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The fluid nature of perceptual experience and the transient repetition of pat-
terns in neurophysiological data attest to the dynamical character of neural
activity. An approach to neuroscience that starts from this premise holds the
potential to unite neuronal connectivity and brain activity by treating space
and time in the same framework. That is the philosophy of this chapter. Our
goals are threefold: Firstly, we discuss the formalism that is at the heart of
all dynamical sciences, namely the evolution equation. Such an expression ties
the temporal unfolding of a system to its physical properties and is typically
a differential equation. The form of this equation depends on whether time
and space are treated as continuous or discrete entities. Secondly, we aim to
motivate, illustrate and provide definitions for the language of dynamical sys-
tems theory - that is, the theoretical framework that integrates analysis and
geometry, hence permitting the qualitative understanding and quantitative
analysis of evolution equations. To this end we provide a mini-encyclopedia
of the basic terms of phase space analysis and a description of the basic
bifurcations of dynamics systems. Our third aim is to provide a survey of single
neuron and network models from a historical and pedagogical perspective.
Here we first trace microscopic models from their birth in the 1950’s showing
how the neuronal firing properties can be understood as a bifurcation in the
underlying phase space. Then we review the spatiotemporal network dynam-
ics, which emerges as a function of the networks anatomical connectivity.

Introduction: Dynamics and the Brain

The firing of a neuron subsequent to an increase in synaptic input is a crucial
neuronal event that is best understood from a dynamic system perspective.
Whilst statistical techniques are crucial to the detection of synchrony and
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change in neuroscience data, the study of dynamics uniquely permits an un-
derstanding of their causes. “Evolution” equations – which embody a system’s
dynamics - form the basis of all major theories in the physical sciences, from
Newton’s F = ma to Schrödinger’s wave equation and Maxwell’s electromag-
netic theory. There is no reason to believe that mathematical formalisms of
neuronal dynamics won’t eventually underpin and unify neuroscience. Indeed,
over recent decades, dynamical formulations of brain activity have become
sufficiently advanced to give rough outline to a “unified theory of brain dy-
namics”. Such a theory will also inform studies of brain connectivity.

What is the origin of the brain’s dynamic character? During the 20th

century, extraordinary progress was made in elucidating basic neurophysio-
logical processes and their role in neural phenomena such as neuronal firing
and action potential propagation. Incorporating these processes into a set
of evolution equations yielded quantitatively accurate spikes and thresholds,
leading to the Nobel prize for Hodgkin and Huxley. These equations are based
upon the physical properties of cell membranes and the ion currents passing
through transmembrane proteins. Extending this theory from a patch of cell
membrane to whole neurons and thence to populations of neurons in order
to predict macroscopic signals such as the electroencephalogram (EEG) is a
dominant focus in this field today. Linking neuronal dynamics to theories of
cognition also remains a major goal.

Dynamics has a spatial as well as a temporal character and this makes it
relevant to the subject of this handbook, brain connectivity. It can be argued
that all forms of information processing in neuronal systems can be understood
as particular types of spatiotemporal dynamics and their bifurcations. With
this in mind, our primary objective is to provide a “ground-up” overview of
the dynamical approach to neuroscience. We also aim to overview some of the
recent developments in this field, such as those that establish a link between
statistics and dynamics and proposals that provide putative network-based
cognitive mechanisms with a biophysical underpinning. Attempts to employ
dynamics to unify neurophysiological phenomena are also covered. Section 4,
dealing with macroscopic spatiotemporal dynamics, implicitly incorporates
connectivity by way of its joint treatment of space and time.

Section 1 provides an overview of the central concept of dynamics - the
“evolution equation” - and reviews the variety of forms that it can assume.
In Sect. 2, we overview the mathematical concepts required to understand
the behavior of such equations, with an emphasis on a geometric approach.
In doing so, we also show how many of the stochastic approaches more fa-
miliar to neuroscientists are specific forms of dynamical systems when they
satisfy certain stability conditions. In Sect. 3, we provide a taxonomy of key
neuronal models – that is, particular forms of neuronal evolution equations,
with an emphasis on small scale systems. Section 4 then focuses on large scale
neuronal dynamics. We argue that there is a one-to-one relationship between
modes of information processing in neuronal systems and their spatiotemporal
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dynamics. Likewise, changes between such forms correspond directly with
changes in the dynamics, mediated by a bifurcation or similar mechanism.
The chapter concludes in Sect. 5 with some of the exciting recent develop-
ments in the field of neuronal dynamics and their putative links to other “hot
topics” in neuroscience.

1 Evolution Equations: How to Make
a Dynamical System

Evolution equations lie at the heart of dynamics. They state how a set of dy-
namical variables change in accordance with the underlying properties of the
system they characterize. The most famous example of an evolution equation
is Newton’s “second law of mechanics” which describes the acceleration of an
object as F = ma. More technically this is written as,

dv (t)
dt

=
F
m
,

dx(t)
dt

= v (t) (1)

where v(t) is the velocity of an object at position x(t). The left hand sides
(LHSs) of these equations express the temporal derivative – the rate of change
of a variable. The right hand sides (RHSs) link these changes to the properties
of the system. The goal of calculus is to understand the resulting evolution of
these variables as a function of time. In (1), it is possible to find an explicit
solution for the evolution of x in terms of time,

x(t) = x(0) + v (0) t+
Ft2

2m
, (2)

where x(0) and v(0) are the ‘initial conditions’ of x and v. Equation (2)
allows us to know the exact future position of an object given its current state
and any applied constant force. We can see that as time increases the RHS of
(2) will be dominated by the quadratic term, t2 so that an object subject to a
constant force will be increasingly rapidly displaced. In more complex systems,
as encountered in neuroscience, such explicit closed form solutions generally
cannot be found. Moreover, their approximations are typically so cumbersome
that understanding the nature of the dynamics from such algebraic equations
is not straightforward. However, one may gain a deep understanding of the
nature of a system’s dynamics without relying only on algebraic solutions.
This can be achieved through the geometric approach to dynamical systems,
outlined in Sect. 2, which unifies algebraic analysis and topology.

The essential requirements for an evolution equation are a set of evolving
variables which we denote Z(x, t) and a set of system parameters denoted
a. The former represent the current states of properties such as transmem-
brane potentials, neuronal firing rates, extracellular field potentials, as they
vary in time t and position x. The parameters a are those properties which
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can be considered as static or change very slowly in comparison to the dy-
namical variables Z. Nernst potentials, conduction velocities and ion channel
time constants are typical neural parameters. All of these variables are then
combined with a “differential operator” – which introduces the crucial factor
of change – and an algebraic expression – which determines how this change
relates to the properties of the system – to form an evolution equation.

We now progress through the various forms that such equations can as-
sume, from the simplest to the more complex. Exemplar neuronal models of
each system are given in Sect. 3. Further suggested reading is provided where
appropriate.

1.1 Difference Maps: Discrete Time and Discrete Space

The simplest form of determining the future state of a dynamical system from
its present state is through a difference map,

Z (t+ 1) = Fa [Z (t)] , (3)

where t runs discretely as 0,1,2,. . . Note that the subscript a denotes the
parameterization of F. The so-called “logistic” equation,

Fa [Z (t)] = aZ(1− Z), (4)

is a very well-known one-dimensional (scalar) example of a difference equa-
tion. The evolution of this relatively simple (quadratic) nonlinear equation is
illustrated in Fig. 1.

The logistic map, and other simple algebraic forms, has been used exten-
sively to elucidate basic, generic properties of nonlinear dynamics (Collet &
Eckmann 1980, Cvitanovic 1984). They can exhibit a rich complexity even
when the algebraic equations are simple as in (4). Examples of their use in-
clude elucidating the fundamental principles of chaotic dynamics (Gucken-
heimer 1987) and the transition from regular to chaotic motions (Feigenbaum

Fig. 1. (a) Logistic equation (4) with a = 1.64. (b) Resulting chaotic time series.
Maps of this type have been used to study the basic properties of nonlinear systems.
They have a less extensive role in modeling neural systems



Neuronal Dynamics and Brain Connectivity 7

1987). These concepts are discussed and illustrated in Sect. 2, below. An ex-
cellent introduction to this fascinating field is given by Baker & Gollub (1990).

The spatiotemporal properties of nonlinear dynamics can also be studied
within this framework, through the use of coupled difference maps,

Z (xi, t+ 1) = Fa

⎛
⎝Z (xi, t) ,

∑
j �=i

Hc [Z (xj , t)]

⎞
⎠ (5)

where xi denotes the spatial position of the i-th subsystem. The “coupling
function” Hc introduces the activity from all other nodes into the dynamics
of this node. The subscript c denotes the strength of the coupling influence
and is traditionally normalized so that 0 ≤ c ≤ 1. Hence, if F embodies local
neural dynamics, H incorporates the spatial characteristics of synaptic con-
nectivity. Just as autonomous difference maps can be used to elucidate basic
dynamical principles, coupled difference maps permit an understanding of the
fundamentals of dynamic synchronization (Maistrenko et al. 1998). Often the
influence of the local versus global dynamics can be linearly partitioned as,

Z (xi, t+ 1) = Fa [Z (xi, t)] +
∑
j �=i

Hc [Z (xj , t)]. (6)

A fascinating, early example of a coupled difference-map neural model is
that of McCulloch & Pitts (1943) which we discuss in Sect. 3. However, be-
cause of the discrete nature of time in difference maps, and the fact that their
study has been characterized by using very basic algebraic expressions, they
rarely figure in biophysical models of neural systems. On the other hand, they
have been used extensively to study the basic properties of high dimensional
nonlinear dynamics (Kaneko 1997), including the onset of synchronization
amongst two or more subsystems (Ashwin et al 1997). Put another way, they
are mathematically pleasing because they permit an analytic understanding of
the universal principles of dynamics and synchronization, but limited in their
value to neuroscientists because their simplicity prohibits one from identify-
ing the relative contribution of particular physiological processes to specific
dynamical behaviors.

1.2 Ordinary Differential Equations: Continuous Time
and Discrete Space

One obvious step towards physiological realism is to make time continuous!
This can be achieved by exploring neural systems, whose evolution is governed
by an ordinary differential equation (ODE),

dZ (t)
dt

= Fa [Z (t)] . (7)

where as above Z(t) is a set of dynamical variables. This is the form of
equation for most traditional neuronal models such as the Hodgkin Huxley
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model in which case Z1 = V is the transmembrane potential and F takes the
form,

Fa [V (t)] =
∑
ion

fion [V (t)] + I. (8)

The summation on the RHS is taken over all ion channels. For each ion
species

dfion (t)
dt

= gion [V (t)] (9)

represents the dynamics of the local voltage-dependent channel currents
for each ion species. I represents synaptic currents which flow through
ligand-gated channels or via an experimentally introduced electrode. As with
difference equations, spatiotemporal dynamics are achieved by employing a
coupling function Hc to introduce interdependence between systems,

dZ (xi, t)
dt

= Fa

⎛
⎝Z (xi, t) ,

∑
j �=i

Hc [Z (xj , t)]

⎞
⎠ . (10)

Hence, if (8) models the dynamics of a single neural system, (10) adds the
interaction between two or more systems, creating a dynamic neural network.
The ensemble is spatially discrete with a finite numberN of subsystems so that
the subscript indices i, j = 1, 2, . . ., N . As with coupled difference equations,
it is often possible to bipartition the influence of the local and distant terms
in (10) as

dZ (xi, t)
dt

= Fa (Z (xi, t)) +
∑
j �=i

Hc [Z (xj , t)]. (11)

Such is the case when local recurrent axons and long-range afferents each
project onto separate classes of neurons. In this case the long-range afferents
are modeled as acting, through ligand-gated ion channels, via the synaptic
currents. Hence,

dZ (xi, t)
dt

=
∑
ion

fion [Z (xi, t)] + I (xi, t) , (12)

where the induced synaptic currents,

I (xi, t) =
∑

j

Hc [Z (xj , t− τj)] + Iexternal, (13)

introduce the afferent inputs from other systems Z(xj , t) that arrive after
a time delay τj - permitting finite speed axonal conduction. Because space is
discrete, the time delays are also discretely distributed. Differential equations
with time delays are treated thoroughly in the Chapter by Campbell. We only
introduce them here because they are important in the conceptual transition
from discrete to continuous space to which we now turn. A review of neuronal
synchrony as modeled by coupled ODE’s is provided by Breakspear (2004).
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1.3 Integrodifferential Equations: Continuous Time
and Continuous Space

In the case where we wish to model the inputs to region xi arising from a
continuously distributed neuronal ensemble, we integrate the afferent induced
currents (13) continuously over space,

I (xi, t) =
∫

Ω

t∫

−∞
h (x− x′) H [Z (x− x′, t− t′)] dt′dx′, (14)

where the spatial integration dx’ is taken over the spatial domain Ω of
the neural system. Note that this also requires that we integrate over the
(now) continuously distributed time delays, t′. We have also partitioned the
coupling function into two parts, H and h. H determines which variables from
any given system enter into the inter-system coupling, and how they do so.
Typically H itself has two components, an “activation” function that converts
local membrane potentials of the distant systems into firing rates ρ - which
then propagate outwards - and synaptic kernels η which model how these
propagating action potentials influence post-synaptic potentials as they arrive,

H [Z (x, t)] = η (t) ρ (Z (x, t)) (15)

Specific forms of η and ρ are provided in Sect. 4. The coupling function h
captures the spatial dependency of the strength of the afferent inputs. This
function is also known as the ‘synaptic footprint’ (Coombes 2003) because it
reflects the nature and density of synaptic connections as they change with
the distance from their origin. Substituting the synaptic inputs (14) into the
differential (12) and collapsing all local contributions into

