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1 Introduction

In this chapter I will give an overview of the role of time delays in under-
standing neural systems. The main focus will be on models of neural systems
in terms of delay differential equations. Later in this section, I will discuss
how such models arise. The goal of the chapter is two-fold: (1) to give the
reader an introduction and guide to some methods available for understand-
ing the dynamics of delay differential equations and (2) to review some of the
literature documenting how including time delays in neural models can have
a profound effect on the behaviour of those models.

1.1 Modelling Delay in Neural Systems

To begin, I will formulate a general model for a network of neurons and
then determine how delays may occur in this model. Consider a network of n
neurons modelled by the equations

j=1

The variable x; represents all the variables describing the physical state of
the cell body of the i*" neuron in the network. For example, in the standard
Hodgkin-Huxley model, it would represent the membrane voltage and gating
variables: x; = (V;, m;, n;, h;). The function F; represents the intrinsic dynam-
ics of the i*" neuron and the function f;;, often called the coupling function,
represents the input to the it neuron from the j** neuron. In neural models,
the coupling is usually through the voltage, V;, only, so f;; = [fi;,0,0,...,0]7.
I will primarily consider this case in the rest of the chapter.
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If the j** neuron is connected to the i** via a chemical synapse, then the
coupling function is given by

Fig (xi(8), %5 (1)) = eaj i ° (3 (£)) B (x4 (1)) - (2)
This is called synaptic coupling. Here h}; is a sigmoidal function, usually

chosen to have maximum value 1, so that ¢;; represents the maximum coupling
strength (synaptic conductance). hijSt is typically a linear function (e.g. for

Hodgkin Huxley models, h%oSt(xi (t)) = Vi(t) — K;;, where K;; is a constant).
Some models set hffSt = 1, eliminating the dependence on the post-synaptic
neuron, in which case this coupling is called sigmoidal.

If the neurons are connected via a gap junction, then the coupling
function is

£ij (xi(t), %, (1)) = Cij (xi(t) —x;(t)) , (3)
where C;; is the matrix of coupling coefficients. This is called gap junc-
tional, electrical or diffusive coupling. For most neural models only the
(1,1) element of Cj; is non zero.

There are several sources of delay in a neural system. Consider first the
delay due to propagation of action potentials along the axon. In the model
above, when an action potential is generated in the cell body of neuron j, it
is immediately felt by all other neurons to which it is connected. However,
in reality, the action potential must travel along the axon of neuron j to the
synapse or gap junction. Conduction velocities can range from the order of
1 m/sec along unmyelinated axons to more than 100 m/sec along myelinated
axons (Desmedt and Cheron, 1980; Shepherd, 1994). This can lead to sig-
nificant time delays in certain brain structures. There are several ways to
incorporate this into the model, such as including spatial dependence of the
variables or multiple compartments representing different parts of the neuron
(Koch, 1990). However, if we are primarily interested in the effect of the action
potential when it reaches the end of the axon (will it cause an action potential
in another neuron?), then a simpler approach is to include a time delay in the
coupling term. In this case the general coupling term becomes

fig (%i (), x5 (t = 735)) (4)
where 7;; > 0 represents the time taken for the action potential to propagate
along the axon connecting neuron j (the pre-synaptic neuron) to neuron i
(the post-synaptic neuron).

The above assumes that the axon of neuron j connects on or close to
the cell body of neuron i. Some cells may have synapses or gap junctions
on dendrites far from the cell body. In this case, there can also be a delay
associated with propagation of the action potential along the dendrite. This
will introduce an additional time delay, viz.,

fig (it = 785), % (t = 75 = 73j)) (5)

where 7;; and Tidj represent the time delays due to the propagation of the
action potential along the axon and dendrite, respectively.
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Another delay can occur in the transmission of the signal across the
synapse. That is, once the action potential from neuron j reaches the synapse,
there is some time before an action potential is initiated in neuron 7. A com-
mon way to model this is to augment the model equations above by equations
modelling the chemical kinetics of the synapse (Keener and Sneyd, 1998; Koch,
1999). Alternatively, this can be incorporated into (4) or (5) just by increasing
the delay 7;;. I will focus on the latter approach, but in Sect. 3 will review
some literature that indicates the qualitative effect on the dynamics can be
quite similar using both approaches. Clearly, the latter approach will yield a
simpler model if one also wants to include the effect of axonal delay.

Equations (4) and (5) assume that the time delays are fixed. In reality,
the delay will likely vary slightly each time an action potential is propagated
from neuron j to neuron 4. This may be incorporated into the model putting
time dependence into the delay: 7;;(¢). Many of the methods outlined in Sect. 2
may be extended to this case, by assuming the delay satisfies some constraints
0 < 7(t) < 7i;. Alternatively, one might consider adding some noise to the
delay, which would lead to a stochastic delay differential equation model.
Unfortunately, there is very little theory available for such equations.

An alternative approach is to incorporate a distribution of delays, repre-
senting the situation where the delay occurs in some range of values with some
associated probability distribution. In this case, coupling term (4) becomes

/0 " f ki), 35t — 0))gij (o) dor (6)

and similarly for (5). The function g;; is called the kernel of the distribution
and represents the probability density function of the time delay. Since g;; is a
pdf it is normalized so that [~ g;;(c) do = 1. Although distributions of delays
are not commonly used in neural network models, they have been extensively
used in models from population biology (Cushing, 1977; MacDonald, 1978).
In this literature, the most commonly used distributions are the uniform
distribution:

0 0<o< T{;‘in
gijlo) =3 st <o <t 48, (7)
0 Ty <o
and the gamma distribution:
0 0<o< Ti‘;‘i“
9ij (J) = { Fa(:L) (CT . Tir;in)mfle—a(a—ﬁ?i") Tir;lin <o ) (8)

where a,m > 0 are parameters. I" is the gamma function defined by I'(0) = 1
and I'(m + 1) = mI'(m). Both these distributions can be shown to approach
a Dirac distribution in the appropriate limits (6 — 0 for the uniform distri-
bution and m — oo for the gamma distribution), which leads to a discrete
delay in the coupling term. It is usual in the population biology literature
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(Cushing, 1977; MacDonald, 1978) to take TZ’]’”" = 0. In this case model with
a gamma distribution can be shown to be equivalent to a system of m or-
dinary differential equations, which is amenable to the analysis techniques
described elsewhere in this volume (Breakspear and Jirsa, 2006). However, as
pointed out by Bernard et al. (2001), it makes more biological sense to take
Tmin > 0, since the probability of having zero delay is effectively zero in most
applications. In this case, the model with a gamma distribution is equivalent
to a system of m — 1 ordinary differential equations and one discrete delay
differential equation.

