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Abstract. This paper deals with the problem of enhancing the quality of speech 
signals, which has received growing attention in the last few decades. Many dif-
ferent approaches have been proposed in the literature under various configura-
tions and operating hypotheses. The aim of this paper is to give an overview of 
the main classes of noise reduction algorithms proposed to-date, focusing on the 
case of additive independent noise. In this context, we first distinguish between 
single and multi channel solutions, with the former generally shown to be based 
on statistical estimation of the involved signals whereas the latter usually em-
ploy adaptive procedures (as in the classical adaptive noise cancellation 
scheme). Within these two general classes, we distinguish between certain sub-
families of algorithms. Subsequently, the impact of nonlinearity on the speech 
enhancement problem is highlighted: the lack of perfect linearity in related 
processes and the non-Gaussian nature of the involved signals are shown to 
have motivated several researchers to propose a range of efficient nonlinear 
techniques for speech enhancement. Finally, the paper summarizes (in tabular 
form) for comparative purposes, the general features, list of operating assump-
tions, the relative advantages and drawbacks, and the various types of non-
linear techniques for each class of speech enhancement strategy. 

Keywords: Single-channel/Multi-channel Speech Enhancement, Noise Reduc-
tion, Noise Cancellation, Microphone array, Non-linear techniques. 

1   Introduction 

The goal of speech enhancement systems is either to improve the perceived quality of 
the speech, or to increase its intelligibility [1-3]. There is a large variety of real world 
applications for speech enhancement in audio signal processing – for example, we  
experience the presence of degraded speech both in military and commercial commu-
nications, induced by different transmission channels (telephony) or produced in vari-
ous noisy environments (vehicles, home-office etc.). Due to the growing interest in 
this subject, numerous efforts have been made over the past 20 years or so by the sci-
entific community in order to find an effective solution for the speech enhancement 
problem. The different nature of interfering sounds, the admissible assumptions on the 
generating process of speech degradation and on the available observables, and the 
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various operating conditions involved require us to make a preliminary distinction be-
tween the various speech enhancement approaches proposed to-date.  

The principal aim of this work is to give an overview and a preliminary compari-
son of the main up to date techniques found in the literature for the noise reduction 
problem, focusing on non-linear techniques in particular. However, wherever re-
quired, some linear techniques are also outlined in order to better introduce certain 
non-linear extensions of interest. Because of the huge amount and diverse range of 
works reported in this field, we only introduce certain families of algorithms, consid-
ering the case when the noise is additive and independent of the clean speech. Note 
that speech de-reverberation and separation case studies, which can also be classified 
as speech enhancement problems, are not addressed here. The mathematics behind the 
reviewed methods is also omitted for lack of space, only the main formulae being in-
troduced. Experimental numerical results and direct comparisons of the different in-
troduced techniques are avoided firstly, because standard benchmark data have not 
been proposed or used in the literature, and secondly because the various reported 
methods all make use of different and individually optimized operating assumptions. 
Instead, the main details of the important reviewed methods will be summarized and 
compared in tabular form at the end of this paper. 

Initially, we make a rough distinction between the different techniques by consid-
ering the number of available noisy speech channels: in the next paragraphs of this 
Section, the single channel speech enhancement problem and the multi channel 
speech enhancement problem are introduced; Section II further discusses the main 
nonlinear approaches developed for the monaural speech enhancement problem in-
cluding supervised and unsupervised neural network based techniques. Section III ad-
dresses the two-channel/binaural speech enhancement case. Section IV reviews the 
general multi-channel non-linear speech enhancement case and finally, Section V pre-
sents the concluding summary by highlighting the main features, list of operating as-
sumptions, the relative advantages and drawbacks and the various types of non-linear 
techniques for each class of speech enhancement strategy reviewed in this paper. 

1.1   Basic Concepts 

The degradation of the speech signal can be modeled, in a quite general manner, as 
follows: 

[ ] [ ] [ ] [ ] [ ] [ ]= ∗ + = +hy k h k s k n k s k n k      (1)  

where hs  is the observed degraded speech, s  is the original signal to be recovered, 
and n  is the additive noise, h[k] is the impulse response of the room where the sensor 
is placed and ∗  represents the convolution operator. Obviously, one can think of 
other types of degradation models that require specific enhancing methods. For the 
most part of this work, the convolutive term is not considered ( [ ] [ ]δ=h k k ), with 

only the additive term [ ]n k  considered present. In addition, we shall consider back-

ground noise as interference in our studies, and the cases of speech separation (cock-
tail party problem), impulse or transient noises [1] will not be dealt with here due to 
space restrictions. 
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A first rough distinction between speech enhancement techniques can be made by 
looking at the number and type of observables available for: 

1. single channel speech enhancement: where only one degraded version of the origi-
nal speech is available and modeled by (1); 

2. multi-channel speech enhancement: where the noisy observations are obtained 
from two or more sensors. 

In conventional approaches [4], speech and noise signals are considered as un-
known random processes and the objective is to perform an adequate statistical esti-
mation of one random process (the speech signal) from the sum of speech and the 
noise. Such a task is hard because we have neither a precise statistical model of the 
signals nor a reliable measure to evaluate the effectiveness of the enhancement proc-
ess. Moreover the non-stationarity of speech (and possibly of noise as well) [5]  
requires tracking of its time-varying statistical properties by means of adaptive solu-
tions. Next, we present an overview of single-channel and multi-channel speech en-
hancement problems, followed by their non-linear extensions. 

1.2   Brief Overview of the Single-Channel Speech Enhancement Problem 

Spectral Subtraction (SS) [6] is probably the earliest and most well-known technique 
for single channel speech enhancement: it is often still used due to its efficacy and 
simplicity. In its most basic form (involving subtraction/filtering of power spectral 
density/amplitudes), the noise power spectral density is estimated, but the method in-
troduces musical noise and other distortions in the recovered signal [1],[3]. Some in-
teresting solutions involving nonlinear techniques have been proposed in the literature 
to overcome such drawbacks [1], [7]. However, as widely agreed, the best algorithm 
from this perspective is the one proposed by Ephraim and Malah [8-10] that is closely 
related to the pioneering work of McAulay and Malpass [11]. This is based on the 
minimum mean square error (MMSE) estimation of the speech spectrum in the loga-
rithmic domain; and it is a natural extension of the one in the linear domain [8]. Fur-
ther improvements have been achieved through the employment of better performing 
MMSE estimators, as in Xie and Compernolle [12], or by making the spectral subtrac-
tion procedure dependent on the properties of the human auditory system [13].  

Another interesting derivative of SS is the signal subspace approach [14], [15] 
based on an estimation of the clean speech, as also done in the case of the Bayesian 
approach for speech enhancement using Hidden Markov Models (HMM) [16], [17]. 
Since this approach in its basic form is essentially linear and thus out of the intent of 
this work, it is not described in the following. HMM have also been successfully im-
plemented in nonlinear estimation frameworks [18], [19] where some speech data is 
assumed available for training. Other methods relying on the availability of a suitable 
training set have also been developed. Among these, we can cite the time domain and 
transform domain nonlinear filtering methods employing neural networks [20-26].  

On the other hand, unsupervised single-channel speech enhancement techniques 
have received significant attention recently. Examples here include the Extended 
Kalman Filtering [15] [27-28] Monte-Carlo simulations [4], Particle filtering [4], [21], 
[30] and the Noise-Regularized Adaptive Filtering [15], [31] approaches, that can  
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enable significant noise reduction even in difficult situations (involving noise non-
gaussianity or system nonlinearity). 

1.3   Brief Overview of the Multi-channel Speech Enhancement Problem 

The multi-channel speech enhancement problem can be modelled as follows [1]: 

[ ] [ ] [ ] [ ] [ ] [ ]= ∗ + = +h
m m m m my k h k s k n k s k n k      (2) 

where m is the sensor index. When 2=m  we refer to the so called binaural case if the 
spacing between the microphones is comparable to that between human’s ears.  

In the last years the scientific community has particularly focused its attention on 
multichannel techniques, as they virtually provide remarkable outcomes on the single 
channel ones. As highlighted in some recent works [3], using a single channel it is not 
possible to improve both intelligibility and quality of the recovered signal at the same 
time. Quality can be improved at the expense of sacrificing intelligibility. A way to 
overcome this limitation is to add some spatial information to the time/frequency in-
formation available in the single channel case. We can get this additional information 
using two or more channel of noisy speech.  