N [Z (x, t)] =
∑
ion

fion [Z (x, t)] (16)

we obtain

dZ (x, t)
dt

= N(Z (x, t)) +
∫

Ω

t∫

−∞
h (x− x′) H (Z (x− x′, t− t′)) dt′dx′, (17)

an integrodifferential equation. It may be considered a general form of a
neural mass model because the exact nature of the synaptic “footprint”, the
activation function and the synaptic kernels remain unspecified. For example
within this framework, it would be possible to use the precise form of the lat-
eral inhibition that has been shown to allow sensory networks to be inherently
tuned to particular spatial frequencies (Ratliff et al. 1969).
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1.4 Partial Differential Equations: Continuous Time
and Continuous Space but Constrained Connectivity

In some contexts, it may be preferable to express (17) with spatial and tempo-
ral derivatives only - rather than a combination of temporal derivatives with
spatial and temporal integrations. Such differential representation is useful if
the connectivity function h is sufficiently simple, smooth and translationally
invariant, because then only a few spatial derivatives are needed to capture
the connectivity. For example, given appropriate forms of h and H (see sect. 4)
(17) can be rewritten as a partial differential equation of the form,

∂2Z (x, t)
∂2t

+ a
∂Z (x, t)

∂t
+ b

∂2Z (x, t)
∂2x

+ cZ (x, t) = (d+
∂

∂t
)ρ (Z (x, t)) (18)

The coefficients a, b, c and d depend on system parameters such as con-
duction velocities and the synaptic footprint parameter σ. Such an equation,
expressing the evolution of neuronal systems, continuously in space and time,
but with specific types of connectivity was first derived for macroscopic neu-
ronal dynamics by Jirsa and Haken (1996, 1997) and Robinson et al. (1997).
Pioneering work that led to this formulation started as early as the 1970s
(Wilson 1973, Wilson & Cowan 1973, Nunez 1974, van Rotterdam et al. 1982).
Comparing (11) and (18) we see that in the former, spatial coupling is in-
troduced explicitly through the second term on the right hand side. In the
latter, space enters the temporal dynamics through the (second order) spatial
derivative on the left hand side. However, under certain conditions these two
approaches can be equivalent.

1.5 Stochastic Differential Equations

All of the equations above capture the dynamical evolution of each of the
values Z of the system of interest. In the case of a microscopic system, these
variables may include transmembrane potential and ion channel conductance
of a small patch of cell membrane. Evolution equations, such as (11) and (18)
may also describe neural systems in the mesoscopic (<mm) and even macro-
scopic (∼cm) scales. In such cases, the variables of interest represent mean
values averaged over the appropriate scales. Such equations are hence known
as mean field approximations. Before proceeding further, it is worth describ-
ing evolution equations which capture the dynamics for the entire probability
distributions p(x, t) rather than just the mean. Such models allow for stochas-
tic inputs to a system which nonetheless obeys deterministic rules. They take
the form,

∂p (x, t)
∂t

=
∂ ((f + s) p (x, t))

∂x
+
w2

2
∂2p

∂x2
(19)

where s represents the (stochastic) inputs to the system and f is the form
of the deterministic dynamics. As described in Harrison et al. (2005), the first
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term of the RHS describes the evolution of the probability distribution under
the influence of the inputs s and the nature of the physiological system f . The
second term describes the tendency of the distribution to disperse under the
influence of the stochastic elements at rate w.

Whereas (11) and (18) are mean field equations, (19) is an example of a
broader class of “neural field” equations, capturing the evolution of the entire
probability distribution. There are a number of intriguing reasons to generalize
neural evolution equations from mean field formulations to capture the evolu-
tion of the entire distributions. For example, consider two neural populations
with the same mean membrane potentials, but where the second population
has a larger variance. If the mean potential is below the threshold for firing,
this difference in variance will imply that a greater proportion of neurons in
the second population will be supra-threshold and hence firing (Fig. 2). These
neurons, through local feedback, will in turn have a greater effect on the lo-
cal mean membrane potential, driving it upwards or downwards – depending
on whether the local feedback is excitatory or inhibitory. Put alternatively,
modeling the entire distribution rather than just the mean permits the higher
order moments of the neural states to interact (Harrison et al. 2005).

Solutions to (19) are possible only in very restricted cases. The develop-
ment of numerical techniques – required to gain important insights into the
dynamics – is a very active area of research. One important method in this
vein relies upon a “modal decomposition”, whereby the entire distribution
is truncated to a few low order modes. The very restricted case, reducing
such an equation to the first moment – the mean – returns us to the mean
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Fig. 2. Two different distributions of neural membrane potentials, with the same
mean states, will in general have different mean firing rates (arbitrary units)
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field formulations discussed above. In situations where higher order moments
of the distribution (variance, kurtosis etc) are retained, the possibility exists
for deep, but tractable representations of complex neuronal dynamics. Hence
interactions between stochastic and deterministic processes, as embodied in
(19) can be formally studied.

2 The Geometry of Dynamics: A Mini-Encyclopedia
of Terms

In this section, we step back from a consideration of the forms that evolution
equations can take and overview the crucial geometrical means of understand-
ing them.

2.1 Basic Dynamical Concepts

As mentioned in the Introduction, nonlinear differential equations can be noto-
riously intractable with regards to exact analytic solutions. However, a thor-
ough understanding of their dynamics is very often possible by combining
analysis and geometry. In this Section, we provide the central defining terms
through the exploration of some simple dynamical systems. In interests of
brevity we have sought to explain the intuitive meaning of the terms, keeping
technical definitions to a minimum. Most of these terms are given more for-
mal definitions in standard dynamical systems textbooks (e.g. Strogatz 1994).
Illustrated examples of all terms follow in subsequent sections.

For any study of geometry, we require a space in which to embed our
objects of study. For evolution equations, a manifold fulfills this purpose.
Put simply, a manifold is a space which can be locally stretched or deformed
into a Euclidean space whilst having a variety of global shapes. Hence the local
structure sustains the intuitive meaning of terms such as a neighbourhood
(a ball of small radius) which are crucial for issues requiring a “distance”, well
defined for Euclidean space. The global structure of a manifold, on the other
hand, can be quite complicated, and may be ‘bounded’ (like the unit interval)
or ‘unbounded’ (like the Euclidean plane), ‘simply connected’ (like a sphere)
or not simply connected (like a torus). A differentiable manifold has the
additional properties required to support differentiation. The planar surface,
a torus and a sphere are differentiable manifolds. Although the properties of
these spaces may seem trivial, a formal definition of a differentiable manifold
must be able to support quite general dynamical systems. For example, the
manifold of a partial differential equation has infinite dimension!

A phase space is a differentiable manifold whose axes are spanned by
the dynamical variables Z = {Z1, Z2, Z3, . . . } of an evolution equation. The
topology (“shape”) of the phase space is chosen to match the properties of
these variables. For example, the plane (R×R) is a suitable phase space for a
system with two membrane potentials. For a system where the two variables



Neuronal Dynamics and Brain Connectivity 13

are phases varying between 0 and 2π, the torus (S × S) is preferable because
of the periodic nature of the boundaries.

We can think of a point in phase space as the instantaneous state Z(t) of
our system. If we substitute this state into our evolution equation, we would
get the instantaneous rate of change of the system dZ(t)/dt when in that state.
This defines a tangent vector in the phase space, telling us how the system
will evolve into its next state Z(t’). This critical step – of linking dynamics to
geometry – is captured by the vector field , a directed flow through a phase
space which embodies the evolution equation. More technically, a vector field
assigns a vector to every point in phase space which is precisely the solution
of the evolution equation at that point. Hence these vectors capture both
the rate and direction of change of the system. For example, the vector field
corresponding to the trivial one-dimensional equation dx/dt = −x is just the
set of all vectors of length x pointing towards the origin. The vector field at
x = 1 is a vector of length 1 directed towards the origin.

-1 10
x

In this way the algebra of the evolution equations and the analysis methods
of geometry are linked (Vector fields are often represented as arrows overlaid
on the phase space but more technically they are defined on a related space
called the tangent bundle). An orbit or trajectory is a connected path
through phase space which is always tangent to the vector field. Hence an
orbit traces the time-dependent solution to a dynamical system through a
succession of instantaneous states. It captures the manner in which a system
will change according to the evolution equation. The starting point of such an
orbit is called its initial condition . Examples are given in Fig. 3.

dz1
dt

= z2 ,
dz2
dt

= μ
(
1− z2

1

)
z2 − z1 . (20)

A time series of this system for μ = 2, showing the periodic nature of the
oscillations, is given in Fig. 4(a). A single orbit, commencing with an initial
condition in close proximity to the origin is shown in the planar phase space
spanned by z1 and z2 in Fig. 4(b). It can be seen that this orbit diverges rapidly
away from the origin and towards a closed loop in phase space, corresponding
to the appearance of periodic oscillations in the time series. The appearance
of periodic oscillations in the system motivates us to consider an alternative
phase space representation, achieved by a change of coordinates to amplitude
A and phase θ,

A =
√
z2
1 + z2

2 , φ = arctan
(
z2/z1

)
. (21)
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Fig. 3. Example of a time series (left hand panel) of three variables Z =
{Z1, Z2, Z3, . . . } of a dynamical system briefly evolving along an orbit in phase
space (right hand panel). The diamond represents the initial condition and the
arrows represent tangent vectors in phase space

Such a cylindrical manifold, whose periodic boundary conditions embody
the nature of the oscillatory dynamics, is shown in Fig. 4c. The convergence
of the orbits shown in panels (b) and (c) onto the closed loop, on which they
then remain, motivates the concept of an invariant set of the dynamics.
Intuitively, this is simply a set of points (e.g. single point, closed loop, etc.) in
which orbits remain once they enter. More formally if F represents the flow of
a dynamical system then an invariant set A satisfies F(A) ⊆ A. The Van der
Pol system in Fig. 4 has two invariant sets, one at the origin and the closed
loop as shown. A variety of other orbits, from distinct initial conditions, are
shown in panel (d). In each case, the orbits approach the limit cycle.

This simple observation motivates the crucial concept of an attractor , a
bounded (i.e. finite) invariant set which is approached by the orbits from a
“large set” of initial conditions. Traditionally, a large set implied an “open
neighborhood” of the attractor. More recently the concept of an attractor has
been generalized to mean any set with a non-zero probability measure (Milnor
1985) meaning that there is a (possibly very small but still non-zero) chance
that an orbit from a randomly chosen initial condition will flow onto the
attractor. On the other hand, there may be initial conditions arbitrarily close
to the attractor that nonetheless flow elsewhere. This distinction is important
in the setting of synchronization (Ashwin & Terry 2000) and we explore it
further below.

We have hence seen fixed point and limit cycle attractors. A chaotic
attractor has already been illustrated for the logistic equation in Fig. 1. In
comparison to a limit cycle which endlessly repeats its prior states, a chaotic
attractor never repeats a state although is nonetheless bounded and invariant.
More formally, a chaotic attractor exhibits sensitive dependence to initial
conditions – that is any two orbits, no matter how close initially - diverge at
an exponential rate. This rate of divergence is captured by the largest char-
acteristic exponent , which is positive for a chaotic attractor. In contrast,
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Fig. 4. Van der Pol oscillator for μ = 2. (a) Time series. (b) Phase space portrait
representation of a single orbit and its approach toward a limit cycle attractor.
Arrows show representative vector field. (c) Representation of the same orbit on a
cylindrical manifold spanned by the polar coordinates A(t) and θ(t). (d) A set of
distinct initial conditions flowing toward the limit cycle attractor (black)

two such points will stay forever close if on or near a limit cycle attractor (the
largest characteristic exponent is zero). Two such points in the vicinity of a
fixed point attractor will invariably get closer (the largest characteristic expo-
nent is negative). A chaotic attractor is also topologically mixing – i.e. any
given open set covering any region of the attractor will eventually overlap with
any other region. The unceasing divergence of nearby orbits and the eventual
mixing of regions combine to enable a chaotic attractor to be both unstable
and bounded. We revisit chaos in the setting of specific neuronal models in
Sect. 3.

An attractor’s basin of attraction is the set of all initial conditions
which have the attractor as their future state. In the present case, the basin of
attraction for the loop is the entire plane, except for the origin. The inset of an
attractor is that part of the basin of attraction with the strongest (principle)
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direction of attraction. A repellor is an invariant set that is the past state of
a large set of points, its basin of repulsion . The outset of a repellor is the
subspace of this basin which diverges most quickly. In the present case, the
origin is a repellor and its basin of repulsion is all the points within the loop.

If time was reversed in (20), the origin would become an attractor and
points within the loop would be its basin of attractions. Points outside the
limit cycle would diverge towards infinity. Hence the loop would be an example
of a basin boundary or seperatrix . Basin boundaries can be repellers (as in
the case here) or saddles which have an inset and an outset. A trivial example
of a saddle is the origin in the system,

dz1
dt

= a1z1 + b1
dz2
dt

= a2z2 + b2 (22)

where, for a1 = 1, a2 = −1 and b1 = b2 = 0 the z1-axis is the inset and
the z2-axis is the outset (Fig. 5).

Occasionally, the outset from a repellor becomes the inset of an attractor.
Such an entity, linking two fixed points, is called a heterocline . For a saddle,
it is possible that the outset becomes the inset (due to curvature away from
the saddle point). If so, it is called a homocline .