In the next section I will review some tools for analyzing delay differential
equations. To make the theory concrete, we will apply it to a particular ex-
ample. Consider the following representation of the Fitzhugh-Nagumo model
for a neuron (Fitzhugh, 1960; Nagumo et al., 1962)

)= -3+ (a+ 1) —av—w+1, )
w(t) =bv—yw .

Assume that the parameters are such that there is just one equilibrium point
(0,w) of this equation, where o, w satisfy

b
@3—(a+1)52+(a+;)6+120, (10)
b
W= —v. 11
5 (11)

I shall consider the situation when two of these neurons are joined with delayed
sigmoidal coupling in the following way
01(t) = —v3 + (a+ 1)v? — avy — wy + I + ctanh(va(t — 7) — D)
wy(t) = bvl Ywq (12)
Uo(t) = —v3 + (a + 1)v2 — avy — wo + I + ctanh(vy(t — 7) — )
wz( ) = buy — ywy

This setup is due to Burié¢ et al. (2005). I will sometimes write (12) in the
condensed form

x =f(x(t),x(t — 1)), (13)
where x = (v1, w1, Ve, wa).

I will focus on equations with a single discrete delay. The approach is
similar for multiple delays, the analysis just becomes more complicated. We
will discuss some of the differences that arise for distributed delays in the final
section.

There is a very large literature on the effect of time delays on artificial
neural networks (ANNs). An example of such a network is the additive (also
called Hopfield) neural network with delays. This is usually written in the
form

@i(t) = —kizi(t +qu (it —75) -
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I will not attempt to review all the material related to such equations, but
will try to highlight those results I feel may have implications for biological
neural networks. In particular, networks of the following form

n
& (t) = —kiwi(t) + fii(2x(t — 1)) + Z fij(@;(t —72), (14)
i
have some parallels with biological neural networks, since the uncoupled units
may behave as type II oscillators (Campbell et al., 2005).

2 Tools for Analysis

The main tools for studying the behaviour of delay differential equations are
extensions of those for ordinary differential equations which are discussed
elsewhere in this volume (Breakspear and Jirsa, 2006). Some familiarity with
these tools will be helpful in reading this section.

To improve the flow of the text, I will not give references for all the stan-
dard results for delay differential equations that I use. For more information
on these, I refer the reader to the fairly accessible books of Kolmanovskii and
Nosov (1986) and Stépan (1989) which cover the results of this section or the
books of Hale and Verduyn Lunel (1993) and Diekmann et al. (1995) which
give complete, although not so accessible, accounts of the theory of delay
differential equations.

To begin our discussion, consider the types of solutions which occur most
often in neural systems. These are equilibrium solutions (x(t) = x, for some
constant X) and periodic solutions (x(t) = x(t + T') for some T > 0). The
fundamental questions we would like to answer in order to understand the
behaviour of a model with time delays are the following

1. What equilibrium solutions occur in the system?

2. What periodic solutions occur in the system?

3. Are these stable or unstable? That is, do we expect to observe them in
experiments and numerical simulations?

4. How do the answers to these questions change as parameters are varied?

Question 1 is easily answered: the equilibrium solutions of a system with
time delays are the same as those of the corresponding system with zero delay.
Thus for (13) these correspond to constant vectors X such that f(x,x) = 0.

Example. For system (12) the equilibrium points are given by
(v1, w1, v2, we) = (U1, W1, 02, W) where U;,w,; are constants, found by solv-
ing the equations

0= —v} + (a+1)v? — avy — Wy + I + ctanh(vy — )
0= b@l - ’}/ﬂ)l
0= —3 + (a+ 1)93 — avy — w3 + I + ctanh(v; — v))
0 = bvy — yws

(15)
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It is easy to check that one solution of these equations is (v1, w1, V2, Wa) =
(0,w,7,w), where ¥, are given by (10)—(11). I will focus on this solution in
later discussions of this example.

Question 2 is difficult to answer analytically with any completeness. A
partial answer can be obtained by determining the bifurcations that occur in
the system which lead to the creation of periodic solutions. More detail can
be found in subsection 2.2. This question can also be addressed through the
use of numerical tools, which are discussed in subsection 2.5.

For equilibrium solutions, question 3 can be addressed via linear stability
analysis (see subsection 2.1) and via Lyapunov theory (see subsection 2.3). For
periodic solutions this question generally must be answered using numerical
tools, as discussed in subsection 2.5.

Answering question 4 is the main goal of bifurcation theory. Analytical
methods for studying bifurcations will be discussed in subsection 2.2 and
numerical methods in subsection 2.5.

2.1 Linear Stability

One way to study the stability of an equilibrium solution is through lineariza-
tion. This is constructed in a similar way as for ordinary differential equations.
The linearization of (13) about X is given by

x(t) = Ax(t) + Bx(t — 1) (16)

where A is a the Jacobian matrix of f(y, z) with respect to y, i.e. the matrix

with entries a;; = g—gi_, and B is the Jacobian matrix of f(y, z) with respect
J

to z. If the system has multiple delays, then there will be a term in the
linearization corresponding to each delay.

