therefore, the quorum condition
does not violate the Markov property of the model.

3 Macro-continuous Model

Our model of ant house hunting behavior is an extension of the one presented
in [1], which was constructed from experimental observations of Temnothorax
albipennis. Although we try to reflect ant behavior as accurately as possible,
our main goal is not to create a new description of ant house hunting, which has
already been modeled in considerable detail [15]. Instead, our objective is to make
the original model in [1] realizable on the microscopic level, with the ultimate
purpose of synthesizing robot controllers that will produce ant-like activity.

The model consists of a set of coupled delay differential equations whose state
variables represent population fractions that are physically located at the home
nest or one of the M potential home sites. The time delays are averages of navi-
gation times between sites from the microscopic simulation described in section
5.2. Each ant has knowledge of at most two sites, one of which is its home. A
colony of N ants is divided into a fraction p of active ants and a remainder
of passive ants. The active ant fraction is divided among the following state
variables. Naive ants, Yi, reside at site i, which they consider their home; they
leave this site to search for a new nest. Assessing ants, Zij , regard site i as their
home and are evaluating site j as a potential new home. Recruiting ants, Yij,n,
are located at site n ∈ {i, j} and leave to bring other ants from i to j. The
method of recruitment of Yij,j ants depends on the population fraction located

62 S. Berman et al.

at site j, Pj . If Pj has not reached a quorum Q, then Yij,j ants still consider
site i to be their home, and they limit themselves to using tandem runs to lead
fellow active ants in one of btand states, Yi and Zk,i (k �= i, j), to assess site j.
If Pj ≥ Q, then site j becomes their home and they use transports to carry the
passive ants at site i, Bi, to site j. Yij,i ants always recruit via transports. When
Yij,n ants realize that there are no Bi ants left to transport, they “forget” site i
and become naive ants at site j, Yj .

The rates in the model were experimentally derived [16]. Naive ants discover
site i at per capita rate μi. Assessors become recruiters to site i at per capita
rate ki, which is directly related to the quality of the site. λi and φi are the per
capita rates at which recruiters perform tandem runs and transports to site i,
respectively. ρij is the per capita rate at which assessors and recruiters at site i
encounter site j and switch their allegiance by becoming assessors of that site.

The model is defined by equations (1)-(5). For a variable X , X = X(t) and
X [τij] = X(t − τij). The time delay τij represents the time taken to travel from
site i to site j; τji+ij = τji + τij . If i and j are in bold, unitalicized font, then the
trip is a tandem run. To illustrate the state transitions, the flowchart in Figure 2
diagrams the model with all time delays set to zero.

Ẏi =
∑M

j=0
j �=i

[φiJA(Pi[τij+ji], Bj [τji])Yji,i[τij+ji] + φi(1 − H(Bj [τji]))Yji,j]

−
∑M

j=0
j �=i

[λjI(Pj [τji], Yi)Yij,j [τji] + μjYi] (1)

Żij = μjYi[τij] − (ki + kj)Zij +
∑M

k=0
k �=i,j

[ρkjZik[τkj] − ρjkZij]

+
∑M

k=0
k �=i,j

[ρij(1 − G(Pi[τij]))Yki,i[τij] + ρkjG(Pk[τkj])Yik,k[τkj]]

+
∑M

k=0
k �=i,j

[λjI(Pj [τjk+kj], Zik[τkj])Ykj,j [τjk+kj] − λkI(Pk[τkj], Zij)Yjk,k[τkj]]

+ λjI(Pj [τji+ij], Yi[τij])Yij,j [τji+ij] (2)

Ẏij,i = kjZji − φjYij,i (3)

Ẏij,j = kjZij + btand[−λjG(Pj)Yij,j + λjG(Pj [τji+ij])Yij,j [τji+ij]]
− φj(1 − G(Pj))Yij,j + φjJB(Pj [τji+ij], Bi[τij])Yij,j [τji+ij]

+ φjH(Bi[τij])Yij,i[τij] −
∑M

k=0
k �=i,j

ρjkYij,j (4)

Ḃi =
∑M

j=0
j �=i

[φiJB(Pi[τij+ji], Bj [τji])Yji,i[τij+ji] + φiH(Bj [τji])Yji,j [τji]]

−
∑M

j=0
j �=i

[φjJB(Pj [τji], Bi)Yij,j [τji] + φjH(Bi)Yij,i] (5)

Pj = Yj + Bj +
∑M

i=0
i �=j

[Yij,j + Yji,j + Zij]

Algorithms for the Analysis and Synthesis 63

G(P) = 1 if P < Q; 0 otherwise
H(B) = 1 if B > 0; 0 otherwise
I(P, X) = 1 if P < Q and X > 0; 0 otherwise
JA(P, B) = 1 if P ≥ Q and B = 0; 0 otherwise
JB(P, B) = 1 if P ≥ Q and B > 0; 0 otherwise

Fig. 2. Flowchart for ant house hunting dynamics without time delays

4 Reachability Analysis

4.1 Algorithm

The Marco reachability algorithm [2] is written in Matlab and uses the Multi-
Parametric Toolbox (MPT) for polyhedral operations. The algorithm, which
generates reachable sets of a hybrid system Hp in the state space Xp, was de-
veloped to compute more precise and accurate reachable sets than an existing
method [17], particularly for systems with multi-affine dynamics. The algorithm
begins by initializing a list of reachable modes with the modes that contain the
initial set. These modes are identified as members of generation 0. The portion
of the initial set that each mode contains is considered its first “footprint.” For
each mode, a truncated cone is defined as the convex hull of the origin and the
state derivatives at the mode vertices. The cone is scaled, added to the mode’s
footprint via a Minkowski sum, and bounded by the mode facets. The resulting
set of states represents an overapproximation of the paths that all points in the
footprint can traverse within the mode. Next, each neighboring mode with a
facet that intersects this reached set is added to the list of reachable modes, and

64 S. Berman et al.

the intersection is designated as the footprint of that mode. These modes are
identified as members of the next generation.

The algorithm repeats the reachable set overapproximation and footprint
identification for modes in each consecutive generation. If a mode has multi-
ple footprints, the union of their conical reached sets is the total reachable set
within the mode. The algorithm terminates when the reachable set for each mode
in a generation is a subset of the set already computed for these modes. It may
also terminate if there are no new modes in the current generation, which occurs
when the reachable set hits the boundary of Xp.

4.2 Application to the House-Hunting Model

We applied our algorithm to the macro-continuous model in [1] to identify sets
of initial conditions that guarantee that a particular nest site reaches a quorum
before the other site. This model is a special case of the model (1)–(5) and does
not include time delays due to navigation. There are three nest sites, labeled 0, 1,
and 2. Site 0 is the home nest, which has been destroyed and therefore does not
attract recruitment. Pi is equal to the number of recruiters to site i, Y0i,i. There
are five active ant state variables (Y0, Y01,1, Y02,2, Z01, Z02), which are decoupled
from the three passive ant state variables (B0, B1, B2). Thus, after eliminating Y0

through the active ant conservation constraint, the full analysis region is the four-
dimensional state space {Y01,1, Y02,2, Z01, Z02 ≥ 0, Y01,1 +Y02,2 +Z01+Z02 ≤ p}.

The state space is divided into modes by the hyperplanes P1 = Q and P2 =
Q, the quorum switches. The analysis focuses on a portion of the mode that
is bounded by these hyperplanes. The analysis region is set to Y01,1, Y02,2 ∈
[0, 0.0481], Z01, Z02 ∈ [0, 0.0721] and divided into modes of dimension 0.0120 ×
0.0120×0.0144×0.0144 for refinement of the reachable set. Initial box A is defined
as Y01,1 ∈ [0.0337, 0.0385], Y02,2 ∈ [0, 0.00481], Z01, Z02 ∈ [0.0288, 0.0337]; initial
box B is Y01,1 ∈ [0, 0.00481], Y02,2 ∈ [0.0240, 0.0288], Z01, Z02 ∈ [0.0288, 0.0337].

In Figure 3, the unions of gray polygons are two-dimensional projections of
the reachable set from each initial box. The computation took 33.5 minutes
and consisted of 8 generations for box A and 22.3 minutes, 9 generations for
box B. Each four-dimensional box has 16 vertices, which are projected onto the
Y01,1 − Y02,2 plane. The black lines are the solutions of the continuous model
starting at these vertices. As shown by comparison with these solutions, both
reachable sets correctly predict the first site to achieve a quorum of 0.0481. The
reachability results show that all system trajectories starting inside box A and
box B will first cross the quorum for site 1 and site 2, respectively. The algorithm
guarantees this without computing any of the actual trajectories.

5 Simulation

5.1 Algorithms

Macro-Continuous Level. The system of equations (1)–(5) can be numeri-
cally integrated using standard techniques such as the Runge-Kutta method.

Algorithms for the Analysis and Synthesis 65

0 0.00962 0.0192 0.0288 0.0385 0.0481
0

0.00962

0.0192

0.0288

0.0385

0.0481

Y
01,1

Y
02

,2

B

A

Fig. 3. Two-dimensional projection of reachable sets; p = 0.25, Q = 0.0481, μ1 = μ2 =
0.013, λ1 = λ2 = 0.033, ρ12 = 0.004, k1 = 0.019, k2 = 0.020 (values are from [1], [16])

Macro-Discrete Level. Gillespie’s Direct Method [9] was used to perform
a stochastic simulation of the system that is represented deterministically by
the macro-continuous model. This method was originally devised to numerically
calculate the time evolution of chemical reactions. Like a system of reactions,
the macro-continuous model (1)–(5) is described by a set of coupled differential
equations. Consider the model without time delays in Figure 2. Each of the S
possible transformations of xi into xj , the population fractions in task states
i and j, respectively, is governed by a term of the form ks0f(Pq, xr)xm. The
fraction xi is analogous to the molecular concentration of a chemical species,
and ks0 is analogous to a deterministic reaction-rate constant. When m �= i, m
is a recruiter state. f(Pq, xr) = 1 when the transformation is not governed by a
switch. Otherwise, it is 0 or 1 depending on Pq, the population fraction at the
site containing ants in state m, and/or xr, the fraction of ants in a recruitee
state r. We can remove the switch dependence on xr, since an ant that decides
to recruit does not immediately know about the availability of recruitees. This
dependence is replaced with a deterministic state transition of the recruiter based
on the presence of recruitees once the recruiter reaches their site.

To construct a stochastic formulation of the system, we convert the macro-
continuous model into a set of unidirectional “reactions” with one “reactant ant”
Xi and one “product ant” Xj . These reactions describe individual state transi-
tions. The transition is enabled only when f(Pq) = 1. Like a chemical reaction,
each transition is characterized by a parameter cs such that csdt is the aver-
age probability that a particular ant in state i will undergo transition s in the
next time interval dt. Since each transition has only one “reactant ant,” cs = ks

[9]. The parameter cs for transition s is computed by setting the original term

66 S. Berman et al.

ks0xm = cs0xm equal to a new term csxi. In this way, we generate S transitions
Xi → Xj with parameter cs = cs0xm/xi.

The propensity as is defined such that asdt is the probability that transition s
will occur in the next time interval dt. It is the product of cs with hs, the current
number of distinct “reactant ant” combinations that can undergo the transition.
Because each transition has only one “reactant ant” Xi, hs is the number of ants
in state i, ni = xiN [9]. Thus, as = csni = cs0nm. The propensity as is zero if
nm = 0 or if transition s is disabled by a switch term f(Pq).

The Direct Method is implemented in the following way. First, the number
of ants in each state is initialized in a counter and the S propensities are cal-
culated. The next state transition is selected according to a uniform probability
distribution over the propensities, and the time until its occurrence, Δτ , is com-
puted from an exponential distribution with

∑
s as as its parameter. The time

is advanced by Δτ and the transition is effected. If m = i for the transition,
then ni is decremented and nj is incremented either immediately, as in the the
transition from assessor to recruiter, or at a deterministic time in the future that
represents the completion of the ant’s navigation between sites. When m �= i,
then nm, the number of ants in a recruiter state, is decremented to reflect the
start of a tandem run or transport. If any recruitees are available at the time
when the recruiter is expected to arrive at their site, then their population is
decremented in the state counter. At the end of the recruiter’s round-trip jour-
ney, the counter is updated to reflect the recruiter’s success or failure at bringing
another ant to the site. Whenever the counter is updated, the propensities must
be recalculated and a new transition and Δτ are computed.

Microscopic Level. At the microscopic level, each ant is represented as an
individual entity that stores knowledge of its task state, home nest, another
nest site, position, speed, type of ant it is recruiting (if any), and whether it is
navigating to a site. The stochastic simulation method described in the previous
section is used to generate state transitions and their times. At this level, the
simulation runs in time steps Δt to implement the ants’ incremental navigation
through their environment. As a result, the completion of inter-site navigation
is checked at the beginning of every time step rather than acknowledged at the
exact time it happens, and transitions at time τ are initiated when t ≤ τ ≤ t+Δt.

When a transition is generated, a random ant in the appropriate task state
that is not already en route to a site is selected to attempt recruitment or change
state, either immediately or after traveling. Navigation functions [14] are used to
generate ant trajectories that mimic the behavior of traveling between sites while
avoiding obstacles. A navigation function provides a form for a feedback con-
troller that guides an agent to a goal, the unique minimum of the function, while
preventing collisions with obstacles. It can be defined on any environment that
is deformable to one with a spherical boundary and disjoint, spherical obstacles.

In the simulation, ants and their destinations are represented as points, and
obstacles are circular. The position r of an ant is updated at each time step by
numerically integrating the equation

ṙ = −v∇ϕκ(r, rd)/ ‖ ∇ϕκ(r, rd) ‖ , (6)

Algorithms for the Analysis and Synthesis 67

where v is the ant’s speed and ϕκ(r, rd) is the navigation function with the ant’s
current destination rd. The ϕ of each ant share a common parameter κ, which
was selected empirically. Various combinations of v and rd are used to produce
different agent controllers; for example, one l ∈ La would be navigating from
site 0 to site 1 at the tandem-running speed.

The microscopic simulation uses a centralized approach, since a “global plan-
ner” initiates transitions. However, the simulation has a decentralized equivalent:
it produces transition times according to the same probability distribution as a
strategy in which each ant, at every time step Δt, independently undergoes one
of its possible transitions s with probability csΔt. To determine whether it can
execute switch-dependent transitions, an ant only needs to know whether the
population at its current site, Pq, exceeds a quorum. In a robotic system, this
estimate can be achieved through local sensing. The advantage of the central-
ized simulation is its speed; unlike the decentralized approach, it does not require
looping through all ants at each time step.

5.2 Application to the House-Hunting Model

We implemented macro-continuous, macro-discrete, and microscopic simulations
in Matlab of the model (1)–(5). The model is reduced to the scenario of a de-
stroyed home and two available new nests, although it is more detailed than the
model in [1]. All ants are initially located at site 0, and all active ants begin as
naive ants. The rate units are min−1. The nests are 65 cm apart, the inter-site dis-
tance used in experiments to derive the site discovery and recruitment rates [16].

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (min)

Fr
ac

tio
n

of
 c

ol
on

y
at

 s
ite

site 2

site 2

site 1

site 1

Fig. 4. Population fractions at sites 1 and 2; p = 0.25, Q = (10/208)N , μ1 = μ2 =
0.013, λ1 = λ2 = 0.033, ρ12 = 0.008, k1 = 0.016, k2 = 0.020, φ1 = φ2 = 0.099 (values
are from [1], [16]); ρ21 = 0.002, κ = 2.7. Dashed vertical lines correspond to the times
of the snapshots in Figure 5.

68 S. Berman et al.

Fig. 5. Agent simulation snapshots (◦ = naive; ♦ = assessor ; � = recruiter ; ×
= passive) showing the colony at (a) 2.4 min (top left); (b) 80 min (top right); (c)
130 min (bottom left); and (d) 225 min (bottom right). The navigation function that
corresponds to an agent controller with rd at site 2 is shown at the top left.

Each nest is represented as a circle of radius 0.02 m; an ant is considered inside
the nest once it enters the circle. Ants performing tandem runs move at 1.5
mm/sec, while all other ants move at 4.6 mm/sec, the transport speed [1]. There
are three obstacles in the environment. In the macro-continuous and macro-
discrete simulations, the time delays due to navigation, measured from the micro-
scopic simulation, are τ01 = τ02 = 6 min, τ01 = τ02 = 2.2 min, τ10 = τ20 = 2.5
min, τ12 = τ21 = 7.84 min, and τ12 = τ21 = 2.48 min.

Figure 4 displays the population fractions at sites 1 and 2 from the macro-
continuous model solution and from macro-discrete and microscopic simulations
with N = 832, Δt = 0.05 min. The two simulations match the macro-continuous
model fairly well. Although not shown, it has been verified that the macro-
discrete simulation approaches the macro-continuous model as N increases. In

Algorithms for the Analysis and Synthesis 69

all plots, both sites achieve a quorum prior to 30 min and initially experience
population growth. Site 2 outpaces site 1 in growth because ants commit to
site 2 more quickly (k2 > k1) and are more willing to switch allegiance from
site 1 to 2 than vice versa (ρ12 > ρ21). By ∼130 min, all passive ants have
been transported from site 0, and recruiters “forget” this site. The newly naive
ants at site 1 or 2 repeat the process of finding, assessing, and recruiting to the
other potential home site; however, now they can recruit from the site as well.
Assessors at either site are more likely to recruit to the site of higher quality,
which results in a net transport of passive ants to site 2. By ∼376 min in the
macro-continuous and microscopic models, all passive ants at site 1 have been
removed to be reunited with those at site 2; only active ants remain at site 1.
Due to stochastic fluctuations, some passive ants still remain at site 1 in the
macro-discrete model.

Figure 5 shows snapshots of the microscopic simulation at times indicated by
the vertical lines in Figure 4. Nest sites are labeled in Figure 5d; gray circles
denote obstacles. The curvature in the ant trajectories is due to the shape of
the navigation functions, one of which is displayed in Figure 5a. The snapshots
correspond to the initial searching and assessing phase (5a), the period of trans-
port from site 0 (5b), the realization that site 0 contains no passive ants (5c),
and the period of transport between sites 1 and 2 (5d).

6 Conclusion

We have described abstractions of a robotic swarm at three different levels and
presented a methodology for synthesizing behaviors for individual robotic agents.
Our behavioral synthesis at the highest level was derived from a mathematical
model of an ant population. The macro-continuous model was reduced to a
macro-discrete model to account for an integer number of agents. The macro-
scopic behaviors were then further realized by behaviors for individual agents.
The components of the methodology have been illustrated through the analysis
and simulation of nest site population growth in a model of ant house hunting.

We are interested in designing macroscopic swarm behaviors that are more
relevant to multi-robot applications such as surveillance, sampling, and search-
and-rescue. We want to determine parameter ranges and/or control terms that
produce a desired group objective by using reachability analysis and control syn-
thesis at the macro-continuous level. Here the methodology of [13] can be used
to synthesize macro-continuous behaviors, which can be translated to macro-
discrete level and then to microscopic level behaviors. We have begun this inves-
tigation in [18], where we adapt the house hunting model to a robot deployment
task in which the swarm splits between two sites in a predefined ratio.

Acknowledgements. We are grateful for the support of NSF grants CCR02-05336
and IIS-0427313, and ARO Grants W911NF-05-1-0219 and W911NF-04-1-0148.
We thank the workshop organizers and attendees for their helpful comments.

70 S. Berman et al.

References

1. Franks, N., Pratt, S., Mallon, E., Britton, N., Sumpter, D.: Information flow, opin-
ion polling and collective intelligence in house-hunting social insects. Phil Trans
Roy Soc London B 357 (2002) 1567–1584

2. Berman, S., Halász, Á., Kumar, V.: Marco: A reachability algorithm for multi-
affine systems with applications to biological systems. Accepted to HSCC’07, Pisa,
Italy, April 2007.

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

4. Belta, C., Kumar, V.: Abstraction and control for groups of robots. IEEE Trans-
actions on Robotics 20:5 (2004) 865–875

5. Martinoli, A., Easton, K., Agassounon, W.: Modeling of swarm robotic systems: a
case study in collaborative distributed manipulation. Special issue on Experimental
Robotics, Int. Journal of Robotics Research 23(4) (2004). B. Siciliano (ed.) 415–436

6. Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation
experiments using embodied agents in teams of constant and time-varying sizes.
Autonomous Robots 17(2-3) (2004). M. Dorigo, E. Sahin (eds.) 163–191

7. Lerman, K., Jones, C., Galstyan, A., Mataric, M.: Analysis of dynamic task allo-
cation in multi-robot systems. Int. J. of Robotics Research, 25(4) (2006) 225–242

8. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic
models for swarm robotic systems. In Swarm Robotics Workshop: State-of-the-art
Survey, LNCS 3342 (2005). E. Sahin, W. Spears (eds.) 143–152

9. Gillespie, D.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J Comp Physics 22 (1976) 403–434

10. Crespi, V., Galstyan, A., Lerman, K.: Comparative analysis of top-down and
bottom-up methodologies for multi-agent systems. Proc 4th Int’l Conf on Au-
tonomous Agents and Multi Agent Systems (AAMAS’05), Utrecht, The Netherlands

11. Julius, A., Halász, Á., Kumar, V., Pappas, G.: Finite state abstraction of a stochas-
tic model of the lactose regulation system of Escherichia coli. IEEE Conf on Deci-
sion and Control, San Diego, CA, December 2006. To appear.

12. Heylighen, F.: The science of self-organization and adaptivity. In The Encyclopedia
of Life Support Systems, EOLSS Publishers Co. Ltd. (2003)

13. Habets, L., and van Schuppen, J.: A control problem for affine dynamical systems
on a full-dimensional polytope. Automatica 40 (2004) 21–35

14. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential func-
tions. IEEE Transactions on Robotics and Automation 8(5) (1992) 501–518

15. Pratt, S., Sumpter, D., Mallon, E., Franks, N.: An agent-based model of collective
nest choice by the ant Temnothorax albipennis. Animal Behav 70 (2005) 1023–1036

16. Pratt, S., Mallon, E., Sumpter, D., Franks, N.: Quorum sensing, recruitment, and
collective decision-making during colony emigration by the ant Leptothorax al-
bipennis. Behav Ecol Sociobiol 52 (2002) 117–127

17. Belta, C., Finin, P., Habets, L., Halász, A., Imielinski, M., Kumar, V., Rubin,
H.: Understanding the bacterial stringent response using reachability analysis of
hybrid systems. HSCC ’04, Philadelphia. LNCS 2993. R. Alur, G. J. Pappas (eds.)
111–125

18. Berman, S., Halász, A., Kumar, V., Pratt, S.: Bio-inspired group behaviors for the
deployment of a swarm of robots to multiple destinations. Accepted to ICRA’07,
Rome, Italy, April 2007.

19. Parrish, J., Hamner, W. (eds.): Animal Groups in Three Dimensions. Cambridge
University Press, New York (1997)

Coordination and Control of Multi-agent Dynamic
Systems: Models and Approaches�

Veysel Gazi1 and Barış Fidan2

1 TOBB University of Economics and Technology, Department of Electrical and Electronics
Engineering, Söğütözü Cad., No: 43, Söğütözü, 06560 Ankara, Turkey

2 National ICT Australia Ltd. and The Australian National University – Research School of
Information Sciences & Engineering, Canberra, Australia

Abstract. The field of multi-agent dynamic systems is an inter-disciplinary re-
search field that has become very popular in the recent years in parallel with the
significant interest in the practical applications of such systems in various areas
including robotics. In this article we give a relatively short review of this field
from the system dynamics and control perspective. We first focus on mathemati-
cal modelling of multi-agent systems paying particular attention on the agent dy-
namics models available in the literature. Then we present a number of problems
on coordination and control of multi-agent systems which have gained significant
attention recently and various approaches to these problems. Relevant to these
problems and approaches, we summarize some of the recent results on stability,
robustness, and performance of multi-agent dynamic systems which appeared in
the literature. The article is concluded with some remarks on the implementation
and application side of the control designs developed for multi-agent systems.

1 Introduction

The field of coordinated multi-agent dynamic systems including swarms and swarm
robotics is a relatively new field that has become popular in recent years. Since the
pioneering work by Reynolds [1] on simulation of a flock of birds in flight using a
behavioral model based on few simple rules and only local interactions, the field has
witnessed many developments. Currently, there is significant interest in the applications
of the field in various areas involving teams of manned or unmanned aerial, ground,
space or underwater vehicles, robots, mobile sensors, etc. [2, 3, 4, 5, 6, 7, 8].

Because of the interdisciplinary nature of the field, the literature on coordinated
multi-agent dynamic systems has a moderately wide spectrum of perspectives. This
article focuses on the system dynamics and control perspective. Noting that it is by no
means a complete survey on the topic, even from this particular perspective, the aim
of the article is to present a short review on mathematical modelling, coordination and
control of multi-agent dynamical systems.

� The work of V. Gazi is supported by the Scientific and Technological Research Council of
Turkey (TÜBİTAK) under grant 104E170. The work of B. Fidan is supported by National
ICT Australia, which is funded by the Australian Government’s Department of Communica-
tions, Information Technology and the Arts and the Australian Research Council through the
Backing Australia’s Ability Initiative.

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 71–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

72 V. Gazi and B. Fidan

The rest of the article is organized as follows: In Section 2, we briefly review the
terminology and mathematical models used in the field of coordinated multi-agent
dynamic systems and introduce the main elements of these models. Among these ele-
ments, the agent dynamics is further elaborated in Section 3, presenting the main math-
ematical models available in the literature for agent dynamics. In Section 4, we present
a number of problems on coordination and control of multi-agent systems which have
gained significant attention recently. Various approaches to these problems are reviewed
in Section 5. The main results on stability, robustness, and performance of multi-agent
dynamic systems, which are obtained in the studies on the problems and approaches
of Sections 4 and 5 are summarized in Section 6. The article is concluded with some
remarks on the implementation and application side of the control designs developed
for multi-agent systems given in Section 7.

2 Multi-agent Dynamic Systems, Formations, and Swarms

A multi-agent dynamic system, in general, can be defined as a network of a number
of loosely coupled dynamic units that are called agents. In real-life, each agent can be
a robot, a vehicle, or a dynamic sensor, etc. The main purpose of using multi-agent
systems is to collectively reach goals that are difficult to achieve by an individual
agent or a monolithic system. Sometimes, if the main dynamic action of interest is mo-
tion, the term swarm or sometimes formation are used in place of multi-agent dynamic
system.

In this article we use mostly the term swarm for a collection of (physical) agents
moving in real 2- or 3- dimensional space to fulfill certain mission requirements, noting
that in some particular cases the effective motion space of interest can be 1-dimensional.
The distinction between the terms formation and swarm is not clearly formulated or
stated in the systems and control literature,1 although in some places swarm is preferred
to indicate that the corresponding collection of agents is less structured, the number
of agents is larger, or the motion of each agent has higher uncertainty as opposed to
formation indicating a well-structured collection of a relatively small number of agents
with more deterministic dynamics. Using this convention, a swarm can be thought as a
multi-agent dynamic system that can form various types of formations. In this article we
use both of these two terms interchangeably with the term multi-agent dynamic systems
without making any distinction although sometimes when necessary for the context we
also try stick to the above conventions.

Note also that swarm robotic systems are a particular kind of swarms as we mean it
here (and therefore they are also a particular kind of multi-agent dynamic systems as
well). Typically, since they are inspired by natural systems they are much more con-
strained than many other multi-agent dynamic systems. In particular, usually they are
minimalist, agents have very limited capabilities and only very limited local knowledge,
are totally distributed and operate asynchronously, whereas in some other multi-agent
dynamic systems it is possible to have global knowledge and centralized hierarchi-
cal control structure. Nevertheless, much of the recent work on multi-agent dynamic

1 One exception is the work by Erol Şahin in [9] where the author formally defines properties
that a swarm robotics system should possess.

Coordination and Control of Multi-agent Dynamic Systems 73

systems in the systems and control literature (and all the work we describe here) has
been focusing on decentralized or distributed algorithms for swarm coordination and
control.

An important property of swarm robotic systems (and more general in swarms) is the
property of emergence. Usually coordination in these systems is a property that emerges
through the local interactions between the agents. It is difficult to study emergence
from both modeling and design perspectives. In other words, given a desired emergent
property or behavior usually it is difficult to specify the local interaction rules that will
lead to that desired property or behavior. There has not been much work on modeling
of emergence in the multi-agent dynamic systems literature (one exception is the work
by Kubik in [10]) and it remains an important open problem.

The main elements of a swarm (or a formation) are the agents and the information
(i.e. sensing, control, and communication) links among these agents, assuming that the
individual dynamics of the agents are uncoupled or loosely coupled. For formations
where the individual agent dynamics are coupled, the dynamic interactions among the
agents need to be considered as well.

2.1 Formation Control Graphs and Underlying Graphs

The main mathematical tools used in representing swarms, beside differential or dif-
ference equations describing agent dynamics, are directed and undirected graphs and
their geometric representations in the particular motion space, e.g. ℜ2 or ℜ3 [11, 12,
13,14,15,16,17,18,19,20,21,22]. Using these tools, each swarm S is represented by a
weighted graph ḠS = (VS,ES,DS) with a vertex (node) set VS, an edge set ES ⊆ VS ×VS,
and a weighting set DS, where each element (weight) in DS is a positive real number and
|DS| = |ES|, | · | denoting the number of elements in the corresponding set. In this repre-
sentation, each vertex (node) i ∈ VS represents an agent Ai in S and each edge (i, j) ∈ ES

represents an information link between a pair (Ai,A j) of agents. Any pair of agents
(Ai,A j) that are linked by an information link, i.e. that satisfies (i, j) ∈ ES, is called a
neighbor agent pair. Each weight di j ∈ DS represents a control objective or a set point
corresponding to the link between the neighbor agent pair, e.g. the desired value of the
distance between Ai,A j.2 In the literature, the weighted graph ḠS and the unweighted
graph GS = (VS,ES) are respectively called the formation control graph and the un-
derlying graph of the swarm S [15, 18, 19, 20, 21, 22]. As implied above, these graphs
represent the communication, information flow or interaction topology in a swarm.

The underlying graph GS for a particular swarm S can be directed or undirected de-
pending on the properties of information links of S. Usually, directed graphs are used
if the directions of the information links are important, e.g. the information flows or
the inter-agent constraints corresponding to the links are unidirectional, and undirected
graphs are used otherwise. For example, in a swarm where it is required to maintain the
distance between each neighbor agent pair (Ai,A j) at a desired value di j, one may use
two types of control structures: Symmetric and asymmetric [20,21,22]. In the symmet-
ric case, the distance maintenance requirement for each neighbor agent pair (Ai,A j) is

2 Depending on the application distance could also be physical distance or weighted or Ham-
ming distance between the neighboring agents.

74 V. Gazi and B. Fidan

addressed via a joint effort of both Ai and A j to simultaneously and actively maintain
their relative positions and the associated underlying graph is undirected. On the other
hand, in the asymmetric case the associated underlying graph is directed and only one
of the agents in each neighbor agent pair (Ai,A j), e.g. agent Ai, actively maintains its
distance to agent A j at the desired value di j. Hence, in the latter case, only Ai needs
to sense the position of A j and it can make decisions on its own. This is indicated in
the directed underlying graph GS = (VS,ES) by assigning the direction of the edge (i, j)
from vertex i to vertex j. The structure and properties of GS can also be dictated by
the hardware (and software) capabilities of the agents. For example, if the agents in the
swarm S are very simple and do not have information exchange capability except the
ability to myopically sense relative positions, then a directed underlying graph GS may
be needed to represent the agent interactions in S.

In a swarm S with directed underlying graph GS, an agent Ai is said to be connected
to another agent A j if there is a directed path from i to j in GS, i.e. a sequence of arcs

(directed edges) (
−−→
i1, i2),(

−−→
i2, i3), . . . ,(

−−−−→
ip−1, ip) in GS such that i = i1 and j = ip. If there is

a (directed) path from every i to every j in GS, then both S and GS are said to be strongly
connected. A directed tree is a directed graph in which every vertex, except a specific
one, which is called the root, has exactly one incoming edge (arc). If a tree graph GT

connects all the vertices of the underlying graph GS, then it is called a spanning tree of
GS. Note that if GS has a spanning tree, then there is at least one agent in S which is
connected to all the other agents in S.

2.2 Rigidity and Persistence

In Section 2.1, an example was given about swarms where it is required to maintain
the distance between each neighbor agent pair constant. Such requirements are widely
encountered in swarm and formation control applications where it is required to main-
tain the shape or structure of the formation during operation [18, 19, 20, 21, 22]. The
notions of rigid and persistent formations are introduced to construct a mathematical
framework for formal analysis and design for such applications [18, 19, 20, 21].

A swarm S with an underlying graph GS = (VS,ES) is called rigid if by explicitly
maintaining distances between all the neighbor agent pairs, the distances between all
other pairs of agents in S are consequentially held fixed as well, and hence S can move
as a cohesive whole [18, 20, 21, 22]. In a geometric representation of the underlying
graph GS, explicit maintenance of the distance between a neighbor agent pair (Ai,A j)
corresponds to keeping the length of the edge (i, j) ∈ ES constant, e.g. at a desired value
di j ∈ DS.

Note here that the notion of rigidity introduced above is an undirected one, i.e. in the
above definition of rigidity, the requirement of maintaining the distance between each
neighbor agent pair is not assigned to a particular agent and no directional specification
is made about the corresponding link to meet this requirement. Hence, although we can
use rigidity for swarms with symmetric control structures as it is, for a swarm S with
asymmetric control structure we need to introduce two further notions to address the
issue of assigning the distance maintenance task. If each agent in S is able to satisfy all
the distance maintenance constraints on it provided that all other agents within S satisfy
as many of their constraints as possible, then S is called constraint-consistent. A swarm

Coordination and Control of Multi-agent Dynamic Systems 75

(a formation) that is both rigid and constraint-consistent is called persistent [20, 21]. In
a persistent formation, provided that all the agents satisfy as many of their constraints
as possible, they can in fact satisfy all the constraints and, consequently, the shape of
the formation is preserved, i.e., when the formation moves, it necessarily moves as a
cohesive whole.3 Note that the above definitions of rigidity, constraint-consistence, and
persistence are all intuitive. Formal definitions of these notions as well as fundamental
characteristics of rigid, constraint-consistent, and persistent formations can be found
in [18, 19, 20, 21, 22, 23].

2.3 Neighborhood

As can be deduced from the discussions above, the graphical structure and the infor-
mation architecture of a swarm corresponds to neighborhood map (or proximity net) of
agents within the swarm, where neighborhood (or proximity) of and agent Ai is intu-
itively defined as the set of neighbors of Ai, i.e. the set of agents A j such that (Ai,A j) is
a neighbor agent pair, together with the information links between Ai and each of these
neighbor agents. There are different ways to formally define and classify neighborhoods
(or communication topologies) in a swarm, based on the assumed characteristics of the
information links. Two different types of neighborhoods commonly used in the litera-
ture are fixed neighborhood (neighborhood that is predefined and does not change with
time) and dynamic neighborhood (neighborhood that can change with time). A subclass
of the fixed neighborhood topology that was used in the initial studies on multi-agent
dynamic systems (see for example [24, 25, 26]) is the fully interconnected topology or
basic neighborhood topology, viz. a neighborhood topology in which every agent is
a neighbor of every other agent. In addition to these, there exist other studies in the
literature on fixed topologies that are not fully/completely connected as well (see for
example [27, 28, 29, 30]).

The dynamic neighborhood topology can be defined using different methods such as
ad-hoc, probabilistic, or nearest-neighbor rules. A commonly used dynamic neighbor-
hood topology definition is based on the assumption of a fixed range δ > 0 of communi-
cation (information exchange), in which the neighborhood Ni(t) of an agent Ai at time
t is defined as

Ni(t) = {A j | j �= i, ‖pi(t)− p j(t)‖ ≤ δ} (1)

for some δ, where pi denotes the position of agent Ai in the assumed coordinate sys-
tem (ℜ2 or ℜ3). This definition is found realistic and useful for many applications,
since sensing and communication ranges for the agents are usually bounded and agent
interactions can take place within these bounded ranges.

3 Mathematical Models for Agent Dynamics

In Section 2 we have briefly introduced the main elements of mathematical swarm mod-
els. In this section, we focus on a particular element among those, the agents and mod-
elling of their dynamics. We briefly summarize some of the mathematical models for

3 This statement is valid for all the 2 and 3-dimensional swarms except a particular small class
of swarms in ℜ3. The details about this exceptional class can be found in [23].

76 V. Gazi and B. Fidan

agent/vehicle dynamics considered in the systems and control literature on multi-agent
dynamic systems (or swarms). We consider a swarm consisting of N individuals/agents
moving in an n-dimensional Euclidean space and unless otherwise stated denote with
xi ∈ R

n the state vector and with ui ∈ R
m,m ≤ n the control input of agent i. Depending

on the context, the state vector xi may denote (a collection of) the position, orientation,
synchronization frequency, information to be agreed upon, etc. The dimensions of the
state and control spaces (i.e. the values of n and m) change depending on the context
as well.

3.1 Higher-Level (Single Integrator) Model

The simplest mathematical model considered in the literature for studying swarm be-
havior is the so-called higher-level or kinematic or single integrator model in which the
agent motions are given by

ẋi = ui, i = 1, . . . ,N, (2)

where xi is the state of agent Ai, ui is its control input, and the dot represents the deriva-
tive (the change) with respect to time. As mentioned above, depending on the context
the state xi can represent the position pi, the orientation angle or synchronization fre-
quency θi, or other variables (or collection of those).

We refer to this model as a higher-level or kinematic model since it ignores the
lower-level vehicle dynamics of the individual agents (e.g., robots). However, it is a
relevant and useful model since it can be used for studying higher level algorithms
independent of the agent/vehicle dynamics and obtaining “proof of concept” type re-
sults for swarm behavior. Moreover, in certain control tasks involving path planning,
the trajectories generated using the higher-level agent models can be used as reference
trajectories for the actual agents to track. Furthermore, (2) is a realistic simplified kine-
matic model for a class of omni-directional mobile robots with so-called universal (or
Swedish) wheels [31, 32, 33]. Nevertheless, in implementations of the results obtained
for (2) with real-life agents/robots it may be necessary to consider the effects of the
actual agent dynamics. As example works using the agent model in (2) the reader may
refer to [2, 15, 22, 24, 25, 26].

3.2 Point Mass (Double Integrator) Model

Another dynamic model which is commonly used in the multi-agent coordination and
control literature is the point mass or double integrator model given by

ṗi = vi,

v̇i =
1
mi

ui, i = 1, . . . ,N, (3)

where pi is the position, vi is the velocity, mi is the mass of the agent, and ui is the
force (control) input (and the state of the systems can be defined as x�

i = [p�
i ,v�

i]).
The higher-level model in (2) can be viewed also as a special case of the point mass
model (3) under the assumption that the motion environment is very viscous, that mi ≈ 0
(as is the case for some bacteria), and the control input is taken as

ui = −kvvi + ūi

Coordination and Control of Multi-agent Dynamic Systems 77

with the velocity damping coefficient kv = 1, and the control term ūi corresponding to
ui of (2) [26]. However, in general for many biological and engineering systems this
assumption is not satisfied and the point mass model in (3) becomes more relevant. It
is an alternative model that can be used for analyzing swarm behavior and has been
considered in [34, 35, 30, 36, 37, 14].

3.3 Fully Actuated Model with Uncertainty

A more realistic model for agent/vehicle dynamics (compared to the higher-level and
the point mass models) is the fully actuated model

Mi(pi)p̈i + fi(pi, ṗi) = ui,1 ≤ i ≤ N, (4)

where pi represents the position or configuration (and as above we have x�
i = [p�

i ,v�
i]),

Mi(pi) ∈ R
n×n is the mass or inertia matrix, fi(pi, ṗi) ∈ R

n represents the centripetal,
Coriolis, gravitational effects and additive disturbances. It is a realistic model for fully
actuated omni-directional mobile robots or for some fully actuated manipulators [31,
32,33]. What makes the model even more realistic is that it is assumed that (4) contains
uncertainties and disturbances. In particular, it is assumed that

fi(pi, ṗi) = f k
i (pi, ṗi)+ f u

i (pi, ṗi),1 ≤ i ≤ N,

where f k
i (·, ·) represents the known part and f u

i (·, ·) represents the unknown part. The
unknown part is assumed to be bounded with a known bound, i.e.,

‖ f u
i (pi, ṗi)‖ ≤ f̄i(pi, ṗi),1 ≤ i ≤ N,

where f̄i(pi, ṗi) are known for all i. Moreover, besides the additive disturbances and
uncertainties, it is assumed that for all i the mass/inertia matrix is unknown but is non-
singular and lower and upper bounded by known bounds. In other words, the matrices
Mi(pi) satisfy

Mi‖y‖2 ≤ y�Mi(pi)y ≤ M̄i‖y‖2,1 ≤ i ≤ N,

where y ∈ R
n is arbitrary and Mi and M̄i are known and satisfy 0 < Mi < M̄i < ∞.

These uncertainties provide an opportunity for developing algorithms that are robust
with respect to above type of realistic uncertainties and disturbances. This model was
considered, e.g., in [38, 39].

3.4 Non-holonomic Unicycle Model

Another realistic agent dynamics model commonly considered in the systems and con-
trol literature (for motion in a 2-dimensional space) is the unicycle model

ṗix = vi cos(θi),
ṗiy = vi sin(θi),
θ̇i = ωi,

v̇i =
1
mi

Fi,

ω̇i =
1
Ji

τi,1 ≤ i ≤ N, (5)

78 V. Gazi and B. Fidan

where pix and piy are the Cartesian (x and y, respectively) coordinates (on the 2-
dimensional motion space), θi is the steering angle (or orientation), vi is the translational
(linear) speed, and ωi is the rotational (angular) speed of each agent Ai. The quantities
mi and Ji are positive constants and represent the mass and the moment of inertia of
each agent, respectively. The control inputs to the system are the force input Fi and the
torque input τi. Many mobile robots used for experimentation in the laboratories (e.g.,
robots with one castor and two differentially driven wheels) obey the model in (5).

It is possible to consider only the kinematic part of the dynamics in (5) consisting
of only the first three equations as was done in [40, 3, 15, 22, 41, 42], four-state part
of the model [43], or the complete five state model [44]. Furthermore, by adding one
more integrator to the force input terminal of the model it can be extended to a six state
model which, under certain conditions, can be completely linearized via the feedback
linearization method [45].

It is well known that for the dynamics in (5) the position pi = (pix, piy) and the
orientation θi of the robot cannot be simultaneously stabilized by a continuous static
(time-invariant feedback) [46]. In order to avoid this problem one may, for some di > 0,
define

zi =
[

pix + di cos(θi), piy + di sin(θi)
]�

(6)

as the output of the system and set the control objective based on the position of that
output. This output may represent the position of a gripper at the end of a hand of length
di or a sensor positioned in front of the robot. With respect to that output the system is
input-output feedback linearizable with a well defined relative degree equal to two [44].
The drawback is that under the feedback linearizing controller the zero dynamics of
the system are only marginally stable, which may lead to instability in the internal
unobservable dynamics during tracking of certain trajectories [44, 45]. This may not
be a problem in some applications since internal unobservable dynamics constitutes of
the orientation angle θi. Nevertheless, one is not required to use a feedback linearizing
controller and the above problem may probably be avoided by using other types of
controllers.

3.5 Dubins’ Vehicle Model

In a recent work [47], a special case of the non-holonomic unicycle model (5) in which
the translational speeds of the agents are fixed to a constant value was considered
for studying the connection between oscillator synchronization and collective motions.
This model is given by

ṗi = e jθi

θ̇i = ui (7)

where the vector pi ∈ C ≈ R
2 denotes the position of agent/particle i (in complex nota-

tion) whereas the angle θi denotes its orientation. In this model the agents are assumed
to move with a constant speed with normalized magnitude v = 1. Note that the (unit)
velocity vector of the agent is given by e jθi = cos(θi)+ j sin(θi) (here j =

√
−1).

Coordination and Control of Multi-agent Dynamic Systems 79

An equivalent (or slightly more general) form of (7) that is widely used in the litera-
ture is the so-called Dubins’ vehicle model [48, 49, 42] given by

ṗix = vcos(θi),
ṗiy = vsin(θi),
θ̇i = ωi,1 ≤ i ≤ N, (8)

where pix and piy are the Cartesian (x and y, respectively) coordinates, θi is the steering
angle, v is the constant translational speed, and ωi is the rotational speed of each agent Ai.

The Dubins’ vehicle model (8) is found useful in various studies where each vehicle
of interest is required to move with a constant translational speed because of dynamic
constraints (such as the ones for flight of certain unmanned aerial vehicles (UAVs) at
a specified altitude) [49, 50] or optimality considerations (such as using the maximum
available speed of each vehicle) [49, 51].

3.6 Self-propelled Particle Model

The terms self-propelled or self-driven particles are mostly used by physicists [52].
In [52], the following discrete-time self-propelled particle model is used to study the
effects of noise on the complex dynamic particle systems and phase transition from
disordered to ordered states:

pix(t + 1) = pix(t)+ vcos(θi(t + 1)),
piy(t + 1) = piy(t)+ vsin(θi(t + 1)), i = 1, ...,N, (9)

where pix and piy are the Cartesian coordinates, v is the translational speed, and θi is
the steering angle of a particle with index i.

The model (9), a more general form of which can be found in [1], is later adapted
to model the dynamics of an agent (Ai) in a swarm in a number of studies on the co-
ordination of groups of mobile agents [13, 14, 12]. In the studies mentioned above, it
is assumed that the translational speed v is constant and equal for all agents. In other
words, it is assumed that all the agents move with the same constant speed in possibly
different directions. The directions of motion are updated at each step based on

θi(t + 1) = ωi(t), i = 1, ...,N, (10)

where the control (new direction) input ωi(t) is calculated based on the current direction
of the agent and the direction of its neighbors with some additive noise.

Note that the self-propelled particle model in (9)-(10) is the discrete time equivalent
of the Dubins’ vehicle model in (8).

4 Swarm Coordination and Control Problems

There exist a number of different swarm coordination and control tasks investigated in
the systems and control literature. In this section, we briefly present some of the main
ones among these tasks, namely aggregation and foraging, flocking, rendezvous, for-
mation stabilization, formation acquisition, formation reconfiguration, formation main-
tenance, agreement, cohesive motion and cooperation.

80 V. Gazi and B. Fidan

4.1 Aggregation and Social Foraging

Aggregation (or gathering together) is a basic behavior that many swarms in nature
exhibit. Moreover, many of the collective behaviors seen in biological swarms and
some behaviors to be possibly implemented in engineering multi-agent dynamic sys-
tems emerge in aggregated swarms. Therefore, developing mathematical models for
swarm aggregations and studying the dynamics and properties of these models are im-
portant. Initial studies on mathematical modeling and simulation of aggregation in bi-
ological swarms were performed by biologists [53, 54, 55, 56]. Inspired by the work of
biologists, two recent studies [24,25] provided a rigorous analysis of an artificial poten-
tial function based model of swarm aggregations and some corresponding convergence
results, assuming discrete time swarm models with synchronous motion dynamics. The
asynchronous counterpart of the analysis and the results are also provided in the litera-
ture [27, 28, 29].