Adaptive noise cancellation [32-33] can be viewed as a particular case of the multi-
channel speech enhancement problem. Indeed, we have two observables, the noisy 
speech and the reference noise, and the goal is to get an enhanced output speech adap-
tively according to the scheme in Fig.1. Classical methods based on full-band multi-
microphone noise cancellation implementations can produce excellent results in  
anechoic environments with localized sound radiators, however performance deterio-
rates in reverberant environments. Adaptive sub-band processing has been found to 
overcome these limitations [34]. The idea of involving sub-band diverse processing to 
take account of the coherence between noise signals from multiple sensors has been 
implemented as part of the so-called Multi-Microphone Sub-Band Adaptive 
(MMSBA) speech enhancement system [35-38]. 

The main limitation of these linear approaches is that they are not able to deal ef-
fectively with non-gaussianity of the involved signals or the non-linear distortions 
arising from the electro-acoustic transmission systems. As a result, several nonlinear 
approaches have been proposed to-date mainly employing Neural Networks (NN) and 
Volterra Filtering (VF), see for example,[39-42], [25]. Such non-linear processing ap-
proaches have also been successfully implemented within the MMSBA architecture, 
as will be highlighted later on. 

If available, more than two microphones (resulting in a microphone array) can be 
used in order to achieve better performance for noise reduction. The most common 
approaches here are represented by the delay-and-sum array and the adaptive beam-
former [43]. Among the large variety of linear approaches that have appeared in the 
literature so far for speech enhancement, some nonlinear microphone arrays have also 
been proposed [44-46], which seem to exhibit relevant performance improvements 
with respect to their linear counterparts. Another interesting nonlinear approach in the 
microphone array area is represented by the idea of estimating the log spectra of in-
volved signals (as in the single channel case), taking advantage of the availability of 
more sensors [47-51]. 
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Fig. 1. Spectral Subtraction when two microphones are available (subtraction of amplitudes) 

2   Nonlinear Monaural Speech Enhancement 

In this section some well-known nonlinear methods for single-channel speech en-
hancement are outlined, without any intention of being exhaustive. Indeed, many 
other relevant contributions are present in the literature: our attempt here is to high-
light the main approaches that have received much attention recently. 

2.1   Spectral Subtraction (SS): Linear and Nonlinear Methods 

Spectral Subtraction is a simple and effective method for reduction of stationary 
background noise [1-2], [6]. The processing is done on a frame-by-frame basis in the 
frequency domain. Speech and noise are assumed to be uncorrelated. The estimated 

speech short-time magnitude ( )ˆ ωS  is obtained by subtracting from the noisy speech 

short-time magnitude |Y(ω)| a noise spectral magnitude estimate |N(ω)| computed dur-
ing speech pauses. This is what is essentially depicted in Fig.1, keeping in mind that 
the two-microphone SS scheme is equivalent to the monaural case with an effective 
Voice Activity Detector to allow the estimation of noise statistics during noise-alone 
periods. Taking into account the power spectral subtraction case study, we have 

( ) ( ) ( ) ( ) ( )
2 22 2

2 ˆ ˆ
ˆ

0

ω ω ω ωω
⎧ − >⎪= ⎨
⎪⎩

Y N if Y N
S

otherwise
    (3) 

where ( )
2ˆ ωN  is the noise power spectral estimate. The phase of noisy speech is left 

unchanged, so the enhanced signal in time domain is obtained as: 

( ) ( ) ( )( )argˆˆ ωω⎡ ⎤= ⎣ ⎦
j Ys k IFFT S e .     (4) 

Subtractive-type algorithms can be studied using a second approach termed filter-
ing of noisy speech, involving the use of a time-varying linear filter dependent on the 
characteristics of the noisy signal spectrum and on the estimated noise spectrum. The 
noise suppression process becomes a product of the short-time spectral magnitude of 

the noisy speech ( )ωY  with a gain function ( )ωG  as follows: 
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( ) ( ) ( ) ( )ˆ      0 1ω ω ω ω= < <S G Y with G .     (5) 

In terms of power spectral densities and considering (3) we have: 

( ) ( ) ( )( ) ( ) ( )( )2 2ˆ1 / 1ω ω ω ω ω= − = +post postG N Y R R      (6) 

that is constrained to be null if the estimated noise power level is superior to that of 

the noisy speech. ( ) ( ) ( )( )2 2
/ 1ω ω ω= −postR Y N  is the a posteriori SNR. In other 

words, such a subtractive scheme results in emphasizing the spectral components pro-
portionally to the amount by which they exceed noise. As can be seen in (6), ( )ωG  

can be written as a function of the a-posteriori SNR, and many different rules, namely 
suppression curves, have been proposed so far. Their aim is to make the application of 

( )ωG  more flexible in order to reduce the effect of musical noise that is characteris-

tic of the classical SS approach [1-2], [6]. From this perspective, an interesting  
solution has been proposed as the so-called nonlinear SS [7], according to which a 

nonlinear estimation of noise power spectral density ( )
2ˆ ω
nl

N  is used in (3) as  

follows: 

( ) ( )( ) ( ) ( )
2 2 2ˆ ˆ ˆmax , ,ω ω ω ω⎛ ⎞= Φ ⎜ ⎟

⎝ ⎠post
nl over M frames

N N R N      (7) 

where ( ).Φ  is the nonlinearity involved in the estimation process. A possible formu-

lation for this is: 

( )( ) ( )
( )( )
( )

2

2
ˆmax

ˆmax ,
1

ω
ω ω

γ ω
⎛ ⎞Φ =⎜ ⎟ +⎝ ⎠

over M frames

post
over M frames

post

N
N R

R
     (8) 

with γ  being a design parameter. Equation (8) says that as the SNR decreases the out-

put of the nonlinear estimator approaches the maximum value of noise spectrum over 
M frames, and as SNR increases it approaches zero. One can consider more compli-

cated ( ).Φ , depending also on ( )
2ˆ ωN , which can be useful if one is interested in 

over-subtraction for example. 

2.2   The Ephraim-Malah SS Algorithm and Some of Its Variants 

The Ephraim Malah algorithm [8-10] has received much attention by the scientific 
community. This is mainly due to its ability to achieve a highly satisfying overall 
quality of the enhanced speech which is appreciatively artifacts-free, and these char-
acteristics makes it suitable for practical implementations in digital hearing aids. Such 
an approach has been down to outperform the conventional SS schemes as it is based 
on an estimation of the short-time spectral amplitude (STSA) of the speech signal. 
The same is also the case with the Soft-Decision Noise Suppression filter of McAulay 
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and Malpass [11] where the STSA estimator is derived from an optimal (in the 
Maximum-Likelihood sense) variance estimator. In Ephraim and Malah (1985), an 
MMSE (minimum mean square error) STSA estimator is derived and applied in a SS 
scheme. The basic assumptions are the statistical independence of speech and noise, 
along with the spectral components of each of these two processes considered as zero 
mean statistically independent Gaussian random variables.  

As pointed out in several papers, the main difference between the two STSA based 
approaches, i.e. [8] and [11], is that the former is able to yield colourless residual 
noise, whereas musical noise is still present after processing the observable through 
the latter procedure. In the following only the main formulae constituting the Eph-
raim-Malah noise suppressor are reported. Omitting the time and frequency indexes 
( ,ωl ) in order to shorten the notation, the suppression curve ( ),ωG l  to be applied to 

the short-time spectrum value ( ),ωY l  can be expressed as: 

( ) ( )1
, 1

2 1 1 1

πω
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

prio prio
post

post prio prio

R R
G l M R

R R R
     (9) 

where ( ).M  is the  nonlinearity based on 0th and 1st order Bessel functions: 

( ) ( ) 0 1exp 1
2 2 2

θ θ θθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
M I I .   (10) 

The formulations of the a-priori SNR and a-posteriori SNR respectively (for each 
value of the time and frequency indexes) are given below: 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )

22

2

2

ˆ, 1, 1

1, 1,
, 1 ,

ˆ

ω ω ω

ω ω
ω α ω α

ω

= − −

− −
⎡ ⎤= − +⎣ ⎦

post

prio post

R l Y l N

G l Y l
R l P R l

N

   (11) 

with [ ] =P x x  if 0≥x  and [ ] 0=P x  otherwise. prioR  is an estimate of the SNR that 

takes into account the current short-term frame with weight ( )1 α−  and the noise re-

duced previous frame with weight α . Compared to other noise suppression rules 
based on averaging the short-time spectrum or on calculating the gain function over 
successive frames, one advantage of the Ephraim-Malah algorithm lies in the non-
linear averaging process. When the signal level is well above the noise level, the a-
priori SNR becomes almost equivalent to the a-posteriori SNR with one frame delay, 
with the result that prioR  is no longer a smoothed SNR estimate (which is important 

for preventing the deterioration of the speech signal which is rather non-stationary). 
The original version of the Ephraim-Malah rule does not take the signal presence 

uncertainty into account, in contrast to the procedure developed in [11]. This is a rele-
vant aspect, since the speech signal is not always present in the noisy mixture and the 
energy of some voiced type spectral contributions is negligible in comparison to the 
corresponding noise.  
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An interesting generalization to the rule described by (9) has also been derived to 
address this problem. However it is not reported here, as it has been shown to behave 
similarly to the log-spectral estimator developed in [9]. Such an approach comprises a 
nonlinear spectral estimator performing the MMSE of the log-spectra. The underlying 
motivation is that a distortion measure based on the MSE of the log spectra is more 
subjectively meaningful than the counterpart based on the MSE of the common spec-
tra. The spectral gain ( )log ,ωG l  of the MMSE log spectral amplitude estimator is 

( )
( )log

1
, exp

1 2 κ ω
ω

−+∞⎡ ⎤
= ⋅ ⎢ ⎥+ ⎣ ⎦

∫
t

prio

prio

R e
G l dt

R t
   (12) 

where prioR  and postR  are defined as above and the following holds: 

( ) ( )1
1

κ ω = +
+

prio
post

prio

R
R

R
.   (13) 

As observed by the authors, the rule (12) allows higher noise suppression, leaving 
unchanged the quality of the output speech with respect to the gain function in (9). 

Further improvement in the performance achievable through this approach has 
been demonstrated in [12], who employ an empirical approach to yield a numerical 
solution to the MMSE estimate in the log spectral domain. Assuming that the speech 
and noise log spectra have normal distributions, it can be shown that the MMSE esti-
mate of the speech log spectrum at certain time instant and frequency bin ( ),ωl  is a 

function of noisy observations and the probabilistic model parameter (mean and vari-
ance { }, , ,μ σ μ σs s n n ). Such a function must be approximated, and the authors in [12] 

propose the novel use of a multi-layer perceptron (MLP) neural network. Monte Carlo 
simulations are used to get an adequate input/output training set for the network under 
the assumed statistics; and the approximation problem then turns out to be a curve fit-
ting one by considering the MMSE estimation as a gain function. Considering the 
presence of a VAD to ensure the calculation of noise statistics during silence periods 
(even in slowly time-varying environments), assuming fixed and known the variance 
of the speech log spectra, and reformulating the parameter model after proper nor-
malization, we can formulate the scheme of approximation of MMSE estimation as 
shown in Fig.2. 

2.3   Overview of Supervised Neural Network Based Approaches 

Other important nonlinear methods for single channel speech enhancement are pro-
posed and analyzed in this section. These generally provide a suitable estimation of 
the clean speech signal, by means of nonlinear models in order to take into account 
the nonlinearities within the dynamic process determining the speech signal produc-
tion. We shall consider here some techniques assuming the availability of a clean 
speech training data for the underlying nonlinear model. The classical techniques us-
ing Neural Networks as nonlinear filters mapping the noisy speech to clean speech in 
the time domain or in different domains [20], allow to get good estimations only  
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Fig. 2. Approximation process of the MMSE estimation in the log spectral domain 

assuming speech and noise stationarity. A time variant model can be achieved by cre-
ating different fixed models for corresponding dynamical regimes of the signals and 
switching between these models during the speech enhancement process.  

We start therefore from a straightforward neural extension of the work by Ephraim 
[16-17] which is represented by the principled switching method proposed by Lee 
[18], that incorporates the extended Kalman filtering approach (which will be dis-
cussed later). HMMs have been shown to be an effective tool in presence of signal 
uncertainty [16], due to their capability of dividing the received speech signal into 
various classes automatically. With reference to [18], each HMM state provides a 
maximum-likelihood estimate ( )ŝ k  under the assumption that the windowed obser-

vation vector ( )ky  belongs to class i. The overall estimate is given by 

( ) ( )( ) ( ) ( )ˆ ˆ ,⎡ ⎤= ⋅ ⎣ ⎦∑ i i
i

s k p class k s k k classy y    (14) 

where ( )( )ip class ky  is the probability of being in class i given the window of noisy 

observations ( )ky  and the second term in the sum represents the maximum-

likelihood estimate of the speech given class i and the data. The posterior class  

probability ( )( )ip class ky  is easily calculated using standard forward-backward re-

cursive formulas for HMMs.  Alternatively, the estimate ( )ŝ k  may be simply taken 

as the estimate for the single filter whose posterior class probability is maximum: 

( ) ( ) ( )( ) ( )( )ˆ ˆ= ⎡ ⎤ ≥ ∀⎣ ⎦m m is k s k class with p class k p class k iy y .   (15) 

The Extendend Kalman Filter (EKF) technique, involving an autoregressive model 
for each class, can be used to provide the maximum-likelihood estimation for  
speech. On purpose, a suitable set of clean speech data has to be employed to train the 
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autoregressive neural models, whereas the speech innovations variance 2σ n  can be es-

timated from the clean speech for each class. 
A recent variant has been proposed [19] to the above approach of Lee et al [18]: 

wherein the nonlinear prediction model is based on a Recurrent Neural Network 
(RNN). The enhanced speech is the output of an architecture, namely RNPHMM (Re-
current Neural Predictive Hidden Markov Model), resulting from the combination of 
RNN and HMM. Similar to the previous approach [18], the unknown parameters are 
estimated by a learning algorithm derived from the Baum-Welch and RNN back-
propagation algorithms. 

As previously outlined Neural Networks can also be used as non-linear time do-
main filters, fed with the noisy speech signal to yield the estimate of the clean speech. 
The training is performed by using clean speech (from a known database) artificially 
corrupted to create noisy input data and presented to the network sliding the observa-
tion window over the available signal. The Tamura approach [22-23] is one of the 
oldest and most representative of this category: a four-layered neural network is used 
and trained for hetero-association, employing noisy speech signal patterns at the input 
and the corresponding noise free signal patterns at the output. Obtained results have 
been compared to those obtained with spectral subtraction through subjective listen-
ing tests, concluding that most listeners preferred the neural network filtered speech.  

Another classical scheme is the one used in [24] where the noise signal is filtered 
through a feedforward network with a M-unit hidden layer and a single output unit, 
whose notation is used on e following. For each time instant k , the hidden unit com-
putes the weighted sum of its input and subsequently applies a compressor function 

: →f  to produce its output activation. It can be shown that for every desired in-

put-output mapping in the form of a real valued continuous function : ∈ →K
df x  

and, for a non constant bounded and monotonically increasing activation function 

( )⋅f  at all hidden elements, an integer M , an ×M K  matrix ⎡ ⎤= ⎣ ⎦ijuU  and M -

dimensional vectors ⎡ ⎤= ⎣ ⎦jvv  and ⎡ ⎤= ⎣ ⎦jbb  exist such that 

( ) ( )max ε∈Γ − − <T
df fx x v Ux b    (16) 

where ε  is an arbitrarily small positive constant and Γ  is a bounded close subset of 
K . Note that even if it may be theoretically possible to find the network weights that 

make the output error as small as desired, in real situations the parameters’ optimiza-
tion is very hard due to the fact that in supervised learning the adjustment of parame-

ters is generally based on a limited number of training pairs ( )( ), dfx x . Moreover in 

noise filtering applications, the mapping of the noise signal to the corresponding clean 

signal is not usually a mathematical function ( )⋅df , and this violates one of the exis-

tence conditions of the above-stated theorem. For the filter adaptation, a back-
propagation approach is usually used.  

Neural network structures can also be successfully used in the transformed domain 
[28] to carry out the enhancement process, following a suitable training phase. The 
approach followed is generally based on a multistage architecture, comprising: 
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1. processing of the original data into a transform domain 
2. nonlinear enhancement mapping performed by a neural network 

The phase information is typically left unchanged through the overall process. 
From this perspective, if we give an estimate of noise power spectral density as input 
to the NN, we can see such a method as a form of nonlinear SS. This helps to address 
the nonlinear link between noise and speech due to the nature of transform that is not 
necessarily the one attainable through the Fourier transform (like log-power spectral, 
cepstral, LPC, and so on). 