It can be shown that, under the right conditions, (16) describes the be-
haviour of solutions close to X. This will in turn determine the stability of X.
To study this behaviour, we assume that there are solutions of (16) of the form
x(t) = e*k where ) is a complex number and k is an n-vector of complex
numbers, to be determined. Substituting this into (16) we obtain

[-AM+ A+ Be | k=0. (17)
For solutions with k # 0 to exist, we require
det[-A + A+ Be ] =0 . (18)

If (13) is an n-dimensional system, then (18) can be written in the form

n—1

AN) = A"+ N (0nm10 + Onm1ae M)+ A Z 81 5097
=0

+ 2607]'67].)\7— =0 y (19)
j=0
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where the ; ; depend on the elements of the matrices A and B.

Equation (19) is called the characteristic equation of the linearization
of (13) about %x. Any complex number A which satisfies (19) will give rise to
a solution of (16) (k is found by solving (17) with the particular value of A
substituted in). In practice, we are mostly concerned with the A values for the
reasons outlined below.

Example. For our coupled Fitzhugh-Nagumo model (12) the linearization
about the equilibrium point (9, @, 7, @) is given by (16) where

a—-100 00cO
Cb—yo 0| L, i ~|oooo
A= 00 o-1 with @ = —=30° +2(a + 1)v — a, and B = c000
00 b—n 0000

Note that o depends on all the intrinsic neuron parameters (a,b,~,I), since
¥ is a solution of (10). Putting A, B into (18) shows that the characteristic
equation for this example is

Ar(NA_(N) =0 (20)

where
ArN) =AM +7)A—atce ) +b.

Fact: If all the roots of the characteristic equation of the linearization of
(13) about x have negative real part, then X is asymptotically stable, i.e., all
solutions which start sufficiently near to x will tend toward it as t increases.

Fact: If at least one root of the characteristic equation of the linearization
of (13) about X has positive real part, then X is unstable, i.e., some solutions
which start near to X will tend away from it as ¢ increases.

So we see that to determine the stability of an equilibrium point we need
to determine the roots, A of the characteristic (19). These are often called
the eigenvalues of the equilibrium point. For ordinary differential equations,
the characteristic equation is a polynomial in A and hence there are a finite
number of solutions all of which may be calculated or numerically approx-
imated. For delay differential equations, however, the presence of the e™*7
terms means that there are an infinite number of solutions of the characteris-
tic equation. This means we must rely on other methods to determine whether
an equilibrium point is stable. Several methods are outlined in the book of
Kolmanovskii and Nosov (1986), here we will focus on a particular one which
relies on the following result.

Fact: The zeros of A(A) depend continuously on 7 and the J; ;, and hence
on the elements of A and B. Thus as any of these parameters is varied, the
number of zeros of A(\) with positive real part can only change if a root
passes through the imaginary axis.

The most common way of using this fact in coupled neural systems, is
outlined in the following procedure.
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. Set the delay, 7, equal to zero. This will change the delay differential

equation into an ordinary differential equation with the same equilibrium
points as the delay differential equation.

. Determine the stability of an equilibrium point for the ODE system, i.e.

determine the number of eigenvalues with positive real parts.

. Determine the critical values of the delay, 7{ < 75 < --- for which the

characteristic (19) has eigenvalues with zero real parts. These are the
values of the delay where the stability of the equilibrium point may change.

. Calculate the rate of change of the real part of an eigenvalue with respect

to 7 when 7 is equal to one of the critical values found in the previous
step, i.e., calculate

ARe()|  _ (04 04
dr | _.. or" 0N )| _. e
k k
If %T(A) > 0, then the number of roots with positive real parts is increas-

ing, if it is negative, then the number of roots is decreasing.

. Due to the fact above, the number of roots of the characteristic equation

with positive real part will be constant for 0 < 7 < 77 and equal to the
number found in step 2. For each subsequent interval, 7, < 7 < 741,
the number can be determined from the number in the previous interval
Tp—1 < T < Tk, the number of roots with zero real part at 7, and the rate
of change calculated in step 4.

Example. Consider our coupled Fitzhugh-Nagumo model (12). We will

follow the procedure outlined above.

1.

When 7 = 0 the factors of the characteristic (20) become

Ar =N+ ANy—axc)+y(—ate)+b.

2. By analyzing the roots of this equation, it can be shown that if 42 < b

the trivial solution is stable for || < v — « =4 cH, and for ¢ outside this
region the equilibrium point has two complex conjugate eigenvalues with
positive real part, i.e. it is unstable. (In fact the two points ¢ = +cp are
Hopf bifurcation points for the system with zero delay.)

To find the parameter values where the characteristic (20) has eigenvalues
with zero real part, we substitute A\ = iw into (20) and separate into real
and imaginary parts. This yields

by

—oz—i-ﬁiccosun':o
P +w

b
w<1—W):FCSin(JJT:0.
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Note that we choose the + in the first equation and — in the second for
the parameter values for A, to have a pair of complex conjugate roots
and the opposite for A_. Some rearrangement of these equations gives

by —a(¥* + ) + (VP +w? =0)? = (P +w?)? =0 (21)

and

w(y? +w? —b)

by —a(y? +w?)
Thus, for given values of the parameters a,b,v,I (which determine «)
and ¢ one can find w from the first equation and the corresponding 7
values from the second equation. Alternatively, we can think of these two
equations as defining the coupling parameters 7 and ¢ in terms of the
intrinsic neuron parameters and w. Then these equations define curves in
the ¢, 7 parameter plane. These curves are shown in Fig. 1 for a specific
set of intrinsic parameter values. There are multiple curves because tan is
a periodic function, i.e., for fixed «,b,7,w there are multiple values of 7
that satisfy (22).

4. Taking the appropriate derivatives, we find

tanwt =

(22)

dA _ +Ace™

dr 1$T06_’\T—ﬁ .

5. Putting together the results of all steps, allows us to fill in the number
of eigenvalues with positive real part in each of the subregions of the ¢, 7
plane as shown in Fig. 1.

An alternative way to use the procedure outlined above is to set the cou-
pling coefficient (c in (12)) to zero in step 1 and follow the same procedure,
varying the coupling coefficient instead of the delay. In systems with multiple
delays, the procedure can be followed by setting one of the delays to zero, see
e.g. (Campbell et al., 2006, 2005), for examples of this.