Two final concepts are required before we move onto more complex mat-
ters. An attractor possesses structural stability if it is insensitive to a small
change in the nature of the vector field, corresponding to a small change in
the evolution equation. “Insensitivity” here denotes that there exists a smooth
mapping between the perturbed attractor and the original attractor. When
such a mapping exists we say the two (original and perturbed) attractors are
topologically conjugate . The saddle point in Fig. 5 is structurally stable
following changes in either the parameters a (under a stretching and/or con-
traction) and/or the parameters b (under a translation). Similarly the Van der
Pol attractor in Fig. 4 is structurally stable since small changes to any of the
parameters results in another (topologically conjugate) limit cycle attractor.

The nullclines of a dynamical system are the curves in phase space, for
which one derivative in the evolution equation is equal to zero, and hence cor-
respond to the regimes in phase space with zero flow in a particular direction.

z1

z2

Fig. 5. Saddle point and orbits of (22)
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z1

z2

Fig. 6. Nullclines of the Van der Pol system. Arrows show direction of the vector
field across the nullclines. The fixed point lies at the intersection of the two mullclines
(in blue and black). The trajectory is shown in red

The two nullclines to the Van der Pol equation (20) are depicted in Fig. 6.
The blue line shows the nullcline for zero flow in the z1 direction and the
black shows the curve for z2. The limit cycle trajectory satisfies these condi-
tions as it crosses the respective curves – that is, the dz1/dt = 0 when the
attractor (red curve) crosses the blue nullcline. By definition, any crossing of
two nullclines corresponds to the existence and location of a fixed point since
dz1/dt =dz2/dt = 0.

The nullclines form the “skeleton” of the phase space and, as we explore
below, their intersections are vital to the existence and nature of most attrac-
tors, not just fixed points.

2.2 Bifurcations and Complex Dynamics

The preceding discussion captures the nature of phase space dynamics and
its relationship to the evolution equations for a given set of parameter values
(i.e. when the vector field is kept constant). An intriguing and important field
of study concerns what happens to the attractors and basin boundaries follow-
ing a change to the system’s parameters and hence to the vector field. From
above it follows that if all the attractors are structurally stable, then the effect
of such a change can be considered trivial since the dynamics will remain quali-
tatively similar (and typically also quantitatively similar). However, in the case
when this is not so, sudden and dramatic changes in the dynamics, denoted
bifurcations, occur. Examples abound in neuroscience, such as the genera-
tion of an action potential, the onset of bursting (Izhikevich 2005) and even
the onset (Robinson et al. 2002, Lopes da Silva et al. 2003, Breakspear et al.
2006) and temporal progression (Rodriguez et al. 2006) of an epileptic seizure.

An important means of understanding the nature of a system’s bifurca-
tions is through the study of its bifurcation diagram . This is produced by
smoothly varying one parameter over some range of interest whilst keeping
all other parameters fixed. Hence the vector field is smoothly changed in one
dimension of parameter space. At each parameter value, the system is inte-
grated and, after passage of an initial transient – allowing for the system to
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evolve towards its attractor(s) – the asymptotic time series is captured. From
this time series, the values of all local minima and maxima are stored. For a
fixed point there will exist only one such value. For a simple (period-1) limit
cycle there will exist two such points and for a period-2 oscillator, four such
points – two maxima and two minima. For a chaotic oscillator, such points
will be distributed densely (“almost everywhere”) over one of more segments.
The bifurcation diagram is the plot of these local maxima and minima against
the respective parameter value. Figure 7 shows the bifurcation diagram of the
logistic (4).

It is crucial to note that in most nonlinear systems, two or more attractors
may co-exist for some parameter values, facilitating bistability or even mul-
tistability . Each attractor will have basins, each separated by basin bound-
aries. In such cases, it is important that all such attractors are located when
plotting a bifurcation diagram.

Bifurcations can be divided into local and global, as outlined below. Be-
fore doing so, it is important to introduce a second notion of stability. Struc-
tural stability concerns the robustness of invariant sets – attractors, repellors,
saddles - to changes in the underlying vector field. In contrast asymptotic
stability deals with the situation where the instantaneous state of the sys-
tem is perturbed through addition of a small transient noise term (but the
vector field is kept constant). An attractor is called asymptotically stable
whenever the system returns towards the attractor following any such (small)

Fig. 7. Bifurcation diagram of the logistic equation (4). Top panel shows the local
minima and maxima of the asymptotic time series against the parameter a. Lower
three panels show representative time series (including the initial transient) with (1)
fixed point, (2) limit cycle and (3) chaotic attractors. Note the “periodic windows”
within the chaotic regime of the bifurcation diagram
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noisy perturbation. A local bifurcation occurs whenever an attractor loses
asymptotic stability whereas a global bifurcation corresponds to the loss of
structural stability. These are also called subtle and catastrophic bifurcations
(Abraham & Shaw 1988) because in the latter case the impact on the dynamics
is typically more immediately discernable. We now explore such bifurcations
in further detail.

Local Bifurcations

Local bifurcations concern the asymptotic stability of fixed point and other
attractors. Consider the system governed by,

dZ
dt

= AZ + B, (23)

where A is a matrix and B a vector. This is the matrix form of (22).
Solutions in the case where B is zero are of the form

Z (t) = Z (0) etA. (24)

Hence the origin is a fixed point and the eigenvalues Λ of A determine the
nature of the neighboring flow. Solutions in the case B �= 0 are essentially the
same after a suitable translation of the axes. The eigenvalues Λ = {λ1, λ2}
determine five possible types of fixed point systems (Fig. 8).

Figure 8(a) shows a typical flow when both eigenvalues are real and either
both positive or both negative. Orbits diverge from (λ1 > 0, λ2 > 0) or
converge to (λ1 < 0, λ2 < 0) the origin. In the former case, the fixed point is
called a source and in the latter, a sink or node . We have already met the
case (Fig. 8b) where the eigenvalues are real and opposite in sign (λ1 > 0, λ2 <
0) for the saddle point discussed above with regards to basin boundaries.
When the eigenvalues are complex, they occur as complex conjugate pairs. The
imaginary component endows the time series with an oscillatory component
evident as spiraling orbits (Fig. 8c). When the real part of each eigenvalue is
negative, these oscillations are damped and the fixed point is a spiral inset .
Otherwise it is a spiral outset .

(a) (b) (c)

Fig. 8. Orbits for fixed points of the linear system (26). (a) Source or sink,
(b) saddle, and (c) Spiral inset or outset
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Whilst (26) is a simple linear system, the Hartman-Grobman theorem
states that, for a very general class5 of nonlinear systems Fa, the flow within
the neighborhood of a fixed point can be approximated by a suitable linear
system with the form of (23). Hence these fixed points – and their stability –
play an important role in many dynamical systems.

Note that the eigenvalues of A determine the divergence or convergence
of nearby orbits. These are hence the “characteristic exponents” referred to
in Sect. 2.1. In the setting of fixed points these are simply referred to as the
eigenvalues of A. They are often called Floquet exponents in the vicinity
of a limit cycle and Lyapunov exponents for a chaotic attractor. Following
Eckmann and Ruelle (1984), we will simply refer to them as characteristic
exponents, whatever the nature of the invariant set to which they refer.

Local bifurcations hence deal with the zero crossings of the characteristic
exponents of attractors. The underlying set (typically) remains invariant, but
loses its asymptotic stability. Just as a zero crossing can transform a fixed
point from an attracting node into a saddle, the same also applies for both
limit cycles and chaotic attractors. We now briefly discuss some of the canon-
ical local bifurcations. In sect. 3 we will see how they relate to fundamental
neuronal events such as firing and bursting.

Canonical Local Bifurcations

Pitchfork bifurcations occur when a single fixed point changes its (asymp-
totic) stability whilst also splitting off extra fixed points. In a supercritical
pitchfork bifurcation a single stable fixed point attractor loses its stability
as a parameter crosses its threshold and two new stable fixed points appear
(Fig. 9a). The evolution equation,

dz

dt
= z

(
a− z2

)
, (25)

z

a

z

a

(b)(a)

Fig. 9. Pitchfork bifurcation diagram (a) Supercriticial, and (b) subcritical. Solid
line denotes fixed point attractor. Dashed lines denote fixed point repellors

5 As long as the derivative of Fa at the fixed point is not zero – i.e. the fixed point
is hyperbolic.



Neuronal Dynamics and Brain Connectivity 21

yields this type of bifurcation at a = 0. Note that for a < 0, we have
dz/dt < 0 when z > 0 and dz/dt > 0 when z < 0. Hence all initial conditions
lead to the fixed point z = 0. Similar calculations show that when A crosses
zero (a > 0) the origin becomes a source and fixed point attractors exist
as ±√a.

On the other hand the equation,

dz

dt
= z

(
a+ z2

)
, (26)

yields a subcritical pitchfork bifurcation . In this case, the fixed point at-
tractors at z = 0 also loses its stability as A crosses zero from below. However,
two fixed point repellors exist at ±√−a when a < 0 (Fig. 9b). Looking at
the situation alternatively, one could say that the fixed point attractor at
z = 0 loses its stability when two fixed point repellors collide with it at a = 0.
However, in both cases, the fixed point remains an invariant of the system
(i.e. dz/dt = 0) for all a.

In a transcritical bifurcation , there are two equilibrium points which
collide and exchange their stability at the bifurcation point. For example, the
evolution equation,

dz

dt
= z (a− z) , (27)

has two equilibrium points, the origin x = 0 and x = a. When a < 0, the
origin is an attractor but becomes a repellor as a crosses zero (Fig 10).

A Hopf bifurcation (Fig. 11) is much like a pitchfork bifurcation with
the exception that it involves a limit cycle attractor. Hopf bifurcations play
an important role in neuronal models as they describe the onset of both sub-
threshold membrane oscillations and cell firing. Consider the equation,

dz

dt
= z

(
a+ b |z|2

)
, (28)

where a is the bifurcation parameter and both z and b are complex numbers.
When the real part of b is negative then the system exhibits a supercritical
Hopf bifurcation (Fig. 11a,c–f). For a < 0 there exists a single stable fixed
point attractor (a spiral inset). When a > 0 this fixed point is an unstable
spiral outset and there also exists a stable limit cycle.

Fig. 10. Transcritical bifurcation. Solid line denotes fixed point attractor. Dashed
lines denote fixed point repellors. Arrows show representative vector field
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Fig. 11. Hopf bifurcation (a) Supercriticial, and (b) subcritical. Black line denotes
fixed point attractor (solid) and repellor (dashed). Blue lines denote the maxima and
minima of the limit cycle attractor (panel a; solid) and repellor (panel b; dashed).
Time series (c) and phase space portrait (d) of the fixed point attractor (e) in the
supercritical system (i.e. when a< 0 and real(b)< 0). Time series and phase space
portrait (f) of the limit cycle attractor (black) in the supercritical system (i.e. when
a>0 and real(b)<0). Red orbits show transients

Conversely, when the real part of b is positive then the system exhibits
a subcritical Hopf bifurcation (Fig. 11b). For a < 0 there exists a single
stable fixed point attractor (a spiral inset) and an unstable periodic orbit.
Hence the phase space is partitioned: those initial conditions within the peri-
odic orbit spiral in towards the fixed point; those initial conditions outside of
the limit cycle diverge towards infinity. When a > 0, there exists an unstable



Neuronal Dynamics and Brain Connectivity 23

fixed point (a spiral outset). Hence all initial conditions (except z = 0) diverge
towards infinity.

A subcritical Hopf bifurcation often occurs in the context of bistability,
when there co-exists a large-amplitude limit cycle attractor. Above the bi-
furcation point a > 0, orbits diverge outwards from the fixed point repellor
to this attractor. Below the bifurcation point a < 0, the limit cycle repellor
(dashed blue curve in Fig. 11b) separates the basin boundaries of the fixed
point attractor at the origin and the large-amplitude limit cycle attractor.

In summary, Hopf bifurcations are of very high importance for an under-
standing of neural activity as they explain the onset and nature of oscillatory
behaviour. Supercritical Hopf bifurcations lead to the appearance of small am-
plitude periodic oscillations. Subcritical Hopf bifurcations result immediately
in a large amplitude limit cycle.

Period-doubling bifurcations typically occur as a sequence of events
subsequent to a Hopf bifurcation, following a further increase in the bifur-
cation parameter. The main panel in Fig. 7 shows period-doubling bifurca-
tions in the logistic map between parameter values a ∼3.0 and the onset of
chaos at a ∼3.5. The first period-doubling bifurcation (i.e. from a simple pe-
riodic oscillation to a period-2 oscillation) corresponds to the “excitation” of
the limit cycle attractor into an invariant torus around which the attractor
winds. Subsequent period-doubling bifurcations increase the number of times
the attractor twists around the short axis of the torus every time it makes
one complete revolution around the long axis.

A fold or saddle-node is an interesting and illustrative bifurcation. It
occurs when a stable and unstable fixed point collide (see Fig. 12). Consider
the equation,

dz

dt
= a+ z2. (29)

For a < 0 there are two fixed points, an attractor at −√−a and a repellor
at +

√−a. As a approaches zero from below, these two fixed points hence
approach each other and collide at a = 0. At this point, the fixed point, at
z = 0, is attracting for z < 0 and repelling for z > 0. Hence it is neither an
attractor nor a repellor, but rather a special (“non-hyperbolic”) fixed point
called a “saddle-node”. The saddle node is classified as a local bifurcation
because the two fixed points lose their asymptotic stability when they collide
at a = 0. However, at a > 0 there is no fixed point – i.e. there is also a loss of
structural stability. Hence it also meets the criteria for a global bifurcation.

