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It is a longstanding scientific insight that understanding processes that result
from the interaction of multiple elements require mathematical models of sys-
tem dynamics (von Bertalanffy 1969). This notion is an increasingly important
theme in neuroscience, particularly in neuroimaging, where causal mechanisms
in neural systems are described in terms of effective connectivity. Here, we
review established models of effective connectivity that are applied to data
acquired with positron emission tomography (PET), functional magnetic reso-
nance imaging (fMRI), electroencephalography (EEG) or magnetoencephalog-
raphy (MEG). We start with an outline of general systems theory, a very
general framework for formalizing the description of systems. This framework
will guide the subsequent description of various establishd models of effective
connectivity, including structural equation modeling (SEM), multivariate au-
toregressive modeling (MAR) and dynamic causal modeling (DCM). We focus
particularly on DCM which distinguishes between neural state equations and
a biophysical forward model that translates neural activity into a measured
signal. After presenting some examples of applications of DCM to fMRI and
EEG data, we conclude with some thoughts on pharmacological and clinical
applications of models of effective connectivity.

1 General Systems Theory

The central goal of most scientific disciplines is to understand systems, i.e. en-
sembles of interacting elements. Today, this statement sounds almost trivial,
yet in biology at least, the importance of the systems concept has been es-
tablished only relatively recently. A key figure was Ludwig von Bertalanffy,
a biologist and philosopher, who wrote a series of seminal articles in the
first half of the 20th century in which he argued that complex phenomena
in biology (and indeed any other scientific field) invariably result from sys-
tems and could only be understood properly through a mathematical descrip-
tion of how system behavior emerged from the interactions of its constituent
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elements. Demonstrating the existence of system isomorphisms, i.e. general
mathematical descriptions that explained the dynamic behavior of very dif-
ferent kind of systems at different scales and across fields as diverse as physics,
biology, economy and sociology, he introduced a very general framework that
became known as general system theory (see the collection of essays in von
Bertalanffy 1969). By the 1940s, the systems concept had experienced a sci-
entific breakthrough in biology and led to the rise of cybernetics, “the science
of control and communication in the animal and the machine” (Wiener 1948;
Ashby 1956).

Today, biology uses the systems concept to address questions at all levels,
from the molecular level to whole organisms and populations. The systems
concept is now so omnipresent in biology that a recent special issue of the
journal Science on systems biology renewed von Bertalanffy’s (1969) previous
diagnosis: “The [systems] concept has pervaded all fields of science and pene-
trated into popular thinking, jargon, and mass media” (Chong & Ray 2002).

But what exactly is a “system” and why is the systems concept so useful
for framing scientific questions? A general, yet informal, definition is that a
system is a set of elements which interact with each other in a spatially and
temporally specific fashion. Before we attempt a formal definition of a system
in the next section, let us remind ourselves that one of the classic scientific
methods is to “analyze” a given phenomenon, i.e. to break it down into atomic
units and processes that can be investigated independently of each other. This
approach is appealing because it reduces a complex problem to a set of sim-
pler problems, each of which can be addressed under conditions which can be
controlled more easily for potentially confounding influences. For example, if
one wanted to understand the physiological properties of a single neuron, one
might decide to isolate it from its environment (e.g. let it grow in a dish) and
then map its responses to currents injected into various parts of its dendritic
tree. Unfortunately, this analytic approach cannot fully predict the neuron’s
behavior when it is part of a neural system, e.g. in the brain, and thus inter-
acts with other neurons. When part of a system, the response of an individual
neuron to a particular synaptic input (or injected current) u1 depends on the
spatial and temporal distribution of inputs u1 . . . un that its dendritic tree
receives from other neurons. If these additional inputs occur sufficiently close
in time and space to u1, they will affect the magnitude of the postsynaptic
potential elicited by u1, either linearly (by spatio-temporal summation) or
nonlinearly (e.g. by changing the opening probability of voltage-gated chan-
nels) (Magee & Johnston 2005). In other words, the connectivity in the system
mediates effects that cannot be predicted by studying a single neuron. Similar
scenarios can be described for any other scientific field, for example biochem-
istry. Having studied a set of different biochemical processes in isolation, one
would not necessarily be able to predict their collective dynamics. The prob-
lem is, as above, that different processes may interact, e.g. one process may
change the substrate/product ratio of another process, or the efficacy of an
enzyme that is relevant for a particular process may change due to the presence
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of allosteric (in)activators that are produced by a second process or due to
dynamic changes in gene expression mediated by a third process.

In summary, the general problem of analytical procedures in science is
that they are blind to predicting the consequences arising from interactions
between the elements in a system. Analytical procedures therefore need to
be complemented with a theoretical framework that takes into account both
the connectivity between the elements and external perturbations in order to
achieve a mechanistic explanation of the dynamics of the system as a whole.
This framework is provided by general system theory.

2 A General Form for System Models

Why is it useful at all to strive for formal mathematical definitions of systems?
First, as described below, it allows one to pinpoint precisely what is meant
by structure, function, and structure-function-relationships. Second, it allows
one to predict system behavior for situations in which the system has not been
observed before (see Bossel 1992 for an impressive collection of examples from
biology). Third, it is the only way to fully understand how a system works and
particularly, how system function could be restored if some of its components
are rendered dysfunctional, e.g. by disease (Payne & Lomber 2001).

