
Central-Rank-Based Collection Selection in
Uncooperative Distributed Information Retrieval

Milad Shokouhi

School of Computer Science and Information Technology
RMIT University, Melbourne 3001, Australia

milad@cs.rmit.edu.au

Abstract. Collection selection is one of the key problems in distributed
information retrieval. Due to resource constraints it is not usually feasi-
ble to search all collections in response to a query. Therefore, the cen-
tral component (broker) selects a limited number of collections to be
searched for the submitted queries. During the past decade, several col-
lection selection algorithms have been introduced. However, their perfor-
mance varies on different testbeds. We propose a new collection-selection
method based on the ranking of downloaded sample documents. We test
our method on six testbeds and show that our technique can signifi-
cantly outperform other state-of-the-art algorithms in most cases. We
also introduce a new testbed based on the trec gov2 documents.

1 Introduction

Distributed information retrieval (dir) has attracted considerable research in-
terest during recent years. Centralized search engines are not capable of indexing
the hidden web [Raghavan and Garcia-Molina, 2001]. In addition, it is not feasi-
ble to crawl and index the web documents with the same rate that they change.
Dir has been introduced as a solution to these deficiencies. Dir techniques pro-
vide a search service over non-crawlable pages. They also return the recent ver-
sion of webpages without consuming costly resources for crawling. Distributed
search can be divided into three major steps; Firstly suitable collections are se-
lected for a query. Secondly, the query is sent to the selected collections and they
search their documents for suitable answers. Finally, the results from selected
collections are returned to the broker that then merges them for presentation to
the user.

In this paper, we focus on the collection selection stage. In dir systems, each
collection is represented by a set of documents and vocabularies usually known as
collection summaries or representation sets. In cooperative environments, collec-
tions provide the broker with their term statistics and summaries [Gravano et al.,
1997]. However, in real-life environments such as the web, collections may be
uncooperative. In this case, collections are not willing to share their informa-
tion and the broker should gather small summary sets for each collection by
sampling [Callan and Connell, 2001]. Random queries are sent to each collection
and results are downloaded and stored as collection representation sets.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 160–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Central-Rank-Based Collection Selection in Uncooperative DIR 161

We propose a novel collection selection algorithm that can be used in both
cooperative and uncooperative environments. However, we focus on the latter
scenario as it is more similar to the practical situations. For each entered query,
our method ranks collections according to the ranking of their centrally held
sampled documents. The sampled documents from all collections are gathered
in a single central index. Each query is executed on this index and the collection
weights are calculated according to the ranking of their sampled documents. In
the next sections we show that this simple idea can outperform the state-of-
the-art methods on many testbeds including our new testbed created from the
trec gov2 documents.

2 Collection Selection

For a given query, the broker ranks available collections based on the computed
similarity values for their representation sets. It is not usually feasible to search
all collections for a query. Therefore, the broker selects a few collections that are
more likely to return relevant documents. For this purpose, the broker evaluates
the similarity of the entered query with the collection summaries. These sum-
maries vary from term statistics in cooperative situations [Callan et al., 1995;
Gravano et al., 1997] to a limited number of documents downloaded by sam-
pling for uncooperative environments [Callan and Connell, 2001; Craswell et al.,
2000]. The broker chooses those collections that have a summary similar to the
query.

Introduced by Gravano et al. [1999], gloss uses the document frequency and
weight of each term to select suitable collections. However, gloss uses unrealistic
assumptions such as uniform term weight distribution across all collections. In
cvv [Yuwono and Lee, 1997], the fraction of documents inside each collection
that contain the query terms is used for collection selection.

Cori [Callan et al., 1995] applies inference networks for collection selection. It
has been reported as the most effective method in many papers [Craswell et al.,
2000; Powell and French, 2003], but there are question marks over its effective-
ness [D’Souza et al., 2004b].

Nottelmann and Fuhr [2003] suggest a decision-theoretic framework (dtf)
that selects the best collections while reducing the overall costs such as time
and money. Despite having a theoretical foundation, the reported performance
of dtf is worse than cori for short queries.

During recent years, new collection selection algorithms have been claimed to
produce better results than cori [D’Souza etal.,2004a; Si et al., 2002: Si and
Callan, 2003a: 2004]. Si et al. [2002] developed a language modeling framework
for distributed information retrieval. Their system slightly outperforms cori in
some cases. Redde [Si and Callan, 2003a] ranks the collections based on the
estimated number of relevant documents they contain. Redde has been shown
to be very effective on some testbeds. However, as we show in the next sections,
it produces poor results for some other testbeds.