A recently described phenomena is the blowout bifurcation
(Ott & Sommerer 1994). Suppose we have two (n-dimensional) neural systems
z1(t) and z2(t) evolving according to (11), each with chaotic dynamics. In the
instance where there is no coupling (c = 0), the system as a whole explores
the full phase space Rn×Rn

. . When the system is strongly coupled (c > ck for
some threshold coupling strength ck), then the two systems will synchronize
(Fujisaka & Yamada 1983, Pecora & Carroll 1990). In this case, the dynamics
are confined to the ‘hyper-diagonal’ – that is, the space z1(t) = z2(t) of half
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the dimension of the full phase space. If the coupling strength c falls below ck
the dynamics of the two-cell system “blowout” from the low dimensional state
of synchronization, into the full state space, as shown in Fig. 13. Alternatively,
it can be said that when c > ck the state of synchronization has asymptotic
stability. When c crosses ck from above, the system loses stability in the di-
rection transverse to the hyper-diagonal (Ashwin et al. 1996). Looking at the
blowout bifurcation as c crosses ck from below (i.e. as the coupling strength is
increased) we see that – through the process of synchronization - the dynam-
ics of the system collapse onto a (relatively) low dimensional manifold. That
is, synchronization constrains the number of degrees of freedom of a spatially
distributed dynamical system.

Global Bifurcations

Whereas local bifurcations deal with the loss of asymptotic stability of fixed
points - and are hence concerned with the dynamics in local neighborhoods of
attractors - global bifurcations can only be understood by studying the prop-
erties of the vector field outside of such neighborhoods. They occur when an
attractor loses structural stability. Their nature depends upon the “skeleton”
of the phase space – the nullclines, homoclines and heteroclines.

As stated above, a saddle-node bifurcation does have the properties of
both a local and a global bifurcation in that there is no fixed point for a > 0.
Looking at Fig. 12, we see that there are two fixed points when a < 0, an
attractor at −√−a and a repellor at +

√−a. The latter forms the boundary
of the basin for the former. Hence the bifurcation occurs when the attractor
collides with its basin boundary. This collision illustrates the principles of more
complex global bifurcations. An example, when a chaotic attractor collides
with its fractal basin boundary was termed a crisis bifurcation when it
was first described (Celso et al. 1982). More specifically, a boundary crisis
occurs when the collision is between an attractor and a boundary, whereas an
interior crisis results from the collision between an attractor and a saddle.
The former results in the sudden loss of an attractor and its basin, whereas
the latter typically leads to the sudden increase in the extent of the attractor.

z

a

Fig. 12. Saddle-node bifurcation. Solid line denotes fixed point attractor. Dashed
line denote fixed point repellors. Arrows show representative vector field
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Fig. 13. Blowout bifurcation in system of two coupled logistic maps. (a) When c <
ck the system explores R2. (b) When c > ck the system contracts onto the diagonal
after a brief transient. Arrow points to initial condition. A “blowout bifurcation
corresponds to a transition from (b) to (a). Adapted from Breakspear (2004)

Other global bifurcations involve intersections of homoclinic or heteroclinic
orbits either with themselves, or with fixed point attractors. A fascinating
example involves the birth of a limit cycle out of a saddle-node bifurcation on
a homocline! This obscure-sounding event actually lies at the heart of neuronal
firing and we discuss it in more depth in the next section.

3 A Taxonomy of Neuronal Models

Neurons are traditionally seen as the building blocks of the brain. It hence
makes sense to gain some insight into their dynamics – and functional inter-
actions – at the microscopic scale at which they reside before moving into the
larger scales, which we do in Sect. 4.

The “foundation stone” of microscopic models are the conductance-based
Hodgkin-Huxley model and its derivatives. A full description of these is pro-
vided by a number of authors (e.g. Izhikevich 2005, Gerstner & Kistler 2002,
Guevara 2003). Our objective here will be to quickly move from the full model
to a two dimensional approximation and then explicate the onset of neuronal
firing as a dynamical bifurcation.

3.1 The McCulloch-Pitts System

Before we do this, for the sake of theoretical and historical completeness, we
briefly discuss the McCulloch-Pitts model (1943),

z(xi, t+ 1) = S

⎛
⎝∑

j

hijz(xj , t)− εi

⎞
⎠ , (30)

where hij is the connectivity matrix, ε the “threshold” of neuron i and
S is the step function. Neural inputs to a given unit are summed and then
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converted into a binary output if they exceed the threshold εi. The resulting
output is iteratively fed back into the network. Hence the McCulloch-Pitts
model is discrete in both space and time, and as such is an example of a cou-
pled difference map (5). Considered together with the use of the step function
as representing neural “activation”, this model is perhaps as abstract as pos-
sible. Nonetheless, McCulloch and Pitts proved that the system was capable
of remarkably general computational feats. However, it is probably fair to say
that this model finds its place more appropriately in the lineage of artificial
neural networks than in the understanding of the dynamics of biological sys-
tems. Hence, McCulloch-Pitts systems form the basis for the two-layer “per-
ceptrons” of Rosenblatt (1958) and the symmetric Hopfield (1982) networks.
These extend the complexity and computational properties of McCulloch-
Pitts systems to permit object categorization, content-addressable memory
(i.e. the system correctly yields an entire memory from any subpart of suffi-
cient size) and learning. For example, Sejnowski and Rosenberg (1987) showed
that such systems, if constructed with three interconnected layers, are able to
learn language pronunciation.

An overview of related advances is provided by Ermentrout (1998). For a
fascinating history of this model and the life of Walter Pitts, see Smalheiser
(2000).

3.2 Biophysical Models of the Neuron:
The Hodgkin-Huxley Model

Whereas the McCulloch-Pitts system was constructed to embody only the
very general network properties of neural systems and to directly address com-
putational issues, the Hodgkin Huxley model aims to incorporate the principal
neurobiological properties of a neuron in order to understand phenomena such
as the action potential. Computational properties of these neurons are then
investigated.

The paper of Hodgkin and Huxley (1952) is remarkable in that it casts
detailed empirical investigations of the physiological properties of the squid
axon into a dynamical systems framework. The Hodgkin-Huxley model is a set
of conductance-based coupled ordinary differential equations6 of the form of
equation (8), incorporating sodium (Na), potassium (K) and chloride ion flows
through their respective channels. Chloride channel conductances are static
(not voltage dependent) and hence referred to as leaky (L). Hence we have,

C
dV (t)
dt

= gNafNa (V (t))× (V (t)− VNa) + gKfK (V (t))× (V (t)− VK)

+ gL × (V (t)− VL) + I, (31)

where c = 1 μF/cm2 is the membrane capacitance, I is an applied
transmembrane current and Vion are the respective Nernst potentials. The
6 Here we depart slightly from the traditional nomenclature in order to simplify

the mathematical description of the model.
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coefficients gion are the maximum ion flows in the case where all the chan-
nels of that ion species are open. The Na and K ion flows reflect the state of
“activation” channels, which open as membrane voltage increases and “inac-
tivation” channels, which close. These are given by,

fNa(V ) = m(V )Mh(V )H

fK(V ) = n(V )N (32)

where m and n are activation channels for Na and K, and h is the single
inactivation channel for Na. The exponents are determined by the number of
such classes of channel M = 3, H = 1 and N = 4. Hence (31) reflects the
combined flow of all ion species as they are “pushed through” open channels
according to the gradient between the membrane and Nernst potentials.

The kinetics of activation and inactivation channels are determined by
differential equations of the form,

dm(V )
dt

=
(m∞ (V )−m (V ))

τm (V )
(33)

where m∞(V ) is the fraction of channels open if the voltage is kept
constant and τm(V ) is a rate constant. These are determined empirically.
These equations embody the exponential relaxation of channels towards their
(voltage-dependent) steady states m∞(V ) consequent to a transient change in
membrane potential. The kinetics of h and n are of the same form, although
their rate constants τ are obviously distinct. The form of m∞(V ) – the steady
state configurations of ion channel populations as a function of membrane
potentials – is sigmoid shaped of the form,

m∞(V ) =
mmax

1 + e(Vm−V )/σ
. (34)

where Vm is the threshold potential for the ion channel and σ introduces
the variance of this threshold. Figure 14 summarizes membrane dynamics in
the Hodgkin-Huxley model.

The Hodgkin-Huxley model is a conductance approach to the dynamics
of neural activity, reflecting ion flows through voltage- and time-dependent
transmembrane channels. It represents a beautiful juncture of empirical and
mathematical analysis. It not only offers an explanation of neural firing, but
it quantitatively captures the complex shape of a neural depolarization.

3.3 Dimension Reductions of the Hodgkin-Huxley Model

The Hodgkin-Huxley model is able to explain the chief properties and many
of the nuances of neuronal depolarization, including the threshold effect and
the post-depolarization refractory period with quantitative accuracy. How-
ever, much of the qualitative (and some of the quantitative) behaviour can be
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Fig. 14. Transmembrane currents in the Hodgkin-Huxley model. (a) Three ex-
amples of the sigmoid relationship between transmembrane potential V and steady
state conductances m.. Solid and dotdashed lines denote “activation” channels (such
as m and n) whereas the dashed line denotes an inactivation channel (such as h)
(b) Exponential “relaxation” of transmembrane conductance according to (33), fol-
lowing a discrete change in the transmembrane potential (lower line). Conductance
m ‘relaxes’ from m.(V1) to m.(V2)

captured by greatly reduced approximations. Amongst other things, first pass
approximations ignore the voltage-dependent nature of τm and make further
simplifications, but are still able to capture many of the important dynam-
ics, such as neural depolarization. We now describe these, following the basic
approach of Izhikevich (2005).

Morris-Lecar and Related ‘Planar’ Simplifications

An essential ingredient of a neural firing is a fast depolarizing current such
as Na+ – which is turned on subsequent to a synaptic current - and a slow
repolarizing current such as K+ - which restores the resting membrane poten-
tial. These in turn are facilitated by the existence of slow and fast ion channels
of the respective species, τm(V ) << τn(V ). The depolarizing current repre-
sents positive feedback (i.e. is self promoting) and, if a threshold is reached
before a sufficient number of slower K+ channels are open, the cell depolarizes.
By contrast, the Na+ inactivation channel plays less of a “brute force” role
and can be ignored. The requirement of a “fast” depolarizing current and a
slow repolarizing current can be met in a two dimensional (“planar”) system,

dV

dt
= gNam∞ (V )× (V − VNa) + gKn (V )× (V − VK) + gL × (V − VL) + I,

(35)
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where the dynamics of the slow repolarizing K+ is given by

dn

dt
=

(n∞ − n)
τn

(36)

and the steady state currents given by,

n∞(V ) =
nmax

1 + e(Vn−V )/σ
, and m∞(V ) =

mmax

1 + e(Vm−V )/σ
,

In other words, fast sodium channels instantaneously assume their steady
state values following a change in membrane potential, hence adapting in a
step-wise manner to a step-like change in membrane potential. Hence there
is no differential equation for the Na+ activation channels, m. This is exactly
the form of the Morris-Lecar model, with the exception of a substitution of
Na+ currents with Ca++.

The system (35)–(36) is known as planar, as its phase space is the two-
dimensional plane spanned by V (the abscissa) and n (the ordinate). To un-
derstand the dynamics we calculate the nullclines for the dynamical variables
V and n. The V -nullcline, obtained by substituting dV /dt = 0 into (35) is,

n =
I − gNam∞ (V )× (V − VNa)− gL × (V − VL)

gK × (V − VK)
. (37)

Similarly, the n-nullcline, obtained by setting dn/dt = 0 is,

n =
nmax

1 + e(Vn−V )/σ
, (38)

These nullclines for the parameter values given in Table 1 and synap-
tic current I = 0 are plotted in Fig. 15. We see that there are three null-
clines crossings corresponding to three fixed points, {− 66, 0}, {− 56, 0} and
{ − 25, 0.5}. Stability analysis shows that these fixed points are a stable focus,
saddle point and spiral outset respectively (Izhikevich 2005). Hence the first
fixed point first represents the only stable (steady state) solution.

Figure 15(b) shows two heteroclines – that is, outsets of the saddle point
that become insets of the stable node. A long heterocline (magenta) tra-
verses the nullclines before reaching the node whereas the shorter one (yel-
low) is able to track in parallel to the n-nullcline directly between the fixed
points.

Table 1. Parameter values for the planar system (37)–(38) and figures 15–19

Capacitance, C = 1;
Synaptic current (default), I = 0;
Leaky channels: VL = −80; gL = 8;
Sodium channels: VNa = 60; gNa = 20;Vm = −20;σm = 15;mmax = 1;

τm = 1;
Potassium channels:

“high threshold” VK = −90; gK = 10; Vn = −25; σn = 5; nmax = 1; τn = 1;
“low threshold” VK = −78; gK = 10; Vn = −45; σn = 5; nmax = 1; τn = 1;
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Fig. 15. Fixed points and nullclines of the planar system (37)–(38). The V -nullcline
(39) is given in blue and the n-nullcline (eqn 40) in black. (a) Fixed points occur at
the intersections of the nullclines: Stable node (red), saddle point (blue) and spiral
outset (yellow). Arrows show representative vector field. (b) Long (magneta) and
short (yellow) heteroclines of stable node and saddle

In Fig. 16 is shown representative orbits of this system. Three “subthresh-
old” (green) and three “suprathreshold” (red) orbits are shown. In the latter
case, the neuron depolarizes before returning to its resting state. It should
be noted that this threshold depends not only on the initial membrane po-
tential V but also the initial K+ membrane conductance. The separatrix be-
tween sub- and supra-threshold is constituted by the inset of the saddle point
(not shown).