Several researchers have performed interesting studies on this subject. We can cite 
as examples the one employing time delay neural network for Mel-scaled spectral es-
timation [21] and the one with missing data technique using Reurrent Neural Net-
works [52]. Furthermore, the SS technique based on nonlinear spectral estimation [12] 
described above can also be interpreted within this framework. 

2.4   Overview of Nonlinear Unsupervised Techniques 

The problem of finding the maximum likelihood estimates of the speech and the 
model parameters, given the noisy data, has been successfully addressed by Wan and 
Nelson [16] [28] using neural autoregressive models and the Extended Kalman Filter-
ing (EKF) method. The speech model in the time domain is the following non-linear 
autoregressive model: 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

1 , , ,= − − +

= +

s k f s k s k K v k

y k s k n k

w
   (17) 

where ( )v k  is the process noise in state equation, usually assumed to be white, and K 

is the model time length. A different model is used for each frame into which the 
noisy signal is segmented. The EKF method is able to yield the ML optimal estimate 
if the model is known. However, if no suitable data set for training is provided, the 
model parameters have to be learnt from the available observable sequence. Kalman 
Filter theory can be directly applied to the autoregressive model above, if we rewrite 
it in the state-space form and ( ).f  is assumed to be linear: 

( ) ( ) ( )
( ) ( ) ( )

1= − +⎡ ⎤⎣ ⎦
= +

k F k Bv k

y k C k n k

s s

s
   (18) 

where the following hold: 
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F k f s k s k K s k s k K

C B C
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s w .   (19) 
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The EKF algorithm is simply a generalization of the well-known KF when ( ).f  is 

nonlinear, providing an approximation of ( ).f  with a time-varying linear function. 

The EKF formulas are listed below, where ( ) ( )2 2,σ σv nk k  represent the variances of 

the process and observation noises respectively. 

( ) ( ) ( )ˆ ˆ ˆ1 , 1− = − −⎡ ⎤⎣ ⎦k F k ks s w  
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1

ˆ 1
T T
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F k
P k AP k A B k B A
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σ− ∂ −⎡ ⎤⎣ ⎦= − + =

∂ −s s

s w

s
 

( ) ( ) ( ) ( )( ) 12
ˆ ˆ

T T
nG k P k C CP k C kσ

−− −= +s s  

( ) ( )( ) ( )ˆ ˆP k I G k C P k−= −s s  

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆk k G k y k C k− −= + −s s s  

  (20) 

However, note that one cannot exclusively rely on such a procedure to get what is 
required, i.e. a simultaneous estimation of the speech model and speech signal. As a 
result, a new set of state-space equations for neural networks weights w  (used for 
nonlinearity parameterization) are formulated as follows: 

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

1

1 ,

α= − +

= − + +

k k k

y k f k k v k n k

w w

s w
.   (21) 

The neural system f(.) allows a nonlinear time-varying observation on w . An EKF 
algorithm can be applied to yield an ML estimate of the current state assuming the 
other state s  is known. The result is that we have two EKFs running in parallel (see 
Fig.3), one for state and the other for weights estimation. At each time step, the  
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Fig. 3. The Dual Extended Kalman Filter method for speech enhancement 
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present state estimate ( )ˆ kx  is used by the weight filter EKFw and the present weight 

estimate ( )ˆ kw  feeds the state filter EKFx.  

This approach, as is the case with SS, does not depend on the type of signal that we 
are dealing with and requires a suitable estimation of noise statistics. The main draw-
back is represented by the high computational cost occurring in training neural net-
works on-line, and some partial solutions have been proposed in order to reduce the 
computational complexity and obtain a faster convergence. 

The Noise-Regularized Adaptive Filtering (NRAF) approach for speech enhance-
ment [28] [31] involves a window based and iterative process that is similar to the 
dual EKF method, but does not use an AR model for the speech.  It can be considered 
as a direct time-domain mapping filter (in the sense developed in [31]) avoiding the 
need for a clean dataset to train the network.   

The objective of direct filtering approaches is to map the noisy vector y(k) to an es-

timate of the speech signal ( ) ( )( )ˆ =s k f ky . The neural network performing the 

mapping is trained by minimizing the mean-square error (MSE) cost function: 

( ) ( )( ){ }2
min ⎡ ⎤−⎣ ⎦f

E s k f ky .   (22) 

We will now show how to minimize such a quantity without assuming that the 
clean signal s(k) is known. Consider the expansion: 

( ) ( )( ){ } ( ) ( )( ){ } ( ) ( )( ){ }
( ) ( ){ } ( ){ }

2 2

2

2

2

⎡ ⎤ ⎡ ⎤− = − + +⎣ ⎦ ⎣ ⎦

− +

E s k f k E y k f k E n k f k

E y k n k E n k

y y y
   (23) 

Since the last two terms are independent of f(.), it suffices to minimize the follow-
ing alternative cost function to get the optimal solution: 

( ) ( )( ){ } ( ) ( )( ){ }{ }2 2
min 2⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦f

E y k f k E n k f ky y .   (24) 

A relevant advantage arises: the clean speech is not needed. Indeed the first term 
(corresponding to the cost associated with filtering the noisy signal itself) only de-
pends on the observables, whereas the second term (namely the regularization term) 
on the noise statistics. An approximate solution is typically used for the latter. It is ob-
tained by using the Unscented Transformation (UT), a method for calculating the sta-
tistics of a random variable going through a nonlinear transformation. Then, at each 
time instant, the network input is a suitable set of K vectors carrying the information 
related to the first and second order signal statistics, whereas the corresponding output 
is a weighted sample mean. A standard gradient based algorithm like back-
propagation can be used to accomplish the minimization. The effectiveness of the 
method relies on the assumption that the accuracy of the second-order UT based  
approximation to the regularization term is good enough to achieve the network  
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convergence to the true minimum MSE. Moreover, as in the Dual EKF approach, also 
in NRAF the speech non-stationarity can be dealt with by windowing the noisy data 
into short overlapping frames with a new filter for each frame.  

In addition, Monte-Carlo simulation based approaches for audio signal enhance-
ment have been recently proposed in some scientific works [4] [29-30]. Here their ba-
sic principles shall be discussed. Considering the clean and noisy speech as sequences 
of scalar random variables, we can assume they satisfy some kind of time-varying 
state-space equations, as previously done in (17). With a superior degree of general-
ity, we can characterize our system by three deterministically nonlinear transition 
functions, here denoted as , ,f g h . Function f  is also dependent on discrete time k 

(therefore it will be represented as kf ), whereas the other two are in general depend-

ent on the system parameter vector ( )kw  (and we will denote them as ,
k k

g hw w  

respectively). It follows that the state space equations are: 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 ,

1 ,

,

= −

= −

=
k

k

kk f k u k

s k g s k v k

y k h s k n k

w

w

w w

   (25) 

where ( ) ( ) ( ), ,u k v k n k  are the innovation processes of the dynamical system, usu-

ally assumed to be statistically independent and identically distributed (i.i.d). As men-
tioned earlier, the involved functions in (25) are not linear, the parameter vector is not 
known (and possibly non-stationary) and the model is non-Gaussian. This results in 
severe computational difficulties in estimating the system parameters and/or the state 
signal (speech), and favors the usage of Monte Carlo simulations according to which 
the probability distributions are sampled and replaced by empirical distributions. It 
follows that the filtering and smoothing recursions occurring in state estimation can 
be simulated by means of the so called particle filters and smoothers developed 
through the point masses (particles) obtained from distribution sampling.  