162 M. Shokouhi

Si and Callan [2004] presented their Unified Utility Maximization (uum)
framework for collection selection. Uum performs slightly better than redde on
some testbeds. However, it uses training data and logistic models that require
human relevance judgments.

We use cori and redde as the benchmarks of our experiments because they
are the two well-known algorithms that do not require training data for collection
selection, and they both can work on uncooperative environments. In the next
section, we introduce a novel approach for selecting collections in dir systems.

3 Central-Rank-Based Collection Selection

In uncooperative environments, collection summaries usually consist of a limited
number of documents downloaded by query-based sampling [Callan and Connell,
2001]. The query is compared to each of these summaries and collections are se-
lected based on the similarity of their summaries with the query [Callan et al.,
1995] or according to the estimated number of relevant documents they contain
[Si and Callan, 2003a]. The ranking of sampled documents contains useful in-
formation that could be applied for selecting suitable collections. The set of all
collection summaries together approximates a global index of documents in all
collections and the ranking of summary documents could be seen as the result
of a query against this index.

We propose central-rank-based collection selection (crcs) as a new method
that ranks collections according to the ranking of their summary documents and
show that it can effectively select suitable collections.

In crcs, an effective retrieval model is applied to the index of all sampled
documents from collections. We refer to this model as the central sample search
engine (csse). For each query, csse ranks the downloaded documents from col-
lections. Then, the weight of each collection is calculated based on the ranks of
its sampled documents that are in the top γ results. We have arbitrarily set γ
to 50 for our experiments. How to identify an optimum value for this number is
left as future work. The documents ranked after γ are less likely to be relevant
and should have no impact on collection weights.

The top γ documents are ranked according to their probabilities of relevance.
Intuitively, the weight of a collection with a sampled document at rank one
should be incremented more than another collection with a sampled document
at rank say 40.

The impact of a sampled document D on the weight of its original collection
c is computed according to the position of that document in the top γ results.
In the simplest form, this can be computed linearly as below:

R(Dj) =
{

γ − j if j < γ
0 otherwise

(1)

where R(Dj) represents the impact of document D at the jth rank of results
returned by csse. The impact of documents decreases linearly according to their
ranks. However, previous studies [Joachims et al., 2005; Manmatha et al., 2001]

Central-Rank-Based Collection Selection in Uncooperative DIR 163

suggest that the importance of documents for users and their probabilities of rel-
evance have a negative exponential relation with the document ranks. Therefore,
it might be more suitable to assign document scores in a negative exponential
manner as follows:

R(Dj) = α exp(−β × j) if Dj ∈ Si (2)

Here, j is the rank of document D. Coefficient parameters α and β are two
constants respectively set to 1.2 and 2.8 in our experiments according to the
suggested figures by Joachims et al. [2005]. We use crcs(l) when the impact
values are computed linearly and crcs(e) when Eq. (2) is applied.

The size of a collection is also important for calculating its final weight. If
two collections contribute the same number of documents in the top-ranked re-
sults, the larger collection is likely to contain more relevant documents due to its
greater size. Collection size is an important factor that has to be considered dur-
ing collection selection. Kl-divergence [Si et al., 2002], redde [Si and Callan,
2003a] and uum [Si and Callan, 2004] all consider a collection size parameter
in their calculations. Since the exact values for collection sizes are not usually
available in uncooperative environments, we recommend that the size of each col-
lection be estimated using the capture-history method [Shokouhi et al., 2006b].

In our experiments, we assume that the size of all collection summaries is the
same (300 documents). In practice, collection summaries might be different in
size. Larger summaries are more likely to contain the query terms, which means
that collections with larger summaries are more likely to be selected for any
given query. To overcome this bias, crcs divides the weight of each collection
by the size of its representation set.