Whether the initial condition is sub- or supra-threshold, this system only
has a single steady state solution in the current parameter regime. Hence, after
at most one depolarization, it enters a quiescent state. Thereafter a discrete
synaptic input, such as due to an excitatory post-synaptic potential (EPSP),
will trigger a further discharge only if it is of sufficient strength to ‘knock’ the
system over the inset of the saddle point. This will hence determine whether
the resulting neural response is of the green or red waveform as in Fig. 16.
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Fig. 16. (a) Representative sub- (green) and supra-threshold orbits (red) and (b)
their temporal evolution
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Bifurcations and Neuronal Firing in Planar Models

Saddle-node bifurcation

A further examination of the equation for the V -nullcline (37) shows that
the synaptic current is a purely additive term. It hence acts to translate this
nullcline in the vertical direction, with no influence on its shape and no in-
fluence on the n-nullcline. In Fig. 17, a close-up of the nullclines is shown for
values of I = 0, 2, 4.51 and 6. As I is increased from 0 to 2 (dot-dashed),
we see an upward shift of the V -nullcline so that the saddle and node fixed
points are closer together in phase space. At I = 4.5 (dashed), the nullclines
are tangent and the fixed points have hence collided. At I = 6 (dotted) there
are no nullcline intersections: hence their collision has led to their mutual
annihilation!

This is exactly the “saddle-node” bifurcation defined at Fig. 12. In the
present setting, the synaptic input I functions as the bifurcation parameter.
However, in addition to the structure of Fig. 12, an additional “global” feature
of the phase space in the current system requires consideration. When the fixed
points collide, the short heterocline is abolished, but the long heterocline7

remains (Fig. 17b). Indeed even when I > 4.51 this orbit is still an invariant
of the dynamics. However, with no fixed point along its domain, it is now a
continuously looping limit cycle.

Figure 18 shows the limit cycle attractor (red) and its temporal dynam-
ics for I = 4.75 (top row) and I = 6 (bottom row). Note that although the
phase space portraits look similar, the frequency of the dynamics increases
substantially with the increase in synaptic current.

This can be understood as a consequence of the bifurcation. Just after the
bifurcation, although the nullclines do not intersect, the limit cycle must pass
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Fig. 17. Saddle-node bifurcation in the planar system. (a) Nullclines near fixed
points for I = 0, 2, 4.51, 6. Red circle denotes “saddle-node” fixed point (b) Homo-
clinic orbit for the system when I = 4.51

7 In fact, as there exists only a single fixed point, this orbit is more accurately now
a “homocline”.



32 Michael Breakspear and Viktor K Jirsa

                                                          

0 10 20 30 40 50
-80

-70

-60

-50

-40

-30

-20

-10

0

10

-80 -60 -40 -20 0 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50
-80

-70

-60

-50

-40

-30

-20

-10

0

10

-80 -60 -40 -20 0 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

V (mV)

V

time (ms)

(d) (c)

n

V (mV)

V

time (ms)

(b) (a)

Fig. 18. Limit cycle dynamics for I = 4.75 (top row) and I = 6 (bottom row)

through a very narrow gap between them. The vector field in this gap bears
the “memory” of the fixed points – namely it is very slow. Hence the orbits
in this vicinity are near-stationary, as can be seen in the time domain. As I
increases this influence diminishes and the frequency hence increases. Note
that in both cases, however, there is virtually no change in the morphology
of the depolarization, which is not related to this phenomenon.

Hopf bifurcation

Through a slight change in the parameters relating to the potassium channels,
however, the transition from steady state (fixed point) to periodic (limit cycle)
dynamics can occur through a different type of bifurcation. In the above
scenario the potassium channels had values consistent with a “high thresh-
old”, namely the mean threshold potential of the K+ potassium channels
Vn = −25mV. Lowering Vn to −45mV and changing the Nernst potential
to VK = −78mV yields the phase space portraits and time series plotted in
Fig. 19.

Firstly, there is only one interception of the nullclines for these parameter
values, and hence only one fixed point. For I < 19 this is a spiral inset,
hence yielding damped oscillations (panels a,b). For I >19 the fixed point has
undergone a (supercritical) Hopf bifurcation, hence yielding a small amplitude
limit cycle, coinciding with sustained but subthreshold voltage oscillations.
For I∼26, the amplitude of these oscillations grows smoothly but rapidly so
that with I = 27 the system exhibits sustained suprathreshold oscillations.
However, note that the damped, subthreshold and suprathreshold oscillations



Neuronal Dynamics and Brain Connectivity 33

0 20 40 60 80 100 120
-80

-70

-60

-50

-40

-30

-20

-10

0

-80 -60 -40 -20 0 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120
-80

-70

-60

-50

-40

-30

-20

-10

0

-80 -60 -40 -20 0 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-80 -60 -40 -20 0 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120
-80

-70

-60

-50

-40

-30

-20

-10

0
V (mV)

V 
(mV)

n V
 

(m
V

)

time (ms)

(b)(a)
n

V (mV)

V
 

(m
V

)

time (ms)

(d)(c)

n

V (mV)

V
 

(m
V

)

time (ms)

(f)(e)

Fig. 19. Phase portrait and time series of the planar model in the “low K+

threshold” case for I = 18.5 (top row), I = 21 (middle row) and I = 27 (bottom row)

all have approximately the same frequency. This contrasts with the saddle-
node scenario.

We conclude with the two different bifurcation sets, Fig. 20, corresponding
to distinct routes to sustained oscillations in this neuronal model. Panel (a)
shows the saddle-node bifurcation, yielding the sudden onset of suprathreshold
oscillations at I∼4.5 mA. Panel (b) depicts the Hopf bifurcation with the
gradual onset of subthreshold oscillations at I∼19 mA, growing rapidly to
suprathreshold with I∼26 mA.

In the presence of discrete synaptic inputs, the saddle-node system will
generate an all-or-nothing depolarization – or chain of depolarizations – if
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Fig. 20. Saddle-node (a) and (b) Hopf bifurcation diagrams for the planar neural
system with high and low K+ channel thresholds, respectively

the input is sufficiently large. The frequency of any such chain of discharges
increases with the magnitude of the synaptic input. On the other hand, the
Hopf route will generate either damped, sub-threshold oscillations or a chain
of depolarizations, although the frequency of these will be more-or-less con-
stant. In the presence of discrete synaptic inputs, the saddle-node system will
generate an all-or-nothing depolarization – or chain of depolarizations – if the
input is sufficiently large. The frequency of any such chain of discharges in-
creases with the magnitude of the synaptic input. On the other hand, the Hopf
route will generate either damped, sub-threshold oscillations or a chain of de-
polarizations, although the frequency of these will be more-or-less constant.
As discussed in Izhikevich (2005) these two distinct neuronal responses to ap-
plied (or synaptic) currents were first observed empirically by Hodgkin in the
1940’s. Specifically, he classified neurons that showed a frequency-dependence
on the size of the synaptic current (i.e. Hopf-like responses) as Type I neurons.
In particular, for small currents, these neurons begin to fire at very slow fre-
quencies. In contrast, those neurons that start firing at relatively rapid rates
following a supra-threshold input – and which show very little further increases
in frequency – were classified as Type II neurons. The squid axon described
by the original Hodgkin-Huxley model (1952) is a representative example of
a neuron with type II behavior.

The FitzHugh-Nagumo Model

As we have seen above, the shape and intersections of the nullclines plays the
determining role in the behavior and bifurcations of the dynamics. In fact,
all that is required to reproduce the qualitative nature of the dynamics is
the cubic-like shape of the V -nullcline and the presence of an n-nullcline with
the appropriate intersections. Mathematically, these requirements can be met
with the much simpler algebraic equations (FitzHugh 1961, Nagumo et al.
1962),

dx

dt
= x (a− x) (x− 1)− y + I,

dy

dt
= bx− cy, (39)
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which have the simple nullclines,

y = x (a− x) (x− 1) + I, y = b/cx, (40)

In Fig. 21 is illustrated a phase portrait and time series for this system fol-
lowing a super-critical Hopf bifurcation of the single fixed point. This system -
and variations of it - are known as the FitzHugh-Nagumo model.

This system hence allows a closed-form analysis, with relatively simple
algebraic forms, of the same qualitative phenomena as the planar model of
Hodgkin-Huxley dynamics.

The Hindmarsh-Rose Model

The Hindmarsh-Rose model is the last in the “microscopic” domain for consid-
eration. It continues the logic of the FitzHugh Nagumo model – namely that it
captures the qualitative essence of neuronal firing through a simple algebraic
form of the evolution equations (and hence of the nullclines). However, rather
than further reducing the Hodgkin-Huxley model, the Hindmarsh-Rose (1984)
model introduces an extra property. The system is given by,

dx

dt
= y − ax3 + by2 − z + I, (41)

dy

dt
= c− dx2 − y, (42)

dz

dt
= r [s (x− x0)− z] , (43)

When r = 0, the third variable plays no role and the system reduces to a
variation of a FitzHugh Nagumo model – that is, a two dimensional spiking
neuron with a simple algebraic form: An example is given in Fig. 22.

However, setting r > 0 but small has the effect of introducing the third
variable into the dynamics. Notice that z only enters into the first two
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Fig. 21. Phase portrait and time series for the Fitz-Hugh-Nagumo model following
a Hopf bifurcation. Parameters, b= 0.01; c = 0.02; a = −0.1; I= 0.1 as per Izhikevich
(2005). Note the qualitative similarity to Fig. 19(e), (f)
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Fig. 22. Phase portrait and time series for the Hindmarsh-Rose model. Parameters,
I = 3.2; a = 1.0; b = 3.0; c = 1.0; d = 5.0; s = 4.0; x0 = −1.60; r = 0

equations as an additive term – the same as I although negative in size.
Also, setting r small has the effect of ensuring that z evolves on an intrinsi-
cally slower time scale than x and y. Together, these constructions have the
effect of ensuring that z acts like a slowly varying synaptic current, albeit one
which, due to the x term in (45), is also state dependent. Hence as z becomes
more negative, it acts like the bifurcation parameter in the FitzHugh Nagumo
model and precipitates – via a subcritical Hopf bifurcation - a run of depo-
larizations. However, due to the x term in (43), these depolarisations have
the (relatively slow) effect of increasing z. Eventually the depolarizations are
terminated as the reduced effective contribution of z to total synaptic cur-
rent restabilizes the fixed point via a saddle node bifurcation. Hence the sys-
tem, as shown in Fig. 23, exhibits a burst of spikes interspersed by quiescent
phases. Indeed with r = 0.006, the system exhibits this pattern in a chaotic
fashion.

Note that, as discussed, the fast spikes are far more evident in the dynamics
of x whereas the dynamics of z are more sensitive to the bursts.
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Fig. 23. Phase portrait (a) and time series (b,c) for the Hindmarsh-Rose model.
Parameters, I = 3.2; a = 1.0; b = 3.0; c = 1.0; d = 5.0; s = 4.0; x0 = −1.60; r=0.006
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Such burst-spiking is of particular interest to classes of thalamic neurons
and many cortical neurons during slow-wave sleep, whereby this activity is
observed synchronously across the scalp (McCormick & Bal 1997). Interac-
tions between such systems can be introduced by coupling of one of the fast
variables, such as

dx1,2

dt
= y1,2 − ax3

1,2 + by2
1,2 − z1,2 + I + C (x2,1 − x1,2) , (44)

where C is the coupling parameter. Two such simulations are shown in
Fig. 24, where blue and green time series denote each system. In the top row,
with c = 0.35, the bursts are coincident but the spikes are often discordant.
However with c = 0.5, the spikes are also synchronized. This interesting phe-
nomenon, studied in detail by Dhamala et al. (2004) of burst and then spike
synchrony, has been observed experimentally.

3.4 Coupled Chaos in a Mesoscopic Model

The Hindmarsh-Rose model introduces an extra term, incorporating a slow
calcium current, into a planar model of an excitable neuron. An alternative
extension of planar models is to introduce a single variable representing a
feedback from an inhibitory neuron Z. The inhibitory and excitatory neurons
interact via synaptic currents induced through their mutual connectivity. Such
a model takes the form (e.g. Larter et al. 1999),

dV

dt
= gNam∞ (V )× (V − VNa) + gKn (V )× (V − VK) + gL × (V − VL)

+ αneI + αieF (Z) ,
dn

dt
=

(n∞ − n)
τn

,
dZ

dt
= αeiG (V ) + αniI. (45)

Local connectivity is parameterized by the coupling parameters α between
inhibitory Z, and excitatory V cells and via input from the external noise
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Fig. 24. Coupled Hindmarsh-Rose systems with c = 0.35 (top row) and c = 0.5
(bottom row)
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Fig. 25. Generalized chaotic synchronization in a mesoscopic neuronal model. (a)
Chaotic attractor. The orbits are organized around a manifold that is homoclinic to
the unstable spiral (b) Time series of excitatory membrane potentials in two coupled
systems showing apparent synchronization. (c) Their co-evolution shows a smooth
manifold slightly off the state of identical synchrony V1 = V2

term I. The functions F and G model the feedback between the inhibitory
and excitatory cells. Within physiologically realistic parameter values, such
a system can exhibits chaotic dynamics, as shown in Fig 25 (a), organized
around a homoclinic orbit.