Here, we choose deterministic differential equations with time-invariant
parameters as a mathematical framework; note that these are not the only
possible mathematical representation of dynamic systems (see Bar-Yam 1997
for alternatives). The underlying concept, however, is quite universal: a system
is defined by a set of elements with n time-variant properties altogether that
interact with each other. Each time-variant property xi (1 ≤ i ≤ n) is called
a state variable, and the n-vector x(t) of all state variables in the system is
called the state vector (or simply state) of the system at time t:

x(t) =

⎡
⎢⎣
x1(t)

...
xn(t)

⎤
⎥⎦ (1)

Taking an ensemble of interacting neurons as an example, the system
elements would correspond to the individual neurons, each of which is repre-
sented by one or several state variables. These state variables could refer to
various neurophysiological properties, e.g. postsynaptic potentials, status of
ion channels, etc. This touches on an important distinction: in system con-
struction (e.g. in engineering), the relevant state variables and their mutual
dependencies are usually known; in system identification (e.g. when trying to
understand a biological system), however, they are not known. This means
that we always require a model of the system that represents our current hy-
pothesis about the structure of the system and how its function emerges from
that structure (the structure-function relationship, SFR).
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The crucial point is that the state variables interact with each other, i.e. the
evolution of each state variable depends on at least one other state variable.
This mutual functional dependence between the state variables of the system
is expressed in a very natural fashion by a set of ordinary differential equations
that operate on the state vector:

dx

dt
=

⎡
⎢⎣
f1(x1, . . . , xn)

...
fn(x1, . . . , xn)

⎤
⎥⎦ = F (x) (2)

However, this description is not yet sufficient. First of all, the specific
form of the dependencies fi needs to be specified, i.e. the nature of the causal
relations between state variables. This requires a set of parameters θ which de-
termine the form and strength of influences between state variables. In neural
systems, these parameters usually correspond to time constants or strengths
of the connections between the system elements. And second, in the case of
non-autonomous systems (and these are the ones of interest to biology) we
need to consider the input into the system, e.g. sensory information enter-
ing the brain. We represent the set of all m known inputs by the m-vector
function u(t). Extending (2) accordingly leads to a general state equation for
non-autonomous deterministic systems

dx

dt
= F (x, u, θ) (3)

where θ is the parameter vector of the system. Such a model provides a
causal description of how system dynamics results from system structure, be-
cause it describes (i) when and where external inputs enter the system and (ii)
how the state changes induced by these inputs evolve in time depending on the
system’s structure. As explained below in more detail in Sect. 3, (3) therefore
provides a general form for models of effective connectivity in neural systems,
i.e. the causal influences that neural units exert over another (Friston 1994).

We have made two main assumptions to simplify the exposition. First,
it is assumed that all processes in the system are deterministic and occur
instantaneously. Random components (noise) and delays could be accounted
for by using stochastic differential equations and delay differential equations,
respectively. Second, we assume that we know the inputs that enter the sys-
tem. This is a tenable assumption in neuroimaging because the inputs are
experimentally controlled variables, e.g. changes in stimuli or instructions.1

1 Note that using time-invariant dependencies fi and parameters θ is neither an as-
sumption nor a restriction. Although the mathematical form of fi per se is static,
the use of time-varying inputs u allows for dynamic changes in what components
of fi are “activated”. For example, using box-car functions that are multiplied
with the different terms of a polynomial function one can induce changes from
linear to nonlinear behavior (and vice versa) over time. Also, there is no principled
distinction between states and time-invariant parameters. Therefore, estimating
time-varying parameters can be treated as a state estimation problem.
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On the basis of the general system description provided by (3) we can
now state accurately, given a particular system model, what we mean by
structure, function, and structure-function relationships (see Stephan 2004
for more details):

• Structure is defined by the time-invariant components of the system,
i.e. the binary nature of θ (which connections exist and which do not;
see (8)) and the mathematical form of the state variable dependencies fi.

• Function refers to those time-variant components of the system model that
are conditional on its structure, i.e. x(t), but not u(t).

• The structure-function relationship (SFR) is represented by F : integrating
F in time determines the temporal evolution of the system state x from
time t=0 up to a time point τ , given an initial state x(0):

x(τ) = x(0) +

τ∫

0

F (x, u, θ)dt (4)

In other words, given a particular temporal sequence of inputs u(t), (4)
provides a complete description of how the dynamics of the system (i.e. the
trajectory of its state vector x in time) results from its structure and initial
state.