In a recent work [57], Soysal and Şahin perform a systematic study of the ag-
gregation behavior in a robotic swarm acting probabilistically based on few simple
rules/behaviors. Similarly, in [58] Bahçeci and Şahin study the use and effectiveness
of evolutionary methods for developing neural network based controllers for the agents
in an aggregative swarm robotic system.

Aggregation in biological swarms usually occurs during social foraging. Social
foraging has many advantages such as increasing probability of success for the indi-
viduals [59, 60]. Therefore, social foraging is an important problem since swarm stud-
ies in engineering may benefit from similar advantages. For example, the study and
bio-mimicry of foraging behavior in ant colonies has led to development of the pop-
ular ant colony optimization method [61]. Similarly, the particle swarm optimization
method [62, 63] is another optimization method which is inspired by social foraging in
swarms.

In social foraging the environment affects the motion or behavior of the agents.
The environment may have favorable regions (representing food or nutrients in bio-
logical swarms or targets or goals in engineering applications) to which the agents may
want/need to move and unfavorable regions (representing toxic or hazardous substances
in biological swarms or threads or obstacles in engineering applications) which the
agents may want/need to avoid. Therefore, the studies on social foraging usually incor-
porate determining strategies to move towards and achieve aggregation in the favorable
regions while avoiding unfavorable ones. Example studies on the topic include [26,37].

4.2 Flocking and Rendezvous

Flocking, in general, can be defined as collective motion behavior of a large number
of interacting agents with a common group objective. The work by Reynolds [1] is the
first extensive study in the literature on flocking. This work has proposed three simple
rules to implement a flocking behavior, namely (i) separation, (ii) alignment, and (iii)
cohesion. These rules have been used to develop realistic computer simulations of the
flocking behavior of animal swarms.

A simplified and special form of the Reynolds’ model [1] of flocking is proposed
in [52] based on the self-propelled particle model (introduced in Section 3.6) to study

Coordination and Control of Multi-agent Dynamic Systems 81

the effects of noise on the complex dynamic particle systems and phase transition from
disordered to ordered states. The study in [52] has also provided simulation results
that make use of a so-called “nearest neighbor rule” (where the agents adjust their mo-
tion based only on their nearest neighbors) and eventually all the agents (particles)
move in the same direction despite the absence of centralized coordination and time-
varying nature of neighborhoods. In other words, coordination (which is in the form of
motion in a common direction) emerges from the local interactions of the agents in
the swarm.

A mathematical analysis of achieving common orientation during the flocking be-
havior based on “nearest neighbor rules” is provided and some corresponding conver-
gence results are established in [12]. Recent empirical studies in [64,65] study the effect
of neighborhood size and asynchronism [64] and the turning angle restrictions (a type
of non-holonomic constraint) [65] on the flocking behavior of the system in [52]. It is
observed in [65] that for a synchronous system under high restrictions on the turning
angle the averaging rule for determining the direction of motion by the agents consid-
ered in [52, 12] may hinder the flocking behavior and result in oscillatory dynamics
while the asynchronous system may not result in such dynamics.

Another pioneer attempt to rigorously model and analyze flocking behavior was per-
formed by Tanner and coworkers in [30, 36] for systems with point mass dynamics and
in [43] for agents with non-holonomic unicycle dynamics. In [43], the speeds and atti-
tudes of the agents converge asymptotically to the same value and collisions between
the agents are avoided. Due to this convergence, the agents move in a particular direc-
tion with a constant speed.

In a more recent work [14], Olfati-Saber considers stable flocking of agents with
point mass dynamics as in (3). He considers “nearest neighbor rules” and uses potential
functions for aggregation and alignment. Several algorithms are proposed and analyzed
with and without group objective and is shown that under certain conditions flocking
will be achieved and the flock will have a lattice-type structure. Moreover, the author
argues that his model incorporates the rules of the model of Reynolds [1] (which he
expresses as flock centering, collision avoidance, and velocity matching rules) and his
model is more general than the model of Reynolds. Olfati-Saber studies the dynam-
ics/performance of several different algorithms including ones with and without com-
mon group objective. Another contribution of the paper is determination/specification
of finite range and relatively smooth (differentiable everywhere) potential functions.

Rendezvous can be thought as a specific form of flocking where the task is meeting
of agents at a point or a small region [66]. In the rendezvous problem, each agent is
assumed be able to continuously track the positions of all its neighbors, where neigh-
borhood is defined as in (1). The individual controllers of the agents are required to be
“local”, i.e. not to actively communicate with any other agent. A solution to this prob-
lem is provided in [67, 68], where a decentralized control strategy is developed for a
group of agents to meet at an unspecified location. The synchronous and asynchronous
settings for the solution are described in [67] and [68], respectively. Another relevant
study focusing on the behavior of swarms under cyclic pursuit (i.e., swarms where each
agent follows (only) another one) is presented in [42, 69].

82 V. Gazi and B. Fidan

4.3 Formation Stabilization and Acquisition

In formation stabilization, the task is convergence of a group of agents that are ini-
tially at random positions asymptotically (or exponentially) to a particular geometrical
configuration, thereby construction of a structured formation, not necessarily matching
a pre-defined geometric pattern. Note that the rendezvous problem introduced in the
previous subsection is a special formation stabilization problem, by definition.

A study on formation stabilization of agents for non-holonomic agent dynamics is
presented in [41]. In the same work, a feasibility problem of achieving a stable forma-
tion of a group of unicycles with certain specified geometries is investigated. In [70] for-
mation stabilization of autonomous agent formations with undirected underlying graphs
is investigated using potential functions derived from the underlying graph. Formation
stabilization of swarms under cyclic pursuit is considered in [42].

If in a particular formation stabilization task it is also required that the final shape
of the swarm matches a pre-defined geometric pattern, then the task is further called
formation acquisition or formation achievement. In a formation acquisition task, the
scale of the pre-defined geometric pattern (i.e., the distances between the nodes in the
geometric pattern indicating the desired final positions of agents relative to each other)
may or may not be specified. Examples of formation acquisition studies can be seen
in [71, 72, 73].

4.4 Formation Maintenance and Cohesive Motion Control

Formation maintenance and cohesive motion control problems focus on maintenance of
an achieved formation structure of a swarm during any continuous motion of the swarm.
In [72], the task of following a prescribed trajectory for swarms without breaking the
formation topology is discussed. In this work however there is a flexibility in the shape
of the formation as no constraint is introduced on the inter-agent distances. Similarly,
in [39] the problem of a swarm of agents to capture/enclose and track a moving target
in a formation using artificial potentials and sliding mode control is investigated.

In a slightly different context, in [22], the problem of moving a persistent swarm with
specified initial position and orientation to arbitrary desired final position and orienta-
tion without deforming the shape of the swarm is introduced under the name cohesive
motion control problem. In [22], a class of decentralized controllers are proposed for
the solution of this problem as well.

4.5 Formation Reconfiguration and Switching

For swarms in the form of structured formations it is of interest to maintain certain
properties of this structure during various types of structure break-downs. Maintenance
of rigidity and persistence during certain changes or operations on the formation struc-
ture is considered in [18, 19, 74, 75]. The three key categories of formation operations
considered in these studies are merging, splitting, and agent loss. Merging is combining
of two formations via some information links in between to form a single post-merged
rigid formation. Splitting is the “reverse” of merging, i.e. division of a pre-split for-
mation into two post-split smaller formations via breaking some of the information
links. In agent loss, one or more agents together with the attached information links are

Coordination and Control of Multi-agent Dynamic Systems 83

lost. The corresponding rigid (or resp. persistent) merging, splitting, and closing ranks
problems, respectively, are the tasks of maintaining rigidity (or resp. persistence) dur-
ing these operations via establishing some new information links between some of the
existing agent pairs.

In formation switching, the swarm changes from one shape to another, usually as
a reaction to environmental changes. In [76], a paradigm is presented for switching
between simple decentralized controllers that allows for changes in formation. Using
this approach a triangular formation switches to a linear formation to avoid obstacles.
Similar work can be found in [77] where maneuvers such as group translation, rotation,
expansion and contraction are considered.

4.6 Distributed Agreement Problems

At different stages of swarm studies there may arise situations in which the agents may
need to agree on some information which could be agent position, velocity, oscillation
phase, decision variable, etc. Such a phenomenon can be seen also in nature in, for
example, distributed synchronization of the flashing of fireflies (or coupled oscillators
in more general terms), distributed decision making in swarm of bees during nest site
selection and others. The corresponding tasks of developing distributed or decentralized
control strategies for agreement are called distributed agreement problems. A recent
survey on distributed agreement problems can be found in [78]. Note that the problem
of distributed agreement is sometimes called distributed consensus seeking as well.
It is said that agreement or consensus is achieved if the corresponding states of all
agents converge to the same value. Related problems are the problems of rendezvous
or gathering [78]. However, they are also little bit different then the consensus seeking
problems in that there the agents have to arrive to the same state in a finite time [67,
68,79,80]. Note also that the distributed agreement problem is very similar to finding a
fixed point of a function in parallel and distributed computing systems [81].

Synchronization of Coupled Nonlinear Oscillators and the Kuramoto Model. A
good example of distributed synchronization (a type of distributed agreement) in nature
is the synchronization of the flashing of fireflies [82]. More generally this phenomenon
can be viewed as distributed synchronization of coupled oscillators which mathemati-
cally is usually represented by the Kuramoto model [47, 83]

ẋi = ωi +∑
j

ui j(x j − xi) (11)

where xi is the oscillation phase of the i′th individual and ωi is the oscillation frequency.
Moreover, usually researchers take ui j(x j − xi) = 1

N sin(x j − xi). Note that this model is
a special case of the kinematic model (2) with the control input taken as ui = ωi +
∑ j ui j(x j − xi).

The control strategies or update rules that lead to agreement are usually called con-
sensus protocols in the literature. Both continuous-time and discrete-time update rules
or consensus protocols have been considered in the literature. The equation in (11) is an
example of a continuous-time consensus protocol. Other examples are described below.

84 V. Gazi and B. Fidan

Continuous-Time Consensus Protocol. The model of the continuous-time consensus
protocol considered in the literature (see for example [84,13,12,17]) can be summarized
as [78]

ẋi(t) = − ∑
j∈Ni(t)

αi j(t)(xi(t)− x j(t)), (12)

where Ni(t) represents the set of neighbors of agent i at time t or basically the set of
agents whose information is available to agent i at time t and αi j(t) > 0 denote positive
time-varying weighting factors. In other words, the information state of each agent is
driven toward the states of its (possibly time-varying) neighbors at each time. Note that
some agents may not have any information exchange with other agents during some
time intervals.

Discrete-Time Consensus Protocol. The discrete-time consensus protocol considered
in [12, 16, 17] (see also [78]) can be summarized as

xi(t + 1) = ∑
j∈Ni(t)∪i

βi j(t)x j(t), (13)

where ∑ j∈Ni(t)∪i βi j(t) = 1 and βi j(t) > 0 for all j ∈ Ni(t)∪ i. In other words, the next
state of each agent is updated as the weighted average of its current state and the current
states of its (possibly time-varying) neighbors. Note that an agent simply maintains its
current state if it has no information exchange with other agents at a certain time step.

A special case of the discrete-time consensus protocol in (13) is the model for the
orientation dynamics of the discrete-time self-propelled particles systems in (10) which
is usually taken as

θi(t + 1) =
1

1 + |Ni(t)|

⎛
⎝θi(t)+ ∑

j∈Ni(t)

θ j(t)

⎞
⎠ , i = 1, ...,N, (14)

where Ni(t) is the current set of neighbors of agent/particle i and |Ni(t)| is the number
of agents in this set. This is the model considered also in [52] with also additive noise
included. This model is based on the assumption that the agents update their orientation
based on its own orientation and the orientation of its neighbors and tries to reorient
itself in the average direction of motion of its neighbors (including its own current
direction). Analysis of the convergence properties of (14) is performed in [12].

4.7 Cooperative Control

A different aspect in swarm coordination and control is cooperative operations of a
collection of dynamical objects which communicate and cooperate in order to achieve a
common or shared objective. Various examples of this, including surveillance, sweeping
and coverage tasks, can be found in the literature, e.g. [76, 85, 86, 87, 88].

5 Approaches to Modeling and Coordination and Control of
Swarms

A common requirement in most of the swarm coordination and control tasks is devel-
oping decentralized controllers for individual agents, instead of a centralized control

Coordination and Control of Multi-agent Dynamic Systems 85

scheme. The main concerns leading to this requirement are complexity and compu-
tational cost, sensitivity to loss of certain agents, (e.g., a central commander), com-
munication delays between the commander agent and the other agents, and feasibility
concerns regarding processing of local information by a central control unit, etc. in a
possible central control scheme.

Beside the general property of being decentralized, the coordination and control
schemes developed in the literature have a large variety in terms of the approaches
and techniques used to develop them as well as particular specifications of the swarm
of interest and the mathematical models assumed for the swarm structure and the agent
dynamics. There exist various studies, e.g. based on the higher level model (2) using po-
tential functions [24,25,26], the point mass dynamics (3) using potential functions [70],
the non-holonomic dynamics in (5) using Lyapunov analysis [3, 40] and feedback lin-
earization [44], the fully actuated uncertain dynamics in (4) using potential functions
and sliding mode control [38], etc. Some of these studies impose certain underlying
graph/information architecture structures (such as the leader-follower structure [15],
minimum number of communication links [3], etc.) while some other do not.

The approaches for swarm coordination and control considered in the literature in-
clude those based on artificial potential functions, Lyapunov analysis and other non-
linear control techniques, sliding mode control and feedback linearization, neuro-fuzzy
techniques, behavior modelling, probabilistic and evolutionary methods, etc. as well as
hybrid approaches combining two or more of these techniques. Next, we briefly discuss
some main ones among these approaches.

In our discussion we assume that the control inputs are typically of the form

ui = upi + uvi + uoi (15)

where upi is agent position (relative to each other or within the environment) based term,
uvi is the velocity based term (velocity damping, velocity matching or velocity consen-
sus term), and uoi is a navigational feedback or general control term corresponding to a
group objective.

5.1 Potential Function Based Approaches

Artificial potential functions have been extensively used for robot navigation and con-
trol [89, 90]. In recent years the researchers started applying them also for specifying
inter-individual interactions in a group of robots. One of the first works in this area is
the work on social potential fields method by Reif and Wang [91].

By defining the inter-individual interactions and the interactions between the indi-
viduals and the environment (or basically the control inputs ui) using artificial poten-
tial functions one can construct a potential function based swarm model. Consider the
higher-level agent model (2), in which the lower-level vehicle dynamics of the indi-
viduals (i.e., robots) has been ignored. One can define a higher-level swarm model by
choosing the control inputs ui ∈ R

n so that the agents move along the negative gradient
of the artificial potential or basically in the control input (15) we have uvi = 0, uoi = 0,
and

ui = upi = −∇xiJ(x), i = 1, . . . ,N, (16)

86 V. Gazi and B. Fidan

where x = [x�
1 , . . . ,x�

N]� is the vector of the positions of all the agents in the swarm, and
J : R

nN → R is the potential function.
The potential function J : R

nN → R may represent only the inter-agent interactions
as in [24, 25] or may include also environmental effects as in [2, 26, 35, 37] or may be
defined for some other purpose. Typical potential functions have the form

J(x) =
N

∑
i=1

Jenv(xi)+
N−1

∑
i=1

N

∑
j=i+1

Ji j(‖xi − x j‖), (17)

where Ji j : R
+ → R is the interaction potential between i and j and can be different

for different pairs and Jenv : R
n → R is the “resource profile” modeling/representing the

environment. Usually, it is assumed that the potentials Ji j(‖xi − x j‖) are: (i) symmetric
and satisfy ∇xi Ji j(‖xi − x j‖) = −∇x j Ji j(‖xi − x j‖); (ii) its gradient at y is along y or
basically there exist function gi j : R

+ → R such that ∇yJi j(‖y‖) = ygi j(‖y‖); (iii) it is
attractive at long distances and repulsive at short distances and there is a unique distance
at which the attraction and repulsion balance, or basically there exist unique distances
δi j at which we have gi j(δi j) = 0 and gi j(‖y‖) > 0 for ‖y‖ > δi j and gi j(‖y‖) < 0 for
‖y‖ < δi j.

In the context of biological swarms, the resource profile Jenv(·) can be a profile of
nutrients or some attractant or repellent substances (e.g., food/nutrients, pheromones
laid by other individual, or toxic chemicals). For example, Jenv(y) < 0 may represent
attractant or nutrient rich, Jenv(y) = 0 may represent a neutral, and Jenv(y) > 0 may
represent a noxious environment at y, respectively. In the context of multi-agent (i.e.,
multi-robot) systems the resource profile Jenv(·) models the environment containing ob-
stacles or threats to be avoided (analogous to toxic substances) and targets or goals to
be caught or moved towards (analogous to nutrients). Typical resource profiles stud-
ied in the literature include plane, quadratic, Gaussian, and multi-modal Gaussian pro-
files [2, 26, 35, 37].

A disadvantage of potential function based approaches is that the potential may have
many local minima (especially if it is based only on relative distances) leading to only
local results, while an advantage is that potential function based controllers are very
easy to implement.

Usage of potential functions is not limited to the higher level model and they are
used with other agent dynamics models as well. For the point mass (double integrator)
model (3), besides the position based term upi, usually the other two terms uvi and uoi

are chosen to be non-zero as well. An example is the work in [37] which considers
social foraging of agents with point mass dynamics in a noisy environment including
uncertainties (or, as called in [37], additive noise) in sensing of the environment (i.e.,
the resource profile) as well as the relative positions of the other agents (or basically the
inter-individual distances) and determines conditions for the cohesiveness of the swarm
as well bounds on the swarm size.

The approach there is also based on artificial potential functions (meaning that the
control input or the inter-agent interactions and the interactions between the individual
agents and the environment are determined by potential functions) and Lyapunov meth-
ods are used for analysis. Moreover, each agent tries to move towards the center of the
swarm and match its velocity with the average velocity of the group. Stable foraging is

Coordination and Control of Multi-agent Dynamic Systems 87

shown despite the uncertainties in the sensing/measurements. Moreover, it is shown via
simulation that social foraging is more advantageous in a noisy environment compared
to individual foraging due to its averaging effect supporting the principle of Grünbaum
observed in chemotaxis of bacteria [59, 60]. The equation of the control input used
in [37] is

ui = −mikpi(xi − x̄− dpi)− mikvi(vi − v̄− dvi)− mikvi − mi∇xi J(x), i = 1, . . . ,N, (18)

where x̄ is the center and v̄ is the average velocity of the swarm, and ∇xi J(x) is a noisy
gradient. The constants kpi, kvi, and k are the controller gains and mi is the mass of the
corresponding agent. The terms dpi and dvi represent the measurement errors (additive
disturbances). Note that the velocity term here is given by

uvi = −mikvi(vi − v̄− dvi)− mikvi, i = 1, . . . ,N, (19)

where as stated above v̄ is the average velocity of the swarm and dvi is a disturbance
(uncertainty) term. Other velocity terms uvi used in the literature are terms which consist
of just the velocity matching term of the form [14]

uvi = −mi ∑
j∈Ni(t)

kvi j(vi − v j), i = 1, . . . ,N. (20)

The group objective term for each agent can be represented in the form [14]

uoi = −mik1(xi − xr)− mik2(vi − vr), i = 1, . . . ,N. (21)

where xr is the position and vr the velocity of a reference agent (virtual leader) that
guides the swarm to a common goal point.

Artificial potential functions are being used for swarm aggregations, formation sta-
bilization and acquisition, and some other multi-agent coordination and control tasks.
For example, in [24,25,26] attraction/repulsion functions have been used for swarm ag-
gregations while in [34, 35] similar potentials have been used for control of a group of
point-mass agents. Similarly, in [40, 70] potential functions are used for formation sta-
bilization, while in [2], they are used for generating hunting behavior in fully actuated
robot troops. Although the agent dynamics in the above articles are not all in the same
form and hence the agents in each study may be concerned with different problems,
the desired “structure” of the swarm of agents can be defined in terms of the system or
environment potential.

Defining the inter-agent interactions and the interactions of the agents with the envi-
ronment using artificial potentials, the researchers investigate variety of issues including
the cohesiveness of the group and establishing bounds on the swarm size, the motion of
the group in the environment (the resource profile), the ultimate dynamics of the group
and whether it will perform the desired behavior, the achievement of the desired for-
mation (or basically many of the swarm coordination and control problems and related
issues are addressed). Lyapunov-like methods are usually used for analysis resulting in
conservative bounds/results.

Some of the works address directly the issues of collisions between the agents, while
some do not. One approach to avoid collisions using artificial potentials may be to

88 V. Gazi and B. Fidan

use unbounded repulsion functions to guarantee collision avoidance (preventing two
individuals from occupying the same space) [25, 34].

In the analysis, in some of the studies [24, 25, 26] it is assumed that each individual
agent knows the relative position of all the other agents (i.e., a fully connected com-
munication graph is assumed) which is a shortcoming of the approach. In biological
swarms, often each individual can see (or sense) only the individuals in its neighbor-
hood because its sensing range is limited. This phenomenon is one of the main reasons
of the wide use of dynamic neighborhood definition based on inter-agent distances,
e.g. (1), in the literature.

5.2 Sliding Mode Control

The higher-level agent dynamics model (2) has the shortcoming of not realistically
representing actual agent dynamics. Still, the results obtained for it are of value since
given particular agent dynamics one may design controllers so as to obey the higher-
level model. This was shown in [38] for the realistic fully actuated model with model
uncertainties in (4) using the sliding mode control method.

The sliding mode control method [92] is a method in which a switching controller
with high enough gain is applied to suppress the effects of modelling uncertainties and
disturbances, and the agent dynamics are forced to move along a stabilizing manifold
called sliding manifold. The value of the gain is computed using the known bounds on
the uncertainties and disturbances.

Given the agent dynamics in (4), using the sliding mode control technique, it is pos-
sible to design each of the control inputs ui to enforce satisfaction of the trajectories
generated by the higher-level model and therefore recover from the deficiencies due to
mismatches between the actual and modelled agent dynamics [38]. This can be done by
defining the n-dimensional sliding manifold for agent i as

si = ṗi + ∇piJ(p) = 0, i = 1, . . . ,N, (22)

where p� = [p�
1 , ..., p�

N]. Then by choosing the control input as

ui = −ui0(p)sign(si)+ f k
i (pi, ṗi), (23)

where sign(si) = [sign(si1), . . . ,sign(sin)]� and the gain ui0(p) of the control input is
“high enough”, i.e. satisfies

ui0(p) > M̄i

(
1

Mi
f̄i(pi, ṗi)+ J̄i(p)+ εi

)
, (24)

where M̄i, Mi, and f̄i(pi, ṗi) are the known bounds on the uncertainties and disturbances,
J̄i(p) is the computable bound on the potential function derivative, and εi > 0 is an
arbitrary constant, one can guarantee that

s�
i ṡi < −εi‖si‖

is satisfied and that sliding mode occurs. In other words, it is guaranteed that si = 0 is
achieved in finite time resulting in ṗi = −∇piJ(p) which is exactly the model in (2) with

Coordination and Control of Multi-agent Dynamic Systems 89

the control input in (16). Therefore, all the results obtained for the dynamics in (2)-(16)
are recovered for the fully actuated model in (4) as well.

The main advantage of the sliding mode approach is that the above achievement is
performed in the existence of uncertainties and the disturbances in the agent/vehicle
dynamics in (4) - issues not considered often. This is mainly because of the suppression
and robustness properties of the sliding mode control method. The shortcomings (of
the raw form of the sliding mode control scheme) on the other hand are the so-called
chattering effect and possible generation of high-magnitude control signals. Note that
these shortcomings may possibly be avoided or relaxed via integration and some filter-
ing techniques. Application of the sliding mode approach with complex agent dynamics
models such as the non-holonomic unicycle model (5) is currently being investigated
by the authors.

5.3 Feedback Linearization

Consider the non-holonomic dynamics in (5) with the output defined as in (6). Differ-
entiating the output zi twice, one can easily show that

z̈i = Ai + Biūi, (25)

where ūi =
[

Fi, τi
]�

and

Ai =
[
−viwi sin(θi)− di(wi)2 cos(θi)
viwi cos(θi)− di(wi)2 sin(θi)

]
, and Bi =

[
1

mi
cos(θi) − di

Ji
sin(θi)

1
mi

sin(θi) di
Ji

cos(θi)

]
,

respectively. By choosing
ūi = B−1

i [−Ai + ui] (26)

where ui = [ui1,ui2]�, we obtain
z̈i = ui.

Note that the matrix Bi is always invertible, since its determinant is given by di
miJi

, which
implies that the linearizing controller always exists. The unobservable states (rendered
by the particular feedback linearizing controller) are given by

θ̇i = − 1
di

żi1 sin(θi)+
1
di

żi2 cos(θi). (27)

Note that the zero dynamics of the system are marginally stable since when zi = żi = 0
we have θ̇i = 0.

After linearizing the system from input-output point of view using the above ap-
proach, one can design the controller using linear or other techniques. This approach
has been used in [44] and in [93] for developing algorithms for formation stabiliza-
tion. An important issue that one needs to be careful about in this approach is that the
zero dynamics of the system are only marginally stable (i.e. not asymptotically or expo-
nentially stable). This, under some conditions, may lead to the unobservable dynamics
being unstable and therefore resulting in undesired behavior. To avoid this problem, it
may be required to add one more integrator to the force input terminal of the dynamics
in (5) and fully linearize the system (i.e., both input-output and input-state). However,
application of this technique has not been investigated in detail in the literature.

90 V. Gazi and B. Fidan

5.4 Lyapunov Analysis and Other Nonlinear Control Techniques

As can be deduced from the above discussions, asymptotic stability and convergence
properties in coordination and control of swarms are usually analyzed employing Lya-
punov or Lyapunov-like functions and performing so-called Lyapunov(-like) analysis
(see, e.g. [12, 13, 14, 15, 24]). Beside these, there also exist studies in the literature
in which Lyapunov techniques, particularly the so called control Lyapunov functions
(CLFs) are used at the controller design stage, e.g. [94].

Beside the Lyapunov-based ones, there exist a number of other nonlinear control
and mathematical tools employed in the swarm coordination and control literature. A
particular nonlinear control design for formation acquisition and maintenance with the
non-holonomic unicycle agent dynamics model, which involves geometric and inverse
kinematic considerations, is presented in [3,72,73]. The corresponding control schemes
are called the separation - separation and separation - bearing controllers, and used for
maintaining the desired inter-agent distance and bearing angle, respectively. A relevant
mathematical tool, used particularly in formation acquisition and maintenance, is the
concept of virtual leader, i.e. moving reference point that influences vehicles in its
neighborhood, which is also considered in Section 5.1 [22, 34, 95]. Another particular
nonlinear control tool used in [22] for avoiding chattering phenomena in positioning
as well as implementing the changes among a number of control actions smoothly is
continuous switching.

Beside the works mentioned above, there exist a number of other studies in the litera-
ture on applications of various nonlinear control frameworks, such as neural networks,
dynamic inversion, backstepping, adaptive control, output regulation etc. to different
swarm coordination and control problems. Examples of these studies can be found
in [85, 86, 87, 88, 96] and the references therein.

5.5 Behavior Based and Evolutionary Approaches

Another common approach for coordinating groups of robots is the behavior based ap-
proach. One of the first studies on swarm coordination using behavior based approach
is the work by Reynolds [1] discussed earlier. In a more recent study in [97] Balch and
Arkin present and evaluate a reactive behavior based approach for formation stabiliza-
tion and acquisition in multi-robot teams. They also integrate the formation behaviors
with other navigational behaviors such as avoiding collisions with obstacles and other
robots, reaching goals/targets, etc. The integration allows the system to reach naviga-
tional goals and avoid collisions while simultaneously maintaining the geometric for-
mation structure. Besides the simulation studies, they also describe implementation of
the algorithm on real-life vehicles and integration of the behaviors with available robot
control architectures.

In [97], several different formation patterns are considered for a team of four robots
including line (robots travelling in a line parallel to each other), column (robots trav-
elling behind each other), diamond (robots travelling in a diamond shaped formation),
and wedge (robots travelling in a V shaped formation).

In the algorithm considered in [97], each robot computes its desired position in the
formation based on the locations of the other robots. Three techniques are considered
in this study for formation position determination:

Coordination and Control of Multi-agent Dynamic Systems 91

(i) Unit Center Referencing: The unit (swarm) center is computed independently by
each robot by averaging the positions of all the robots involved in the formation
and each robot determines its own formation position relative to that center.

(ii) Leader Referencing: Each robot determines its formation position with respect to
the leader. In this approach the leader does not attempt to maintain formation, the
other robots are responsible for formation maintenance.

(iii) Neighbor Referencing: Each robot maintains a position relative to one other pre-
assigned robot.

Above, the orientation of the formation is defined by a line from the center of the
group to the next navigational waypoint. Several basic behaviors are defined and im-
plemented including move-to-goal, avoid-static-obstacle, avoid-robot, and maintain-
formation. Using these behaviors the robots move to a goal location while avoiding
obstacles and collisions with other robots and maintaining the formation.

Behavior based approaches have also been used for studying aggregation strategies
in swarm robotic systems. Two recent studies are the works by Soysal and Şahin in [57]
and Bahçeci and Şahin in [58]. In [57] the authors determine three basic behaviors
namely, approaching, repelling, and waiting together with obstacle avoidance and ar-
bitrate the behavior using a finite state machine with different probabilities for the
switching behavior. They perform a systematic study of aggregation behavior based
on the values of the control parameters. They investigate also the effects of the size of
the arena and the simulation time. The metrics used for determining the performance
of the system (the quality of aggregation) for a swarm S with N agents (here robots)
A1, . . . ,AN are the expected cluster size

ECS =
1
n

N

∑
i=1

size2(Ai), (28)

where size(Ai) is the number of agents in the cluster4 that Ai belongs to, and the total
distance (TD)

T D = −
N

∑
i=1

N

∑
j=i+1

‖pi − p j‖, (29)

where pi, p j denote the positions of Ai,A j, respectively, as before.
As a separate study, in [58] neural network controllers for generating aggregation

behavior are considered. The parameters of the neural network controllers are tuned
(determined) using evolutionary strategies (genetic algorithms) and their performance
and scalability are evaluated. In other words, the performance of a simulated swarm
robotic system controlled by neural network controllers tuned by genetic algorithms is
systematically studied with different parameter settings. In particular, they consider four
experiments by varying some of the parameters, and derive rules of thumb which can
be of guidance to the use of evolutionary methods for generating other swarm robotic
behaviors (beside the aggregation behavior).

4 A cluster is defined as the group of agents which are connected to (meaning are neighbors of)
each other either directly or indirectly through other agents.

92 V. Gazi and B. Fidan

An interesting study is also the work in [98] where the authors consider the applica-
tion of Lyapunov stability techniques to the design of motor schema for behavior-based
systems. While the paper is originally intended for the design of single complex agents,
the methods can be easily applied to the design of swarm agents as well.

5.6 Artificial Physics

An important approach that can be thought as a subclass of the potential function based
approaches is the artificial physics based approach introduced by Spears and Gordon
in [99] (obtained independently from the work of Reif and Wang in [91]). It is a method
based on the fundamental laws of physics, particularly mechanics, such as the Newton’s
laws of motion. Since then Spears and coworkers have addressed many of the prob-
lems mentioned in the preceding section within their framework and have combined
the approach with other methods [100, 101, 102, 103, 104, 105, 106, 107]. In particular,
they have addressed the problems of formation stabilization, acquisition, maintenance,
formation and cohesion during motion. They have addressed also formation switch-
ing and reconfiguration (in case of loss of agents) and have implemented their method
asynchronously on several (inexpensive) robots. They use novel methods of analysis
(which differ from Lyapunov based methods) that allow them to set parameters a priori.
Furthermore, compared to the behavior-based approaches they have looked at obstacle
avoidance problems with higher numbers of robots and higher obstacle densities.

Another important swarm task that they have analyzed extensively in simulation and
implementation on real robots is the problem of chemical plume tracing [103, 106].
In cases in which analytical analysis is intractable they apply evolutionary methods to
learn parameter settings of the system. Moreover, they’ve developed an online learning
algorithm that adjusts the system parameters in real-time in dynamic environments.

Finally, it warrants mention that Spears and coworkers have implemented a physics-
based (not potential-based) model based on kinetic theory which is useful for tasks such
as surveillance, sweep or coverage of an area.

5.7 Asynchronous Swarm Models

Multi-agent dynamic systems are naturally distributed systems which naturally act in
asynchronous manner and in general it is difficult to implement synchronous motion in
them. Still many of the models and approaches considered in the systems and control
literature are synchronous. We believe that the reason for that is tractability for analy-
sis. In other words, analyzing the dynamics of asynchronous systems is more difficult
compared to their synchronous counterparts, in general. Nevertheless, in addition to
the synchronous swarm models there are also studies in the literature which consider
asynchronous modeling of multi-agent systems [27, 28, 29, 108, 109].

The work by Beni and Liang in [108] is one of the first studies on the stability
of asynchronous swarm systems in which the authors determine sufficient conditions
for the asynchronous convergence of a linear swarm to a synchronously achievable
configuration.

In [27,28] Liu and Passino study the stability of one-dimensional and m-dimensional
asynchronous swarms incurring also time delays in communication or sensing. In [28]
the stability of both one-dimensional stationary and mobile swarms is studied. For the

Coordination and Control of Multi-agent Dynamic Systems 93

stationary case the authors determine asymptotic convergence (to the desired configu-
ration) under total asynchronism conditions (i.e., asynchronism in which the time delay
in sensing/communication and the time intervals between two consequent updates can
become arbitrarily large) and finite time convergence under partial asynchronism con-
ditions (i.e., asynchronism in which there is a bound on the maximum possible time
delay in sensing/communication and the time between two consecutive updates). For
the mobile swarm case they prove that cohesion will be preserved during motion under
conditions expressed as bounds on the maximum possible time delay. In [27] multi-
dimensional swarms with a specific class of communication topologies (i.e., leader-
follower structure) are studied. In this work, it is proven that cohesion will be preserved
during motion (therefore extending the work in [28]) by imposing special constraints
on the “leader” movements expressed as bounds on the maximum possible time delay.

In [29], Gazi and Passino consider asynchronous swarms in one-dimensional space
with different rules for inter-individual interactions (compared to those in [28]), and us-
ing results on contractive mappings developed for parallel and distributed computation
in computer networks in [81], show that swarm stability or convergence to a comfort-
able position will be obtained under assumptions of the sector boundedness of the at-
traction/repulsion function and total asynchronism in the motion of the agents. Similar
approach is taken also in [110] for showing convergence of asynchronous cyclic pursuit.
Note here that multi-agent systems (such as swarms of robots, flocks of birds, schools
of fish) are naturally parallel and distributed computing systems and results obtained
for parallel and distributed computation in computer networks are very relevant in the
study of the dynamics of such systems.

In [109], Beni shows that asynchronous swarms may converge in cases in which
synchronous swarms may not. In particular, he shows that asynchronous swarms con-
verge to the same fixed points as their synchronous counterparts and moreover the asyn-
chronous systems may reach fixed points that are unreachable for the synchronous ones.
Furthermore, [109] argues that achieving an order from disordered actions is a basic
characteristic of swarms.

Some other recent (empirical) studies on the flocking behavior of asynchronous
multi-agent systems are the works by Şamiloğlu, Gazi, and Koku in [64, 65]. In [64],
the effects of the level of asynchronism and size of neighborhood on the clustering per-
formance of a swarm of self-propelled particles are studied. In [65], on the other hand,
rotation angle restrictions (a type of non-holonomic constraint) are imposed on the self-
propelled particles and their effect on the performance of the system is investigated.

5.8 Probabilistic Approaches

Non-spatial or probabilistic approaches and Markov models are also being used in the
literature for modeling of swarm behavior. Usually in these approaches the population
level swarming dynamics are described in a non-spatial way in terms of frequency dis-
tributions of groups of various size. Then usually it is assumed that groups of various
sizes split or merge probabilistically into other groups based on the inherent group dy-
namics, environmental conditions, and encounters of other groups. An example work
on this approach from the biological literature is the article in [111] where the authors
present a general continuous model for animal group size distribution (a non-spatial

94 V. Gazi and B. Fidan

patch model). Also an interesting comparative study from the biological literature is
presented by Durrett and Levin in [112], where they compare four different approaches
to modeling the dynamics of spatially distributed systems by using three different exam-
ples, each with different realistic biological assumptions. They show that the solutions
of all the models do not always agree, and argue in favor of the discrete (individual
based) models that treat the space explicitly.

A recent article from the swarm robotics literature considering probabilistic model
is the work by Matinoli and coworkers in [113]. Also recent review describing proba-
bilistic approaches is the article by Lerman and coworkers in [114] where the authors
consider a discrete-time, non-spatial, macroscopic models able to capture the dynam-
ics of collective aggregation experiments using groups of embodied agents endowed
with reactive controllers. They perform several experiments with teams with various
sized and show that their models can deliver both qualitatively and quantitatively cor-
rect predictions and they represent a useful tool for generalizing the dynamics of such
swarm-robotic systems (which are as the authors state highly stochastic, asynchronous,
nonlinear systems, often outperforming intuitive reasoning).

One of the most recent studies on probabilistic approaches is the work by Soysal and
Şahin in [115] where the authors investigate the aggregation behavior in an enclosed
environment where the perception range of robots is much smaller than the size of
the environment. In particular they consider a discrete-time non-spatial macroscopic
markov model for probabilistic aggregation under some simplifying assumptions. The
evolution of the swarm during aggregation is modeled with geometric approximations
and case by case analysis supported with number theory. The effects of probabilistic
parameters and size of environment are investigated using the model and a sensor-based
simulation.

6 Stability, Performance, and Robustness

Stability is an essential control theoretical concept that dynamical systems are usually
required to satisfy. In the context of multi-agent dynamical systems, stability may be
defined in different ways depending on the particular problem or behavior being stud-
ied, although one common requirement is state-boundedness, i.e., using the previous
notations in the article, the boundedness of the state xi (e.g. the position pi) of each
agent Ai in the swarm S of interest.

For example, in aggregation studies, a widely used stability criterion for a swarm S,
is its asymptotic cohesiveness, which may be formulated as

lim
t→∞

xi(t) ∈ Bε(x̄(t)), ∀i ∈ {1, . . . ,N}

where x̄ = 1
N ∑N

i=1 xi is the centroid of the swarm and Bε(x̄(t)) = {y(t) : ‖y(t)− x̄(t)‖ ≤
ε} is the ε-neighborhood of x̄ [24, 26, 25]; whereas in agreement problems the stability
criterion becomes the convergence of the states of the agents to a common value, which
may be formulated as

lim
t→∞

‖xi(t)− x j(t)‖ = 0, (30)

Coordination and Control of Multi-agent Dynamic Systems 95

for any pair i, j ∈ {1, . . . ,N} such that i �= j. In rendezvous problems, the stability cri-
terion is a more restricted form of (30), i.e. it is satisfaction of the convergence (30) in
finite time (instead of being satisfied asymptotically).

In formation acquisition and maintenance studies, one essential stability criterion is
the ability of the swarm S to achieve and maintain the desired or predefined geometrical
or topological formation structure. In social foraging studies, on the other hand, the
main criterion is ability of the swarm S to converge to a favorable region (e.g. a region
with food, targets or goals). Note that in order to meet the stability criterion, S needs
to be able to avoid sticking into any unfavorable region (e.g. any region with toxic
substances, threads or obstacles) in the environment as well.

As demonstrated above, the stability criteria differ for different classes of swarm
coordination and control problems. Note here that, in most of the swarm coordination
and control studies mentioned in this article, stability of the swarm system of interest is
discussed either via some formal mathematical analysis or using some experimental or
simulation results. This is expected, as stability is the most important property to check
in a control design and it is impossible to consider the performance or effectiveness of
the control system if it is unstable (implying that, at least for some very likely cases,
the control goal or objective can not be achieved). Nevertheless, there exist studies in
the literature that mainly focuses on stability of swarm systems in various contexts of
coordination and control that are briefly introduced in Section 4 [15, 16, 24, 26, 27, 28,
29, 45, 116, 117]. The details of these studies, however, are not discussed in this article
mainly due to space considerations.

Performance of a dynamical system is related to how different the actual behavior
of the system is than its desired or ideal behavior. A dynamical system whose behavior
is closer to the ideal is said to have a better performance. In order to quantify the per-
formance, one needs to define a set of quantitative performance indices that depend on
another set of quantitative indices for the “ideal behavior”. As in the case with stability,
depending on the particular problem and control tasks, the performance indices for a
multi-agent dynamical system can be defined in different ways.

For example, in the case of aggregation or flocking behavior metrics like speed of
convergence, the size of the swarm (in terms of the region occupied by the swarm),
the number of clusters in the swarm [24, 25, 26, 57, 58, 64, 65], and others can be de-
fined as performance criteria. Equations (28) and (29) are examples of such criteria
considered in [57, 58]. The studies on the performance of swarm systems are usually
done in two different ways: analytical and empirical/simulation. The analytical studies
(e.g. [24, 25, 26]) appear as a companion on the studies on stability analysis and de-
rive explicit theoretical parameters quantifying performance such as theoretical bounds
on the swarm size or time of convergence. The empirical studies (e.g. [57, 58, 64, 65])
usually derive conclusions about the swarm performance through large number of in-
dependent simulations.

A third essential system theoretical concept for a dynamical systems, accompanying
stability and performance is robustness. Many swarm systems that are stable and that
work perfectly with high performance under ideal conditions may lose these properties

96 V. Gazi and B. Fidan

in the existence of some perturbations, i.e. disturbances or uncertainties, even if they are
very small. Robustness of a swarm system in terms of a particular property (e.g. stability
or performance) can be thought as the ability of the system to preserve this property in
the presence of uncertainties and disturbances whose magnitudes are less than a certain
acceptable bound. The corresponding robustness level of the swarm system quantifies
the maximum magnitude of disturbances and/or uncertainties this system can tolerate
without losing the corresponding property (e.g. stability or performance).

Robustness issues in the swarm studies have not been considered on a satisfactory
level in the control systems literature so far. Exception studies include the work by
Olfati-Saber and Murray in [13] where they consider continuous time consensus proto-
cols in systems with time delay. Another work is the study in [37] where measurement
uncertainties are considered and foraging controllers are developed. The sliding mode
control method [38, 92] also provides a level of robustness against certain type of dis-
turbances and model uncertainties. Nevertheless, comprehensive robustness studies are
still needed.

7 Concluding Remarks

In this article we have presented a summary of the main models, problems, and ap-
proaches for coordination and control of multi-agent dynamical systems (or swarms)
that have been considered in the systems and control literature. As can be deduced
from this summary, the studies in the field are fairly extensive and diverse, the scientific
achievement is significant, and the results obtained are important. However, there are
still a number issues to be investigated.

First, it is worth to note that there still exist a number of open problems related to
each of the coordination and control tasks introduced in Section 4. Details of these open
problems, which are mostly of theoretical nature, can be found in the corresponding
references. A particular issue is the issue of asynchronism. Since the operation of most
of the multi-agent systems is naturally asynchronous, we believe that more attention
should be paid to asynchronous models and results obtained for synchronous models
should be verified against asynchronous counterparts as well. Moreover, communica-
tion and sensing delays are present in many multi-agent systems. Therefore, studies of
systems with delay needs more attention and results obtained for models with no delay
should be verified against delayed ones as well, noting that the results incorporating
delays are currently very few. Two further future research topics based on the above is
the formal analysis of the effect of asynchronism and time delays on the performance
of swarm systems and development of algorithms robust to delay and asynchronism of
a ceratin extent.

Another important issue, that is being overlooked in the systems and control lit-
erature, is the implementation and testing. Usually the theoretical findings are being
verified through computer simulations (using Matlab or other software); however, for
practical applications this may not be sufficient. Hence, there is a need for extensive
experimental studies in the fields as well.

Coordination and Control of Multi-agent Dynamic Systems 97

References

1. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Comp. Graph.
21(4) (1987) 25–34

2. Yamaguchi, H.: A cooperative hunting behavior by mobile-robot troops. The International
Journal of Robotics Research 18(8) (1999) 931–940

3. Desai, J.P., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic
mobile robots. IEEE Trans. on Robotics and Automation17(6) (2001) 905–908

4. Fowler, J., D’Andrea, R.: A formation flight experiment. IEEE Control Systems Magazine
23(5) (2003) 35–43

5. Ren, W., Beard, R.: A decentralized scheme for spacecraft formation flying via the virtual
structure approach. AIAA Journal of Gudiance, Control and Dyanmics 27(1) (2004) 73–82

6. Stilwell, D., Bishop, B., Sylvester, C.: Redundant manipulator techniques for partially de-
centralized path planning and control of a platoon of autonomous vehicles. IEEE Transac-
tions on Systems Man and Cybernetics Part B-Cybernetics 35(4) (2005) 842–848

7. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing net-
works. IEEE Trans. on Robotics and Automation20(2) (2004) 243–255

8. Akyildiz, I.F., Su, W., Sankarasubramniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Commununications Magazine 40(8) (2002) 102–114

9. Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In Sahin,
E., Spears, W., eds.: Swarm Robotics: State-of-the-art Survey. Lecture Notes in Computer
Science (LNCS 3342). Springer-Verlag, Berlin Heidelberg (2005) 10–20

10. Kubik, A.: Towards a formalization of emergence. Artificial Life 9 (2003) 41–65
11. Godsil, C., Royle, G.: Algebraic Graph Theory. Volume 207 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York (2001)
12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents

using nearest neighbor rules. IEEE Trans. on Automatic Control48(6) (2003) 988–1001
13. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching

topology and time-delays. IEEE Trans. on Automatic Control49(9) (2004) 1520–1533
14. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE

Trans. on Automatic Control51(3) (2006) 401–420
15. Tanner, H., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. on Robotics

and Automation 20(3) (2004) 443–455
16. Moreau, L.: Stability of multiagent systems with time-dependent communication links.