Synaptic coupling between the excitatory neurons in two such populations
of cells allows construction of a mesoscopic neuronal model – a system on
the intermediate scales between single neurons and the large scale systems
considered in the following section. An example of synchronization between
two such subsystems is illustrated in Fig. 25 (b-c), where a single parameter
in each system has been set with a small mismatch (all other parameters are
equal). Whilst the time series appear identical (panel b), a plot of the values
of V1 versus V2 (panel c) reveals that their co-evolution, whilst close to the
diagonal is nonetheless confined to a nearby smooth manifold. This form of
non-identical synchronization is known as generalized chaotic synchronization
(Afraimovich et al. 1986, Rulkov et al. 1995). Further details and examples
of more complex behaviors – such as intermittency, scale-free dynamics and
travelling waves - can be found in Breakspear et al. (2003, 2005).

This concludes our survey of basic, small-scale neural systems. We hope to
have illustrated the power of combining analysis and geometry in elucidating
some of the fundamental properties of neurons. We now turn to macroscopic
models.
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4 From Small to Large Scale Models

Large scale neural network models are thought to be involved in the implemen-
tation of cognitive function of the brain (Mesulam 1990; Bressler 1995, 2002,
2003; Bullmore et al. 1996; Mountcastle 1998; McIntosh 2000; Bressler & Kelso
2001; Jirsa 2004; Bressler & Tognoli 2006; Bressler & McIntosh 2007). To
understand the neural basis of cognition, theoretical and analytical means
must be developed which are specifically targeted to the properties of large
scale network dynamics. Such theoretical understanding will also guide the
interpretation of the enormous data sets obtained from non-invasive brain
imaging. The functional expression of a cognitive operation seems to require
the co-activation of certain subnetworks. Such co-activation does not necessar-
ily require a simultaneous activation of all network components, but may be
represented in a characteristic spatio-temporal network dynamics with both
simultaneous and sequential activations. The properties of the network dy-
namics will crucially depend on the interconnectivity of the network compo-
nents and their dynamics (Sporns 2002; Sporns & Tononi 2002, 2007; Jirsa
2004; Beggs et al. 2007). The goal of any large-scale description of neural
dynamics is to reconstruct all relevant spatiotemporal dynamics of the neu-
ral system while preserving the mechanisms which give rise to the observed
dynamics. Large scale models have the implicit assumption to be based upon
neurocomputational units, which are more macroscopic than single neurons.
This approach is to be juxtaposed with the high-dimensional computation of
the full network composed of microscopic complex neurons with dendritic and
axonal ion channel dynamics, as well as pre- and postsynaptic processes. Large
scale models also bear the promise that they provide insight into the under-
lying dynamics-generating mechanisms of the network due to their reduced
complexity. Finally, large scale models are easier and less time-consuming to
be solved computationally. The following sections discuss the various schools
of thought in large scale network modeling and characterize these from the
perspective of anatomical and functional connectivity, the latter identified
with the dynamics of the network.

4.1 Non-reducible Dynamics of Neuronal Ensembles

A large scale model is composed of microscopic units or atoms which do
not represent individual neurons, but rather complexes, also referred to as
neural masses (Beurle 1956), capturing the non-reducible dynamics of a
set of neurons. Such complexes may either be localized in physical space
and defined in a volume element at a location x, or distributed over phys-
ical space and are defined functionally (e.g. in K-sets as discussed below
(Freeman 1975, 1992)). Though the former is more common, in practice the
two variants often coincide due to stronger local connectivity and the re-
sulting co-activations (“what wires together, fires together”). Unlike many
subcortical structures, in which neurons are packed into nuclei, the cortical
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sheet appears at first sight as a dense homogeneous medium with no obvi-
ous demarcation of its components. Corticocortical columns typically con-
sist of 5,000 to 10,000 neurons, macrocolumns contain 105 to 106 neurons
(Nunez 1995). Yet, there are a number of anatomical tracing studies which
indicate mutual anatomical and functional parcellation (Szentagothai 1975;
Mountcastle 1978). For instance, macrocolumns form functional units in sen-
sory areas with homogeneous tuning properties inside the unit, but sharp
differences amongst neighboring units (Mountcastle 1978). For our purposes,
the neural mass is a highly connected set of neurons, sharing common
input and output pathways and specialized low-level function. The activ-
ity of a neural mass (also known as neural mass action) in a large
scale model is described by an m-dimensional vector variable Ψ(x, t) =
(Ψ1(x, t),Ψ2(x, t), · · · ,Ψm(x, t)) at a discrete location x in physical space
and a point t in time. The variable Ψ(x,t) is also referred to as a neu-
ral population, neural assembly or neural ensemble activity . If the
distance between neighboring neural masses is infinitesimally small, then
the physical space x is continuous and Ψ(x,t) is referred to as a neural
field . Since the neural mass action is physically generated by the N neurons
within the neural mass, there will be a mapping Φ : Z(x, t) → Ψ(x, t),
which unambiguously relates the high-dimensional neuron activity Z(x, t) =
(Z1(x, t), Z2(x, t), · · · , ZN (x, t)) to the neural mass action Ψ(x,t). Zi(t) is the
n-dimensional state vector of the i-th neuron with i= 1, . . .,N. For concrete-
ness, a neural mass may contain N=10,000 neurons with n=2 in case of a
FitzHugh-Nagumo neuron model. The situation is shown in the cartoon on
the bottom of Fig. 26. Here a cortical sheet is shown which is decomposed
into color-coded patches representing neural masses. Within a neural mass the
local connectivity of a single neuron is illustrated through the density of its
connections (red squares) which decreases with increasing distance. The par-
tial overlap of the neural masses indicates that synaptic connections of a neu-
ron may belong to different neural masses. The critical step in the development
of a large scale model occurs through the mapping Φ : Z(x, t)→ Ψ(x, t) when
the activity Z(x, t) = (Z1(x, t), Z2(x, t), · · · , ZN (x, t)) of a given neural mass is
replaced by its neural mass action Ψ(x, t) = (Ψ1(x, t),Ψ2(x, t), · · · ,Ψm(x, t))
where m << N . The nature of this relation between neuron activity Z(x, t)
and neural mass action Ψ(x,t) will be generally non-trivial and involves a
mean-field reduction which will be discussed in the next section. On the top
of Fig. 26 the neural network dynamics is now captured by locally coupled
neural mass actions Ψ(x,t) assigned to each neural mass at location x = Xi.
Each neural mass is locally (as indicated at location X5) and globally (as
indicated at location X1) connected.

Rather than solving the complete network for the state vectors Z(x, t) of
all neurons, now the large scale network can be solved using the neural mass
action Ψ(x,t) as indicated in the following: A large scale model representation
is successful if the large scale model simulation provides the same neural mass
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Fig. 26. Coupled neural masses at locations Xi (upper figure) are coupled via local
and global pathways. The large scale network dynamics arises from the interactions
of the neural mass actions ψ(Xi, t) at locations Xi. The computation of the com-
plete network dynamics based upon the neural state vector Z(t) (lower figure) and
neural connectivity (red squares) should ideally yield the same network dynamics
as computed from ψ(x,t)

action Ψ(x,t+T) at a future time point t+T as the simulation based upon the
complete network dynamics using the microscopic neuronal activity Z(x,t).

Φ : Z(x, t)→ Ψ(x, t)
large scale network dynamics−−−−−−−−−−−−−−−−−−−→ Ψ(x, t+ T )← Z(x, t+ T )

complete network dynamics 

In the latter approach, once Z(x,t+T) is computed, it has to be mapped
upon to the neural mass action, Φ : Z(x, t + T ) → Ψ(x, t + T ) to allow
for a comparison between the two approaches. The inverse mapping Φ−1 :
Ψ(x, t+ T )→ Z(x, t+ T ) generally does not exist.

4.2 Mean Field Reduction of Neuronal Activity

The mean field approximation is well-known from statistical physics (see for
instance Gardiner 2004). Though its basic assumptions are mostly not rigor-
ously justified, it often provides an astonishingly good qualitative insight into
the description of many models. Hence the use of mean field approaches has
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a long history in the field of neural networks. The mean field u(t) is generally
defined as the statistical expectation value E of a particular state variable.
Two mean field approaches exist based on two opposing views of neuronal
coding, but of course with many interim shades. The first view holds that
the firing rate of a neural mass is relevant for neural information processing.
The dissenting view posits that the information is encoded in the interactions
among spikes and hence spike correlations must not be ignored (for detailed
discussions of neuronal encoding see Koch 1999). In large scale models, neu-
ral mass action is mostly expressed by mean fields of firing rate, though also
considerable evidence exists that single cells may fire spikes at predictable
intervals as long as 200msec with a precision of 1msec (Abeles et al. 1993).
The latter is the key observation leading to the theory of synfire chains for
cortical processing (Abeles 1991). As of today, it is not clear to what degree
the neural system uses firing rate or spike coding mechanisms. Experimental
evidence exists for both and accumulates with every day (Koch 1999). In the
following we elaborate on the import of both neural coding mechanisms to
the field of large scale modeling.

Generally speaking, if the coupling is high enough and the parameter dis-
persion is sufficiently small, the neurons in the neural mass evolve in time close
to each other within phase space (and hence to the mean field), or in other
words are synchronized. Note however, that there are exceptions in the net-
work dynamics literature known as oscillator death (see also Campbell 2007),
in which the neural mass action becomes zero due to too strong coupling.
A synchronized neural dynamics will play a lesser role for extended periods
of time during which a large scale synchronization is more likely to indicate
pathological network activity such as epilepsy (see Milton et al 2007, Ferree
and Nunez 2007). However, the understanding of the conditions leading to the
emergence of synchronization will likely be important to understanding the
neurocognitive processes such as feature binding (Gray and Singer 1989; Crick
and Koch 1990) and multisensory integration (Von Stein et al 1999; Treisman
1996). In fact, the onset of coherent oscillatory activity has been interpreted
to be fundamental for the formation of higher-order percepts (Freeman and
Skarda 1985; Bressler 1990). In the opposite case for small coupling and greater
noise strength, the elements of the population move incoherently and eventu-
ally their positions average out. Here the asymptotic dynamics of the mean
field is mostly characterized by the fluctuations and the mean firing rate. Be-
tween these two limit cases, complex behavior arises and can be addressed
starting from either end of the limit.

Fluctuation dominated network dynamics and firing rate models

For small enough and sparse couplings, as well as sufficient noise within the
neural mass, the neuronal action potential generations and the connectiv-
ity within the neural mass can be assumed to be independent. Under these
conditions, all spike correlations will be destroyed and a firing rate model
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becomes a valid representation of neural mass action (Abbott & van Vreeswijk
1993; see Cessac & Samuelides 2006 for a review). In the limit of large neuron
numbers within the mass, N→∞, and low firing rates, the total spike train,
obtained by summing over the spike trains from all neurons within the mass,
will be a Poisson point process with a common instantaneous firing rate ρ(x,t).
Equivalently, the synaptic input Is to a single neuron can be approximated
by an average firing rate ρ(x,t) plus a fluctuating Gaussian contribution. As
a consequence the joint probability distribution factorizes and a complete de-
scription of the neural mass action is obtained in terms of the first and second
order statistical moments. Two further more subtle distinctions can be made.
Either the firing rate ρ(x,t) plus Gaussian noise is used as synaptic input and
the neural mass action is described by the average value of neural activity
(the mean field) u(t) = E [Zi(t)] and the variance v(t) = E

[
Zi(t)2

] − u2(t).
Such finally results in Fokker-Planck approaches which describe the time evo-
lution of the probability P(Z(x,t),t) to find a neuron at x and t in the state Z
(Amit & Brunel 1997; Brunel 2000; Brunel & Hakim 1999; Cai et al. 2006).
Alternatively, the neural mass action can be expressed directly by the mean
firing rate u(t) = E [ρ(t)] and its variance v(t) = E

[
ρ(t)2

]− u2(t) (Abbott &
van Vreeswijk 1993; Nykamp & Tranchina 2000, 2001; Eggert & van Hemmen
2001). Note that we dropped the explicit dependence on x to simplify our no-
tation. The mean field variables u and v define the 2-dimensional population
vector Ψ(x, t) = (u(t), v(t)) at the location x. As long as the independence con-
dition within the neural mass holds, the reduced dynamic description through
Ψ(x,t)=(u(t),v(t)) is exact. The mean firing rate shows a sigmoid behavior
as a function of the synaptic input, which can be intuitively understood as
follows: a neural mass shall consist of independent neurons of which each
displays a sharp onset of firing at a threshold value Θ (see Fig. 27).

The thresholds are independent and hence have a Gaussian distribution.
The mean firing rate of the neural mass then becomes the well-known sigmoid
function and has been carefully parameterized from experimental data of the
olfactory bulb (Freeman 1975). Is the independence condition violated though

Fig. 27. Left: Gaussian distribution of activation thresholds within a neural mass.
Middle: Sharp activation function (firing rate) of a single neuron acting as a threshold
element. Right: Mean firing rate obtained from averaging all firing rates within a
neural mass
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and correlations are introduced, for instance through correlations within
the connectivity weights via learning, the mean field approximation breaks
down. Related in spirit to Fokker-Planck approaches, Ventriglia proposed a
phenomenological kinetic theory for the study of the statistical properties of
neural mass action (Ventriglia 1974, 1978). The kinetic equations capture the
time course of the distribution function of the total excitation of a neural
mass. The neurons in the mass are characterized by a level of inner excitation
which changes when impulses are emitted. The impulses move freely within
the neural mass and may be absorbed by other neurons changing their in-
ner excitation level (see also by Gröbler et al. 1998; Barna et al. 1988 for
extensions of the kinetic approach).