3 Functional Integration and Effective Connectivity
are Assessed through System Models

Modern cognitive neuroscience has adopted an explicit system perspective.
A commonly accepted view is that the brain regions that constitute a given
system are computationally specialized, but that the exact nature of their in-
dividual computations depends on context, e.g. the inputs from other regions.
The aggregate behavior of the system depends on this neural context, the
context-dependent interactions between the system components (McIntosh
2000; see also the chapter by Bressler & McIntosh in this volume). An equiv-
alent perspective is provided by the twin concepts of functional specialization
and functional integration (Friston 2002). Functional specialization assumes
a local specialization for certain aspects of information processing but allows
for the possibility that this specialization is anatomically segregated across
different cortical areas. The majority of current functional neuroimaging ex-
periments have adopted this view and interpret the areas that are activated
by a certain task component as the elements of a distributed system. How-
ever, this explanation is incomplete as long as no insight is provided into how
the locally specialized computations are bound together by context-dependent
interactions among these areas, i.e. the functional integration within the sys-
tem. This functional integration within distributed neural systems can be
characterized in two ways, functional connectivity and effective connectivity.
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Functional connectivity has been defined as the temporal correlation be-
tween regional time series (Friston 1994). Analyses of functional connectivity
therefore do not incorporate any knowledge or assumptions about the struc-
ture and the SFR of the system of interest. Depending on the amount of
knowledge about the system under investigation, this can either be a strength
or a weakness. If the system is largely unknown, functional connectivity ap-
proaches are useful because they can be used in an exploratory fashion, either
by computing functional connectivity maps with reference to a particular seed
region (Horwitz et al. 1998; McIntosh et al. 2003; Stephan et al. 2001a) or
using a variety of multivariate techniques that find sets of voxels whose time
series represent distinct (orthogonal or independent) components of the co-
variance structure of the data (Friston & Büchel 2004; McIntosh & Lobaugh
2004). The information from these analyses can then be used to generate hy-
potheses about the system. Conversely, given sufficient information about the
system structure and a specific hypothesis about the SFR of the system, mod-
els of effective connectivity are more powerful. Here, we only deal with models
of effective connectivity. For analyses of functional connectivity, please see the
chapters by Salvador et al., Bressler & McIntosh and Sporns & Tononi in this
volume.

Effective connectivity has been defined by various authors, but in comple-
mentary ways. A general definition is that effective connectivity describes the
causal influences that neural units exert over another (Friston 1994). Other
authors have proposed that “effective connectivity should be understood as
the experiment- and time-dependent, simplest possible circuit diagram that
would replicate the observed timing relationships between the recorded neu-
rons” (Aertsen & Preißl 1991). Both definitions emphasize that determining
effective connectivity requires a causal model of the interactions between the
elements of the neural system of interest. Such a causal model has to take
into account the external inputs that perturb the system and the anatomical
connections by which neural units influence each other. In other words, any
such model is a special case of the general system model as described in Sect. 2
and formalized by (3).

The equations presented in Sect. 2 are extremely general. To illustrate how
the concept of effective connectivity emerges naturally from system models,
we discuss the special case of a linear dynamic system. Although most natural
phenomena are of a nonlinear nature, linear models play an important role
in systems science because (i) they are analytically tractable, and (ii) given
sufficiently long observation periods and non-negligible external input, their
dynamics are largely independent of the initial state (Bossel 1992). Therefore
nonlinear systems are usually investigated in restricted sub-spaces of interest,
using linear models as local approximations. The following model of n inter-
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acting brain regions is a simple linear case of (3) which uses a single state
variable per region and m external inputs:

⎡
⎢⎣

dx1
dt
...

dxn

dt

⎤
⎥⎦ =

⎡
⎢⎣
a11 · · · a1n

...
. . .

...
an1 · · · ann

⎤
⎥⎦

⎡
⎢⎣
x1

...
xn

⎤
⎥⎦ +

⎡
⎢⎣
c11 · · · c1m

...
. . .

...
cn1 · · · cnm

⎤
⎥⎦

⎡
⎢⎣
u1

...
um

⎤
⎥⎦ (5)

In this model the change of any given element depends on the state of
the other system elements and on external inputs which affect it directly or
indirectly. This system model can be written in compact matrix form as

F (x) =
dx

dt
= Ax+ Cu (6)

where the non-zero values of A and C represent the parameters of the system
(i.e. θ in (3)) and the state of the system at time point τ can be obtained by
integration (compare (4))

x(τ) = eAτx(0) +

τ∫

0

eA(τ−t)Cu(t)dt (7)

where eAt is the matrix exponential (Bossel 1992). In this model, the system’s
behavior has two separable components: intrinsically sustained dynamics (pa-
rameterized by matrix A) and dynamics enforced by external inputs (param-
eterized by matrix C). The first term of (6) says that the change of the state
variable xi is a linear mixture of all state variables in the system, weighted
by the parameters aij . By defining a particular parameter aij to be zero, we
disallow for a direct effect of xj on xi (see Fig. 1 for an example). Conversely,
any non-zero parameter aij represents a causal influence of the dynamics of
xj on that of xi. The binarized parameter matrix Ã

Ã = χ(A) =

⎡
⎢⎣
χ(a11) · · · χ(a1n)

...
. . .