IEEE Trans. on Automatic Control50(2) (2005) 169–182
17. Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically chang-

ing interaction topologies. IEEE Trans. on Automatic Control50(5) (2005) 655–661
18. Anderson, B., Yu, C., Fidan, B., Hendrickx, J.: Control and information architectures for

formations. In: Proc. IEEE Conference on Control Applications (Joint CCA/CACSD/ISIC).
(2006)

19. Eren, T., Anderson, B., Morse, A., Whiteley, W., Belhumeur, P.: Operations on rigid for-
mations of autonomous agents. Communications in Information and Systems 3(4) (2004)
223–258

20. Hendrickx, J., Anderson, B., Blondel, V.: Rigidity and persistence of directed graphs. In:
Proc. 44th IEEE Conference on Decision and Control and the European Control Conference
2005. (2005) 2176 – 2181

21. Hendrickx, J., Fidan, B., Yu, C., Anderson, B., Blondel, V.: Rigidity and persistence of three
and higher dimensional formations. In: Proc. 2nd Int. Conf. on Informatics in Control,
Automation & Robotics (ICINCO) - 1st Int. Workshop on Multi-Agent Robotic Systems
(MARS). (2005) 39–46

98 V. Gazi and B. Fidan

22. Sandeep, S., Fidan, B., Yu, C.: Decentralized cohesive motion control of multi-agent for-
mations. In: Proc. 14th Mediterranean Conference on Control and Automation, Ancona,
Italy (2006)

23. Yu, C., Hendrickx, J., Fidan, B., Anderson, B.: Structural persistence of three dimensional
autonomous formations. In: Proc. 2nd Int. Conf. on Informatics in Control, Automation &
Robotics (ICINCO) - 1st Int. Workshop on Multi-Agent Robotic Systems (MARS). (2005)
47–55

24. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. on Automatic Con-
trol48(4) (2003) 692–697

25. Gazi, V., Passino, K.M.: A class of attraction/repulsion functions for stable swarm aggre-
gations. Int. J. Control77(18) (2004) 1567–1579

26. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. on
Systems, Man, and Cybernetics: Part B 34(1) (2004) 539–557

27. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of m-dimensional asyn-
chronous swarms with a fixed communication topology. IEEE Trans. on Automatic Con-
trol48(1) (2003) 76–95

28. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asyn-
chronous swarms. IEEE Trans. on Automatic Control48(10) (2003) 1848–1854

29. Gazi, V., Passino, K.M.: Stability of a one-dimensional discrete-time asynchronous swarm.
IEEE Trans. on Systems, Man, and Cybernetics: Part B 35(4) (2005) 834–841

30. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part i: Fixed
topology. In: Proc. of Conf. Decision Contr., Maui, Hawaii (2003) 2010–2015

31. Guldner, J., Utkin, V.I.: Sliding mode control for gradient tracking and robot navigation
using artificial potential fields. IEEE Trans. on Robotics and Automation11(2) (1995) 247–
254

32. Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification of
kinematic and dynamicmodels of wheeled mobile robots. IEEE Tr. on Robotics and Au-
tomation 12(1) (1996) 47–62

33. Yi, B.J., Kim, W.: The kinematics for redundantly actuated omnidirectional mobile robots.
Journal of Robotic Systems 19(6) (2002) 255–267

34. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of
groups. In: Proc. of Conf. Decision Contr., Orlando, FL (2001) 2968–2973

35. Bachmayer, R., Leonard, N.E.: Vehicle networks for gradient descent in a sampled envi-
ronment. In: Proc. of Conf. Decision Contr., Las Vegas, Nevada (2002) 112–117

36. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part ii: Dynamic
topology. In: Proc. of Conf. Decision Contr., Maui, Hawaii (2003) 2016–2021

37. Liu, Y., Passino, K.M.: Stable social foraging swarms in a noisy environment. IEEE Trans-
actions on Automatic Control 49(1) (2004) 30–44

38. Gazi, V.: Swarm aggregations using artificial potentials and sliding mode control. IEEE
Trans. on Robotics21(6) (2005) 1208–1214

39. Yao, J., Ordonez, R., Gazi, V.: Swarm tracking using artificial potentials and sliding mode
control. In: Proc. of Conf. Decision Contr., San Diago, CA, USA (2006)

40. Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Trans. on Robotics
and Automation17(6) (2001) 947–951

41. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphial conditions for forma-
tion control of unicycles. IEEE Trans. on Automatic Control50(1) (2005) 121–127

42. Marshall, J., Broucke, M., Francis, B.: Formations of vehicles in cyclic pursuit. IEEE Trans.
on Automatic Control 49(11) (2004) 1963–1974

43. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents. In
V.J. Kumar, N.L., Morse, A., eds.: Cooperative Control. Volume 309 of Lecture Notes in
Control and Information Sciences., Springer-Verlag (2005) 229–239

Coordination and Control of Multi-agent Dynamic Systems 99

44. Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation maneu-
vers. IEEE Trans. on Robotics and Automation19(6) (2003) 933–941

45. Gazi, V.: Stability Analysis of Swarms. PhD thesis, The Ohio State University (2002)
46. Brockett, R.W.: Asymptotic stability and feedback stabilization. In Millman, R.S., Suss-

mann, H.J., eds.: Differential Geometric Control Theory. Birkhauser (1983) 181–191
47. Sepulchre, R., Palay, D., Leonard, N.E.: Collective motion and oscillator synchronization.

In Kumar, V.J., Leonard, N.E., Morse, A.S., eds.: Cooperative Control: 2003 Block Island
Workshop on Cooperative Control. Volume 309 of Lecture Notes in Control and Informa-
tion Sciences., Springer-Verlag (2005)

48. Dubins, L.: On curves of minimal length with a constraint on average curvature and with
prescribed initial and terminal positions and tangents. American Journal of Mathematics 79
(1957) 497–516

49. Savla, K., Bullo, F., Frazzoli, E.: On traveling salesperson problems for Dubins’ vehicle:
stochastic and dynamic environments. In: Proc. 44th IEEE Conference on Decision and
Control and the European Control Conference 2005. (2005) 4530–4535

50. Tomlin, C., Mitchell, I., Ghosh, R.: Safety verification of conflict resolution manoeuvres.
IEEE Tr. on Intelligent Transportation Systems 2(2) (2001) 110–120

51. Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds.
Springer Verlag, New York, NY (2004)

52. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition
in a system of self-driven particles. Physical Review Letters75(6) (1995) 1226–1229

53. Breder, C.M.: Equations descriptive of fish schools and other animal aggregations. Ecology
35(3) (1954) 361–370

54. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds.
Advances in Biophysics 22 (1986) 1–94

55. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups.
Journal of Theoretical Biology150 (1991) 473–488

56. Grünbaum, D., Okubo, A.: Modeling social animal aggregations. In: Frontiers in Theoreti-
cal Biology. Volume 100 of Lecture Notes in Biomathematics. Springer-Verlag, New York
(1994) 296–325

57. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In:
Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, California (2005)

58. Bahceci, E., Sahin, E.: Evolving aggregation behaviors for swarm robotic systems: A sys-
tematic case study. In: Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, Cali-
fornia (2005)

59. Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. In Parrish, J.K.,
Hamner, W.M., eds.: Animal Groups in Three Dimensions. Cambridge Iniversity Press
(1997) 257–281

60. Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. Evolutionary
Ecology 12 (1998) 503–522

61. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

62. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publisher (2001)
63. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a

multidimensional complex space. IEEE Trans. on Evolutionary Computation6(1) (2002)
58–73

64. Şamiloglu, A.T., Gazi, V., Koku, A.B.: Effects of asynchronism and neighborhood size on
clustering in self-propelled particle systems. In Levi, A., et al., eds.: Proc. of International
Symposium on Computer and Information Sciences (ISCIS06). Lecture Notes in Computer
Science (LNCS) 4263. Springer Verlag (2006) 665–676

100 V. Gazi and B. Fidan

65. Şamiloglu, A.T., Gazi, V., Koku, A.B.: An empirical study on the motion of self-propelled
particles with turn angle restrictions. In Şahin et al., E., ed.: Proc. of SAB06 Workshop on
Swarm Robotics. Lecture Notes in Computer Science (LNCS). Springer Verlag (2006)

66. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and
Automation 15(5) (1999) 818–828

67. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. In: Proc. of
Conf. Decision Contr., Maui, Hawaii, USA (2003) 1508–1513

68. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem - the asyn-
chronous case. In: Proc. of Conf. Decision Contr., Atlantis, Paradise Island, Bahamas
(2004) 1926–1931

69. Marshall, J.A., Broucke, M.E., Francis, B.A.: Pursuit formations of unicycles. Automatica
42(1) (2006) 3–12

70. Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehicle forma-
tions using structural potential functions. In: Proc. IFAC World Congress, Barcelona, Spain
(2002)

71. Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous
agents. IEEE Trans. on Automatic Control 49(4) (2004) 622–629

72. Das, A., Fierro, R., Kumar, V.: Control graphs for robot networks. In Butenko, S., Murphey,
R., Pardalos, P., eds.: Cooperative Control: Models, Applications and Algorithms, Kluwer
Academic (2003) 55–73

73. Fierro, R., Song, P., Das, A., Kumar, V.: Cooperative control of robot formations. In
Murphey, R., Pardalos, P., eds.: Cooperative Control and Optimization, Kluwer Academic
(2002) 73–94

74. Yu, C., Fidan, B., Anderson, B.: Persistence acquisition and maintenance for autonomous
formations. In: Proc. 2nd Int. Conf. on Intelligent Sensors, Sensor Networks and Informa-
tion Processing (ISSNIP). (2005) 379 – 384

75. Yu, C., Fidan, B., Anderson, B.: Principles to control autonomous formation merging. In:
Proc. American Control Conference. (2006) 762 – 768

76. Das, A., Fierro, R., Kumar, V., Ostrowski, J.: A vision-based formation control framework.
IEEE Trans. on Robotics and Automation 18(5) (2002) 813–825

77. P. Ögren, Fiorelli, E., Leonard, N.E.: Formations with a mission: Stable coordination of ve-
hicle group maneuvers. In: Symposium on Mathematical Theory of Networks and Systems.
(2002)

78. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coor-
dination. In: Proc. American Control Conf., Portland, OR, USA (2005) 1859–1864

79. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with lim-
ited sensing capabilities. In Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mon-
dada, F., Stützle, T., eds.: Proceedings of ANTS 2004 – Fourth International Workshop on
Ant Colony Optimization and Swarm Intelligence. Volume 3172 of Lecture Notes in Com-
puter Science., Brussels, Belgium, Springer Verlag (2004) 142–153

80. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous mobile
robots with limited visibility. In: Proc. 18th International Symposium on Theoretical As-
pects of Computer Science (STACS 2001). Volume 2010 of Lecture Notes in Computer
Science., Dresden, Germany, Springer Verlag (2001) 247–258

81. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, Belmont, MA (1997)

82. Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Scientific
American (1993) 102–109

Coordination and Control of Multi-agent Dynamic Systems 101

83. Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the
synchronization threshhold: Relaxation by generalized landau damping. Physical Review
Letters 68(18) (1992) 2730–2733

84. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations.
IEEE Trans. on Automatic Control49(9) (2004) 1465–1476

85. Butenko, S., Murphey, R., Pardalos, P., eds.: Cooperative Control: Models, Applications
and Algorithms. Kluwer Academic (2003)

86. Murphey, R., Pardalos, P., eds.: Cooperative Control and Optimization. Kluwer Academic
(2002)

87. Kumar, V.J., Leonard, N.E., Morse, A.S., eds.: Cooperative Control: 2003 Block Island
Workshop on Cooperative Control. Volume 309 of Lecture Notes in Control and Informa-
tion Sciences. Springer-Verlag (2005)

88. Pettersen, K., ‘and H. Nijmeijer, J.G., eds.: Group Coordination and Cooperative Control.
Volume 336 of Lecture Notes in Control and Information Sciences. Springer-Verlag (2006)

89. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The Interna-
tional Journal of Robotics Research 5(1) (1986) 90–98

90. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions.
IEEE Trans. on Robotics and Automation8(5) (1992) 501–518

91. Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for au-
tonomous robots. Robotics and Autonomous Systems27 (1999) 171–194

92. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Verlag, Berlin, Heidelberg
(1992)

93. Gazi, V.: Formation control of mobile robots using decentralized nonlinear servomecha-
nism. In: 12’th Meditteranean Conference on Control and Automation, Kusadasi, Turkey
(2004)

94. Ögren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multi-agent
coordination. IEEE Trans. on Robotics and Automation18(5) (2002) 847–851

95. P. Ögren, Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: Adap-
tive gradient climbing in a distributed environment. IEEE Trans. on Automatic Control49(8)
(2004) 1292–1302

96. Wu, H., Jagannathan, S.: Adaptive neural network control and wireless sensor network-
based localization for UAV formation. In: Proc. 14th Mediterranean Conference on Control
and Automation, Ancona, Italy (2006)

97. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans.
on Robotics and Automation14(6) (1998) 926–939

98. Harper, C.J., Winfield, A.F.T.: A methodology for provably stable intelligent control.
Robotics and Autonomous Systems 54(1) (2006) 52–73

99. Spears, W.M., Gordon, D.F.: Using artificial physics to control agents. In: Proceedings
of the IEEE International Conference on Information, Intelligence, and Systems. (1999)
281–288

100. Gordon, D.F., Spears, W.M., Sokolsky, O., Lee, I.: Distributed spatial control, global moni-
toring and steering of mobile agents. In: Proceedings of the IEEE International Conference
on Information, Intelligence, and Systems. (1999) 681–688

101. Gordon-Spears, D.F., Spears, W.M.: Analysis of a phase transition in a physics-based mul-
tiagent system. In Hinchey, M.G., Rash, J.L., Truszkowski, W., Rouff, C., Gordon-Spears,
D.F., eds.: FAABS. Volume 2699 of Lecture Notes in Computer Science., Springer (2002)
193–207

102. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of
swarms of vehicles. Auton. Robots 17(2-3) (2004) 137–162

103. Zarzhitsky, D., Spears, D.F., Spears, W.M., Thayer, D.R.: A fluid dynamics approach to
multi-robot chemical plume tracing. In: AAMAS. (2004) 1476–1477

102 V. Gazi and B. Fidan

104. Spears, W.M., Heil, R., Spears, D.F., Zarzhitsky, D.: Physicomimetics for mobile robot
formations. In: AAMAS. (2004) 1528–1529

105. Spears, W.M., Spears, D.F., Heil, R.: A formal analysis of potential energy in a multi-agent
system. In: FAABS. (2004) 131–145

106. Zarzhitsky, D., Spears, D.F., Thayer, D.R., Spears, W.M.: Agent-based chemical plume
tracing using fluid dynamics. In: FAABS. (2004) 146–160

107. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of physi-
comimetics. In: SAB. (2004) 84–97

108. Beni, G., Liang, P.: Pattern reconfiguration in swarms—convergence of a distributed asyn-
chronous and bounded iterative algorithm. IEEE Trans. on Robotics and Automation12(3)
(1996) 485–490

109. Beni, G.: Order by disordered action in swarms. In Sahin, E., Spears, W.M., eds.: Proc.
SAB 2004 International Workshop on Swarm Robotics. Lecture Notes in Computer Science
(LNCS 3342). Springer Verlag (2004) 153–171

110. Şamiloglu, A.T., Gazi, V., Koku, A.B.: Asynchronous cyclic pursuit. In et al., S.N., ed.:
Proc. of 9’th Conference on Simulation of Adaptive Behavior (SAB06). Lecture Notes in
Artificial Intelligence (LNAI) 4095. Springer Verlag (2006) 667–678

111. Gueron, S., Levin, S.A.: The dynamics of group formation. Mathematical Biosciences128
(1995) 243–264

112. Durrett, R., Levin, S.: The importance of being discrete (and spatial). Theoretical Popula-
tion Biology46 (1994) 363–394

113. Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation exper-
iments using embodied agents in teams of constant and time-varying sizes. Autonomous
Robots 17(2-3) (2004) 163–192

114. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic models for
swarm robotic systems. In Sahin, E., Spears, W., eds.: Swarm Robotics: State-of-the-art
Survey. Lecture Notes in Computer Science (LNCS 3342), Berlin Heidelberg, Springer-
Verlag (2005) 143–152

115. Soysal, O., Sahin, E.: A macroscopic model for probabilistic aggregation in swarm robotic
systems. In Şahin et al., E., ed.: Proc. of SAB06 Workshop on Swarm Robotics. Lecture
Notes in Computer Science (LNCS). Springer Verlag (2006)

116. Baillieul, J., Suri, A.: Information patterns and hedging Brockett’s theorem in controlling
vehicle formations. In: Proc. IEEE Conf. on Decision and Control. (2003) 556–563

117. Arcak, M.: Passivity as a design tool for group coordination. In: Proc. American Control
Conf. (2006) 29–34

Communication in a Swarm of Miniature

Robots: The e-Puck as an Educational Tool for
Swarm Robotics

Christopher M. Cianci, Xavier Raemy, Jim Pugh, and Alcherio Martinoli

Swarm-Intelligent Systems Group
École Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland
{chris.cianci,xavier.raemy,jim.pugh,alcherio.martinoli}@epfl.ch

Abstract. Swarm intelligence, and swarm robotics in particular, are
reaching a point where leveraging the potential of communication within
an artificial system promises to uncover newand varied directions for inter-
esting research without compromising the key properties of swarm-
intelligent systems such as self-organization, scalability, and robustness.
However, the physical constraints of using radios in a robotic swarm are
hardly obvious, and the intuitive models often used for describing such
systems do not always capture them with adequate accuracy. In order to
demonstrate this effectively in the classroom, certain tools can be used,
including simulation and real robots. Most instructors currently focus on
simulation, as it requires significantly less investment of time, money, and
maintenance—but to really understand thedifferences between simulation
and reality, it is also necessary to work with the real platforms from time to
time. To our knowledge, our course may be the only one in the world where
individual students are consistently afforded the opportunity to work with
a networked multi-robot system on a tabletop. The e-Puck,1 a low-cost
small-scale mobile robotic platform designed for educational use, allows us
bringing real robotic hardware into the classroom in numbers sufficient to
demonstrate and teach swarm-robotic concepts. We present here a custom
module for local radio communication as a stackable extension board for
the e-Puck, enabling information exchange between robots and also with
any other IEEE 802.15.4-compatible devices. Transmission power can be
modified in software to yield effective communication ranges as small as fif-
teen centimeters. This intentionally small range allows us to demonstrate
interesting collective behavior based on local information and control in a
limited amount of physical space, where ordinary radios would typically
result in a completely connected network. Here we show the use of this
module facilitating a collective decision among a group of 10 robots.

1 Introduction

One of the aspects of swarm intelligence that makes it so exciting is that it
involves an entirely different approach to problem solving than is intuitive to
1 http://www.e-puck.org/

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 103–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

104 C.M. Cianci et al.

most people [4]. Therefore, the fact that many students may not be accustomed
to these different types of thinking and analysis should come as no surprise.
The challenge to us is to provide them with the tools, materials, and guidance
necessary to help them understand the principles of swarm intelligence and how
they can be applied to an embedded real-time system such as a multi-robot
swarm or a sensor network.

Our course, “Swarm Intelligence,”2 includes weekly laboratory exercises
(Figure 1) in which the students themselves use a combination of real robots
and simulations to test and verify the topics and theories presented in lec-
ture; this also allows them the opportunity to explore other possibilities that
might not have been previously discussed. In doing so, the students are bet-
ter able to assimilate theoretical concepts and understand the difficulties of
implementing them. This also helps them understand the differences between
various types of implementation levels; for example realistic simulation and real
experiments.

Unfortunately, it seems that courses of this kind are rare; indeed, in the area
of swarm intelligence, ours is the only one we know of to date. This is likely
due in large part to the overhead of acquiring and maintaining enough hardware
to provide individual students with a sufficient amount of direct contact with
the equipment. Size is also a major concern specific to multi-robot systems,
as it is necessary to simultaneously have several robots on a desk or tabletop.
Simulation is occasionally used in courses as a substitute for real systems, but
we find this to be a shame as well, since the two are not interchangeable, but
rather complementary.

Fig. 1. Students using real and simulated e-Pucks during a laboratory exercise for the
course “Swarm Intelligence” at EPFL, Fall 2005

2 Tools and Methods for Swarm Robotics

Certain tools can be extremely effective in helping one understand the prin-
ciples behind swarm robotics; chief among them are naturally real robots and
2 http://swis.epfl.ch/teaching/

Communication in a Swarm of Miniature Robots 105

simulations. However, we must respect the fact that they serve different, comple-
mentary purposes, and it is often precisely the interaction between them which
can give us the greatest insight into the dynamics and subtle details of a system.

2.1 The e-Puck: An Educational Robot

A recent collaboration between the Autonomous Systems Laboratory (ASL),3

the Swarm-Intelligent Systems group (SWIS),4 and the Laboratory of Intelligent
Systems (LIS)5 at the École Polytechnique Fédérale de Lausanne (EPFL) has
resulted in the creation of a new small-scale robotic platform for educational
purposes. Central to the design of the core robot were Francesco Mondada and
Michael Bonani (ASL), with some additional contributions to the base module
from Xavier Raemy (SWIS), who also designed the radio communication board.

Fig. 2. The e-Puck: a small-scale robotic platform for education. Shown here with the
radio communication board stacked between the basic module and the jumper board.

The e-Puck (Figure 2) was developed with five principle objectives in mind,
for making it a high-quality teaching tool:

1. simple and sturdy electro-mechanical architecture
2. flexibility and variety in sensors, processing power, and extensions
3. minimum-hassle connectivity and usability
4. robustness sufficient to withstand use by students, and simple maintenance/

repair procedures
5. sufficiently inexpensive that large numbers can be obtained so as to allow

individual students direct contact with the equipment

3 http://asl.epfl.ch/
4 http://swis.epfl.ch/
5 http://lis.epfl.ch/

106 C.M. Cianci et al.

As a part of point 3, the e-Puck design includes several features which make
it very well suited to multi-robot experimentation. There are no cables (pro-
gramming or remote control with a computer is done via Bluetooth) and the
battery is interchangeable (reducing downtime due to charging); these were the
two principle drawbacks of the Khepera [17], the only previous robotic platform
we know of with similar capabilities in a package this small, so as to allow the
operation of at least three robots together on a portion of a desktop (the minimal
number necessary for observing interesting collective effects).

Additionally, in the interest of education and knowledge sharing, the e-Puck is
based on an “open source hardware”6 model, whereby all documentation relating
to it may be freely distributed under a license allowing anyone to use it and
develop for it.

In December of 2005, 400 units were produced for use in various courses
at EPFL and elsewhere, several of which were already underway during the
academic year 2005-2006.

2.2 The WebotsTMSimulation Environment

As mentioned above, simulation also has its place; it allows us to run experiments
with many more robots (at a constant price, without having to buy and maintain
hundreds of real robots) and greatly increases the speed and thoroughness with
which theories can be tested. For much of our realistic simulation work, we run
experiments in Webots, an embodied robotic simulation environment produced
by Cyberbotics Ltd. [16].

Fig. 3. (left) A simulated model of the e-Puck in Webots, and (right) a simulation of 20
e-Pucks in a setup similar to the collective decision experiment described in Section 5

Through a recent collaboration with Cyberbotics, we have established a pre-
liminary framework for the integration of the open source network simulation
6 http://www.e-puck.org/ → Project → License

Communication in a Swarm of Miniature Robots 107

engine OMNeT++ [20] into Webots as a modular plug-in to allow realistic mod-
eling of radio communication channels between simulated robots (specifically uti-
lizing a component we implemented containing the subset of the IEEE 802.15.4
and ZigBee protocols present in our physical modules for the robots, but the ex-
isting IEEE 802.11 components or any others written for use in OMNeT++ may
be used as well). This work (and the related necessary verification) is on-going,
and therefore is not yet ready to be presented in detail here.

2.3 Correspondence Between Reality and Simulation

One of the most important points that we try to teach our students is that
simulation is a necessarily simplified representation of a system, but depending
on the specifics of the system being considered, certain simplifications may be
acceptable or even desirable. For example, if the simplified simulated model still
produces results faithful to the behavior of the real system, one can say with
reasonable confidence that the neglected parameters have little if any influence
on the behavior being studied.

Used in this way, simulation then becomes a tool; one which can be extremely
powerful when used properly in concert with real systems. Once we are confident
that the simulation results accurately and precisely reproduce the outcomes
of analogous experiments with real hardware, exploring the parameter space
can be significantly easier and faster than performing similar experiments in
reality. Finding this trade-off between realism and speed again requires careful
consideration of the specific situation at hand to determine how much (or how
little) realism is really necessary to achieve the desired results.

Taking this logic one step further, we can actually formalize the varying de-
grees of complexity possible; ranging from realistic simulation to mathematical
macroscopic models [15]. Further details and examples of this multi-level ap-
proach can be found in [9,2].

3 Communication and Swarm Intelligence

Much of the previous work in swarm intelligence and swarm robotics has fo-
cused on so-called ‘biologically inspired’ mechanisms (some early definitions ac-
tually limited the definition of swarm intelligence to “algorithms or distributed
problem-solving devices inspired by the collective behavior of social insect
colonies and other animal societies.” [5]). Consistent with this definition, [5]
goes on to define self-organization and stigmergy as key mechanisms required in
a swarm-intelligent system.

Stigmergy, or indirect communication via the environment, works well for in-
sects, which are particularly adept in the area of mobility, but it seems clear that
it is not always the most ideal communication channel for sharing information
(it is typically slow, short range, untargetted, etc). Nonetheless, it has been used
with some success in various robotic tasks (for example, [1]).

108 C.M. Cianci et al.

Self-organization is generally accepted to consist of four principle components:

Positive feedback: amplification, notably recruitment and reinforcement.
Negative feedback: the checks and balances for positive feedback mechanisms,

i.e. saturation, exhaustion, and competition.
Randomness: unpredictability can be crucial for the explorative element of a

self-organized system; the robustness often exhibited is a direct result of the
sometimes seemingly inefficient behavior caused by reactions to noise in the
environment.

Multiple interactions: for self-organization to occur, there must be at least a
minimum number of mutually tolerant agents able to react to the presence
or actions of the others.

While the application of these principles to multi-agent systems is relatively
straightforward (take ACO [10], for instance), when we want to apply swarm-
intelligent principles to embedded platforms we need to understand the dif-
ferences between natural and artificial systems, and subsequently exploit the
strengths that may be present in an artificial system, to minimize the impact
of accompanying weaknesses. This represents a fundamental shift ‘beyond bio-
mimicry’ [14], and one of the most obvious areas where this may be leveraged is
with respect to communication. Though the caveat clearly remains that however
we choose to utilize the radio channel (or any other addition to a swarm system),
we must ensure that it does not affect the scalability of the system.

Direct, in this case radio, communication is simply a more sophisticated
medium for achieving “multiple interactions.” While one could argue that the
inherent unreliability of communication vectors in natural systems is a large
part of what forces the system to exhibit the robustness that swarm algorithms
are renowned for, we believe that even using radio communication (which is not
always reliable either), there remains sufficient noise in coordination and other
parts of the system to provoke a collective response showing the appropriate
balance of explorative and exploitative behavior for mitigating environmental
unpredictability.

Without interference (be it physical or communication), the effects shown in
[18] would not be possible; there would be no semblance of intelligent behavior
emerging from the system. Despite the use of a decidedly non-natural element,
such as radio communication, the swarm-intelligent nature of the resultant col-
lective behavior is still utterly dependent on environmental uncertainty, noise,
and self-organized coordination based on local interactions.

4 A Radio Communication Module for the e-Puck

To turn the e-Puck into a networked robotic system suitable for running exper-
iments requiring local communication, we constructed a radio board (as shown
in Figure 4.a) with the requirements that it be low power, as the e-Pucks run
on batteries, and that it operate on standardized protocols, so as to be inter-
operable with our other existing robotic and sensor network platforms running
TinyOS [12].

Communication in a Swarm of Miniature Robots 109

MSP430

Microcontroller

CC2420

Radio
ATT25dB

M25P40

4Mbit

Flash

I2C decoder

bootloader

sequence

generator

UART

UART

I2C

T
C

K

re
s
e

t

reset

SPI

Hardware attenuator

I2C bus

BT UART

PIC UART

E-puck bus

Fig. 4. (left) A stackable module for the e-Puck enabling local radio communication,
and (right) a block diagram showing the principal components and functions of the
same

4.1 Hardware Design and Structure of the Module

Figure 4.b includes a block diagram illustrating the basic structure of the radio
board, which is based on a modified version of the Telos (rev. B) [19] schematics
provided by MoteIV. The processor is a Texas Instruments MSP430F169 with
2kB of SRAM and 60kB of flash memory (program storage), selected for its
attractive energy consumption profile and the existence of a functional TinyOS
port to its architecture. The physical radio is a Chipcon CC2420, an IEEE
802.15.4 and ZigBee compliant transceiver, which allows us to take advantage of
the partial implementation of the IEEE 802.15.4 and ZigBee extensions already
present in TinyOS. This makes hybrid communication between this radio module
and any of our other platforms trivial (we have previously constructed a similar
module for the Alice [8,6], and also use a sensor network composed of MICAz [11]
nodes). A software selectable custom attenuation circuit is added between the
transceiver and the SMD antenna (Antenna Factor ANT-2.45-CHP), for range
reduction (note that this affects both reception and transmission).

4.2 Software Control of the Radio Board

A firmware controller based on TinyOS was prepared to allow the module to act
in accordance with high-level commands issued to it by the e-Puck via the I2C
bus. Appropriate primitives were then written and integrated into the e-Puck
API for the sending and receiving of messages, as well as the modification of
control parameters (such as the transmission power, etc).

Existing modules were used wherever possible (i.e. GenericBase), and all of the
necessary parameters were encapsulated to allow runtime modification from the
e-Puck. However, as the implementation of the I2C protocol [13] within the cur-
rent distributed version of TinyOS only supports operating as a bus master, the
slave layer had to be written and integrated so that the module could be properly

110 C.M. Cianci et al.

accessed by the e-Puck. At present, since the radio functions as a slave, polling
is necessary for message reception, but in the future, if a full implementation of
the multi-master mode (as provided for in the I2C specification) can be integrated
into TinyOS, interrupts will be able to pass in both directions, easing the compu-
tational burden on the e-Puck and making control simpler and more intuitive.

4.3 Measurement of Physical Characteristics

A number of tests have been run for ascertaining the performance and limits of
the device. Preliminary measurements of power consumption indicate that when
not in use, the module draws less than 1.4mW, and with the radio on (ready to
receive) and the processor under heavy load, approximately 76.2mW.

10cm

Fig. 5. Physical arrangement of robots for the range tests. Sixteen receivers are placed
in a line at known distances from a transmitter, which is rotating to average out
irregularities based on orientation.

The output transmission power of the CC2420 is specified by an integer reg-
ister value between 3 and 31, minimum and maximum, respectively (these num-
bers are an artifact of the radio hardware; see the CC2420 datasheet [7] for more
information). For measuring the effective transmission range at various power
settings, 17 robots (1 emitter and 16 receivers each oriented towards the emitter)
were arranged as shown in Figure 5. During each iteration, the emitter would
spin in place (so as to average out any possible anomalous effects of orienta-
tion) while transmitting 250 packets. Each of the receivers would then count the
number of packets received, yielding a reception rate at each receiver location
(Figure 6.a), the collection of which was then fed into a sigmoidal regression to
determine an approximate probability density function of distance (Figure 6.b).
Fifteen such iterations were performed per experiment, one for each of the odd
numbered transmission power settings in the set of allowed values (3–31). This
experiment was repeated three times; with the hardware attenuator active on
the sender, the receivers, and on both the sender and the receivers. Only the re-
sults from the symmetric case (both the sender and the receiver using the -25dB
attenuator) are shown here, as it would not be possible to implement the case
study presented in Section 5 with an asymmetric attenuator configuration.

Next, based on these results, three representative transmission power settings
were selected (3, 7, and 31), and a more detailed test was performed, the results
of which are shown for the value 7 in Figure 7 (the results of the remaining two

Communication in a Swarm of Miniature Robots 111

0 0.5 1 1.5
0

50

100

150

200

250

pk

ts
 r

ec
ei

ve
d

distance (meters)
0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 p

kt
s

re
ce

iv
ed

distance(meters)

Fig. 6. (left) Raw received packet counts at each location for 15 different transmis-
sion powers, and (right) sigmoidal regression representing an approximate PDF. The
apparent variance in sensitivity between nodes prompted the subsequent more specific
tests, as illustrated in Figure 7.

0 0.5 1
0

50

100

150

200

250

#
 p

k
ts

 r
e

c
e

iv
e

d

distance (meters)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

%
 p

k
ts

 r
e

c
e

iv
e

d

distance (meters)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

%
 p

k
ts

 r
e

c
e

iv
e

d

distance (meters)

threshold = 0.532884

Fig. 7. (left) Raw received packet counts at each location at transmission power 7 for 16
different receiver orderings, (center) sigmoidal regressions for each of the 16 iterations,
and (right) aggregate regression on all 256 data points, with corresponding Heaviside
approximation (equal area under curve)

experiments are extremely similar in form to those shown, and therefore will be
quoted numerically only).

Sixteen iterations were run using the same transmission power, but with each
receiver eventually occupying every possible receiver location, to remove anoma-
lous contributions from manufacturing heterogeneities in the hardware (which,
as can be seen in Figure 7.a, are present, but do not shift the basic shape of the
curve). The corresponding regressions were calculated (Figure 7.b), and all 256
data points were used to create a master regression, shown in Figure 7.c with its
Heaviside approximation around the definite integral (from 0 to ∞), which can
be used in geometric modeling as an estimated radius of communication.

For the three values tested in this manner, the associated approximate radii
are 0.150987, 0.532884, and 4.84131 meters, respectively.

112 C.M. Cianci et al.

5 Case Study: Collective Decision

One of the most basic examples of swarm intelligence is the emergence of a con-
sensus, or collective choice, in a distributed system. This fundamental question
has recently been highlighted in the context of the European project LEURRE,7

among others [3].

5.1 Experimental Setup

For testing our module in an experimental application, we have set up a simple
environment in which independent robots, using only the local information avail-
able to them, interact in such a way as to exhibit convergence to a self-organized
collective decision.

In a round arena approximately 1 meter in diameter, the robots each initially
select at random to execute either left or right wall following, and periodically
announce their current preference over the radio. Upon reception of one or more
such messages, if the perceived majority opinion is not the same as the robot’s
current opinion, it makes a probabilistic decision to possibly change its current
direction. This behavior will eventually cause the system to converge to a state
where all the robots are traveling in the same direction (Figure 8.a). And as one
might naturally imagine, given that the decisions to switch directions are based
on partial perception, the time required for reaching convergence will depend
on the accuracy with which the local perception reflects the global state of the
system. Here, that translates directly to the range of communication.

Note that this setup displays all the habitual signatures of a self-organized sys-
tem: multi-stability (system may converge to either left or right wall following),
positive feedback (the number of neighbors influences the probability of being
convinced to change direction), negative feedback (there are a limited number
of robots; resource exhaustion), randomness (non-deterministic decisions, for-
mation of local subgroups due to partial perception), and multiple interactions
(radio messages and physical detection/avoidance/following).

5.2 Results

Sixteen experiments were run for each of three transmission powers: 3, 7, and
31 (48 runs in total). A nearby MICAz node acted as an eavesdropper (with its
antenna, it was able to reliably overhear even the minimum power messages from
the robots, so long as it was near the arena), and counted the time between the
start signal and when all received messages from the robots indicated that they
were traveling in the same direction. The mean and standard deviation of these
completion times are shown in Figure 8. At first glance, the deviation may seem
a little large, but is likely due to the random nature of the initial conditions and
the interactions between the agents.

7 http://leurre.ulb.ac.be/

Communication in a Swarm of Miniature Robots 113

3 7 31
0

50

100

150

200

250

Transmission Power Setting

T
im

e
to

 C
on

ve
rg

en
ce

 (
se

co
nd

s)

Fig. 8. (left) Overhead view of ten e-Puck robots after convergence to left wall-
following, and (right) mean and standard deviation of convergence times for 48 ex-
perimental runs (16 each power)

5.3 Related Hybrid Network Example: Isolated Collective Decision

A similar setup which we presented to the students in a course laboratory exer-
cise8 involved a hybrid network, as pictured in Figure 9; each robot was isolated
in its own miniature arena (still executing left or right wall following), but in one
corner of its arena, it would be close enough to a fixed node in a sensor network

Fig. 9. Alternative setup to Figure 8: a hybrid network wherein isolated robots com-
municate via a sensor network backchannel

8 http://swis.epfl.ch/teaching/swarm intelligence/ay 2005-06/exercises/SI 05-
06 labhwk10 assignment.pdf

114 C.M. Cianci et al.

which could act as a relay tower. Therefore, during a short section of its trip
around the track, it had the opportunity to send and receive messages with other
robots (which were also be close enough to their respective sensor nodes) via the
‘backbone network’ provided by the sensor nodes. While systematic testing is
not shown here, this system also yielded convergence to a collective decision, in
a network of 15 robot/node pairs.

6 Conclusion

Teaching and research activities in swarm intelligence and swarm robotics re-
quire tools; among these, we have found that simulation and physical hardware
are both beneficial and mutually complementary in an educational setting. For
reasons of accessibility (equally from the perspectives of cost, pedagogy, and
usability), the e-Puck platform, particularly when equipped with our local com-
munication module (range adjustable between about 15cm and 4.8m), promises
to serve as a powerful addition to the toolset in this context. In the example
scenario demonstrated here, collective decision occurs in groups of up to fifteen
robots.

Acknowledgments

The authors are currently sponsored by a grant from the Swiss National Science
Foundation (Contract Nr. PP002-68647). Additionally, portions of the works
described received partial funding from the Fond d’Innovation pour la Forma-
tion (FIFO) and the School of Computer and Communication Sciences, both
at EPFL. We would like to thank especially Francesco Mondada and Michael
Bonani, ultimately responsible for the design and creation of the e-Puck, and
also Olivier Michel, Yvan Bourquin, and Alexei Kounine, without whose assis-
tance the modification and integration of the realistic network simulation engine
OMNeT++ into WebotsTMwould not have been possible. Inspiration for the ex-
perimental case study was initially seeded during an informal discussion between
Alcherio Martinoli and Guy Theraulaz.

References

1. W. Agassounon and A. Martinoli. Efficiency and robustness of threshold-based
distributed allocation algorithms in multi-agent systems. In Proc. of the Int.
Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1090–
1097, Bologna, Italy, 2002. ACM Press.

2. W. Agassounon, A. Martinoli, and K. Easton. Macroscopic modeling of aggregation
experiments using embodied agents in teams of constant and time-varying sizes.
Autonomous Robots, 17(2–3):163–191, 2004.

3. J. M. Amé, J. Millor, J. Halloy, and J.-L. Deneubourg. Collective decision-making
based on individual discrimination capability in pre-social insects. In Proc. Simu-
lation of Artificial Behaviour, pages 700–711. Springer Verlag, Berlin, 2006.

Communication in a Swarm of Miniature Robots 115

4. G. Beni. From swarm intelligence to swarm robotics. In Proc. of the SAB 2004
Workshop on Swarm Robotics, Santa Monica, CA, USA, July, 2004, volume 3342,
pages 1–9, 2005.

5. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. SFI Studies in the Science of Complexity, Oxford University
Press, New York, NY, USA, 1999.

6. G. Caprari and R. Siegwart. Mobile micro-robots ready to use: Alice. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 3295–3300,
Canada, 2005.

7. CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, Chipcon Products
from Texas Instruments. http://www.chipcon.com/, 2005.

8. N. Correll and A. Martinoli. Comparing coordination schemes for miniature robotic
swarms: A case study in boundary coverage of regular structures. In Proc. of the
Int. Symp. on Experimental Robotics (ISER), Rio de Janeiro, Brazil, 2006. Springer
Tracts for Advanced Robotics (STAR), to appear.

9. N. Correll and A. Martinoli. Modeling and optimization of a swarm-intelligent
inspection system. In Proc. of the Int. Symp. on Distributed Autonomous Robotic
Systems (DARS), pages 369–378. Springer Distributed Autonomous Systems VI,
2006.

10. M. Dorigo and G. D. Caro. The ant colony optimization meta-heuristic. New Ideas
in Optimization, pages 11–32, 1999.

11. J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks.
IEEE Micro, 22(6):12–24, 2002.

12. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for network sensors. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2000.

13. The I2C-bus specification, version 2.1, Philips Electronics N.V.
http://www.semiconductors.philips.com/products/interface control/i2c/
index.html, 2000.

14. IEEE Swarm Intelligence Symposium, Call for papers. http://www.ieeeswarm.org/,
2005.

15. A. Martinoli, K. Easton, and W. Agassounon. Modeling of swarm robotic systems:
A case study in collaborative distributed manipulation. Int. Journal of Robotics
Research, 23(4):415–436, 2004.

16. O. Michel. Webots: Professional mobile robot simulation. Journal of Advanced
Robotic Systems, 1(1):39–42, 2004.

17. F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: a tool for
investication in control algorithms. In Proc. of the Int. Symp. on Experimental
Robotics (ISER), pages 501–513. Springer Verlag, Berlin, 1993.

18. J. Nembrini, A. Winfield, and C. Melhuish. Minimalist coherent swarming of
wireless connected autonomous mobile robots. In Proc. Simulation of Artificial
Behaviour (SAB), pages 273–382, Edinburgh, 2002.

19. J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power wireless
research. In IEEE/ACM Int. Conf. on Information Processing in Sensor Networks
(IPSN-SPOTS), 2005.

20. A. Varga. Software tools for networking: “OMNeT++”. IEEE Network Interactive,
16(4), 2002.

UltraSwarm: A Further Step Towards a Flock of

Miniature Helicopters

Renzo De Nardi and Owen Holland

Department of Computer Science
University of Essex

Colchester CO43SQ, United Kingdom
{rdenar, owen}@essex.ac.uk

Abstract. We describe further progress towards the development of a
MAV (micro aerial vehicle) designed as an enabling tool to investigate
aerial flocking. Our research focuses on the use of low cost off the shelf
vehicles and sensors to enable fast prototyping and to reduce develop-
ment costs. Details on the design of the embedded electronics and the
modification of the chosen toy helicopter are presented, and the tech-
nique used for state estimation is described. The fusion of inertial data
through an unscented Kalman filter is used to estimate the helicopter’s
state, and this forms the main input to the control system. Since no de-
tailed dynamic model of the helicopter in use is available, a method is
proposed for automated system identification, and for subsequent con-
troller design based on artificial evolution. Preliminary results obtained
with a dynamic simulator of a helicopter are reported, along with some
encouraging results for tackling the problem of flocking.

1 Introduction

Swarm robotics is nowadays an established field of research; it offers the ad-
vantages of scalability, robustness through redundancy, flexibility, and reduced
complexity of the individual robots. Within swarm intelligence, the topic of flock-
ing deals with methods for controlling the motion of a group of agents (in real
or virtual space) using rules directly inspired by ethological observations of real
flocks of birds or schools of fish.

Since the seminal treatment of flocking developed by Reynolds [1] several re-
searchers have explored the idea of flocking in real platforms or simulations.
Most of the work involving flocking in real robots has concentrated on wheeled
robots [2] [3] or airborne robots with limited dynamic capabilities [4]; due to the
intrinsic dynamic and sensory limitations of the platforms used, none of these
examples achieved really good-looking fluid flocking. Crowther addressed the
problem of vehicles with more complex dynamics in his simulations of a flock
of aircraft [5]. His research successfully demonstrated the potential usability of
flocking as a decentralised traffic control method. In particular it showed that
by simply changing the weights associated with Reynolds’ rules, phase transi-
tions appeared in the flock structure. However, omnidirectional perception was

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 116–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters 117

assumed, and the presence of noise was neglected. Recently a development pro-
gram carried out at the NASA Dryden Flight Research Center [6] demonstrated
the coordination of two UAVs (in the form of two instrumented model aircraft)
using Reynolds’ flocking rules. GPS information was used to determine the rel-
ative positions of the aircraft, and this was sufficient to guarantee coordination.
Unfortunately further details about this project are still unavailable. Another
interesting application was developed by Atair Aerospace Inc. [7] in the domain
of guided parafoils; a behaviour based algorithm inspired by flocking is used to
ensure that all the payload-carrying parafoils will land together in the same area.

In the last few years, the problems of flocking and the distributed control of
agents have gained popularity among the control system community [8][9][10].
The problems of stability, robustness, and the effects of sensing or communication
delays are now being considered; see [11] for a more extensive review in the
field. In a recent paper [12], Olfati Saber presents a theoretical approach to
flocking; a single distance dependent potential function is defined to achieve
both cohesion and separation. A particularly good definition of the potential
function results in a smooth pairwise potential with a finite cut off that greatly
simplifies the stability analysis. Since cohesion-separation and alignment can
lead to fragmentation, an additional contribution to the control is added in the
form of navigational feedback from progress towards a target point. The paper
also presents an obstacle avoidance behaviour obtained by introducing fictitious
agents near the obstacles.

Although the work of Olfati Saber addresses the problem of flocking using a
simple point mass agent with double integrator dynamics, the results are sup-
ported by a sound theoretical analysis. It will be interesting to see if the same
analysis can be extended to more dynamically complex vehicles. It is of course
clear that extending this idea to highly nonlinear vehicles (e.g. helicopters) will
constitute a big challenge in this respect. Samilog̈luGazi et al. [13] give an ex-
ample of how a simple physical constraint like a restriction on the turn angle
may lead to oscillatory behaviours in the group.

2 The Idea

As we have clearly seen in the introduction, achieving the flocking or swarming
of real vehicles with complex dynamics is still an unsolved problem. Our work
addresses many of the issues involved in this area: we aim to build a flock of
dynamically complex vehicles (i.e. microhelicopters) to perform flocking in a
real world scenario where the dynamics of the vehicles and the noisy outputs
of the sensors are not negligible. The use of an aerial robotic platform removes
the two dimensional limitation to which most of the previous research has been
constrained, allowing for a scenario more similar to the one normally experienced
by fish or birds.

In order to reduce development time and research costs, we aim to leverage
as much as possible of the technology available in the market place - in other
words, to take a COTS (commercial-off-the-shelf) approach. This translates into

118 R. De Nardi and O. Holland

selecting a suitable commercially available vehicle (see section 3) and fitting it
with the necessary off-the-shelf components; however, some hardware will in-
evitably have to be designed (see section 3.1).

These helicopters are of course structurally identical, but differences in the
electric motors, the trim of the blades and the swashplate mechanism, and de-
formation of the very flexible foam blades will result in quantitatively different
dynamic properties. The design of our controller should take this variability into
account, together with the changes that will be induced by different sensor in-
strumentations of the same helicopter. These considerations mean that it will
be more appropriate to develop a general method for automated model identi-
fication and controller design that can then be applied to different individual
helicopters with different dynamics. A method based on machine learning tech-
niques and artificial evolution is proposed in 4.