In [4], [30] and [31], speech signal process is modeled as a time-varying autore-
gressive (TVAR) model (as for the case of the Dual EFK method discussed above). 
Moreover the noise is assumed to be Gaussian and the coefficients of TVAR model a 
Gaussian random walk process. It can be shown that the following holds: 

1: 1: 1: 1 1: 1 1: 1 1: 1, 1k k k k k kp k y p y k y p k k p y dw w w w w w
 

  (26) 

where 1:ky  stands for ( ) ( ){ }1 , ,y y k , and accordingly for other variables occurring 

with same notation. The quantity ( )( )1:kp k yw  is the filtering distribution, namely 

the objective of our estimation problem. Now, let us suppose to have an estimate of 

( )1: 1 1: 1− −k kp yw  at time instant 1−k . This probability density function (pdf) can be 
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sampled N times producing N different sample paths of 1: 1−kw , namely 

{ }1: 1, 1, ,− =k
i i Nw . Hence, the particle approximation to ( )1: 1 1: 1− −k kp yw  is given by: 

( ) ( )1: 1 1: 1 1: 1 1: 1

1

δ− − − −

=

≈ −∑
N

k k k k
i

i

p yw w w    (27) 

where ( ).δ  denotes the Dirac function. For each i, we can get the N samples 

( ){ }, 1, ,=i k i Nw  from a proposal distribution ( )( )1: 1 1:,π −k k
i ik yw w , namely the 

importance distribution. Then we can use the latter samples to augment the former 

and generate the new sample paths at time instant k: { }1: , 1, ,=k
i i Nw . A typical as-

sumption is to set: 

( )( ) ( ) ( )( )1: 1 1:, 1π − = −k k
i ik y p k kw w w w    (28) 

It must be said that ( ) ( )( )1−p k kw w  is fixed once we have chosen to apply a 

constrained Gaussian random walk in the TVAR coefficient domain.  
Equation (27) can be substituted into (26), resulting in: 

( )( ) ( ) ( )1: 1: 1:

1

θ δ
=

≈ −∑
N

k k k
i i

i

p k y kw w w    (29) 

where ( )θi k  are the importance weights and ( ) ( )( )1: 1: 1,θ −∝ k k
i ik p y k yw  holds, as a 

direct consequence of (28). Under the assumption of conditionally linear Gaussian 

structure, the distribution ( )( )1: 1: 1, −k k
ip y k yw  can be evaluated efficiently using the 

Kalman filter and the prediction error decomposition. Indeed, our system model satis-
fies such a condition, as confirmed by (18). This ensures also ( )O N  computational 

complexity and storage requirements for our algorithm. We have now an estimate of 

( )( )1:kp k yw  and we can iterate the procedure for all subsequent time instants. Fur-

thermore, it follows that the MMSE estimate of the clean speech plus parameter vec-

tor of our system model ( ( )( ) ( )( ), ,=k k
k kf k ks w s w ) is 

( ) ( )( ) ( )( )1: 1:

0:

,
1

ˆ ,θ
=

⎡ ⎤
⎣ ⎦∑ k k

N
k k

N i ik k k kp k y
i

I f E f k
s w

s w    (30) 

where ( )( )1: 1:,k kp k ys w  is a Gaussian distribution whose parameters may be com-

puted using the Kalman filter and E  is the expectation operator. According to the 
principle of Sequential Importance Sampling (SIS), satisfied by our choice of the pro-
posal distribution, a recursive evaluation of the importance weights is allowed, which 
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implies: ( ) ( ) ( ): : 1θ θ θ−= k1 k 1 kw w . Finally, the normalized importance weights ap-

pearing in (30) are given by ( ) ( )0:
: :

1

θ θ θ
=
∑

N
k i j

i
j

1 k 1 kw w . 

3   Binaural Nonlinear Noise Cancellation for Speech Enhancement 

3.1   Review of Adaptive Noise Cancellation (ANC) 

The classical scheme for the Adaptive Noise Cancellation (ANC) was originally pro-
posed by Widrow et al. [32], and has been the subject of numerous studies involving a 
wide range of applications. In contrast to other enhancement techniques, no a priori 
knowledge of signal or noise is required for the method to be applied, but this advan-
tage is paid for by the need of a secondary or reference input. This reference input 
should contain little or no signal but it should contain a noise measurement which is 
correlated, in some unknown way, with the noise component of the primary input. An 
important step in ANC is obtaining a reference signal which satisfies the above men-
tioned requirements. Referring to Fig.4, given a noisy speech (primary) signal [ ]y k , 

and assuming that [ ]s k  is uncorrelated with [ ]1n k  and [ ]2n k , and that [ ]2n k  is 

processed by a linear filter [ ]h k  (generally non-causal), it is easy to show that 

[ ]{ }2E e k  is minimized when [ ] [ ]1=v k n k , so that the output speech [ ] [ ]=e k s k  is 

the desired clean signal. Hence, the adaptive filter in classical linear methods is de-

signed to minimize [ ] [ ]{ }1 −E n k v k , using standard algorithms, like the least mean 

squares (LMS) technique. 
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Fig. 4. Adaptive noise cancellation scheme for general nonlinear environments 

3.2   Nonlinear ANC: Review of Approaches 

Linear adaptive filtering, previously described, with the mean squared error (MSE) 
criterion is a standard signal processing method, and the reason for its success is the 
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relative simplicity of design and ease of implementation. Nevertheless it can not often 
realize the Bayes conditional mean, which is the optimal filter for the MSE criterion, 
and generally a nonlinear function of the observed data. An important exception is if 
the observed data and the data to be estimated are jointly Gaussian: in this case the 
Bayes filter is a linear function. Since many real world signal processing applications 
have to deal with non-Gaussian signals, the use of a linear finite impulse response 
(FIR) or infinite impulse response (IIR) filter does not permit to obtain an acceptable 
level of noise or interference cancellation, because it can not efficiently approximate 
the nonlinear mapping between the known reference and the unknown interference 
signal. With reference to Fig.4, we say that the reference noise is related to the inter-
ference signal by an unknown nonlinear operator H , approximated by a nonlinear 
feed-forward network. The objective is to determine the unknown nonlinear operator 
H  by a nonlinear filter W , so that we can optimally estimate the noise [ ]1n k  and 

subtract it from the signal [ ]y k . In this way the primary source signal can be esti-

mated. In the literature, a number of different techniques to design the filter W  can 
be found which can be conveniently grouped in three principal classes: higher order-
statistic filters, polynomial filters (in particular Volterra filters) and different kinds of 
neural networks. Higher order statistics (HOS) filters are based on ordering properties 
of input signals. A well-known member of this family is the Median filter, that is use-
ful in removing impulsive noise, but poor in case of Gaussian noise. In [41] third-
order statistics are used to derive novel design techniques which are more insensitive 
to corruption of the primary signal by additive Gaussian noise, compared to the sec-
ond-order statistics ones. Referring to Fig.4, under the hypothesis that all signals are 
zero mean and stationary, and that [ ]s k  is independent of both [ ]1n k  and [ ]2n k  and 

that [ ]1n k  and [ ]2n k  are someway correlated, the optimal filter W  can be deter-

mined using the third-order moment by solving the following 

[ ] ( ) ( ) ( ) ( )
2 2

3 3
3

0
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+ + =∑
q

n yn
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w i R m i l i R m l    (31) 
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R m l E y k n k n n k l
   (32) 

and different estimates can be obtained for different values of ( ),m l . Furthermore, if 

1n  is linearly related to 2n  (i.e. if H  in Fig.4 can be modeled by a linear time invari-

ant (LTI) filter) then theoretically [ ]3w k obtained from (31) is equivalent to those  

obtained by classical MSE methods, and it leads to complete cancellation of the inter-
ference, by identifying the true H  filter. In practice, the theoretical auto- and cross- 
correlations are substituted by consistent sample estimator computed from the  
available data. The Volterra Filter (VF) has the important property to be linear in its 
parameters. So the identification of vector H  in the MMSE sense can be obtained 
through the resolution of a linear equation. To find the optimal filters, we can operate 
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both in the time and in the frequency domain [53]. An adaptive resolution of this 
equation is the RLS algorithm, which is based on the recursive calculation of the co-
variance matrix of the input signal of the filter. For the application of VF to the prob-
lem of noise cancellation, we refer to Fig.4 [42]. If [ ]2n k  and [ ]s k  are independent 

and zero mean, then the previously mentioned algorithms can be used, if we replace 

[ ]x k  with [ ]2n k  and [ ]y k  by [ ] [ ]1+s k n k . 

Next, a number of selected approaches to the interference cancellation problem us-
ing neural network filters are briefly analyzed, though other techniques can of course 
be found in the literature too.  

As previously noticed, the problem of noise filtering can be viewed as the problem 
of finding the mapping of noisy signal patterns [ ]y k  to the corresponding noise-free 

signal patterns [ ]s k . According to this perspective, different kinds and topologies of 

neural networks can be used relating to the different relations between [ ]1n k  and 

[ ]2n k . Since a two layer feed-forward network has been proven capable of approxi-

mating any continuous non-linear mapping, assuming there are a sufficient number of 
hidden units, various implementations of this structure (with different contrast func-
tions and number of hidden units) can be found in the literature. In [42], for example, 
a perceptron with one hidden layer and one output unit is used for the filter W  (refer-
encing to Fig.4 for the notation).  