To close, we note the work of Olgac and Sipahi (2002, 2005) who have found
a way to automate this procedure using a transformation of the characteristic
equation.

2.2 Bifurcations

As noted in the previous subsection, points in parameter space where the
characteristic equation has an eigenvalue with zero real part are points where
the stability of an equilibrium point may change. These are places where a
bifurcation may occur. As discussed elsewhere in this volume (Breakspear and
Jirsa, 2006), bifurcations may lead to the creation of other equilibrium points
or of a periodic orbit. We refer the reader that chapter for more background
on bifurcations.
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507

40+

47" o8 06 04 02 'O

Fig. 1. Illustration of the stability and bifurcation results for the example of (12).
The equilibrium solution is stable in the region contiguous with the 7 axis. The
number of eigenvalues with positive real part is shown in each subregion of the
plane. Thick/thin curves correspond to Hopf bifurcations giving rise to synchronous/
anti-phase oscillation

Recall that the equilibrium points of (13) with 7 > 0 are the same as
those with 7 = 0. Thus for the neural model (13) with 7 > 0, the bifurcations
involving only equilibrium points (saddle-node, pitchfork, transcritical) will
be the same as those for (13) with 7 = 0.

The two main bifurcations leading to the creation of periodic orbits in neu-
ral systems are the Hopf bifurcation and the infinite period bifurcation. These
bifurcations are associated with Type II and Type I oscillators, respectively
(Breakspear and Jirsa, 2006).

Consider first the Hopf bifurcation. This involves the creation of a periodic
orbit as an equilibrium point changes stability. There are simple criteria to
check to determine if a Hopf bifurcation occurs in a delay differential equation
at a particular parameter value, say 7 = 7.

Hopf Bifurcation Test

Assume that system (13) has an equilibrium point X. If the following are
satisfied, then system (13) undergoes a Hopf bifurcation at X as 7 passes
through ..
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1. The characteristic (19) of the linearization of (13) about X has a pair of
pure imaginary eigenvalues, +iw when 7 = 7., that is,

Al£iw)|_ =0.

T=T¢

2. As 7 passes through 7. the rate of change of the real part of this eigen-

value(s) is nonzero, that is, %TO‘) £ 0.

3. The characteristic (19) of the linearization of (13) about x has no other
eigenvalues with zero real part.

Other than in some exceptional cases, this is enough to guarantee that a
periodic orbit is created as T passes through 7.

Whether the periodic orbit is stable or unstable depends on the nonlinear
terms in the equation. There are two main approaches for determining this
analytically, both of which require intensive computations and are best done
either numerically or with a symbolic algebra package such as Maple. The
centre manifold construction reduces the system of delay differential equations
to a system of two ordinary differential equations from which the stability of
the periodic orbit (for 7 close to 7.) may be deduced. See (Bélair et al.,
1996; Wischert et al., 1994; Wu et al., 1999) for examples of how this is
done. Perturbation methods, such as averaging and the method of multiple
scales, find an approximate expression for the periodic solution and for the
corresponding Floquet exponents. See (Campbell et al., 2006; Gopalsamy and
Leung, 1996; Wirkus and Rand, 2002) for examples of how this is done.

Example. Applying this test to our coupled Fitzhugh-Nagumo model
shows that the system has a Hopf bifurcation along each of the curves where
the characteristic equation has a pair of pure imaginary eigenvalues, i.e., along
the curves defined by (21)—(22) and shown in Fig. 1. By analyzing the solu-
tions of the linearization (16) that correspond to the roots, one can show that
some of the Hopf bifurcations give rise to synchronous or in-phase oscillations
(i.e. v1(t) = va(t) and wy(t) = wa(t) for all t) and some to anti-phase solu-
tions (i.e. the spikes in v; and v are half a period apart and similarly for
wy and ws).

One important thing to note about Hopf bifurcation in systems of delay
differential equations is that there are always multiple branches of Hopf bifur-
cation. This can be seen in our example. The 7 value where a Hopf bifurcation
occurs corresponds to a 7 value satisfying (22). Clearly if a given value of 7
satisfies this equation, then so does 7 + km, k= +1,+2,....

Now consider the the infinite period bifurcation. This bifurcation occurs
when a saddle-node bifurcation occurs on an invariant circle. As indicated
above, the conditions for the saddle-node bifurcation to occur in a delay dif-
ferential equation are the same as for the corresponding system with zero
delay. Whether or not this bifurcation occurs on a limit cycle is not easily de-
termined analytically (even without delays), thus these bifurcations are often
investigated using numerical tools (see Sect. 2.5).



76 Sue Ann Campbell
2.3 Lyapunov Theory

The basic idea of Lyapunov theory is to use an auxiliary function to determine
the dynamics of a nonlinear system. A very simple example is the total energy
in a mechanical system with damping, such as the pendulum model:

é+79+%sin9:0.
The total energy of this system is
. 1.
E6,6) = 592 +gl(1 — cosb) .

A simple calculation, keeping in mind that 6 and 6 depend on ¢, shows that
% < 0. This means that as ¢ increases, F must tend to a minimum value.
This in turn determines what the solutions of the nonlinear model can do. In
particular, one can show that this implies that all solutions must tend to one
of the equilibrium points (6, 9) = (2km,0), k € Z as t — o0, i.e. the pendulum
swings with smaller and smaller amplitude until it is hanging straight down.
Lyapunov theory generalizes this idea to an arbitrary auxiliary function, V' (x),
which has similar properties to the energy function in the above example, viz.,

1. V(x) >0, x# 0;V(0) =0 (V positive definite)
2. & <0, x #0 (% negative definite).

These properties can be used to show that the equilibrium point x = 0 is
asymptotically stable. By modifying the properties above, one can also use
Lyapunov functions to show that an equilibrium point is unstable, that all
solutions are bounded or that all solutions synchronize as t — oo.

There are two ways of extending the Lyapunov theory for ordinary dif-
ferential equations to delay differential equations such as (13). Lyapunov
functionals are auxiliary functions which depend on the value of the state
over an interval in time, i.e., V(x;), where x,(8) =x(t +6), —7 <6 <0.