3 The Helicopter Platform

The ability to move in three dimensions is deemed to be an essential requirement
of our system, as well as the need to be usable indoors (for ease of development).
Only a few platforms can fulfil those two constraints: lighter than air vehicles (e.g.
small blimps), and miniature helicopters. Small aircraft and slowflyers are clearly
not an option, since our research arena (a cylinder of 12m diameter and 6m height)
is too small to accommodate a flock of them. The more favourable size to payload
ratio when compared to blimps led us to settle for a rotary wing solution.

Every roboticist and aircraft model enthusiast knows that the lift and hovering
capability typical of a helicopter come at the cost of reduced dynamic stability.
The helicopter flight controller is therefore a key element of our system. After
evaluating several other models, a helicopter with a counter rotating dual rotor
configuration was chosen for this study [14] (see figure 1). The counter rotating

Fig. 1. Helicopter retrofitted with the new electronics, the Gumstix computer and the
IMU

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters 119

configuration is well known for delivering high efficiency as well as achieving
excellent stability thanks to the direct compensation of the torque between the
two rotors. The model we have selected uses a conventional fully controlled
lower rotor, and an upper rotor fitted with a 45 degree stabilising bar. The
stabilising bar exploits gyroscopic forces in order to counteract sudden changes
in shaft inclination. This results in improved stability, but of course this comes
at the cost of a reduced response to control commands. Testing by human pilots
showed the model to be more stable and easier to fly than conventional single
rotor helicopters; although not suitable for advanced aerobatic manoeuvres, the
helicopter retains the manoeuvrability necessary to perform flocking.

Testing also established that the model can be flown with a payload of about
40g for about 15 minutes; we deem this sufficient to achieve the project’s aims.

3.1 Electronics and Sensors

Since the helicopter is sold as a remotely controlled toy, the first step towards
autonomy involved the complete redesign and replacement of the helicopter’s
electronics.

The bulk of the work on the platform involved the design and manufacture of
an electronic board that interfaces a Gumstix SBC (single board computer) to
the two main electric motors powering the rotors, and to the servos controlling
the swashplate. The board was manufactured in surface mount technology, and
is based around a low power 40 MHz ARM7 microcontroller. The microcontroller
offers two serial ports for reflashing and for communication with the Gumstix,
two i2c ports to interface to the ultrasonic sensors and the IMU (inertial mea-
surement unit), and four PWM outputs to drive motors and servos. External
interrupt inputs are also available to interface to two rotor speed encoders; an
additional analogue input permits us to monitor the battery voltage. A second
companion electronic board accommodates the power stabilisation circuitry and
the highly efficient MOSFET motor drivers. The two electronic boards were
specifically designed to fit within the original central housing of the helicopter
in order to maintain all the moments of inertia as close as possible to those of
the original helicopter.

The choice of having an additional low level microcontroller that directly in-
teracts with the hardware was made to guarantee a high degree of reliability for
the control system. The absence of an operating system allows a tighter coupling
with the hardware, offering real-time execution of the critical code needed for he-
licopter stabilisation. The processing power of the Gumstix SBC will be entirely
dedicated to the high level software (e.g. guidance and communication), where
the use of the Linux operating system will allow for easy and fast development.
Along with the electronics, a set of low level routines has been developed to
allow the microcontroller to interact with the hardware and enable communica-
tion with the Gumstix SBC. Thanks to the Bluetooth wireless communication
present on the Gumstix we are now at a stage in which it is possible to command
all the helicopter flight controls from a remote computer. A simple yaw stabi-
lization based on the IMU gyros has been implemented to aid during manual

120 R. De Nardi and O. Holland

flight; being able to fly the helicopter manually by exploiting the Bluetooth con-
nection is obviously important to test the helicopter hardware, but will be crucial
during the process of data collection for modelling purposes. Previous work of
the authors [15] with a similar helicopter and electronics showed how the delay
introduced by the Bluetooth connection still allows for the full control of the
flight machine. In the final system the communication delay will not be an issue
since the control algorithm will run on board.

Ultrasonic sensors and an IMU are the crucial sensors for the control and
stabilisation of the vehicle; however, for flocking, each helicopter also needs to
determine the range and bearing of its nearby flockmates. Fortunately our in-
door arena will shortly be provided with a state of the art 3D tracking system
based on infrared markers that will be able to determine with great accuracy
(i.e. to within a few millimetres) the position of each helicopter. The relative
positions computed by a stationary computer can then be fed back to each of
the helicopters through the wireless data link. This will enable us to test the
basic flocking algorithm. Further research will investigate the direct sensing of
relative position using RSSI (received-signal-strength-indication) from the com-
munication channels, the use of onboard radio beacons, and also onboard vision.

3.2 State Estimation

A key problem is the need for the real-time computation of state estimation.
This includes the helicopter’s attitude (e.g. the Eulerian angles with reference
to an Earth frame φ, θ, ψ), its rotational speeds (p, q, r), and its linear velocity
and position (u, v, w and x, y, z). Attitudes and rotational speeds are needed for
helicopter stabilisation; the position in the form of the relative distances between
the members of the flock will be used for regulating flocking.

Given the reduced payload only a very light IMU can be carried on board. We
have selected the Memsense nIMU [16] which includes three linear accelerom-
eters, three gyros, and three magnetic field sensors. MEMS (Micro-Electro-
Mechanical Systems) technology allows the production of inertial sensors of very
compact size and reduced weight (the whole IMU has a weight of only 15g);
however, their performance in terms of error and temperature bias tends to
be significantly worse than alternative navigation grade solutions using opti-
cal methods. The dependency on temperature variation is already compensated
within the IMU sensor, but the effects of noise and, more importantly, of the
drift that affects gyros and accelerometers must still be compensated to allow
sufficiently accurate data to be obtained.

The main inputs used for the state estimation are the measured rotational
speed and linear acceleration; both are affected by noise, and by a time-variant
bias. The magnetometer readings, the ultrasonic sensor values, and possibly the
position obtained from the tracking system will be used to ”correct” the inertial
data. The magnetometers and ultrasonic sensors are not affected by time variant
bias, and so have error characteristics complementary to those of the inertial
sensor; the fusion of the two types of sensor data will allow us to improve the
state estimation.

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters 121

The most commonly used techniques for data fusion rely on Bayesian filtering
techniques, among which the best known is probably the EKF (extended Kalman
filter). Although it has been successfully applied to helicopter state estimation
problems ([17] [18]) the EKF has some weaknesses when compared to other
similar approaches. Van der Merwe and Wan conducted a comparison analysis
between an EKF and a UKF (unscented Kalman filter) The analysis [19] shows
that since the sensor model used in the filter is strongly nonlinear (due to the
change of coordinates), the UKF can improve the estimation performance. In
addition the implementation of the UKF is comparatively much simpler than
that of the EKF since the there is no need to calculate the derivatives of the
state equations. Given our limited computational power, it will also be interesting
to explore the possibility of implementing the UKF in its square root form, [20]
which presents improved numerical stability along with reduced computational
complexity.

In order to limit the computational complexity, our system model is simply
that of a 6DoF rigid body freely moving in a 3D space. Position, speeds, Euler
angle and sensor bias constitute the state estimated by the filter. The system
equations are represented by the classic equation of motion of a rigid body in
a 3D space. The acceleration and rotational speed values coming from the IMU
are used as control inputs to the model in order to propagate the system state.
Readings from the ultrasonics sensors and the magnetometers constitute the
measurements that will allow the correction, through the observation model,
of the predicted state in the interactive prediction-correction fashion typical of
Bayesian filtering.

The system model includes the update equations necessary to estimate the
biases of the accelerometers and gyros, and so it will therefore allow them to be
compensated.

4 An Automated Design Method

We already mentioned in section 2 the clear advantages offered by using an
automated method to deal with the unknown dynamic differences between the
aerial vehicles. Such an automated method will be useful in the future as well,
as we plan to move the system outdoors, and therefore to use heavier and more
complex helicopters.

Because of its complexity and severe nonlinearity, the understanding of heli-
copter aerodynamics is still relatively poor, and the direct estimation of model
parameters from experimental flight data still remains the only effective way to
accurately capture the dynamics of a vehicle with unknown characteristics.

4.1 Model Identification

The most common approach to model identification for small helicopters is sim-
ply a specialisation of the classical approach widely used for full scale vehicles.

122 R. De Nardi and O. Holland

Such models are based on a knowledge of aerodynamic principles, and the derived
equations account for the lift and sideforce generated by the rotors, the effects of
drag on the fuselage, the inertia and other effects of the stabilising bar, and the
coupling between the major axes of the helicopter. This typically yields a very
complicated model expressed in helicopter body coordinates, and with several
tens of parameters. From a linearisation of this type of model, a state model
can be derived; its free parameters can then be learned from flight data by using
data association techniques in the frequency domain. By making provision for the
selection of meaningful flight data, and by enabling the possibility of including
several equilibrium points in the flight envelope, a sufficiently accurate helicopter
model can be produced. Mettler et al. [21] and La Civita et al. [22] describe two
successful applications of this technique.

A general weakness can be attributed to this method; since the model is
ultimately linear, effects like inertia and gravity which involve the nonlinear
contributions of velocity and angular rate are really hard to capture. To finesse
this problem, Abbeel et al. [23] proposed an alternative approach to modelling
based on acceleration prediction.

Physics tells us that the relationships between effects like inertia, gravity
and acceleration are often straightforward, and so it is clear then that a model
based on acceleration prediction could possibly be both simple and effective in
describing these effects. Such a model will be expressed in acceleration terms, and
so, in order to obtain the state vector, we will need to integrate the acceleration
contributions at every timestep. Since the accelerations are expressed in body
coordinates, and since the body reference frame changes at every timestep, a
change of coordinates must be performed at every timestep before proceeding
with the computation. Here we see that since the algorithm explicitly takes
care of these changes of coordinates, the learning is greatly simplified since this
highly nonlinear functional relationship does not need to be learned. (However,
the model resulting from the integration of the acceleration prediction is still of
course nonlinear).

The general model proposed by Abbeel represents a 6 DoF vehicle and delib-
erately avoids giving any aerodynamic meaning to the dynamic equations; the
only system knowledge introduced is reflected in the choice of body-centred co-
ordinates, and of the axes of symmetry. According to the authors, its generality
means that the same model could also be used with minor changes for vehicles
very different from a helicopter. Faced with the specific situation of learning a
model of the helicopter used in our project, we can therefore see an excellent
opportunity for the use of the technique proposed by Abbeel, since only a very
limited knowledge of the vehicle is necessary.

It is necessary to point out that this type of model, although potentially very
accurate, still has 15 parameters and is fairly computationally expensive. This
is not a problem when we are evolving the controller off-line, but unfortunately
it prevents us from using it real time in association with our Bayesian filtering
algorithm. For this reason the simpler 6DoF model explained in 3.2 is used in
the UKF.

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters 123

4.2 Controller Design

The evolutionary design of controllers based on neural networks has proven to be
an effective methodology for designing controllers for simple robotics problems
[24], and also for agents in computer games [25] [26]. A controller based on
neural networks with specific topologies has also been applied successfully to
the domain of helicopter control [27] [28], although in this case the training
was based on reinforcement learning. Building on this previous work we have
developed a method for training a custom designed neural network using a form
of neuroevolution [29].

The controllers (i.e. the neural networks) have a fixed topology and a fixed
tanh activation function, and so a simple fixed length array of real numbers is
sufficient to represent the genome of each of the controllers. A modular topology
(see figure 2) inspired by the layout of a multiloop PID controller was chosen
since it had been found to greatly improve evolvability .

1 1

1 1

a

u
x 0Δ

θ
q

(longitudinal cyclic)

a

v

1
1Δ

p
φ

y
(lateral cyclic)

lateral module

longitudinal module

ψΔ
r

a3

aΔ
1

z

z 2

(main rotor collective)

yaw module

collective module

(tail collective)

.

Fig. 2. Modular network used in the waypoint task. The same network topology was
also used for the velocity task but the inputs Δx, Δy ans Δz were substituted respec-
tively by Δu, Δv ans Δż.

A variation of ES (Evolutionary Strategies), with a total population of 33
individuals and an elite of 10, is used to evolve the weights. The first population
consists of neural networks with small random synaptic weights; each controller
is then evaluated on the task at hand. This involves using the controller under
test to fly the simulated helicopter model and try to achieve the desired task
(e.g. flying a set of waypoints, or reaching a specific vectorial speed). Its fitness
represents the ability demonstrated by the controller on the specific task used.
The population is then sorted by fitness and the worst 23 individuals are replaced
with mutated versions of the 10 best individuals (the elite). The algorithm does
not apply recombination; the weights of the network are simply mutated by
adding a random value (drawn from a Gaussian distribution with mean 0 and
standard deviation 0.01). In this way, a new population is created, and the
evolutionary process can then be repeated for the next generation.

The possibility of defining different tasks and the different fitness functions
associated with them allows us to customise the helicopter controller to our

124 R. De Nardi and O. Holland

needs. This constitutes a really valuable option, and offers clear advantages when
compared to the traditional manual design of the controller.

As noted in section 3.2 our algorithms for state estimation and model iden-
tification have not yet been validated; this is due to a manufacturing problem
with the IMU sensor that is currently being rectified. In the meantime, a freely
available dynamic helicopter simulator with dynamics qualitatively similar to
our helicopter [30] was used to test our approach to the evolution of the con-
troller. This simulator accurately reproduces the dynamics of the XCell 60 model
helicopter. Blade element theory is used as the basis for the computation of ro-
tor thrust and drag forces, and the main rotor dynamics and stabilising bar are
modelled as proposed in Mettler et al. [21]. Dynamic coupling and aerodynam-
ics effects are also modelled. The simulator outputs the same state variables as
will be available from the Hirobo helicopter, and accepts the same flight con-
trol inputs. Although qualitatively similar to the Hirobo in all essential respects,
the simulated helicopter is much less stable1, and so it definitely constitutes a
challenging test bench for our design approach.

Two different tasks were devised to test the design method. In the first, the
helicopter is commanded to perform a specific flight trajectory; this controller
will be useful for testing autonomous flight. In the second, the controller is
requested to fly the helicopter with a specific (vectorial) velocity; this controller
gives a basis on top of which the classic Reynolds flocking rules could be applied.

In both tasks, there is an initial stage in which the controller is evolved for a
few tens of generations using the heading error as the only fitness function. This
evolution is very quick, and produces a minimal yaw stabilisation that enables
the system to ”bootstrap” the subsequent task evolution.

In the first task the controller is required to fly the helicopter along a prede-
fined random generated set of waypoints. The fitness is based on progress along
the path so defined; a waypoint was deemed to be visited when the centre of
the helicopter approached within 1 foot of it. The waypoints were placed at a
mean distance of 17.5 feet from each other. To encourage a straight path between
the waypoint the fitness was reduced if the helicopter deviated from the path.
Additional penalties were awarded for differences from the correct altitude and
heading. The complete fitness function is this:

f =
∑N

i=0 (whPchain | z − znext | − | ψ − ψref |)
N

. (1)

Where N is the number of timesteps allowed to execute the task (for evolution
N = 1000 was used) and znext , ψref are respectively the altitude of the next
waypoint, and the fixed reference heading. The factor wh is equal to one if the
helicopter is on the shortest path between waypoints and decays as the cube of
the orthogonal distance from it.

1 One of the authors, who can fly the Hirobo helicopter very competently, has consis-
tently failed to control the simulated model for more than a few seconds of simulated
time.

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters 125

The input to the network are formed by the helicopter attitudes φ, θ, ψ, the
rotational speeds p, q, r, the linear speeds u, v, w, and the relative distance to
the next waypoint Δx, Δy, Δz (both speeds are expressed in the helicopter body
reference frame).

A sample of the trajectory flown by the best controller during a test run is
shown in figure 3. As we can see, the evolved controller exhibits the ability to
fly correctly through the predesigned waypoint chain. Regardless of the relative
distance or the position between the waypoints, the path is very smooth.

A second task was devised with the Reynolds flocking rules in mind. At the
beginning of the task the helicopter is started in a hovering position, and a ran-
domly generated increment in velocity (expressed in the three helicopter frame
of reference components) is requested. Each single velocity increment can have
a value in the range [−3.5 ÷ 3.5]ft/s; if the sum of the current velocity and of
the increment exceeds 10ft/s a cut-off is applied to guarantee a requested speed
consistent with the helicopter’s capabilities. Along with the requested change
in velocity, the required duration of the change is also specified. This is also a
random value in the range [12÷350] timesteps. The fitness is simply the squared
magnitude of the error between the commanded and the instantaneous helicopter
velocity:

f =
∑N

i=0 ‖v(t) − vc(t)‖2
2

N
. (2)

Where N is the number of timesteps allowed to execute the task (for evolution
N = 1000 was used), v(t) is the velocity of the helicopter in the body frame
coordinates at time t and vc(t) is the velocity commanded at the same time
instant.

Fig. 3. Trajectory of a modular
network controller after com-
pleting 1100 timesteps of the
waypoint task

Fig. 4. Plot of the commanded speed vs the real
helicopter speed for the best controller evolved
with the velocity task

126 R. De Nardi and O. Holland

The inputs to the network are the helicopter attitudes φ, θ, ψ and rotational
speeds p, q, r, the linear speeds in the body reference frame u, v, vz, and the
difference between the commanded speeds and the actual speeds Δu, Δv, Δvz.

Sample plots of the difference between the commanded value of the velocity
and the actual velocity are displayed in figure 4. It is clear that the helicopter
speed varies in accordance with the request; unsurprisingly, a steady state error
is present. It is noteworthy that the responses to the input steps do not show any
signs of instability, and that a clear coupling between the longitudinal and lateral
speeds is present. Future work will add complexity in the network structure to
attempt to compensate for the coupling.

In the course of obtaining the results just described, various network topolo-
gies and incremental evolution approaches were investigated (for details see [29]).
Without incorporating some domain knowledge into the evolutionary process, we
were unable to evolve successful controllers. Domain knowledge was introduced
in the form of the network topology, which neglects any coupling between the
lateral, longitudinal, and vertical axes. Evolving the yaw controller first was also
crucial for the evolutionary process, confirming the findings of other researchers
about the nature and benefits of incremental evolution.

5 Future Work

In the immediate future we will implement and evaluate the approach of data
collection, state estimation, system identification, and controller design on our
model helicopter.

The first step will concentrate on the validation of the unscented Kalman filter-
ing approach; the maximum update frequency and also the numerical robustness
need to be determined. The performance of the filter algorithm in terms of noise
and drift also needs to be tested to ensure that the datawill be adequate for control.

Model identification based on recorded flight data will constitute the next step.
By its very nature the system identification technique will provide us with a quan-
titative estimation of the error between the simulated and real trajectory. We ex-
pect that the simulator will not be able to predict the trajectory of the real he-
licopter for more then a short period of time, due to the accumulation of error.
However, the dynamic response of the model to the control input, which is what
is needed to evolve a controller, will always resemble that of the real helicopter.

Artificial evolution will then be applied to produce controllers tailored to our
helicopter. Several controllers chosen from those with good fitness will than be
evaluated directly on the real helicopter.

Finally, a controller will be implemented on board the helicopter and the
sensor to motor action loop will be closed, allowing us to test autonomous flight.

The work will then proceed with the investigation of strategies for achieving
flocking; these will initially be based on the classical rules of cohesion, separation,
and velocity matching.

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters 127

6 Concluding Remarks

The work presented here is clearly still in its early stages, but is following a
clear path supported by existing research findings. The results achieved in the
simulation and testing carried out so far are encouraging; we recognise however
that porting the results obtained in simulation to a real system is very often
problematical.

References

1. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. In:
Proceedings of the Conference on Computer Graphics (SIGGRAPH). Volume 21:4.
(1987) 25–34

2. Mataric, M.: Interaction and intelligent behavior. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA (1995)

3. Kelly, I., Keating, D.: Flocking by the fusion of sonar and active infrared sensors
on physical autonomous mobile robots. In: Proceedings of The Third Int. Conf. on
Mechatronics and Machine Vision in Practice. Volume 1. (1996) 1–4

4. Welsby, J., Melhuish, C.: Autonomous minimalist following in three dimensions:
A study with small-scale dirigibles. In: Proceedings of Towards Intelligent Mobile
Robots Manchster. (2001)

5. Crowther, B., Riviere, X.: Flocking of autonomous unmanned air vehicles. In:
Proceeding of the 17th UAV System conference, Bristol UK. (2002)

6. NASA, D.F.R.C.: New flight software allows UAVs to team up for virtual fire
experiment. (http://www.nasa.gov/centers/dryden/news/NewsReleases/2005/05-
12.html)

7. Calise, A., Preston, D.: Swarming/flocking and collision avoidance for mass airdrop
of autonomous guided parafoils. In: AIAA Guidance, Navigation, and Control
Conference and Exhibit. (2005)

8. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. Automatic Control 48 (2003)
998–1001

9. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents. part I:
Static topology. In: Proceedings of the 42nd IEEE Conference on Decision and
Control. (2003) 2010–2015

10. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents. part II:
Dynamic topology. In: Proceedings of the 42nd IEEE Conference on Decision and
Control. (2003) 2016–2021

11. Gazi, V., Fidan, B.: Review of control and coordination of multi-agent dynamic
systems: models and approaches. In Sahin, E., Spears, W., Winfield, A., eds.:
Swarm Robotics Workshop (SAB06). Lecture Notes in Computer Science (2006)

12. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Transaction on Automatic Control 51 (March 2006)

13. Samilog̈lu, a., Gazi, V., Koku, B.: An empirical study on the motion of self-
propelled particles with turn angle restrictions. In Sahin, E., Spears, W., Winfield,
A., eds.: Swarm Robotics Workshop (SAB06). Lecture Notes in Computer Science
(2006)

14. Hirobo Limited: XRB Lama helicopter. (http://model.hirobo.co.jp/products/
0301-905/index.html)

(http://model.hirobo.co.jp/products/0301-905/index.html)
(http://model.hirobo.co.jp/products/0301-905/index.html)

128 R. De Nardi and O. Holland

15. Holland, O.E., Woods, J., De Nardi, R., Clark, A.: Beyond swarm intelligence:
The UltraSwarm. In: Proceedings of the IEEE Swarm Intelligence Symposium
(SIS2005), IEEE (2005)

16. Memsense: nIMU nano inertial measurement unit. (http://www.memsense.com/
content/products/Datasheets/nIMUv1 92.pdf)

17. Jun, M., Roumeliotis, S., G.S., S.: State estimation via sensor modeling for heli-
copter control using an indirect kalman filter. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. (1999)

18. Gavrilets, V.: Autonomous Aerobatic Manouvering of Miniature. PhD thesis,
Massachusetts Institute of Technology (2003)

19. van der Merwe, R., Wan, E.A.: Sigma-point kalman filters for integrated navigation.
In: 60th Annual Meeting of The Institute of Navigation (ION). (2004)

20. van der Merwe, R., Wan, E.A.: The square-root unscented kalman filter for state
and parameter-estimation. In: International Conference on Acoustics, Speech, and
Signal Processing. (2001)

21. Mettler, B., Tischler, M., Kanade, T.: System identification of a model-scale heli-
copter. Technical Report CMU-RI-TR-00-03, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA (2000)

22. La Civita, M., Messner, W.C., Kanade, T.: Modeling of small-scale helicopters
with integrated first-principles and system-identification techniques. In: American
helicopter society 58th annual forum. (2002)

23. Abbeel, P., Ganapathi, V., Ng, A.Y.: Modeling vehicular dynamics, with applica-
tion to modeling helicopters. In: Neural Information Processing Systems. (2005)

24. Nolfi, S., Floreano, D.: Evolutionary robotics. MIT Press, Cambridge, MA (2000)
25. Togelius, J., Lucas, S.M.: Evolving controllers for simulated car racing. In: Pro-

ceedings of the Congress on Evolutionary Computation. (2005)
26. Togelius, J., Lucas, S.M.: Forcing neurocontrollers to exploit sensory symmetry

through hard-wired modularity in the game of cellz. In: Proceedings of the IEEE
2005 Symposium on Computational Intelligence and Games CIG05. (2005) 37–43

27. Ng, A., Kim, H., Jordan, M., Sastry, S., Ballianda, S.: Autonomous helicopter flight
via reinforcement learning. Advances in Neural Information Processing Systems
(2004)

28. Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang,
E.: Autonomous inverted helicopter flight via reinforcement learning. In: Proceed-
ings of the International Symposium on Experimental Robotics. (2004)

29. De Nardi, R., Togelius, J., Holland, O., Lucas, S.: Neural networks for helicopter
control: Why modularity matters. In: IEEE Congress on Evolutionary Computa-
tion. (2006)

30. Autopilot: Do it yourself UAV. (http://autopilot.sourceforge.net)

Where Are You?

William M. Spears, Jerry C. Hamann, Paul M. Maxim, Thomas Kunkel,
Rodney Heil, Dimitri Zarzhitsky, Diana F. Spears, and Christer Karlsson�

Computer Science Department,
University of Wyoming, Laramie, WY, 82070, USA

wspears@cs.uwyo.edu
http://www.cs.uwyo.edu/∼wspears

Abstract. The ability of robots to quickly and accurately localize their
neighbors is extremely important in swarm robotics. Prior approaches
generally rely either on global information provided by GPS, beacons,
and landmarks, or complex local information provided by vision systems.
In this paper we provide a new technique, based on trilateration. This
system is fully distributed, inexpensive, scalable, and robust. In addition,
the system provides a unified framework that merges localization with
information exchange between robots. The usefulness of this framework
is illustrated on a number of applications.

1 Goal of Our Work

Our goal is to create a new “enabling technology” for swarm robotics. Since the
concept of “emergent behavior” arises from the local interaction of robots with
their nearby neighbors, it is often crucial that robots know the location of those
neighbors. Because we do not want to impose a global coordinate system on the
swarm, this means that each robot must have its own local coordinate system,
and must be able to locate neighbors within that local coordinate frame. In con-
trast to the more traditional robotic localization that focuses on determining the
location of a robot with respect to the coordinate system imposed by an environ-
ment (“Where am I?”[1]), we focus on the complementary task of determining
the location of nearby robots (“Where are You?”), from an egocentric view.

Naturally, it is useful for robot 1 to know where robot 2 is. It is also useful
for robot 2 to send robot 1 some sensor information. Combining this knowledge
is imperative – e.g., robot 1 receives sensor information from robot 2 at location
(x, y) with respect to robot 1. With our technology this combination of knowledge
is provided very easily. By coupling localization with data exchange, we simplify
the hardware and algorithms needed to accomplish certain tasks.

It is important to point out that although this work was motivated by swarm
robotics, it can be used for many other purposes, including more standard collab-
orative robotics, and even with teams of humans and robots that interact with

� The chemical plume tracing application is supported by the National Science Foun-
dation, Grant No. NSF44288.

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 129–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cs.uwyo.edu/~wspears

130 W.M. Spears et al.

each other. It is also not restricted to one particular class of control algorithms
– and in fact would be useful for behavior-based approaches[2], control-theoretic
approaches[3,4], motor schema algorithms[5], and physicomimetics[6].

The purpose of our technology is to create a plug-in hardware module that
provides the capability to accurately localize neighboring robots, without us-
ing global information and/or the use of vision systems. The use of this tech-
nology does not preclude the use of other technologies. Beacons, landmarks,
pheromones, vision systems, and GPS can all be added, if that is required. The
system described in this paper is intended for use in a 2D environment, however,
extension to 3D is readily achievable.

2 Localization

Two methodologies for robot localization are triangulation and trilateration.
Both methods compute the location of a point (in this case, the location of
a robot) in 2D space. In triangulation, the locations of two “base points” are
known, as well as the interior angles of a triangle whose vertices comprise the
two base points and the object to be localized. The computations are performed
using the Law of Sines. In 2D trilateration, the locations of three base points are
known as well as the distances from each of these three base points to the object
to be localized. Looked at visually, 2D trilateration involves finding the location
where three circles intersect.

Thus, to locate a remote robot using 2D trilateration the sensing robot must
know the locations of three points in its own coordinate system and be able to
measure distances from these three points to the remote robot. The configuration
of these points is an interesting research question that we examine in this paper.

2.1 Measuring Distance

Our distance measurement method exploits the fact that sound travels signifi-
cantly more slowly than light, employing a Difference in Time of Arrival tech-
nique. The same method is used to determine the distance to a lightning strike
by measuring the time between seeing the lightning and hearing the thunder.

To tie this to 2D trilateration, let each robot have one radio frequency (RF)
transceiver and three ultrasonic acoustic transceivers. The ultrasonic transceivers
are the “base points.” Suppose robot 2 simultaneously emits an RF pulse and
an ultrasonic acoustic pulse. When robot 1 receives the RF pulse (almost in-
stantaneously), a clock on robot 1 starts. When the acoustic pulse is received
by each of the three ultrasonic transceivers on robot 1, the elapsed times are
computed. These three times are converted to distances, according to the speed
of sound. Since the locations of the acoustic transceivers are known, as well as
the distances, robot 1 is now able to use trilateration to compute the location
of robot 2 (precisely, the location of the emitting acoustic transceiver on robot
2). Of the three acoustic transceivers, all three must be capable of receiving, but
only one of the three must be capable of transmission.

Where Are You? 131

Measuring the elapsed times is not difficult. Since the speed of sound is roughly
1087′ per second (at standard temperature and pressure), then it takes approx-
imately 76 microseconds for sound to travel 1′′. Times of this magnitude are
easily measured using inexpensive electronic hardware.

2.2 Channeling Acoustic Energy into a Plane

Ultrasonic acoustic transducers produce a cone of energy along a line perpen-
dicular to the surface of the transducer. The width of this main lobe (for the
inexpensive 40 kHz transducers used in our implementation) is roughly 30◦. To
produce acoustic energy in a 2D plane would require 12 acoustic transducers in a
ring. To get three base points would hence require 36 transducers. This is expen-
sive and is a large power drain. We took an alternative approach. Each base point
is comprised of one acoustic transducer that is pointing down. A parabolic cone
is positioned under the transducer, with its tip pointing up towards the trans-
ducer (see also Figure 3 later in this paper). The parabolic cone acts like a lens.
When the transducer is placed at the virtual “focal point” the cone “collects”
acoustic energy in the horizontal plane, and focuses this energy to the receiv-
ing acoustic transceiver. Similarly, a cone also functions in the reverse, reflecting
transmitted acoustic energy into the horizontal plane. This works extremely well
– the acoustic energy is detectable to a distance of about 7′, which is more than
adequate for our own particular needs. Greater range can be obtained with more
power (the scaling appears to be very manageable).

2.3 Related Work

Our work is motivated by the CMU Millibot project. They also use RF and
acoustic transducers to perform trilateration. However, due to the very small
size of their robots, each Millibot can only carry one acoustic transducer (cou-
pled with a right-angle cone, rather than the parabolic cone we use). Hence
trilateration is a collaborative endeavor that involves several robots. To perform
trilateration, a minimum of three Millibots must be stationary (and serve as
beacons) at any moment in time. The set of three stationary robots changes as
the robot team moves. The minimum team size is four robots (and is prefer-
ably five). Initialization generally involves having some robots make “L-shaped”
maneuvers, in order to disambiguate the localization[7].

MacArthur[8] presents two different trilateration systems. The first uses three
acoustic transducers, but without RF. Localization is based on the differences
between distances rather than the distances themselves. The three acoustic trans-
ducers are arranged in a line. The second uses two acoustic transducers and RF
in a method similar to our own. Unfortunately, both systems can only localize
points “in front” of the line, not behind it.

In terms of functionality, an alternative localization method in robotics is to
use line-of-sight IR transceivers. When IR is received, signal strength provides an
estimate of distance. The IR signal can also be modulated to provide communica-
tion. Multiple IR sensors can be used to provide the bearing to the transmitting

132 W.M. Spears et al.

robot (e.g., see[9,10]). We view this method as complementary to our own, but
that our method is more appropriate for tasks where greater localization accu-
racy is required. This will be especially important in outdoor situations where
water vapor or dust could change the IR opacity of air. Similar issues arise with
the use of cameras and omni-directional mirrors/lenses, which also requires far
more computational power and a light source.

2.4 Trilateration Method I

As mentioned above, the location of the “base points” is a significant research
issue. The intuitively obvious placement, due to symmetry considerations, is at
the vertices of an equilateral triangle. This is shown in Figure 1. Two robots are
shown. The two large circles represent the robots (and the small open circles
represent their centers). Assume the RF transceiver for each robot is at its
center. The acoustic transceivers are labeled A, B, and C. Each robot has an
XY coordinate system, as indicated in the figure.

��

��

�

�

��

Robot 1

A a

B

b

C

c

��������

�
�

�
�

�
��

���������

�Y

�
X

��

��

�

�

��

Robot 2

C

A
B�����

Y

�
�

�
�	X

Fig. 1. Three base points in an equilateral triangle pattern

In Figure 1, robot 2 simultaneously emits an RF pulse and an acoustic pulse
from its transceiver B. Robot 1 then measures the distances a, b, and c. Without
loss of generality, assume that transceiver B of robot 1 is located at (x1B , y1B) =
(0, 0)[11]. Solving for the position of B on robot 2, with respect to robot 1,
involves the simultaneous solution of three nonlinear equations, the intersecting
circles with centers located at A, B and C on robot 1 and respective radii of a,
b, and c:1

(x2B − x1A)2 + (y2B − y1A)2 = a2 (1)
(x2B − x1B)2 + (y2B − y1B)2 = b2 (2)
(x2B − x1C)2 + (y2B − y1C)2 = c2 (3)

1 Subscripts denote the robot number and the acoustic transducer. The transducer A
on robot 1 is located at (x1A, y1A).

Where Are You? 133

The form of these equations allows for cancellation of the nonlinearity, and
simple algebraic manipulation yields the following simultaneous linear equations
in the unknowns:

[
x1C y1C

x1A y1A

] [
x2B

y2B

]
=

[
(b2 + x1C

2 + y1C
2 − c2)/2

(b2 + x1A
2 + y1A

2 − a2)/2

]

With the base points at the vertices of an equilateral triangle, the coefficient

matrix can be given by
[
1/2

√
3/2

1/2 −
√

3/2

]
. Unfortunately, the solution to these

simultaneous trilateration equations are somewhat complex and inelegant. Also,
the condition number of the coefficient matrix is

√
3. The condition number of a

matrix is a measure of the sensitivity of the matrix to numerical operations. Since
distance measurements are quantized and noisy, the goal is to have a condition
number near the optimum, which is 1.0 (i.e., the matrix is well-conditioned).

2.5 Trilateration Method II

There is a better placement for the acoustic transducers (base points). Let A be
at (0, d), B be at (0, 0), and C be at (d, 0), where d is the distance between A
and B, and between B and C (see Figure 2). Assume that robot 2 emits from
its transducer B.

��

���

��

Robot 1

C

A

B

a
b
c

�
�

�
��

�
�

�
�

�
�

�Y

�
X

��

���

� � Robot 2

C

A B

�X

Y

Fig. 2. Three base points in an XY coordinate system pattern

The trilateration equations turn out to be surprisingly simple (see[11]):

x2B =
b2 − c2 + d2

2d
y2B =

b2 − a2 + d2

2d

A very nice aspect of these equations is that they can be simplified even fur-
ther, if one wants to trilaterate purely in hardware. Since squaring (or any other
kind of multiplication) is an expensive process in hardware, we can minimize the
number of multiplications and divisions as follows:

x2B =
[
(b + c)(b − c)

d
+ d

]
� 1 y2B =

[
(b + a)(b − a)

d
+ d

]
� 1

where “� 1” is a binary “right-shift by 1”.

134 W.M. Spears et al.

With the base points in this configuration, the coefficient matrix is the identity
matrix, and hence has a condition number of 1.0. Thus not only is the solution
elegant, but the system is well-conditioned. Further analysis of our trilateration
framework indicates that, as would be expected, error is reduced by increasing
“base-line” distance d (our robots have d equal to 6′′). Error can also be reduced
by increasing the clock speed of our trilateration module (although range will
decrease correspondingly, due to counter size).

By allowing robots to share coordinate systems, robots can communicate their
information arbitrarily far throughout the swarm network. For example, suppose
robot 2 can localize robot 3. Robot 1 can localize only robot 2. If robot 2 can also
localize robot 1 (a fair assumption), then by passing this information to robot 1,
robot 1 can now determine the position of robot 3. Furthermore, the orientations
of the robots can also be determined. Naturally, localization errors can compound
as the path through the network increases in length, but multiple paths can be
used to alleviate this problem to some degree. Heil[11] provides details on these
issues.

2.6 Trilateration Method II + Communication

Thus far we have only discussed issues of localization by using trilateration. Tri-
lateration method II provides simplicity of implementation with robustness in
the face of sensor noise. However, we have not yet discussed the issue of merg-
ing localization with data exchange. The framework makes the resolution of
this issue straightforward. Instead of simply emitting an RF pulse that contains
no information but serves merely to synchronize the trilateration mechanism,
we can also append data to the RF pulse. With this simple extension, robot 2
can send data to robot 1, and when the trilateration is complete, robot 1 knows
the location of robot 2, and has received the data from robot 2. Simple coor-
dinate transformations allow robot 1 to convert the data from robot 2 (which
is in the coordinate frame of robot 2) to its own coordinate frame, if this is
necessary. Trilateration method II with communication is assumed throughout
the remainder of this paper.

3 Trilateration Implementation

3.1 Trilateration Hardware

Figure 3 illustrates how our trilateration framework is currently implemented in
hardware. The left figure shows two acoustic transducers pointing down, with re-
flective parabolic cones. The acoustic transducers are specially tuned to transmit
and receive 40 kHz acoustic signals.

Figure 3 (middle) shows our in-house acoustic sensor boards (denoted as
“XSRF” boards, for Experimental Sensor Range Finder). There is one XSRF
board for each acoustic transducer. The XSRF board calculates the time dif-
ference between receiving the RF signal and the acoustic pulse. Each XSRF

Where Are You? 135

Fig. 3. Important hardware components: (left) acoustic transducers and parabolic
cones, (middle) the XSRF acoustic sensor printed circuit board, and (right) the com-
pleted trilateration module (beta-version top-down view)

contains 7 integrated circuit chips. A MAX362 chip controls whether the board
is in transmit or receive mode. When transmitting, a PIC microprocessor gen-
erates a 40 kHz signal. This signal is sent to an amplifier, which then interfaces
with the acoustic transducer. This generates the acoustic signal.

In receive mode a trigger indicates that an RF signal has been heard, and
that an acoustic signal is arriving. When the RF signal is received, the PIC
starts counting. To enhance the sensitivity of the XSRF board, three stages of
amplification occur. Each of the three stages is accomplished with a LMC6032
operational amplifier, providing a gain of roughly 15 at each stage. Between the
second and third stage is a 40 kHz bandpass filter to eliminate out-of-bound
noise that can lead to saturation. The signal is passed to two comparators, set
at thresholds of ± 2V. When the acoustic energy exceeds either threshold, the
PIC processor finishes counting, indicating the arrival of the acoustic signal.

This timing count provided by each PIC (one for each XSRF) is sent to a
MiniDRAGON2 68HC12 microprocessor. The MiniDRAGON performs the tri-
lateration calculations. Figure 3 (right) shows the completed trilateration mod-
ule, as viewed from above. The MiniDRAGON is outlined in the center.

3.2 Synchronization Protocol

The trilateration system involves at least two robots. One robot transmits the
acoustic-RF pulse combination, while the others use these pulses to compute
(trilaterate) the coordinates of the transmitting robot. Hence, trilateration is a
one-to-many protocol, allowing multiple robots to simultaneously trilaterate and
determine the position of the transmitting robot.

The purpose of trilateration is to allow all robots to determine the position
of all of their neighbors. For this to be possible, the robots must take turns
transmitting. For our current implementation we use a protocol that is similar
to a token passing protocol. Each robot has a unique hardware encoded ID. When
2 Produced by Wytec (http://www.evbplus.com/)

136 W.M. Spears et al.

a robot is transmitting it sends its own ID. As soon as the neighboring robots
receive this ID they increment the ID by one and compare it with their own ID.
The robot that matches the two IDs is considered to have the token and will
transmit next. The other robots will continue to trilaterate. Each robot maintains
a data structure with the coordinate information, as well as any additional sensor
information, of every neighboring robot.

Although this current protocol is distributed, there are a few problems with it.
First, it assumes that all robots know how many robots are in the swarm. Second,
the removal or failure of a robot can cause all robots to pause, as they wait for
the transmission of that robot. We are currently working on new protocols to
rectify these issues.

Fig. 4. The architecture of the Version 1.0 Maxelbot

4 The Maxelbot

Our University of Wyoming “Maxelbot” (named after the two graduate students
that designed and built the robot) is modular. A primary MiniDRAGON is used
for control of the robot. It communicates via an I2C bus to all other peripherals,
allowing us to plug in new peripherals as needed. Figure 4 shows the architecture.
The primary MiniDRAGON is the board that drives the motors. It also monitors
proximity sensors and shaft encoders. The trilateration module is shown at the
top of the diagram. This module controls the RF and acoustic components of
trilateration. Additional modules have been built for digital compasses and ther-
mometers. The PIC processors provide communication with the I2C bus. The
last module is being built especially for the purpose of chemical plume tracing
(i.e., following a chemical plume back to its source). It is composed of multiple
chemical sensors, and sensors to measure wind speed and direction. Chemical
plume tracing algorithms will run on the additional dedicated MiniDRAGON.
The completed Maxelbot is shown in Figure 5.

Where Are You? 137

Fig. 5. The Version 1.0 Maxelbot itself

5 Experiments and Demonstrations

The following subsections illustrate different exemplar tasks that we can perform
by using the trilateration framework. It is important to note that given the small
number of Maxelbots currently built (three) most of these tasks are not swarm
tasks per se. Also, most of our control algorithms are currently behavior-based,
and are generally not novel. However, it is important to keep in mind that the
point of the demonstrations is (1) to test and debug our hardware, and (2) to
show the utility and functionality of the trilateration framework.

5.1 Accuracy Experiment

To test the accuracy of the trilateration module, we placed a robot on our lab
floor, with transducer B at (0′′, 0′′). Then we placed an emitter along 24 grid
points from (−24′′, −24′′) to (24′′, 24′′). The results are shown in Figure 6. The
average error over all grid points is very low – 0.6′′, with a minimum of 0.1′′ and
a maximum of 1.2′′.

5.2 Linear Formations

We are currently investigating the utility of linear formations of robots in
corridor-like environments, such as sewers, pipes, ducts, etc. As stated above,
each robot has a unique ID. Robot 0 is the leader. Robot 1 follows the leader.
Robot 2 follows robot 1. Initially, the three robots are positioned in a line in the
following order: robot 0, robot 1, robot 2, with robot 0 being at the head of the
line. The distance between the neighboring robots is 12′′.

The behavior is as follows. Robot 0 moves forward in a right curved trajectory
(for the sake of making the demonstration more interesting). Robot 0 continu-
ally monitors how far behind robot 1 is. If the distance behind is greater than
14′′, then robot 0 will stop, waiting for robot 1 to catch up. Robot 1 adjusts its

138 W.M. Spears et al.

−30 −24 −18 −12 −6 0 6 12 18 24 30
−30

−24

−18

−12

−6

0

6

12

18

24

30
Actual vs. Perceived Location of Beacon

inches

in
ch

es

Perceived Location Actual Location Receivers

Fig. 6. The perceived location of the emitter, versus the actual location

own position to maintain robot 0 at coordinates (0′′, 12′′) relative to its own
coordinate system. Robot 2 acts the same way with respect to robot 1 (see
Figure 7). The robots maintained the correct separation very well, while moving.

Fig. 7. Three Maxelbots in linear formation

5.3 Box/Baby Pulling

Another emphasis in our research is search and rescue. We have successfully used
two robots to push (or pull) an unevenly weighted box across our lab. However,
the friction of the box on the floor results in slippage of the robot tires. This
produces random rotations of the box. Instead, Figure 8 shows a three robot
approach, where one of the robots is not in physical contact with the box.

The behavior is as follows. Three robots are initialized in a triangular forma-
tion. Robot 0 is the leading robot while the remaining two robots stay behind
the leader. Robot 1 positions itself such that the leader is at (24′′, 24′′). Robot
2 positions itself such that the leader is at (−18′′, 24′′). The asymmetric x val-
ues are used to compensate for the 6′′ baseline between transducers, yielding an
isosceles triangle. Robot 0 moves forward along a left curved trajectory. Robot 0

Where Are You? 139

Fig. 8. Three Maxelbots pulling a “baby” to safety

continually monitors robot 1 and robot 2. If either of the two robots falls be-
hind, robot 0 will stop and wait for both of the robots to be within the desired
distance of 34′′. Note that while robots 1 and 2 are tethered to the baby basket,
robot 0 is not. Hence robot 0 (with the other two robots and the basket) follows
a fairly well-controlled trajectory, subject to the limits of the accuracy of our
shaft encoders and standard slippage.

5.4 Physicomimetics Formations for Chemical Plume Tracing

As a test of our hardware using a true swarm control algorithm, we implemented
artificial physics (AP) on the robots[6]. Figure 9 shows three Maxelbots self-
organizing into an equilateral triangle.

As has been shown in prior work[6,12] a goal force can be applied to AP for-
mations, such that the formation moves towards the goal, without breaking the
formation apart. We have used a light source for our goal, and have had success
using the digital compass to drive the formation in a given direction. Since one
of our research thrusts is chemical plume tracing (CPT)[13], we intend to use the
CPT module (described above) as our goal force. The objective of CPT is to lo-
cate the source (e.g. a leaking pipe) of a hazardous airborne plume by measuring
flow properties, such as toxin concentration and wind speed. Simulation stud-
ies in[13] suggested that faster and more accurate source localization is possible
with collaborating plume-tracing vehicles. We constructed the CPT module to
test this hypothesis on real ethanol plumes. In this section, we compare CPT
performance of a single Maxelbot implementation against a distributed approach
using three Maxelbots.

As the trace chemical we employ ethanol, a volatile organic compound (VOC),
and measure the chemical concentration using Figaro TGS2620 metal-oxide VOC
sensors. The single Maxelbot carries four of these sensors, mounted at each cor-
ner, while there are only three chemical sensors in the distributed implementation
– one sensor per Maxelbot. In both versions, the HCS12 microprocessor performs
analog-to-digital conversion of sensor output, and then navigates according to
a CPT strategy. We employ one of the most widely-used CPT strategies called
chemotaxis, which advances the vehicle in the direction of an increasing chemical
gradient.

140 W.M. Spears et al.

Fig. 9. Three Maxelbots using AP to self-organize into an equilateral triangle

For our first experiment, we performed 23 CPT evaluation experiments in a
small 6′ × 11′ room, using an ethanol-filled flask as the chemical source, with
the single, more capable Maxelbot. The separation between the source and the
starting location of the Maxelbot was 7.5′ on average. Each run terminated when
the Maxelbot came within 5′′ of the ethanol flask (a CPT success), or after 30
minutes of unsuccessful plume tracing. Of the 23 test runs, 17 were successful in
locating the source (a 74% success rate), with the average localization time of
18 minutes (σt = 6.2 minutes). These results are consistent with those reported
in the literature[14], although our definition of a CPT success is decidedly more
stringent than the typical completion criterion used by others.