Denoting [ ] [ ] [ ] [ ]2 2 2 2, 1 , ,⎡ ⎤= − −⎣ ⎦k n k n k n k Kn , the mapping is described by 

[ ] [ ]( )2
1

tanh
=

= −∑
M

T
m m m

m

v k c k bw n    (33) 

where M  is the number of hidden units, mc  and the vectors mw  are the weights coef-

ficients, and mb  are the biases. The training is performed using the classical back-

propagation technique. No method currently exists to precisely determine the optimal 
solution. Performance depends on the initial weights, the learning rate and the amount 
of training, but for small K  from (33) the perceptron seems to perform a good ap-
proximation of the optimum Bayes filter.  

The last kind of neural network analyzed in this work for the problem of noise can-
cellation is the Hyper Radial Basis Function (HRBF) neural network, following the 
approach described in [40]. The main idea is to consider the mapping W  in Fig.4 to 
be approximated as the sum of various radial basis functions, each one with its own 
prior. Defining mf , 1, ,=m M  as these functions, the function to minimize is: 

( ) [ ]( ) [ ]
( )

2
2

1 2 1
1 1 1

γ
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑ ∑
K M M

m m m m
k m m

L n f n k n k P f    (34) 

where mP  are stabilizers in Tikhonov’s stabilization theory and γ m  are regularization 

parameters (real and positive). The approximate solution of (34) is given by: 
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( )1 2
1 1

,
= =

=∑∑
M K

m m m
j j j

m j

n w G n q    (35) 

where m
jw  are weight parameters and m

jG  are Green’s functions. Choosing a set of 

stabilizers whose Green’s functions are Gaussian, the HRBS neural network becomes 
formally equivalent to a two layer neural network the hidden layer of which realizes 
an adaptive nonlinear transformation (with adjustable weight and center parameters).  

3.3   Multi-(sub)band Processing for Binaural Speech Enhancement 

Some researchers have looked to the human hearing system as a source of engineering 
models to approach the enhancement problem, with some modelling the cochlea and 
others utilizing a model of the lateral inhibition effect. Two or more relatively closely 
spaced microphones have been used in an adaptive noise cancellation scheme [35], to 
identify a differential acoustic path transfer function during a noise only period in in-
termittent speech. The extension of this work, termed the Multi-Microphone Sub-
band Adaptive (MMSBA) speech enhancement system, applies the method within a 
set of sub-bands provided by a filter bank. The filter bank can be implemented using 
various orthogonal transforms or by a parallel filter bank approach. The idea of em-
ploying multi-band processing for speech enhancement has also been considered in 
other contributions focusing on the spectral subtraction technique [54-55]. In the 
MMSBA approach [36-38], the sub-bands are distributed non-linearly according to a 
cochlear distribution, as in humans, following the Greenwood model [56]. The con-
ventional MMSBA approach considerably improves the mean squared error (MSE) 
convergence rate of an adaptive multi-band LMS filter compared to both the conven-
tional wideband  time-domain and  frequency domain LMS filters, as shown in  
[36-38]. It is assumed that the speaker is close enough to the microphones so that en-
vironmental acoustic effects on the speech are insignificant, that the noise signal at 
the microphones may be modelled as a point source modified by two different acous-
tic path transfer functions, and that an effective voice activity detector (VAD) is avail-
able. In practice, the MMSBA based speech-enhancement systems have been shown 
to give the important benefit of supporting adaptive diverse parallel processing in the 
sub-bands, namely Sub-band Processing (SBP), allowing signal features within the 
sub-bands, such as the noise power, the coherence between the in-band signals from 
multiple sensors and the convergence behaviour of an adaptive algorithm, to influence 
the subsequent processing within the respective frequency band. The SBP can be ac-
complished with no processing, intermittent coherent noise canceller, or incoherent 
noise canceller. In the conventional MMSBA approach, linear FIR filtering is per-
formed within the SBP unit and the LMS algorithm is used to perform the adaptation. 
In the non-linear MMSBA, Volterra Filtering based SBP has been applied (together 
with the RLS algorithm), leading to a significant improvement of results, especially in 
real noisy environments. The Magnitude Squared Coherence (MSC) has been applied 
by [58] to noisy speech signals for noise reduction and also successfully employed as 
a VAD for the case of spatially uncorrelated noises. A modified MSC has been used 
for selecting an appropriate SBP option within the MMSBA system [36]. 

In the newly proposed modified MMSBA architecture [38], Wiener filtering (WF) 
operation has been applied in two different ways: at the output of each sub-band  
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adaptive noise canceller, and at the global output of the original MMSBA scheme. 
The employment of such post-processing (WF) within the MMSBA allows to deal 
with residual incoherent noise components that may result from the application of 
conventional MMSBA schemes, similar to the approach adopted in [57]. In both the 
proposed architectures, the role of WF is to further mitigate the residual noise effects 
on the original signal to be recovered, following application of MMSBA noise-
cancellation processing. 

Finally, the MMSBA framework also allows incorporation of cross-band effects to 
mimic human lateral inhibition effects. One possibility seems to extend the recently 
reported promising work of Bahoura and Rouat [59], who have shown that non-linear 
masking of a time-space representation of speech can be used to achieve simulated 
noise suppression for the monaural case, by discarding or masking the undesired 
(noise) signals and retaining the desired (speech) signals. They have demonstrated 
that this non-linear masking can enhance single-sensor or monaurally recorded speech 
by performing non-linear filtering with adaptive thresholding (based on the Teager 
Energy operator Bahoura and Rouat [60]) on a time-frequency (multi-band) represen-
tation of the noisy signal. In [61] the MMSBA system with linear filtering and two 
different adaptive sub-band binaural structures have been compared in the noise re-
duction problem.  

4   General Multi-channel Nonlinear Speech Enhancement 

This section deals with those nonlinear techniques for enhancement of speech signals 
when more than one microphone is present, specifically when an M-element micro-
phone array is available. Compared to the single-channel case discussed in Section 2, 
the multiple sensors allow suitable spatial filtering of the incoming signals thereby 
gaining a relatively enhanced capability of interference suppression. Two main cate-
gories of works can be identified in this area. One is based on the development of a 
nonlinear microphone array system, where both complementary beamforming and 
nonlinear SS are carried out to yield the final enhancement. The other approach deals 
with Log-Spectra estimation within different noise reduction frameworks. 

Let us start from the former [44]. The goal here is to enhance the speech signal 
through a spatial spectral subtraction method by using a complementary beamformer. 
The presence of two complementary directivity patterns results in nonlinear SS proc-
essing that avoid use of a speech pause detector - which is normally employed in a 
typical SS scheme (see above). As depicted in Fig.5, the observed signals pass 
through two different weight vectors, then summed in order to produce primary and 
reference signals defined as: 
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   (36) 

where 0S  is the speech signal coming from the look direction (so coinciding with S  

if we consider the model (2)), ,g h  are the M-element complementary weight vectors, 
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Ω  is the set of directions relative to the different interfering signals approaching the 
beamformer, dN  is the noise signal corresponding to the d-th direction. The quanti-

ties ,d dga ha  describe the directivity patterns, and da  is the steering vector: 

( ) ( ) ( ) ( )
( ) ( )( )( )

1, 2, ,

,

, , , , , , ,

, exp sin

ω ω ω ω

ω ω θ

⎡ ⎤= ⎣ ⎦

=

d d d M d

m d m d

l a l a l a l

a l j x l c

a
   (37) 

where c is the sound velocity, θd  the d-th direction of arrival, mx  the coordinate of 

the m-th element of the array. The term ( )( )sin θd l  in (37) implies that the steering 

vector depends on the frame number l due to the non-stationary location of noise con-
tributions (hence such a dependency can be neglected in the case of “static” noise). It 
can be easily proved that, under assumptions of complementary directivity patterns 
and uncorrelation of arriving signals, the reference signal can be subtracted from the 
primary to yield 0S  without any speech pause detector. In formulas: 