Putting this together, crcs calculates the weight of each collection as below:

Ci =
CH i

CH max × |Si|
×

∑
D∈Si

R(Dj) (3)

where, CH i is the size of collection i estimated by the capture-history method
[Shokouhi et al., 2006b]. We normalize the collection sizes by dividing the size of
each collection by the size of the largest collection involved (CH max). |Si| is the
size of the representation set for collection i that is the number of documents
downloaded by query-based sampling [Callan and Connell, 2001] from that col-
lection. The weight of each collection is calculated by summing up the impact
values for its summary documents. In summary, crcs computes the final weights
of collections as below:

– Csse runs the query and ranks the sampled documents on the broker.
– The top γ documents returned by csse are selected and their impact values

on the weights of their corresponding collections are calculated
– Collections are ranked according to the impact values of their sampled doc-

uments and their estimated sizes.

A similar technique is suggested by Craswell et al. [2000] for collection selec-
tion. In their approach, the broker sends a number of training multi-term probe

164 M. Shokouhi

queries to collections. The top results from each collection are downloaded and
gathered together in a single index. Then, the broker applies an effective re-
trieval model to rank the downloaded documents for the initial training queries.
The search effectiveness of collection are computed according to their contribu-
tion to the top n (they suggested n = 20) results when the query is executed
on the downloaded documents. Our approach is different to their technique in
several ways; they calculate an effectiveness score for each collection according
to its performance for the training queries. The final weight of a collection is
computed by adding its effectiveness factor to the score calculated by a stan-
dard collection selection algorithms such as cori. Unlike our approach, their
suggested technique has not been used independently without relying on other
collection selection methods. Also, while crcs can select effective collections on-
line, the suggested method by [Craswell et al., 2000] cannot capture this without
a sufficient number of offline training queries.

Redde [Si and Callan, 2003a] also uses a similar strategy for collection selec-
tion. However, it ignores the rank difference of documents in the central sample
index and concentrates on selecting collections with the highest number of rel-
evant documents (high recall). In contrast, our novel crcs method focuses on
selecting collections with high-quality documents (high precision).

In the following sections we compare the performance of crcs with the other
state-of-the-art methods on different testbeds.

4 Experimental Testbeds and Evaluation Metrics

Several testbeds have been developed for dir experiments. These testbeds may
be useful for evaluating dir methods for specific applications such as enterprise
search. However, most of them are not suitable for evaluating dir techniques on
the web because:

– The proposed testbeds are usually much smaller than the web collections
and cannot be considered as good instances of the current web servers. The
largest testbed reported so far is about 18 GB used by Hawking and Thomas
[2005]. The other common testbeds are at most one sixth of this size[Powell
and French, 2003: Si and Callan, 2003b:a].

– Collections are generated artificially by allocating each document to a col-
lection according to a predefined criteria. This might be the author name or
the year of publication[Powell and French, 2003; Si and Callan, 2003b;a].

– Collections usually only contain documents from the trec newswire data.
Considering the diversity of topics on the web, testbeds containing only
news-related documents are not sufficient for unbiased evaluations.

In addition to the testbed deficiencies, there is a common defect with re-
lated work in this area; proposed algorithms are usually only tested on a few
testbeds and their robustness has not been evaluated on different test data.
In Section 5, we show that the performance of dir methods vary substantially
on different testbeds. This is consistent with previous work by D’Souza et al.

Central-Rank-Based Collection Selection in Uncooperative DIR 165

Table 1. Testbed statistics

Number of Documents Size
×1000 (MB)

Testbed Size (GB) Min Avg Max Min Avg Max
trec123-100col-bysource 3.2 0.7 10.8 39.7 28 32 42
trec4-kmeans 2.0 0.3 5.7 82.7 4 20 249
100-col-gov2 110.0 32.6 155.0 717.3 105 1126 3891

[2004a] that investigates the impact of testbed characteristics on collection se-
lection algorithms. An algorithm that produces the best results on one dataset
does not necessarily perform as well on another. We also introduce a new testbed
based on the trec gov2 data. Our new testbed is more than six times larger
than the largest dir testbed reported so far; it is about 36 times larger than
trec123-100col-bysource [Powell and French, 2003; Si and Callan, 2003b;a; 2004;
Si et al., 2002], and 55 times larger than trec4-kmeans [Si and Callan, 2003b;
Xu and Croft, 1999]. We test our method on six testbeds, so that we can fairly
compare its performance and robustness with other available approaches. Ta-
ble 1 includes information about the three major testbeds that have been used
in our experiments. The other three testbeds are all generated from trec123-
100col-bysource, thus we do not present them in the table.

– trec4-kmeans (trec4): One hundred collections created from the trec4
data. A k-means clustering algorithm have been used to organize the collec-
tions by topic [Xu and Croft, 1999]. Trec topics 201–250 (description) and
their relevance judgments are used for performance evaluations. Collections
in this testbed are small and the average query length is 7.2 words.