For our second experiment we used a much larger 25′×25′ indoor environment.
This environment is far more difficult – out of 9 trials, the single Maxelbot only
succeeded twice, for a success rate of 22.2%. The variance in the time to success
was very large; 3:30 and 17:30 minutes respectively (σt = 9.9 minutes). A typical
movement trace is shown in Figure 10 (left). The Maxelbot’s path indicates that
it is having a very difficult time following the chemical gradient in this larger
environment.

For our third experiment, we ran 10 experiments with the distributed Maxel-
bot implementation. As mentioned above, each of three Maxelbots carries only
one chemical sensor. A triangular formation is maintained by the AP algorithm.
Each Maxelbot shares the chemical sensor information with its neighbors, and
then each Maxelbot independently computes the direction to move. Because the
formation force is stronger than the goal force, the formation remains intact,
and serves as a mechanism for moving the formation along a consensus route.
Despite the fact that each Maxelbot senses far less chemical information than
before (and the total number of chemical sensors has decreased from four to
three), performance increased markedly! Out of 10 trials, the distributed imple-
mentation successfully found the chemical source six times, for a 60% success
rate. Also, this implementation showed a far more consistent source emitter ap-
proach pattern, with an average search time of just seven minutes (and σt = 5.8
minutes). A typical path can be seen in Figure 10 (right). Snapshots of an actual
run can be seen in Figure 11.

Performance statistics for each CPT implementation are given in Table 1.
Success rate is simply the percentage of trials in which a Maxelbot drove within
one foot of the emitter. Search time is a measure of how long it took for the

Where Are You? 141

Fig. 10. Visualization of a sample CPT trace for each implementation. The large,
dark rectangular blocks are obstacles (i.e., bulky laboratory equipment); the emitter
is shown with the diamond shape, and each Maxelbot is depicted as a triangle. The
Maxelbot path is drawn using a lightly-shaded line; for the multi-Maxelbot trace, the
singular path is computed by averaging the locations of the three Maxelbots.

Maxelbots to find the emitter, computed for trials where the emitter was found.
The contact duration is the total length of time that a Maxelbot was within one
foot of the chemical emitter. To make the comparison fair for both implemen-
tations, the duration given for the Maxelbot swarm implementation includes at
most one Maxelbot per time step. In practice, however, there is great value in
having multiple Maxelbots near the emitter, for instance in order to identify a
potential source and then extinguish it[13]. To place this in perspective, for the
distributed implementation, when one Maxelbot is near the source, all three are
near the source. However, if one is using the single Maxelbot implementation
the success rate is 22.2%. Hence, the probability of having three of these inde-
pendent non-collaborating robots near the source is approximately 1% (0.2223),
as opposed to a success rate of 60%.

Fig. 11. Three Maxelbot CPT test run; robots are moving from left to right

142 W.M. Spears et al.

Table 1. CPT performance measures for both implementations: the swarm-based Max-
elbot implementation outperforms the single Maxelbot version on each evaluation met-
ric (standard deviation values are given in parenthesis)

Metric Single Maxelbot Three Maxelbots
Success Rate 22.2% 60.0%

Search Time 630.0 sec (σ = 594.0) 415.0 sec (σ = 349.4)

Contact Duration 532.5 sec (σ = 668.2) 677.5 sec (σ = 361.2)

6 Summary

This paper describes a novel 2D trilateration framework for the accurate local-
ization of neighboring robots. The framework uses three acoustic transceivers
and one RF transceiver. By also using the RF to exchange information between
robots, we couple localization with data exchange. Our framework is designed
to be modular, so that it can be used on different robotic platforms, and is
not restricted to any particular class of control algorithms. Although we do
not rely on GPS, stationary beacons, or environmental landmarks, their use is
not precluded. Our framework is fully distributed, inexpensive, scalable, and
robust.

There are several advantages to our framework. First, the basic trilateration
equations are elegant and could be implemented purely in hardware. Second, the
system is well-conditioned, indicating minimal sensitivity to measurement error.
Third, it should provide greater localization accuracy than IR localization meth-
ods, especially in outdoor situations. The quality of the accuracy is confirmed via
empirical tests.

To illustrate the general utility of our framework, we demonstrate the ap-
plication of three of our robots on three different tasks: linear formations, box
pulling, and geometric formation control for chemical plume tracing. The trilat-
eration hardware performed well on all three tasks. The first two tasks utilize
behavior-based control algorithms, while the latter uses artificial physics (AP).
The latter is especially interesting, because it demonstrates the application of
a true swarm-based control algorithm. One of our primary research interests is
chemical plume tracing, using AP. In order to accomplish this task, a special
chemical sensing module has also been built in-house. On the third task AP is
combined with the chemical sensing module to perform chemical plume trac-
ing. Experimental results indicate that a small swarm of less capable Maxelbots
easily outperforms one more capable Maxelbot.

Open Source Project URL

http://www.cs.uwyo.edu/∼wspears/maxelbot provides details on this project.

http://www.cs.uwyo.edu/~wspears/maxelbot

Where Are You? 143

References

1. Borenstein, J., Everett, H., Feng, L.: Where am I? Sensors and methods for mobile
robot positioning. Technical report, University of Michigan (1996)

2. Balch, T., Hybinette, M.: Social potentials for scalable multirobot formations. In:
IEEE Transactions on Robotics and Automation. Volume 1. (2000) 73–80

3. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations.
IEEE Transactions on Automatic Control 49 (2004) 1465–1476

4. Fierro, R., Song, P., Das, A., Kumar, V.: Cooperative control of robot forma-
tions. In Murphey, R., Pardalos, P., eds.: Cooperative Control and Optimization.
Volume 66., Hingham, MA, Kluwer Academic Press (2002) 73–93

5. Brogan, D., Hodgins, J.: Group behaviors for systems with significant dynamics.
Autonomous Robots 4 (1997) 137–153

6. Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control
of swarms of vehicles. Autonomous Robots 17 (2004) 137–162

7. L. Navarro-Serment, L., Paredis, C., Khosla, P.: A beacon system for the local-
ization of distributed robotic teams. In: International Conference on Field and
Service Robots, Pittsburgh, PA (1999) 232–237

8. MacArthur, D.: Design and implementation of an ultrasonic position system for
multiple vehicle control. Master’s thesis, University of Florida (2003)

9. Rothermich, J., Ecemis, I., Gaudiano, P.: Distributed localization and mapping
with a robotic swarm. In Şahin, E., Spears, W., eds.: Swarm Robotics, Springer-
Verlag (2004) 59–71

10. Payton, D., Estkowski, R., Howard, M.: Pheromone robotics and the logic of
virtual pheromones. In Şahin, E., Spears, W., eds.: Swarm Robotics, Springer-
Verlag (2004) 46–58

11. Heil, R.: A trilaterative localization system for small mobile robots in swarms.
Master’s thesis, University of Wyoming, Laramie, WY (2004)

12. Spears, W., Heil, R., Zarzhitsky, D.: Artificial physics for mobile robot formations.
In: Proceedings IEEE International Conference on Systems, Man, and Cybernetics.
(2005) 2287–2292

13. Zarzitsky, D., Spears, D., Spears, W.: Distributed robotics approach to chemical
plume tracing. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’05). (2005) 4034–4039

14. Lilienthal, A.: Gas Distribution Mapping and Gas Source Localisation with a
Mobile Robot. PhD thesis, University of Tübingen (2004)

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 144–157, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Collective Perception in a Robot Swarm

Thomas Schmickl1, Christoph Möslinger2, and Karl Crailsheim1

1 Department for Zoology, University of Graz, 8010 Graz, Austria
schmickl@nextra.at

2 FH St. Pölten, 3100 St. Pölten, Austria

Abstract. In swarm robotics, hundreds or thousands of robots have to reach a
common goal autonomously. Usually, the robots are small and their abilities are
very limited. The autonomy of the robots requires that the robots’ behaviors are
purely based on their local perceptions, which are usually rather limited. If the
robot swarm is able to join multiple instances of individual perceptions to one
big global picture (e.g. to collectively construct a sort of map), then the swarm
can perform efficiently and such a swarm can target complex tasks. We here
present two approaches to realize ‘collective perception’ in a robot swarm. Both
require only limited abilities in communication and in calculation. We compare
these strategies in different environments and evaluate the swarm’s perform-
ance in simulations of fluctuating environmental conditions and with varying
parameter settings.

1 Introduction

In robot swarms, hundreds or thousands of small and simple robots have to perform in
a well-organized and efficient way to pursue common goals. With increasing size of
the swarms, external controllers that have a ‘global view’ of the swarm’s environment
get inefficient because the control of each single robot within the swarm gets intracta-
ble even for strong computers. Also pre-calculated plans represent no solution with
swarm sizes beyond a few hundred robots. Another problem is the inter-robot com-
munication in such huge swarms, because if every robot has to communicate with
every other robot, the required width of the communication channel increases
non-linearly with the swarm size. In the I-SWARM project [1][2][3], we want to im-
plement a swarm of very small robots (approx. 8mm³ size) that is able to perform col-
lective perception. To us, the term “collective perception” describes a way that allows
taking advantage at the global (swarm) level from a mass of complex data sensed in
parallel on the individual level. The final swarm decision is made at the conceptual
level by a group of collaborative agents. This ability can enhance the performance of
a swarm (e.g. optimize patch selection for foraging tasks [4]) and expands its range of
application. The I-SWARM robots have only limited sensorial abilities and can com-
municate only at short distance by LED’s and photodiodes. These restrictions create a
demand for simple solutions of collective perception strategies.

Animal swarms demonstrate that a set of relatively primitive individual behaviors
enhanced with local communication can produce a large set of complex swarm behav-
iors. Such animal swarms show self-organization [5] and swarm-intelligence [6][7]:

 Collective Perception in a Robot Swarm 145

Bacteria, ants and bees are able to choose the optimal feeding site and to recruit an
appropriate fraction of foragers to each food site. Ants use pheromones to manage this
decision making collectively. Honeybees use a variety of dances performed near the
hive entrance to choose their feeding sites and to recruit the appropriate number of
forager bees and food-storage bees. In both cases, individual animals do not visit sev-
eral feeding sites and do not compare them individually. In contrast, pheromones and
dances generate a structured environment that is regulated by positive and by negative
feedback loops. These specialized environments act like ‘maps’ that are built up col-
lectively and that are ‘read’ by many individuals in parallel. The most fascinating
examples of ‘collective perception’ are found in honeybees. Forager bees and storage
bees evaluate simple cues like queuing delays [8][9][10], searching times for empty
combs [11] and multiple nectar transfers [12] to assess the current global workload
balancing, the global need for comb construction and the environmental nectar flow.

Our approach to a bio-inspired technique for collective perception in swarm robot-
ics is inspired by one of these examples of ‘collective perception’ in honeybees: By
evaluating trophallactic contacts1 forager bees can indirectly assess the current ratio of
brood demand to pollen supply in the colony without inspecting brood area and pollen
stores individually [13][14][15]. Nurse bees eat and digest pollen to derive a proteina-
ceous food (jelly) from it [16]. This jelly is fed to larvae and is exchanged frequently
among adult bees. In times with high pollen demand, when a lot of brood has to be
fed, the larvae consume the main part of the proteins, so that forager bees do not re-
ceive high amounts of proteins through trophallaxis. It is assumed that foragers are
therefore more “protein hungry” and are more likely to forage for pollen instead of
nectar. This way, the colony responds to a high pollen demand by recruiting more
foragers to pollen collecting. The collective of forager bees indirectly perceives the
current ratio of brood to food. In addition to proteins, the brood also consumes large
amounts of nectar and nectar is also passed from bee to bee via trophallaxis.

Our goal was to use mechanisms in our robot swarm that are as simple as the
biological examples mentioned above. We tested two approaches, one is a rather
technical solution and was already used in swarm robotics, and the other approach is
inspired by the trophallactic interactions of honeybees. Both methods are compared in
the same simulated environment. The bio-inspired strategy is evaluated in detail and
the importance of its parameters is analyzed in detail. Finally, the bio-inspired ap-
proach had to demonstrate its advantages in a fluctuating environment.

2 The Scenario

In the experiments described here, we used our simulation platform LaRoSim (Large
Robotswarm Simulator), which we already described in [17][18]. The simulator is a
multi-agent simulation of approx. 1000 robots that move in an arena. These robots can
communicate by LED’s and photodiodes and can also sense walls and obstacles this
way. In addition to that, special (color) marks on the floor can be sensed, but only if
the robot is located directly above such a mark.

1 Trophallaxis is the mouth-to-mouth transfer of fluid food between adult honeybees.

146 T. Schmickl, C. Möslinger, and K. Crailsheim

Fig. 1. A screen shot of our simulation platform LaRoSim. The two black areas (small left and
huge right) represent target areas for aggregation. The gray circles indicate the zones in which
we counted the robots for evaluating the aggregation success. Gray boxes represent robots.

Figure 1 shows a screen shot of the scenario the robot swarm has to perform in.
Two black marks indicate aggregation areas (e.g., places to work). These areas can be
of different sizes. The goal of the swarm is:

1. Explore the arena to detect these target sites.
2. Communicate the location of the targets to the other robots, so that they can

aggregate there.
3. Recruit cohorts of robots to each target. The sizes of these cohorts should cor-

respond to the size of the target areas.

In conclusion, the robot swarm has to manage to measure and to compare the sizes
and the distances of the two target areas collectively. This goal can only be achieved
collectively, because it goes far beyond the sensorial capabilities of a single robot. We
chose a very simple example of work that has to be performed by the robot swarm
(pure aggregation), because we wanted to concentrate on the problem of ‘collective
perception’ in this study. More sophisticated work in LaRoSim, e.g. collective floor
cleaning and optimal route finding, was already shown in [17][18]. To evaluate the

Fig. 2. Morphology of the robots in the simulation environment. In the picture, the two robots
can establish a bi-directional communication, because one receptor of each robot is within the
light cone of the other robot.

 Collective Perception in a Robot Swarm 147

recruitment of robot cohorts to the two targets, we measured the number of aggre-
gated robots in a radius of 10 robot-diameters (rd) around the center of each target
area, as indicated by the gray circles around all black target areas in figure 1. Please
note, that the robots have no ability for long-distance communication and no long-
range sensing for target areas. The information about the location of the target areas
has to be propagated through the swarm by using only nearest-neighbor communica-
tion, as depicted in figure 2. The communication radius is 3.5 rd.

2.1 The Hop-Count Strategy

The first strategy that we implemented in our robots is called ‘hop-count’ strategy. This
strategy works as follows: The robots move randomly and try to avoid collisions and
walls. Each robot i has an internal memory hc(i,t) that is set to the maximum possible
hop-count hc(i,t)=hcmax. If a robot encounters a target area, it sets hc(i,t)=0. During the
run, all robots communicate with their nearest neighbors within their communication
radius. The focal robot i compares its own hop-count with every neighbor j. If the
neighbor has a lower hop-count (hc(j,t)<hc(i,t)), robot i copies the hop-count value of
the neighbor and increases it by 1. Every tf time steps, the robot i increases its hop-count
value by 1 spontaneously (hc(i,t)=hc(i,t-1)+1). This process is called ‘forgetting’, be-
cause it forces wrong or out-dated information to leave the system over time. If hc(i,t)
exceeds hcmax, hc(i,t) is set to hcmax. This way a gradient emerges within the robot
swarm that points downhill to the target areas. A robot that experiences a neighbor with

(a) (b)

Fig. 3. (a) The gradient of hop-counts that emerges in the ‘hop-count’ strategy. The robot on
the target sets its hop-count to 0. All robots copy the lowest hop-count from their neighbors and
increase it by 1. After some (tf) time steps, they increase the hop-count spontaneously (‘forget-
ting’). (b) Behavioral program of a robot in the ‘hop-count’ strategy. This program is executed
every time step.

148 T. Schmickl, C. Möslinger, and K. Crailsheim

a hop-count that is smaller than or equal its own hop-count navigates towards this
neighbor. If more than one neighbor has the same low hop-count, the robot calculates its
direction by averaging the vectors towards these neighbors. Figure 3a depicts the emer-
gence of the gradient within the robot swarm. Figure 3b shows the behavioral program
that is executed by each robot at every time step.

2.2 The ‘Trophallaxis-inspired’ Strategy

The ‘trophallaxis-inspired’ strategy is inspired by a behavior that is frequently found
in social insects: The mouth-to-mouth transfer of liquid food between adult animals.
In honeybees, beekeepers often install feeders in the hives to provide the bees with
sugar-water. At these feeders, some bees fill their crops and then move away. On their
way through the hive, they meet other bees and can share parts of their nectar load
with them. It is assumed, that the more nectar the donor bee has and the less nectar the
receiver bee has, the more nectar is transferred on average. On their way, the bees
also consume a fraction of their nectar load to gain energy from it.

In the robot-swarm, the nectar crop of the bee is represented by a memory place in-
side of the robot. Basically each robot i starts with random movement and with a
memory value m(i,t)=0. If the robot encounters a target, it adds a defined amount of
‘virtual nectar’ to its memory aa(i,t)=ra (ra: addition-rate, aa(i,t): amount of addition).
Every time step, robot i communicates with its local neighbors j and exchanges an
amount of ‘virtual nectar’ with them. The amount at(i,t) of this exchange is propor-
tional to the differences in the memory values among the robots and is determined by
the transfer-rate rt: at(i,t)=0.5*(m(j,t-1)-m(i,t-1))*rt/N. The variable N represents the
number of local neighbors the focal robot communicates with. In case of N=0, the
value of at(i,t) is set to 0. Every time-step, each robot i also decreases its memory
value by an amount ac(i,t) which is defined by the consumption rate rc. ac(i,t)=
m(i,t-1)*rc. After all these in-flows and out-flows of ‘virtual nectar’ are calculated by
each robot the memory-value can be updated according to the following equation:
m(i,t)=m(i,t-1)+aa(i,t)+at(i,t)-ac(i,t). Please note that the ‘trophallaxis-inspired’ strat-
egy uses floating point numbers, while the ‘hop-count’ strategy uses integer values
only. By the rules mentioned above, again a gradient of memory values emerges
within the robot swarm. If a robot i reaches a memory value above a threshold
(m(i,t)>thagg), the robot turns towards its local neighbor with the highest memory
value. If the memory value is below or equal thagg, the robot i moves randomly.

Figure 4a depicts how the gradient of ‘virtual nectar’ emerges in the robot swarm
in the ‘trophallaxis-inspired’ strategy. Figure 4b depicts the behavioral program that is
executed by every robot in every time step. In order to adjust the aggregation-
sensitivity of the swarm we implemented a behavioral threshold thagg. A robot will
only follow the gradient if its memory value is above the threshold m(i,t)>thagg. If its
memory value is below or equal thagg, the robot will move randomly. Figure 4a de-
picts how the gradient of ‘virtual nectar’ emerges in the robot swarm in the ‘trophal-
laxis-inspired’ strategy. Figure 4b depicts the behavioral program that is executed by
every robot in every time step.

 Collective Perception in a Robot Swarm 149

(a) (b)

Is there a target?

Consume:
ac(i,t) = m(i,t)*rc

Turn randomly

Check for collision
with neighbor j ?

Move forward

aa(i,t) = ra

Is there a neighbor j
for transfer?

Turn away from j
yes

yes

no

no

no

in

out

aa(i,t)=at(i,t)=ac(i,t)=0

at(i,t) = 0.5*(m(j,t-i)-m(i,t-1))*rt/N

Update internal state:
m(i,t)=m(i,t-1)+aa(i,t)+at(i,t)-ac(i,t)

 m(i,t)>thagg? Follow gradient

yes

yes

no

N=size of the set of neighbors
that the robot communicates with

Fig. 4. (a) The gradient of ‘virtual nectar’ that emerges in the ‘trophallaxis-inspired’ strategy.
The robot at the target adds ‘virtual nectar’ to its memory. All robots exchange fractions of the
‘virtual nectar’ proportionally to the inter-robot differences. All robots consume ‘virtual nectar’
over time, thus they decrease their memory values (‘forgetting’). (b) Behavioral program of a
robot in the ‘trophallaxis-inspired’ strategy. This program is executed every time step.

3 Results

In our simulation runs, both strategies were able to produce the desired aggregation
behavior at the target areas. But this was not the main focus of this study. The main
question was, whether or not the swarm will be able to collectively measure the sizes
of the target areas and to proportionally recruit the appropriate number of robots to
these targets.

3.1 Scaling the Sizes of the Target Areas

In this experiment, we tested both strategies in environments with varying differ-
ences in the size of the target areas. The sizes of the targets areas were defined by
their radii. We tested the following ratios of radii: 1:5, 2:4, 3:3, 4:2, and 5:1. We
started 375 robots that were (uniformly) randomly distributed within the arena. The
results of these simulation runs are depicted in figure 5. The ‘hop-count’ strategy
recruited more robots during the runtime of the experiments (=250 time steps) than
the other strategy, but failed to recruit the robots according to the target sizes. The

150 T. Schmickl, C. Möslinger, and K. Crailsheim

aggregation was measured by counting the number of robots within a radius of 10
robot-diameters around the center of each target (see figure 1). For the simulation
runs, we used the following parameters: ra=50, rc=0.01, rt=1, hcmax=40, tf=5. The
aggregation threshold thagg was set to 100. For collision avoidance, the robots tried
to stay away from each other half of their communication radius (coll-dist=0.5).
Robot speed was 0.25 robot-diameters per step. The trophallaxis-inspired strategy
recruited lower robot numbers but managed to recruit the robots accordingly to the

Fig. 5. Collective decisions made by the robot swarm in different environments. The dashed
line shows the expected number of robots that would have been in the measurement area (ra-
dius=10 each) if there had been no aggregation behavior at all. N=10 per setting. Bars represent
mean values and whiskers indicate standard deviations. Duration: 250 time steps.

0

200

400

600

800

1000

m
e

m
o

ry
 v

a
lu

e
s

0

200

400

600

800

1000

m
e

m
o

ry
 v

a
lu

e
s

0

200

400

600

800

1000

m
e

m
o

ry
 v

a
lu

e
s

800-1000

600-800

400-600

200-400

0-200

trophallaxis strategy - time step 10 trophallaxis strategy - time step 200 trophallaxis strategy - time step 500

0

3

6

9

12

15

h
o

p
 c

o
u

n
ts

0

3

6

9

12

15

h
o

p
 c

o
u

n
ts

0

3

6

9

12

15

h
o

p
 c

o
u

n
ts

12-15

9-12

6-9

3-6

0-3

hop-count strategy - time step 10 hop-count strategy - time step 200 hop-count strategy - time step 500

(a) (b) (c)

(d) (e) (f)

Fig. 6. The dynamics of the emerging gradients in our experiment. (a-c): The dynamics of the
gradient in the trophallaxis inspired strategy. For generating the picture, we assigned the maxi-
mum memory value of all visible robots to each location in the arena. (d-f): The dynamics of
the gradient in the hop-count strategy. Here we assigned the minimum hop-count of all visible
robots to each position in the arena. Both simulation runs used extreme environmental condi-
tions: The left target was very small (radius=1) and the right target was large (radius=5).

 Collective Perception in a Robot Swarm 151

sizes of the target areas. An explanation for these results can be found in figure 6,
which depicts two simulation runs with very extreme conditions: A small target on
the left side (radius=1) and a huge target on the right side of the arena (radius=5).
The hop-count strategy generates two bowl-shaped gradients that immediately reach
the whole arena. The two bowls are of almost equal size and so the recruited co-
horts of robots were also of almost equal size. In the trophallaxis-inspired strategy,
the emergence of the gradient is much slower. But the bigger target on the right side
allows more robots to add ‘virtual nectar’ to the system through their addition- and
transfer-rates. This leads to a much higher ‘mountain’ that is able to recruit the ma-
jority of the robots to the right side. Obviously, the hop-count strategy is only able
to report the distance of the target to other robots, while the trophallaxis-inspired
strategy is able to report also the sizes of the targets.

3.2 The Importance of the Swarm Density

In swarm robotics, the swarm density is an important factor. To test how swarm densi-
ties affect the abilities of swarms to perform collective perception we further investi-
gated the experiment with the biggest difference in target sizes (radii left:right = 1:5).

0 0.1 0.2 0.3
0

50

100

150

200

250

density of robots

nu
m
be
r
of
ag
gr
eg
at
ed

ro
bo
ts

robots left
robots right
no aggregation

Fig. 7. Aggregation of robots to the small left target area (radius=1) and to the large right target
area (radius=5) with varying swarm densities. The dashed line shows the expected number of
robots that would have been in the measurement area (radius=10 each) if there had been no
aggregation behavior at all. N=10 per setting. Duration: 250 time steps.

152 T. Schmickl, C. Möslinger, and K. Crailsheim

We only tested swarms using the trophallaxis-inspired strategy because swarms using
the hop-count strategy couldn't differentiate between target sizes (see sub-section 3.1,
figures 5,6). For the following analysis we used the same parameter settings as we
used in sub-section 3.1. The only varied parameter was the density of the robots,
which we scaled between 0.01 and 0.34, which corresponds to swarm sizes of 30 ro-
bots and 1047 robots. Figure 7 shows the results of these experiments: Aggregation
was performed on both target areas. With a swarm density of 0.17, the maximum
preferential aggregation was found at the large target. With higher densities (> 0.2),
no increase in aggregation is found anymore, the number of robots increases linearly
as a product of pure random walk (dashed line). This analysis was made with a value
of thagg=-50 to demonstrate that with the trophallaxis-strategy the swarm can also
perceive small target areas (see section 3.3 for details). With thagg=0, no aggregation
on the small target size can be observed (data not shown), the number of robots
around the small target is predictable by considering solely the random walk.

3.3 The Role of the Aggregation Threshold (thagg)

The results of the experiments in subsection 3.1 demonstrate that in the trophallaxis-
inspired strategy, the huge gradient that emerges from the large target area increases
over time and dominates over the gradient emerging at the location of the small target
area. Nevertheless, the small target also recruited a few robots (see figure 5). By ad-
justing the threshold thagg we were able to indirectly determine the minimum target
size that lead to aggregation. In our strategy, the strength of aggregation was regulated
by the variable weight(i,t), which represents the ratio of directed movements to ran-
dom movements. Robots with a low memory value m(i,t) have a low weight(i,t) and
thus they perform a random walk most of the time, whereas robots with a high mem-
ory value m(i,t) have a high weight(i,t) and will move towards the target in a very
directed way. Thus threshold thagg is used as an offset in our computation of
weight(i,t). For example, with negative values of thagg we can achieve a more di-
rected movement of robots with a low memory value m(i,t). Figure 8 depicts the de-
pendency of the variable weight(i,t) on the variable m(i,t) and on the parameter thagg.

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎩

⎪⎪
⎨

⎧ −

=

0

75.0

1000

),(

min

max),(

aggthtim

tiweight (1)

In the following experiment, we wanted to test, whether or not an adjustment of the
threshold thagg can modulate the sensitivity of the swarm for smaller target areas.
Figure 9 shows the results of this experiment: Between 0 < thagg <300, the aggrega-
tion at the large target is negatively correlated with the value of thagg, the small target

 Collective Perception in a Robot Swarm 153

is almost ignored by the swarm. With negative values of thagg, the aggregation at the
small target increases significantly, without affecting the aggregation at the large tar-
get area. This shows that adjustment of thagg leads to recruitment of previously non-
recruited robots around the small target.

3.4 The Role of the Negative Feedback (rc)

In swarm robotics, the decay of information is important as soon as the swarm of
robots has to act in changing environments. It is needed to allow out-dated, thus not
reinforced, information to leave the system. In the trophallaxis-inspired strategy,
this is achieved by a constant consumption of ‘virtual nectar’. If a target area
disappears, there will be no local addition of ‘virtual nectar’ and the gradient will
disappear. To investigate this, we performed an experiment with very extreme dif-
ferences in target sizes (radii left:right = 1:5). After 500 time steps, we changed the
sizes of the targets:

The big area got small and the small area got big (radii left:right 5:1). After the
same time span, we investigated how the swarm responded to this fluctuation by
counting the newly recruited robots at the left target and the robots that abandoned the
right target after 1000 time-steps.

Fig. 8. Values of weight(i,t) as a measurement for directedness of a robot's movement depend-
ing on its memory value m(i,t) and the threshold thagg. Shown for a positive threshold
thagg=300, no threshold thagg=0, and a negative threshold thagg=-300.

We initially implemented the ‘forgetting’ also into the hop-count strategy (tf), but
this strategy failed to recruit proportional cohort to differently sized target areas in a
stable environment (sub-section 3.1, figures 5,6). Without such a proportional re-
sponse of the swarm, it is useless to perform such a test in a fluctuating environment,
so we only analyzed the trophallaxis-inspired strategy here. We kept all parameter
settings identical to the runs shown in subsection 3.1, but we varied the values of the

154 T. Schmickl, C. Möslinger, and K. Crailsheim

-300 -200 -100 0 100 200 300
0

50

100

150

200

threshold (thagg)

nu
m

be
r

of
ag

gr
eg

at
ed

ro
bo

ts

robots left
robots right
no aggregation

Fig. 9. Aggregation of robots to the small left target area (radius=1) and to the large right target
area (radius=5) with varying threshold (thagg). The dashed line shows the expected number of
robots that would have been in the measurement area (radius=10 each) if there had been no
aggregation behavior at all. N=10 per setting. Duration: 250 time steps.

Fig. 10. New recruitment and abandonment of robots in a changing environment and with vary-
ing values of the consumption-rate (rc). High values of new recruitment and of abandonment
indicate a high flexibility of the collective decisions of the robots swarm. N=1 per setting.
Measurements were made 500 time steps after the environmental fluctuation.

consumption rate rc between 0 and 0.1. So we compared never-forgetting swarms,
moderately fast forgetting swarms and quickly forgetting swarms. Figure 10 shows the
results of this experiment: Never-forgetting swarms (rc< 0.01) failed to adjust to
the switch because the strong gradient that had emerged around the right target before
the switch kept dominating throughout the arena. Quickly forgetting swarms (rc>0.03)
on the other hand were not able to establish a gradient that reached robots that were far

 Collective Perception in a Robot Swarm 155

from the target and thus changes in the environment were not noticed by most robots.
With a consumption-rate between 0.01 and 0.03, the swarm showed the highest
flexibility in its decisions.

4 Discussion

Our simulation experiments focused purely on the questions of collective perception
in a robot swarm. We showed that a system that exploits purely ‘hop-counts’ of mes-
sages is able to navigate robots to target areas but fails to perform a collective percep-
tion of target area sizes. Such ‘hop-count’-based strategies were used (and published)
several times in swarm robotics [19][20][21][22]. Some times these techniques are
called ‘virtual pheromones’, a term that we (as biologists) do not think is appropriate.
A pheromone is a chemical substance that is released by an animal in the environment
and that causes a behavioral change or a physiological change in a receiving animal.
For a swarm robot, it is very difficult to deposit something in the environment; there-
fore hop-counts that are communicated from robot to robot are often used to mimic
pheromone gradients. But such a system has significant differences to real phero-
mones, because hop-count values do not remain in place in the environment, they
move with the robot that carries it. We think that these hop-counts and also the mem-
ory-values used in our trophallaxis-inspired strategies have much more analogies to
the crop loads of (social) animals. They are bound to their ‘carrier’-animals and it is
often found in nature, that crop volumes are transferred from one animal to another
(ants, termites, bees, wasps, birds, vampire bats). In contrast to the hop-count strategy,
the trophallaxis-inspired strategy [17] was able to perform collective perception suc-
cessfully (figure 5,6). By using this method, the swarm was able to collectively meas-
ure the size of the target areas and to communicate these sizes throughout the swarm.

Please note that a single robot cannot measure the size of the target area, it can
only determine whether or not it is located on a target area. The observed effect is
caused by the fact that a larger target area can contain more robots and thus more ‘ad-
dition’ is made to the system. The three parameters ‘addition-rate’, ‘transfer-rate’,
‘consumption-rate’ can be used to regulate the system. A higher addition makes the
gradients higher. The transfer rate allows the gradient to reach further, thus it can be
used to regulate the range of the attraction of the targets. We showed that in changing
environments, a moderate forgetting of collective perceptions plays an important role.
With a consumption-rate that was too low, the robot swarm was not able to re-decide
after the environmental fluctuation. With a consumption-rate that was too high, the
swarm was not able to perform any collective decision at all. The threshold thagg is an
important factor to adjust the ‘collective sensitivity’ of the robot swarm. By adjusting
this parameter, smaller target areas can be made invisible for the swarm, so that it
focuses on the bigger target areas first. Our scenario (and the strategy) can be ex-
tended in several ways. In honeybees, the brood acts as a sink for food. In the case
shown here, we used only target areas that led to an addition of ‘virtual nectar’. If the
scenario contains also areas that should be preferentially avoided (e.g., holes [23]), we
could easily add such a sink to our system. Robots that encounter such areas reduce
their memory values to 0. The threshold thagg is currently a global parameter in our

156 T. Schmickl, C. Möslinger, and K. Crailsheim

strategy. It will be interesting to introduce habituation and reinforcement to adjust this
parameter individually, based on the prior work experience of a robot.

In conclusion, we demonstrated that collective perception of a robot swarm can be
performed with simple nearest-neighbor communication, with rather narrow commu-
nication channels and with messages that include only little semantics. The system
was shown to be robust, because our results were not significantly affected by random
error (which we introduced in our simulation on motion, sensing and communication)
or by initial conditions (robots were spread randomly in the arena). In addition, the
collective decisions were flexible (see figure 10). Computational effort was low and
the number of robots was rather high. All these features mentioned above indicate that
the found collective perception was an emergent phenomenon of self-organization [5]
and of swarm-intelligence [6][7].

Acknowledgement

This work is partially supported by: EU IST-FET-project ‘I-Swarm’, no. 507006.

References

1. Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., Wörn, H.: The I-SWARM
Project: Intelligent Small World Autonomous Robots for Micro-Manipulation. In: Sahin,
E., Spears, W.M. (eds.) Swarm Robotics. Springer LNCS 3342, (2005) 70 – 83

2. Kornienko, S., Kornienko, O. Constantinescu, C., Pradier, M., Levi, P.: Cognitive micro-
agents: individual and collective perception in a microrobotic swarm. In: Proceedings of
the IJCAI-05 Workshop on Agents in Real-Time and Dynamic Environment, Edinburgh,
Scotland, (2005) 33 – 42

3. Kornienko, S., Kornienko, O., Levi, P.: Minimalistic approach towards communication
and perception in microrobotic swarms. In: Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Edmonton, Alberta, Canada (2005) 4005 –
4011

4. Liu, Y., Passino, K.M.: Biomimicry of Social Foraging Behavior for Distributed Optimiza-
tion: Models, Principles, and Emergent Behaviors. Journal of Optimization Theory and
Applications, V 115, N 3, (2002) 603 – 628

5. Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
organization in biological systems. Princeton University Press, NJ, USA (2001)

6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial
systems. Oxford University Press, New York, NY, USA (1999)

7. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, Academic
Press, USA. (2001)

8. Anderson, C, Ratnieks, F.L.W.: Task partitioning in insect societies. I. Effect of colony
size on queueing delay and colony ergonomic efficiency, Am. Naturalist 154, (1999) 521 –
535

9. Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. II. Use of queueing
delay information in recruitment, Am. Naturalist 154, (1999) 536 – 548

10. Seeley, T., Towey, C.: Why search time to find a food-storer bee accurately indicates the
relative rates of nectar collecting and nectar processing in honey bee colonies. Animal Be-
haviour, 47, (1994), 311 – 316

 Collective Perception in a Robot Swarm 157

11. Pratt, S.C.: Optimal timing of comb construction by honeybee (Apis mellifera) colonies: a
dynamic programming model and experimental tests. Behavioral Ecology and Sociobiol-
ogy 46, (1999) 30 – 42

12. Huang, M., Seeley, T.: Multiple unloadings by nectar foragers in honey bees: a matter of
information improvement or crop fullness? Insectes Sociaux 50, (2003), 1 – 10

13. Camazine, S.: The regulation of pollen foraging by honey bees: How foragers assess the
colony's need for pollen, Behavioral Ecology and Sociobiology 32, (1993) 265 – 273

14. Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G.E., Leonhard, B., Kropiunigg,
H.: Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mel-
lifera L.), Apidologie 29, (1998) 113 – 126

15. Schmickl, T., Crailsheim, K.: Inner nest homeostasis in a changing environment with spe-
cial emphasis on honeybee brood nursing and pollen supply. Apidologie 35, (2004) 249-
263

16. Crailsheim, K.: The flow of jelly within a honeybee colony, Journal of Comparative
Physiology B 162, (1992) 681 – 689

17. Schmickl, T., Crailsheim, K.: Trophallaxis among swarm-robots: A biological inspired
strategy for swarm robotics. In: Proceedings of BioRob 2006, Biomedical Robotics and
Biomechatronics, Pisa, Italy. (2006) ISBN 1-4244-0040-6

18. Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., Dario,
P.: Micromanipulation, communication and swarm intelligence issues in a microrobotic
platform. Robotics and Automation Systems (in press).

19. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone Robotics. Autono-
mous Robots 11 (2001) 319 – 324

20. Payton, D., Estkowski, R., Howard, M.: Compound behaviors in pheromone robotics. Ro-
botics and Autonomous Systems 44 (2003) 229 – 240

21. Stoy, K., How do construct dense objects with self-reconfigurable robots. In: Christensen,
H.I. (eds.) European Robotics Symposium 2006, STAR 22 (2006) 27 – 37

22. McLurkin, J.D.: Stupid robot tricks: a behavior-based distributed algorithm library for pro-
gramming swarms of robots. Master thesis at the MIT (2004)

23. Trianni, V., Nolfi, S., Dorigo, M.: Hole Avoidance: Experiments in Coordinated Motion
on Rough Terrain. In: Groen, F, Amato, N., Bonarini, A., Yoshida, E., Krose, B., (eds.),
Intelligent Autonomous Systems 8, (2004) 29-36

Distributed Task Selection in Multi-agent

Based Swarms Using Heuristic Strategies

David Miller1, Prithviraj Dasgupta2, and Timothy Judkins3

1 Department of Mechanical Engineering, University of Nebraska-Lincoln
2 Computer Science Department, University of Nebraska-Omaha

3 HPER Biomechanics Laboratory, University of Nebraska-Omaha
pdasgupta@mail.unomaha.edu

Abstract. Swarm-based systems have emerged as an attractive para-
digm for implementing distributed autonomous systems for various ap-
plications in commercial, military and business domains. One of the
major operations in a swarm-based system is to ensure that the indi-
vidual swarm units process the tasks in the environment in an efficient
manner. This can be achieved using a suitable task selection mechanism
that allocates the desired number of swarm units to each task while re-
ducing inter-task latencies and communication overhead, and, ensuring
adequate commitment of resources to tasks. In this paper, we describe a
multi-agent based distributed task selection mechanism for swarm-based
systems. We show that the distributed task selection problem is NP-
complete and propose polynomial-time heuristic-based algorithms. Our
simulation results show that heuristics in which each swarm unit consid-
ers both the effects of other swarm units on tasks and its own relative
position to other swarm units achieve better task processing efficiency
and improved distribution of swarm units over tasks.

Keywords: multi-agent swarming, task allocation, heuristics, Webots.

1 Introduction

Over the past few years, emergent computation based techniques such as swarm-
ing have been used extensively to model and develop algorithms for distributed
systems for diverse applications including telecommunication networks[8], data
mining [1], and robotics[20]. Swarming enables a system to manifest the desired
global objectives by embedding simple behavior patterns, possibly inspired from
nature, at the level of the individual units in the system. This makes swarming
an attractive mechanism for designing complex, large-scale distributed systems
using numerous behaviorally simple, possibly inexpensive units without worry-
ing about problems such as designing centralized algorithms for load balancing,
congestion control and scalability. However, in the absence of centralized control
mechanisms, monitoring the operations of a distributed swarm-based system to
ensure efficient performance becomes a challenging problem. In this paper, we
focus on the task selection mechanism used by the individual swarm units to pro-
cess the tasks in the environment. Previous researchers[10,17] have addressed this

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 158–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distributed Task Selection in Multi-agent Based Swarms 159

problem using centralized task allocation algorithms where information about
tasks are shared between the swarm units using shared memory-based tech-
niques. In contrast, ensuring efficient task selection by the swarm units becomes
a challenging problem in a distributed setting because of the dynamic nature of
the environment, differences in characteristics of the swarm units and possible
inconsistencies in information between the different swarm units. In this paper,
we model swarming within a multi-agent setting where each swarm unit is mod-
eled as an agent. We formulate the distributed task selection problem in a swarm
as a dynamic traveling salesman problem(TSP) and provide heuristic-based al-
gorithms to solve it. Our simulation results for a distributed automatic target
recognition(ATR) application using our heuristic-based task selection strategies
in a swarm show that the performance of the system improves when each swarm
unit considers the effects of other swarm units on tasks as well as its own relative
position to other swarm units.

2 Multi-agent Swarming

The technique of swarming involves movement of entities (for e.g. insects, hu-
mans or combat vehicles) individually or in small-sized units to search and act
upon objects of interest such as food, prey, or enemy within a search space. The
problem space consists of objects of interest that are distributed randomly in a
2-dimensional environment. Individual units lack the necessary power to perform
the complete set of actions required on an object of interest. When an individ-
ual or unit discovers an object of interest, it communicates the information to
other units. The other units then converge on the object to perform the required
actions on the object(for e.g., consuming food, subsuming prey, etc.) using the
combined power of the congregated units amassed together. After completing
the task on an object, each unit reverts to individual searching.

A computational system using swarming consists of multiple computation
units that are capable of moving within an unknown environment. Because of
the dynamic nature of the environment, each unit must also be capable of contin-
uously searching, communicating and executing tasks corresponding to objects
of interest as long as it is active in the environment. Agents provide a suit-
able paradigm to implement the computation units for swarming. Agents are
software entities that are capable of executing the actions programmed within
them autonomously without continuous supervision by humans. Agents are also
characterized by a small footprint and are suitable for embedding on mobile
platforms such as ground vehicles and aircrafts for encapsulating the function-
alities of individual units in a swarm. Following are the features of a distributed
swarmed system:

1. The boundaries of the area (environment) in which the agents are deployed
is known a priori by the agents.

2. A task corresponds to a set of actions that need to be taken by agents on
objects of interest. The spatial and temporal distribution of tasks is not
known a priori and must be discovered by the agents in real-time.

160 D. Miller, P. Dasgupta, and T. Judkins

3. A single agent is only capable of discovering and partially executing tasks,
but lacks the computational resources required to completely execute a task.

4. A task can be completed only if multiple agents share their computational
resources towards executing the task.

5. To enlist the cooperation of other agents required to complete a task, an
agent that discovers a task communicates the task’s information to other
agents. In contrast to some recent swarm-based systems[10,17], this com-
munication has to be done in a distributed manner without using a central
location or shared memory to facilitate information exchange among agents.

6. An agent requires to move to the vicinity of a task discovered by another
agent to execute it. Each agent executes the tasks independently and on
completing its portion of execution on the task, communicates the progress
of its execution (fraction of task still incomplete) to other agents within its
communication range.

To realize the swarming behavior in our system, we use the stigmergetic ac-
tivity of social insects such as ants [5]. Stigmergy is an interaction mechanism
that enables insects to coordinate actions with each other through direct con-
tact or indirect communication via the environment. For example, ants search-
ing searching for food deposit trails of a chemical substance called pheromone.
Pheromone provides positive reinforcement to future ants, and, ants searching
for the food later on get attracted to the pheromone to locate and possibly
consume the food. In our system, when an agent encounters a task, it deposits
a certain amount of synthetic pheromone to mark the location and priority of
the task. Pheromone decays over time. The set of tasks and the corresponding
pheromones that each agent is aware of is stored in a local data structure called
the pheromone landscape within the agent and corresponds to the agent’s task
list. An agent communicates its task list to other agents within its communi-
cation range to disseminate task information across the swarm. The operations
performed by an agent to manifest swarming can be divided into the following
phases:

– Deployment. Agents are deployed by a central manager into the environ-
ment. Once the agents are deployed, the manager does not supervise the
agents. The agents revert to the manager only when their lifetime expires.
For better overall coverage, the manager might choose to divide the en-
vironment into smaller sub-areas and deploy a subset of agent into each
sub-area[6].

– Search and Discovery. In this phase, individual agents perform a blind
or uninformed search within the search space to discover objects of interest.
We assume that each agent is provided with appropriate sensors, algorithms
and information to enable it to identify objects of interest. When an agent
discovers an object of interest, it associates a certain amount of pheromone
with the object to indicate the urgency with which other agents should arrive
at the object to complete the task associated with that object.

– Communication. After an agent discovers a task, it has to inform other
agents about the parameters of the task including the task’s location and

Distributed Task Selection in Multi-agent Based Swarms 161

Fig. 1. Task allocation between 5 tasks and 3 robots, assuming all robots are aware of
all tasks

pheromone. To achieve this in a distributed manner, an agent uses a point-
to-point communication model to disseminate information about tasks it is
aware of to other agents within its communication range.

– Task Selection. An agent stores information about incomplete tasks in the
search space that it receives from other agents in a task list. An agent must
select a subset of tasks from its task list it wants to execute partially and
the order in which it to visit the selected tasks to plan its path.

– Task Execution. On arriving at the location corresponding to a task/object,
an agent performs the actions required on the object to complete its share of
task. After completing its portion of execution for all the tasks on its task list,
an agent reverts to searching.

In the rest of the paper, we focus on the task selection problem in swarm-
ing. Algorithms for deployment, search and discovery, communication and task
execution for swarming are implemented in our system using the algorithms de-
scribed in [6]. Functionally, each computational unit in our swarmed system is a
mobile robot that contains a processor executing the algorithms implemented by
an agent. Therefore, in the rest of the paper we use the terms robot and agent
interchangeably.

3 Task Selection in Swarming

Task selection is one of the most crucial phases of the swarming mechanism as
it determines the efficiency with which tasks are completed in the system. A
suitable task selection algorithm ensures controlled swarming towards task to
ensure appropriate commitment of resources to tasks, ability of the swarm to
separate adaptively into sub-swarms and reduction in communication overhead.