...
χ(an1) · · · χ(ann)

⎤
⎥⎦ ,

χ(a) =

{
1 if a �= 0
0 if a = 0

(8)

represents the structural connectivity of the system model (see the chapter by
Sporns & Tononi in this volume on how patterns of anatomical connections
constrain effective connectivity and thus the dynamics of neural systems).
The definition of the structural connectivity is usually guided by anatomical
investigations in primates (Stephan et al. 2001b, Kötter 2004; see the chapter
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by Paus in this volume for alternative approaches in humans). The values of
A represent the influences of system elements over each other and thus corre-
spond to the effective connectivity within the system. Finally, the values of the
matrix C represent the magnitude of the direct effects that external (e.g. sen-
sory) inputs have on system elements. By setting a particular parameter cij to
be zero, we disallow for a direct effect of the external input uj on xi (see Fig. 1
for an example). A and C represent the system parameters (θ) that one needs
to estimate when fitting this model to measured data. Simple linear models
of this kind have found widespread application in various scientific disciplines
(von Bertalanffy 1969). In Sect. 6, we will see that Dynamic Causal Modelling
(DCM, Friston et al. 2003) extends the above formulation by bilinear terms
that model context-dependencies of intrinsic connection strengths.

It should be noted that the framework outlined here is concerned with
dynamic systems in continuous time and thus uses differential equations. The
same basic ideas, however, can also be applied to dynamic systems in discrete
time (using difference equations), as well as to “static” systems where the
system is at equilibrium at each point of observation. The latter perspective,
which is useful for regression-like equations, is used by classic system models
for functional neuroimaging data, e.g. psycho-physiological interactions (PPI;
Friston et al. 1997), structural equation modeling (SEM; McIntosh et al. 1994;
Büchel & Friston 1997) or multivariate autoregressive models (MAR; Harrison
et al. 2003; Göbel et al. 2003). These will be described in the following sections.
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Fig. 1. A simple linear dynamic system as an example for a concrete implementation
of (3), describing interactions between the lingual (LG) and the fusiform gyri (FG)
in both hemispheres. The top panel shows the system structure and the sensory
inputs (visual stimuli displayed in the left and right peripheral visual field) that
perturb the system. The lower panel shows the state equation in matrix form
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4 Psycho-Physiological Interactions (PPI)

PPI are one of the simplest models available to assess functional interactions
in neuroimaging data (see Friston et al. 1997 for details). Given a chosen refer-
ence time series y0 (obtained from a reference voxel or region), PPI computes
whole-brain connectivity maps of this reference voxel with all other voxels yi

in the brain according to the regression-like equation

yi = ay0 + b(y0 × u) + cu+Xβ + e (9)

Here, a is the strength of the intrinsic (context-independent) connectivity
between y0 and yi. The bilinear term y0 × u represents the interaction be-
tween physiological activity y0 and a psychological variable u which can be
construed as a contextual input into the system, modulating the connectivity
between y0 and yi (× represents the Hadamard product, i.e. element-by ele-
ment multiplication). The third term describes the strength c by which the
input u determines activity in yi directly, independent of y0. Finally, β are
parameters for effects of no interest X (e.g. confounds) and e is a Gaussian
error term.

Notwithstanding the fact that this is a non-dynamic model, (9) contains
the basic components of system descriptions as outlined in Sect. 2 and (3),
and there is some similarity between its form and that of the state equation of
DCM ((13), see below). However, since only pair-wise interactions are consid-
ered (i.e. separately between the reference voxel and all other brain voxels),
this model is severely limited in its capacity to represent neural systems. This
has also been highlighted in the initial description of PPIs (Friston et al.
1997). Although PPIs are not a proper system model, they have a useful role
in exploring the functional interactions of a chosen region across the whole
brain. This exploratory nature bears some similarity to analyses of functional
connectivity. Unlike analyses of functional connectivity, however, PPIs model
the contextual modulation of connectivity, and this modulation has a direc-
tional character, i.e. testing for a PPI from y0 to yi is not identical to testing
for a PPI from yi to y0. This is because regressing y0×u on yi is not equivalent
to regressing yi × u on y0.

5 Structural Equation Modeling (SEM)

SEM has been an established statistical technique in the social sciences for
several decades, but was only introduced to neuroimaging in the early 1990’s
by McIntosh & Gonzalez-Lima (1991). It is a multivariate, hypothesis-driven
technique that is based on a structural model which represents the hypoth-
esis about the causal relations between several variables (see McIntosh &
Gonzalez-Lima 1994, Büchel & Friston 1997, Bullmore et al. 2000 and Penny
et al. 2004a for methodological details). In the context of fMRI these vari-
ables are the measured BOLD (blood oxygen level dependent) time series
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y1 . . . yn of n brain regions and the hypothetical causal relations are based
on anatomically plausible connections between the regions. The strength of
each connection yi → yj is specified by a so-called “path coefficient” which,
by analogy to a partial regression coefficient, indicates how the variance of yj

depends on the variance of yi if all other influences on yj are held constant.
The statistical model of standard SEM implementations for neuroimaging

data can be summarized by the equation

y = Ay + u (10)

where y is a n×s matrix of n area-specific time series with s scans each, A
is a n×n matrix of path coefficients (with zeros for non-existent connections),
and u is a n× s matrix of zero mean Gaussian error terms, which are driving
the modeled system (“innovations”, see (11)). Note that the model on which
SEM rests is a special case of the general equation for non-autonomous linear
systems (with the exception that SEM is a static model and the inputs to
the modeled system are random noise; compare (11) with (6)). Parameter
estimation is achieved by minimizing the difference between the observed and
the modeled covariance matrix Σ of the areas (Bollen 1989). For any given
set of parameters, Σ can be computed by transforming (10):

y = (I −A)−1u

Σ = yyT

= (I −A)−1uuT (I −A)−1T

(11)

where I is the identity matrix and T denotes the transpose operator. The
first line of 11 can be understood as a generative model of how system function
results from the system’s connectional structure: the measured time series
y results by applying a function of the inter-regional connectivity matrix,
i.e. (I −A)−1, to the Gaussian innovations u.