– trec123-100col-bysource (uniform): One hundred collections are created
by organizing the documents from the trec disks 1, 2, and 3 by source
and publication date. It is one of the most popular dir testbeds and has
been used in many papers [Powell and French, 2003; Si and Callan, 2003b;a;
2004; Si et al., 2002]. Trec topics 51–100 (title) are used as queries with the
average length of 3 words per query.

– 100-col-GOV2 testbed (GOV2): In this new testbed, documents from
the largest 100 servers in the trec gov2 data—in terms of the number of
crawled pages—have been extracted and located in one hundred separate
collections. Trec topics 701–750 (title) were used as queries. On average
there are 3.2 words per query. The documents in all collections are from
crawled webpages and the size of this testbed is many times larger than the
current alternatives.

The other three testbeds are generated artificially from the uniform testbed
[Powell and French, 2003; Si and Callan, 2003a; 2004].

– trec123-AP-WSJ-60col (relevant): 24 Associate Press collections in the
uniform testbed are collapsed into a single large APress collection. The same
process is applied to 16 Wall Street Journal collections and they create a large

166 M. Shokouhi

WSJournal collection. The other collections remain unchanged. Two large
collections have higher density of relevant documents for the trec queries.

– trec123-2ldb-60col (representative): Collections in the uniform testbed
are sorted by their name. Every fifth collection starting with the first is
merged into a large “representative” collection. The same process is applied
to every fifth collection starting from the second collection and they form
another large representative collection. The other collections are unchanged.

– trec123-FR-DOE-81col (nonrelevant): The 13 Federal Register and 6
Department of Energy collections in the uniform testbed are collapsed in
two large collections respectively called FR and DOE. The rest of collections
remain as were before. The larger collections have a lower density of relevant
documents.

Collection selection algorithms are often compared using a recall metric Rk

[Powell and French, 2003; Si and Callan, 2003a; 2004]:

Rk =
∑k

i=1 Ei∑k
i=1 Bi

(4)

Here, E is the collection selection ranking (cori, redde, crcs). B is the baseline
ranking that is the relevance based ranking (rbr) [Powell and French, 2003] in
our experiments. Ei and Bi are respectively the number of relevant documents
in the ith ranked collection of E and B.

Choosing collections with a greater number of relevant documents (high re-
call) does not always lead to higher search effectiveness in dir experiments
[Si and Callan, 2003a; 2004]. Therefore, we also assess the effectiveness of al-
gorithms on each testbed using relevance judgments. In all testbeds, we down-
load 300 documents by query-based sampling[Callan and Connell, 2001] for each
collection. Although it has been argued that using static summary sizes for col-
lections is not always recommended [Baillie et al., 2006; Shokouhi et al., 2006a],
we use this number to make our results comparable to other published work in
this area [Callan and Connell, 2001; Craswell et al., 2000; Si and Callan, 2003a;
2004]. Each collection returns at most 100 answers to the broker for the entered
query. We used ssl [Si and Callan, 2003b] algorithm to merge the returned re-
sults from the selected collections. The next section discusses the experimental
results.

5 Results

Figure 1 depicts the performance of different collection selection algorithms on
the trec4 and uniform testbeds. The horizontal axis in these figures shows the
cutoff values, which are the number of collections that are selected for each query.
The goal of collection selection methods is to select a few collections that contain
the best answers. Therefore, we only show the Rk values for cutoffs smaller than
20. This number is consistent with dir experiments that are reported elsewhere
[Si and Callan, 2003a; 2004]. On the trec4 testbed, all methods produce almost

Central-Rank-Based Collection Selection in Uncooperative DIR 167

0 5 10 15 20

Cutoff (trec4)

0.0

0.2

0.4

0.6

0.8

1.0
R

 v
al

ue

CORI
ReDDE
CRCS(l)
CRCS(e)

0 5 10 15 20

Cutoff (uniform)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

Fig. 1. R values for the cori, redde and crcs algorithms on the trec4-kmeans (left)
and trec123-100col-bysource (right) testbeds

0 5 10 15 20

Cutoff (representative)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

CORI
ReDDE
CRCS(l)
CRCS(e)

0 5 10 15 20

Cutoff (relevant)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

Fig. 2. R values for the cori, redde and crcs algorithms on the trec123-2ldb-60col
(left) and trec123-AP-WSJ-60col (right) testbeds

the same Rk values for different cutoff points. For the uniform testbed, however,
redde has a clear advantage while other methods have similar performance.
We show later in this section that the advantage in recall does not have any
significant impact on the final search effectiveness.