3.1 Distributed Task Selection Model

Our model for the task selection problem comprises a set of R robots that need to
execute a set of T tasks in the environment as described in Section 2. Each robot

162 D. Miller, P. Dasgupta, and T. Judkins

r ∈ R is aware of a subset of tasks Tr ⊆ T . Tr changes dynamically as tasks get
executed by r and removed from Tr and new tasks arrive via communication from
other robots and get added to Tr. Each task t ∈ Tr involves two components:
a) a non-zero wait-time wt,r corresponding to the time required by robot r to
reach the task from the robot’s current location, and b) an execution time xt,r

required to execute robot r’s portion of the task. xt,r is inversely proportional
to the amount of instantaneous pheromone associated with task t. Both wt,r

and xt,r change dynamically as robots move in the environment and deposit
pheromone at tasks. Robot r orders the tasks in Tr to solve the following dynamic
optimization problem: min

∑
t∈Tr

wt,r + xt,r. From the viewpoint of a single
robot, the task selection problem can be modeled as an instance of the dynamic
TSP, where the cost for robot r to reach and execute a task t corresponds to
(wt,r + xt,r). Figure 1 shows a scenario consisting of | T |= 5 tasks, each task
requiring | R |= 3 robots to be completed. Each fully connected subgraph in
Figure 1 represents robot r’s view of the tasks. For simplifying the analysis, we
assume that all robots are aware of all the tasks in the environment and are
within communication range of each other. However, different robots execute
the tasks in different order depending on various factors including the robots’
initial locations, speed and obstacles along their path. As soon as a robot finishes
executing its portion of a task on its task graph, it updates the status of that task
(deposits pheromone) and communicates the updated status to the other robots.
We assume that the communication latency (shown by broken lines in Figure 1)
is much less than the task wait-time wt,r. When a robot updates the status of a
task, the costs of edges connected to the vertex t changes for each robot r that
still has t ∈ Tr. Let Gr(τ) = (Vr(τ), Er(τ)) | Vr(τ) = Tr(τ) represent the task
graph of robot r at time τ , where Vr(τ) and Er(τ) are, respectively, the vertices
and edges comprising Gr(τ). Let cr(i, j, τ) represent the cost to robot r to reach
vertex(task) j from vertex i in Gr(τ). The dynamic TSP problem can then be
written as:

DTSP={<G(τ), cr, k>: G(τ) = {Gr(τ)} | r ∈ R, τ = {0, 1, 2...}
Gr(τ) = (Vr(τ), Er(τ)) is the task-graph of r ∈ R,
cr : i × j × τ → Z | i, j ∈ Vr(τ)
k ∈ Z, and
∀r, Gr(τ)has a traveling-salesman tour with cost at most k}.

(1)

Proposition: The dynamic TSP is NP-complete.

Proof. (by reduction to TSP) In Figure 1, consider a scenario where r = 2, 3
have completed visiting the all vertices in G2 and G3, while r = 1 has yet to
visit any vertex in G1. Let the time at which such a scenario occurs be τ = τf .
Let G1(τf) = (V1(τf), E1(τf)) be an instance of TSP. We construct an instance
of DTSP as follows. We form the complete graph G′

1(τf) = (V1(τf), E′
1(τf))

where E′
1(τf) = {(i, j) : i, j ∈ V1(τf)andi �= j}, and we define the cost function

c1(τf) by:

Distributed Task Selection in Multi-agent Based Swarms 163

c1(i, j, τf) =
{

0 if (i, j) ∈ E1(τf),
1 otherwise. (2)

The instance of DTSP is then (G′
1(τf), c1(τf), 0). We now show that graph G1(τf)

has a TSP-tour iff graph G′
1(τf) has a TSP-tour of cost at most 0. Suppose that

graph G1(τf) has a traveling salesman tour θ. Each edge in θ being to E1(τf)
and thus has cost 0 in G′

1(τf). Thus, θ is a traveling salesman tour in G′
1(τf) with

cost 0. Conversely, suppose that graph G′
1(τf) has a traveling-salesman tour θ′

of cost at most 0. Since the costs of the edges in E′
1(τf) are 0 and 1, the cost

of tour θ′ is exactly 0 and each edge of the tour must have cost 0. Therefore, θ′

contains only edges in E1(τf). We conclude that θ′ is a traveling-salesman tour
in graph G1(τf). ��

The cost of the edges in the DTSP are determined by the time required by robot
r ∈ R to reach and execute a task t ∈ T . However, the time to execute a task is pro-
portional to the amount of pheromone already associated with the task by other
robots and is determined by the robots’ pheromone update mechanism. Therefore,
vertices in the DTSP do not necessarily follow the triangle inequality and conse-
quently, cannot be solvedusing a polynomial time approximation algorithm. In the
next section, we describe polynomial time heuristic-based solutions to the DTSP.

4 Heuristic-Based Task Selection Strategies

The parameters used by the heuristic-based strategies are the following:

R Set of robots
Nr Number of robots required to complete a task
ri i-th robot, ri ∈ R
Pi OtherRobots list of robot ri comprising set of robots it is aware of
pj,i j-th robot ∈ Pi, pj,i = {id, conf, loc, time, tid}, where id is the Id of robot

pj,i, conf ∈ [0, 1] is the confidence in the current location of pj,i, loc is the
last known location of pj,i, time is the time of last update of location of
pj,i and tid is the id of the last task executed by pj,i.

Ψi Task list of robot ri comprising set of tasks it is aware of.
ψj,i j-th task in task list Ψi of robot ri, ψj,i ={pher, loc, hops, time, id, visits},

where, pher is the amount of pheromone associated with ψj,i, loc is the
location(2-d coordinates)of ψj,i, hops is the number of hops made by the
message containing information about ψj,i before reaching robot ri, time
is the time at which ψj,i was last updated by another robot, id is the
id of the robot that last updated ψj,i, and, visits is the number of robots
that have already visited ψj,i.

In the heuristic-based algorithms, each robot ri inspects its task list Ψi and
robot list Pi and selects the task ψj,i ∈ Ψi that returns the best value of the
heuristic being used. A robot runs the heuristic based algorithm every time its

164 D. Miller, P. Dasgupta, and T. Judkins

task list and robot list is updated. The different heuristic strategies that can be
used by a robot are the following:

– Distance-based heuristic: In the distance based heuristic, each robot ri

selects the task ψj,i ∈ Ψi that is closest to it and has the highest amount of
pheromone using Equation 3 below. Distances between ri and each task ψj,i

are normalized over the sum of distances to enable comparison between the
distances.

argmax
j

(
ψj,i.pher × (1 − dist(ψj,i.loc, ri.loc)∑

j dist(ψj,i.loc, ri.loc)
)

)
. (3)

– Robot Density-based heuristic: This heuristic is based on the premise
that incomplete tasks that have the least number of robots in their vicinity
are likely to be requiring more robots for completing them. Therefore, the
robot density-based heuristic directs a robot towards the task in its task list
that has the least density of robots in its vicinity. To calculate the relative
location of other robots, robot ri uses the location attribute pj,i.loc of each
robot pj,i ∈ Pi. However, pj,i.loc changes dynamically as robot pj,i moves
continuously in the environment. Therefore, robot ri uses a probabilistic
weight pj,i.conf to reflect its confidence of the location pj,i.loc. pj,i.conf is
inversely proportional to the time elapsed since the location of pj,i was last
received by robot ri. Robot ri then selects the task that has the lowest robot
density in its vicinity using Equation 4:

arg min
j

∑
k

(
pk,i.conf × ψj,i.pher × (1 − dist(ψj,i.loc, pk,i.loc)∑

k dist(ψj,i.loc, pk,i.loc)
)
)

.

(4)
– Robot Preference-based heuristic: This heuristic extends the robot

density-based heuristic by considering the number of robots still required
to complete a task. In addition to preferring tasks with lower robot den-
sities in their vicinity, robot ri, using the preference-base heuristic selects
tasks that are nearing completion and therefore, require fewer robots for
completion, as shown in Equation 5:

arg min
j

∑
k

(
pk,i.conf × Nr − ψj,i.visits

Nr
× ψj,i.pher

×(1 − dist(ψj,i.loc, pk,i.loc)∑
k dist(ψj,i.loc, pk,i.loc)

)
)

. (5)

– Robot Proximity-based heuristic: In the robot density and preference-
based heuristics, each robot considers the effect of other robots on tasks in
its task list, but does not consider its own relative position to those robots.
In contrast, in the robot proximity heuristic, robot ri first determines how
many other robots are closer to task ψj,i ∈ Ψi than itself. It then selects the
task that has the least number of robots closer to the task than itself and
the least number of robots required for completion as shown in Equation 6:

Distributed Task Selection in Multi-agent Based Swarms 165

argmin
j

(∑
k

ψj,i,k.n × Nr − ψj,i.visits

Nr

)
, where

ψj,i,k.n =

⎧⎪⎨
⎪⎩

1, if pk,i.conf × ψj,i.pher×
(1 − dist(ψj,i.loc,pk,i.loc)∑

k dist(ψj,i.loc,pk,i.loc)) > (1 − dist(ψj,i.loc,ri.loc)∑
j dist(ψj,i.loc,ri.loc))

0, otherwise

(6)

Proposition: The processing time required by robots using the heuristic-based al-
gorithms to complete all the tasks in the environment has a polynomial
upper-bound.

Proof: In each of the heuristic-based strategies described above, every time
robot ri’s task list is updated, it has to process all the tasks in its task list Ψi

to find the ’best’ task. In addition, all the strategies, except the distance-based
strategy, requires robot ri to process each member of its OtherRobots list Pi.
Therefore, for each update in its task list, a robot has to process | Ψi | × | Pi |
elements. To determine the upper-bounds on the computation done in the swarm
using the heuristic strategies, let us assume that in the worst case, each robots
task list contains all the tasks in the environment, i.e., | Ψi |= O(| T |). Also,
in the worst case, each robots OtherRobots list would contain every other robot
in the environment, i.e. | Pi |= O(| R |). Substituting these worst case values
for the cardinalities of the task and OtherRobots list, we see that each update of
the task list at a robot requires O(| T || R |) steps. How many task list updates
are possible at each robot to complete all the tasks? Assuming that in the worst
case scenario, each task must be processed by every robot, the task list of a
robot gets updated every time another robot visits and executes a task. Since
the environment has | R | robots, each with a task list of size O(| T |), the total
number of times robots visit and execute tasks to generate updates to other
robots’ tasks lists is O(| T || R |). Each such update takes O(| T || R |) steps
as discussed above. Therefore, the total processing time required to complete all
the tasks in the system is bounded by O((| T || R |)2).

5 Simulation Results

We have implemented our swarming algorithms for a distributed automatic tar-
get recognition(ATR) application using unmanned aerial robots[6]. The scenario
consists of targets distributed randomly in an environment. The objective of the
robots is to identify all the targets. However, each robot has limited computa-
tional resources, and, although a robot can independently discover a target, it
requires the cooperation of at least 3 other robots to confirm a discovered object
as a target. In this scenario, a task corresponds to the actions performed by a
robot on a target. For example, in distributed ATR the task of a single robot

166 D. Miller, P. Dasgupta, and T. Judkins

age 9 of 15 4433 0177

Fig. 2. Screenshot from the Webots simulator showing 20 targets(circles) and 18 robots
(airplane icons) in a 50 × 50 environment

could be to execute an image identification algorithm when it encounters a pos-
sible target. To confirm a possible target definitively, 4 different robots need to
successfully execute their image identification algorithm on the target.

5.1 Experimental Setup

All our experiments were run with 18 robots and 20 targets placed randomly
inside a 50 × 50 environment on the Webots robotic simulation platform, as
shown in Figure 2. Each robot is simulated as a generic DifferentialWheels model
whose speed and direction are controlled by changing the relative rotation speed
between the two wheels. The maximum speed of each wheel was set to 40. Each
robot has the following sensors: (1) GPS: x, z location and heading, (2)Downward
looking IR sensor for target detection with a measurement range between 0 and
2048, (3) Short-range radio transmitter and receiver for sending and receiving
ping messages over channel 1 with a range of 1.5 units, and, (4) Long-range radio
transmitter and receiver for sending and receiving gossip messages over channel
0 with a range of 7.5 units.

Target Detection: The floor of the environment is black and corresponds to a
zero intensity value on a robot’s downward-looking IR sensor. Targets are given
4 different colors (red, grey, green, purple) to simulate different target types

Distributed Task Selection in Multi-agent Based Swarms 167

that require different amounts of computation. 20 targets, 5 of each color are
placed at random coordinates within the environment. When the IR sensor on a
robot encounters a target, it returns a non-zero intensity value determined by the
color of the target. The robot then associates a particular amount of pheromone
with the target using the following values: Red= 0.8, Grey=0.6, Green= 0.4,
Purple=0.2. Pheromone decays at a rate of 0.01 per simulator tick. Each target
needs to be visited by Nr = 4 robots to be completely identified.

Robot Communication: When a target is found by a robot, it sends a gossip
message to other robots within communication range of its long-range transmit-
ter. Gossip messages are forwarded by robots using the probabilistic flooding
algorithm described in [6] to disseminate information about a recently discov-
ered target across the swarm. The format of the gossip message is given by:
< id, x, z, ttl, v, foundid, tx, tz , tpher >, where
id id of robot sending the message
x, z 2-d coordinates of the robot sending the message
ttl Number of hops (time-to-live)from its source after which the

gossip message ceases to be forwarded by robots
v Number of visits by robots to the target contained in the message
foundid Id of the robot that discovered the target in the message
tx, tz 2-d coordinates of the target contained in the message
tpher Pheromone value associated with target in the message

On receiving a gossip message, a robot decrements its ttl and if ttl > 0, it
forwards the message over its long-range transmitter after updating the values
of the first three parameters of the message with its own id and location.

Obstacle and Collision Avoidance: To prevent collision between robots, each
robot uses a potential field based object avoidance technique described in [6].
Collision avoidance takes precedence over all other actions.

5.2 Experimental Results

In the experiments performed we measure the efficiency of the swarmed sys-
tem using our task selection heuristics along three metrics: (i) time required to
complete all tasks, (ii) distribution of tasks over robots, and (iii) distribution
of robots over tasks. Figure 3 compares the time required to complete all tasks
in the environment with different heuristic strategies used by the robots. We
observe that when robots use the robot preference-based and robot proximity-
based heuristics, all tasks get completed more rapidly than the other heuristics.
These two heuristics include information about the amount of computation re-
maining to complete a task when a robot selects a task. Therefore, we can infer
that information about the progress of the task plays a positive role in improving
the efficiency of task completion. Moreover, the robot proximity based heuris-
tic performs slightly better than the robot preference based heuristic without
using any extra information. This implies that considering the effect of other
robots on tasks as well as a robot’s own position relative to other robots while

168 D. Miller, P. Dasgupta, and T. Judkins

Fig. 3. Time taken by robots to identify all targets in the environment using different
strategies

selecting a task enables rapid task processing. The distance-based and density-
based heuristics are unable to complete all tasks (identify all the targets) in the
environment. This behavior can be attributed to inadequate dispersion of robots
across the environment in these two strategies. In these strategies, as soon as a
robot receives gossiped information about a task, it starts heading to the task
without considering the effect of other robots on the task such as their proxim-
ity to the task, their possibility of acting on the task before the current robot,
and the progress of the task due to other robots’ actions. Consequently, most
robots end up moving towards the same task. This triggers the collision avoid-
ance mechanism as soon as robots reach within close range of each other before
reaching the task. In such a scenario, most robots start exhibiting an oscillatory
behavior moving back and forth around the task unable to reach it.

Figure 4 compares the number of times each task is visited by different robots
for the different heuristics. We observe that for all heuristics except the robot
proximity-based, each task was visited by approximately 4 robots (number of
robots required to complete a task for our setting) in most cases. Figure 4 fur-
ther shows that the robot preference-based heuristic outperforms all the other
heuristics in maintaining an average of 4 visits/task. The robot proximity-based
heuristic allows more than 4 robots to visit a task because the robots stay more
dispersed across the environment than in the other heuristics. This delays some

Distributed Task Selection in Multi-agent Based Swarms 169

Fig. 4. Number of times each target is visited by a robot using different strategies

robots from receiving information about a task until the task’s gossip message
gets flooded across all the robots. Figure 5 shows the performance of each robot
across different tasks. For our setting of 20 tasks(targets), 18 robots and 4 robots
required to complete a task, the average number of tasks that each robot should
visit is given by 	 20×4

18
 = 5. However, we observe that, except in the robot
preference-based heuristic, some robots visited more than the average number of
tasks while other robots visited far less than average. The robot distance-based
and density-based heuristics perform poorly due to the oscillatory movements
of robots unable to reach tasks due to mutual collision avoidance discussed ear-
lier. The proximity-based heuristic has more than the required number of robot
visits/task due to its communication related inefficiencies discussed earlier.

In summary, we can infer that the preference-based and proximity-based
heuristics improve the efficiency in the system as compared to the other heuris-
tics. The former achieves better task and robot distribution across the envi-
ronment while with the latter robots are able to complete tasks more rapidly.
Both heuristics require the same amount of communication while the preference-
based heuristic requires less computation than the proximity-based heuristic.

170 D. Miller, P. Dasgupta, and T. Judkins

Fig. 5. Number of targets visited by each robot using different strategies

Therefore, if overall task completion time is a constraint, robots should use
the proximity-based heuristic. On the other hand, if the efficiency of individual
robots is more important then robots should use the preference-based heuristic.

6 Related Work

Swarming-based systems have been abundant in nature and human history[9].
In the recent past, several computational systems using swarming have been
developed for different applications including self-repairing formation control
for mobile agents [20], adaptive control in overlay networks[4], and for military
applications[6,17,19]. Most of these approaches do not address the task selection
problem in swarming as a independent issue and use straight-forward approaches
such as greedy algorithms within a centralized shared memory setting [10,17] that
facilitates rapid information exchange between the swarm units. In contrast,
in this paper we describe different heuristic-based strategies in a distributed
task selection model for swarming. In [2], distributed heuristic based strate-
gies for capturing the collective aggregation dynamics in multi-agent swarms for

Distributed Task Selection in Multi-agent Based Swarms 171

gathering and clustering tasks are described. [13] describes heuristic-based strat-
gies for task constraints and signal reinforcement to analyze the effects of diver-
sity and specialization on multi-agent swarms. These studies are complementary
to the work described in this paper.

Independent of swarming, the problem of multi-robot task allocation(MRTA)
has been investigated using different techniques such as physical modeling[16],
distributed planning[15] and market-based techniques[7,11]. Task allocation in a
multi-robot distributed system using a contract-net based protocol for the
COMETS-UAV system has been described in [12]. The mechanism relies on one
robot being elected as a leader(auctioneer) using a token-ring technique. In addi-
tion, the task allocation mechanism requires the leader to have knowledge about
all the tasks it allocates to other robots(contractors). In contrast, the task selec-
tion strategies used in this paper do not require leader election and the informa-
tion about tasks is maintained locally on each UAV in a distributed manner. Other
approaches to multi-agent cooperation algorithms include the Martha system[3]
that focuses on planning and distributed cooperation schemes, coordination be-
tween agent teams using distributed constraint optimization techniques[14], and
neogitation based mutli-agent task allocation[18]. Most of these approaches are
complementary to our work and consider scenarios where an agent has to allocate
shared resources across multiple tasks.

7 Conclusion and Future Work

In this paper we have described and compared different heuristic-based strate-
gies for addressing task-selection in a distributed swarmed system in a multi-
agent setting. Experimental results within a simulated environment show that
although robots are able to complete the tasks in the system within reasonable
time, the performance of the system, especially in the distribution of tasks and
robots is sub-optimal. Although this is not very surprising in a nature-inspired,
engineered system, there is scope for addressing these issues using sophisticated
techniques that reduce communication overhead between robots without signif-
icant loss of information. In our previous work[6], we have experimented with
different number of agents(4− 20) and targets/tasks(1− 27) in the environment
and demonstrated that our agent-based swarm system scales efficiently both in
the number of agents and number of tasks for a distributed automatic target
recognition application using unmanned aerial vehicles. Communication over-
head also plays an important role in the performance of the system[6]. With
more communication, the information processing time at each agents increases
but the overall performance of the system improves. Currently, we are investi-
gating social network based communication models and probabilistic inference
based techniques to reduce the communication overhead between agents without
compromising the performance of the system. We envisage that with accurately
engineered systems and appropriate mechanisms underlying the operations, dis-
tributed swarm-based systems can be used to solve many challenging problems
in the near future.

172 D. Miller, P. Dasgupta, and T. Judkins

References

1. A. Abraham, C. Grosan, V. Ramos (eds.), “Swarm Intelligence in Data Mining,”
Studies in Computational Intelligence , vol. 34, Springer, 2006.

2. W. Agassounon, A. Martinoli, K. Easton, “Macroscopic Modeling of Aggregation
Experiments using Embodied Agents in Teams of Constant and Time-Varying
Sizes,” Autonomous Robots, vol. 17, no. 2-3, 2004, pp. 163-192.

3. R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert, “Multi-robot cooperation
in the MARTHA project,” IEEE Robotics and Automation, vol. 5, no. 1, 1998, pp.
36-47.

4. O. Babaoglu, H. Meling, A. Montresor, ”Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems,” Proc. of the 22nd Intl. Conf. on Distributed
Computing Systems, Vienna, Austria, July 2002, pp. 15-22.

5. E. Bonabeau, M. Dorigo and G. Theraulaz, ”Swarm Intelligence: From Natural to
Artificial Systems,” Oxford University Press, 1999.

6. P. Dasgupta, S. O’Hara, P. Petrov, “A Multi-agent UAV Swarm for Automatic
Target Recognition,” Springer LNCS, vol. 3890, 2005, pp. 80-91.

7. M.B. Dias, R.M. Zlot, N. Kalra, and A. Stentz, “Market-Based Multirobot Co-
ordination: A Survey and Analysis,” Tech. report CMU-RI-TR-05-13, Robotics
Institute, Carnegie Mellon University, 2005.

8. G. Di Caro, F. Ducatelle, L. Gambardella, “AntHocNet: An Ant-Based Hybrid
Routing Algorithm for Mobile Ad Hoc Networks,” PPSN 2004, pp. 461-470.

9. S. Edwards, ”Swarming on the Battlefield: Past, present and future,” RAND Na-
tional Security Research Division Report, 2000.

10. F. Gaudiano, E. Bonabeau, B. Shargel, “Evolving behaviors for a swarm of un-
manned air vehicles,” Proc. IEEE Swarm Intelligence Symposium, Pasadena, CA,
2005.

11. B. Gerkey, “On multi-robot task allocation,” Ph.D Thesis, Univ. of Southern Cal-
ifornia, 2003.

12. T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation scheme in
multi-uav context,” Proc. ICRA’04, New Orleans, LA (USA), April 2004.

13. L. Li, A. Martinoli, Y. Abu-Mostafa, “Learning and Measuring Specialization in
Collaborative Swarm Systems,” Adaptive Behavior, Adaptive Behavior, Vol. 12,
No. 3-4, 2004, pp. 199-212.

14. R. Mailler, V. Lesser, “A cooperative mediation based protocol for dynamic, dis-
tributed resource allocation,” IEEE Trans. on System, Man, Cybernetics, Part C.

15. C. Oritz, R. Vincent and B. Morriset, “ Task Inference and Distributed Task Man-
agement in the Centibots Robotic System,” Proc. of AAMAS’05, Utrecht, The
Netherlands, 2005, pp. 870-877.

16. L. Parker, Distributed Algorithms for Multi-Robot Observation of Multiple Moving
Targets, Autonomous Robots, vol. 12, no. 3, 2002, pp. 231-255.

17. J. Sauter, R. Matthews, H. Parunak, and S. Brueckner, “Performance of Digi-
tal Pheromones for Swarming Vehicle Control,” Proc. AAMAS’05, Utrecht, The
Netherlands, 2005, pp. 903-910.

18. O. Shehory, S. Kraus, “Methods for task allocation via agent coalition formation,”
Artif. Intell., vol. 101 no. 1-2, 1998, pp. 165-200.

19. H. Parunak, S. Brueckner, J. Odell, “Swarming coordination of multiple UAVs for
collaborative sensing,” AIAA Unmanned Unlimited, 2002.

20. J. Werfel, Y. Bar-Yam and R. Nagpal, ”Building Patterned Structures with Robot
Swarms,” Intl. Joint Conference on Artificial Intelligence (IJCAI ’05), Edinburgh,
Scotland, UK, August 2005, pp. 1495-1504.

Evolution of Signalling in a Group of Robots

Controlled by Dynamic Neural Networks

Christos Ampatzis1, Elio Tuci1, Vito Trianni2, and Marco Dorigo1

1 IRIDIA, CoDE, Université Libre de Bruxelles
{campatzi,etuci,mdorigo}@ulb.ac.be

http://iridia.ulb.ac.be/
2 ISTC-CNR, Rome, Italy
vito.trianni@istc.cnr.it

Abstract. Communication is a point of central importance in swarms
of robots. This paper describes a set of simulations in which artificial
evolution is used as a means to engineer robot neuro-controllers capable
of guiding groups of robots in a categorisation task by producing appro-
priate actions. Communicative behaviour emerges, notwithstanding the
absence of explicit selective pressure (coded into the fitness function) to
favour signalling over non-signalling groups. Post-evaluation analyses il-
lustrate the adaptive function of the evolved signals and show that they
are tightly linked to the behavioural repertoire of the agents. Finally, our
approach for developing controllers is validated by successfully porting
one evolved controller on real robots.

1 Introduction

Recently, there has been a growing interest in multi-robot systems since, with
respect to a single robot system, they provide increased robustness by taking
advantage of inherent parallelism and redundancy. Moreover, the versatility of
a multi-robot system can provide the heterogeneity of structures and functions
required to undertake different missions in unknown environmental conditions.
Among the possible theoretical perspectives which currently guide the design of
multi-robot systems, the swarm robotics approach is characterised by its em-
phasis on aspects such as decentralisation of the control, limited communication
abilities among robots, use of local information, emergence of global behaviour
and robustness [1].

Given a multi-robot system with such properties, a global distributed knowl-
edge of, for example, the status of the environment, can be achieved by exploiting
the local knowledge of each single robot and by propagating the latter through
various forms of communication. For this reason, research in swarm robotics
dedicates particular attention to the study of how local information can be effi-
ciently communicated among the robots, so to improve the adaptiveness of the
group (see [2]). In this paper, we describe a simulation work in which we provide
a group of two robots with a sound signalling system (i.e., “ears” and “mouth”)

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 173–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 C. Ampatzis et al.

and we investigate the conditions which favour the emergence of a communi-
cation protocol. In particular, our work studies the evolution of signalling in a
group of autonomous robots within the context of decision making and action
selection, where robots have to make decisions by categorising their environment
and perform different actions. The categorisation of the environment results from
how the robots’ sensory inputs unfold in time (see [3,4] for similar examples).
The decision making is performed at the individual level, and a collective action
should be the observed response to the individual decision.

In order to perform our study, we make use of the research method referred
to as Evolutionary Robotics (ER, see [5]). Roughly speaking, ER is a method-
ological tool to automate the design of robots’ controllers. Based on artificial
evolution, ER finds sets of parameters for artificial neural networks (ANN’s)
that guide the robots to the accomplishment of their objective. ER can be em-
ployed to look at the effects that the physical interactions among embodied
agents and their world have on the evolution of individual behaviour and social
skills (see [6]). ER also permits the co-evolution of communicative and non-
communicative behaviour, since it lets different characteristics co-adapt, only
requiring an overall evaluation of the group (see [7]). Note that one of the main
features of this work is that we do not explicitly reward the group for display-
ing signalling behaviour. That is, the adaptive pressure coded into the fitness
function does not explicitly favour signalling over non-signalling groups. There-
fore, if the evolved robot controllers display any kind of signalling behaviour,
the adaptive significance of this feature has to be investigated. The reason to
entirely leave the development of communicative behaviour to artificial evolu-
tion resides in the fact that in this way the co-adaptation of all mechanisms can
produce more effective ways to categorise sensory-motor information. Evolution
can produce solutions better adapted to the problem than hand-coded signalling
behaviour (see [2]).

Our aim is to examine the evolution of communication in a group of ho-
mogeneous robots, in close relation to the mechanisms that govern the robots’
behaviour with respect to the task. We will show that communication is benefi-
cial for the group and that its adaptive function is tightly connected to action
selection and decision making. Finally, we will download the evolved controllers
on real robots, which is the only way to prove the validity of the chosen design
methodology (i.e., artificial evolution). Even though multiple works treat the
issue of porting a non-reactive controller to reality, the literature lacks works
addressing tasks where the integration over time of sensory input is required.
In these cases, the decision making relies on how the inputs unfold in time and
possible errors will accumulate through time and could severely disrupt the per-
formance. In what follows, we describe the task (Section 2), the simulation model
(Section 3), the controller and the evolutionary algorithm (Section 4), and the
fitness function employed (Section 5). Results in simulation are presented in Sec-
tion 6, results on real hardware are discussed in Section 7 and conclusions are
drawn in Section 8.

Evolution of Signalling in a Group of Robots 175

2 Description of the Task

At the start of each trial, two simulated robots are placed in a circular arena
with a radius of 120 cm (see Fig. 1), at the centre of which a light bulb is always
turned on. The robots are positioned randomly at a distance between 75 and 95
cm from the light, with a random orientation between −120◦ and +120◦ with
respect to it. The robots perceive the light through their ambient light sensors.
The colour of the arena floor is white except for a circular band, centred around
the lamp covering an area between 40 and 60 cm from it. The band is divided
in three sub-zones of equal width but coloured differently—i.e., light grey, dark
grey, and black. Each robot perceives the colour of the floor through its floor
sensors, positioned under its chassis. Robots are not allowed to cross the black
edge of the band close to the light. There are two types of environment. In one
type—referred to as Env A—the band presents a discontinuity, called the way
in zone, where the floor is white (see Fig. 1a). In the other type, referred to as
Env B, the band completely surrounds the light (see Fig. 1b). The way in zone
represents the path along which the robots are allowed to safely reach the target
area in Env A—an area of 25 cm around the light. On the contrary, they cannot
reach the proximity of the light in Env B, and in this situation their goal is to
leave the band and reach a certain distance from the light source. Robots have
to explore the arena, in order to get as close as possible to the light. If they
encounter the circular band they have to start looking for the way in zone in
order to continue approaching the light, and once they find it, they should get
closer to the light and remain both in its proximity for 30 sec. After this time
interval, the trial is successfully terminated. If there is no way in zone (i.e., the
current environment is an Env B), the robots should be capable of “recognising”
the absence of the way in zone and leave the band by performing antiphototaxis.
Artificial evolution is used to design controllers capable of providing the robots
with the mechanisms required to solve the task.

Each robot is required to use a temporal cue in order to discriminate between
Env A and Env B, as in [4]. This discrimination is based on the persistence of
the perception of a particular sensorial state (the floor, the light or both) for the

Env A Env B

Target

area

Way-in

zone

Target

area

(a) (b)

Fig. 1. The task. (a) Env A is characterised by the way in zone. The target area is
indicated by the dashed circle. (b) In Env B the target area cannot be reached. The
continuous arrows are an example of a good navigational strategy for one robot.

176 C. Ampatzis et al.

P1P15

P14

P13

P12

P11

P10

P9 P8

P7

P6

P5

P4

P3

P2
L4

L3
L2

L1

M1 M2

F2

F1

SI

S

(a) (b)

Fig. 2. (a) A picture of an s-bot. (b) Plan of the simulated robot, showing sensors and
motors. The robot is equipped with four ambient light sensors (L1 to L4), two floor
sensors F1 and F2, 15 proximity sensors (P1 to P15) and a binary sound sensor, called
SI (see text for details). The wheel motors are indicated by M1 and M2. S is the sound
signalling system (loud speaker).

amount of time that, given the trajectory and speed of the robot, corresponds
to the time required to make a loop around the light. The integration over time
of the robots’ sensorial inputs is used to trigger antiphototaxis in Env B.

Communication is not required to solve the task described above. However,
robots are provided with a sound signalling system that can be used for commu-
nication. Given that we provide the agents with “mouth” and “ears”, whenever
a robot produces a signal (“talker”), this signal is “heard” by itself and the
other agent. The fitness function we use does not explicitly reward the use of
signalling. We investigate whether or not the latter evolves and in case it does,
what its adaptive function is. Finally, we use a homogeneous group of robots,
that is the same neural controller is cloned on both robots.

3 The Simulation Model

The controllers are evolved in a simulation environment which models some of the
hardware characteristics of the s-bots (see Fig. 2a). The s-bots are small wheeled
cylindrical robots, 5.8 cm of radius, equipped with a variety of sensors, and whose
mobility is ensured by a differential drive system [8]. In this work, we make use
of four ambient light sensors, placed at −112.5◦ (L1), −67.5◦ (L2), 67.5◦ (L3),
and 112.5◦ (L4) with respect to its heading, fifteen infra-red proximity sensors
placed around its turret (P1 to P15), two floor sensors F1 and F2 positioned
facing down on the underside of the robot with a distance of 4.5 cm between
them, an omni-directional sound sensor (SI), and a loud speaker S (see Fig. 2b).
The motion of the robot implemented by the two wheel actuators (M1 and M2)
is simulated by the differential drive kinematics equations, as presented in [9].
Light and proximity sensor values are simulated through a sampling technique.
The robot floor sensors output the following values: 0 if the robot is positioned
over white floor; 1

3 if the robot is positioned over light grey floor; 2
3 if the robot is

Evolution of Signalling in a Group of Robots 177

Fig. 3. The fully connected CTRNN architecture. Only the efferent connections for
N1 are drawn and all neurons behave in the same way. Neurons are represented as
circles. Circles with the light grey outline represent the input neurons, while circles
with the heavy grey outline represent the output neurons. We show for all input neu-
rons the combination of sensors that serve as inputs, and for all output neurons the
corresponding actuator. N10 is not connected to any sensor or actuator.

positioned over dark grey floor; 1 if the robot is positioned over black floor. The
loud speaker is simulated as producing a binary output (on/off); the sound sensor
has no directionality and intensity features. During evolution, 10% uniform noise
was added to the light and proximity sensor readings, the motor outputs and
the position of the robot. We also added noise of 5% on the reading of the two
floor sensors, by randomly flipping between the four aforementioned values.

4 The Controller and the Evolutionary Algorithm

Given that the task we want to study requires the use of time-dependent struc-
tures, we use fully connected, thirteen neuron Continuous Time Recurrent Neu-
ral Networks (CTRNN’s see [10])—see Fig. 3 for a depiction of the network. All
neurons are governed by the following state equation:

dyi

dt
=

1
τi

⎛
⎝−yi +

13∑
j=1

ωjiσ(yj + βj) + gIi

⎞
⎠ , σ(x) =

1
1 + e−x

(1)

where, using terms derived from an analogy with real neurons, τi is the decay
constant, yi represents the cell potential, ωji the strength of the synaptic con-
nection from neuron j to neuron i, σ(yj + βj) the firing rate, βj the bias term,

178 C. Ampatzis et al.

g the gain and Ii the intensity of the sensory perturbation on sensory neuron
i. The connections of all neurons to sensors and actuators is shown in Fig. 3.
Neurons N1 to N8 receive as input a real value in the range [0,1]. Neuron N1

takes as input L1+L2
2 , N2 ← L3+L4

2 , N3 ← F1, N4 ← F2, N5 ← P1+P2+P3+P4
4 ,

N6 ← P5+P6+P7+P8
4 , N7 ← P9+P10+P11+P12

4 and N8 ← P13+P14+P15
3 .

N9 receives a binary input (i.e., 1 if a tone is emitted by either agent, 0
otherwise) from the microphone SI, while N10 does not receive input from any
sensor. The cell potentials (yi) of N11 and N12, mapped into [0,1] by a sigmoid
function (σ) and then linearly scaled into [-4.0,4.0], set the robot motors output.
The cell potential of N13, mapped into [0,1] by a sigmoid function (σ) is used
by the robot to control the sound signalling system (the robot emits a sound
if y13 ≥ 0.5). The parameters ωji, τi, βj and g are genetically encoded. Cell
potentials are set to 0 when the network is initialised or reset, and circuits are
integrated using the forward Euler method with an integration step-size of 0.1.

A simple generational genetic algorithm is employed to set the parameters
of the networks [11]. The population contains 100 genotypes. Generations after
the first are produced by a combination of selection with elitism, recombination
and mutation. More details on the evolutionary algorithm employed and on the
genotypes’ component values can be found in [12].

5 The Fitness Function

During evolution, each genotype is coded into a robot controller, and is evaluated
for 10 trials, 5 in each environment. The sequence order of environments within
the ten trials has no bearing on the overall performance of the group since each
robot controller is reset at the beginning of each trial. Each trial differs from the
others in the initialisation of the random number generator, which influences
the robots’ starting position and orientation, the position and amplitude of the
way in zone (between 45◦ to 81◦), and the noise added to motors and sensors.
Within a trial, the robot life-span is 100 s (1000 simulation cycles). The final
fitness attributed to each genotype is the average fitness score of the 10 trials.
In each trial, the fitness function E is given by the formula E = E1+E2

2∗(nc+1) , where:
nc is the number of (virtual) collisions in a trial, that is the number of times the
robots get closer than 2.5 cm to each other (if nc > 3, the trial is terminated)
and Ei, i = 1, 2, is the fitness score of robot i, calculated as follows:

• If the trial is in Env A, or the robot in either environment has not yet touched
the band in shades of grey or crossed the black edge of the band, then its
fitness score is given by Ei = di−df

di
.

• Otherwise, that is if the band is reached in Env B, Ei = 1 + df−40
dmax−40 .

di is the initial distance of the robot to the light, df is the distance of the robot
to the light at the end of the trial and dmax = 120 cm is the maximum possible
distance of a robot from the light. In case roboti ends up in the target area in
Env A, we set Ei = 2. From the above equations we can see that this is also

Evolution of Signalling in a Group of Robots 179

Fig. 4. Box-and-whisker plot visualising the post-evaluated fitness of groups a1-a20 in
both environments. The box comprises observations ranging from the first to the third
quartile. The median is indicated by a horizontal bar. When the observations are too
close the box degenerates to the median. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range. The gray area denotes
the area into which the average fitness value for both environments (black circles) must
be, in order for the group to be called successful.

the maximum value Ei can obtain for a robot in Env B, and this corresponds to
the robot ending up at 120 cm from the light (df = 120). So if both robots are
successful, the trial gets the maximum score of 2. An important feature of this
fitness function is that it rewards agents that develop successful discrimination
strategies and end up doing the correct action in each environment, regardless
of any use of sound signalling. That is, a genotype that controls a group that
solves the task without any signalling/communication gets the same fitness as
one that makes use of communication.

6 Results

Twenty evolutionary simulations, each using a different random initialisation,
were run for 12000 generations. It is important to note that the fitness of the
best evolved controllers during evolution may have been an overestimation of
their ability to guide the robots in the task. In general, the best fitness scores
take advantage of favourable conditions, which are determined by the existence
of between-generation variation in starting position and orientation and other
simulation parameters. In order to have a better estimate of the behavioural
capabilities of the evolved controllers, we post-evaluate, for each run, groups
controlled by the best genotype of the last generation. Groups controlled by
neural networks built by those genotypes will be from now on referred to as
a1-a20. The entire set of post-evaluations (500 trials in Env A and 500 trials
in Env B) should establish whether (i) a group of robots can solve the task
(ii) a sound signalling mechanism has been evolved and what its functionality
is. The results of the post-evaluation phase are shown in Fig. 4. We define as
successful a genotype that after this phase has an average fitness value above 1.8.

180 C. Ampatzis et al.

This roughly corresponds to both robots reaching the target area in Env A and
leaving the band performing antiphototaxis in Env B. The results suggest that
five of the groups produced satisfying solutions to the task (a1, a2, a7, a10, a19).
Table 1 shows that four of the successful groups (a1, a2, a7, a19) make large use of
signalling in Env B, while in Env A signalling is negligible—see columns 6 and 8,
which refer to the average percentage of time either robot emits a signal during
a trial. Among the successful groups only a10 did not use signalling. To unveil
the relationship between the emission of sound signals and the completion of
the task, we perform a behavioural analysis of the successful evolutionary runs.
Thus, we evaluate the five successful groups in a different setup in which the
robots are not able to perceive any sound from the environment: their sound
input is set to 0 all the time. We refer to this condition as the deaf setup.
The results of this analysis are shown in Table 1, together with the results for
the normal setup—i.e., without applying any disruption. The first observation
that we make is that, for group a10, the average fitness in the deaf setup (see
Table 1 columns 10, 12) is exactly the same as the one in the normal setup
(see Table 1 columns 2, 4). For the other groups, the average fitness for Env B
drops considerably in the deaf setup, while for Env A it remains approximately
the same. This suggests that group a10 does not rely on the activation of the
sound input in order to solve the task in Env B while the other groups do.
Furthermore, for the latter groups, the fitness value in the deaf setup in Env B
corresponds to both robots not performing antiphototaxis; that is, the robots
stay on the band and keep circling around the light. In order to understand the
function of these signals, we looked more carefully at the behaviour of groups
a2 and a10 during a successful trial in each environment. In particular, our
analysis focused on the relationship between the robot-light distances and the
firing rate of neuron N13 of each controller of a group, since this neuron triggers

Table 1. Further results of post-evaluation tests with normal and deaf setups for
the five successful groups. For the normal setup, the table shows: (i) the average and
standard deviation of the fitness over 500 trials in Env A (see columns 2, and 3) and in
Env B (see columns 4, and 5); (ii) the average and standard deviation of the percentage
of time-steps the sound was on by either robot over 500 trials in Env A (see columns
6, and 7) and in Env B (see columns 8, and 9). For the deaf setup the table shows the
average and standard deviation of the fitness over 500 trials in Env A (see columns 10,
and 11) and in Env B (see columns 12, and 13).

group normal deaf
fitness signalling (%) fitness

Env A Env B Env A Env B Env A Env B
mean sd mean sd mean sd mean sd mean sd mean sd

a1 1.927 0.310 1.982 0.134 0.03 0.57 21.62 3.82 1.937 0.292 1.0526 0.239

a2 1.937 0.277 1.995 0.002 0.77 4.49 18.48 1.17 1.969 0.156 1.256 0.094

a7 1.988 0.113 1.950 0.198 0 0 17.19 2.54 1.988 0.113 1.266 0.250

a10 1.789 0.467 1.968 0.183 0 0 0 0 1.789 0.467 1.968 0.183

a19 1.914 0.236 1.984 0.059 0.08 0.72 13.88 1.03 1.923 0.214 1.137 0.016

Evolution of Signalling in a Group of Robots 181

0 100 200 300 400 500 600
0

20

40

60

80

100

120

d
is

ta
n

c
e

to
li
g

h
t

Robot 1 - Env.A

a2

a10

0 100 200 300 400 500 600
0

0.25

0.5

0.75

1

timesteps

s
o

u
n

d
o

u
tp

u
t

a2

a10

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

d
is

ta
n

c
e

to
li
g

h
t

Robot 1 - Env.B

a2

a10

0 100 200 300 400 500 600 700 800 900
0

0.25

0.5

0.75

1

timesteps

s
o

u
n

d
o

u
tp

u
t

a2

a10

(a) (b)

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

d
is

ta
n

c
e

to
li
g

h
t

Robot 2 - Env.A

a2

a10

0 100 200 300 400 500 600 700 800
0

0.25

0.5

0.75

1

timesteps

s
o

u
n

d
o

u
tp

u
t

a2

a10

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120
d
is

ta
n
c
e

to
li
g
h
t

Robot 2 - Env.B

a2

0 100 200 300 400 500 600 700 800 900
0

0.25

0.5

0.75

1

timesteps

s
o
u
n
d

o
u
tp

u
t

a2

a10

a10

(c) (d)

Fig. 5. The graphs show some features of the behaviour of robots of groups a2 (con-
tinuous lines) and a10 (dashed lines), during a successful trial in Env A and in Env
B. Top graphs a, b, c, and d show the distance to the light in cm. Bottom graphs a,
b, c, and d show the firing rate of neuron N13 (i.e., the sound output) of each robot
controller.

the emission of sound. Fig. 5a, b, c, d (top) show the distances of each robot to
the light at every timestep. The areas in shades of grey in these graphs represent
the circular band. Fig. 5a, b, c, d (bottom) show the firing rate of N13 (i.e., the
sound output) of both robots of a group. In all graphs, continuous lines refer to
robots of group a2, dashed lines refer to robots of group a10.

As shown in Fig. 5a, b, c, d (top), the behaviour of the robots can be divided
in three phases. In the first two phases the robots of both groups (a2 and a10)
behave in the same way in both environments. The robot-light distance initially
decreases up to the point where the robots touch the band (phototaxis phase)
and then stays quite constant as the robots circle around the band trying to find
the way in zone (integration over time phase). In the third phase the groups

182 C. Ampatzis et al.

behave differently according to the characteristics of the environment. For both
groups, in Env A the robot-light distance decreases further as the robots end up
in the target area, while in Env B it increases and reaches the maximum distance
as the robots leave the band (antiphototaxis phase). Concerning the firing rate
of neuron N13, the two groups differentiate in both environments (see Fig. 5a,
b, c, d (bottom)). In Env B, the firing rate for both robots of group a10 never
goes beyond the threshold of 0.5 (see Fig. 5b, d (bottom) dashed lines). In the
case of a2 though, the firing rate of N13 of Robot 1 is rising until it passes over
the threshold of 0.5 just before the robot starts performing antiphototaxis (see
Fig. 5b, d, continuous lines). This behaviour of N13 for a2 reflects the integration
over time process, which leads to passing over the threshold of 0.5 in Env B
(decision making), while it is interrupted in Env A, when the way in zone is
found (see Fig. 5a, c, continuous lines). Differently, for a10 this neuron does not
perform the integration process, so the latter should be taking place in another
neuron of the network.

The observations above for a2, combined with the fact that this group in the
deaf setup does not display antiphototaxis in Env B, suggest that the sound sig-
nalling system is connected to the discrimination between the two environments.
In other words, the antiphototaxis is a result of the perception of the sound emit-
ted by either robot. Furthermore, looking at Fig. 5d we observe that for group a2
(continuous line), Robot 2 leaves the band the moment Robot 1 emits a signal,
despite the fact that its own sound output is not yet over the threshold of 0.5.
We can summarise what happens as follows: the agent that “realises” first that
its group has been placed in Env B, emits a sound signal, the perception of which
triggers antiphototaxis in both robots of the group. We refer to this process as
external action selection, since the selection of the appropriated action (i.e., the
switch from phototaxis to antiphototaxis) is driven by the perception of an envi-
ronmental cue (i.e., the sound signal) produced by either robot of the group. On
the contrary, looking at the behaviour of group a10, we observe a process that
we refer to as internal action selection, since the antiphototaxis is not triggered
by a distinctive perceptual cue but solely by the internal dynamics of the neural
network controller. While the internal action selection does not involve any form
of communication, the external action selection determines the emergence of a
simple form of communication between the robots of a group, since the robot
that does not emit the signal initiates antiphototaxis by reacting to the other
robot’s signal.