In the special case of fMRI, the path coefficients of a SEM (i.e. the param-
eters in A) describe the effective connectivity of the system across the entire
experimental session. What one would often prefer to know, however, is how
the coupling between certain regions changes as a function of experimentally
controlled context, e.g. differences in coupling between two different tasks. No-
tably, SEM does not account for temporal order: if all regional time series were
permuted in the same fashion, the estimated parameters would not change.
In case of blocked designs, this makes it possible to proceed as if one were
dealing with PET data, i.e. to partition the time series into condition-specific
sub-series and fit separate SEMs to them. These SEMs can then be compared
statistically to test for condition-specific differences in effective connectivity
(for examples, see Büchel et al. 1999; Honey et al. 2002). An alternative ap-
proach is to augment the model with bilinear terms (cf. (9)) which represent
the modulation of a given connection by experimentally controlled variables
(e.g. Büchel & Friston 1997; Rowe et al. 2002). In this case, only a single SEM
is fitted to the entire time series.
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One limitation of SEM is that one is restricted to use structural models of
relatively low complexity since models with reciprocal connections and loops
often become non-identifiable (see Bollen 1989 for details). There are heuris-
tics for dealing with complex models that use multiple fitting steps in which
different parameters are held constant while changing others (see McIntosh
et al. 1994 for an example).

6 Multivariate Autoregressive Models (MAR)

In contrast to SEM, autoregressive models explicitly address the temporal
aspect of causality in time series. They take into account the causal depen-
dence of the present on the past: each data point of a regional time series is
explained as a linear combination of past data points from the same region.
MAR models extend this approach to n brain regions, modeling the n-vector
of regional signals at time t (yt) as a linear combination of p past data vectors
whose contributions are weighted by the parameter matrices Ai:

yt =
p∑

i=1

yt−iAi + ut (12)

MAR models thus represent directed influences among a set of regions
whose causal interactions are inferred via their mutual predictability from
past time points. Although MAR is an established statistical technique, spe-
cific implementations for neuroimaging were suggested only relatively recently.
Harrison et al. (2003) suggested a MAR implementation that allowed for
the inclusion of bilinear variables representing modulatory effects of con-
textual variables on connections and used a Bayesian parameter estimation
scheme specifically developed for MAR models (Penny & Roberts 2002). This
Bayesian scheme also determined the optimal model order, i.e. the number of
past time points (p in (12)) to be considered by the model. A complementary
MAR approach, based on the idea of “Granger causality” (Granger 1969), was
proposed by Goebel et al. (2003). In this framework, given two time-series y1
and y2, y1 is considered to be caused by y2 if its dynamics can be predicted
better using past values from y1 and y2 as opposed to using past values of
y1 alone.

7 Dynamic Causal Modeling (DCM)

An important limitation of the models discussed so far is that they operate
at the level of the measured signals. Taking the example of fMRI, the model
parameters are fitted to BOLD series which result from a haemodynamic con-
volution of the underlying neural activity. Any inference about inter-regional
connectivity obtained by PPI, SEM or MAR is only an indirect one because



314 Klaas Enno Stephan and Karl J Friston

these models do not include the forward model linking neuronal activity to
the measured haemodynamic data. In the case of EEG, this forward model
means there is a big difference between signals measured at each electrode
and the underlying neuronal activity: changes in neural activity in different
brain regions lead to changes in electric potentials that superimpose linearly.
The scalp electrodes therefore record a mixture, with unknown weightings, of
potentials generated by a number of different sources.

The causal architecture of the system that we would like to identify is
expressed at the level of neuronal dynamics. Therefore, to enable inferences
about connectivity between neural units we need models that combine two
things: (i) a parsimonious but neurobiologically plausible model of neural
population dynamics, and (ii) a biophysically plausible forward model that de-
scribes the transformation from neural activity to the measured signal. Such
models make it possible to fit jointly the parameters of the neural and of
the forward model such that the predicted time series are optimally similar
to the observed time series. In principle, any of the models described above
could be combined with a modality-specific forward model, and indeed, MAR
models have previously been combined with linear forward models to explain
EEG data (Yamashita et al. 2004). So far, however, Dynamic Causal Model-
ing (DCM) is the only approach where the marriage between models of neural
dynamics and biophysical forward models is a mandatory component. DCM
has been implemented both for fMRI (Friston et al. 2003) and EEG/MEG
data (David et al. 2006; Kiebel et al. 2006). These modality-specific imple-
mentations are briefly summarized in the remainder of this section (see Fig. 2
for a conceptual overview).