The conditions for showing an equilibrium point is stable are basically the
same as those outlined for the ODE case, above. The main difference comes in
showing those conditions are satisfied, which can be more complicated. The
Razumikhin approach uses an auxiliary function V(x(t)), but the second
condition is relaxed to 4 < 0 whenever V(x(t)) > V(x(t +6)), —7 <0 < 0.
Essentially, this requires that V' not increase for time intervals longer than
the delay.

2.4 Phase Models

Many of the analytical tools I have discussed so far are used for studying the
stability of equilibrium points and the creation of oscillatory solutions as pa-
rameters are varied. These tools are most helpful for predicting the behaviour
of systems where the individual neurons do not exhibit oscillatory behaviour
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when they are uncoupled. For systems which are inherently oscillatory, i.e.
systems where the individual neurons exhibit oscillatory behaviour when they
are uncoupled, one of the primary tools available is the phase model. The
basic idea of this approach is that for a group of oscillating neurons which
are weakly coupled, the key variables of importance in understanding how
the neurons affect each other are the phases of the oscillators associated with
the neurons. Thus a system of & model neurons, each represented by an n-
dimensional system of differential equations, can be reduced to a system of
k differential equations for the phases of the k oscillators. Typically these
equations are in the form

0:(t) = 2t + eH;(©;(t) — 0;(t)e)

where Qi(t) = (Gl(t), ey gi_l(t)79i+1(t), [N ,Ok(t)), ée= (1, 1, ey 1)7 (2 is the
network frequency, and ¢ is the strength of the coupling. Since the coupling
is weak, € is small, i.e., 0 < e << 1.

The procedure to calculate the phase model for a particular differential
equation is described in Hoppensteadt and Izhikevich (1997). In most cases
it is not possible to carry out this procedure analytically, however, a numeri-
cal implementation is available in the package XPPAUT (Ermentrout, 2005)
and described in the book of Ermentrout (2002). The numerical implementa-
tion yields a numerical approximation of the functions H;. A Fourier series
representation of these functions can also be calculated.

There are two main results concerning phase models for equations such
as (13) which have an explicit time delay in the coupling. The analysis of
Ermentrout (1994) and Kopell and Ermentrout (2002) indicates that explicit
time delays will produce phase shifts in the corresponding phase models pro-
vided that the delay is not a multiple of the oscillation period. Specifically,
the models have the form

0;(t) = Qt + eH;(©;(t) — 0i(t)é — )

where 1 = 72 mod 2.

Izhikevich (1998) has refined this analysis. He has shown that Ermentrout’s
analysis only holds for delays as large as the order of the oscillation period,
ie., 7 ~ 1/9. For larger delays, i.e., 7 ~ 1/({2€), an explicit delay will occur
in the phase model. In this case the phase model will consist of a set of k
delay differential equations of the form

91(15) = + GHi(@i(t — T) — 92(t>é>

For equations with a distributed delay in the coupling, Ermentrout (1994)
and Kopell and Ermentrout (2002) have shown that the phase model will be
of the form

0;(t) = 02t + e/OOO[Hi(Gi(t —5) — 60;(t)e) g(s)] ds .
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2.5 Numerical Tools

There are two basic numerical tools which can aid in the study of delay differ-
ential equations such as (13): numerical simulation and numerical bifurcation
analysis.

In numerical simulation one attempts to determine an approximate solu-
tion of a differential equation given a particular initial state. Note that to
solve such a problem for a delay differential equation such as (13), one needs
to specify the value of the variable x not just at the start time ¢t = 0, but for
the whole interval [—7, 0]. Thus an initial condition for (13) is

x(t) = ¢(t), —7 <t <0.
Typically ¢ is taken to be a constant, i.e.,
x(t) =x0, -7 <t <0,

which is reasonable for most experimental systems. It should be noted that
only solutions which are asymptotically stable can be accurately approximated
using numerical integration.

There are two main programs available for the numerical integration of
delay differential equations. The widely-used (and free) package XPPAUT
(Ermentrout, 2005) can perform numerical integration using a variety of
fixed step numerical methods, including Runge-Kutta. It has a good graph-
ical user interface for visualizing the results. Perhaps the most useful as-
pect of this program is the ease with which parameters and initial con-
ditions can be changed. The recent book of Ermentrout (2002) gives a
overview of the package including many examples. Information on how to
download the package as well as documentation and tutorials are available
at www.math.pitt.edu/ bard/xpp/xpp.html. Within MATLAB there is the
function DDE23 (Shampine and Thompson, 2001) which is a variable step size
numerical integration routine for delay differential equations. A tutorial is on
this routine available at www.mathworks.com/dde_tutorial. Results maybe
visualized using the extensive graphing tools of MATLAB.

Numerical bifurcation analysis consists of two parts, the approximation of
a solution and the calculation of the stability of this solution. The approx-
imation of a solution in a numerical bifurcation package is not done using
numerical integration, but rather using numerical continuation. Numerical
continuation uses a given solution for a particular parameter value to find a
solution for a different (but close) parameter value. This is only easily im-
plemented for equilibrium and periodic solutions. Both stable and unstable
solutions can be found. Once an equilibrium solution is found to a desired
accuracy, approximations for a finite set of the eigenvalues with the largest
real part can be determined, which will determine the stability of the equilib-
rium point. The stability of periodic orbits can be numerically determined in
a similar way. Numerical bifurcation packages generally track the stability of
equilibrium points and periodic orbits, indicating where bifurcations occur.
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There is one package available that does numerical bifurcation analysis
for delay differential equations, DDE-BIFTOOL (Engelborghs et al., 2001).
This package runs on MATLAB. An overview of the numerical methods used
in this package and some examples applications can be found in the paper
of Engelborghs et al. (2002). The user manual and information on how to
download the package are available at
www.cs.kuleuven.ac.be/cwis/research/twr/research/software/delay/

3 Effects of delay

In this section I will outline some of the effects of delay that have been docu-
mented in the literature.