The results of a pairwise Wilcoxon test among the fitness values of success-
ful groups as recorded during 1000 evaluations in the normal setup, show that
groups relying on an external action selection process to discriminate between
Env A and Env B (i.e., groups a1, a2, a7, a19) outperform with a confidence
level of 99% the only successful group which relies on an internal action selection
process (a10). We also compared the fitness scores achieved by the former groups
in the normal setup, with fitness scores achieved if the communication channel
between the robots is disabled, that is the robots are only capable of perceiving
their own signals. The results show that these genotypes perform worse with a

Evolution of Signalling in a Group of Robots 183

Fig. 6. Box-and-whisker plot visualising the post-evaluated fitness of groups n1-n20 in
both environments. The box comprises observations ranging from the first to the third
quartile. The median is indicated by a horizontal bar. When the observations are too
close the box degenerates to the median. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range. The gray area denotes
the area into which the average fitness value for both environments (black circles) must
be, in order for the group to be called successful.

confidence level of 99% with the communication channel disabled with respect
to the normal setup. These analyses seem to suggest that, once evolved through
random mutations, mechanisms involved in the process of external action selec-
tion give to a group a selective advantage over those groups which do not possess
these mechanisms.

This advantage might be related to the communication that results from the
exploitation of an external action selection process. That is, by communicat-
ing the outcome of their decision about the state of the environment, robots
may counterbalance the disruptive effect of the sensors and actuators’ noise on
the decision making mechanisms. In other words, the effectiveness of the mecha-
nisms that integrate sensory information over time in order to disambiguate Env
A from Env B may be sensibly disrupted by the noise inherent in the sensors’
reading and in the outcome of any “planned” action. Equally, by communicating
their decision, robots can eradicate decision delay between them: due to initial-
isation noise, one robot will on average perform the discrimination first. If the
antiphototaxis is triggered by the perception of sound (external action selection)
rather than by an internal state of the controller (internal action selection), then
a robot which by itself is not capable or not yet ready to make a decision con-
cerning the nature of the environment can rely on the decision taken by the
other robot of the group. The former simply reacts to the sound signal emitted
by the latter by initiating an antiphototactic behaviour (as happens for Robot
2 in Fig. 5d).

In order to test the “communication-noise hypothesis” (introduced above)
as the main factor which determines the selective advantage of signalling over
non-signalling groups, we run another set of twenty evolutionary runs. In this
additional series of simulations we removed any source of environmental noise

184 C. Ampatzis et al.

which may interfere with the mechanisms for integration over time—i.e., no noise
in sensors/actuators—and initialised the robots at exactly the anti-diametrical
positions. Due to these choices, both robot controllers are at identical states
during their lifetime and thus the potential advantage related to the communi-
cation that results from the exploitation of an external action selection process
is removed. The results of the post-evaluation phase are shown in Fig. 6. Groups
controlled by the best genotypes of the last generation of runs 1 to 20 are called
n1-n20, respectively. The results show that eleven of the groups effectively solved
the task (n3, n4, n5, n6, n8, n9, n12, n14, n17, n18, n20). Table 2 shows results
of the post-evaluation tests for two of the successful groups (n8, n17)1. These
groups use signalling in Env B (see column 8), and given their failure to produce
antiphototaxis in the deaf setup in Env B (see column 12), we can conclude that
they employ an external action selection process to discriminate between Env
A and Env B (exactly as a2). This suggests that there may be other factor(s)
which cause the evolution of groups that exploit the external action selection.
Genetic drift might be a possible explanation. Alternatively, we may speculate
that sound evolves simply because, if emitted at the end of a complete tour
around the light, it is a perceptual cue which an emitter robot can employ to
initiate antiphototaxis. Robots that do not emit sound may find it more difficult
to switch from phototaxis to antiphototaxis in the absence of a clear perceptual
cue which triggers the latter response. Obviously, the latter hypothesis does not
rule out the possibility that sound could acquire a communicative function in a
subsequent time because of its potential beneficial effect against environmental
noise and decision delay on behalf of one robot, as explained above.

Table 2. Further results of post-evaluation tests with normal and deaf setups for two
of the successful groups among n1-n20. For the normal setup, the table shows: (i) the
average and standard deviation of the fitness over 500 trials in Env A (see columns 2,
and 3) and in Env B (see columns 4, and 5); (ii) the average and standard deviation
of the percentage of timesteps the sound was on by either robot over 500 trials in Env
A (see columns 6, and 7) and in Env B (see columns 8, and 9). For the deaf setup the
table shows the average and standard deviation of the fitness over 500 trials in Env A
(see columns 10, and 11) and in Env B (see columns 12, and 13).

group normal deaf
fitness signalling (%) fitness

Env A Env B Env A Env B Env A Env B
mean sd mean sd mean sd mean sd mean sd mean sd

n8 2 0 1.999 0.000 0 0 26.40 0.64 2 0 1.169 0.007

n17 2 0 1.998 0.007 0 0 26.70 1.14 2 0 1.084 0.002

1 Other groups employ an external action selection process but use different signalling
conventions, and others employ an internal action selection process. The analysis of
these controllers is beyond the scope of this paper.

Evolution of Signalling in a Group of Robots 185

7 Porting on Real Robots

The task described in this paper is characterised by the fact that not only the
change but also the persistence of particular sensorial states are directly linked
to the effectiveness of the evolved strategies (see previous section). However, the
evolved strategies are generated by robot controllers developed in a simulated
world, which is responsible for modelling the sensory states of s-bots acting in
Env A or Env B. If the physics of our simulated world are insufficiently and/or
incorrectly defined, the evolved behavioural strategies may exploit loop-holes
which would strongly limit their effectiveness to an unrealistic scenario. Porting
the controllers evolved in simulation onto a real robot is the best way to rule
out the above mentioned problem (see [13]). However, as already pointed out
in Section 1, this practice has not been taken into account in previous research
work in which CTRNN’s have been evolved to deal with tasks that required
integration over time of sensory states. In this paper, we provide evidence of the
“portability” of the evolved controllers by showing the results of tests in which
real robots of group a2 are repeatedly evaluated in Env A and Env B.

In [14], the author claims that the robot does not have to move identically
in simulation and reality in order for the porting to be called successful, but its
behaviour has to satisfy some criteria defined by the experimenter. Following
this principle, real robots are considered successful if they carry out the main
requirements of our task. That is, the robots have to reach the band in shades
of grey regardless of the type of environment and subsequently (i) end up in the
target area in Env A, without crossing the inner black edge of the circular band;
(ii) end up as far as possible from the light in Env B. The robots should also
avoid collisions.

Two s-bots (s-bot1 and s-bot2) were randomly positioned at a distance of 85
cm from the light with a random orientation. In Env A, we randomly varied
the position of the way in zone but we fixed its width to 45◦, which is the
smallest value encountered during evolution and the most difficult case for a
possible misinterpretation of an Env A for an Env B. We performed 40 trials,
20 in each environment. The results were 100% successful: there were no wrong
discriminations, collisions or crossings of the black edge of the band2. As it was
the case for the simulated robots of group a2, the s-bots accomplished the task
through an external action selection process. That is, it is the sound emitted by
one s-bot that triggers antiphototaxis in both robots. The results of our tests
show that in Env B it is always s-bot1 that emits a signal. Since the discrimination
of Env B from Env A—that is, the emission of a sound signal and the following
antiphototactic response—is based on the persistence of a particular sensory
state, we can attribute the fact that s-bot1 always signals earlier than s-bot2 to
mechanical and/or sensor differences between the two s-bots. However, the fact
that we did not have any wrong discrimination proves that the simulation used
to develop our controllers is sufficiently and correctly defined.

2 The movies that correspond to all experiments can be found at
http://iridia.ulb.ac.be/supp/IridiaSupp2006-004

http://iridia.ulb.ac.be/supp/IridiaSupp2006-004

186 C. Ampatzis et al.

In order to understand to what extent real world noise influences the accom-
plishment of the task, we performed further analyses. We compute the offset
between the entrance position in the circular band of the robot that first emits a
signal and the position at which this robot starts to signal. This measure, called
offset Δ, takes value 0◦ if the robot signals exactly after covering a complete
loop around the circular band. Negative values of the offset Δ suggest that the
robot signals before having performed a complete loop, while positive values cor-
respond to the situation in which the robot emits a tone after having performed
a loop around the light (see [4] for details on how to calculate Δ).

Table 3. Average and standard deviation of the offset Δ over: (i) 20 trials in Env B
performed by the s-bots; (ii) 500 trials in Env B performed by the simulated robots

Offset Δ avg sd

s-bots -30.6 11.75

simulated robots +31.6 16.05

As shown in Table 3, we see that the s-bot that first emits a signal—which, as
mentioned above, is always s-bot1—does so on average before completing a loop.
However, being the magnitude of the offset Δ smaller than the width of the way
in zone the group does not run into the risk of misinterpreting an Env A for an
Env B. Further tests have proved that, if left to act alone in an Env B, s-bot2
always signals after completing a loop (i.e., positive offset Δ, data not shown).
This result can be accounted for by calling upon the inter s-bot differences, that
can hardly be captured by the simulated world.

In Table 3 we compare the average offset Δ of a group of s-bots with the
one recorded by the simulated robots of group a2 (with the same initialisation
conditions). Contrary to the s-bots, the simulated robots signal on average after
completing the loop. This result is due to the differences between simulated and
real world. Still, these differences did not produce any errors when dealing with
the real hardware. The reason for this is that simulated robots of group a2 are
rather “conservative”. That is, robots emit signals rather late, on average 31.6◦

after completing a loop. Adding to this number the minimum width of the way
in zone (45◦), we can see that the margin of fault tolerance is very wide.

8 Conclusions

In this work, we used artificial evolution as a means to engineer the emergence of
communication in a group of robots but also to design robot controllers that can
successfully cross the simulation-reality gap. Signals serve as “cues” that trigger
behavioural switches in the group. Obviously, the evolved signalling system is
simple, mainly because we only allow agents to emit binary signals. In order
to move to more complex signalling behaviours, we need to consider a sound
system with more degrees of freedom, always in close relation to the task under

Evolution of Signalling in a Group of Robots 187

consideration. Still, we observed that when agents are provided with “mouth”
and “ears”, communication can emerge, even without explicit fitness reward,
providing groups that use it with a selective advantage over those that do not.
Given this result, the question that arises is whether we should aim at evolving
communication in any swarm robotics task. Obviously this work does not provide
enough evidence to answer positively. Any communication system that escapes
from the local and simple interactions (e.g., communication through infra-red
sensors—see [6]) might present disadvantages as well as advantages. In fact,
when we move from a robot-to-robot to a robot-to-many interaction, not only
the benefit of the knowledge of the environment acquired, but also possible
errors spread faster. For example, in the task we studied, if a robot emits a
signal, both robots can exploit it. However, if the signal is the product of a
wrong decision (misinterpretation of environments) then both robots fail and
the whole system collapses. The importance and the effect of such an event on
the group performance is amplified as the swarm size increases, and therefore the
reliability of signals assumes a very important role. This in turn might require
more complex controllers. To summarise, the experimenter has to balance the
costs and benefits of communication before considering it as a path that might
lead to the solution of a given task.

Acknowledgements

E. Tuci and M. Dorigo acknowledge European Commission support via the
ECAgents project, funded by the Future and Emerging Technologies programme
(grant IST-1940). The authors thank their colleagues at IRIDIA for stimulating
discussions and feedback during the preparation of this paper, and the three
anonymous reviewers for their helpful comments. M. Dorigo acknowledges sup-
port from the Belgian FNRS, of which he is a Research Director. M. Dorigo
and C. Ampatzis acknowledge support from the “ANTS” project, an “Action
de Recherche Concertée” funded by the Scientific Research Directorate of the
French Community of Belgium. The information provided is the sole responsi-
bility of the authors and does not reflect the Community’s opinion. The Com-
munity is not responsible for any use that might be made of data appearing in
this publication.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York, NY (1999)

2. Trianni, V., Dorigo, M.: Self-organisation and communication in groups of simu-
lated and physical robots. Biological Cybernetics (2006) In press.

3. Nolfi, S., Marocco, D.: Evolving robots able to integrate sensory-motor information
over time. Theory in Biosciences 120 (2001) 287–310

4. Tuci, E., Trianni, V., Dorigo, M.: ‘Feeling’ the flow of time through sensory/motor
coordination. Connection Science 16 (2004) 1–24

188 C. Ampatzis et al.

5. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge, MA (2000)

6. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors.
Philosophical Transactions of the Royal Society of London, Series A: Mathematical,
Physical and Engineering Sciences 361 (2003) 2321–2344

7. Nolfi, S.: Emergence of communication in embodied agents: Co-adapting com-
municative and non-communicative behaviours. Connection Science 17 (2005)
231–248

8. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D.,
Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A
new distributed robotic concept. Autonomous Robots 17 (2004) 193–221

9. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge
University Press, Cambridge, UK (2000)

10. Beer, R., Gallagher, J.: Evolving dynamical neural networks for adaptive behavior.
Adaptive Behavior 1 (1992) 91–122

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

12. Ampatzis, C., Tuci, E., Trianni, V., Dorigo, M.: Evolving communicating agents
that integrate information over time: a real robot experiment. Technical Report
TR/IRIDIA/2005-012, IRIDIA, Université Libre de Bruxelles (2005) This paper is
available at http://iridia.ulb.ac.be/IridiaTrSeries .

13. Brooks, R.: Artificial life and real robots. In Varela, F., Bourgine, P., eds.: Towards
a Practice of Autonomous Systems: Proceedings of the First European Conference
on Artificial Life, MIT Press, Cambridge, MA (1992) 3–10

14. Jakobi, N.: Evolutionary robotics and the radical envelope of noise hypothesis.
Adaptive Behavior 6 (1997) 325–368

http://iridia.ulb.ac.be/IridiaTrSeries

Collective Specialization for Evolutionary Design
of a Multi-robot System

Agoston E. Eiben, Geoff S. Nitschke, and Martijn C. Schut

Computational Intelligence Group, Vrije Universiteit Amsterdam, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands

gusz@cs.vu.nl, nitschke@cs.vu.nl, schut@cs.vu.nl

Abstract. This research is positioned in the context of controller de-
sign for (simulated) multi-robot applications. Inspired by research in
survey and exploration of unknown environments where a multi-robot
system is to discover features of interest given strict time and energy
constraints, we defined an abstract task domain with adaptable features
of interest. Additionally, we parameterized the behavioral features of the
robots, so that we could classify behavioral specialization in the space of
these parameters. This allowed systematic experimentation over a range
of task instances and types of specialization in order to investigate the
advantage of specialization. These experiments also delivered a novel
neuro-evolution approach to controller design, called the collective spe-
cialization method. Results elucidated that this method derived multi-
robot system controllers that outperformed a high performance heuristic
and conventional neuro-evolution method.

1 Introduction

Biological social systems have long been a source of inspiration to engineers. In
particular, research in multi-robot and artificial life collective behavior systems,
has often attempted to replicate the success of social insect societies at decom-
posing the labor of a group into composite specialized and complementary roles
so as to accomplish collectively, global goals that could not otherwise be accom-
plished by individual insects. Mechanisms and design principles that facilitate
emergent behavioral specialization have been studied in biological [7], artificial
life [1], and multi-robot systems [10] research. However, collective behavior de-
sign methods for harnessing and utilizing emergent specialization for the benefit
for problem solving are lacking in current swarm engineering approaches.

This paper describes a comparative study testing Neuro-Evolution (NE) and
heuristic methods with respect to the role of specialization in solving a collective
behavior task1. NE is an approach that combines techniques native to both neu-
ral networks and evolutionary computation research. Both of these techniques
1 Terms used herein are defined as follows: task : what has to be done, activity : what

is being done, role: the task assigned to a specific individual within a set of respon-
sibilities given to a group of individuals, caste: a group of individuals specialized in
the same role [10].

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 189–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 A.E. Eiben, G.S. Nitschke, and M.C. Schut

have historically been successful in addressing single agent control problems [6]
and have recently had some success for controller design in collective behav-
ior research [2]. The advantages of applying NE to collective behavior research
have been illustrated in a variety of applications including multi-agent computer
games [2], RoboCup [17], and robot controller design [1]. Such applications have
highlighted that NE is most appropriately applied to complex problems that
are neither effectively addressed via pure evolutionary computation methods or
neural processing approaches.

It has been suggested that autonomous robotic explorers whose behavioral
or morphological design (or both) is biologically inspired could be feasible and
cost-effective in future planetary exploration [16], as well as providing an alter-
native to traditional, labor-intensive, tele-robotic operations [18]. The challenge
addressed in this paper concerned developing controllers for a group of sim-
ulated Unmanned Autonomous Vehicles (UAV’s) given a search and find task
constrained by limited resources.

Environmental factors such as resource distribution greatly influence social
organization in biological [7], and artificial social systems [10], given specific types
of tasks such as collective foraging. In this paper, heuristic methods highlighted
that specialization was beneficial in a search and find task, given specific types
of resource distribution in the environment. For this task, we defined what we
termed the Collective NE (CONE) method that was successful in deriving a
caste1 that outperformed a heuristic and conventional NE method.

1.1 Research Goal

The research goal was to demonstrate a NE method capable of deriving spe-
cialization for increasing task performance in environments where specialization
was beneficial.

1.2 Specialization

Specialization was defined at the agent level (1 aerial explorer) and the group
level (n aerial explorers). An agent was specialized if more than 50% of its
lifetime was dedicated to one role. We defined a caste where more than 50%
of the group members assumed one role for more than 50% of their respective
lifetimes.

1.3 First Hypothesis

There exist particular types of task environments where specialization increases
task performance.

To support our first hypothesis, the value of specialization in particular types
of task environments was demonstrated using a heuristic method that tested the
task performance of pre-defined castes.

Collective Specialization for Evolutionary Design of a Multi-robot System 191

1.4 Second Hypothesis

That the collective specialization NE method is appropriate for deriving special-
ized groups (that is: castes) with high task performance.

To support our second hypothesis of specialization being a requisite for in-
creased task performance, the performance of the collective specialization
method (where we supposed that emergent specialization would be observed
to benefit performance), was compared to that of a conventional NE method.

Fig. 1. CONE: Collective Neuro-Evolution. See section 2 for details.

2 CONE: Collective Neuro-Evolution

As illustrated in figure 1, after each of then sub-populations,were randomly initial-
ized with m genotypes the process of the CONE method was as executed follows.

1. n agents (neural controllers) were constructed via selecting p genotypes (neu-
rons) from each sub-population of genotypes. These p neurons then became
the hidden layer of each of the n controllers, which were subsequently placed
in the task environment. The group of controllers was thus heterogeneous,
given that each was constructed via selecting a set of p hidden layer neurons
from each of the n sub-populations. Evolutionary operators were not applied
between the n sub-populations.

2. The n controllers were tested together in the task environment for a life-
time of q epochs, where an epoch was a test scenario lasting for w iterations
of simulation time. Each epoch tested different task dependent agent and
environment conditions, such as agent starting positions and locations of re-
sources in the environment. For each of the q epochs (where q ≥ m genotypes
in a sub-population), each genotype in a given sub-population was selected
and tested in combination with p-1 other neurons (thus forming a controller)
randomly selected from the same sub-population.

192 A.E. Eiben, G.S. Nitschke, and M.C. Schut

3. Thus p neurons from each of the n sub-populations would concurrently be
evaluated in the task environments and assigned a fitness. Testing of neurons
within each sub-population would continue until all neurons had been tested
at least once.

4. At the end of an agents lifetime (q epochs) a fitness value was assigned
to each set of p neurons that participated in each of the controllers. The
assigned fitness of each set of p neurons was calculated as the average of
fitness values attained over all epochs of an agents lifetime.

5. For each sub-population, recombination and mutation of the fittest 20% of
genotypes then occurred, where the fittest 20% were arranged into pairs of
genotypes, and each pair produced 5 child genotypes, so as to propagate the
next generation of each sub-population.

6. A single genotype was randomly selected from the fittest 20% of the newly
recombined genotypes within each of the n sub-populations. These n selected
genotypes were then decoded into controllers, placed in the task environment,
and executed as the next generation. This process was then repeated for r
(table 1) generations.

2.1 Online Versus Offline Adaptation in the CONE Method

Most NE methods were originally designed to run offline, meaning that all geno-
types in a population were successively tested and evaluated, and after the whole
population had been tested, evolutionary operators were applied in order to cre-
ate the next population. The fittest genotypes of any given population could
then be selected as those best suited to solving the given task. Recently there
has been some success in applying NE methods for online adaptation in certain
collective behavior tasks such as multi-agent computer games [14].

As with the other NE methods applied to collective behavior tasks, such as
NEAT [15] and rtNEAT [14], the evolutionary cycle of selection and replacement
operated continually as controllers interacted with their task environment, ef-
fectuating the emergence of new controllers in response to dynamic challenges
in the task environment. Dissimilar to other online NE methods, the CONE
method derived a new controller (phenotype) from each of n sub-populations of
genotypes at the turn of each generation of artificial evolution, where a separate
evolutionary process of selection and replacement operated within each of the
n sub-populations. Hence, as the n controllers worked to accomplish their task,
each sub-population was progressively (and not necessarily synchronously) up-
dated, such that the ith controller, where i ε n, was in turn updated (decoded)
from the fittest genotype from the ith sub-population.

3 Conventional Neuro-Evolution

The conventional NE method was adapted from that used for previous evo-
lutionary robotics experiments [12], and as illustrated in figure 2 used only a

Collective Specialization for Evolutionary Design of a Multi-robot System 193

Fig. 2. Conventional neuro-evolution. See section 3 for details.

single population of genotypes. After, randomly initializing a population of m
genotypes, the conventional NE process operated as follows.

1. Initially, n genotypes were randomly selected from the population of m geno-
types, and decoded into n agents (neural controllers).

2. These n controllers were then placed in the task environment, to be tested
and evaluated.

3. Each controller was tested for a lifetime of q epochs, where each epoch con-
stituted a test scenario (section 2) that lasted for w iterations of simulation
time.

4. At the end of each controllers lifetime (q epochs), a fitness value was assigned
to the genotype corresponding to each controller. The fitness assigned to a
genotype was calculated as the average of all fitness values attained for all
epochs of its lifetime.

5. Each of the m genotypes was systematically decoded into a neural controller
and tested, together with n-1 other (randomly) selected genotypes, in the
task environment. The testing of all m genotypes in the population consti-
tuted one generation of the NE process.

6. The fittest 20% of genotypes were then arranged into randomly selected
pairs, and each pair recombined to produce 5 child genotypes each, so as to
replace the current genotype population.

7. n genotypes were then randomly selected from the fittest 20% of the next
generation of genotypes. Each selected genotype was decoded into its corre-
sponding controller and placed in the task environment.

8. This process was repeated for the r generations that the conventional NE
method was executed for (table 1).

194 A.E. Eiben, G.S. Nitschke, and M.C. Schut

4 Genotypes

For both the CONE (figure 1) and conventional NE (figure 2) methods, the pop-
ulations of genotypes were encoded as a string of floating point values (table 1),
which represented neural network weights connecting all sensory input neurons
and all motor output neurons to a given hidden layer neuron.

4.1 Recombination of Genotypes: Crossover and Mutation

Each child genotype was produced using single point crossover [4], and Burst
mutation with a Cauchy distribution [8]. As illustrated in table 1 mutation of
a random value in the range [-1.0, +1.0] was applied to each gene (connec-
tion weight) with a 0.05 degree of probability, and weights of each genotype
were kept within the range [-10.0, +10.0]. Burst mutation was used to ensure
that most weight changes were small whilst allowing for larger changes to some
weights.

Fig. 3. Adaptive topology neural controller. See section 7.2 for explanation.

4.2 Fitness Calculation

At the end of each generation (section 2) a fitness value was assigned to each of
the n controllers, where each of the neurons participating in each controller was
assigned an equal portion of the fitness value. These individual neuron fitness
values were then assigned back to the sub-population corresponding to each
of the controllers. Although this fitness estimation method, known as fitness
sharing [3] was convenient for deriving the contribution of each neuron to a
controller, it was problematic in that it potentially prevented the selection of
the best neurons across successive generations. However, this was offset by the
advantage that there was no disparity between controller fitness and the fitness
of individual neurons.

Collective Specialization for Evolutionary Design of a Multi-robot System 195

5 Phenotypes: Constructing Controllers from Neurons

An agent phenotype (feed-forward neural controller) was constructed from a set
of 10 genotypes (hidden layer neurons). Given that the CONE method operated
at the neuron (not the controller [11]) level, a controller was constructed via
selecting p neurons from one sub-population of neurons. The setting of specific
neurons in specific hidden layer locations has the well investigated consequence
that different neurons become specialized for different controller sub-tasks [15],
over the course of a NE process. Hence, each neuron in each sub-population
was assigned to a fixed position in the hidden layer of any given controller. The
position that the ith neuron (gi) would take in a hidden layer of p neurons, where
gi was selected from any sub-population of m neurons, was calculated as follows.

Each of the m neurons in a sub-population were initially assigned a random
and unique ranking in the range [0, m-1]. A sub-population was divided into
approximately equal portions (m / p), where if gi was within the kth portion
(where: k = [1, p]) then gi would adopt the kth position in the hidden layer.

Table 1. Neuro-evolution parameter settings

Neuro-Evolution Parameter Settings
Runs per NE
method

20

Generations 500
Epochs 50
Iterations / Epoch 1000
Mutation probabil-
ity

0.05

Mutation range [-1.0, +1.0]
Weight range [-10.0, +10.0]
Initial Weights Random
Crossover single point
Hidden neurons 10
Phenotypes 100 Controllers
Genotype length 18 (14 + 4) weights
Genotypes 100 (Conventional NE) / 10000

(CONE)

5.1 Dynamic Topologies

Many NE methods have used a process known as complexification which changes
the topology of a neural controller, and thus its corresponding genotype length,
as part of an evolutionary process [9]. However, only a few of such methods have
been successfully applied to collective behavior tasks [14].

The CONE method also uses complexification to dynamically change genotype
lengths as part of the evolutionary process. Where as, [14] used synapsis to
recombine genotypes of different lengths, this was not necessary in CONE, as
all genotypes within a given sub-population were kept the same length, and
recombination of genotypes from different sub-populations did not occur. Also,
the CONE method only changed the number of sensory input neurons, and the
number of hidden layer and motor output neurons were kept static.

196 A.E. Eiben, G.S. Nitschke, and M.C. Schut

6 Collective Survey Task

Inspired by UAV survey and exploration missions of unknown environments [16],
a group of 101 simulated UAV’s (100 explorer agents and 1 lander agent) were
given the task of maximizing the number of features of interest (herein termed:
red rocks) discovered within a survey area of an environment given limited sensor
and actuator capabilities, battery power and mission time. Red rock locations
and distributions were initially unknown to the agents. The lander had no active
role in the discovery of red rocks. Its role was to act as a base station that received
red rock data (locations and value of features of interest) communicated to it,
and to recharge explorer agents that successfully accomplished their task.

6.1 Environment

The simulation environment2 was represented as a discrete three dimensional
environment of 200 x 200 x 200 voxels.

Table 2. Adaptive controller topology. MOV: Motor Output Value 1 (MO0 in figure 3).
FOV: Field of View. PODS: Probability Of Detection Success. See section 7.2 for
explanation.

Adaptive Input Layer Topology of Neural Controller
Total

Detection Sensor Setting Genotype
Length

Visual Neurons Input
Neurons

3 (0.75 < MOV1 ≤ 1.0) 58 49 (FOV=49);
PODS=0.99

54

2 (0.5 < MOV1 ≤ 0.75) 34 25 (FOV=25);
PODS=0.89

30

1 (0.25 < MOV1 ≤ 0.5) 18 9 (FOV=9); PODS=0.79 14

0 (0.0 < MOV1 ≤ 0.25) 10 1 (FOV=1); PODS=0.69 6

6.2 Red Rocks (Features of Interest)

As described by the red rock discovery algorithm (section 8.2), when an agent had
discovered a red rock using its detection sensor the red rock location was moved
to, using the movement actuator, red rock value (evaluation data) was then
ascertained, using the evaluation sensor. Evaluation data was communicated
from the agent to the lander, using the communication actuator and the red
rock value communicated back to the agent from the lander. Red rocks either
had a value (1) or not (0). A red rock with value was marked as evaluated, so it
2 Demo’s, source code and documentation of the simulation environment is available

at: www.cs.vu.nl/ nitschke/MarsScape/

Collective Specialization for Evolutionary Design of a Multi-robot System 197

would not again be subject to evaluation. Thus the number of resources in the
environment diminished with successful task accomplishment. Agents that had
evaluated red rocks with value would be marked as being eligible for an energy
reward, and also immediately receive a fitness reward (section 4.2) equal to the
value of the last red rock evaluated.

Red rock value served two purposes. First, it provided a performance measure
for the agent group. Second, it was translated into energy and fitness rewards.
When an agents energy depleted to below 500 units, it would return to the
lander and the total red rock value that the agent had gathered thus far would
be translated directly into an energy reward.

6.3 Red Rock Distribution

A simulation consisted of 40000 red rocks distributed over the base of the envi-
ronment. That is, a red rock could be placed at each possible xi, yi, zj , where 0
≤ i < 200, j=0. We described red rock distribution (degree of structure) in the
environment using a two dimensional Gaussian mixture model [13]. The mix-
ture model was specified with 4 centroids, where the radius of each determined
the spatial distribution of red rock around each. 10 radii were tested, such that
red rock distributions generated ranged from a uniform (such an environment
was termed as having a low degree of structure) through to a clustered distri-
bution (such an environment was termed as having a high degree of structure).
We labeled these environment types from 0 (low degree of structure) through
to 9 (high degree of structure). All 10 environment types were tested using the
heuristic (section 8), CONE (section 2) and conventional neuro-evolution meth-
ods (section 3).

Table 3. Heuristic Method: Specialized agent types and their probabilistic preferences
for action selection

Agent Type Detect Evaluate Move Communicate
Detector 0.6 0.1 0.2 0.1
Evaluator 0.1 0.6 0.2 0.1
Communicator 0.1 0.1 0.2 0.6

7 Agents

At simulation initialization, each aerial explorer was placed in a random voxel
(xi, yi, zi, where, 0 ≤ i < 200). A maximum of 4 aerial explorers could occupy
a given voxel.

7.1 Morphology: Sensors and Actuators

Agent morphology was defined in terms of 1 detection sensor, 1 evaluation sensor,
1 movement actuator, and 1 communication actuator. This selection of sensors

198 A.E. Eiben, G.S. Nitschke, and M.C. Schut

and actuators was based upon design proposals for rotorcraft that are to oper-
ate as autonomous aerial explorers [18]. Rotorcraft are considered advantageous
given their vertical lift capabilities, allowing them to detect red rocks in flight
using a directional visual sensor, perform some preliminary categorization of red
rocks, move in order to evaluate selected red rocks using a physical contact sen-
sor, and then communicate red rock data. Rotorcraft are also able to land to
recharge at a base station.

7.2 Controllers: Adaptive Topology Neural Network

Figure 3 illustrates the feed forward neural controller used by the explorer agents.
The controller connected all sensory input nodes to 10 hidden layer nodes,
(HL0..HL9) to 4 motor output nodes (MO0..MO3). The number of non-visual,
hidden-layer and output nodes remained static at 5, 10, and 4 respectively.

Sensory inputs: Non-visual. Non-visual input nodes (SI0..SI4) took as in-
put the 4 motor output (MO0-MO3) values, and the red rock evaluation value
from the previous simulation iteration, respectively. These previous values were
teaching inputs [12] which influenced the next motor outputs.

Sensory inputs: Visual. Figure 3 also illustrates that the number of visual
neurons in the sensory input layer was dynamic within the range SI5 (one voxel
viewable) and SI53 (49 voxels viewable). All values taken by sensory input nodes
were normalized.

The number of sensory input neurons determined the accuracy of sensor read-
ings for detecting (table 2) features of interest (red rocks) in the environment.
In this case, more sensory input neurons indicated that more discrete locations
in the environment (voxels) could be observed with the directional red rock
detection sensor (table 6).

Motor outputs. Motor outputs (MO0..MO3) corresponded to the 4 actions
an agent could select. MO0 and MO1 activated the detection and evaluation
sensors, respectively. MO2 and MO3 activated the movement and communica-
tions actuators, respectively. The motor output node that generated the highest
value was the action selected. All values generated by motor output nodes were
normalized.

Genotype Representation. A single genotype was encoded as a string in
the interval of [10, 58] connection weights. The genotype to phenotype (hid-
den layer neuron) mapping scheme was a direct one-to-one mapping, where
each connection weight corresponded to a floating-point number in the interval
[-10, +10]. A controller was constructed from a set of 10 genotypes (encoded
hidden layer neurons). So as to simplify assembly of a neural controller, all geno-
types within a sub-population (CONE method), or population (conventional NE
method) of genotypes were kept the same length. Also, the given NE method
was applied separately to the part of a genotype encoding input-hidden weights
versus the part encoding hidden-output weights, so as not to recombine parts of
a genotype responsible for distinctly different neural functions.

Collective Specialization for Evolutionary Design of a Multi-robot System 199

The genotype length was determined by the detection sensor (field of vision)
setting (given by motor output MO0). That is, the NE method also determined
(indirectly via evolution of hidden-output connection weights) the field of vision
most appropriate for a given controller (agent). As the value of MO0 changed
(given that it was the highest of all motor-output values at a given simulation
time step), so to would the number of visual neurons in the sensory input layer,
and the number of weights connecting visual neurons to hidden layer neurons.

As presented in table 2, the minimum genotype length was 10, and the maxi-
mum was 58. That is, 5 input-hidden weights connected the 5 non-visual neurons
(SI0..SI4), between 1 and 49 input-hidden weights connected the same number of
visual neurons (SI5..SI53), and 4 output-hidden weights connected the 4 motor
output neurons (MO0..MO3) to the a given hidden layer neuron (HL0..HL9).

Action selection. Action selection depended on whether the agent was using
a heuristic or a NE method (comparative experiments were executed). In the
case of a heuristic method, selection was according to a probabilistic preference,
where as in the case of NE, selection was determined by the motor output node
yielding the highest output value.

8 Heuristic Methods

For the heuristic method, we hand-coded specialization at the agent (table 3)
and group (table 4) level, according to our definition of specialization (section
1.2). An agent was considered to be specialized if it dedicated more than 50% of
its lifetime to one activity. A group was considered to be specialized if more than
50% of its agents were dedicated to one activity over the course of the groups
lifetime.

The heuristic method used probabilistic preferences to determine which action
to execute at each simulation iteration. The degree of agent specialization was
thus defined and labeled, via setting a probabilistic bias to one of the four possible
actions.

Table 4. Heuristic Method: Specialized group types. The portion of Communicators is
calculated as 1 minus portion of Detectors (DP) minus the portion of Evaluators (EP).

Portion of Evaluators in Group (EP)
0 1/5 2/5 3/5 4/5 1

Portion 0 A B C D E F
of 1/5 G H I J K
Detectors 2/5 L M N O
in 3/5 P Q R
Group 4/5 S T
(DP) 1 U

Table 3 presents the specialized agent types tested in experiments using the
heuristic method. The composition of specialized (caste) versus non-specialized

200 A.E. Eiben, G.S. Nitschke, and M.C. Schut

Table 5. Heuristic method: Non-specialized group types. The portion of Communica-
tors is calculated as 1 minus portion of Detectors (DP) minus the portion of Evaluators
(EP).

Portion of Evaluators in Group (EP)
0 1/3 1/2

Portion of 0 W
Detectors in 1/3 V X
Group (DP) 1/2 Y Z ZA

groups is specified in tables 4 and 5 respectively. For these specifications, CP
denotes the portion of communicators, EP denotes the portion of evaluators,
and DP denotes the portion of detectors. CP = 1 - DP - EP. The letters (V-ZA)
denote the non-specialized group types. A blank space denotes a non applicable
combination of detectors, evaluators, and communicators.

8.1 Specialized and Non-specialized Group Types

Specialized group types were defined by setting more than 50% of a group to be of
one specialized agent type (table 3). Table 4 presents the specialized group types
tested using the heuristic method. Note that not all the group types presented
in table 4 are specialized according to this definition. Group types M and N
do not have a greater than 50% majority of any one agent type in their group
composition. Non-specialized group types were defined when no single agent type
had a greater than 50% majority in the groups composition. Table 5 presents
the non-specialized group types tested using the heuristic method.

8.2 Red Rock Discovery Algorithm

The red rock discovery algorithm described the activity of aerial explorers with
respect to discovering and evaluating red rocks, regardless of the controller type.
Red Rock Discovery Algorithm()
{ Simulate for N iterations (agent lifetime)
{
IF red rock evaluation data in memory (not communicated) THEN
{
Communicate red rock evaluation data to lander;
Get fitness reward = r, and energy reward = e;
IF lander not within communication range
THEN communicate red rock data to agents in communication range;

}
Select action:[Detect, Evaluate, Move, Communicate];
IF red rock detected THEN
{
Move to closest red rock with value
Evaluate red rock (store in memory as red rock evaluation data);
Communicate red rock evaluation data to lander;
Get fitness reward = r, and energy reward = e;
IF lander not within communication range
THEN communicate red rock data to agents in communication range;

}
IF current energy < minimum energy threshold Move back to lander
to recharge e units;
} }

Collective Specialization for Evolutionary Design of a Multi-robot System 201

Table 6. Agent and environment simulation parameters

Experimental Parameters
Communication Range 100 voxels
Communication Type broadcast
Initial Aerial Explorer / Lander Battery 1000 / 100000

units
Detection / Evaluation Sensor Cost 0.5
Movement / Communication Actuator
Cost

0.5

Maximum Move / Iteration 3 voxels
Simulation Length 2500
Initial Agent Positions Random
Reproduce (Apply NE operators) After evaluation
Energy / Fitness reward per red rock 100 / 1
Number of red rocks per simulation 40000
Simulation runs per experiment 20

Table 7. Highest performing group types and the environment type (0-9) they per-
formed best in

Environment Types
0 1 2 3 4 5 6 7 8 9
P U R R O R P Q R Q

9 Experiments and Results

We designed two sets of experiments. The first experiment set applied and
measured the performance of the heuristic method using specialized and non-
specialized agent groups. The second experiment set applied a conventional NE
and the CONE method and tested their task performance comparatively with
the 27 configurations 19 specialized group types and 8 non-specialized group
types) of the heuristic method. Each experiment set was tested for 10 degrees of
structure in 10 test environments (section 6.3). For all experiments, the perfor-
mance measure used was the Red Rock Value Gathered (RRVG). Averages and
standard deviations were calculated over 20 runs, where a single run consisted
of 2500 iterations and a given method. The method used was either heuristic,
or NE. The experimental agent and environment simulation parameters are pre-
sented in table 6.

9.1 Heuristic Method Comparison: Specialized Versus
Non-specialized Groups

Table 8 presents the performance results from the heuristic method applied with
specialized and non-specialized groups. The values in parentheses are the corre-
sponding standard deviations. Highlighted values are the highest values attained
for both specialized and non-specialized groups. Table 7 illustrates the highest

202 A.E. Eiben, G.S. Nitschke, and M.C. Schut

Table 8. Average RRVG for specialized (A-L; O-U) versus non-specialized group types
(M, N, V-ZA)

Specialized versus Non-Specialized Group Types
Group Types: Specialized Group Types: Non-

Specialized
0 2846 (855) 2124 (388)

D S 1 2923 (931) 2103 (669)
E O T 2 3178 (345) 2723 (628)
G F R 3 3197 (285) 2501 (744)
R U 4 3313 (421) 2414 (594)
E C 5 3218 (977) 2115 (597)
E T 6 3507 (818) 2470 (644)

U 7 3636 (322) 2538 (776)
R 8 3412 (847) 2475 (647)
E 9 3313 (618) 2397 (713)

performing groups for each of the 10 test environments (each degree of structure).
Only group types in the range are (H-U) are displayed, since these were the
highest performing group types.

9.2 Neuro-Evolution Method Comparison

Table 9 presents the performance results for the conventional NE method (A)
versus the CONE method (B) when applied to the 10 test environments. The
highlighted values are the RRVG attained for each method. The value in paren-
theses are the corresponding standard deviations. For the NE methods, we deter-
mined if a given agent in a given group assumed a particular role via measuring
what portion of its lifetime was spent on each of the detection, evaluation, and
communication activities. An agent that spent the majority (more than 50%)
of its lifetime on the detection activity was termed a detector. Similarly, the
terms evaluator and communicator were applied for agents that spent a major-
ity of their lifetimes on evaluation and communication. Likewise, convergence to
a caste, via measuring the portion of detectors, evaluators and communicators
that comprised a group, for the majority of the groups lifetime.

10 Analysis and Discussion

In order to draw conclusions from this comparative study, we performed a set
of statistic tests in order to gauge respective differences between heuristic and
NE method results. First, we determined results from the specialized and non-
specialized heuristic (table 8), CONE and conventional NE (table 9) methods
to be normal distributions via applying the Kolmogorov-Smirnov test [5]. P val-
ues were P=0.72, P=0.99, P=1.0, and P=0.98, respectively. To determine the
statistical significance of difference between each of these data sets we applied
an independent t-test [5]. For each t-test we selected 0.05 as the threshold for
statistical significance, and stated the null hypothesis as two data sets not signif-
icantly differing. The t-test was first applied to the comparative specialized and

Collective Specialization for Evolutionary Design of a Multi-robot System 203

Table 9. Average RRVG for the conventional NE (A) versus the CONE (B) method

Neuro-Evolution Method Comparison
Method A: Conventional
NE

Method B: CONE

0 2874 (365) 4290 (265)
D S 1 3338 (341) 4229 (350)
E O T 2 3218 (417) 4189 (421)
G F R 3 3040 (430) 4394(304)
R U 4 3988 (451) 4511 (321)
E C 5 3956 (338) 4898 (444)
E T 6 3633 (314) 4658 (321)

U 7 3466 (384) 4907 (481)
R 8 3525 (253) 4602 (406)
E 9 2971 (441) 4638 (375)

Table 10. Comparative group compositions of best performing groups using conven-
tional NE and the CONE methods. DoS denotes Degree of Structure.

Group Composition of Conventional Neuro-Evolution Method
Detectors Evaluators Communicators No Specializa-

tion
DoS Average RRVG

0.37 0.36 0.15 0.12 4 3988
Group Composition of Collective Neuro-Evolution Method

Detectors Evaluators Communicators No Specializa-
tion

DoS Average RRVG

0.52 0.25 0.22 0.01 7 4907

non-specialized heuristic method data sets. P=0.00003 was calculated, meaning
the null hypothesis was rejected. This served to support our first hypothesis
of specialization being advantageous in terms of increasing task performance in
particular environment types. Second, we applied the t-test to the comparative
NE method results. A P=0.00007 was calculated, meaning the null hypothesis
was rejected. This partially supported our second hypothesis that the CONE
method would yield a high task performance.

Finally, we applied the t-test to the specialized heuristic method (table 8) and
the conventional NE method (table 9) results. A P=0.32 was calculated, meaning
the null hypothesis was accepted and there was no significant difference between
task performance results. This served to partially support our second hypothe-
sis that specialization was beneficial for task performance, via illustrating that
an adaptive method with no specialization (table 10) yielded no significant ad-
vantage in performance. In terms of supporting our second hypothesis, that the
CONE method derived specialized groups yielding high task performance, it is
necessary to compare table 7 and table 10. The heuristic method showed that the
best performing specialized group type (caste Q) was operating within environ-
ment type 7. As presented in table 4 the group composition of caste Q was such
that a (60%) majority was the agent type detector. The remainder of the group
composition was split between evaluators and communicators. Table 10 presents
the group composition derived by the CONE method in environment type 7 con-
sisted of a majority of detector agents (0.52) and minor portions of evaluator

204 A.E. Eiben, G.S. Nitschke, and M.C. Schut

(0.25) and communicator (0.22) agent types. This group composition resembled
the caste Q in terms of consisting of a majority of detectors and two minorities
of evaluators and communicators. This was not the case for the conventional
NE method. This method yielded on average a comparable performance to the
heuristic method using specialized group types for all test environments. Ad-
ditionally, the conventional NE method was unable to out-perform the CONE
method for all test environments (table 9). Table 10 illustrates that the best per-
forming conventional NE run (test environment 4) as not converging to a caste.
In table 10 only the group composition for environment type 4 is presented,
however, this held true for all environment types. It is theorized that the inferior
performance of the conventional NE (comparative to the CONE) method was a
lack of derived specialization.

11 Conclusions

This paper described a comparative study of neuro-evolution and heuristic meth-
ods designed to test the efficacy and benefits of utilizing specialization as a means
of increasing performance in a search and find task given a range of test envi-
ronments. Performance comparisons were made according to the total value of
features of interest (termed red rocks) discovered by a simulated multi-robot
system. In support of our first hypothesis, a heuristic method using pre-defined
specialized multi-robot groups elucidated that specialization was beneficial in a
range of test environments (defined by different resource distributions. In support
of our second hypothesis, our neuro-evolution method yielded a higher perfor-
mance in all test environments, comparative to a conventional neuro-evolution
method. The best performing group using the collective neuro-evolution method
converged to a specialized group composition (such that the majority of the
agents assumed one role) that resembled the group composition of the highest
performing specialized group tested with the heuristic method. The compara-
tively low performance of the conventional method was deemed to be consequent
of the lack of specialization exhibited in group compositions derived.

References

1. G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display
collective behavior. Artificial Life, 9(1):255–267, 2003.

2. B. Bryant and R. Miikkulainen. Neuro-evolution for adaptive teams. In Proceedings
of the 2003 Congress on Evolutionary Computation, pages 2194–2201. IEEE Press,
Canberra, Australia, 2003.

3. L. Bull and J. Holland. Evolutionary computing in multi-agent environments: Euso-
ciality. In Proceedings of the Second Annual Conference on Genetic Programming,
pages 347–352. IEEE Press, San Francisco, USA., 1997.

4. A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer-Verlag,
Berlin, Germany, 2003.

5. B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cambridge
University Press, Cambridge, 1986.

Collective Specialization for Evolutionary Design of a Multi-robot System 205

6. D. Floreano and J. Urzelai. Evolutionary robots with on-line self-organization and
behavioral fitness. Neural Networks, 13(1):431–443, 2000.

7. J. Gautrais, G. Theraulaz, J. Deneubourg, and C. Anderson. Emergent polyethism
as a consequence of increased colony size in insect societies. Journal of Theoretical
Biology, 215(1):363–373, 2002.

8. F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5(1):317–342, 1997.

9. N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of
simulation in evolutionary robotics. In Proceedings of Third European Conference
on Artificial Life (ECAL-95), pages 704–720. Springer-Verlag, Granada, Spain,
1995.

10. M. Kreiger and J. Billeter. The call of duty: Self-organized task allocation in a
population of up to twelve mobile robots. Robotics and Autonomous Systems, 30:
65–84, 2000.

11. S. Nolfi and D. Floreano. Learning and evolution. Autonomous Robots, 7(1):89–113,
1999.

12. S. Nolfi and D. Parisi. Learning to adapt to changing environments in evolving
neural networks. Adaptive Behavior, 1(5):75–98, 1997.