),,( θuxFx =⋅
Neural state equation:

Electromagnetic
forward model:

neural activity→EEG
MEG

(linear)

Neural model:
1 state variable per region
bilinear state equation
no propagation delays

Neural model:
8 state variables per region

nonlinear state equation
propagation delays

fMRIfMRI ERPsERPs

inputs

Hemodynamic
forward model:
neural activity→BOLD
(nonlinear)

Fig. 2. A schematic overview that juxtaposes properties of DCM for fMRI and
ERPs, respectively. It illustrates that DCM combines a model of neural population
dynamics, following the generic form of (3), with a modality-specific biophysical
forward model. Given appropriate formulations of the neural and the forward model,
DCM can be applied to any kind of measurement modality
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7.1 DCM for fMRI

DCM for fMRI uses a simple model of neural dynamics in a system of n
interacting brain regions. It models the change of a neural state vector x
in time, with each region in the system being represented by a single state
variable, using the following bilinear differential equation:

dx

dt
= F (x, u, θn)

=

⎛
⎝A+

m∑
j=1

ujB
(j)

⎞
⎠x+ Cu (13)

Note that this neural state equation follows the general form for deter-
ministic system models introduced by (3), i.e. the modeled state changes are
a function of the system state itself, the inputs u and some parameters θn

that define the functional architecture and interactions among brain regions
at a neuronal level (n in θn is not an exponent but a superscript that denotes
“neural”). The neural state variables represent a summary index of neural pop-
ulation dynamics in the respective regions. The neural dynamics are driven
by experimentally controlled external inputs that can enter the model in two
different ways: they can elicit responses through direct influences on specific
regions (e.g. evoked responses in early sensory cortices; the C matrix) or they
can modulate the coupling among regions (e.g. during learning or attention;
the B matrices).

Equation (13) is a bilinear extension of (6) that was introduced earlier as
an example of linear dynamic systems. Given this bilinear form, the neural
parameters θn = {A,B,C} can be expressed as partial derivatives of F :

A =
∂F

∂x

∣∣∣∣
u=0

B(j) =
∂2F

∂x∂uj

C =
∂F

∂u

∣∣∣∣
x=0

(14)

The matrix A represents the effective connectivity among the regions in the
absence of input, the matrices B(j) encode the change in effective connectivity
induced by the jth input uj , and C embodies the strength of direct influences
of inputs on neuronal activity (see Fig. 3 for a concrete example and compare
it to Fig. 1).

DCM for fMRI combines this model of neural dynamics with an exper-
imentally validated haemodynamic model that describes the transformation
of neuronal activity into a BOLD response. This so-called “Balloon model”
was initially formulated by Buxton et al. (1998) and later extended by
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Fig. 3. A simple bilinear extension of the linear dynamic system shown in Fig. 1.
This is an example for a concrete implementation of the neural state equation of
DCM for fMRI. Note the role of the bilinear terms which model context-dependent
(additive) changes of the strengths of the connections from the right to the left
hemisphere (circled elements in the B matrix)

Friston et al. (2000). Briefly, it consists of a set of differential equations that
describe the relations between four haemodynamic state variables, using five
parameters (θh). More specifically, changes in neural activity elicit a vasodila-
tory signal that leads to increases in blood flow and subsequently to changes
in blood volume and deoxyhemoglobin content. The predicted BOLD signal is
a non-linear function of blood volume and deoxyhemoglobine content. Details
of the haemodynamic model can be found in other publications (Friston et al.
2000; Stephan et al. 2004). Figure 4 provides a conceptual overview of DCM
for fMRI.

The combined neural and haemodynamic parameter set θ = {θn, θh} is
estimated from the measured BOLD data, using a fully Bayesian approach
with empirical priors for the haemodynamic parameters and conservative
shrinkage priors for the coupling parameters. Details of the parameter esti-
mation scheme, which rests on a gradient ascent procedure embedded into an
expectation maximization (EM) algorithm and uses a Laplace (i.e. Gaussian)
approximation to the true posterior, can be found in Friston (2002). Even-
tually, the posterior distributions of the parameter estimates can be used to
test hypotheses about connection strengths. Usually, these hypotheses con-
cern context-dependent changes in coupling. If there is uncertainty about the
connectional structure of the modeled system, or if one would like to compare
competing hypotheses (represented by different DCMs), a Bayesian model
selection procedure can be used to find the DCM that exhibits an optimal
balance between model fit and model complexity (Penny et al. 2004b).
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Fig. 4. Schematic summary of DCM for fMRI. The dynamics in a system of interact-
ing neuronal populations (left panel), which are not directly observable by fMRI, are
modeled using a bilinear state equation (right panel). Integrating the state equation
gives predicted neural dynamics (x) which are transformed into predicted BOLD
responses (y) by means of a haemodynamic forward model (λ). Neural and haemo-
dynamic parameters are adjusted jointly such that the differences between predicted
and measured BOLD series are minimized. The neural dynamics are determined by
experimental manipulations that enter the model in the form of external inputs.
Driving inputs (u1; e.g. sensory stimuli) elicit local responses which are propagated
through the system according to the intrinsic connections. The strengths of these
connections can be changed by modulatory inputs (u2; e.g. changes in task, atten-
tion, or due to learning). Note that in this figure the structure of the system and
the scaling of the inputs have been chosen arbitrarily

7.2 DCM for Event-Related Potentials (ERPs)

ERPs as measured with EEG or MEG have been used for decades to study
electrophysiological correlates of cognitive operations. Nevertheless, the neu-
robiological mechanisms that underlie their generation are still largely un-
known. DCM for ERPs was developed as a biologically plausible model to
understand how event-related responses result from the dynamics in coupled
neural ensembles (David et al. 2006).