3.1 Creation of Oscillations

Time delays are commonly associated with type II oscillations, i.e. oscillations
created by a Hopf bifurcation (Breakspear and Jirsa, 2006), for the following
reason. There are many examples of systems that have a stable equilibrium
point if the time delay is zero (or sufficiently small), but have oscillatory
behaviour if the delay is large enough. In these systems, the oscillation is
created via a Hopf bifurcation at a critical value of the delay. This is sometimes
referred to as a delay-induced oscillation. One of the simplest examples of
this is the following model for recurrent inhibition due to Plant (1981):

o(t) = v(t) — év?’(t) —w(t) + e(v(t — ) — o)

w(t) = p(v(t) +a—bw(t)) .

This is a Fitzhugh-Nagumo model neuron with a delayed term which repre-
sents recurrent feedback. Plant considered parameters such that the system
with no feedback has a stable equilibrium point and showed that this stability
is maintained for the system with feedback and sufficiently small delay. He
then showed that when ¢ < 0 (i.e. the recurrent feedback is inhibitory), there
is a Hopf bifurcation at a critical value of the delay, leading to oscillations.

3.2 Oscillator Death

One of the most publicized (Strogatz, 1998) effects of time delays is the fact
that the presence of time delays in the coupling between oscillators can de-
stroy the oscillations. This phenomenon, usually called oscillator death or
amplitude death was first noted by Ramana Reddy et al. (1998), in their
analysis of a simple model of type II oscillators with gap junctional coupling.
Subsequently Ramana Reddy et al. (2000) observed this phenomenon exper-
imentally in a system of two intrinsically oscillating circuits with the same
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type of coupling. There are many papers related to delay induced oscillator
death in the coupled oscillator literature, which I will not attempt to review
here. Instead I will focus the discussion on results relevant to neural models.

The work of Ramana Reddy et al. (1998, 1999) shows that when two or
more intrinsically oscillating elements are connected with gap junctional cou-
pling of sufficient strength with a sufficiently large delay then the oscillations
may be destroyed. Their work focused on systems where the elements were
identical except for the frequency of the intrinsic oscillations and the coupling
was all-to-all and symmetric (all the coupling coefficients were the same).
Their model oscillator was just the normal form for the Hopf bifurcation.
This behaviour has also been seen for a delayed, linearly coupled (i.e. (3) with
no x;(t) term) pair of van der Pol oscillators (Wirkus and Rand, 2002), and for
a pair of Fitzhugh-Nagumo oscillators with delayed gap junctional coupling
(Campbell and Smith, 2007). To my knowledge this has yet to be observed for
other biophysical models of neural oscillators, however, it may be expected to
occur for most type IT oscillators. Atay (2003b) obtained results for a network
of weakly nonlinear oscillators with a symmetric connection matrix and gap
junctional coupling. He showed that if the intrinsic frequency of the oscillators
is sufficiently similar then oscillator death can occur.

Several studies have shown that the type of oscillator death described
above does not occur for type II oscillators with sigmoidal coupling (Burié
and Todorovié¢, 2003; Campbell et al., 2004; Shayer and Campbell, 2000).
However, a different type of oscillator death can occur (Buri¢ and Todorovié,
2003; Buri¢ et al., 2005; Campbell et al., 2004; Shayer and Campbell, 2000): for
elements which are intrinsically excitable (i.e. not oscillating when decoupled),
oscillations induced by instantaneous coupling may be lost if a time delay is
introduced.

The work of Buri¢ et al. (2005) has shown that for the type I oscillator
of Terman and Wang (1995), there is no oscillator death of this latter type
with either gap junctional or sigmoidal coupling. Their work also suggests
that delay induced oscillator death of the first type is not possible.

The study of type II oscillator death in coupled neural systems combines
various techniques of Sect. 2. Oscillator death can occur when increasing the
time delay causes the stabilization of an equilibrium point. Values of the de-
lay where this occurs will correspond to places where the characteristic (19)
has an eigenvalue with zero real part and dR%T()‘) < 0. To have oscillator
death, however, one must also show that the periodic orbit is eliminated. This
means that at the value of 7 where the equilibrium point stabilizes, there is
a “reverse” Hopf bifurcation destroying the stable limit cycle. This may be
checked via numerical simulations or numerical continuations (see subsection
2.5), or by showing, as outlined in subsection 2.2, that the Hopf bifurcation
is subcritical. Buri¢ et al. (2005) and Buri¢ and Todorovié¢ (2003, 2005) have
shown that for excitable Fitzhugh-Nagumo neurons, the restabilization of the
equilibrium point is not always accompanied by oscillator death. In the case
that the Hopf bifurcation is subcritical, the stable oscillator may persist with
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the stable equilibrium point giving a region of bistability. In their model, for
larger values of 7 the periodic orbit is eliminated in a saddle-node bifurcation
of limit cycles, leading to oscillator death.

The results of Burié et al. on type I oscillator death are primarily based on
numerical simulations. To my knowledge there has been virtually no mathe-
matical study of this situation. Recall that type I oscillators are those where
the oscillation is created by an infinite period bifurcation (Breakspear and
Jirsa, 2006). If such a bifurcation takes place in the coupled system with no
time delay, introducing a time delay will not change the presence of the saddle-
node bifurcation, however, it may affect whether this bifurcation occurs on
an invariant circle. Continuity arguments would suggest that for sufficiently
small delay, the saddle-node bifurcation will still occur on the invariant circle,
leading to the creation of a periodic orbit at exactly the same bifurcation
point as for the undelayed system. What happens for large delay remains to
be investigated.

3.3 Attractor Switching and Multistability

A significant observation about ANNs of the form (14), is that many intersec-
tions between different Hopf bifurcation curves and between Hopf bifurcation
curves and pitchfork bifurcation curves can occur (Bélair et al., 1996; Shayer
and Campbell, 2000; Yuan and Campbell, 2004). Figure 1 shows that this oc-
curs in our coupled Fitzhugh-Nagumo model as well. These intersection points
are called codimension two bifurcation points. Such points can lead to
more complicated dynamics including: the existence of solutions with mul-
tiple frequencies (quasiperiodicity), the coexistence of more than one stable
solution (multistability) or the switching of the system from one type of so-
lution to another as a parameter is varied (Guckenheimer and Holmes, 1983,
Chap. 7), (Kuznetsov, 1995, Chap. 8). In ordinary differential equations, such
points are quite rare. In delay differential equations, however, such points are
more common as the time delay forces there to be multiple branches of Hopf
bifurcation.