( ) ( ) ( ) ( ) ( ) ( )( )
1 2

2 21ˆ , , , exp
2

ω ω ω φ ω⎡ ⎤⎡ ⎤= − ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
p rS l Y l E Y l j    (38) 

where ( )ˆ ,ωS l  is the estimated speech signal and ( )φ ω  a suitable phase function, 

coming from a conventional beamformer (delay-and-sum, DS) in the above approach 
(see Fig.5). In order to avoid occurrence of over-subtraction, a better performing 
frame-by-frame SS rule has been used in [44].  
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Fig. 5. Block diagram of the nonlinear mic array based on complementary beamforming 

The directivity patterns are designed under the constraint of keeping the terms 

( ) ( )ω ω⋅d dga ha  as small as possible, for all ,ω d , in order to have low noise con-

tribution to the primary signal. This results in a nonlinear constrained least squares 
minimization problem, tackled by a suitable iterative procedure. The approach is  
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supervised and the common choice made for the target directivity pattern involves 
setting the value 1 for the look direction and 0 otherwise. In such a way, it is possible 
to get lower sidelobes with respect to the DS array, resulting in a significant im-
provement of speech enhancement capability. However, the optimization procedure 
employed is not specifically oriented to minimize the average gain in each direction, 
causing a certain difficulty to reduce directional noise. That is why another optimiza-
tion scheme, within the complementary beamforming based framework described 
above and depicted in Fig.5, has been proposed in [45]. According to this, the power 

spectrum of the estimated speech ( )
2ˆ ,ωS l  is calculated through a block averaging 

technique, giving origin to the quantity ( )
2ˆ ωBS  (where B is the number of blocks 

involved) that becomes the minimization criterion (assuming speech absence condi-
tions). Again a relatively superior performance is obtained with respect to the conven-
tional DS in situations where well-located noise sources (undesired speeches) are  
present. This occurs also when sound sources outnumber the microphones. 

For the sake of completeness, we can mention the work of Dahl and Claesson [36], 
within the category of nonlinear microphone arrays. The approach followed in [46] is 
the one of nonlinear time-domain filtering, previously addressed in Section 2, and 
from this perspective it can be seen as a generalization of the single-channel approach 
described above. Hence no further details will be provided here. 

Let us move now to address the Spectral Amplitude estimation based approach. 
The first contribution to consider here is the work of Lotter et al. [47] which provides 
two short-time spectral amplitude estimators generalizing the single-channel MMSE 
(Ephraim-Malah) and MAP [62] estimators. The method is based on the usual as-
sumption that both speech and noise DFT coefficients have zero-mean equal-variance 
independent Gaussian pdfs. In the multi-channel case, the estimation of the speech 
spectral amplitudes is conditioned on complex spectra of M noisy channels ( )⋅mY , 

taking into account the notation used in (2): 

{ }1 2
ˆ , , ,=m m MS E S Y Y Y    (39) 

The above is calculated at each point of the time-frequency grid ( ),ωp . It can be 

showed that the new gain for channel m is: 
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where 1F  is the confluent hypergeometric series, Γ  the Gamma function and ϑm  the 

m-th noisy channel phase. Eq. (40) turns to (9) when 1=M , since (9)  can be shown 
to be equal to: 

( ) ( ) ( )( )
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1
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11 1
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post prioprio

priopost prio

R RR
G p F

RR R
   (41) 

It must be observed that (40) is obtained if perfect DOA (Direction of Arrival) cor-
rection is assumed within the microphone-array when the short-term spectral ampli-

tude estimation ( )ˆ ,ωS p  is performed. As pointed out in [51], for DOA independent 

speech enhancement, the amplitude estimation has to be calculated by conditioning 
the expectation of the joint observation of noisy amplitudes, i.e. (39) turns to: 

{ }1 2
ˆ , , ,=m m MS E S Y Y Y .   (42) 

In order to do the above in a simple and effective way, the authors in [47] sug-
gested to employ the MAP estimator proposed originally for the single-channel case 
in [62]. It follows that, denoting ( )p ⋅  as the probability density function (pdf) of a 

generic random variable, the following has to be maximized 

( ) ( ) ( )( )1 2log log , , ,= ⋅M m mL p Y Y Y S p S    (43) 

from which the following resulting gain can be derived: 
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which turns to the single-channel gain as follows: 

( )
( ) ( )
( )

2 1 1
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2 1
ω

+ + + +
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⋅ +
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R R R R R
G p
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observing that the argument of ( )Re ⋅  is always a real number when 1M = .  

Experimental results show how the new estimators allow a significant improve-
ment of noise reduction performances (using segmental SNR as quality index) with 
respect to the single-channel EM rule in several operating conditions. Moreover as 
expected, the multi-channel MAP estimation approach turns out to be less sensitive to 
the phase errors (which are likely introduced by reverberation environments in rear-
world applications) compared to the MMSE based method. 
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Along this direction we must cite the approach recently proposed by Cohen and 
Berdugo [49] that focused on the minimization of the Log-Spectra amplitude (LSA) 
distortion in environments where time-varying noise is present. The overall scheme 
(Fig.6) comprises an adaptive beamforming system (made of a fixed beamformer, a 
blocking matrix and a multi-channel adaptive noise canceller) and a suitable LSA es-
timation chain acting on the beamformer outputs, written as (in STFT domain): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1, 1,

, ,

, , , ,

, , , , 1, ,

ω ω ω ω

ω ω ω ω

= + +

= + + =
st ns

m m m st m ns

V l S l N l N l

U l S l N l N l m M
   (46) 

where st and ns stand for stationary and non-stationary respectively. The objective is 
to find a suitable estimator of ( )1 ,ωS l  minimizing the LSA distortion.  

The noise cancellation system is responsible for reducing the stationary contribu-
tion and yielding the signal ( ),ωV l  on which the optimally-modified log-spectral 

amplitude (OM-LSA) gain function will be applied to achieve the goal. The evalua-
tion of the nature of transient occurrences is performed through a suitable estimation 
of speech presence probability, which is based on a Gaussian statistical model and in 
particular on the transient beam-to-reference ratio (TBRR) defined as: 
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S Mm m
m M

V l V l
l
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where S[.], M[.] are the smoothing operator and the noise spectrum estimator arising 
by recursively averaging past spectral power values [48]. Assuming that the beam-
former steering error is low and that the interfering noise is uncorrelated with speech, 
it can be said that a high TBRR means speech presence. When this is not the case, the 
noise estimation can be fast updated and then given to the OM-LSA [5] estimator for 
final speech enhancement. As confirmed by experimental results, such an approach 
seems to provide an adequate estimation of the time-varying noise spectral compo-
nents and so a significant reduction of noise impact without degrading the speech  
 

Speech
Presence
Probability
Estimator

Noise
Spectrum
Estimation

Spectral
Enhancement
(OM-LSA) 
Estimator

Σ

( ),l ωY

( )lW

( )lB

M dimensional

( ),l ωU

( ),l ωH

( ),V l ω

( )1̂ ,S l ω

+
−

M-1 dimensional

Speech
Presence
Probability
Estimator

Speech
Presence
Probability
Estimator

Noise
Spectrum
Estimation

Noise
Spectrum
Estimation

Spectral
Enhancement
(OM-LSA) 
Estimator

Spectral
Enhancement
(OM-LSA) 
Estimator

ΣΣ

( ),l ωY

( )lW

( )lB

M dimensional

( ),l ωU

( ),l ωH

( ),V l ω

( )1̂ ,S l ω

+
−

M-1 dimensional

 

Fig. 6. Block diagram of the multi-microphone log-spectral amplitude estimation 
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information. Moreover, a significant improvement of performances is obtained 
through this multi-channel algorithm w.r.t. the single channel counterpart. 