DCM for ERPs rests on a neural mass model, developed by David &
Friston (2003) as an extension of the model by Jansen & Rit (1995), which
uses established connectivity rules in hierarchical sensory systems (Felleman
& Van Essen 1992) to assemble a network of coupled cortical sources. These
rules characterize connections with respect to their laminar patterns of origin
and termination and distinguish between (i) forward (or bottom-up) connec-
tions originating in agranular layers and terminating in layer 4, (ii) backward
(or top-down) connections originating and terminating in agranular layers,
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and (iii) lateral connections originating in agranular layers and targeting all
layers. These long-range (extrinsic or inter-areal) cortico-cortical connections
are excitatory, using glutamate as neurotransmitter, and arise from pyrami-
dal cells.

Each region or source is modeled as a microcircuit following the model by
David & Friston (2003). Three neuronal subpopulations are combined in this
circuit and assigned to granular and supra-/infragranular layers. A popula-
tion of excitatory pyramidal (output) cells receives inputs from inhibitory and
excitatory populations of interneurons via intrinsic (intra-areal) connections.
Within this model, excitatory interneurons can be regarded as spiny stellate
cells found predominantly in layer 4 and in receipt of forward connections.
Excitatory pyramidal cells and inhibitory interneurons are considered to oc-
cupy infra- and supragranular layers and receive backward and lateral inputs
(see Fig. 5).

The neural state equations are summarized in Fig. 5. To perturb the sys-
tem and model event-related responses, the network receives inputs via input
connections. These connections are exactly the same as forward connections
and deliver input u to the spiny stellate cells in layer 4. Input u represents
afferent activity relayed by subcortical structures and are modelled as two
parameterized components, a gamma density function (representing an event-
related burst of input that is delayed and dispersed by subcortical synapses
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Fig. 5. Schematic of the neural model in DCM for ERPs. This schema shows the
state equations describing the dynamics of a microcircuit representing an individual
region (source). Each region contains three subpopulations (pyramidal, spiny stel-
late and inhibitory interneurons) that are linked by intrinsic connections and have
been assigned to supragranular, granular and infragranular cortical layers. Different
regions are coupled through extrinsic (long-range) excitatory connections that follow
the laminar patterns of forward, backward and lateral connections, respectively
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and axonal conduction) and a discrete cosine set (representing fluctuations in
input over peristimulus time). The influence of this input on each source is
controlled by a parameter vector C (see David et al. 2006 for details). Overall,
the DCM is specified in terms of the state equations shown in Fig. 5 and a
linear output equation

dx

dt
= f(x, u, θ)

y = Lx0 + ε (15)

where x0 represents the transmembrane potential of pyramidal cells and L
is a lead field matrix coupling electrical sources to the EEG channels (Kiebel
et al. 2006). In comparison to DCM for fMRI, the forward model is a simple
linearity as opposed to the nonlinear haemodynamic model in DCM for fMRI.
In contrast, the state equations of DCM for ERPs are much more complex
and realistic (cf. Fig. 5). As an example, the state equation for the inhibitory
subpopulation is

dx7

dt
= x8

dx8

dt
=
He

τe
((AB +AL + γ3I)S(x0))− 2x8

τe
− x7

τ2
e

(16)

The parameter matrices AF , AB , AL encode forward, backward and lateral
connections respectively. Within each subpopulation, the dynamics of neural
states are determined by two operators. The first transforms the average den-
sity of presynaptic inputs into the average postsynaptic membrane potential.
This is modeled by a linear transformation with excitatory (e) and inhibitory
(i) kernels parameterized by He,i and τe,i. He,i control the maximum postsy-
naptic potential and τe,i represent lumped rate constants (i.e. lumped across
dendritic spines and the dendritic tree). The second operator S transforms
the average potential of each subpopulation into an average firing rate. This
is assumed to be instantaneous and is a sigmoid function. Intra-areal inter-
actions among the subpopulations depend on constants γ1...4 which control
the strength of intrinsic connections and reflect the total number of synapses
expressed by each subpopulation. In (16), the top line expresses the rate of
change of voltage as a function of current. The second line specifies how cur-
rent changes as a function of voltage, current and presynaptic input from
extrinsic and intrinsic sources. For simplification, our description here has
omitted the fact that in DCM for ERPs all intra- and inter-areal connections
have conduction delays. This requires the use of delay differential equations
(see David et al. 2006 for details).

For estimating the parameters from empirical data, a fully Bayesian ap-
proach is used that is analogous to that used in DCM for fMRI and is
described in detail by David et al. (2006). The posterior distributions of
the parameter estimates can be used to test hypotheses about the modeled
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processes, particularly differences in inter-areal connection strengths between
different trial types. As in DCM for fMRI, Bayesian model selection can be
used to optimize model structure or compare competing scientific hypotheses
(Penny et al. 2004b).