In the ANN models, the following behaviour associated with the codimen-
sion two points has been observed (Bélair et al., 1996; Campbell et al., 2005;
Shayer and Campbell, 2000; Yuan and Campbell, 2004): (i) multistability be-
tween a periodic solution and one or more equilibrium points; (ii) bistability
between two periodic solutions (both synchronous or one synchronous and
one asynchronous); and (iii) switching from one stable solutions to another as
the delay is changed for a fixed coupling strength or as the coupling strength
is changed for a fixed delay. The switching in (iii) may take place through a
region of bistability or a region where the trivial solution is stable. Note that
situation (i) leads to a different type of oscillator death than that discussed in
the previous subsection: a slight perturbation can cause the system to switch
from the stable oscillatory solution to the stable equilibrium solution, with no
change in the parameter values.
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Most of this behaviour has been confirmed in systems with biophysically
relevant models for the neurons. In their studies of rings of Fitzhugh-Nagumo
oscillators with time delayed gap-junctional or sigmoidal coupling, Buri¢ and
Todorovié¢ (2003) and Buri¢ et al. (2005) have documented almost all the
behaviour observed in the ANN models including switching between different
oscillation patterns and bistability between different oscillation patterns. For a
system of two van der Pol oscillators with linear delayed coupling (i.e. (3) with
no x;(t) term), Sen and Rand (2003) have numerically observed and Wirkus
and Rand (2002) have analytically proven the following sequence as the time
delay is increased: in-phase oscillations — bistability between in-phase and
anti-phase oscillations — anti-phase oscillations. They also observed the re-
verse sequence for different values of the coupling strength. Delay-induced
bistability between in-phase oscillations and suppression oscillations (i.e. one
cell oscillates and the other is quiescent) has been observed in models of hip-
pocampal interneurons (Skinner et al., 2005a,b). Here the delay was synaptic
and modelled via an extra equation representing the chemical kinetics of the
synapse. Bistability between different types of travelling pulses has been ob-
served in certain integrate-and-fire networks with delayed excitatory synaptic
connections (Golomb and Ermentrout, 1999, 2000). In particular, they ob-
serve a switch from continuous travelling pulses to lurching travelling pulses
as the time delay is increased with a transition region where there is bista-
bility between the two types. This behaviour seems to be associated with a
subcritical Hopf bifurcation.

Foss et al. (1996) and Milton and Foss (1997) have studied multistability
in models for a delayed recurrent neural loop. Their model consists of a single
excitatory neuron with delayed inhibitory feedback. They showed that up to
three stable oscillatory patterns can coexist and that switching between the
attractors can be induced by small perturbations in the neuron voltage (Foss
et al., 1996) or by noise (Foss et al., 1997). These results have been repli-
cated in experimental studies of a hybrid neural computer device consisting
of an Aplysia motorneuron dynamically clamped to a computer which pro-
vides the delayed feedback (Foss and Milton, 2000, 2002). A possible cause of
the multistability in these delayed feedback systems maybe period doubling
bifurcations (Ikeda and Matsumoto, 1987). Bistability between different os-
cillation patterns was also observed in preparations of small Aplysia neural
circuits (Kleinfeld et al., 1990).

Bifurcation induced transitions between different attractors have been ob-
served in several experiments. In an experimental electrical circuit system,
Ramana Reddy et al. (2000) have observed the sequence: in-phase oscillations
— no oscillations — anti-phase oscillations as the time delay in the (gap-
junctional) coupling is increased. Transitions from in-phase to anti-phase os-
cillations have been observed in human bimanual coordination experiments
(Kelso et al., 1981; Kelso, 1984; Carson et al., 1994); see also the review arti-
cle of Jantzen and Kelso (2006). One model which explains these experiments
incorporates time delays in the coupling (Haken et al., 1985).
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3.4 Synchronization

There are several approaches to studying synchronization. I will not review
the details here, but give some indication which of these have been extended
to delay differential equations and what the results are.

There is a very large literature on synchronization in artificial neural net-
works, some of which addresses systems with time delays (Campbell et al.,
2006; Wu et al., 1999; Yuan and Campbell, 2004; Zhou et al., 2004a,b). Most
of these papers use Lyapunov functionals to show that the all solutions syn-
chronize as t — oo, for appropriate parameter values. Although the equations
of the individual elements are not relevant for modelling biophysical neurons,
the techniques of analysis may be carried over to neural systems. A common
conclusion in many of these papers is that if the strength of the coupling is
small enough, one can achieve synchronization for all 7 > 0. However, syn-
chronization may mean that all elements asymptotically approach the same
equilibrium point.

As I have mentioned elsewhere in this chapter, a basic principle of delay
differential equations such as (13) is that the behaviour of the system for
small delay is often qualitatively similar to that for zero delay. Thus if the
neurons are synchronized for a given value of the coupling with zero delay
they should remain synchronized for small enough delays in the coupling.
Unfortunately, quantifying “small enough” may be difficult and will generally
depend on the particular neural model involved. Recall the example illustrated
in Fig. 1. We showed that for ¢ > 0 large enough (sufficiently large excitatory
coupling) the undelayed system exhibits synchronized oscillations. We expect
these oscillations to persist for 7 > 0 at least until one reaches the first thick
Hopf bifurcation curve where synchronous oscillations are destroyed. (If the
Hopf bifurcation is subcritical, the oscillations may persist above the curve).
Thus, for this particular example, the Hopf bifurcation curve gives a lower
bound on “how small” the delay must be to preserve the synchronization found
for zero delay. Note that this does not preclude synchronization occurring
for larger values of the delay, which is the case in this example. A similar
situation is seen for coupled van der Pol oscillators in (Wirkus and Rand,
2002). Another example is the work of Fox et al. (2001) who studied relaxation
oscillators with excitatory time delayed coupling. They showed that synchrony
achieved for zero delay is preserved for delays up to about 10% of the period
of the oscillation, for a variety of different models. The one exception is when
the right hand side of the equation is not a differentiable function, in which
case synchronization is lost for 7 > 0. Crook et al. (1997) observed a similar
phenomenon for a continuum model of the cortex, with excitatory coupling
and distance dependent delays. Namely, they found for small enough delay
the synchronous oscillation is stable, but for larger delays this oscillation loses
stability to a travelling wave.
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More complicated situations occur when both excitatory and inhibitory
connections exist. Ermentrout and Kopell (1998); Kopell et al. (2000); Kar-
bowski and Kopell (2000) have studied a model for hippocampal networks of
excitatory and inhibitory neurons where two types of synchronous oscillation
are possible. They show that persistence of the synchronous oscillations with
delays depends subtly on the currents present in the cells and the connections
present between cells.