Synchronized network dynamics in population models

For strong coupling strengths and low level of noise within the neural mass,
a different but complementary approach holds using the perfectly correlated
state Z(t), that is Z1(t) = Z2(t) = · · · = Z(t). Or in other words, a spe-
cial case of spike timing is considered: all neurons are synchronized and
show the same dynamics Z(t). DeMonte, d’Ovidio & Mosekilde (2003) pro-
posed a method by which the mean field dynamics of a neural mass can
be described by a low-dimensional population vector under conditions of
global coupling and coherent neural mass action. Global coupling means
that each neuron in the neural mass feels the same mean field activity.
Their method applies to neural masses of any size and any type of intrin-
sic dynamics, as well as parameter dispersion. For example, if the underlying
neuron model for Zi(t) is a FitzHugh-Nagumo Model, then the population
vector Ψ(x, t) = (Ψ1(x, t),Ψ2(x, t),Ψ3(x, t),Ψ4(x, t)) is 4-dimensional where
Ψ1(x, t),Ψ2(x, t) describes the activity of an average FitzHugh-Nagumo neu-
ron and Ψ3(x, t),Ψ4(x, t) measures the dispersion of both parameter and phase
space. If the neurons desynchronize too much, then the approach of DeMonte
et al. (2003) will fail by definition. If, after loss of synchrony, multiple clusters
of coherent activity emerge in phase space instead, then it is possible to de-
scribe the neural mass action through multiple mean fields. Each of these mean
fields captures a single cluster dynamics (Assisi, Jira & Kelso 2005). In cases
of parameter dispersion, such emergence of cluster dynamics is common and
well-suited for the approach by Assisi et al. (2005). If the constraint of global
connectivity within the neural mass is dropped, richer dynamic phenomena
become possible such as the appearance of spiral waves (Chu et al. 1994; see
Milton 1996) and will be discussed in the next sections. Freeman (1975,1987)
proposed another classification of neural mass action which allows spike cor-
relations to be considered. He originally classified the activity of the neural
masses into classes named K0, KI and KII sets (K for Katchalsky) accord-
ing to their functional architecture. K-sets are composed of elements which
affect the nature of dynamics including physical components such as the in-
terconnected neurons, the neurochemical environment, etc., but also purely
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functional components such as the connection topology, the input structure,
etc. K0 sets represent the simplest functional architecture which can be viewed
as the ensemble average of the activity of independent but similar neurons. In
their simplest forms, KI sets are equivalent to two coupled K0 sets, KII sets
are composed of K0 and KI sets. However, they are more generally defined and
are in principle not always reducible to lower order K sets. In this notation,
a K0 set corresponds to the 1-dimensional and hence scalar activity of a neu-
ral mass, Ψ(x,t), whereas KI and KII sets correspond to higher-dimensional
vectors Ψ(x,t).

4.3 Composition of Neural Masses to Large Scale Models

Neural mass models sacrifice realism for a more parsimonious description of
the key mechanisms of large scale dynamics. The benefit lies in the possibility
of emulating non-invasively obtained brain imaging data such as EEG and
MEG. Neural mass models (Beurle 1956; Lopes da Silva et al. 1974; Freeman
1975; Nunez 1974, 1995; van Rotterdam et al. 1982; Jirsa & Haken 1996,
1997; Jirsa et al. 1998, 2002; Robinson et al. 1997, 2002, 2001; Tagamets &
Horwitz 1998; Steyn-Ross et al. 1999; Valdes et al. 1999; David & Frison 2003;
Breakspear et al. 2006) are based upon this approach. Much of the complexity
of the signals arises from the coordination of the interconnected neural masses
rather than the intrinsic dynamics of the microscopic unit, the neural mass,
of the large scale network. A neural mass at location x is locally connected
to its neighboring neural masses and globally connected to far distant neural
masses at locations x’. In the following, physical space is always assumed to
be one-dimensional, x ∈ �, but the mathematical treatment formally extends
trivially to two and three dimensions. Note that though the formal extension
to higher dimensions is not difficult, new dynamic network phenomena such
as spirals may emerge due to the higher dimension (see Nunez (1995) for
a discussion of spherical geometries). If the network dynamics described by
(17) were linear, then the mapping Φ : Z(x, t) → Ψ(x, t) would result in the
following large scale dynamics for the neural mass action Ψ(x,t) with Q = N
and S = H

dΨ (x, t)
dt

= Q(Ψ (x, t)) +
∫

Ω

t∫

−∞
h (x− x′)S (Ψ (x− x′, t− t′)) dt′dx′. (46)

However, in general the intrinsic dynamicsN and the activation function H
are nonlinear and residual terms arise which are here notationally absorbed in
Q and S. The intrinsic, sometimes also called endogenous, dynamics N of the
neural mass action is defined by the temporal evolution of Ψ(x,t) in absence of
all incoming signals including the connections to other neural masses. In the
following we will discuss representative models from this line of approach and
characterize the various entry points towards large scale network modeling.
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We place particular emphasis on the functional effects that the variation of
structural properties, such as local and global connectivity and time delays,
implies.

Amari’s Neural Field Model 1977

A classic paper on networks with no delay and symmetric and translationally
invariant connection topologies is Amari’s study of neural fields (Amari 1977).
Amari discussed spatially and temporally continuous fields Ψ(x,t) with local
fixed point dynamics as intrinsic dynamics. Then the field equations may be
written as

τ
dΨ (x, t)

dt
= −Ψ (x, t) +

∫

Ω

h (x− x′)S (Ψ (x′, t)) dx′ + c+ s(x, t) . (47)

where S is strongly nonlinear, typically the Heaviside function, and h(x−
x′) is excitatory for proximate connections and inhibitory for greater distances
(see Fig. 28 and 29). s(x, t) denotes external input and c a constant resting
potential and background activity.

In this type of scalar neural fields, oscillations are not possible, but lo-
cally excited regimes may exist and self-sustain with no input s(x, t) = 0,
which is believed to be a candidate for the neuronal basis of working memory
(Amit 1989). If input is provided, then the locally excited regions travel in the
direction of increasing field value Ψ(x,t) until they get pinned at the stimulus
location.

If several stimuli are provided, then the details of stimulus location and
the presence of already excited local regions will determine the typically

Fig. 28. Distribution function is plotted which captures local excitatory and lateral
inhibitory connectivity



Neuronal Dynamics and Brain Connectivity 47

Fig. 29. The characteristic connectivity of an Amari field reflects local excitation
and lateral inhibition

multi-stable final network dynamics. Characteristic examples are shown in
Fig. 30(a), b and c.

In all cases, the final stationary network state will be a fixed point at-
tractor. It was these properties, which attracted the attention of neural
modelers who applied these fields to a variety of phenomena ranging from
working memory (Amit 1989) to motor movement preparation (Erlhagen
& Schöner 2002). If two or more layers are coupled (Amari 1977), then a
more complex dynamics arises allowing for oscillatory and traveling wave
phenomena.

The Neural Field Models of Wilson & Cowan (1972, 1973)
and Nunez (1974)

Hugh Wilson & Jack Cowan (1972, 1973) and Paul Nunez (1974) indepen-
dently considered twocomplementary approaches, of which each is based upon

Fig. 30(a). The space-time diagram of an Amari field is shown. Initially the neural
field is not excited, then a stimulus is introduced around 1000ms at location x = 35
(space is in arbitrary units). At stimulus offset around 1300ms, the neural field
sustains its local excitation. At a later time point, another stimulus is introduced
at x = 10 for 300ms. Here the neural field also persists after stimulus offset. Such
persistent activity serves a s a simple model for working memory
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Fig. 30(b). The same situation is shown as in Figure 30a, only the second stimulus
is provided closer in space, x = 25, to the first stimulus and annihilates the excitation
at x = 35. The second local excitation persists unaltered

Fig. 30(c). The same situation is shown as in figure 30b, only the second stimulus
is now provided even closer in space, x = 30, to the first stimulus than before. This
time it does not annihilate the excitation at x = 35, on the contrary, both excitations
move towards each other and merge into one excitation. In the figure, it appears
that the excitation at x = 35 moves more than the other, which is true

two sets of locally coupled neural masses of inhibitory and excitatory neurons.
Wilson & Cowan considered the firing rate as the neural mass action; Nunez
considered synaptic action which is the proportion of active synapses at time
t and linearly related to dendritic currents. The firing rate of neural masses
has been referred to as pulses and the synaptic action as waves (Freeman
1975). Jirsa & Haken (1996, 1997) showed that both models are equivalent
and can be transformed into each other using so-called pulse-wave and wave-
pulse conversions, which are independently experimentally accessible (Free-
man 1975). Both models consider time delays via propagation. Delays are
absent in Amari’s model and hence constrains the latter’s applicability in a
biologically realistic scenario to small patches of cortical tissue. Time delays
are of increasing importance, the larger the scale of the network is.
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Fig. 31. The characteristic connectivity of Nunez’s population approach reflects
local and global excitation, as well as local inhibition

In Nunez’s early work (1974), his focus was on identifying the dispersion
relations of the linearized neural field dynamics given specific distributions of
intracortical and corticocortical fiber systems. The intracortical fiber system
is constrained to the gray matter and its axons make connections within a few
millimeters; the corticocortical fiber system constitutes the white matter and
connects areas across the entire cortex with axonal lengths of several centime-
ters in the human (Abeles 1991; Braitenberg & Schüz 1991), in some cases
reaching lengths of up to 15 to 20 centimeters (Nunez 1995). The excitatory
synaptic action Ψ1(x,t) and inhibitory synaptic action Ψ2(x,t) compose the
neural mass action and define one excitatory and one inhibitory layer (see
Fig. 31). The dynamics of the two-dimensional neural field is governed by the
following equation

dΨ (x, t)
dt

= −Ψ (x, t)+s(x, t)+
∫

Ω

∞∫

0

h (x− x′, v)S
(

Ψ
(
x, t− |x− x

′|
v

))
dvdx′,

(48)

where Ψ(x, t) = (Ψ1(x, t), Ψ2(x, t)), s(x,t) is the input to the two layers,
h(x−x’,v) defines a matrix describing the distribution of axonal fibers, S is the
sigmoid firing rate and Ω defines the spatial extent of the neural sheet. Due to

the finite transmission speed v, there is a time delay |x−x′|
v via propagation.

The connectivity function h(x−x’,v) is a 2 by 2 matrix, since Ψ(x,t) is a
2-dimensional vector field, and considers both intracortical and corticocorti-
cal fibers collapsed into one distribution function. The synaptic influence is
assumed to diminish in proportion to its density, in particular Nunez extrap-
olated h from mouse data (Nunez 1995) to assume an exponential form,

h(x) = exp (−|x|/σ)/2σ, (49)

as illustrated in Fig. 32, with the rate of drop-off captured by the parameter σ.
The inhibitory connectivity is of short range and the excitatory connectiv-

ity is of long-range since the latter is dominated by the corticocortical fiber
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Fig. 32. Exponential coupling function

system. It is notable that Nunez’s approach represents the first attempt to
use structural information to constrain the neural field dynamics for the large
scales observed in encephalographic measurements. His consideration of the
corticocortical fiber system within the integral kernel of (49) has influenced
much of the later research in the field of EEG and MEG (Jirsa & Haken
1996,1997; Wright and Liley 1996; Jirsa et al. 1998, 2002; Robinson et al.
1997, 2001; Steyn-Ross et al. 1999 ; Breakspear et al. 2006) and lead to the
development of neural field dynamics for large scale systems.

Wilson & Cowan (1972) initially considered the interaction of two popu-
lations of excitatory and inhibitory nature characterized by their firing rates
Ψ1(t) and Ψ2(t). An der Heiden (1980) showed nicely the connection between
the local Wilson-Cowan population model (1972) and the McCulloch-Pitts
model (1943). Later Wilson and Cowan (1973) extended their model to two
layers of coupled neural fields Ψ1(x,t) and Ψ2(x,t) (see Fig. 33) obeying the
following equation

dΨ (x, t)
dt

= −Ψ (x, t) + S

⎛
⎝
∫

Ω

h (x− x′) Ψ
(
x, t− |x− x

′|
v

)
dx′ + s(x, t)

⎞
⎠ ,

(50)
where we use the same notation as in the Nunez model. Various dynamic

phenomena were found as a function of the connectivity h including steady
network states, standing and traveling waves. An emphasis was placed on the
spatial localization of activations, which functionally necessitated the con-
straint that inhibitory connections are of longer range than excitatory inter-
actions. Such is in analogy to Amari’s model and is anatomically reflected in
the longer axons of inhibitory interneurons. This constraint, however, requires
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Fig. 33. The characteristic connectivity of Wilson & Cowan’s coupled population
approach reflects local excitation and inhibition with various degrees of laterality

the axons not to leave the gray matter and clearly limits the application of
these neural fields to local area networks.