8 Application of System Models in Functional
Neuroimaging: Present and Future

Models of functional integration, which were originally developed for electro-
physiological data from multi-unit recordings (Gerstein and Perkel 1968), are
now taking an increasingly prominent role in functional neuroimaging. This
is because the emphasis of the scientific questions in cognitive neuroscience
is shifting from where particular processes are happening in the brain to how
these processes are implemented. With increasing use, a word of caution may
be appropriate here: Models of effective connectivity are not very useful with-
out precise a priori hypotheses about specific mechanisms expressed at the
level of inter-regional coupling. Simply describing patterns of connectivity that
require post hoc interpretation does not lead to a mechanistic understanding
of the system of interest. What is needed are parsimonious, well-motivated
models that test precise hypotheses about mechanisms, either in terms of
changes in particular connection strengths as a function of experimental con-
dition, time (learning) or drug, or in terms of comparing alternative expla-
nations by model selection (for examples, see Büchel & Friston 1997; Büchel
et al. 1999; Honey et al. 2003; McIntosh et al. 1994, 1998; Rowe et al. 2002;
Stephan et al. 2003, 2005; Toni et al. 2002). Figure 6 shows an example of
such a model (Friston et al. 2003) where the parameters are mechanistically
meaningful.

This search for mechanisms seems particularly promising for pharmaco-
logical questions. Since many drugs used in psychiatry and neurology change
synaptic transmission and thus functional coupling between neurons, their
therapeutic effects cannot be fully understood without models of drug-induced
connectivity changes in particular neural systems. So far, only relatively few
studies have studied pharmacologically induced changes in connectivity, rang-
ing from simple analyses of functional connectivity (e.g. Stephan et al. 2001a)
to proper system models (e.g. Honey et al. 2003). As highlighted in a re-
cent review by Honey and Bullmore (2004), an exciting possibility for the
future is to use system models at the early stage of drug development to
screen for substances that induce desired changes of connectivity in neural
systems of interest with a reasonably well understood physiology. The success
of this approach will partially depend on developing models that include ad-
ditional levels of biological detail (e.g. effects of different neurotransmitters
and receptor types) while being parsimonious enough to ensure mathematical
identifiability and physiological interpretability; see Breakspear et al. (2003),
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Fig. 6. DCM analysis of a single subject fMRI data from a study of attention to
visual motion in which subjects viewed identical stimuli (radially moving dots) un-
der different levels of attention to the stimuli (Büchel & Friston 1997). The model
was introduced and described in detail by Friston et al. (2003). The figure is repro-
duced (with permission from Elsevier Ltd.) from Stephan et al. (2004). Only those
conditional estimates are shown alongside their connections for which there was at
least 90% confidence that they corresponded to neural transients with a half life
shorter than 4 seconds. The temporal structure of the inputs is shown by box-car
plots. Dashed arrows connecting regions represent significant bilinear affects in the
absence of a significant intrinsic coupling. Fitted responses based upon the condi-
tional estimates and the adjusted data are shown in the panels connected to the
areas by dotted lines. The important parameters here are the bilinear ones. Note
that while the intrinsic connectivity between areas V1 and V5 is non-significant and
basically zero, motion stimuli drastically increase the strength of this connection,
“gating” V1 input to V5. Top-down effects of attention are represented by the mod-
ulation of backward connections from the inferior frontal gyrus (IFG) to the superior
parietal cortex (SPC) and from SPC to V5. See Penny et al. (2004b) and Stephan
(2004) for a discussion how different neurophysiological mechanisms can be modeled
with DCM

Harrison et al. (2005), Jirsa (2004) and Robinson et al. (2001) for examples
that move in this direction.

Another important goal is to explore the utility of models of effective con-
nectivity as diagnostic tools (Stephan 2004). This seems particularly attractive
for psychiatric diseases whose phenotypes are often very heterogeneous and
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where a lack of focal brain pathologies points to abnormal connectivity
(dysconnectivity) as the cause of the illness. Given a pathophysiological theory
of a specific disease, connectivity models might allow one to define an en-
dophenotype of that disease, i.e. a biological marker at intermediate levels
between genome and behaviour, which enables a more precise and physio-
logically motivated categorization of patients (Gottesman & Gould 2003).
Such an approach has received particular attention in the field of schizophre-
nia research where a recent focus has been on abnormal synaptic plasticity
leading to dysconnectivity in neural systems concerned with emotional and
perceptual learning (Friston 1998; Stephan et al. 2006). A major challenge
will be to establish neural systems models which are sensitive enough that
their connectivity parameters can be used reliably for diagnostic classification
and treatment response prediction of individual patients. Ideally, such models
should be used in conjunction with paradigms that are minimally dependent
on patient compliance and are not confounded by factors like attention or
performance. Given established validity and sufficient sensitivity and speci-
ficity of such a model, one could use it in analogy to biochemical tests in
internal medicine, i.e. to compare a particular model parameter (or combina-
tions thereof) against a reference distribution derived from a healthy popula-
tion (Stephan et al. 2006). Such procedures could help to decompose current
psychiatric entities like schizophrenia into more well-defined subgroups char-
acterized by common pathophysiological mechanisms and may facilitate the
search for genetic underpinnings.
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