The Rk values for the representative and relevant testbeds are illustrated in
Fig. 2. On the representative testbed, the difference between methods is negli-
gible. On the relevant testbed, cori produces far worse results than the other
approaches. Redde and crcs(l) show similar outputs and they both work better
than crcs(e) for smaller cutoff points.

Figure 3 shows the Rk values produced by different methods on the gov2
and non-relevant testbeds. The difference between methods on the non-relevant
dataset is negligible for all cutoff values. On the gov2 testbed, cori selects
collections with more relevant documents for smaller cutoff points. For larger
cutoffs, all methods show similar outputs.

Higher recall values in the collection selection stage do not always lead to
high precision in the final results [Si and Callan, 2003a; 2004]. Therefore, we

168 M. Shokouhi

0 5 10 15 20

Cutoff (nonrelevant)

0.0

0.2

0.4

0.6

0.8

1.0
R

 v
al

ue

CORI
ReDDE
CRCS(l)
CRCS(e)

0 5 10 15 20

Cutoff (GOV2)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

Fig. 3. R values for the cori, redde and crcs algorithms on the trec123-FR-DOE-
81col (left) and 100-col-gov2 (right) testbeds

Table 2. Performance of different methods for the Trec4 (trec4-kmeans) testbed.
Trec topics 201–250 (long) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CORI 0.3000 0.2380 0.2133† 0.1910† 0.3480 0.2980 0.2587 0.2380
ReDDE 0.2160 0.1620 0.1373 0.1210 0.3480 0.2860 0.2467 0.2190
CRCS(l) 0.2960 0.2260 0.2013 0.1810† 0.3520 0.2920 0.2533 0.2310
CRCS(e) 0.3080 0.2400 0.2173† 0.1910† 0.3880 0.3160 0.2680 0.2510

evaluate the search effectiveness of algorithms using the trec queries and rel-
evance judgments. We only report the results for cutoff=1 and cutoff=5. The
former shows the system outputs when only the best collection is selected while
for the latter, the best five collections are chosen to get searched for the query.
We do not report the results for larger cutoff values because cutoff=5 has shown
to be a reasonable threshold for dir experiments on the real web collections
[Avrahami et al., 2006]. The P@x values show the calculated precision on the
top x results.

We select redde as the baseline as it does not require training queries and its
effectiveness is found to be higher than cori and older alternatives [Si and callan,
2003a]. The following tables compare the performance of discussed methods on
different testbeds. We used the t-test to calculate the statistical significance
of difference between approaches. For each table, † and ‡ respectively indicate
significant difference at the 99% and 99.9% confidence intervals between the
performance of redde and other methods.

Results in Table 2 show that on the trec4 testbed, methods produce similar
precision values when five collections are selected per query. The numbers also
suggest that redde is not successful in selecting the best collection. It produces
poorer results than the other methods and the difference is usually significant
for P@15 and P@20.

Central-Rank-Based Collection Selection in Uncooperative DIR 169

Table 3. Performance of collection selection methods for the uniform (trec123-100col-
bysource) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CORI 0.2520 0.2140 0.1960 0.1710 0.3080 0.3060 0.2867 0.2730
ReDDE 0.1920 0.1660 0.1413 0.1280 0.2960 0.2820 0.2653 0.2510
CRCS(l) 0.2120 0.1760 0.1520 0.1330 0.3440 0.3240 0.3067 0.2860
CRCS(e) 0.3800‡ 0.3060‡ 0.2613‡ 0.2260† 0.3960 0.3700† 0.3480† 0.3310†

Table 4. Performance of collection selection methods for the representative (trec123-
2ldb-60col) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CORI 0.2160 0.2040 0.1773 0.1730 0.3520 0.3500 0.3347 0.3070
ReDDE 0.3320 0.3080 0.2960 0.2850 0.3480 0.3220 0.3147 0.3010
CRCS(l) 0.3160 0.2980 0.2867 0.2740 0.3160 0.3160 0.2973 0.2810
CRCS(e) 0.2960 0.2760 0.2467 0.2340 0.3400 0.3500 0.3333 0.3090

On the uniform testbed (Table 3), crcs(e) significantly outperforms the other
alternatives for both cutoff values. Cori, redde, and crcs(l) show similar per-
formance on this testbed. Comparing the results with the Rk values in Figure 1
confirms our previous statement that selecting collections with a high number
of relevant documents does not necessarily lead to an effective retrieval.