13. P. Paalanen, J. Kamarainen, J. Ilonen, and H. Kälviäinen. Feature representa-
tion and discrimination based on gaussian mixture model probability densities -
practices and algorithms. Pattern Recognition, 39(7):1346–1358, 2006.

14. K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neuro-evolution in the nero
video game. IEEE Transactions Evolutionary Computation, 9(6):653–668, 2005.

15. K. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary
complexification. Journal of Artificial Intelligence Research, 21(1):63–100, 2004.

16. S. Thakoor. Bio-inspired engineering of exploration systems. Journal of Space
Mission Architecture, 2(1):49–79, 2000.

17. S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keep-away soccer
players through task decomposition. In Proceeding of the Genetic and Evolutionary
Computation Conference, pages 356–368. AAAI Press, Chicago, 2003.

18. L. Young, E. Aiken, G. Briggs, V. Gulick, and R. Mancinelli. Rotorcraft as mars
scouts. In Proceeding of the IEEE Aerospace Conference, pages 4–12. IEEE Press,
Big Sky, USA, 2002.

Scalability in Evolved Neurocontrollers That
Guide a Swarm of Robots in a Navigation Task

Federico Vicentini1 and Elio Tuci2

1 Robotics Lab, Mechanics Dept., Politecnico di Milano
federico.vicentini@polimi.it

2 IRIDIA, CoDE, Université Libre de Bruxelles
etuci@ulb.ac.be

Abstract. Generally speaking, the behavioural strategies of a multi-
robot system can be defined as scalable if the performance of the system
does not drop by increasing the cardinality of the group. The research
work presented in this paper studies the issue of scalability in arti-
ficial neural network controllers designed by evolutionary algorithms.
The networks are evolved to control homogeneous group of autonomous
robots required to solve a navigation task in an open arena. This work
shows that, the controllers designed to solve the task, generate navigation
strategies which are potentially scalable. However, through an analysis
of the dynamics of the single robot controller we identify elements that
significantly hinder the scalability of the system. The analysis we present
in this paper helps to understand the principles underlying the concepts
of scalability in this kind of multi-robot systems and to design more
scalable solutions.

1 Introduction

The research work presented in this paper studies the issue of scalability in
artificial neural network controllers designed by evolutionary algorithms. The
networks are evolved to control a homogeneous group of autonomous robots
required to solve a navigation task in an open arena.

The task, originally presented in [1], requires a group of three robots to move in
any arbitrary direction by remaining close to each other while avoiding collisions.
A homogeneous group is one in which the robots share the same controller, which
is cloned in each member of the group. The difficulty of the task resides in the
fact that each robot has a very limited perception of the world, based on the
readings of the infrared sensors which surround the body of the agent. Therefore,
the emergence of navigational strategies is based on a self-organisation process
by which the robots coordinate their actions in order to: (i) choose a common
direction of motion starting from random initial positions; (ii) dynamically assign
roles, such as leader-follower, that may facilitates the accomplishment of the task.

In [1], the results of the research work show that dynamic neural networks
can be designed by evolutionary computation techniques to control a group of
autonomous robots capable of successfully carrying out the group navigation
task. The analysis of the group behaviour shows that, during a successful trial

E. Şahin et al. (Eds.): Swarm Robotics Ws, LNCS 4433, pp. 206–220, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 207

the behaviour of the group can be divided in two phases. During the first phase
the robots display themselves in chain formation starting from any randomly
chosen initial position. During the formation of chain there is also the emergence
of roles, since one of the two robots at the end of the chain orients itself in the
opposite way with respect to the other two. This robot can be considered to be
the leader, since it chooses the direction of motion of the entire group. In the
second phase, the chain starts moving in an arbitrary direction of motion, with
the first robot (the leader) travelling forward. The others follow the leader by
keeping the geometrical centre aligned and travelling backward.

The work presented in this paper firstly replicates the results discussed in [1].
Subsequently, it shows an analysis of the scalability of the evolved solutions.
Note that, our work differentiates from the original one because we use a dif-
ferent robotic platform and a different type of dynamic neural network as robot
controller. The issue of scalability is particularly relevant within the method-
ological framework employed in [1] and referred to as Evolutionary Robotics
(ER, see [2]). Roughly speaking, ER is a methodological tool to automate the
design of robots’ controllers. ER is based on the use of artificial evolution to
find sets of parameters for artificial neural networks that guide the robots to the
accomplishment of their objective, avoiding dangers. Owing to its properties,
ER can be employed to look at the effects that the physical interactions among
embodied agents and their world have on the evolution of individual behaviour
and social skills (see [3,4,1]).

One the most relevant features of ER is to allow the design of artificial neural
network controllers for robots capable of facing circumstances never experienced
during the training phase. This property is generally referred to as (i) “robust-
ness” when the unexperienced circumstances are determined by changes in the
characteristics of the environment; (ii) “scalability” when the unexperienced cir-
cumstances concern the cardinality of the group of robots. In this work we prove
that, the controllers designed to solve the task originally described in [1] gener-
ate a navigation strategy which is potentially scalable. That is, the increment of
the number of robots in the group should not cause any disruptive effect on the
performance of the system. However, through an analysis of the dynamics of the
single robot controller we identify elements that significantly hinder the scala-
bility of the system. Although our analysis is limited to a single “case study”,
those elements which hinder the scalability of the solutions might be identified in
other multi-robot systems in which the robots are controlled by dynamic neural
networks designed by artificial evolution. We hope that the analysis we present
in this paper helps (i) to understand the principles underlying the concepts
of scalability in this kind of multi-robot systems (ii) to design more scalable
solutions.

2 The Simulated Agents

The controllers are evolved in a simulation environment which models some
of the hardware characteristics of the real s-bots. The s-bots (see Fig. 1a) are
small wheeled cylindrical robots, 5.8 cm of radius, equipped with a variety of
sensors, and whose mobility is ensured by a differential drive system (see [5] for

208 F. Vicentini and E. Tuci

details). The signal of the infrared sensors is a function of the distance between
the robot and any perceived obstacle. Concerning the function that updates
the position of the robots within the environment, we employed the Differential
Drive Kinematics equations, as presented in [6]. 10% uniform noise is added
to all sensor readings, the motor outputs and the position of the robot. The
characteristics of the agent-environment model are explained in detail in [7].

3 The Controller and the Evolutionary Algorithm

The agent controller is made up of a feed-forward multilayer network (see
Fig. 1c). The sensory neurons (from N1 to N5) receive input from the agent’s
infrared sensors. The inter-neuron network (from N6 to N8) is fully recurrently
connected. Additionally, each inter-neuron receives one incoming synapse from
each sensory neuron. Each output neuron (N9 and N10) receives one incoming
synapse from each hidden layer neuron. There are no direct connections between
sensory and output neurons. The network neurons are ruled by the following
state equation:

τiẋi =

⎧⎪⎨
⎪⎩

−xi + giIi i = 1, ...5

−xi +
N∑

j=1

ωijσ(xj , βj , gj) i = 6, ...10; σ(x, β, g) = 1
1+e−g(x+β)

(1)

where N is the number of neurons. This formulation is a sub-class of Hopfield
networks [8] and, using terms derived from an analogy with real neurons, τi

is the decay constant, xi represents the cell potential, Ii is the intensity of the
sensory perturbation on sensory neuron i amplified by a gain gi, ωij the strength
of the synaptic connection from neuron j to neuron i, βj is the bias term, and
σ(xj , βj , gj) represents the firing rate. The cell potentials (xi) of the 9th and the
10th neuron, mapped into [0,1] by the sigmoid function (σ), are then linearly
scaled into [−6.5, 6.5] in order to set the robot motors output. The following

(a) (b) (c)

Fig. 1. (a) A picture of a real s-bot. (b) Plan of the simulated robot; (c) the network
architecture. Only some of the connections are drawn. The input layer takes readings
as follows: neuron N1 takes input from Ir0+Ir1

2
, N2 from Ir13+Ir14

2
, N3 from Ir3+Ir4

2
,

N4 from Ir10+Ir11
2

, N5 from Ir6+Ir7+Ir8
3

. All input values are scaled in the range of IR
sensors readings. M1 and M2 are respectively the left and right motor.

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 209

parameters are genetically encoded: (i) the strength of synaptic connections ωij ;
(ii) the decay constant τi of the inter-neurons N6,N7 and N8; (iii) the bias term
βj and (iv) the gain term gj for the neurons in the input and hidden layers.
All the neurons of each layer share the same bias term and gain term for the
firing rate function. The neurons N9 and N10 have not-evolved β9,10 = 0.0 and
g9,10 = 1.0. The decay constant τi of the sensory neurons and of the output
neurons are set equal to dt (see below). Cell potentials are set to 0 any time
the network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of dt = 0.1s.

A simple generational genetic algorithm is employed to set the parameters of
the networks [9]. The population contains 50 genotypes. Generations following
the first one are produced by a combination of selection with elitism, recombina-
tion and mutation. Each genotype is a vector of 37 real values (i.e., 30 connection
weights, 3 decay constants, 2 bias terms, and 2 gain factors).

4 The Fitness Function

During evolution, each genotype is translated into a robot controller, and cloned
in each agent of a group. The evaluation of a group lasts E trials, where
E is given by systematically varying the initial orientation of each robot ac-
cording to the following criteria: we defined four possible initial orientations
θstart ∈ [0, π

2 , π, 3
2π] and we initialised the agents according to the all pos-

sible combinations of the four orientations for a group of three robots - i.e.,
E = 43 = 64 starting positions. Each trial differs from the others also in the
initialisation of the random number generator, which influences the robots’ start-
ing position and the noise added to motors and sensors. The robot-robot initial
distance is randomly chosen in the interval [3.0, 13]cm. In each trial, the group
is rewarded by an evaluation function fe which seeks to assess the ability of the
team to move as far as possible in any arbitrarily chosen direction while avoiding
collisions and staying within the range of the robots’ infrared sensors. Taking
inspiration from the work of Quinn et al. [1], the fitness score is computed as
follows: fe = P

{∑T
t=i(dt − Dt−1)[1 − tanh(St/R)]

}
, where time steps are

indexed by t and T is the final time step of the trial, and

– (dt − Dt−1) rewards the team for advancing in navigation. Distances are
computed through the centroid of the group, in such way that dt is the
Euclidean distance between the group location at time step t and its location
at time step t = 0, and Dt−1 is the largest value that dt has attained prior
to time step t. This first component measures any gain that the team has
made on its previous best distance from its initial location.

– [1 − tanh(St/R)] reduces the fitness increment when one or more robots are
outside of the infrared sensor range. St is a measure of the team’s dispersal
beyond the infra red sensor range R (R = 24.6cm) at time step t. If each
robot is within the range R of at least another robot, then St = 0. The
term related to the scattered position of the team is generalised from the
original term in [1] considering the gap among clusters of agents instead
of single agents. This is computed as the shortest distance dij among the

210 F. Vicentini and E. Tuci

agents belonging to different clusters. All the computed distances are in the
set Dc = {dij : dij = min ‖ai, aj‖, ∀ai ∈ Ci, ∀aj ∈ Cj}, where Ci,Cj are
pairs of detected clusters C. If K clusters are detected, the computed gap is

St =
K−1∑
k=1

(dk), dk ∈ Dc (2)

where the considered distances dk are the shortest (K − 1) ones. tanh()
assures that, as the robots begin to disperse, the team’s score increment
falls sharply.

– P = 1 − (
n∑

i=1

ci/cmax) reduces the score proportionally to the number of

collisions which have occurred during the trial, where ci is the number of
collisions of the robot i and cmax = 20 is the maximum number of collisions
allowed. ci is computed for all the n agents at the end of the trial, so that
the term P is multiplied once at a trial. Note that if the team exceeds the

maximum number of allowed collisions (
n∑

i=1

ci > cmax) the trial is terminated

beforehand and P = 0.

5 Results

Two different experiments were set up in order to test the scalability of the
evolved controllers: an environment Env. 3 populated with 3 agents (like in [1])
and an augmented environment of 4 agents (Env. 4). In both the experiments,
ten evolutionary simulations, each using a different random initialisation, ran
for 3000 generations of the evolutionary algorithm. In each generation, every
individual was evaluated 64 times. The termination criterion for each evalua-
tion was set to a time equal to 200 seconds of simulated time or to the at-
tainment of the maximum allowed distance covered during the team navigation
(Dmax = 200cm). Three batches of these simulations were set up for developing
3 types of genotypes over the two experiments. The genotype types are: geno33
evolved in Env. 3 experiment, geno44 evolved in Env. 4 and geno34 evolved
in a mixed environment, i.e. in an environment corresponding to Env. 3 half
the evaluations and to Env. 4 the remaining ones in each generation. In this
way we evolved a genotype (geno34) fit for both the experiments for comparison
purpose. Then, in order to have a better estimate of the behavioural capabili-
ties of the evolved controllers, we post-evaluated the genotypes with the highest
fitness in each of the 10 evolutionary runs. The post-evaluations were run for 10
trials each porting the evolved controller on the real s-bot. In the experimental
results we reproduce the behaviour shown in [1]. The number of genotypes out
of the 10 runs that successfully performs the task is not relevant to the interest
of this paper and shall not be discussed any further. In fact, in order to study
the scalability of the evolved controllers, we finally selected only the absolute
best performing genotypes, one for each type geno33, geno44 and geno34. They
are re-evaluated for 20 runs in both Env. 3 and Env. 4. Each re-evaluation
run is made of 100 trials. A trial is successfully terminated after 200 seconds

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 211

regardless the distance covered. In this way we have 2 genomes (geno33 and
geno44) available for the re-evaluation also in an extended (geno33 in Env. 4)
or reduced environment (geno44 in Env. 3), and a comparison genome (geno34)
to check the scaled solution since it experimented both environments. For both
evolution and re-evaluation runs, the performances are measured through the
fitness score. Any re-evaluation trial is considered successful if the team covers a
distance greater than the 95% of Dmax allowed during the evolution. The results
of all the 20 re-evaluation runs are averaged and shown in Fig. 2. The results
show that, regarding the same environments experienced during the evolution,
the geno33 is completely fit for its original Env. 3, whereas the geno44 gets a
lower success percentage in Env. 4. This is due to the fact that the Env. 4 ex-
periment implies a longer and more complex self-organising phase. In addition,
the geno34 scores as well as the non hybrid genotypes (geno33 and geno44) in
their own original environments. As predictable, the success of geno34 is due to
the experience of both environments during evolution, so this genotype is used
to check whether a solution can be suitably extended over the 2 environments.
However, the scalability property is strictly defined only for genotypes tested in
different environment from where they were evolved. Therefore, in this work the
following analysis is focused only on the behaviour of geno33 in both Env. 3
and Env. 4 in order to study how the genotype reacts to the scaled experiment,
i.e. increasing the number of agents. This single case (low number of agents,
increasing the cardinality of the team by only one element) is devoted to the
analysis of the local dynamics of the agents and of the behavioural mechanisms.
It is so intended to be a first step towards a further complementary research on
the increase of the agents number to a larger amount in both simulation and
reality with the same approach, as well as on the decrease of the agents number,
especially removed from a large swarm.

5.1 Scalability Results

In this session we discuss the scalability property from a task point of view. We
observe the capability of the geno33 in adapting to the new condition when it
is cloned into each of the 4 agents of Env. 4. However, the solution to this latter
experiment cannot be considered scalable because the same genotype has not
the same performances in both Env. 3 and Env. 4. An evident cause of failure
in Env. 4 occurs when only 3 agents out of 4 gather together and start moving
forward as soon as they build a chain. The fourth agent is often left behind
circling and searching for a chain to join. In other words, whenever the solution
originally developed in Env. 3 is available, the team starts to accomplish the
task regardless the number of agents left behind. Another frequent failure mode
is associated with the team splitting into two couples moving independently
in different directions with one leader and only one follower. In the successful
cases, on the contrary, the team is tightly bound in a chain of 4 agent and
the task is accomplished without loss of formation. Likely, the self-organising
mechanism could be intrinsically stable and successful, but it is heavily affected
by the transient during the self-organisation phase before starting the movement
in chain formation. Although the solution cannot generally be defined as scalable
because of the failure during the transient, the analysis of the neuro-controller

212 F. Vicentini and E. Tuci

1 2 3
0

10

20

30

40

50

60

70

80

90

100

%
su

cc
es

s

3 agents environment
1 2 3

0

10

20

30

40

50

60

70

80

90

100

%
su

cc
es

s
4 agents environment

(a) (b)

Fig. 2. Percentage of success during the re-evaluation test of genotype geno33 (see
box 1), genotype geno34 (see box 2), and genotype geno44 (see box 3) in environment
Env. 3 (see graphs a) and in environment Env. 4 (see graphs b). The box plot shows
the distribution of the success percentage over the 20 re-evaluation runs. Each box
quotes the mean, the quartiles, the 5th and 95th percentiles of the number of successful
trials among the 100 trials of each run.

suggests the presence of a scalable mechanism in the assignment of roles among
the agents. However, this mechanism is not robust enough to reach a reliable
solution. In the following discussion, every neural network is first evaluated in
the state space of the neurons in order to analyse the network status during
the task. Then, the team is considered as a global dynamical system since every
action during the team performance is based on the interconnections of the state
values of all the neurons. Hence, the agent dynamics and the team dynamics
are discussed in order to investigate the causes of the loss of robustness in the
accomplishment of the task.

5.2 Analysis of Controller Dynamics for a Single Agent

In this session we analyse the mechanism of role assignment in the team naviga-
tion. We give evidence of the scalability of a single role inside the team and of
the absence of new roles in the scaled Env. 4. This provides the necessary con-
dition to perform the scaled task. In next session, we discuss the reasons of the
unsuccessful application in the task of this necessary but not sufficient condition.
The analysis of role assignment takes evidence from the qualitative analysis of
the dynamical system coded in each neural network acting as a controller. All
the neurons in the Continuous Time Recurrent Neural Network of Equation 1
define a stable (see below) ODE (Ordinary Differential Equation) set. The flow
Φ(x, t) of solutions of Equations 1 is definitely converging to some stable solu-
tions ϕ(x∗, t) inside the related domains of attraction B(ϕ(x∗, t), r), ∀ϕ ∈ Φ,
of size r in which the state domain is split. Any trajectory ϕ(x,x0, t), starting

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 213

0 t
0

1

2

3

4

5
IN

 s
ta

te
s

va
lu

e

0 t
0

1

2

3

4

5

0 t
0

1

2

3

4

5

0 t
0

1

2

3

4

5

IN
 s

ta
te

s
va

lu
e

0 t
0

1

2

3

4

5

0 t
0

1

2

3

4

5

0 t
0

1

2

3

4

5

Fig. 3. State values (x1(t), ..., x5(t)) of the 5 neurons input layer for each team role
averaged over the successful trials of geno33 in Env. 3 (above) and in Env. 4 (below).
In Env. 4 the centre role is doubled and the related pattern similar for both central
agents. (Legend: x1 continuous line, x2 dot markers, x3 star markers, x4 dot line, x5

dashed line)

from the initial conditions x0 common for all controllers, is definitely caught in
a different domain of attraction according to the states of the input neurons. For
each agent, the Ii values provide different state patterns for input neurons and
let the network to follow the resulting ϕagent. In this way the reached limit set
makes all the neurons states become constant. Each controller assumes exactly
the behaviour corresponding to a different set of constant states. The mecha-
nism is clearly unpredictable and emerges as a result of the evolutionary process
when performing the task. Moreover, the assignment of roles is not associated
to any predefined feature of the agents but is only due to the self-organising
phase. The state space values used in this analysis are provided by single step
Euler integration of Equation 1 during the re-evaluation simulations. Then, the
records of input states for each agent are analysed to recognise the role-related
patterns (see Fig. 3). In both Env. 3 and Env. 4, the activation values of the
proximity sensors Ii, i = 1, ..., 5 in Equation 1 are correlated to the positions
of the leader, the centre(s) and the follower inside the chain formation. Com-
paring the same re-evaluated genotype geno33, the regime sets are similar for
both environments. In particular the central agents have the same patterns. In
addition to role recognition, the analysis of the state space provides informa-
tion about the behaviour of each agent. Unlike the external layers that have
the same time constant as the clock update of the neuro-controller, the hidden
(fully recurrently connected) layer evolved different time constants. As a result,
the controller processes the input states and updates the output states according
to the dynamics of N6, N7 and N8. The mechanism of role assignment is shown
by the graph depicted in Fig. 4 that represents a 3D plot of the trajectory

214 F. Vicentini and E. Tuci

−5

0

5 −2

−1

0

1

2

3

4

5
−4

−2

0

2

4

H2
H1

H
3

attractor for leader
attractor for centre
attractor for follower

−5

0

5 −2

−1

0

1

2

3

4

5
−4

−2

0

2

4

H2
H1

H
3

attractor for leader
attractor for centre1
attractor for centre2
attractor for follower

(a) (b)

Fig. 4. Portrait in H1 × H2 × H3 ⊆ R
3, of the state values x6(t), x7(t), x8(t) of the 3

neurons in hidden layer for each role in the team coded with geno33 in Env. 3 (a) and
in Env. 4 (b). In (b) the centre role is doubled and the related trajectory is similar for
both central agents.

of each agent, considering a R
3 projection of the domain R

N where N is the
number of neurons, i.e. the trajectories are those made only of the states of the
hidden neurons. As an empirical result, the limit sets of ϕn(x,x0, t), for each
n = 1, ..., 3(4) agent, are equilibrium points, such as x∗ : ϕn(x∗,x0) = x∗. Each
equilibrium point corresponds to a role in the team. To this end, the scalability
of the solution is related to the local behaviour of the agent added in the team
for testing the scale effect. The scaled solution can therefore be considered stable
if the added agent does not affect the strategy and leaves unchanged the leading
and ending positions. Thus, a scalable solution does not imply the emergence
of other new role, but inserts the added agent into one of the existing roles.
In this particular strategy it happens to be the central role (see Fig. 4b). As a
consequence, the expected patterns in states dynamics of the added agent fall
into the same domain of attraction of the corresponding shared role. In this way,
the added neuro-controller manages the scaled condition in Env. 4 according to
the same behaviour evolved in the original conditions (Env. 3). This result may
be confirmed by the analysis of the behaviour of the hybrid genotype geno34. It
shows the same kind of dynamics, splitting the domain into role-related domains
of attraction (see Fig. 5). Since this genotype is evolved in both Env. 3 and Env.
4, the solution is fit for both the scaled and not scaled environment. Unlike the
evaluation of geno33 in Env. 4 (see Fig. 2) the percentage of success of geno34
is statistically equal to that belonging to geno44. So, whenever the mechanism
is adulterated by the evolution in a mixed environment, the solution is much
more robust than that previously analysed, but the mechanism of assignment
of roles is the same. This is probably an evidence that the successful solution
of the task for geno33 is potentially scalable to higher number of agents with
the same mechanism and strategy, but it is not accomplished enough reliably to
reach every time the stable regime like in Env. 3.

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 215

−5

0

5

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

H1H2

H
3

attractor for leader
attractor for centre
attractor for follower

−5

0

5

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

H1H2

H
3

attractor for leader
attractor for centre1
attractor for centre2
attractor for follower

(a) (b)

Fig. 5. Portrait in H1 × H2 × H3 ⊆ R
3, of the state values x6(t), x7(t), x8(t) of the 3

neurons in hidden layer for each role in the team coded with geno34 in Env. 3 (a) and
in Env. 4 (b). The trajectories of centres robots are statistically overlapping.

5.3 Analysis of Controller Dynamics for the Entire Team

In this session we use some results in the analysis of neural networks to discuss
the phenomena that probably affect as sufficient conditions the reliability of the
solution, given the necessary condition in the assignment of roles. The global
behaviour of the team is ruled by dynamics similar to those studied for a single
controller but extended to the complete system given by all the neural controllers
concurrently interacting in a M -dimensional state space, where M = nN , N is
the number of neurons of each of the n controllers playing in the experiment.
In this way, each stable solution corresponds to a specific behaviour/strategy of
the team as a whole. Therefore, the successful solution is likely to be defined by
a stable limit set in the dynamics of the global system, and the robustness of
the success is related to the type of convergence to that limit set. The coupled
system is given by M equations rewritten in matrix form from Equations 1 and
scaled in order to have giIi = 0 for all i = 1, ..., M (see [10] for details).

ẏ(t) = −By(t) + Aσ(y(t)) (3)

where y = [y1, ...yM]T , yi = xi − giIi, B = diag[1/τi, ..., 1/τM], A = [aij], aij =
ωij/τi, σ(y) = [σ1, ..., σM]T , σi = σ(yi + giIi, βi, gi). In this notation i = [1, 10]
are derived from the first agent neurons, i = [11, 20] from the second one and
so on. Equation 3 is a Hopfield-class network for an autonomous system whose
parameters are not time dependent and the neurons activation are not influenced
by external inputs (see [11] for networks global analysis). The terms Ii, in fact,
are an implicit expression of the output neurons states through the sensors acti-
vation related to the position of the agents. The system 3 is therefore in the form
ẏ = F(y,y0) from ẋ(t) = F(x,x0, I, t). Hopfield networks are often employed
as associative memories and the equilibrium points represent the stored pat-
terns. When used as controllers for autonomous agents, the stored patterns hold

216 F. Vicentini and E. Tuci

specific sets of states corresponding to stable behaviours. Although many equi-
librium points are suitably storable by a network of Equation 3, only a few are fit
for setting the neurons states during the accomplishment of an ER desired task.
In particular, among the behaviours shown by the team in the present work, only
one equilibrium point y∗ = [y∗

1 , ..., y∗
M]T corresponds to the successful behaviour.

The other previously described cases of failure correspond to equilibrium points
characterised by a specific stored behaviour but unacceptable from a task point
of view. As a consequence, the robustness in the scalability of the performed task
is associated with the size and topology of the domain of attraction for the equi-
librium point corresponding to the desired solution. According to the results pro-
posed by [12], it is immediate to infer that the system of Equation 3 is not globally
convergent but only locally on several y∗. Hence, for the analysis of the perfor-
mance of geno33 in the scaled Env. 4, we consider the undesired equilibrium
point ỹ∗, corresponding to the navigation of two couples of independent agents,
in addition to y∗, corresponding to the successful behaviour. Our hypothesis for
the loss of robustness of the scalable solution is that y∗ yields a domain of attrac-
tion smaller than ỹ∗. Formally, we let v be a generic vector and define a neigh-
borhood Bδ(v∗,v0, δ) = {ϕt(v,v0, t) ∈ R

M : ‖ϕt − v∗‖ < δ, ∀t ≥ 0,v0 = v(0)}.
So we expect that δy∗ < δỹ∗ . Both y∗ and ỹ∗ in Env. 4 are empirically ob-
served in the regime condition where the gradient ẏ = 0 and ˙̃y = 0. In par-
ticular, y∗ ∈ R

4N in Env. 4 presents identical values y∗
i , for i = 11, ..., 20 and

i = 21, ..., 30 as expected for the stable states shared by the controllers of the two
central agents. Again, these equilibrium values are equal to the corresponding
y∗

i , for i = 11, ..., 20 of the single central agent in Env. 3 where y∗ ∈ R
3N . All

the considered equilibrium points v∗ verify the condition Bv∗ = Aσ(v∗). Many
results in neural networks analysis deal with the conditions for local (exponen-
tial) stability of the various v∗ of an Hopfield network, some of which are based
on the matrices measure [13] or on the Lyapunov direct method [14,15,16] in
order to have an estimate of the domain of attraction. Here we follow the ap-
proach proposed by [17] for large scale dynamical systems. This approach splits
the system of Equation 3 into M free subsystems corresponding to each neuron
in the network, and an interconnecting structure that gives account of the re-
lationships between the neurons. When analysing the stability properties of a
given equilibrium point, we will be able to assume, without loss of generality,
that this equilibrium is located at the origin of R

M . To show this, assume that
y∗ �= 0 is an equilibrium point for Equation 3, and define

ui = yi − y∗
i , Si(ui) = σi(ui + y∗

i , βi, gi) − σ(y∗
i , βi, gi) i = 1, ..., M (4)

where Si(0) = 0, Si strictly monotonically increasing in ui and uiSi(ui) >
0 ∀ui �= 0. With this notation and under the assumptions of y∗ as an iso-
lated equilibrium of the system 3, u = 0 is an equilibrium point for the system
u̇ = −Bu + AS(u). Under this viewpoint, the latter system is described by M
free subsystems of equation

u̇i = −Biui + AiiSi(ui) (5)

and an interconnecting structure made up of the terms

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 217

si(u1, ..., uM) =
M∑

j=1,j �=i

AijSj(uj), i = 1, ..., M. (6)

Here we make use of the method of analysis advanced in [10]. Specifically, the
stability results for the entire neural network of Equation 3 make use of the
stability results for the individual free neurons of Equation 5 and then for the
system in Equation 6. The stability analysis of each of the M Equations 5 is
based on the direct Lyapunov method for which we define a function

Vi(ui) =
1
2
u2

i , i = 1, ..., M (7)

ad the related Dini derivative (or rate of change)

DVi(ui) = uiu̇i = ui[−Biui + AiiSi(ui)]. (8)

Hence, for being ui = 0 the equilibrium point for all the M free subsystems,
the Lyapunov function must be positive definite, i.e. Vi(ui) > 0, and the Dini
derivative negative definite, i.e. DVi(ui) < 0, for all ui �= 0. These conditions are
satisfied if⎧⎪⎨

⎪⎩
−Biui + AiiSi(ui) < 0 ui > 0
−Biui + AiiSi(ui) = 0 ui = 0
−Biui + AiiSi(ui) > 0 ui < 0

(9)

for ui ∈ Bi(ri) = {ui ∈ R : −ri < ui < ri} for some ri > 0. Note that the
hypothesis in Equation 9 are nontrivial only for the neurons belonging to the
hidden layer of each single controller. This is a further evidence of the role played
by the hidden recurrently connected neurons in processing the information and
determining the performances of the controller. Moreover, the input layer neu-
rons satisfy the hypothesis in Equation 9 if the input I in Equation 1 are limited
in R and constant for ui = 0. Since the input neurons are not recurrently con-
nected and the corresponding terms in the interconnecting structure are null,
the convergence of input states to ui = 0, for all i ≡ {inputs}, is obtained
by a constant activation of the proximity sensors, i.e. keeping quasi-steady mu-
tual positions among the agents. Also for the output neurons of each controller
the hypothesis in Equation 9 is verified for all R and the convergence to the
equilibrium point is influenced only by the interconnecting structure. Given the
asymptotical stability of the M free subsystems, ui are also exponentially stable
if {

−Biui + Aiiρi1 < 0 Aii < 0
−Biui + Aiiρi2 < 0 Aii > 0

(10)

where ρi are defined as

ρi1 <
Si(ui)

ui
< ρi2, −ri < pi < ri, ui �= 0. (11)

218 F. Vicentini and E. Tuci

The stability analysis for the system 3 is completed with the stability results for
the interconnecting structure of Equations 6. For the system 3, the interconnec-
tions satisfy the estimate

uiAijSj(uj) ≤ |ui|kij |uj| (12)

for all |ui| < ri, |uj | < rj , i, j = 1, ..., M , where kij are real constants. There
exists an M -vector α = [α1, ..., αM]T , αi > 0 ∀i = 1, ..., M such that a test
matrix H = [hij] is defined as

hij =

{
αi(−Bi + kii) i = j

(αikij + αjkji)/2 i �= j
(13)

where kij are given in Equation 12. If the hypothesis in Equations 12 is veri-
fied and the test matrix defined in Equation 13 is negative definite (i.e. all the
eigenvalues of H are negative), the equilibrium u = 0 of the entire network of
Equation 3 is exponentially stable.

Once the stability of u = 0 is verified for the M free subsystems and the
interconnecting structure, we estimate the domain of attraction of u = 0 as a
subset of the domain that is not generally entirely determined. We make use of
the Lyapunov direct method applied to system 3 adapting several similar results
in neural networks analysis. We let

V (u) =
M∑
i=1

1
2
αiVi(ui) =

M∑
i=1

1
2
αiu

2
i (14)

be a Lyapunov function where αi are defined for Equation 13 and Vi(ui) are
used also in Equation 7. The estimated domain for u = 0 is defined as

Gλ = {u ∈ R
M : V (u) < λ}, λ = min

1≤i≤M

{1
2
αir

2
i

}
(15)

where ri are the extremes of the interval |ui| < ri verifying the hypothesis 9. Note
that Bi(ri) = {ui ∈ R : |ui| < ri, ri > 0} is generally not symmetrical around
ui = 0, but hypothesis 9 may be verified in an interval −ri1 < ui < ri2, ri1,2 > 0,
ri1 �= ri2. Recall that this condition is nontrivial only for the hidden layer neurons
of the neural networks coded by geno33. So the values of the parameters ri1,2

that maximize the range of stability for ui depend on the parameters Bi, Aii

of each neurons in the hidden layers, the features of the firing-rate function of
the neurons and the properties of the interconnecting structure. In this way,
the extension of Gλ for each equilibrium point of the network 3 depend on the
minimum ri among those satisfying the hypotheses 9, 12 and 13 for all i =
1, ..., M . In the present experiments we consider the value of λ in Equation 15 as
an estimated property of the domains of attraction for the two isolated equilibria
that we want to compare. The larger is λ, the more chances has Gλ to attract
the trajectory ϕ(u,u0, t) towards u = 0. From an agent point of view, the stable
configuration ẏ = 0 in Equations 3 is more probable as Gλ of u = 0 becomes
larger. The agents, and consequently all the team, set their behaviour according

Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots 219

to the more probable stable configuration. In Env. 3 the corresponding u = 0
for the successful solution is the only relevant equilibrium empirically observed.
It verifies all the hypotheses 9, 12 and 13 for exponential asymptotical stability.
The value of λ (2.99) is computed for αi = 1 ∀i, but there are no other domains of
attraction than that of the unique equilibrium to compare. Now, in Env. 4, let the
two equilibria observed in Env. 4 be ũ = 0 and u = 0, as previously associated
with the two independent couples of agents and the chain formation, respectively.
We obtain, for αi = 1 ∀i, λ = 2.19 for the equilibrium related to the successful
solution and λ̃ = 3.18 for equilibrium related to the undesired behaviour. This
result confirms our hypothesis about the reduction of the domain of attraction
of the successful solution due to the emergence of a new relevant stable solution.
Moreover, the decrease in the percentage of success of geno33 in Env. 4 is due to
the fact that the undesired behaviour is achieved by the network 3 with higher
probability than the desired one. We are now able to state that the addition of
one agent in the team has a destabilising effect in the accomplishment of the
task because of the emergence of a competitive undesired behaviour. To this
end, the scalability property is conserved because the necessary condition of role
assignment is verified and also the sufficient condition of local stability of the
solution is verified, but the property presents a loss of robustness that prevents
the team to totally assure the desired behaviour also in a scaled environment.

6 Conclusions

Generally speaking, the behavioural strategies of a multi-robot system can be
defined as scalable if the performance of the system does not drop by increasing
the cardinality of the group. In this paper we looked at the elements which are
responsible for determining whether or not the behavioural strategies of robots
controlled by dynamic neural networks are scalable. In particular, we focused on
a navigation task, originally presented in [1], in which teams of three robots have
to coordinate their actions in order to decide a common direction of motion.
First, we designed, by artifcial evolution, dynamic neural network controllers
for robots capable of solving the navigation task. Subsequently, we tested the
scalability of the successful behavioural strategies by re-evaluating a controller
designed to guide teams of three robots in teams of four robots. In synthesis,
by analysing the dynamics of the robot controllers, we observed that in teams
of three robots the controllers differentiate in those that guide the followers and
in that one that guides the leader. We also observed that, teams of four robots
do not require any further role. Therefore, a controller capable of online special-
isation in between leader and follower is potentially capable of guiding teams of
higher cardinality than those composed of three robots. This may be considered
as the necessary condition to add an indefinite number of agents in the team
without modifying the global strategy. In fact, the added agent in the experiment
Env. 4 shows an overlapped behaviour with a pre-existing role, as confirmed by
the same equilibrium state in the dynamics of the controllers of the agents shar-
ing the role. However, this necessary condition is not sufficient to support the
scalability of the behavioural strategies, as confirmed by the different perfor-
mances of the tested genotype in both the experiments. This is mainly due to

220 F. Vicentini and E. Tuci

the stability of the global dynamical system in the neighbourhood of the desired
solution. Given the convergence to this solution, it does not have a domain of
attraction large enough to attract the states of all the agents regardless the ini-
tial conditions and the states near the solution. These mechanisms undergo the
unpredictability of the system resulting from the evolution and the complexity
of the interaction among the agents.

References

1. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors.
Phil. Trans. of the Royal Soc. of London, Series A 361 (2003) 2321–2344

2. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge, MA (2000)

3. Paolo, E.D.: Behavioral coordination, structural congruence and entrainment in a
simulation of acoustically coupled agents. Adaptive Behavior 8 (2000) 27–48

4. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display col-
lective behaviour. Artificial Life 9 (2003) 255–267

5. Mondada, F., Pettinaro, G., Guignard, A., Kwee, I., Floreano, D., Deneubourg,
J.L., Nolfi, S., Gambardella, L., Dorigo, M.: SWARM-BOT: A new distributed
robotic concept. Autonomous Robots 17 (2004) 193–221

6. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge
University Press, Cambridge, UK (2000)

7. Vicentini, F., Tuci, E.: Swarmod: a 2d s-bot’s simulator. Technical Report
TR/IRIDIA/2006-005, IRIDIA, Université Libre de Bruxelles (2006) This paper is
available at http://iridia.ulb.ac.be/IridiaTrSeries .

8. Hopfield, J.J., Tank, D.: Computing with neural circuits: a model. Science 233
(1986) 625–633

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

10. Michel, A.N., Farrell, J.A., Porod, W.: Qualitative analysis of neural networks.
Circuits and Systems, IEEE Transactions on 36 (1989) 229–243

11. Jiang, H., Li, Z., Teng, Z.: Boundedness and stability for nonautonomous cellular
neural networks with delays. Phys. Lett. A 306 (2003) 313–325

12. Liang, J., Cao, J.: Boundedness and stability for recurrent neural networks with
variable coefficients and time-varying delays. Phys. Lett. A 318 (2003) 53–64

13. Qiao, H., Peng, J., Xu, Z.B.: Nonlinear measures: a new approach to exponential
stabilityanalysis for hopfield-type neural networks. IEEE Tras. Neural Networks
12 (2001) 360–370

14. Cao, J., Tao, Q.: Estimation on domain of attraction and convergence rate of
hopfield continuous feedback neural networks. J. Comput. Syst. Sci. 62 (2001)
528–534

15. Zhou, D., Shen, J., Ren, X.: Estimation of attraction domain and exponential
convergence rate of dynamic feedback neural nets. In Kelemen, J., Sosik, P., eds.:
Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Confer-
ence on. Volume 3., Springer Verlag, Berlin, Germany (2000) 1598–1601

16. Yang, X., Liao, X., Li, C., Evans, D.J.: New estimate of the domains of attraction
of equilibrium points in continuous hopfield neural networks. Phys. Lett. A 351
(2006) 161–166

17. Michel, A.N., Miller, R.K., eds.: Qualitative analysis of large scale dynamical
systems. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1977)

http://iridia.ulb.ac.be/IridiaTrSeries

Author Index

Ampatzis, Christos 173

Berman, Spring 56

Chen, Jie 14
Cianci, Christopher M. 103
Crailsheim, Karl 1, 144

Dasgupta, Prithviraj 158
Dorigo, Marco 173
Dou, Lihua 14

Eiben, Agoston E. 189

Fidan, Barış 71

Gazi, Veysel 71

Halász, Ádám 56
Hamann, Heiko 43
Hamann, Jerry C. 129
Heil, Rodney 129
Holland, Owen 116

Judkins, Timothy 158

Karlsson, Christer 129
Kumar, Vijay 56
Kunkel, Thomas 129

Liu, Wenguo 14

Martinoli, Alcherio 103
Maxim, Paul M. 129
Miller, David 158
Möslinger, Christoph 144

Nardi, Renzo De 116
Nitschke, Geoff S. 189

Pratt, Stephen 56
Pugh, Jim 103

Raemy, Xavier 103

Sa, Jin 14
Şahin, Erol 27
Schmickl, Thomas 1, 144
Schut, Martijn C. 189
Soysal, Onur 27
Spears, Diana F. 129
Spears, William M. 129

Trianni, Vito 173
Tuci, Elio 173, 206

Vicentini, Federico 206

Winfield, Alan 14
Wörn, Heinz 43

Zarzhitsky, Dimitri 129

	Title page
	Preface
	Organization
	Table of Contents
	A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation
	Motivation
	The Simulation Platform and the Swarm Scenario
	The ‘Slime Mold’ Strategy
	Detailed Description of the Strategy and of the Simulator
	Results
	Evolving Optimal Parameters
	Evaluation of Critical Parameters
	Alternative ‘Good’ Parameter Settings
	Way Finding and Trail Formation
	The ‘Gradient Version’ of the Slime Mold Algorithm

	Discussion

	Strategies for Energy Optimisation in a Swarm of Foraging Robots
	Introduction
	Adaptation Mechanism
	Experimental Set-Up
	Experimental Results and Analysis
	Conclusion

	A Macroscopic Model for Self-organized Aggregation in Swarm Robotic Systems
	Introduction
	Related Studies
	Aggregation
	Modeling

	Aggregation Problem
	Aggregation Behavior
	A Macroscopic Model for Aggregation
	Probabilities for Shrinking
	Probabilities for Growth
	Probabilities to Remain Same
	Macroscopic Model

	Experimental Results
	Conclusion

	An Analytical and Spatial Model of Foraging in a Swarm of Robots
	Introduction
	Simulation
	Analytical Model
	Results
	Conclusion and Outlook

	Algorithms for the Analysis and Synthesis of a Bio-inspired Swarm Robotic System
	Introduction
	Methodology
	Macro-continuous Model
	Reachability Analysis
	Algorithm
	Application to the House-Hunting Model

	Simulation
	Algorithms
	Application to the House-Hunting Model

	Conclusion

	Coordination and Control of Multi-agent Dynamic Systems: Models and Approaches
	Introduction
	Multi-agent Dynamic Systems, Formations, and Swarms
	Formation Control Graphs and Underlying Graphs
	Rigidity and Persistence
	Neighborhood

	Mathematical Models for Agent Dynamics
	Higher-Level (Single Integrator) Model
	Point Mass (Double Integrator) Model
	Fully Actuated Model with Uncertainty
	Non-holonomic Unicycle Model
	Dubins' Vehicle Model
	Self-propelled Particle Model

	Swarm Coordination and Control Problems
	Aggregation and Social Foraging
	Flocking and Rendezvous
	Formation Stabilization and Acquisition
	Formation Maintenance and Cohesive Motion Control
	Formation Reconfiguration and Switching
	Distributed Agreement Problems
	Cooperative Control

	Approaches to Modeling and Coordination and Control of Swarms
	Potential Function Based Approaches
	Sliding Mode Control
	Feedback Linearization
	Lyapunov Analysis and Other Nonlinear Control Techniques
	Behavior Based and Evolutionary Approaches
	Artificial Physics
	Asynchronous Swarm Models
	Probabilistic Approaches

	Stability, Performance, and Robustness
	Concluding Remarks

	Communication in a Swarm of Miniature Robots: The e-Puck as an Educational Tool for Swarm Robotics
	Introduction
	Tools and Methods for Swarm Robotics
	The e-Puck: An Educational Robot
	The Webots^{TM}Simulation Environment
	Correspondence Between Reality and Simulation

	Communication and Swarm Intelligence
	A Radio Communication Module for the e-Puck
	Hardware Design and Structure of the Module
	Software Control of the Radio Board
	Measurement of Physical Characteristics

	Case Study: Collective Decision
	Experimental Setup
	Results
	Related Hybrid Network Example: Isolated Collective Decision

	Conclusion

	UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters
	Introduction
	The Idea
	The Helicopter Platform
	Electronics and Sensors
	State Estimation

	An Automated Design Method
	Model Identification
	Controller Design

	Future Work
	Concluding Remarks

	Where Are You?
	Goal of Our Work
	Localization
	Measuring Distance
	Channeling Acoustic Energy into a Plane
	Related Work
	Trilateration Method I
	Trilateration Method II
	Trilateration Method II + Communication

	Trilateration Implementation
	Trilateration Hardware
	Synchronization Protocol

	The Maxelbot
	Experiments and Demonstrations
	Accuracy Experiment
	Linear Formations
	Box/Baby Pulling
	Physicomimetics Formations for Chemical Plume Tracing

	Summary

	Collective Perception in a Robot Swarm
	Introduction
	The Scenario
	The Hop-Count Strategy
	The ‘Trophallaxis-inspired’ Strategy

	Results
	Scaling the Sizes of the Target Areas
	The Importance of the Swarm Density
	The Role of the Aggregation Threshold (th_{agg})
	The Role of the Negative Feedback (r_c)

	Discussion
	References

	Distributed Task Selection in Multi-agent Based Swarms Using Heuristic Strategies
	Introduction
	Multi-agent Swarming
	Task Selection in Swarming
	Distributed Task Selection Model

	Heuristic-Based Task Selection Strategies
	Simulation Results
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion and Future Work

	Evolution of Signalling in a Group of Robots Controlled by Dynamic Neural Networks
	Introduction
	Description of the Task
	The Simulation Model
	The Controller and the Evolutionary Algorithm
	The Fitness Function
	Results
	Porting on Real Robots
	Conclusions

	Collective Specialization for Evolutionary Design of a Multi-robot System
	Introduction
	Research Goal
	Specialization
	First Hypothesis
	Second Hypothesis

	CONE: Collective Neuro-Evolution
	Online Versus Offline Adaptation in the CONE Method

	Conventional Neuro-Evolution
	Genotypes
	Recombination of Genotypes: Crossover and Mutation
	Fitness Calculation

	Phenotypes: Constructing Controllers from Neurons
	Dynamic Topologies

	Collective Survey Task
	Environment
	Red Rocks (Features of Interest)
	Red Rock Distribution

	Agents
	Morphology: Sensors and Actuators
	Controllers: Adaptive Topology Neural Network

	Heuristic Methods
	Specialized and Non-specialized Group Types
	Red Rock Discovery Algorithm

	Experiments and Results
	Heuristic Method Comparison: Specialized Versus Non-specialized Groups
	Neuro-Evolution Method Comparison

	Analysis and Discussion
	Conclusions

	Scalability in Evolved Neurocontrollers That Guide a Swarm of Robots in a Navigation Task
	Introduction
	The Simulated Agents
	The Controller and the Evolutionary Algorithm
	The Fitness Function
	Results
	Scalability Results
	Analysis of Controller Dynamics for a Single Agent
	Analysis of Controller Dynamics for the Entire Team

	Conclusions

	Author Index