The Neural Field Model of Jirsa & Haken (1996)
and Wave Equations

Based on first principles using pulse-wave and wave-pulse conversions, Jirsa &
Haken (1996, 1997) developed a neural field approach (see for early accounts
of neural field theories Griffith 1963, 1965) targeted specifically towards large
scale phenomena as observed in EEG, MEG. Initially based on two locally
coupled neural masses of excitatory and inhibitory neurons, the action of the
inhibitory neural mass is absorbed into an effective excitatory neural mass
action Ψ(x,t). This reduction is possible under the assumption that the in-
trisic dynamics of the neural mass is negligible and relaxes instantly to its
steady state, i.e. the neural mass action displays a fixed point dynamics. Then
the network dynamics will exclusively be determined by the connectivity and
its time delays and captured by an equation equivalent to (48), but with a
scalar connectivity function h(x−x’) (see Fig. 34). As in the Nunez model, the
connectivity includes local intracortical connections and global corticocortical
projections. As a first approximation, h(x−x’) is assumed to be translationally
invariant and follows an exponential decay as plotted in Fig. 32. Under these

Fig. 34. The characteristic connectivity of the Jirsa-Haken wave equation empha-
sizes excitatory long range connectivity after elimination of the local inhibitory
effects. The latter are captured in an effective neural mass action Ψ(x,t)
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conditions, Jirsa & Haken showed that the integro-differential (48) is equiva-
lent to the following partial differential equation in one physical dimension:

∂2Ψ (x, t)
∂2t

+2ω0
∂Ψ (x, t)

∂t
−v2 ∂

2Ψ (x, t)
∂2x

+ω2
0ψ (x, t) = ω0(ω0 +

∂

∂t
)S (Ψ (x, t))

(51)
where ω0 = v/σ, v is the transmission speed along myelinated axons and

σ the mean fiber length. Early accounts of wave phenomena in EEG and their
discussion in the context of wave equations can be found in (Nunez 1995).

The Jirsa-Haken wave equation (51) approximates various connectivity
functions of large scale networks in the limit for long waves, or, in other
words, large scale activity patterns. If the slope of the sigmoid function S
increases beyond a threshold, then the rest state becomes unstable and un-
damped wave propagation occurs. Below the threshold damped wave prop-
agation exists. Steven Coombes and colleagues (2003) discuss the effects of
connectivity strengths which do not decrease with increasing distance, but
rather remain constant within a finite regime. In this case, it is not sufficient
to describe the spatiotemporal dynamics by a local partial differential equation
as in (51), but non-local delayed terms arise (see Coombes 2005 for a review).
Wright and colleagues introduced much physiological detail and were able to
address issues of rhythm generation (Wright & Liley 1996), as well as clinical
aspects such as hysteresis phenomena in anesthesia (Steyn-Ross et al. 1999).
Robinson and colleagues introduced expressions for the corticothalamic loop
into the Jirsa-Haken equation (see next section) and included dendritic dy-
namics while implementing detailed physiologically realistic parameter ranges
(Robinson 1997, 2001). Frank and colleagues developed a Fokker-Planck ap-
proach to the Jirsa-Haken equation which captures the time evolution of the
stochastic properties of the neural fields (Frank et al. 1999, 2000). Applica-
tions to encephalograpic data can be found in (Jirsa and Haken 1997; Jirsa
et al. 1998, 2002; Fuchs et al. 2000; Liley et al. 2002; Jirsa 2004b; Robinson
et al. 2004, 2005; Breakspear et al. 2006).

The Inclusion of the Thalamocortical Loop
into Neural Fields (Robinson 2001)

In 1997 Robinson et al. presented an equivalent derivation of the Jirsa-Haken
equation considering effects of dendritic dynamics and added the important
extension of the thalamocortical loop in 2001 (see Fig. 35). The inclusion of
the thalamocortical interactions proved to be crucial to reproduce the essential
spectral properties observed in scalp topographies. Robinson and colleagues
preserve the neural field as a vector field Ψ(x, t) = (Ψ1(x, t), Ψ2(x, t)) of
excitatory and inhibitory neural masses and write the following equations

∂2Ψ (x, t)
∂2t

+ 2ω0
∂Ψ (x, t)

∂t
− v2 ∂

2Ψ (x, t)
∂2x

+ ω0
2ψ (x, t)

= ω0
2ρ (Ψ (x, t) ,Ψth (t− τ/2)) (52)
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Fig. 35. Robinson et al. (2001) capture corticothalamic effects contributing to neu-
ral field dynamics. The effect of excitatory and inhibitory influences is collapsed into
the upper row

for the dynamics of the neural field. The critical step is that the sigmoid
function ρ (Ψ (x, t)) does not only depend on the neural fields Ψ1(x,t), Ψ2(x,t),
but also receives time–delayed thalamic input Ψth(t− τ/2).

The thalamic action Ψth(t) is governed by the following differential equation

∂2Ψth (t)
∂2t

+ (a+ b)
∂Ψth (t)
∂t

+ abΨth(t) = input(Ψ(x, t− τ/2)) (53)

where the cortical input to the thalamus also undergoes a delay τ/2 via
propagation resulting in a effective delay τ of the total corticothalamic loop.
Computer simulations of equations (52) and (53) provide representative EEG
power spectra as shown in Fig. 36.

Fig. 36. Power spectra from the Robinson model of corticothalamic activity in eyes
closed (solid) and eyes open (dashed) resting states. The increase of low frequen-
cies in the eyes open condition reflects increased corticocortical gain, whereas the
increased alpha (10 Hz) peak in the eyes closed condition reflects increased corti-
cothalamic gain
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Extensions and Limitations of Large Scale Models

Large scale systems are characterized by an anatomical connectivity with
massively parallel and serial, hierarchical structures, as well as time delays
due to signal transmission. Such architecture produces an interareal connec-
tion topology, which is patchy as observed by Braitenberg & Schüz (2001)
and results in a heterogeneous connectivity. Yet it has been approximated
in various attempts by a homogeneous connectivity with a larger extension
(see Fig. 37). The approach uses a larger mean path length and hence effec-
tively mixes functionally the intracortical and corticocortical fiber systems.
Research of this kind has successfully reproduced various large scale charac-
teristics of activity including the dispersive properties of the cortex (Nunez
1995) or global EEG power spectra (Robinson 2001); it also shows promise in
situations of highly symmetric functional connectivity (Jirsa et al. 1997, 1998;
Fuchs et al. 2000). However, to this date, it has not been shown rigorously
under what conditions the homogeneous approximation holds.

Mallot and colleagues (1989, 1996) discussed in a series of papers a con-
ceptual framework in which, rather than just mean fields, local networks
communicate across distances. These local networks have an intrinsic fixed
point dynamics, but exchange information via time-delayed pathways. Mallot
and colleagues applied this approach to examples of the thalamocortical loop
(Mallot et al. 1996) and for the geniculate-striate pathway of the visual system
(Mallot et al. 1989). Similarly, discretely coupled local networks incorporate
time delays in the connecting pathways and absorb all local dynamics within
a set of coupled neural masses (Freeman 1975, 1992; David & Frison 2003).
Jirsa & Kelso (2000) studied the neural field dynamics of the Jirsa-Haken
equation in which a heterogeneous pathway is included (Fig. 38). Such a two-
point pathway connects the neural masses at locations X2 and X8 which
are embedded into a continuous sheet with local connections only. This

Fig. 37. Left: Neural connectivity has local intracortical symmetric components
(homogeneous) and patchy corticocortical components (heterogeneous). Right: Ap-
proximation of the real local and global connectivity by a symmetric connectivity
function with an average path length
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Fig. 38. Realistic connectivities are characterized by translationally invariant local
connections and translationally variant global connections. The basic model for the
study of the interplay of local and global interactions is the embedded two-point
connection in a locally connected neural network as shown in the figure

connectivity identifies the basic toy model for the study of local and global
interactions. The change in the connection topology destabilizes the initial sta-
tionary dynamics and the system undergoes a transition to a new stationary
state via a Hopf bifurcation. Detailed bifurcation diagrams are given in (Jirsa
& Kelso 2000) in which the spatiotemporal reorganization is characterized as
a function of the length of the two point connection.

Minor changes in the location of the terminals or the system parameters,
such as the homogeneous or heterogeneous transmission speeds, may result in
qualitatively different global neural field dynamics. As an example, in Fig. 39
a stimulus is introduced in the neighborhood of a terminal of a two-point

Fig. 39. A neural field following Jirsa and Haken (1996) with an embedded two-
point connection at x=10 and x=40 is established. In the neighborhood of x=10,
a brief stimulus excites the neural sheet locally and the neural field reorganizes
globally in a large scale transient wave which damps out after a sufficiently long
time (not shown here)
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connection (based at x=10 and x=40), then the excitation of the neural field
travels through the continuous sheet, but also transmits a signal via the het-
erogeneous pathway. A transient wave dynamics is observed on the global
system scale and damps out after a sufficiently long enough time. With no
heterogeneous connection, only a local excitation at x=10 would have been
observed. Similarly, with no heterogeneous connection and with two stimuli
at terminal sites x=10 and x=40, only two local excitations would have been
observed, but no large scale organization as observed in Fig. 39.

5 Conclusion

The neurosciences have historically leaned strongly towards empiricism – a
tradition which continues today. However, mathematical formalisms of dy-
namical phenomena have provided extraordinary explanatory and unifying
insights in the physical sciences. The emerging advances in computational
neurosciences, particularly with respect to brain connectivity, suggest that
they will also come to play an important role in the brain sciences. The cross-
fertilization of dynamical systems theory (see also the Chapters by Campbell,
Horowitz & Husain and Stephan & Friston), graph theory (Sporns & Tononi),
basic physics (Ferree & Nunez), and methodological advances in neuroimag-
ing (Darvas & Leahy, Fuchs) will hopefully underpin advances which do not
merely reduce problems in neuroscience to problems already solved in other
fields, but instead allow those properties of the brain that are unique to in-
form novel and specific discoveries. We see this blending of universality and
specificity as absolutely crucial. Too much of the former will yield simplifica-
tions that lose what is required of a system in order to look (and function)
like a brain. Conversely, too much specific detail yields volumes of descriptive
data that adds little to our understanding of the underlying principles of brain
function.

In this chapter, we have overviewed developments in the field of dynamical
neural modeling across several scales of magnitude – from the microscopic con-
ductance models of bifurcating neurons, (briefly) through systems of coupled
chaotic oscillators at the mesoscopic scale to models of large scale neural net-
works whose behavior generates the electroencephalographic and neuroimag-
ing data that is acquired non-invasively from human subjects. Evidence of
computationally significant processes has been documented in data sets from
across this spectrum of scales – i.e. from the single cell to the whole brain.
An open and important question then is the relationship between activity at
different temporal and spatial scales (Churchland and Sejnowski 1992). A pos-
sible answer could be that the macroscopic dynamics is an epiphenomenon –
that is, a summed output of dynamics that can only truly be modeled at the
neuronal level. However, this approach cannot be reconciled with the successes
of large-scale models, which engage the brain at macroscopic scales only, to
provide descriptive explanations of neuroscience data. That is, as discussed in
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Sect. 4 of the present chapter, a mean field reduction of the present state of
the system is able to predict its future states. This suggests that synchroniz-
ing processes are able to enslave many of the (small scale) degrees of freedom
into dynamical structures at larger scales whose behavior is then – to some
degree – determined by the state of the system at that scale. Whilst the large
scale processes that are sustained by such processes inevitably influence the
dynamics of the small scale units, it also remains possible that small scale
events – such as critical sensory inputs – are able to rapidly influence the
behavior of the system as a whole.

Whilst such considerations preclude a purely reductionist approach, an
adequate explanatory framework remains elusive. The situation may be anal-
ogous to a heated magnet that it is close to the Curie temperature (above
which it loses the ability to be magnetized): The magnetic fields are purely an
outcome of the dipoles of spinning electrons. Yet the spinning electrons are also
strongly influenced by the larger-scale magnetic fields. Below the Curie tem-
perature, the fields are sufficiently strong to overcome stochastic fluctuations
of individual spin directions. Above the Curie temperature the emergent fields
are insufficient in strength to enslave the electron dipoles and the metal can-
not hold a macroscopic field. However, at the Curie temperature, there is just
a sufficient degree of coherence at any given scale to overcome the stochas-
tic fluctuations at the next smaller scale. However, fluctuations at a small
scale are able to transiently cascade to larger scales, a phenomena known as
criticality and exhibit scale free fluctuations. Or perhaps even more attrac-
tive are the spin glass systems where – in addition to these processes – there
exist disordered structures embedded in the system which preclude a per-
fectly ordered system even at low temperatures. Many of such spatiotemporal
pattern formation phenomena and their underlying mechanisms have been
understood in the framework of Synergetics, a field pioneered by Hermann
Haken (1983, 1999).

Whilst such arguments have an attractive appeal, we should bear in mind
our own warning that the brain is not just another complex physical sys-
tem – such as a heated metal – even one with embedded impurities! There
exist additional complexities that are surely important to brain function. One
such critical difference is that there do exist structures across spatial and
temporal scales prior to the emergence of dynamically driven scale-free (and
scale-specific) fluctuations. Is it possible that the interaction between scale-
specific processes across a hierarchy of scales is somehow optimal? Fusi et al.
(2005) have shown how a hierarchy of synaptic processes – each with char-
acteristic time scales – can interact in order to optimize memory retention
(upgrading new memories) and storage (maintaining selected memory for long
periods of time). Breakspear & Stam (2005) modeled the interaction between
scale-free dynamics and multiscale spatial architectures by defining dynamical
systems on different wavelet subspaces, and with cross-scale coupling between
subspaces. This would potentially allow for a recursive relationship between
small and large-scale dynamics.
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Such observations hopefully reflect the challenge of fusing the universal
with the specific as an emerging frontier in neuroscience research.
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Arbib M, Érdi P (2000) Structure, Function, and Dynamics: An Integrated Approach
to Neural Organization. Behavioral and Brain Sciences 23, 513–571

Ashwin P, Buescu, J, Stewart, I (1996) From attractor to chaotic saddle: A tale of
transverse stability. Nonlinearity, 9: 703–737.

Ashwin P, Terry J (2000) On riddling and weak attractors. Physica D, 142, 87–100.
Baker GL, Gollub JP (1990) Chaotic Dynamics: An Introduction. Cambridge

University Press
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