For the representative testbed as shown in Table 4, there is no significant
difference between methods for cutoff=5. Crcs(l), crcs(e) and redde produce
comparable performance when only the best collection is selected. The precision
values for cori when cutoff=1 are shown in italic to indicate that they are
significantly worse than redde at the 99% confidence interval.

On the relevant testbed (Table 5), all precision values for cori are signifi-
cantly inferior to that of redde for both cutoff values. Redde in general pro-
duces higher precision values than crcs methods. However, none of the gaps are
detected statistically significant by the t-test at the 99% confidence interval.

Table 5. Performance of collection selection methods for the relevant (trec123-AP-
WSJ-60col) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CORI 0.1440 0.1280 0.1160 0.1090 0.2440 0.2340 0.2333 0.2210
ReDDE 0.3960 0.3660 0.3360 0.3270 0.3920 0.3900 0.3640 0.3490
CRCS(l) 0.3840 0.3580 0.3293 0.3120 0.3800 0.3640 0.3467 0.3250
CRCS(e) 0.3080 0.2860 0.2813 0.2680 0.3480 0.3420 0.3280 0.3170

170 M. Shokouhi

Table 6. Performance of collection selection methods for the non-relevant (trec123-
FR-DOE-81col) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CORI 0.2520 0.2100 0.1867 0.1690 0.3200 0.2980 0.2707 0.2670
ReDDE 0.2240 0.1900 0.1813 0.1750 0.3480 0.2980 0.2707 0.2610
CRCS(l) 0.2040 0.1860 0.1813 0.1800 0.3360 0.3220 0.2973 0.2860
CRCS(e) 0.3200† 0.2820† 0.2533† 0.2240 0.3880 0.3600 0.3387† 0.3210†

Table 7. Performance of collection selection methods for the gov2 (100-col-gov2)
testbed. Trec topics 701–750 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

CORI 0.1592† 0.1347† 0.1143† 0.0969† 0.2735 0.2347 0.2041 0.1827
ReDDE 0.0490 0.0327 0.0286 0.0235 0.2163 0.1837 0.1687 0.1551
CRCS(l) 0.0980 0.0755 0.0667 0.0531 0.1959 0.1510 0.1442 0.1286
CRCS(e) 0.0857 0.0714 0.0748 0.0643 0.2776 0.2469 0.2272 0.2122

The results for crcs(l), redde and cori are comparable on the non-relevant
testbed (Table 6). Crcs(e) significantly outperforms the other methods in most
cases. On the gov2 testbed (Table 7), cori produces the best results when
cutoff=1 while in the other scenarios there is no significant difference between
the methods.

Overall, we can conclude that crcs(e) selects better collections and its high
performance remains robust. In none of the reported experiments, the precision
values for crcs(e) were significantly poorer than any other method at the 99%
confidence interval. However, in many cases, the performance of crcs(e) was
significantly better than the second best method at the 99% or 99.9% confidence
intervals. Cori and redde showed variable performance on different testbeds,
each outperforming the other on some datasets.

6 Conclusions

We have introduced a new collection selection method for uncooperative dir en-
vironments. We have shown that our proposed crcs method can outperform the
current state-of-the-art techniques. We investigated the robustness of different
collection selection algorithms and showed that the performance of redde and
cori changes significantly on different testbeds while crcs produces robust
results. We also introduced a new testbed for dir experiments based on the
trec gov2 dataset. Our proposed testbed is about 36 times larger than the
most well-known dir testbeds and more than 6 times larger than the largest
dir testbed ever reported. Moreover, unlike traditional dir testbeds that docu-

Central-Rank-Based Collection Selection in Uncooperative DIR 171

ments are assigned artificially into collections, collections in this testbed contain
downloaded web documents arranged by server.

Experiments reported in this paper are based on the assumption that all
collections are using the same retrieval model with equal effectiveness. However,
in practice, collections often use different retrieval models and have different
effectiveness. We plan to extend our experiments on collections with different
retrieval models. Finally, the most proper values for α, β and γ have not been
investigated and will be explored in our future research.