Another interesting approach based on Log-Spectra Amplitude estimation is the 
one employing a Supervised Regression technique, both in linear and nonlinear fash-
ions. The method is termed Multiple Regression of the Log Spectrum (MRLS) [46] 
and has the objective of approximating the Log-Spectral Amplitude of the close-
talking microphone (i.e. the original speech signal [ ]s k ) by means of the Log-

Spectral Amplitude of noisy signals emanating from other sensors. Mathematically, 
(taking (2) into account): 

( )( ) ( )( )
1

log logλ
=

≈∑
M

d d
m m

m

S Y .   (48) 

Let us first assume that the model (2) is written as: 

[ ] [ ] [ ] [ ] [ ]= ∗ + ∗m m my k h k s k g k n k .   (49) 

Moving to the STFT domain, we can approximate the log-power spectrum of the 
m-th mic signal by a two-dimensional Taylor-series expansion around the reference 

0
mY  so that: 

( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0log log log log log log− ≈ − + −m m m mY Y a S S b N N    (50) 

where it can be shown that the coefficients ,m ma b  depends on the SNR at m-th loca-

tion. Now, considering ( )( )• d
 the deviation from ( )( )0• , (50) turns to: 

( )( ) ( )( )( ) ( )( )( )log log log≈ +d d d
m m mY a S b N .   (51) 

The regression error is then given by the difference between the two terms in (48). 
The optimal weights λm  can be obtained by minimizing such an error over a suitable 

number T  of training samples, i.e.: 
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The supervised optimization approach followed requires the employment of a 
close-talking microphone added to the available microphone array during the training 
phase the speech captured by the close talking mic is used as the speech signal S . 
The log-power spectrum is calculated though mel-filter bank (MFB) analysis and log 
operator. A cepstral based implementation has been also implemented, since the  
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orthogonality of the Discrete Cosine Transform (DCT) transform ensures that mini-
mization of (52) is equivalent to minimization in the cepstral domain. Several experi-
mental results have shown that the MRLS approach allows a good approximation of 
the close-talking microphone and outperforms the adaptive beamformer from the  
perspective of speech recognition performance, ensuring also a low computational 
cost. Further improvements have been obtained when nonlinear regression (through 
Multi-Layer Perceptrons and Support Vector Machines) is employed [51]. A draw-
back is likely represented by the supervised optimization procedure that can be 
adopted within a speech recognition scheme, but turns out to be limiting in a more 
general framework for speech enhancement. An alternative approach to multi-channel 
non-linear speech enhancement has been described in [63], which applies neural net-
work based sub-band processing (within the MMSBA processing framework) with 
promising initial results using real automobile reverberant data. This interesting ap-
proach warrants further investigation. 

5   Concluding Summary 

In this section, we summarize in tabular form for comparative purposes, the general 
features, list of operating assumptions, the relative advantages and drawbacks, and the 
various types of non-linear techniques for each class of speech enhancement strategy 
reviewed in this paper. Some references related to the methods not specifically de-
scribed in the paper, are not included in the table. 

5.1   Spectral Subtraction/Filtering Techniques 

BASIC (LINEAR) TECHNIQUES [1], [2], [6] 

General Features 
- based on MMSE estimator 
- optimal solution only for Gaussian statistics 
- frame by frame processing 
- linear subtraction/filtering in the noisy signal spectral domain 

Assumptions 

-speech and noise incorrelated 
- stationarity of noise signal 
- availability of a VAD system 
- zero mean Gaussian signals (for optimal estimation) 

Advantages - ease of implementation 
- computationally low demanding 

Drawbacks -non optimal estimate of clean speech 
- high level musical noise 

NON LINEAR EXTENSIONS 

Ephraim Malah [8],[9], [10] 
- nonlinear MMSE-STSA estimator 
- higher noise suppression compared to linear SS/SF 
- lower musical noise on the enhanced speech 

Xie-Compernolle [12] 
 

- empirical approach for the MMSE-STSA estimation 
- MLP to approximate the Y->X mapping 
- computationally more demanding (Monte Carlo simulations) 
- it requires the knowledge of the log spectral variance of the 

clean speech (supposed fixed) 
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5.2   Supervised NN Based Techniques 

BASIC TECHNIQUES [21], [26], [52] 

General Features 

- NN used to get the nonlinear mapping Y->X 
- off line training stage needed  
- standard training strategies (e.g. BP) to minimize MSE 
- different NN topologies can be used 
- iterative algorithms 
- filtering can be realized both in time and in different domains 
- speech parameters extracted form clean speech and used for 

enhancement 

Assumptions 

- additive Gaussian noise 
- both noise and speech stationarity 
- availability of clean speech data for off-line training 
- Gaussian signal statistics (for optimal estimation) 
- speech and noise stats representative of the training set  
- SNR or measures of joint noise-signal stats available 

Advantages 
- better estimation of clean speech 
- reduction of musical noise effect 
- good for fixed noise type 

Drawbacks - higher computational complexity 
- availability of a clean speech training set 
OTHER EXTENSIONS 

Kalman Filter [3], [20] 

- speech modeled as AR process 
- noise and speech variances available 
- no colored noise 
- involved parameters availability (noise gain, LPC parameters) 

Switching Methods [16-19] 

- a posteriori probability available for each class 
- suitable for non stationary signals 
- HMM estimate form noisy signal using Bayesian estimator form 

noisy speech 
- number of sates must be sufficient to model all ranges of sig-

nal and noise statistics 

Extended KF [3], [20] 
 

- non linear AR model for speech 
- ML convergence to AR parameters (off line training) 
- AR parameters available during enhancement 
- noise and speech variances must be known 

5.3   Unsupervised Techniques 

BASIC METHODS 

General Features 

- NN used to get the nonlinear mapping Y->x 
- different topologies of NN can be used 
- iterative algorithm 
- joint estimation of signal and noise parameters 
- classical methods make use of EM technique 

Assumptions - noise less correlated than  speech 
- short term stationarity of involved signals 

Advantages - no need of clean speech data 

Drawbacks - computationally demanding 

OTHER EXTENTIONS 

Dual EKF [20], [26] 

- ML estimates for both enhanced speech and parameters 
- can be used also with colored noise 
- usually used in the EM algorithm 
- high computational cost 
- frame by frame iteration 
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- quasi stationarity for speech signal needed 
- possible initialization using HOS 

NRAF [20], [28], [31] - similar to dual EKF but no AR model for speech 
- time domain MMSE filtering (no clean speech needed) 

Ephraim Cohen [4] 
- speech modeled as TVAR system 
- Gaussian noise 
- lower computational complexity (O(N)) 

Monte Carlo/Particle  
Filtering [4], [29], [30] 

- computationally demanding 

5.4   Adaptive Noise Cancellation (ANC) 

ADAPTIVE NOISE CANCELLATION [31-33] 

General Features 

- 2 channels available 
- no a priori knowledge on noisy signals required 
- reference channel contains no speech (ideally) 
- s and n incorrelated 
- linear or nonlinear filter can be used 
- ease of implementation and low computational cost (for linear 

filter) 
- using linear filter with MMSE estimator does not allow to get 

the Bayes conditional mean (optimal solution) 
- MMSE optimal filter: usually a nonlinear function of noisy 

data 
NON-LINEAR ANC 

General Features 
- non gaussian signal allowed 
- can deal with more complex mappings 
- higher computational complexity 

HOS Filters [41] 
- better to remove impulse noise 
- stationary zero mean signals 
- s and n independent 

Volterra and NN [39-40], 
[42] 

- different topologies allowed 
- training using classical algorithms 

MMSBA [35-38] 

- sub-band processing of noisy speech 
- different solution for the filter bank (DFT FB or Orthogonal 

transform) 
- sub-band distribution can be non linear 
- MMSE convergence improved 
- VAD available 
- different processing possible for different sub-bands 
- non linear filters can be used in the sub-bands processing 

5.5   Multi-channel Speech Enhancement  

MULTI CHANNEL TECHNIQUES 

General Features [43] 

- array of M channel available 
- more degree of freedom 
- spatial filtering 
- enhanced capabilities of noise suppression 

Complementary  
Beamforming and SS [44-45] 

- spatial non linear SS technique 
- two complementary beamformers 
- no speech pause detector needed 
- incorrelation of arriving signals 
- nonlinear constrained least squares minimization 
- supervised approach 
- significant improvement of speech enhancement capability 
- optimized for directional noise in [44] 
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Dahl Cleasson [46] 
- based on nonlinear time filtering 
- employment of supervised neural networks 
- generalization of the single channel case 

Lotter [47] 

- generalization of the single channel MMSE (Ephraim-Malah) 
- speech and noise DFT coefficients zero mean independent 

Gaussian pdfs 
- significant improvements of noise reduction performances 
- less sensitive to phase errors with MAP estimators 

Cohen Berdugo [49] 

- based on log-spectra amplitude (LSA) estimation 
- unsupervised approach 
- adaptive beamformer plus LSA estimation chain 
- noise cancellation system after the beamformer 
- suitable for environments with time-varying noises 

Multiple Regression [50-51] 

- supervised technique, both in linear and nonlinear fashion 
 - based on LSA estimation of the speech signal, coming from the 

close-talking mic 
 - implementation in the cepstral domain 
 - suitable as front-end for speech recognition 
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