So far I have discussed synchronization in spite of delays. I now move on
to the more interesting case of synchronization because of delays. This situa-
tion can occur when there are inhibitory synaptic connections in the network.
This has been extensively documented and studied when the delay is modelled
by slow kinetics of the synaptic gating variable (van Vreeswijk et al., 1994,
Wang and Buzsaki, 1998; Wang and Rinzel, 1992, 1993; White et al., 1998).
Further, Maex and De Schutter (2003) suggest that the type of delay is not
important, just the fact that it leads to a separation in time between when the
pre-synaptic neuron generates an action potential and the post-synaptic neu-
ron receives it. They confirm this for a network of multi-compartment model
neurons with fast synaptic kinetics and a discrete conduction delay. This idea
is further supported by the observation of synchronization via discrete de-
layed inhibition in a number of artificial neural network models (Campbell
et al., 2004, 2005; Shayer and Campbell, 2000). Finally we illustrate this with
our coupled Fitzhugh-Nagumo model. Consider the part of Fig. 1 with ¢ <0
(inhibitory coupling). For sufficiently large coupling strength and zero delay
the system tends to an asynchronous phase-locked state. This state persists
for 7 > 0 sufficiently small, however, for 7 large enough a stable synchronous
state may be created in the Hopf bifurcation corresponding to the thin curve.

Only a few studies have looked at synchronization with time delayed gap-
junctional coupling. One example is the work of Dhamala et al. (2004) which
shows that for two gap junctional coupled Hindmarsh-Rose neurons synchro-
nization is achieved for smaller coupling strengths if there is a nonzero time
delay in the coupling. Another is the work of Buri¢ et al. (2005).

4 Distributed Delays

There are very few results concerning neural systems with distributed delays,
thus I will review some general results, mostly from the population biology
literature, which should carry over to neural systems. What has emerged from
this literature is a general principle that a system with a distribution of delays
is inherently more stable than the same system with a discrete delay. Some
specific results to support this are described below.

Bernard et al. (2001) analyzed the linear stability of a scalar system
with one and two delays in terms of generic properties of the distribution
g, such as the mean, variance and skewness. For the uniform and continuous
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distributions, they have shown that stability regions are larger than those
with a discrete delay.

Jirsa and Ding (2004) have analyzed an n X n linear system with linear
decay and arbitrary connections with a common delay. They have shown,
under some mild assumptions, that the stability region of the trivial solution
for any distribution of delays is larger than and contains the stability region
for a discrete delay.

Campbell and Ncube (2006) have shown that it is more difficult to get delay
induced oscillations with distributions of delays of the form (6) with 7, = 0.
For large variance (m = 1) delay induced instability is impossible and for
smaller variance (m > 1) the mean delay needed for instability is much larger
than the discrete delay value. They have also shown that sufficiently small
variance in the distribution is needed to get the bifurcation interactions which
may lead to multistability, oscillator death and attractor switching discussed
above.

Atay (2003a, 2006) has studied the same model as Ramana Reddy et al.
(1998) only with distributed delays of the form (6) with g given by (7). He
shows it is easier to destroy oscillations with a distribution of delays than with
a discrete delay, in the sense that there is a larger region of oscillator death
in the parameter space consisting of the mean delay and the strength of the
coupling. As the variance of the distribution increases the size of this region
increases.

Thiel et al. (2003) studied a scalar equation representing a mean field
approximation for a population pyramidal cells with recurrent feedback, first
formulated by Mackey and an der Heiden (1984). They show that having
a uniform distribution of delays simplifies the dynamics of the system. The
size of the stability region of the equilibrium point is larger and larger mean
delays are needed to induce oscillations. Complex phenomena such as chaos
are less likely to occur, or totally precluded if the variance of the distribution
is sufficiently large. The model with a distribution of delays better explains
the appearance of periodic bursts of activity when penicillin is added to a
hippocampal slice preparation (which reduces the coupling strength).

5 Summary and Future Directions

In this chapter I showed how time delays due to conduction along the axon
or dendrite or due to transmission across the synapse could be modelled with
delay differential equations. I outlined some of the tools available for analyzing
such equations and reviewed some of the literature about such models. Some
key observations are:

— Time delays can lead to the creation of type II oscillations, especially in
systems with delayed inhibitory coupling.

— Time delays can destroy type II oscillations in a network of intrinsically
oscillatory neurons with gap junctional coupling.
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— If a system has a stable synchronous oscillation when there is no delay in
the coupling, the solution remains stable for small enough delay, but may
lose stability for larger delay.

— A system with inhibitory coupling which does not have a stable syn-
chronous oscillation for zero delay, may have one if the delay is large
enough.

— Time delays may lead to bistability between different type II oscillatory
solutions (e.g. synchronous and anti-phase) or switching between different
type II oscillatory solutions.

There are a number of problems which still require further study. These
include: determining the effect of delay on the generation and destruction of
type I oscillations (infinite period bifurcations), applying and/or extending
the methods used to study synchronization in artificial neural networks to
biophysical neural networks, and studying the effect of distributions of delays
on biophysical neural networks.
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