Acknowledgment

I am grateful to Justin Zobel, for his valuable comments on this work.

References

T. Avrahami, L. Yau, Luo Si, and Jamie Callan. The FedLemur: federated search in the
real world. Journal of the American Society for Information Science and Technology,
57(3):347–358, 2006.

M. Baillie, L. Azzopardi, and F. Crestani. Adaptive query-based sampling of distributed
collections. In SPIRE String Processing and Information Retrieval Symposium, pages
316–328, Glasgow, UK, 2006.

J. Callan and M. Connell. Query-based sampling of text databases. ACM Transactions
on Information Systems, 19(2):97–130, 2001.

J. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference
networks. In Proc. ACM SIGIR Conf., pages 21–28, Seattle, Washington, 1995.

N. Craswell, P. Bailey, and D. Hawking. Server selection on the World Wide Web. In
Proc. ACM Conf. on Digital Libraries, pages 37–46, San Antonio, Texas, 2000.

D. D’Souza, J. Thom, and J. Zobel. Collection selection for managed distributed doc-
ument databases. Information Processing and Management, 40(3):527–546, 2004a.

D. D’Souza, J. Zobel, and J. Thom. Is CORI effective for collection selection? an explo-
ration of parameters, queries, and data. In Proc. Australian Document Computing
Symposium, pages 41–46, Melbourne, Australia, 2004b.

L. Gravano, C. K. Chang, H. Garcia-Molina, and A. Paepcke. STARTS: Stanford
proposal for Internet meta-searching. In Proc. ACM SIGMOD Conf., pages 207–
218, Tucson, Arizona, 1997.

L. Gravano, H. Garcia-Molina, and A. Tomasic. GlOSS: text-source discovery over the
Internet. ACM Transactions on Database Systems, 24(2):229–264, 1999.

D. Hawking and P. Thomas. Server selection methods in hybrid portal search. In Proc.
ACM SIGIR Conf., pages 75–82, Salvador, Brazil, 2005.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. In Proc. ACM SIGIR Conf., pages 154–161,
Salvador, Brazil, 2005.

R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for combining the
outputs of search engines. In Proc. ACM SIGIR Conf., pages 267–275, New Orleans,
Louisiana, 2001.

H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In Proc. ACM SIGIR Conf., pages 290–297, Toronto,
Canada, 2003.

172 M. Shokouhi

A. L. Powell and J. French. Comparing the performance of collection selection algo-
rithms. ACM Transactions on Information Systems, 21(4):412–456, 2003.

S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Proc. 27th Int. Conf.
on Very Large Data Bases, pages 129–138, Roma, Italy, 2001. Morgan Kaufmann
Publishers Inc.

M. Shokouhi, F. Scholer, and J. Zobel. Sample sizes for query probing in uncooperative
distributed information retrieval. In Proc. Asia Pacific Web Conf., pages 63–75,
Harbin, China, 2006a.

M. Shokouhi, J. Zobel, F. Scholer, and S.M.M. Tahaghoghi. Capturing collection size
for distributed non-cooperative retrieval. In Proc. ACM SIGIR Conf., pages 316–
323, Seattle, Washington, 2006b.

L. Si and J. Callan. Unified utility maximization framework for resource selection. In
Proc. ACM CIKM Conf., pages 32–41, Washington, 2004.

L. Si and J. Callan. Relevant document distribution estimation method for resource
selection. In Proc. ACM SIGIR Conf., pages 298–305, Toronto, Canada, 2003a.

L. Si and J. Callan. A semisupervised learning method to merge search engine results.
ACM Transactions on Information Systems, 21(4):457–491, 2003b.

L. Si, R. Jin, J. Callan, and P. Ogilvie. A language modeling framework for resource
selection and results merging. In Proc. ACM CIKM Conf., pages 391–397, McLean,
Virginia, 2002.

J. Xu and B. Croft. Cluster-based language models for distributed retrieval. In Proc.
ACM SIGIR Conf., pages 254–261, Berkeley, California, United States, 1999.

B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval systems on
the Internet. In Proc. Conf. on Database Systems for Advanced Applications, pages
41–50, Melbourne, Australia, 1997.

	Introduction
	Collection Selection
	Central-Rank-Based Collection Selection
	Experimental Testbeds and Evaluation Metrics
	Results
	Conclusions

